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Abstract—This paper considers the mean-reverting portfolio
(MRP) design problem arising from statistical arbitrage (a.k.a.
pairs trading) in the financial markets. It aims at designing a
portfolio of underlying assets by optimizing the mean reversion
strength of the portfolio, while taking into consideration the
portfolio variance and an investment budget constraint. Several
specific design problems are considered based on different mean
reversion criteria. Efficient algorithms are proposed to solve
the problems. Numerical results on both synthetic and market
data show that the proposed MRP design methods can generate
consistent profits and outperform the traditional design methods
and the benchmark methods in the literature.

Index Terms—Portfolio optimization, statistical arbitrage,
pairs trading, mean reversion, cointegration, algorithmic trading,
quantitative trading, nonconvex optimization, majorization.

I. INTRODUCTION

PAIRS trading [2]–[5], also known as spread trading [6]–
[9], is a famous investment and trading strategy pioneered

by scientists Gerry Bamberger and David Shaw, as well as the
quantitative trading group led by Nunzio Tartaglia at Morgan
Stanley in the mid 1980s. As indicated by the name, it is
a trading strategy that focuses on a pair of assets at the
same time rather than a single one. Investors or arbitrageurs
embracing this strategy do not need to forecast the absolute
price of every single asset within one trading pair, which by
nature is difficult, but only the relative price of this pair. As a
contrarian investment strategy, in order to arbitrage from the
market, investors should buy the under-priced asset and short-
sell the over-priced one. Profits will be locked in after the
trading positions are unwound when the relative mispricing of
the pair corrects itself in the future.

More generally, pairs trading with only two trading assets
falls into the umbrella of statistical arbitrage [10]–[13], also
referred to as stat. arb., where the underlying trading basket
could consist of three or more financial assets of many kinds
such as equities, options, bonds, futures, commodities, etc.
Statistical arbitrage opportunities exist as a result of the market
inefficiency. Since such strategies can hedge the overall market
or systematic risk, and profits do not depend on the movements
and conditions of the general financial markets, it is also a kind
of market neutral strategy [14], [15]. Nowadays, statistical
arbitrage is widely used by many parties in the financial
markets, e.g., institutional investors, hedge funds, proprietary
trading firms, and individual investors [16].
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Part of the results in this paper were preliminary presented at [1].

There are many ways to construct a trading basket, where
the cointegration-based method is a prominent one. In [17],
[18], the authors first came up with the concept of “cointe-
gration” to describe the linear stationary and hence mean-
reverting relationship of the underlying nonstationary time
series which are named to be cointegrated. Later, the coin-
tegrated vector autoregressive model was proposed to incor-
porate such cointegration relations in time series modeling
[19], [20]. Empirical and technical analyses show that such
relations exist in different financial markets and can be used
to get arbitrage opportunities [21]–[25]. Taking the prices of
common stocks for example, it is generally known that the
stock price can be modeled as a nonstationary random walk
process which is hard to predict. However, since companies in
the same financial sectors or industries usually share similar
fundamental characteristics, their stock prices very often move
in company with each other under the same trend, and coin-
tegration relations can be established therefrom for arbitrage.
Illustrative examples are the two American famous consumer
staple companies Coca-Cola and PepsiCo and the two energy
companies Ensco and Noble Corporation. Examples for other
financial assets, to name a few, are the future contract prices of
E-mini S&P 500 and E-mini Dow, the ETF prices of SPDR
S&P 500 and SPDR DJIA, the US dollar foreign exchange
rates for different countries, the swap rates for US interest
rates of different maturities, and so on.

Mean reversion is a classic indicator of predictability in
financial markets. Assets in one cointegration relation can be
used to form a portfolio or basket and traded based upon
the mean reversion property therein. We call such a designed
portfolio a mean-reverting portfolio (MRP) or sometimes a
long-short portfolio which is also named a “spread”. An
asset that naturally shows stationarity is a spread as well,
e.g., the option implied volatility for stocks. The profits of
statistical arbitrage come directly from trading on the mean
reversion of a spread around its long-run equilibrium. MRPs
in practice are usually constructed using heuristic or statistical
methods. Traditional statistical methods are the Engle-Granger
ordinary least squares (OLS) method [18] and the Johansen
model-based method [19]. In practice, inherent correlations
may exist among different spreads. For example, the spreads
estimated from the Johansen method which essentially forms
a “cointegration subspace”. When having multiple MRPs,
instead of trading them separately neglecting the possible
connections, a natural and interesting question is whether we
can design an optimized MRP based on the underlying spreads
which could outperform every single one. In this paper, this
issue is addressed.

Designing one MRP by choosing proportions of various
assets falls within the umbrella of portfolio optimization
or asset allocation problem [26]. Portfolio optimization is

mailto:ziping.zhao@connect.ust.hk
mailto:palomar@ust.hk


1053-587X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2018.2799193, IEEE
Transactions on Signal Processing

2

important in portfolio management as well as in algorithmic
trading in the financial industry. The seminal paper [27] by
Markowitz in 1952 laid on the foundations of what is now
popularly referred to as the mean-variance portfolio and the
modern portfolio theory. Given a collection of financial assets,
the mean-variance portfolio design problem is aimed at finding
a tradeoff between the expected return and the risk. Different
from that, to design a mean-reverting portfolio, there are two
main factors to consider: i) the designed MRP should exhibit
a strong mean reversion indicating that it has frequent mean-
crossing points and hence bring in trading opportunities, and
ii) the designed MRP should exhibit sufficient but controlled
variance so that each trade can provide enough profit while
controlling the probability that the expected mean reversion
equilibrium does not break down. In [28], the author first
proposed to design an MRP by optimizing a criterion charac-
terizing the mean reversion strength, and portfolios for swaps
and foreign exchange rates were designed. Later, authors in
[29], [30] realized that solving the MRP design problem in
[28] could result in a portfolio with very low variance, then
the variance control was taken into consideration and also new
desirable mean reversion criteria were proposed with portfolios
for option implied volatilities designed.

The methods proposed in [28]–[30] are general and tractable
for MRP design. However, they are all carried out by imposing
an `2-norm constraint on the portfolio weights. The `2-norm
has a physical meaning of power constraint in wireless com-
munications and used as a similarity constraint in radar signal
processing, but its practical significance in financial applica-
tions is unclear since the `2-norm on portfolio weights do not
carry a physical meaning in a financial context. In practice,
for portfolio design, the constraint on portfolio weights should
represent the investment policy and allocation [31]. So, in this
paper, we propose to use the investment budget constraints
which explicitly represent the budget allocation for different
assets.

In [28], [29], semidefinite programming relaxation (SDR)
methods were used to solve the nonconvex MRP design prob-
lems. SDR also has the drawback of squaring the number of
variables, which lifts the problem to much higher dimension.
Besides that, not every proposed problem formulation in [29]
has a tight SDR with zero duality gap, which makes it hard
to justify the resulting solution properties. After solving an
SDR, randomization-based rank reduction methods, e.g., [32],
are typically applied in order to recover a rank-1 feasible
solution from a tight SDR for the original problem, which
are computationally costly in general. To solve our problem
formulations, instead of resorting to SDR, more efficient
solving algorithms are developed.

To make it clear, the contributions of this paper are sum-
marized as follows.

• Based on the mean reversion criteria in [29], [30], the
MRP design problem is formulated with a variance
constraint and an investment budget constraint (not an `2-
norm constraint). Two commonly used budget constraints
are considered, namely, the dollar neutral constraint and
the net budget constraint.

• Efficient algorithms are proposed for problem solving.
For some problems, after reformulations they can be
readily tackled by solving a quadratically constrained
quadratic programming (QCQP), specifically, a general-
ized eigenvalue problem (GEVP) or a generalized trust
region subproblem (GTRS) depending on the constraints.

• Other MRP design problems are efficiently solved based
on the majorization-minimization (MM) method by solv-
ing a sequence of QCQPs, which are named iteratively
reweighted GEVP (IRGEVP) or iteratively reweighted
GTRS (IRGTRS). Due to the power of MM, more effi-
cient algorithms, named extended IRGEVP (E-IRGEVP)
and extended IRGTRS (E-IRGTRS), are also proposed by
solving a quadratically constrained linear programming
(QCLP) with a closed-form solution at each iteration.

• The complexity per iteration and convergence properties,
like monotonic decreasingness and convergence to a sta-
tionary point, are analyzed for the MM-based algorithms.

The remaining sections of this paper are organized as follows.
In Section II, we briefly introduce the MRP. In Section III,
the MRP design problem is formulated based on some mean
reversion criteria and two investment budget constraints. Sec-
tion IV introduces the GEVP and GTRS algorithms. The MM-
based algorithms are elaborated in Section V with algorithm
complexity and convergence analysis given in Section VI. The
numerical performance is evaluated in Section VII and, finally,
the concluding remarks are drawn in Section VIII.

Notation: Boldface upper case letters denote matrices, bold-
face lower case letters denote column vectors, and italics
denote scalars. The notations 1 and I denote an all-one vector
and an identity matrix with proper size, respectively. R denotes
the real field with R+ denoting positive real numbers and RN
denoting the N -dimensional real vector space. N denotes the
natural field. SK denotes the K × K-dimensional symmet-
ric matrices. Superscripts (·)T and (·)−1 denote the matrix
transpose and inverse operator, respectively. For nonsingular
matrices, superscript (·)−T denotes the matrix inverse and
transpose operator. xi,j denotes the (ith, jth) element of matrix
X and xi denotes the ith element of vector x. X � 0 (X � 0)
means X is a positive semidefinite (definite) matrix. Tr (·)
denotes the trace of a matrix. vec (·) denotes the vectorization
of a matrix. ⊗ denotes the Kronecker product of two matrices.

II. MEAN-REVERTING PORTFOLIO AND MEAN
REVERSION TRADING

For a financial asset, e.g., a common stock, a future contract,
an ETF, or a portfolio of them, its price at time index or
holding period t ∈ N is denoted by pt ∈ R+, and the corre-
sponding logarithmic price or log-price yt ∈ R is computed as
yt = log (pt), where log (·) is the natural logarithm function.
An illustrative example of the log-prices for two security assets
denoted as [y1, y2] is shown in Figure 1.

For one single asset, the (cumulative) return at time t for τ
holding periods is defined as

rt (τ) =
pt − pt−τ
pt−τ

, (1)
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where τ denotes the period length and is usually omitted when
the length is one. Then we can have

rt (τ) ≈ log (pt)− log (pt−τ )

= yt − yt−τ ,
(2)

where the approximation follows from log (1 + x) ≈ x for
small x, which is valid for the usual trading intervals. Here,
the return rt (τ) as a rate of return is used to measure the
aggregate amount of profits or losses (in percentage) of an
investment strategy on one asset over a time period τ .

In order to make an profitable investment (i.e., with a
positive return) in the financial markets, the investors need
either to buy an asset before its price is going up or to sell
an asset before its price is going down. However, in many
cases, the asset price is hard to predict. It is usually difficult
for people to decide the time point to make an investment on
the asset.

In statistical arbitrage strategy, rather than investing on a
single asset, people invest on a portfolio of assets at the
same time. Such a portfolio or spread is stationary and thus
easy to choose the time for investment. In practice, spreads
can be naturally stationary like option implied volatilities,
designed using methods like technical or fundamental analysis,
or constructed based on statistical models. In Figure 1, a spread
designed from two security assets is shown.
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Fig. 1. An illustrative example of log-prices for two assets and the spread.

A. Mean-Reverting Portfolio (MRP)

Different spreads may possess different mean reversion and
variance properties in nature. Our objective is to design an
MRP to combine such spreads into an improved overall spread
with better properties. Suppose there exist N spreads denoted
by st = [s1,t, s2,t, . . . , sN,t]

T . We denote the designed mean-
reverting portfolio (MRP) by the portfolio weight or hedge
ratio w = [w1, w2, . . . , wN ]

T , then the resulting MRP (or
spread) is given by

zt = wT st =
N∑
n=1

wnsn,t, (3)

where vector w indicates the market value proportion invested
on the underlying spreads1. For n = 1, 2, . . . , N , wn > 0,
wn < 0, and wn = 0 mean a long position (i.e., it is bought),
a short position (i.e., it is short-sold or, more plainly, borrowed
and sold), and no position on the spread, respectively.

When the spread st is composed with other underlying
financial assets (say, spread from the cointegration model
[33]), we can further have the relation between the designed
MRP and the underlying financial assets. If a collection
of M assets is considered with their log-prices denoted by
yt = [y1,t, y2,t, . . . , yM,t]

T , and a portfolio is defined by the
weights ws = [ws,1, ws,2, . . . , ws,M ]

T , its (log-price) spread
st is accordingly given by st = wT

s yt. Then if N such spreads
are consider as in (3), we can get the resulting MRP as

zt = wT
p yt =

M∑
m=1

wp,mym,t, (4)

where wp = Wsw denoting the portfolio weight di-
rectly defined on the underlying assets and Ws =
[ws1 ,ws2 , . . . ,wsN ].

It is worth noting that an MRP can be interpreted as a
synthesized stationary asset. The spread accordingly means
the log-price for this MRP, which is much easier to profit
from (i.e., to arbitrage) compared to the underlying component
assets. The trading strategy to make profits from an MRP
is called the mean reversion trading, which is precisely to
trade on the mean reversion property of the spread around its
equilibrium, i.e., to buy this MRP when the price is lower than
its equilibrium and to sell it when the price is higher than its
equilibrium.

B. Mean Reversion Trading

In this paper, we use a simple mean reversion trading
strategy where the trading signals, i.e., to buy, to sell, or
simply to hold, are designed based on simple event triggers.
The trading is carried out on the designed spread zt which
is tested to be unit-root stationary. A trading position (a long
position denoted by 1 and a short position by −1) is a state
for investment and it is opened when the spread zt is away
from its equilibrium µz by a predefined trading threshold ∆
and closed (denoted by 0) when zt crosses its equilibrium µz .
(A common variation is to close the position after the spread
crosses the equilibrium by more than another threshold ∆′.)
The time period from position opening to position closing is
defined as a trading period.

In order to get a standard trading rule, we use the z-score,
which is a normalized spread measuring the distance to the
spread equilibrium in units of standard deviations as follows:

z̃t =
zt − µz
σz

, (5)

where µz and σz are the mean and the standard deviation
of the spread zt and computed over an in-sample look-back
period in practice. For z̃t, we have E [z̃t] = 0 and Std [z̃t] = 1.

1If the spread is designed based on asset price pt instead of the log-price,
w indicates the asset amount proportion measured in shares.



1053-587X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2018.2799193, IEEE
Transactions on Signal Processing

4

S
p
re
a
d
z̃
t

-1.5σ
z

-σ
z

-0.5σ
z

0

0.5σ
z

σ
z

Trading time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

T
ra

d
in

g
 p

o
s
it
io

n
s

-1

0

1

Fig. 2. An example for mean reversion trading (trading threshold ∆ = σz).

Then, we can define the threshold as ∆ = d × σz , for some
value of d (e.g., d = 1).

In the trading stage, based on the trading position and
observed (normalized) spread value at holding period t, we can
get the trading actions at the next consecutive holding period
t + 1. The mean reversion trading strategy is summarized in
Table I and a simple trading example based on this strategy is
illustrated in Figure 2.

Based on this trading scheme, we can get the profit and
loss (P&L) for the MRP which measures the payoff and is
also the amount of profits or losses (in units of dollars) of an
investment on the portfolio for some holding periods. Within
one trading period, if a long position is opened on an MRP
at time to and closed at time tc, then the multi-period P&L
of this MRP at time t (to ≤ t ≤ tc) accumulated from to is
computed as P&Lt (τ) = wT

p rt (τ) = wT
p rt (t− to),2 where

τ = t − to denotes the length of the holding period, and
rt (τ) = [r1,t (τ) , r2,t (τ) , . . . , rM,t (τ)]

T is the return vector.
More generally, the cumulative P&L of this MRP at time t for
τ (0 ≤ τ ≤ t− to) holding periods is defined as

P&Lt (τ) = wT
p rt (t− to)−wT

p rt−τ (t− τ − to) , (6)

where we define rt (0) = 0. Then we have the single-period
P&L (e.g., daily P&L, monthly P&L) denoted by P&Lt at
time t (i.e., τ = 1) is computed as

P&Lt = wT
p rt (t− to)−wT

p rt−1 (t− 1− to) . (7)

If, instead, a short position is opened on this MRP, then
multi-period P&L is P&Lt (τ) = wT

p rt−τ (t− τ − to) −
wT
p rt (t− to) and the single-period P&L is P&Lt =

wT
p rt−1 (t− 1− to)−wT

p rt (t− to). About the portfolio P&L
calculation within the trading periods, we have the following
lemma.

Lemma 1 (P&L Calculation for Mean Reversion Trading).
Within one trading period, if the price change of every asset

2Here wp defines the real dollar values for the underlying assets, which is
the portfolio weights scaled up by the investment budget.

in an MRP is small enough, then the P&L in (6) can be
approximately calculated by the change of the log-price spread
zt. Specifically,

1) for a long position on the MRP, P&Lt (τ) ≈ zt − zt−τ ;
and

2) for a short position on the MRP, P&Lt (τ) ≈ zt−τ − zt.

Proof: See Appendix A.
In fact, Lemma 1 reveals the philosophy behind the MRP

design problem and also the mean reversion trading by show-
ing the connection between the log-price spread value and the
computation of the portfolio return.

III. PROBLEM FORMULATION FOR MRP DESIGN

The traditional mean-variance portfolio which is based on
the Nobel prize-winning Markowitz portfolio theory [27],
[34] aims at finding a desired trade-off between return and
risk, with the latter being measured by the variance. For the
mean-reverting portfolio design, we formulate the problem by
optimizing a mean reversion criterion quantifying the mean
reversion strength [29], [30], while controlling its variance and
imposing an investment budget constraint.

A. Mean Reversion Criteria

In this section, we introduce several mean reversion crite-
ria that can characterize the mean reversion strength of the
designed spread zt. We start by defining the ith order (lag-i)
autocovariance matrix for a stochastic process st as

Mi = Cov
(
st, st+i

)
= E

[(
st − E [st]

)(
st+i − E [st+i]

)T]
,

where i ∈ N. Specifically, when i = 0, M0 stands for the
(positive definite) covariance matrix of yt.

Since for any random process st, we can always get its
centered form as s̃t = st − E [st], without loss of generality,
we use st to denote its centered counterpart s̃t in the following.

1) Predictability Statistics pre (w): Consider a centered
univariate stationary autoregressive process zt = ẑt−1 + εt,
where ẑt−1 is the prediction of zt based on the information
up to time t − 1, and εt denotes a white noise independent
from ẑt−1. The predictability statistics [35] is defined as

pre =
σ2
ẑ

σ2
z

, (8)

where σ2
z = E

[
z2
t

]
and σ2

ẑ = E
[
ẑ2
t−1

]
. If we define σ2

ε =
E
[
ε2t
]
, then we have σ2

z = σ2
ẑ +σ2

ε in the denominator. When
pre is small, the variance of εt dominates that of ẑt−1, and
zt behaves like a white noise; when pre is large, the variance
of ẑt−1 dominates that of εt, and zt can be well predicted by
ẑt−1. The predictability statistics is usually used to measure
how close a random process is to a white noise.

Based on this criterion, in order to design a spread zt as
close as possible to a white noise process, we need to minimize
pre in (8). For zt = wT st, we assume the spread st follows a
centered vector autoregressive model of order 1 (VAR(1)) as
st = Ast−1 + et, where A is the autoregressive coefficient
and et denotes a white noise independent from st−1. Then
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TABLE I
TRADING POSITIONS, NORMALIZED SPREAD, AND TRADING ACTIONS OF A MEAN REVERSION TRADING STRATEGY

Trading Position at t Normalized Spread z̃t Action(s) Taken within Holding Period t+ 1 Trading Position at t+ 1

1
+d ≤ z̃t Close the long position & Open a short position -1

0 ≤ z̃t < +d Close the long position 0
z̃t < 0 No action 1

0
+d ≤ z̃t Open a short position -1

−d < z̃t < +d No action 0
z̃t ≤ −d Open a long position 1

-1
0 < z̃t No action -1

−d < z̃t ≤ 0 Close the short position 0
z̃t ≤ −d Close the short position & Open a long position 1

we can get A = MT
1 M−1

0 . Premultiplying the VAR(1) by
w and defining ẑt−1 = wTAst−1 and εt = wTet, we have
σ2
z = wTM0w and σ2

ẑ = wTTw with T = AM0A
T =

MT
1 M−1

0 M1. This also applies to high order models VAR(p)
(p > 1) through proper reparametrization [36]. Then the
predictability statistics for zt is computed as

pre (w) =
wTTw

wTM0w
. (9)

2) Portmanteau Statistics por (p,w): The portmanteau
statistics of order p [37] for a centered univariate stationary
process zt is defined as

por (p) =

p∑
i=1

ρ2
i , (10)

where ρi is the ith order (lag-i) autocorrelation of zt defined
as ρi = E [ztzt+i] /E

[
z2
t

]
. The portmanteau statistics is used

to test whether a random process is close to a white noise.
From (10), we have por (p) ≥ 0 and the minimum is attained
by a white noise, i.e., the portmanteau statistics for a white
noise process is 0 for any p.

Based on this criterion, in order to get a spread zt close
to a white noise process, we need to minimize porz (p) for
a prespecified order p. For an MRP zt = wT st, the ρi =
wTE

[
sts

T
t+i

]
w/wTE

[
sts

T
t

]
w = wTMiw/w

TM0w. Then
we can get the expression for por (p,w) as

por (p,w) =

p∑
i=1

(
wTMiw

wTM0w

)2

. (11)

3) Crossing Statistics cro (w) and Penalized Cross-
ing Statistics pcro (p,w): Crossing statistics (zero-crossing
rate) of a centered stationary process zt is defined as
zcr = 1/ (T − 1)

∑T
t=2 1E (zt), where the indicator function

1E (zt) =

{
1, zt ∈ E
0, zt /∈ E

with event E = {ztzt−1 ≤ 0}. It is

used to test the probability that a process crosses its mean per
unit of time. According to [38], [39], for a centered stationary
Gaussian process, zcr = 1/π arccos (ρ1).

Based on this criterion, in order to get a spread zt having
many zero-crossings, we can minimize ρ1. So for a spread
zt = wT st, we define the crossing statistics as

cro (w) =
wTM1w

wTM0w
. (12)

In [29], besides minimizing cro (w), it is also proposed to
ensure the absolute high order autocorrelations |ρi|’s (i =
2, . . . , p) are small which can result in good performance. In
this paper, we denote this criterion as the penalized crossing
statistics of order p as

pcro (p,w) =
wTM1w

wTM0w
+ η

p∑
i=2

(
wTMiw

wTM0w

)2

, (13)

where η is a positive prespecified penalization factor.

B. Investment Budget Constraint
In this paper, two types of budget constraints are considered,

namely, dollar neutral constraint and net budget constraint.
The dollar neutral constraint, denoted byW0, means the net

investment or net portfolio position is zero; in other words,
all the long positions are financed by the short positions,
commonly termed self-financing.3 The portfolio in this case
is called zero-cost portfolio. It is represented mathematically
by

W0 =
{
1Tw = 0

}
. (14)

The net budget constraint, denoted by W1, means the net
investment or net portfolio position is nonzero and equal to the
current budget which is normalized to one.4 It is represented
mathematically by

W1 =
{
1Tw = 1

}
. (15)

It is worth noting that the two trading spreads defined by
wTyt and−wTyt are naturally the same, because in statistical
arbitrage the actual investment not only depends on w, which
defines a spread, but also on whether a long or short position
is taken on this spread later in the trading stage.

C. General MRP Design Problem Formulation
To make the illustration for the MRP design problem clear

in the following, we denote the mean reversion criterion in
a compact form as F (w) that takes all the aforementioned
criteria into account as follows:

F (w) = ξ
wTHw

wTM0w
+ζ

(
wTM1w

wTM0w

)2

+η

p∑
i=2

(
wTMiw

wTM0w

)2

,

(16)

3The dollar neutral constraint generally cannot be satisfied by the traditional
design methods, like methods in [18] and [19], and the methods in [29].

4The net portfolio position can be positive or negative under net budget
constraint. Since the problem formulation in (17) is invariant to the sign of
w, only the case that budget is normalized to positive 1 is considered.
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which particularizes to i) pre (w), when ξ = 1, H = T, and
ζ = η = 0; ii) por (p,w), when ξ = 0, and ζ = η = 1;
iii) cro (w), when ξ = 1, H = M1, and ζ = η = 0; and
iv) pcro (p,w), when ξ = 1, H = M1, ζ = 0, and η > 0.
The matrices Mi’s in (16) are assumed symmetric without
loss of generality since they can always be symmetrized. As
mentioned before, the variance of the spread should be con-
trolled to a certain level which is represented as Var

[
wT st

]
=

wTM0w = ν with ν being a predefined positive constant. Due
to this variance constraint, the denominators in F (w) can be
reduced. Denoting the portfolio investment budget constraint
by W , the general MRP design problem can be formulated as
follows:

mininize
w

ξwTHw + ζ
(
wTM1w

)2
+ η

p∑
i=2

(
wTMiw

)2
︸ ︷︷ ︸

,f(w)

subject to wTM0w = ν

w ∈ Wi, (i = 0, 1) .
(17)

The MRP design problem (17) is a nonconvex smooth
constrained optimization problem [40] with highly noncon-
vex (quartic or quadratic) objective function and nonconvex
constraint set. To solve the problem, efficient, effective, and
convergent algorithms are designed in the following sections.

IV. PROBLEM SOLVING VIA GEVP AND GTRS
ALGORITHMS

In this section, solving methods for the MRP design prob-
lem formulations using pre (w) and cro (w) (i.e., (17) with
ζ = η = 0) are introduced.

A. GEVP: Solving Algorithm for MRP Design Using pre (w)
and cro (w) with w ∈ W0

We recast the relevant problems in (17) as follows:

minimize
w

wTHw

subject to wTM0w = ν

1Tw = 0,

(18)

By rewriting the constraint 1Tw = 0 as wT11Tw = 0 (since
the problem is invariant to a sign change in w) and using the
matrix lifting technique (i.e., W = wwT ), the above problem
can be solved by the following SDR:

minimize
W

Tr (HW)

subject to Tr (M0W) = ν

Tr
(
11TW

)
= 0

W � 0.

(19)

Although problem (18) is nonconvex, it has no duality gap
[41], [42]. In other words, by solving the SDR (19), a rank-1
solution for W always exists which is a feasible global optimal
solution for (18).

As an alternative to the SDR procedure, the optimal solution
for (18) can be efficiently solved by reformulating it as a

Algorithm 1 GEVP - Algorithm for MRP design problems
using pre (w) and cro (w) with w ∈ W0.
Require: N, N0, and ν.

1: Set k = 0 and x(0) ∈ {x | xTN0x = ν};
2: repeat
3: R(x(k)) = x(k)TNx(k)/x(k)TN0x

(k);
4: d(k) = Nx(k) −R(x(k))N0x

(k);
5: x̂ = x(k) + τd(k) with τ minimizing R(x(k) + τd(k));
6: x(k+1) =

√
νx̂/

√
x̂TN0x̂;

7: k = k + 1;
8: until convergence

nonconvex QCQP. Considering w = Fx, where F is a
left-invertible matrix that lies on the null space of 1T (i.e.,
1TF = 0), we define N = FTHF and N0 = FTM0F, then
problem (18) is equivalent to the following one:

minimize
x

xTNx

subject to xTN0x = ν.
(20)

This QCQP problem is also known as a generalized eigenvalue
problem (GEVP) [43] which can be efficiently solved by
tailored algorithms. We choose the steepest descent algorithm
in [44] to solve it, which is summarized in Algorithm 1.

B. GTRS: Solving Algorithm for MRP Design Using pre (w)
and cro (w) with w ∈ W1

The relevant problems in (17) can be rewritten as

minimize
w

wTHw

subject to wTM0w = ν

1Tw = 1,

(21)

Again, problem (21) can be solved by the SDR. It can also be
efficiently solved as a QCQP. Considering w = Fx + w0

where F is defined as before and w0 is (any) particular
solution of 1Tw = 1, and defining N = FTHF, p =
FTHw0, b = wT

0 Hw0, N0 = FTM0F, p0 = FTM0w0,
and b0 = wT

0 M0w0, the problem (21) is equivalent to the
following nonconvex QCQP:

minimize
x

xTNx + 2pTx + b

subject to xTN0x + 2pT0 x + b0 = ν.
(22)

This QCQP is specially named generalized trust region sub-
problem (GTRS) [45], [46]. Such problem is usually noncon-
vex but possesses necessary and sufficient optimality condi-
tions. Efficient solving algorithms for global optimal solution
based on the matrix pencil technique can be derived. Accord-
ing to Theorem 3.2 in [45], the optimality conditions for the
primal and dual variables (x?, ξ?) of problem (22) are given
as follows:

(N + ξ?N0) x? + p + ξ?p0 = 0,

x?TN0x
? + 2pT0 x? + b0 − ν = 0,

N + ξ?N0 � 0.

(23)
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Algorithm 2 GTRS - Algorithm for MRP design problems
using pre (w) and cro (w) with w ∈ W1.
Require: N, N0, p, p0, b0, and ν.

1: Compute λmin(N,N0).
2: Set k = 0 and ξ(0) ∈ (−λmin(N,N0),∞);
3: repeat
4: x(k) = −(N + ξ(k)N0)−1(p + ξ(k)p0);
5: φ(ξ(k)) = x(k)TN0x

(k) + 2pT0 x(k) + b0 − ν;
6: Update ξ(k+1) by a line search algorithm;
7: k = k + 1;
8: until convergence

Assuming N + ξN0 � 0,5 the optimal solution is given by

x (ξ) = − (N + ξN0)
−1

(p + ξp0) , (24)

and ξ is the unique solution for equation φ (ξ) = 0, where

φ (ξ) = x (ξ)
T

N0x (ξ) + 2pT0 x (ξ) + b0 − ν, (25)

and ξ ∈ I. The interval I = {ξ | N + ξN0 � 0}, which
implies I = (−λmin (N,N0) ,∞), where λmin (N,N0) is
the minimum generalized eigenvalue of matrix pair (N,N0).
According to Theorem 5.2 in [45], the function φ (ξ) is strictly
decreasing on I. So based on this property, a one dimensional
search method (e.g., bisection algorithm) can be used to find
the optimal ξ over I. The algorithm for solving problem (22)
is summarized in Algorithm 2.

V. PROBLEM SOLVING VIA MM-BASED ALGORITHMS

In this section, we first discuss the MM method briefly, and
then two solving algorithms for the MRP design problems
using por (p,w) (i.e., (17) with ξ = 0 and ζ = η = 1) and
pcro (p,w) (i.e., (17) with ξ = 1, H = M1, ζ = 0 and η > 0)
are derived based on the MM method together with the GEVP
and GTRS algorithms in Section IV.

A. The MM Method

The MM method [47], [48] refers to majorization-
minimization for minimization problems or minorization-
maximization for maximization problems. It is also known as
the successive upper bound minimization method [49], [50].

For an optimization problem given as follows:

minimize
x

f (x)

subject to x ∈ X ,
(26)

where the constraint set X ⊆ RN and no assumption is on the
convexity of f (x) and X , instead of dealing with the original
problem which could be difficult to tackle directly, the MM
method solves a series of simple subproblems with surrogate
functions that majorize the original objective function f (x)
over the set X .

5The limiting case N + ξN0 being singular (i.e., ξ = −λmin (N,N0))
can be treated separately. The assumption here is reasonable since the case
when ξ = −λmin (N,N0) is very rare to occur theoretically and practically.

More specifically, starting from an initial feasible point x(0),
the MM method produces a sequence

{
x(k)

}
according to the

following update rule:

x(k) ∈ arg min
x∈X

f
(
x,x(k−1)

)
, (27)

where x(k−1) is the point generated by the update rule at
the (k − 1)th iteration and f

(
x,x(k)

)
is called the majorizing

function of f (x) at x(k).
As to claim convergence for the MM method, the function

f
(
x,x(k)

)
should satisfy the following assumptions:

A1) f
(
x(k),x(k)

)
= f

(
x(k)

)
, ∀x(k) ∈ X ,

A2) f
(
x,x(k)

)
≥ f (x) , ∀x,x(k) ∈ X ,

A3) f
′ (

x(k),x(k); d
)

= f ′
(
x(k); d

)
, ∀d s.t.x(k) + d ∈ X ,

(28)
where f ′

(
x(k); d

)
stands for the directional derivative of f (x)

at x(k) along the direction d, i.e.,

f ′
(
x(k); d

)
= lim inf

t→0

f
(
x(k) + td

)
− f

(
x(k)

)
t

;

similarly, f
′ (

x(k),x(k); d
)

is the directional derivative for
f
(
x,x(k)

)
at x(k) along d; and f

(
x,x(k)

)
is assumed

continuous in both x and x(k).6 For convex X , the proof of
convergence to a d(irectional)-stationary point is established
in [49], i.e., the limit point x(∞) of

{
x(k)

}
satisfies

f ′
(
x(∞); d

)
≥ 0, ∀d s.t. x(∞) + d ∈ X . (29)

For a nonconvex set X , to claim stationarity convergence, the
A3) in (28) should be modified as

A3′) f
′ (

x(k),x(k); d
)

= f ′
(
x(k); d

)
, ∀d ∈ TX

(
x(k)

)
,

(30)
where in this case f

(
x,x(k)

)
and f (x) are defined on the

whole space RN and TX
(
x(k)

)
means the Bouligand tangent

cone of X at x(k) ∈ X . Then, the limit point x(∞) of
{
x(k)

}
can be proved to be a B(ouligand)-stationary point satisfying

f ′
(
x(∞); d

)
≥ 0, ∀d ∈ TX

(
x(∞)

)
, (31)

where the expression d ∈ TX
(
x(∞)

)
means there exist a

sequence of points
{
x(k)

}
∈ X converging to x(∞) and a

sequence of positive scalars
{
τ (k)

}
converging to 0 such that

d = limk→∞
x(k)−x(∞)

τ(k) . For more details of B-stationarity,
please refer to [51], [52].

Although the definition for the majorizing functions
f
(
x,x(k)

)
gives us a great deal of choosing flexibility, they

must be properly chosen so as to make the iterative update
in (27) easy to compute while maintaining a fast convergence
over the iterations. In the following, we are going to solve the
MRP design problem based on the MM method.

6Note that if f (x) and f
(
x,x(k)

)
are both continuously differentiable,

then A1) and A2) imply A3).
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B. IRGEVP and IRGTRS: Solving Algorithms for MRP Design
Using por (p,w) and pcro (p,w)

From (17), the MRP deign problems using por (p,w) and
pcro (p,w) can be written as follows:

minimize
w

f (w) = ξwTM1w + ζ
(
wTM1w

)2
+ η

p∑
i=2

(
wTMiw

)2
subject to wTM0w = ν

w ∈ Wi, (i = 0, 1) .

(32)

Problem (32) is nonconvex with nonconvex quartic objective
function, nonconvex quadratic equality constraint and convex
linear constraint. In order to solve this problem via MM
method, the key step is to find a majorizing function of the
objective such that the majorized subproblem is easy to solve.

To compute a majorizing function, the following mathemat-
ical manipulations are necessary. We first get the Cholesky de-
composition of M0 which is given as M0 = LLT , where L is
a lower triangular matrix with positive diagonal elements. We
further define w̄ = LTw, M̄i = L−1MiL

−T , W̄ = w̄w̄T ,
and the setW is mapped to W̄ under the linear transformation
L. Then using w̄TAw̄ = Tr

(
AW̄

)
, problem (32) can be

rewritten as

minimize
w̄,W̄

ξTr
(
M̄1W̄

)
+ ζ
(

Tr
(
M̄1W̄

))2

+ η

p∑
i=2

(
Tr
(
M̄iW̄

))2

subject to W̄ = w̄w̄T

w̄T w̄ = ν

w̄ ∈ W̄i, (i = 0, 1) .

(33)

Since Tr
(
M̄iW̄

)
= vec

(
M̄i

)T
vec
(
W̄
)

(Mi’s are assumed
symmetric), problem (33) can be reformulated as follows:

minimize
w̄,W̄

ξvec
(
M̄1

)T
vec
(
W̄
)

+ vec
(
W̄
)T

M̄vec
(
W̄
)

subject to W̄ = w̄w̄T

w̄T w̄ = ν

w̄ ∈ W̄i, (i = 0, 1) ,
(34)

where in the objective function

M̄ , ζvec
(
M̄1

)
vec
(
M̄1

)T
+ η

p∑
i=2

vec
(
M̄i

)
vec
(
M̄i

)T
.

(35)
Specifically, we have the expressions for portmanteau statistics
por (p,w) (i.e., ζ = 1 and η = 1) and penalized crossing
statistics pcro (p,w) (i.e., ζ = 0 and η > 0) as follows:7

M̄ =


∑p
i=1 (L⊗ L)

−1 vec (Mi) vec (Mi)
T

(L⊗ L)
−T

,

for por (p,w) ;

η
∑p
i=2 (L⊗ L)

−1 vec (Mi) vec (Mi)
T

(L⊗ L)
−T

,

for pcro (p,w) .

7It follows from vec (ABC) =
(
CT ⊗A

)
vec (B) and A−1 ⊗B−1 =

(A⊗B)−1.

The objective function in problem (34) becomes quadratic
in variable W̄; however, this problem is still hard to solve
due to the rank-1 constraint W̄ = w̄w̄T . We then consider
applying the MM idea on this problem based on the following
result.

Lemma 2. Let A ∈ SK and B ∈ SK such that B � A. At any
point x0 ∈ RK , the quadratic function xTAx is majorized by
xTBx + 2xT0 (A−B) x + xT0 (B−A) x0.

Proof: It follows from (x− x0)
T

(B−A) (x− x0) ≥ 0,
when B � A for any x0.

According to Lemma 2, at the (k + 1)th iteration with point
W̄(k), the second term (quadratic in W̄) in the objective
function of problem (34) can be majorized by the following
function:

u1

(
W̄,W̄(k)

)
= ψ

(
M̄
)
vec
(
W̄
)T

vec
(
W̄
)

+ 2vec
(
W̄(k)

)T(
M̄− ψ

(
M̄
)
I
)

vec
(
W̄
)

+ vec
(
W̄(k)

)T(
ψ
(
M̄
)
I− M̄

)
vec
(
W̄(k)

)
,

(36)

where ψ
(
M̄
)

only depends on matrix M̄ and satisfies
ψ
(
M̄
)
I � M̄. On the choice of ψ

(
M̄
)

in (36), according
to Lemma 2, it is obvious that ψ

(
M̄
)

can be chosen as the
spectral norm of M̄, i.e.,

∥∥M̄∥∥
2

= λmax

(
M̄
)
. In the imple-

mentation of the algorithm, although λmax

(
M̄
)

only needs to
be computed once for the whole algorithm, it still may not be
computationally easy to get. Then since

∥∥M̄∥∥
F
≥
∥∥M̄∥∥

2
, we

can choose ψ
(
M̄
)

=
∥∥M̄∥∥

F
, which is easier for computation.

In the majorizing function, the first term and the last term
are just two constants irrelevant of the optimization variable
W̄, since the first term vec

(
W̄
)T

vec
(
W̄
)

=
(
w̄T w̄

)2
= ν2,

and the last term only depends on W̄(k). After replacing the
second term by its majorizing function (36) in problem 34 and
ignoring the constants, the majorized problem is given by

minimize
w̄,W̄

ξvec
(
M̄1

)T
vec
(
W̄
)

+ 2vec
(
W̄(k)

)T(
M̄− ψ

(
M̄
)
I
)

vec
(
W̄
)

subject to W̄ = w̄w̄T

w̄T w̄ = ν

w̄ ∈ W̄i, (i = 0, 1) ,
(37)

where the objective function becomes linear in the variable W̄
rather than quadratic as in (33) and (34). Further, by changing
variable W̄ back to w, we can get the overall majorizing
function for (32) and the majorized subproblem in w which
is given in the following lemma.

Lemma 3. The final majorizing function of f (w) in (32) is

f1

(
w,w(k)

)
= wTH(k)w + 2ψ

(
M̄
)
ν2

− ζ
((

w(k)
)T

M1w
(k)
)2

− η
p∑
i=2

((
w(k)

)T
Miw

(k)
)2

,

(38)
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Algorithm 3 IRGEVP and IRGTRS - Algorithms for MRP
design problems using por (p,w) and pcro (p,w).
Require: p, Mi with i = 1, . . . , p, and ν > 0.

1: Set k = 0 and w(0) ∈ W;
2: Compute M̄ in (35) and ψ(M̄);
3: repeat
4: Compute H(k) in (39);
5: Update w(k+1) by solving
6: 1) the GEVP in (20) for w ∈ W0; or
7: 2) the GTRS in (22) for w ∈ W1;
8: k = k + 1;
9: until convergence

where H(k) is defined as follows:

H(k) , ξM1 + 2ζ
((

w(k)
)T

M1w
(k)
)

M1

+ 2η

p∑
i=2

((
w(k)

)T
Miw

(k)
)

Mi

− 2ψ
(
M̄
)
M0w

(k)
(
w(k)

)T
M0.

(39)

More specifically, for portmanteau statistics por (p,w) (i.e.,
ξ = 0, ζ = 1 and η = 1) and penalized crossing statistics
pcro (p,w) (i.e., ξ = 1, ζ = 0 and η > 0), we have

H(k) =


2
∑p
i=1

((
w(k)

)T
Miw

(k)
)

Mi

−2ψ
(
M̄
)
M0w

(k)
(
w(k)

)T
M0, for por (p,w) ;

M1 + 2η
∑p
i=2

((
w(k)

)T
Miw

(k)
)

Mi

−2ψ
(
M̄
)
M0w

(k)
(
w(k)

)T
M0, for pcro (p,w) .

Thus, the majorized problem for problem (32) is given by

minimize
w

wTH(k)w

subject to wTM0w = ν

w ∈ Wi, (i = 0, 1) ,

(40)

Proof: See Appendix B.
Lemma 3 shows that the objective function in the majorized

problem (40) is a quadratic upperbound of that in the original
problem (32). Depending on the specific form ofW , subprob-
lem (40) can be efficiently solved for a global optimal solution
by using an GEVP or an GTRS problem discussed in Section
IV.

Finally, in order to handle the original nonconvex problem
(32) directly, we just need to iteratively solve a sequence
of QCQPs (i.e., GEVPs or GTRSs). We name these MM-
based algorithms iteratively reweighted GEVP (IRGEVP) and
iteratively reweighted GTRS (IRGTRS), respectively, which
are summarized in Algorithm 3.

C. E-IRGEVP and E-IRGTRS: Solving Algorithms for MRP
Design Using por (p,w) and pcro (p,w)

In Section V-B, based on algorithms IRGEVP or IRGTRS,
the MRP design problems can be efficiently resolved by solv-
ing a nonconvex QCQP at every iteration. However, instead
of dealing with a QCQP, it would be much desirable if we
could get a closed-form solution for the majorized problem

at each iteration. In fact, this target can be attained and the
whole procedure is discussed in the following.

Instead of introducing the algorithm derivation from the
original problem (32), for simplicity we start from the ma-
jorized problem (40) in Section V-B. Problem (40) is equiva-
lent to (53) which is recast as follows:

minimize
w̄

w̄T H̄(k)w̄

subject to w̄T w̄ = ν

w̄ ∈ W̄i, (i = 0, 1) .

(41)

Based on Lemma 2, at the (k + 1)th iteration with iterate
w̄(k), the objective function in (41) (quadratic in w̄) can be
majorized by the following majorizing function:

u2

(
w̄, w̄(k)

)
= ψ

(
H̄(k)

)(
w̄T w̄

)
+ 2
(
w̄(k)

)T (
H̄(k) − ψ

(
H̄(k)

)
I
)

w̄

+
(
w̄(k)

)T (
ψ
(
H̄(k)

)
I− H̄(k)

)
w̄(k),

(42)

where ψ
(
H̄(k)

)
can be chosen as

∥∥H̄(k)
∥∥
F

, and the first and
the last terms are constants. Dropping the constants in (42),
the majorized problem for (41) is given as follows:

minimize
w̄

(
w̄(k)

)T (
H̄(k) − ψ

(
H̄(k)

)
I
)

w̄

subject to w̄T w̄ = ν

w̄ ∈ W̄i, (i = 0, 1) .

(43)

By changing variable w̄ back to w, we can get the overall
majorizing function and the majorized subproblem given in
the following lemma.

Lemma 4. The two majorization steps in (36) and (42) can be
shown as one overall majorization at point w(k) for problem
(32) with the majorizing function given as follows:

f2

(
w,w(k)

)
= 2
(
e(k)

)T
w −

(
w(k)

)T
H(k)w(k)

+ 2ψ
(
H̄(k)

)
ν − ζ

((
w(k)

)T
M1w

(k)
)2

− η
p∑
i=2

((
w(k)

)T
Miw

(k)
)2

+ 2ψ
(
M̄
)
ν2,

(44)

where
e(k) ,

(
H(k) − ψ

(
H̄(k)

)
M0

)
w(k). (45)

Thus, the final majorized problem for problem (32) becomes

minimize
w

(
e(k)

)T
w

subject to wTM0w = ν

w ∈ Wi, (i = 0, 1) .

(46)

Proof: See Appendix C.
Lemma 4 shows after using the MM trick twice, the ob-

jective function in problem (46) becomes a linear upperbound
in variable w of the original problem (32). By the trick used
to get problems (20) and (22), we can eliminate the linear
constraint in (46). Then, it becomes a QCLP which has a
closed-form solution rather than the QCQP derived from (40).
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Algorithm 4 E-IRGEVP and E-IRGTRS - Algorithms for
MRP design problems using por (p,w) and pcro (p,w).
Require: p, Mi with i = 1, . . . , p, and ν > 0.

1: Set k = 0 and w(0) ∈ W;
2: Compute M̄ in (35) and ψ(M̄);
3: repeat
4: Compute H̄(k) in (52), ψ(H̄(k)), and e(k) in (45);
5: Update w(k+1) with a closed-form solution according

to Lemma 5;
6: k = k + 1;
7: until convergence

Lemma 5. Based on Lagrange duality, problem (46) has a
closed-form solution. Specifically, for w ∈ W0,

w? =

−

(
ν(

e(k)
)T

F (FTM0F)
−1

FTe(k)

) 1
2

F
(
FTM0F

)−1
FTe(k),

and for w ∈ W1,

w? =

−

(
ν −wT

0 M0w0 + wT
0 M0F

(
FTM0F

)−1
FTM0w0(

e(k)
)T

F (FTM0F)
−1

FTe(k)

) 1
2

× F
(
FTM0F

)−1
FTe(k) − F

(
FTM0F

)−1
FTM0w0 + w0,

where F satisfies 1TF = 0, and w0 satisfies 1Tw0 = 1.

Proof: See Appendix D.
Finally, the MRP design problem (32) is solved iteratively

by a closed-form update at each iteration. Just to make a
connection with IRGEVP and IRGTRS, these algorithms are
named extended IRGEVP (E-IRGEVP) and extended IRGTRS
(E-IRGTRS) which are summarized in Algorithm 4.

VI. COMPLEXITY AND CONVERGENCE ANALYSIS

A. Complexity Analysis

For Algorithms 1 and 2 (i.e., GEVP and GTRS) in Section
IV, the per-iteration computational cost mainly comes from
the matrix multiplication with complexity of O

(
N3
)
. The

algorithm converges to the global optimal solution of the
original problem (18) or (21). For the MM-based Algorithms
3 and 4 (i.e., IRGEVP, IRGTRS, E-IRGEVP and E-IRGTRS)
in Section V, the per-iteration computational cost comes from
the Cholesky decomposition or matrix multiplication, so the
complexity is still of O

(
N3
)
.

B. Convergence Analysis

The algorithms IRGEVP and IRGTRS given in Algorithm
3 and algorithms E-IRGEVP and E-IRGTRS given in Al-
gorithm 4 are all based on the general MM method, thus
according to Section V-A, we know that the sequence of
objective values

{
f
(
w(k)

)}
generated by these algorithms

is nonincreasing. The original optimization problem (32) is a
constrained minimization problem and the objective function f
is bounded below, thus the sequence

{
f
(
w(k)

)}
is guaranteed

to converge to a finite value. Then based on the B-stationarity
defined in Section V-A, we can further give the convergence
property for the sequence

{
w(k)

}
generated by the MM-based

algorithms in the following result.

Proposition 6. Every limit point, denoted by w(∞), of the
sequence

{
w(k)

}
generated by the MM-based algorithms (i.e.,

Algorithm 3 and Algorithm 4) is a B-stationary point of
problem (32).

Proof: See Appendix E.

VII. NUMERICAL EXPERIMENTS

A statistical arbitrage strategy involves several steps of
which the MRP design is a central one. Here, we divide the
whole strategy into four sequential steps, namely: assets pool
construction, MRP design, unit-root test, and mean reversion
trading. In the first step, we select a collection of possibly
cointegrated asset candidates to construct an asset pool, on
which we will not elaborate in this paper. In the second step,
based on the candidate assets from the asset pool, MRPs are
designed using either traditional design methods like Engle-
Granger OLS method [18] and Johansen method [53] or the
proposed methods in this paper. In the third step, unit-root
test procedures like Augmented Dickey-Fuller test [54] and
Phillips-Perron test [55] are applied to test the stationarity or
mean reversion property of the designed MRPs. In the fourth
step, MRPs passing the unit-root tests will be traded based on
a designed mean reversion trading strategy.

In this section, we first illustrate several performance met-
rics for the portfolio investment. Then the performance of
our proposed MRP design methods in Sections IV and V is
evaluated using both synthetic data and real market data are
shown accordingly.

A. Performance Metrics

In this paper, we employ the following performance metrics
for the numerical experiments.

1) Portfolio Return Measures: In Section II, we have
defined the multi-period P&L P&Lt (τ) and single-period
P&L P&Lt. Since there is no trading conducted between two
trading periods, the P&L measures (both the multi-period P&L
and single-period P&L) are simply defined to be 0. In the
following, based on the P&L definition, we give the following
useful portfolio return measures.

a) Cumulative P&L: In order to measure the cumulative
return performance for an MRP, we define the cumulative P&L
(not compounding) in one trading from time t1 to t2 as

Cum. P&L (t1, t2) =

t2∑
t=t1

P&Lt. (47)

b) Return On Investment (ROI): Since different MRPs
may have different leverage properties due to wp, we introduce
another portfolio return measure (rate of return) called return
on investment (ROI). Within one trading period, the ROI at
time t (to ≤ t ≤ tc) is defined to be the single-period P&L
at time t normalized by the gross investment deployed which
is ‖wp‖1 (that is the gross investment exposure to the market



1053-587X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2018.2799193, IEEE
Transactions on Signal Processing

11

including the long position investment and the short position
investment) written as

ROIt =
P&Lt
‖wp‖1

. (48)

Like the P&L measures, between two trading periods, ROIt
is defined to be 0.

2) Sharpe Ratio (SR): The Sharpe ratio (SR) [56] is a
measure for calculating risk-adjusted return. It describes how
much excess return one can receive for the extra volatility
(square root of variance). The annualized Sharpe ratio of ROI
(or, equivalently, Sharpe ratio of P&L) for a trading stage from
time t1 to t2 is defined as follows:

SRROI (t1, t2) =
√

252
µROI

σROI
, (49)

where µROI = 1/ (t2 − t1)
∑t2
t=t1

ROIt, σROI =[
1/ (t2 − t1)

∑t2
t=t1

(ROIt − µROI)
2
]1/2

, t denotes day,

and the factor
√

252 relates the daily SR to the annualized
SR (assuming 252 trading days per year). In the computation
of the SR, we set the risk-free return to be 0, in which case
it reduces to the information ratio.

3) Transaction Cost: The transaction or trading costs re-
fer to brokerage commissions, stamp fees, bid-ask spreads,
financing costs, and so on. In our experiments, we assume
the transaction cost to be fixed as 35 basis points (BPs), i.e.,
0.35%, per trade when opening or closing a trading position,
then the round-trip transaction cost is 70 BPs.

B. Synthetic Data Experiments

For synthetic data experiments, we generate the sample
path of log-prices for M financial assets using a multivariate
cointegrated system model [36], where there are r long-run
cointegration relations and M − r common trends. We divide
the sample path into two stages: in-sample training stage and
out-of-sample backtesting or trading stage. All the parameters
like spread equilibrium µz , trading threshold ∆, and portfolio
weight w are decided in the training stage. The out-of-sample
performance of our design methods are tested in the trading
stage. In the synthetic experiments, we set M = 6 and r = 5
and only show the performance of the MRP design methods
under net budget constraint W1. We estimate N = 5 spreads
using the generated sample path by the OLS and the Johansen
method. Based on these five spreads, an MRP is designed as
zt = wT st. The simulated log-prices and the spreads for the
trading stage are shown in Figure 3.

In Figure 4, our proposed problem formulation (denoted as
IRGTRS (prop.) and E-IRGTRS (prop.)) is compared to the
benchmark formulation in [29] (denoted as SDR (bench.)). To
ensure a fair comparison, the net investment budget (i.e., 1Tw)
and the variance of the spread (i.e., wTM0w) are set to be
the same for all the methods. From the simulation results, the
proposed MRP design problem formulation can attain a lower
objective function value. The proposed problem formulation is
also solved using the SDR method (denoted as SDR (prop.))
with comparison to the MM-based algorithms (denoted as
IRGTRS (prop.) and E-IRGTRS (prop.)) in Figure 4. From the
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Fig. 4. Numerical convergence of objective function value for pcro (5,w).

convergence results, the MM-based algorithms are better than
the SDR methods in terms of converging solution property and
the time.

The performance of the MRPs designed using our proposed
methods are compared with those of one underlying spread and
the method in [29] based on pcro (5,w) and pre (w), which
are shown in Figure 5 and Figure 6. From our simulations, we
can conclude that our designed MRPs do generate consistent
positive profits. And simulation results also show that our
designed portfolios can outperform the underlying spreads and
the MRPs designed using methods in [29] with higher Sharpe
ratios of ROIs and higher cumulative P&Ls.

C. Market Data Experiments

We also test our methods using real market data from
the Standard & Poor’s 500 (S&P 500) Index, which is
usually considered as one of the best representatives for
the U.S. stock markets. The data are retrieved from Google
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Finance8 and adjusted daily closing stock prices are em-
ployed. We first choose stock candidates which are possibly
cointegrated to form stock asset pools. One stock pool is
{APA,AXP,CAT,COF,FCX, IBM,MMM}, where the stocks
are denoted by their ticker symbols. Three spreads are con-
structed from this pool based on the Johansen method. Then
MRP design methods are employed and unit-root tests are used
to test their tradability. The log-prices of the stocks and the
log-prices for the three spreads are shown in Figure 7. Based
on the mean reversion trading framework mentioned before,
one trading experiment is carried out from February 1st, 2012
to June 30th, 2014.

In Figure 8, we compare the performance of our designed
MRP with the underlying spread s1. The log-prices for the de-
signed spreads, and the out-of-sample performance like ROIs,
Sharpe ratios of ROIs, and cumulative P&Ls are reported. It is

8https://www.google.com/finance
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Fig. 7. Log-prices for {APA,AXP,CAT,COF,FCX, IBM,MMM} and
three spreads s1, s2, and s3.

shown that using our method, the designed MRP can achieve
a higher Sharpe ratio and a better final cumulative return. We
also compare our proposed design method with the method in
[29] based on the mean reversion criterion por (3,w) where
the investment budget and the portfolio variance are set to
be the same. From Figure 9, we can see that our proposed
method can outperform the benchmark method through a mean
reversion trading design with a higher Sharpe ratio and a
higher final cumulative return performance.
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Fig. 8. Comparisons of ROIs, Sharpe ratios, and cumulative P&Ls between
the MRP designed using our proposed method denoted as MRP-cro (prop.)
with one underlying spread denoted as Spread s1.

VIII. CONCLUSIONS

The mean-reverting portfolio design problem arising from
statistical arbitrage has been considered in this paper. We have
formulated the MRP design problem as the optimization of
a mean reversion criterion characterizing the mean reversion
strength of the portfolio and, at the same time, taking into
consideration the variance of the portfolio and an investment
budget constraint. Several specific optimization problems have

https://www.google.com/finance


1053-587X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2018.2799193, IEEE
Transactions on Signal Processing

13

S
p
re

a
d
s

-0.2

0

0.2

MRP-por (prop.)
MRP-por (exist.)

R
O

I

-0.01

0

0.01

0.02

MRP-por (prop.) - SR=2.5828

R
O

I

-0.02

0

0.02

MRP-por (exist.) - SR=2.3983

2012 2013 2014

C
u
m

. 
P

&
L

0

0.5

1

1.5

2

2.5

3 MRP-por (prop.)
MRP-por (exist.)
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been considered based on the general design idea and efficient
algorithms have been derived for problem solving. Numerical
results show that our proposed methods are able to generate
consistent positive profits and outperform the the design meth-
ods in literature.

APPENDIX A
PROOF FOR LEMMA 1

Since the spread of an MRP is defined as zt = wT
p yt, then

the multi-period P&L at time t for τ holding periods for a
long position on the MRP is given by

P&Lt (τ)

=wT
p rt (t− to)−wT

p rt−τ (t− τ − to)

=

M∑
m=1

(
wp,mrm,t (t− to)− wp,mrm,t−τ (t− τ − to)

)

=
M∑
m=1

(
wp,m

(
pm,t
pm,to

− 1

)
− wp,m

(
pm,t−τ
pm,to

− 1

))

≈
M∑
m=1

wp,m

[
log (pm,t)− log (pm,to)

]

−
M∑
m=1

wp,m

[
log (pm,t−τ )− log (pm,to)

]

=
M∑
m=1

wp,mym,t −
M∑
m=1

wp,mym,t−τ

=zt − zt−τ .

Similarly, for a short position on the MRP, the P&Lt (τ) is
computed as zt−τ − zt.

APPENDIX B
PROOF FOR LEMMA 3

It is easy to see that, based on Lemma 2, only the second
term of f (w) in problem (32) is majorized. Then the overall

majorizing function for f (w) at w(k) can be attained through
replacing the second term by its majorizing function.

Replacing the the second term in the objective function of
problem (34) by u1

(
W̄,W̄(k)

)
in (36) and substituting M̄

in (35) back into the function, we get the following overall
majorizing function in variable W̄ as follows:

f
(
W̄,W̄(k)

)
= ξvec

(
M̄1

)T
vec
(
W̄
)

+ u1

(
W̄,W̄(k)

)
= ξvec

(
M̄1

)T
vec
(
W̄
)

+ ψ
(
M̄
)
vec
(
W̄
)T

vec
(
W̄
)

+ 2ζ

[
vec
(
M̄1

)
vec
(
M̄1

)T
vec
(
W̄(k)

)]T
vec
(
W̄
)

+ 2η

[
p∑
i=2

vec
(
M̄i

)
vec
(
M̄i

)T
vec
(
W̄(k)

)]T
vec
(
W̄
)

− 2ψ
(
M̄
)
vec
(
W̄(k)

)T
vec
(
W̄
)

+ ψ
(
M̄
)
vec
(
W̄(k)

)T
vec
(
W̄(k)

)
− ζvec

(
W̄(k)

)T
vec
(
M̄1

)
vec
(
M̄1

)T
vec
(
W̄(k)

)
− η

p∑
i=2

vec
(
W̄(k)

)T
vec
(
M̄i

)
vec
(
M̄i

)T
vec
(
W̄(k)

)
.

(50)
Then, by undoing the matrix lifting, i.e., changing vari-

able W̄ back to w̄, and using vec
(
M̄i

)T
vec
(
W̄
)

=

Tr
(
M̄iW̄

)
= w̄TM̄iw̄, we can get the majorizing function

in w̄ given by

f1

(
w̄, w̄(k)

)
= ξTr

(
M̄1w̄w̄T

)
+ ψ

(
M̄
)
Tr

(
w̄w̄T w̄w̄T

)
+ 2ζTr

(
M̄1w̄

(k)
(
w̄(k)

)T)
Tr

(
M̄1w̄w̄T

)
+ 2η

p∑
i=2

[
Tr

(
M̄iw̄

(k)
(
w̄(k)

)T)
Tr

(
M̄iw̄w̄T

)]
− 2ψ

(
M̄
)
Tr

(
w̄(k)

(
w̄(k)

)T
w̄w̄T

)
+ ψ

(
M̄
)
Tr

(
w̄(k)

(
w̄(k)

)T
w̄(k)

(
w̄(k)

)T)
− ζTr

(
M̄1w̄

(k)
(
w̄(k)

)T)2

− η
p∑
i=2

Tr

(
M̄iw̄

(k)
(
w̄(k)

)T)2

= w̄T H̄(k)w̄ + ψ
(
M̄
)(

w̄T w̄
)2

+ ψ
(
M̄
)((

w̄(k)
)T

w̄(k)
)2

− ζ
((

w̄(k)
)T

M̄1w̄
(k)
)2

− η
p∑
i=2

((
w̄(k)

)T
M̄iw̄

(k)
)2

,

(51)
where in the objective function, H̄(k) is defined as follows:

H̄(k) , ξM̄1 + 2ζ
((

w̄(k)
)T

M̄1w̄
(k)
)

M̄1

+ 2η

p∑
i=2

((
w̄(k)

)T
M̄iw̄

(k)
)

M̄i

− 2ψ
(
M̄
)
w̄(k)

(
w̄(k)

)T
.

(52)
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Dropping the constants in f1

(
w̄, w̄(k)

)
, problem (37) be-

comes
minimize

w̄
w̄T H̄(k)w̄

subject to w̄T w̄ = ν

w̄ ∈ W̄i, (i = 0, 1) .

(53)

From f1

(
w̄, w̄(k)

)
, by changing variable w̄ back to

w based on w̄ = LTw and considering the constraint
wTM0w = ν, we have the majoring function in variable w
given as follows:

f1

(
w,w(k)

)
= wTH(k)w + ψ

(
M̄
)(

wTM0w
)2

+ ψ
(
M̄
)((

w(k)
)T

M0w
(k)
)2

− ζ
((

w(k)
)T

M1w
(k)
)2

− η
p∑
i=2

((
w(k)

)T
Miw

(k)
)2

= wTH(k)w + 2ψ
(
M̄
)
ν2 − ζ

((
w(k)

)T
M1w

(k)
)2

− η
p∑
i=2

((
w(k)

)T
Miw

(k)
)2

,

(54)
where H(k) in the objective function is given by

H(k) , ξM1 + 2ζ
((

w(k)
)T

M1w
(k)
)
M1

+ 2η

p∑
i=2

((
w(k)

)T
Miw

(k)
)
Mi

− 2ψ
(
M̄
)
M0w

(k)
(
w(k)

)T
M0.

Finally, based on f1

(
w,w(k)

)
, the majorized problem is given

as follows:

minimize
w

wTH(k)w

subject to wTM0w = ν

w ∈ Wi, (i = 0, 1) .

(55)

APPENDIX C
PROOF FOR LEMMA 4

The proof is similar to that for Lemma 3. Since the
majorization step in Lemma 4 can be regarded as a second
majorization for the majorizing function given in Lemma 3
(i.e., f2

(
w,w(k)

)
≥ f1

(
w,w(k)

)
), we can just start the

proof from the first majorizing function in (51).
First, replacing the first term of f1

(
w̄, w̄(k)

)
by its ma-

jorizing function u2

(
w̄, w̄(k)

)
in (42), we have

f2

(
w̄, w̄(k)

)
= ψ

(
H̄(k)

)(
w̄T w̄

)
+ 2
(
w̄(k)

)T
H̄(k)w̄

− 2ψ
(
H̄(k)

)((
w̄(k)

)T
w̄
)

+ ψ
(
H̄(k)

)((
w̄(k)

)T
w̄
)

−
(
w̄(k)

)T
H̄(k)w̄(k) + ψ

(
M̄
)(

w̄T w̄
)2

+ ψ
(
M̄
)((

w̄(k)
)T

w̄(k)
)2

− ζ
((

w̄(k)
)T

M̄1w̄
(k)
)2

− η
p∑
i=2

((
w̄(k)

)T
M̄iw̄

(k)
)2

.

(56)

Then, we change the variable w̄ back to w, consider the
constraint wTM0w = ν, and get the majoring function in
variable w as follows:

f2

(
w,w(k)

)
= ψ

(
H̄(k)

)(
wTM0w

)
+ 2
(
w(k)

)T
H(k)w

− 2ψ
(
H̄(k)

)((
w(k)

)T
M0w

)
+ ψ

(
H̄(k)

)((
w(k)

)T
M0w

)
−
(
w(k)

)T
H(k)w(k) + ψ

(
M̄
)(

wTM0w
)2

+ ψ
(
M̄
)((

w(k)
)T

M0w
(k)
)2

− ζ
((

w(k)
)T

M1w
(k)
)2

− η
p∑
i=2

((
w(k)

)T
Miw

(k)
)2

= 2
(
e(k)

)T
w −

(
w(k)

)T
H(k)w(k) + 2ψ

(
H̄(k)

)
ν

− ζ
((

w(k)
)T

M1w
(k)
)2

− η
p∑
i=2

((
w(k)

)T
Miw

(k)
)2

+ 2ψ
(
M̄
)
ν2

(57)
where

e(k) ,
(
H(k) − ψ

(
H̄(k)

)
M0

)
w(k).

Finally, the majorized subproblem is accordingly given in the
following way:

minimize
w

(
e(k)

)T
w

subject to wTM0w = ν

w ∈ Wi, (i = 0, 1) .

(58)

APPENDIX D
PROOF FOR LEMMA 5

We show the proof for the case w ∈ W1, and the other case
follows accordingly. We first check the regularity conditions
(or constraint qualifications). Problem (46) is equivalent to the
following convex problem

minimize
w

(
e(k)

)T
w

subject to wTM0w ≤ ν
1Tw = 1,

(59)

since the objective is linear and the optimal solution w? is
always attained in the boundary of the quadratic constraint set.
Slater’s regularity condition holds for (59), i.e., it is strictly
feasible. By variable changing w = Fx + w0, with N0 =
FTM0F, p0 = FTM0w0, and b0 = wT

0 M0w0, we have

minimize
w

(
e(k)

)T
Fx

subject to xTN0x + 2pT0 x + b0 ≤ ν.
(60)

The Karush-Kuhn-Tucker (KKT) conditions for primal and
dual variable pair (x?, λ?) can be written as

2λ?N0x
? + 2λ?p0 + FTe(k) = 0,

x?TN0x
? + 2pT0 x? + b0 ≤ ν,

λ? ≥ 0,

λ?
(
x?TN0x

? + 2pT0 x? + b0 − ν
)

= 0.
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By solving the KKT conditions, we have

x? =

−

(
ν −wT

0 M0w0 + wT
0 M0F

(
FTM0F

)−1
FTM0w0(

e(k)
)T

F (FTM0F)
−1

FTe(k)

) 1
2

×
(
FTM0F

)−1
FTe(k) −

(
FTM0F

)−1
FTM0w0,

and accordingly have w? = Fx? + w0.

APPENDIX E
PROOF FOR PROPOSITION 6

From the derivation of the MM-based algorithms (IRGEVP
and IRGTRS in Algorithm 3 as well as E-IRGEVP and E-
IRGTRS in Algorithm 4), we know that the objective function
f (w) in (32) is majorized by functions f1

(
w,w(k)

)
in

Lemma 3 and f2

(
w,w(k)

)
in Lemma 4 at w(k) over the

constraint W =
{
wTM0w = ν

}
∩ Wi, (i = 0, 1). In the

following, for the purpose of easy explanation, f1

(
w,w(k)

)
and f2

(
w,w(k)

)
will be jointly denoted as f

(
w,w(k)

)
.

Based on (27) and (28) in Section V-A, we can get the
objective function value is monotonically nonincreasing at
each iteration, i.e.,

f
(
w(k+1)

) (a)

≤ f
(
w(k+1),w(k)

)
(b)

≤ f
(
w(k),w(k)

)
(c)
= f

(
w(k)

)
, ∀k ∈ N,

where (a) and (c) follow from the A2) and A1) in (28),
respectively, and (b) follows from (27). It implies

{
f
(
w(k)

)}
is a nonincreasing sequence, i.e.,

f
(
w(0)

)
≥ f

(
w(1)

)
≥ f

(
w(2)

)
≥ . . . .

Assume that there exists a subsequence
{
w(kj)

}
converging

to a limit point w(∞). We first have

f
(
w(kj+1),w(kj+1)

)
= f

(
w(kj+1)

)
≤ f

(
w(kj+1)

)
≤ f̄

(
w(kj+1),w(kj)

)
≤ f̄

(
w,w(kj)

)
, ∀w ∈ W.

Letting j →∞, we can further obtain

f̄
(
w(∞),w(∞)

)
≤ f̄

(
w,w(∞)

)
, ∀w ∈ W,

i.e., w(∞) is the global minimizer of f̄
(
w,w(∞)

)
over W .

Based on the B-stationarity defined in Section V-A, we have

f̄ ′
(
w(∞),w(∞); d

)
≥ 0, ∀d ∈ TW

(
w(∞)

)
.

Then, according to the A3) in (28), we have

f ′
(
w(∞); d

)
≥ 0, ∀d ∈ TW

(
w(∞)

)
,

which implies w(∞) is a B-stationary point of problem (32).
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