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Speeding up estimation of the Hurst exponent by a 

two-stage procedure from a large to small range 

 

1. Introduction 

In many fields, for example, society (Gao et al., 2012; Perc, 2012; Perc, 2013; Petersen 

et al., 2012), business (Domino, 2012; Fernández-Martínez et al., 2013; Rejichi and Aloui, 

2012; Rostek and Schöbel, 2013), medicine (Chang et al., 2000; Chang et al., 2007; Huang 

and Lee, 2009; Lin et al., 2013) and nature (Gonçalves and Bruno, 2013; Hagerhall et al., 

2004; Mandelbrot, 1983; Pentland, 1984; Wang et al., 2011; Zuñiga et al., 2014), signals 

often look like self-similarity with strong long-term correlations. They look like disorganized 

realizations and seem to be difficult to describe them, but fortunately many of which can be 

explained by only one parameter, called the Hurst exponent or its corresponding fractal 

dimension. Therefore, how to accurately and efficiently estimate the Hurst exponent is a big 

issue.  

Two categories of estimators for the Hurst exponent are the non-modeling class and the 

modeling class. The non-modeling estimators include the box-counting method (Bruce, 2001; 

Chen et al., 1993; Jin et al., 1995; Sarkar and Chaudhuri, 1992; Sarkar and Chaudhuri, 1994), 

the rescaled range (R/S) analysis (or the R/S statistic) (Beran, 1994), the detrended 

fluctuation analysis (DFA) (Peng et al., 1992 and 1994; Biswas et al., 2012) and the 

wavelet-based methods (Hansen et al., 1998; Rehman and Siddiqi, 2009). On the other hand, 

the modeling class includes the variance method, the moving-average (MA) method, and the 

autoregressive (AR) method, where signals are either modeled as fractional Brownian motion 

(FBM) or as fractional Gaussian noise (FGN). Since modeling methods can provide physical 

meanings of signals and broadly speaking, their estimation accuracy is much higher than 

non-modeling ones, they are often adopted by engineers who engage in the field of statistical 
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signal processing.  

The Hurst exponent can be viewed as a key feature of FBM and FGN. These two 

processes are related to each other; the increment process of FBM is FGN, and conversely 

FBM is the accumulation process of FGN. In general, FGN is used quite more frequently 

than FBM because it is strict-sense stationary and the behavior of its power spectral density 

(PSD) approaches the form of H21−λ  (Lundahl et al., 1986; Mandelbrot and Van Ness, 1968), 

where λ  represents frequency; however, FBM is statistically self-similar nonstationary and 

its PSD changes over time (Flandrin, 1989; Lundahl et al., 1986). 

In practical applications, data are collected in discrete time; their corresponding types of 

FBM and FGN are called discrete-time fractional Brownian motion (DFBM) and 

discrete-time fractional Gaussian noise (DFGN), which is a regular process (Chang and 

Chang, 2002). DFBM and DFGN are often used to model natural and biomedical signals 

(Chang et al., 2000; Chang et al., 2007; Liu and Chang, 1997; Lundahl et al., 1986). To 

explain the characteristics of these signals, their Hurst exponents are first estimated and then, 

if necessary, the corresponding fractal dimensions are calculated according to the relation 

HD −= 2  (Falconer, 1990; Hastings and Sugihara, 1993), where D  is Hausdorff 

dimension or box dimension. 

As we know, the maximum likelihood estimator (MLE) (Lundahl et al., 1986) has 

optimal accuracy, but it spends huge time computing the inverse of its autocovariance matrix, 

and it is likely to encounter computational problems, especially for H  closer to 1 (Beran, 

1994), hence computational inaccuracy. Therefore, the MLE generally has a higher 

theoretical value than its practicability.  

Then the Whittle estimator (Beran, 1994; Kay, 1993; Schonhoff and Giordano, 2006; 

Taqqu et al., 1995), an approximate MLE, was developed to reduce computational cost and 

even overcome the computational instability while remaining accuracy at a satisfactory level. 

D
ow

nl
oa

de
d 

by
 F

ud
an

 U
ni

ve
rs

ity
 A

t 1
0:

21
 0

7 
Fe

br
ua

ry
 2

01
7 

(P
T

)



3 

 

Other speedier estimators with different degrees of accuracy were developed, such as the 

variance method (Chang et al., 2012; Lundahl et al., 1986; Mandelbrot and Van Ness, 1968), 

moving-average (MA) method (Liu and Chang, 1997) and autoregressive (AR) method 

(Chang, 2014b; Chang and Chang, 2002; Chang et al., 2014). 

Recently, Chang (Chang, 2014a) introduced the Levinson algorithm (Haykin, 1989; Kay, 

1988) and Cholesky decomposition (Haykin, 1989) into the MLE to raise computational 

efficiency, which is simply called the fast MLE. Moreover, four possible situations of two 

parameters (mean and variance) in the probability density function (PDF) have even been 

considered. Experimental results show that the fast MLE has completely surmounted 

computational problems and greatly minimized the computational cost. The efficiency of the 

fast MLE, which grows exponentially as the data size increases, will greatly raise its 

practicability. 

Although the speed of the fast MLE has been boosted to a considerable degree, any 

promotion on the computational performance of the fast MLE is always popular with users, 

especially in the field of demanding both accuracy and efficiency. In this paper, a two-stage 

procedure combining two different estimators to estimate the Hurst exponent from a large to 

small range (simply called a two-stage estimator) will be developed. To achieve substantial 

benefits, the speed of the two-stage estimator should be quicker than the faster of two 

estimators, whereas its accuracy is still remained at almost the same level as the more 

accurate.  

In fact, any integration of two estimators is feasible only under the condition that the 

first-stage estimator with accuracy as high as possible is quicker than the other and the 

second-stage estimator, which must be estimated by searching a finite interval for the optimal 

Hurst exponent, is more accurate than the other. For possibly best accuracy, the DI method 

(Chang, 2014b) is currently ideal for the first-stage estimator and the fast MLE (Chang, 
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2014a) is the best candidate for the second-stage estimator. 

The rest of this paper is organized as follows. Section 2 gives a brief description of 

mathematical preliminaries. Section 3 introduces two Hurst exponent estimators applied in a 

two-stage procedure. Section 4 provides the algorithm of implementing the two-stage 

procedure. Section 5 discusses experimental results. Finally, Section 6 draws some 

conclusions from a few facts. 

2. Mathematical Preliminaries 

FBM is a generalized Brownian motion, which is represented by ( )tBH , short for 

( )ζ,tBH  where t  is continuous time and the outcome ζ  is from some sample space, S . 

As defined by Mandelbrot and Van Ness (Mandelbrot and Van Ness, 1968), FBM is 

expressed as follows: 

( ) 00 bBH = , 

( ) ( )
( )

( ) ( )[ ] ( ) ( ) ( )






 −+−−−

+Γ
=−

−

∞−

−−

∫∫ sdBstsdBsst
H

BtB
HtHH

HH

21

0

0 2121

21

1
0 ,    (1) 

where H  is the Hurst exponent, a real value lying between 0 and 1. It is obvious that FBM 

is equal to the ordinary Brownian motion at 5.0=H . For ease of analysis, equation (1) is 

usually written in a more symmetric form (Mandelbrot and Van Ness, 1968): 

      ( ) ( )
( )

( ) ( ) ( ) ( )






 −−−

+Γ
=−

−−

∫∫ sdBstsdBst
H

tBtB
HtHt

HH

21

0
1

21

0
212

12

21

1
.     (2) 

Since FBM is not a stationary process which makes analysis difficult, the Wigner-Ville 

spectrum (WVS) of a nonstationary process is often adopted to evaluate time-dependent 

spectral characteristics of signals, whose formula is as follows (Flandrin, 1989): 

                      ( ) ( )
12

21 1
2cos21, +

−

Ω
Ω−=Ω

H

H

B ttf
H

.                     (3) 

Although FBM is nonstationary, the increment process of FBM, denoted by ( )tBH
′  and 
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termed FGN, is stationary and self-similar with parameter H  (Mandelbrot and Van Ness, 

1968), making estimation of the Hurst exponent easier. 

It is inevitable for practical applications that continuous data are sampled and then 

discrete data are gathered; discrete-time FBM (DFBM) are expressed by [ ] ( )sHH nTBnB = , 

where sT  is the sampling time. The increment process of DFBM, called DFGN, is denoted 

by [ ] [ ] [ ]1−−= nBnBnX HHH .  

It is beneficial for estimation that DFGN is exactly a stationary and normally distributed 

process with mean zero and variance [ ]krH , called the autocorrelation function (ACF), which 

is as follows: 

             [ ] [ ] [ ]{ } ( )HHH

HHH kkknXknXEkr
222

2

121
2

−+−+=+=
σ

,           (4) 

where [ ]( )nX Hvar2 =σ  (Lundahl et al., 1986; Samorodnitsky and Taqqu, 1994). The ACF 

provides a time-domain description of the second moment of DFGN and its behavior much 

approaches α−− = kk H 22 , ( )2,0∈α  (Samorodnitsky and Taqqu, 1994) as k  gets larger. On 

the other hand, the PSD or the discrete-time Fourier transform of the ACF is often used as a 

frequency-domain description (Haykin, 1989): 

                            ( ) [ ]∑
∞

−∞=

−=
k

ik

H ekrf
ωω ,                           (5) 

where ω  is the angular frequency. Conversely, the ACF can be derived from the inverse 

discrete-time Fourier transform (Haykin, 1989): 

                     [ ] ( )∫−=
π

π

ω ωω
π

defkr ik

H
2

1
, K,1,0 ±=k .                  (6) 

Based on the properties of DFGN, the PDF of DFGN is written as follows (Lundahl et 

al., 1986): 

                      ( )
( ) 






−= −

xRx
R

x
1

212 2

1
exp

2

1
; T

N
Hp

π
,                 (7) 
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where [ ] [ ] [ ][ ]THHH NXXX 110 −= Lx  is a data set, R  the autocovariance matrix of 

size NN ×  and R  its determinant, where, [ ]TE xxR = . Without loss of generality, the 

logarithm of the PDF, also called the log-likelihood function, is adopted to estimate the Hurst 

exponent as follows: 

                    ( ) ( ) xRxRx
1

2

1
log

2

1
2log

2
;log −−−−= TN
Hp π .             (8) 

3. Two Estimators in a Two-Stage Procedure 

In this paper, a two-stage estimator with lower computational cost than and almost the 

same accuracy as the fast MLE will be proposed. At the moment, the DI method (Chang, 

2014b) is most suitably chosen as the first-stage estimator and the fast MLE (Chang, 2014a) 

as the second-stage estimator.  

In the future, when there is an estimator with accuracy higher than the DI method and 

execution time 10 times less than the fast MLE, the new estimator can play the role of the 

first-stage estimator. 

For ease of understanding and use of a two-stage procedure from a large to small range, 

two adopted estimators, the DI method and the fast MLE, will be introduced in the following 

subsections. 

3.1. The DI method 

The DI method can be directly applied in the signals of DFGN, denoted by [ ]nX H . If a 

practical signal of interest is modeled as DFBM, denoted by [ ]nBH , then its increments,  

[ ] [ ] [ ]1−−= nBnBnX HHH
, need to be calculated in advance. The following procedure is a 

detailed description of estimating the Hurst exponent by using the DI method. 
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Procedure 1: Estimating the Hurst exponent by using the DI estimator 

1. Choose a suitable data size or number, N . 

2. Extract a section of signal of size N , [ ]nX H
, from a realization of DFGN (or the 

increments of DFBM).  

3. Determine the threshold for terminating the Levinson algorithm according to Algorithm 1 

or 2 of Chang (Chang, 2014b). 

4. Modify [ ]nX H
 into zero mean. 

5. Estimate ACFs by using the following formula: 

              ∑
+=

−=
N

kn

HH knXnX
N

kr
1

][][
1

][ˆ , 1,,1,0 −= Nk K .                (9) 

6. Estimate the parameter sets by using estimated ACFs via the Levinson algorithm (Haykin, 

1989; Kay, 1988) until the threshold is satisfied, or the corresponding order, p̂ , is 

found out. 

7. Estimate the slope, s , of ( )( ){ }kf ωˆlog  versus ( ){ }kωlog  over Mkk πω = , 

Mk ,,2,1 K= , (in this paper, M  was chosen as 63) by using (10) and (11) below: 

                            ( ) ( ) 2

ˆ |ˆ|ˆˆ ωρω Af p= ,                        (10) 

where p̂ρ̂  is the estimate of the white noise variance (prediction error power) and 

                  ( ) [ ] { } [ ] { }pjpajaA ˆexpˆˆexp1ˆ1ˆ ωωω −++−+= L ,            (11) 

where p̂  denotes the estimated order of the AR model. 

8. Estimate the Hurst exponent, H , through the following formula (Chang, 2014b): 

                      0

1

1

2

2

3

3
ˆˆˆˆ cscscscH +++= ,                         (12) 

where 0.49900 =c , -0.43551 =c , 0.04412 =c  and 0.02363 =c . 

9. Calculate, if necessary, the fractal dimension using HD ˆ2ˆ −=  (Falconer, 1990). 
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Note that although formula (5) can give a direct and easy way to estimate the PSDs, the 

DI method estimated the PSDs through an AR model because the AR model possesses good 

characteristics. Kay (Kay, 1988) has summarized some reasons for the AR spectral estimator 

better than the Blackman-Tukey (BT) one. First, the AR spectral estimator has higher 

resolution than the BT one because of an implicit extension of the estimated ACFs. The BT 

spectral estimator directly truncates the ACFs and then appends the ACFs by zeros, thereby 

smearing spectral estimates. However, the AR spectral estimator extrapolates the ACFs 

according to an iteration formula, and thus the resultant spectral estimates are closer to the 

true ones. 

3.2. The fast MLE 

Considering two parameters of mean and variance exist in the PDF, as well as each 

parameter is known or unknown, there are four cases considered. In addition, for unknown 

mean there are two ways of estimation: the mean by the MLE and the sample mean. For ease 

reference, they are rewritten as follows. 

3.2.1. Case 1: Known mean (displacement) and known variance 

Suppose the mean of the data set x  is zero. The equivalent formula for maximization is 

as follows: 

                         { }xRxR
12logmax −−−− T

H
σ ,                        (13) 

where 2σ  is the variance known to users and  

                               RR
2σ= ,                                (14) 

where R  can be called the normalized autocovariance matrix. 

3.2.2. Case 2: Known mean (displacement) and unknown variance 

For signals modeled as DFBM, this is the more general case than Case 1. For estimation 

of the Hurst exponent, the increments of signals must be calculated, and thus the obtained 
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increment process is DFGN with zero mean, but its variance is unknown to users. The 

equivalent formula for maximization is as follows: 

                     















−− −
xRxR
11

loglogmax
T

H N
N .                     (15) 

Then the estimate of variance is calculated by 

                            xRx
12 1

ˆ −= T

N
σ .                              (16) 

3.2.3. Case 3: Unknown mean (displacement) and known variance 

Suppose measurement data are an expression of the form: µxz += , where x  is 

modeled as DFGN with zero mean and µ  is a column vector of scalar µ , i.e., 

[ ]Tµµµ L=µ . According to two estimators of µ , the following two approaches are 

used to estimate the Hurst exponent. 

Approach 1: 

The equivalent formula for maximization is as follows: 

                    ( ) ( ){ }µzRµzR ˆˆlogmax 12 −−−− −− T

H
σ .                (17) 

where 2σ  is known to users and  

                               k

N

k
sk

s

z∑
−

=

=
1

0

1
ˆ a

A
µ ,                        (18) 

where 1−= RA , ( )[ ]TkNkkk aaa 110 −= La , ∑ −

=
=

1

0

N

i iksk aa  and ∑ −

=
=

1

0

N

k sks
aA .  

Approach 2: 

For ease coding, the sample mean for µ , denoted as follows, is often adopted: 

                                 ∑
−

=

=
1

0

1
ˆ

N

k

kz
N

µ .                            (19) 

3.2.4. Case 4: Unknown mean (displacement) and unknown variance 

For signals modeled as DFGN, this is the more general case than Case 3. No mean and 
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variance are known to users in advance. Like Case 3, suppose measurement data are the form 

µxz +=  and its unknown variance is 2σ . According to two estimators of µ , the 

following two approaches are used to estimate the Hurst exponent: 

Approach 1: 

The equivalent formula for maximization is as follows: 

                ( ) ( )















 −−−− −
µzRµzR ˆˆ

1
loglogmax

1T

H N
N ,           (20) 

where µ̂  is given by (18). Then the estimate of variance is calculated by 

                              ( ) ( )µzRµz ˆˆ
1

ˆ 12 −−= −T

N
σ .                    (21) 

Approach 2: 

Likewise, the sample mean for µ  is used other than the MLE for µ . 

Finally, the golden section search (Schilling and Harris, 2000) is appropriately used to 

find out the maxima of (13), (15), (17) and (20) and then their corresponding optimal Hurst 

exponents, as adopted by Chang (Chang, 2014a). The following procedure is a detailed 

description of estimating the Hurst exponent by the fast MLE. 

Procedure 2: Estimating the Hurst exponent by using the fast MLE 

1. Choose a suitable data size or number, N . 

2. Extract a section of signal of size N , [ ]nX H , from a realization of DFGN (or the 

increments of DFBM). 

3. Choose a suitable error tolerance, t , for the golden section search. In general, 001.0=t  

is enough, and thus it is chosen in this paper. 

4. Select an appropriate case from Case 1 to Case 4 according to whether two parameters 

(mean and variance) are known or unknown. 

5. Use the golden section search to find out the optimal Hurst exponent through efficiently 
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implementing (13) for Case 1, (15) for Case 2, (17) for Case 3 and (20) for Case 4 

(Chang, 2014a). For the normal or one-stage procedure, the search interval is between 0 

and 1. 

6. Calculate, if necessary, the fractal dimension using HD ˆ2ˆ −= . 

4. A Two-Stage Procedure from a Large to Small Range 

Since the Hurst exponent is a real value lying between 0 and 1, the search interval for 

the golden section search is ( )1,0 . Suppose an acceptable error tolerance is t , then the 

required number of iterations can be calculated using the equation ( ) trab k =− −1  (Chang, 

2009), where a  is the upper limit of the search interval, b  the lower limit and 

( ) 6180.0215 ≈−=r  whose reciprocal, r1=φ , is called the golden ration. That is, 

( )( )  1lnlnln +−−= rabtk , where  x  denotes the smallest integer larger than and equal 

to x . For example, when 0=a , 1=b  and 001.0=t , the number of iterations, k , is 16. 

Therefore, the number of function evaluations is 17. Obviously, if the search interval is 

narrowed down, the number of function evaluations will be reduced. To obtain a reliable 

estimation interval containing the true Hurst exponent, another estimator for the Hurst 

exponent will be adopted in the first stage. A qualified first-stage estimator should contain at 

least two features: one is that the execution time must be 10 times less than that of a 

second-stage estimator; the other is that the closer its accuracy gets to that of the second-stage 

estimator, the better the estimator is. For possibly best accuracy, the DI method (Chang, 

2014b) is currently the most suitable first-stage estimator and the fast MLE (Chang, 2014a) is 

the best second-stage estimator.  

Procedure 3: Estimating the Hurst exponent by using a two-stage procedure 

1. Choose a suitable data size or number, N . 
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2. Extract a section of signal of size N , [ ]nX H , from a realization of DFGN (or the 

increments of DFBM). 

3. Use Steps 3 to 8 of Procedure 1 to estimate the Hurst exponent in the first stage. The 

estimated Hurst exponent is denoted as 1Ĥ . 

4. Select a reliable interval, I , centered at the 1Ĥ  according to the case and the data size. 

In general, the interval decreases as the data size increases.  

5. Calculate the interval for the golden section search as ( )ba, , where IHa 5.0ˆ
1 −=  and 

IHb 5.0ˆ
1 += . 

6. Use Steps 3 to 5 of Procedure 2 to estimate the Hurst exponent in the second stage. The 

estimated Hurst exponent is denoted as Ĥ . 

7. Calculate, if necessary, the fractal dimension using HD ˆ2ˆ −= . 

For users to easily apply the two-stage estimator to practical signals, a detailed 

procedure is provided as follows: 

Procedure 4: Applying a two-stage estimator to practical signals 

1. Input a practical signal for analysis; suppose that its data length is L . 

2. Model the signal as DFBM or DFGN. If DFBM is adopted, then the signal is viewed as 

[ ]nBH  and its increments of DFBM, called DFGN, are calculated via 

[ ] [ ] [ ]1−−= nBnBnX HHH , which is a zero-mean realization and hence no estimation of 

mean is necessary. In general, Case 2 is used except that variance is known to users in 

advance. If DFGN is adopted, the signal is viewed as [ ]nX H . Thus, Case 4 is used 

except that mean and variance are known to users in advance. 

3. Set the error tolerance, t , for the golden section search as 0.001. 

4. Select the window size for estimation, N , also called the data size in this paper. 
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5. Select the shift size, S , the distance between the current window and the next window. 

6. Calculate the required number of estimation, 1+




 −
=

S

NL
K , where  x  denotes the 

maximum integer smaller than or equal to x . 

7. Initiate 0=k . 

8. Execute 1+= kk , if Kk > , then terminate, otherwise take the kth window from the 

input signal, denoted as [ ]nX H
. 

9. Use Steps 3 to 6 of Procedure 3 to estimate the Hurst exponent. 

10. Calculate, if necessary, the fractal dimension using HD ˆ2ˆ −=  (Falconer, 1990). 

11. Go to Step 8. 

12. Plot the figure of the estimated Hurst exponents ( Ĥ ) versus the time sequence (K ) and 

then explain the characteristics of the input signal. 

5. Results and Discussion 

For a comprehensive comparison of the fast MLE and the proposed two-stage estimator, 

a wide range of Hurst exponents and data sizes were considered, including 01.0=H , 0.05, 

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 and 0.99 (totally, 13 Hurst exponents) as well as 

128=N , 256, 512, 1024, 2048 and 4096 (totally, 6 types of data sizes).  

For long-term dependency and fine correlation structure of simulated signals, the 

algorithm proposed by Lundahl et al. (Lundahl et al., 1986) was adopted. First, 100 

realizations of white Gaussian noise for each data size were produced by a Gaussian random 

generator, and then 100 realizations of DFGN for each Hurst exponent were made through 

the algorithm mentioned above. 

For each realization, the error tolerance for the golden section search is set to be 0.001. 

For the fast MLE, the search interval is ( )1,0 , and thus it needs 16 iterations, totally 17 
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function evaluations (Chang, 2009).  

The purpose of the DI method (the first-stage estimator) is to locate a reliable interval 

containing the true Hurst exponent. To understand how the interval affect the accuracy of the 

fast MLE (the second-stage estimator), five intervals were considered, including 0.0469, 

0.0760, 0.1229, 0.1990 and 0.3219, which can be computed as ( )ab −  via the formula 

( ) trab k =− −1  with ( ) 215 −=r  and 001.0=t  under iteration k  from 9 to 13, or 

function evaluations from 10 to 14. 

Tables 1–4 show the accuracy of the fast MLE and two-stage estimator for Case 1 

(known mean and variance), Case 2 (known mean and unknown variance), Case 3 (A1) 

(unknown mean and known variance) and Case 4 (A1) (unknown mean and variance), each 

value representing the mean of mean-squared errors (MSEs) of 100 realizations over 13 Hurst 

exponents, where A1 denotes that the mean is estimated by the MLE instead of the sample 

mean (A2). Since the results by A2 are similar to those by A1, they are left out for 

conciseness. 

To more clearly distinguish the error between the fast MLE and the two-stage estimator 

under a given interval, Tables 5–8 list the results of error percentage according to the formula: 

( ) 112 EEE − , where 2E  stands for the error of the proposed two-stage estimator, 1E  for 

that of the one-stage estimator (the fast MLE). 

In these tables, the values in purple represent that error percentage is negative values, 

and thus the two-stage estimator is superior to the fast MLE, the ones in black represent that 

error percentage belongs to ( )110−O , green ( )210−O , orange ( )310−O , blue ( )410−O , and 

finally, blue and bold ( )510−O . 

Generally speaking, the results with error percentage belonging to ( )310−O  can be 

viewed as almost the same as those of the fast MLE. Therefore, in the more general case for 
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description of signals modeled as DFGN, Case 4, the two-stage estimator can save up to 

41.18% (7/17, 17↓10) the computational time of the fast MLE for six data sizes while 

remaining almost the same accuracy as the fast MLE; in the more general case for description 

of signals modeled as DFBM, Case 2, the two-stage estimator can save about 35.29% (6/17) 

for five larger data sizes (except for 128); Cases 1 and 3 can save about 29.41% (5/17) for 

three larger data sizes, about 23.53% (4/17) for data size being 256 and 17.65% (3/17) for 

data size being 128.  

From a data-size perspective, these tables also show that time saving gets higher as the 

data size gets larger. In addition, it is larger data sizes that we worry about whether or not the 

estimator can meet the demand of real-time estimation. Therefore, the amount of time saving 

in larger data sizes is more valuable for applicability than that in smaller data sizes. 

For real efficiency comparison, all results were run under the same computing 

environment. (1) Hardware: a computer of Intel® Core(TM) i7-2600 processor, up to 

3.40GHz and a RAM of 8.00GB (7.89 GB available); (2) operating system: Windows 7 

Professional Service Pack 1; (3) programming software: MATLAB R2011b 64-bit (win64); 

(4) optimization algorithm: golden section search with threshold 0.001.  

Since the computational time difference among four cases is minor, only the efficiency 

comparison of Case 4 (A1) is plotted in a log-log scale, as shown in Fig. 1. As explained 

previously, the number of function evaluations for Case 4 (A1) only needs 10 times other 

than the original 17 times. Therefore, when larger data sizes are considered, the 

computational time of data size 2048 decreases from 2.27 seconds to 1.46 seconds for each 

estimate of the Hurst exponent; the computational time of data size 4096 also drops from 8.32 

seconds to 5.46 seconds for each estimate. It can be expected that the time saving is 

enormous for massive estimates. More importantly, time saving contributes to raising the 

chance of making systems real-time responses. 
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Fig. 1. Efficiency comparison of Case 4 (A1) for six data sizes 128, 256, 512, 1024, 2048 and 4096, each data 

size being performed from 10 to 14 (two-stage estimator) and 17 (one-stage estimator) function evaluations. 

 

Table 1: Accuracy of the fast MLE and two-stage estimator for Case 1 

S.I. (F.E.) 128 256 512 1024 2048 4096 

0.0469 (10)  1.77E-03 6.91E-04 3.56E-04 1.75E-04 7.59E-05 3.85E-05 

0.0760 (11)  1.53E-03 6.05E-04 3.15E-04 1.56E-04 7.20E-05 3.73E-05 

0.1229 (12)  1.33E-03 5.63E-04 2.93E-04 1.51E-04 7.12E-05 3.73E-05 

0.1990 (13)  1.21E-03 5.52E-04 2.90E-04 1.50E-04 7.12E-05 3.73E-05 

0.3219 (14)  1.18E-03 5.52E-04 2.90E-04 1.51E-04 7.12E-05 3.73E-05 

1.0000 (17)  1.18E-03 5.52E-04 2.90E-04 1.51E-04 7.11E-05 3.73E-05 

      S.I. (F.E.): Search Interval (Function Evaluation) 

Table 2: Accuracy of the fast MLE and two-stage estimator for Case 2 

S.I. (F.E.) 128 256 512 1024 2048 4096 

0.0469 (10)  2.01E-03 8.85E-04 4.74E-04 2.65E-04 1.20E-04 6.61E-05 

0.0760 (11)  1.85E-03 8.58E-04 4.67E-04 2.59E-04 1.20E-04 6.57E-05 

0.1229 (12)  1.75E-03 8.50E-04 4.65E-04 2.59E-04 1.19E-04 6.58E-05 

0.1990 (13)  1.72E-03 8.50E-04 4.65E-04 2.59E-04 1.19E-04 6.58E-05 

0.3219 (14)  1.72E-03 8.50E-04 4.64E-04 2.59E-04 1.20E-04 6.58E-05 

1.0000 (17)  1.72E-03 8.50E-04 4.64E-04 2.59E-04 1.19E-04 6.57E-05 

S.I. (F.E.): Search Interval (Function Evaluation) 
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Table 3: Accuracy of the fast MLE and two-stage estimator for Case 3 (A1) 

S.I. (F.E.) 128 256 512 1024 2048 4096 

0.0469 (10)  1.87E-03 7.45E-04 3.62E-04 1.80E-04 7.91E-05 3.82E-05 

0.0760 (11)  1.66E-03 6.57E-04 3.19E-04 1.61E-04 7.51E-05 3.70E-05 

0.1229 (12)  1.49E-03 6.11E-04 2.97E-04 1.55E-04 7.44E-05 3.70E-05 

0.1990 (13)  1.39E-03 5.99E-04 2.94E-04 1.55E-04 7.44E-05 3.71E-05 

0.3219 (14)  1.36E-03 5.99E-04 2.94E-04 1.55E-04 7.43E-05 3.70E-05 

1.0000 (17)  1.36E-03 5.99E-04 2.94E-04 1.55E-04 7.44E-05 3.71E-05 

S.I. (F.E.): Search Interval (Function Evaluation) 

Table 4: Accuracy of the fast MLE and two-stage estimator for Case 4 (A1) 

S.I. (F.E.) 128 256 512 1024 2048 4096 

0.0469 (10)  2.51E-03 1.12E-03 5.10E-04 2.98E-04 1.38E-04 6.79E-05 

0.0760 (11)  2.50E-03 1.14E-03 5.18E-04 2.97E-04 1.38E-04 6.76E-05 

0.1229 (12)  2.50E-03 1.14E-03 5.19E-04 2.97E-04 1.38E-04 6.77E-05 

0.1990 (13)  2.51E-03 1.15E-03 5.18E-04 2.97E-04 1.38E-04 6.77E-05 

0.3219 (14)  2.51E-03 1.15E-03 5.18E-04 2.97E-04 1.38E-04 6.77E-05 

1.0000 (17)  2.51E-03 1.15E-03 5.18E-04 2.97E-04 1.38E-04 6.76E-05 

S.I. (F.E.): Search Interval (Function Evaluation) 

Table 5: Error percentage between the fast MLE and the two-stage estimator for Case 1 

S.I. (F.E.) 128 256 512 1024 2048 4096 

0.0469 (10)  4.99E-01 2.53E-01 2.31E-01 1.64E-01 6.69E-02 3.08E-02 

0.0760 (11)  2.94E-01 9.67E-02 8.72E-02 3.80E-02 1.22E-02 -8.88E-05 

0.1229 (12)  1.24E-01 2.03E-02 1.12E-02 4.29E-04 1.78E-03 -4.10E-04 

0.1990 (13)  2.52E-02 6.31E-04 4.87E-04 -5.81E-04 1.65E-03 9.82E-04 

0.3219 (14)  1.57E-04 4.68E-04 4.24E-04 -3.04E-04 9.13E-04 -2.22E-04 

S.I. (F.E.): Search Interval (Function Evaluation) 

Table 6: Error percentage between the fast MLE and the two-stage estimator for Case 2 

S.I. (F.E.) 128 256 512 1024 2048 4096 

0.0469 (10)  1.68E-01 4.05E-02 2.01E-02 2.44E-02 7.65E-03 5.72E-03 

0.0760 (11)  7.60E-02 9.51E-03 4.90E-03 2.69E-03 1.32E-03 8.35E-05 

0.1229 (12)  1.79E-02 2.54E-04 9.69E-04 6.64E-04 1.21E-04 1.87E-03 

0.1990 (13)  1.49E-03 1.52E-04 1.01E-03 9.92E-04 -5.06E-04 1.16E-03 

0.3219 (14)  -1.13E-04 1.33E-04 -3.22E-05 -4.59E-05 7.36E-04 1.13E-03 

S.I. (F.E.): Search Interval (Function Evaluation) 
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Table 7: Error percentage between the fast MLE and the two-stage estimator for Case 3 (A1) 

S.I. (F.E.) 128 256 512 1024 2048 4096 

0.0469 (10)  3.69E-01 2.44E-01 2.31E-01 1.59E-01 6.37E-02 2.85E-02 

0.0760 (11)  2.16E-01 9.59E-02 8.49E-02 3.74E-02 1.04E-02 -3.04E-03 

0.1229 (12)  9.49E-02 1.93E-02 1.06E-02 9.36E-04 -5.86E-05 -5.15E-03 

0.1990 (13)  2.16E-02 6.94E-04 -2.36E-04 -1.52E-04 7.58E-04 -1.38E-03 

0.3219 (14)  2.45E-04 -1.45E-04 -6.89E-04 2.11E-04 -7.85E-04 -3.37E-03 

S.I. (F.E.): Search Interval (Function Evaluation) 

Table 8: Error percentage between the fast MLE and the two-stage estimator for Case 4 (A1) 

S.I. (F.E.) 128 256 512 1024 2048 4096 

0.0469 (10)  3.56E-04 -2.14E-02 -1.67E-02 3.52E-03 6.77E-04 4.53E-03 

0.0760 (11)  -5.48E-03 -6.32E-03 1.21E-04 -4.23E-04 -7.03E-04 4.55E-05 

0.1229 (12)  -4.43E-03 -2.28E-03 9.98E-04 -1.29E-03 -1.52E-03 6.39E-04 

0.1990 (13)  -6.29E-04 8.40E-05 1.23E-04 -4.85E-04 -1.76E-03 7.42E-04 

0.3219 (14)  -2.33E-04 2.46E-04 5.30E-05 -1.23E-03 -2.12E-03 1.14E-03 

S.I. (F.E.): Search Interval (Function Evaluation) 

 

6. Conclusions 

A trade-off between accuracy and efficiency of estimation must be made anyway. 

Generally, a more accurate estimator needs more computational time; a more efficient 

estimator has less accurate performance. A perfect estimator, both more accurate and efficient 

than another, is very welcome, but it is difficult to exist except that certain helpful structures 

of computation, as in the fast MLE, are discovered to speed up the computation.  

Normally, users choose the most accurate estimator to evaluate parameters in the 

absence of a time limit; otherwise they might choose the quickest estimator with acceptable 

accuracy. Obviously, no estimator is suitable for all situations. How to balance between 

accuracy and efficiency mainly depends on individual needs and resources available. 

However, a quicker estimator with almost the same accuracy as the original one is always 

welcomed by users. 
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In this paper, a two-stage estimator through an integration of the DI method and the fast 

MLE is proposed. The two-stage estimator makes full use of the advantages of two different 

kinds of estimators to achieve the most effective combination. Relatively, a quicker estimator 

with reliable accuracy is suitable for the first stage, and a more accurate estimator is chosen 

in the second stage.  

Experimental results show that the proposed two-stage estimator can save up to 41.18% 

the computational time of the fast MLE in the more general case of DFGN while remaining 

almost the same accuracy as the fast MLE. In the more general case of DFBM, the two-stage 

estimator can also save about 35.29% except for data sizes not larger than 128. In the future, 

when another estimator has more accurate than the DI method and its speed is at least 10 

times quicker than that of the fast MLE, it can play the role of the DI method, thereby saving 

more computational time.  

In addition, the proposed two-stage estimation procedure is also a novel and valuable 

idea. It can be expected that other fields of parameter estimation can apply the concept of the 

two-stage estimation procedure to raise computational performance while remaining almost 

the same accuracy as the more accurate of two estimators. 
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