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Abstract

Analysis of multivariate time series is a common problem in areas like finance and eco-

nomics. The classical tool for this purpose are vector autoregressive models. These how-

ever are limited to the modeling of linear and symmetric dependence. We propose a novel

copula-based model which allows for non-linear and asymmetric modeling of serial as well

as between-series dependencies. The model exploits the flexibility of vine copulas which are

built up by bivariate copulas only. We describe statistical inference techniques for the new

model and demonstrate its usefulness in three relevant applications: We analyze time series

of macroeconomic indicators, of electricity load demands and of bond portfolio returns.

1 Introduction

The analysis of multiple time series is of fundamental interest in finance and economics. Clas-

sically, interdependencies among multivariate time series have been modeled using vector au-

toregressive (VAR) models. Such models provide insights into the dynamic relationship of the

time series and often produce forecasts superior to independent univariate models. VAR models

in economics were advocated by Sims (1980), standard reference books are Lütkepohl (2005),

Hamilton (1994) and Tsay (2002).

The bivariate pth order vector autoregressive model, VAR(p), for two time series {Xt} and

{Yt} is defined as (
Xt

Yt

)
=

(
c1
c2

)
+ Φ1

(
Xt−1
Yt−1

)
+ ...+ Φp

(
Xt−p
Yt−p

)
+

(
ε1
ε2

)
, (1.1)

where Φj , j = 1, ..., p, are 2-by-2-matrices of autoregressive coefficients and c1 and c2 are con-

stants. The vector εt = (ε1, ε2)
′ is multivariate white noise, that is E(εt) = 0 and E(εtεs) = Σ

for t = s and 0 otherwise, where Σ is a symmetric positive definite 2-by-2-matrix. Typically

εt ∼ N2(0,Σ) is assumed.
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While VAR models can only capture linear and symmetric dependence in time and between

series, we propose a new copula-based model which overcomes such limitations and allows for an

extremely flexible modeling. Copulas are the canonical statistical tool for statistical dependence

modeling. The theorem by Sklar (1959) shows that every multivariate distribution can be

represented in terms of a copula which couples the univariate marginal distributions. For a

random vector X = (X1, ..., Xd) ∼ F with marginal distributions Fi, i = 1, ..., d, it is

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)), (1.2)

where C is some appropriate d-dimensional copula, a multivariate distribution on the unit hy-

percube with uniform margins (see Nelsen (2006) and Joe (1997) for more details).

We will use a fully integrated copula model to capture effects in time and between series. In

particular, our model is built upon a so-called vine copula (see Kurowicka and Joe (2011) for an

overview). Such vine copulas are flexible multivariate copulas constructed through a sequence of

bivariate copulas, a pair-copula decomposition. While Smith et al. (2010) recently showed how

univariate time series can be modeled using a so-called D-vine pair-copula decomposition, we will

show how such pair-copula decompositions can be conveniently used to model the dependence

among multiple time series.

The contributions of this paper are as follows: We introduce the so-called copula autoregres-

sive model, COPAR, which exploits the enormous flexibility of vine copula models and allows

for non-linear and non-symmetric modeling of serial and between-series dependence. By allow-

ing for arbitrary marginal distributions, the model can also account for common features of

univariate economic and financial time series like skewness and heavy-tailedness which are not

captured appropriately using a normal distribution. Required statistical inference techniques for

the model are presented and described in detail. In addition, we also discuss how the model can

be easily used to test for Granger causality, a central concept to determine interdependencies

among multiple time series. The usefulness of our model is demonstrated and carefully evaluated

in three relevant applications: We analyze monthly macro-economic indicators, daily electricity

load demands as well as monthly bond portfolio returns.

The paper is structured as follows. In Section 2 we establish the relevant technical back-

ground on copulas and pair-copula constructions in particular. The copula autoregressive model

is introduced and discussed in detail in Section 3. The three applications are subsequently

treated in Section 4, while Section 5 concludes with an outlook to future research.

2 Pair-copula decompositions for univariate time series

Let {Xt}t=1,...,T be a univariate time series of continuously distributed data. Through condi-

tioning the joint distribution of {Xt} can be decomposed as

f(x1, ..., xT ) = f(x1)
T∏
t=2

ft|1:(t−1)(xt|x1, ..., xt−1), (2.1)
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where f denotes the common marginal density of Xt, t = 1, ..., T ; F will denote the correspond-

ing distribution function. Here we use r : s := (r, r + 1, ..., s − 1, s) for r < s and fs|D denotes

the conditional density of Xs given {Xr, r ∈ D}.
As outlined in Smith et al. (2010) this expression can be used to obtain a general de-

composition in terms of bivariate copulas. For the distribution of Xs and Xt, s < t, given

{Xs+1, ..., Xt−1} (to shorten notation we often write X(s+1):(t−1)) it follows according to Sklar’s

theorem (1.2) that

fs,t|(s+1):(t−1)(xs, xt|xs+1, ...xt−1) =

cs,t|(s+1):(t−1)(Fs|(s+1):(t−1)(xs|xs+1, ..., xt−1), Ft|(s+1):(t−1)(xt|xs+1, ..., xt−1))

× fs|(s+1):(t−1)(xs|xs+1, ..., xt−1)× ft|(s+1):(t−1)(xt|xs+1, ..., xt−1),

where cs,t|(s+1):(t−1) is an appropriate bivariate copula density. Rearranging terms gives

ft|s:(t−1)(xt|xs, ...xt−1) =

cs,t|(s+1):(t−1)(Fs|(s+1):(t−1)(xs|xs+1, ..., xt−1), Ft|(s+1):(t−1)(xt|xs+1, ..., xt−1))

× ft|(s+1):(t−1)(xt|xs+1, ..., xt−1).

Let ur|(r+1):(t−1) := Fr|(r+1):(t−1)(xr|xr+1, ..., xt−1) and ut|(r+1):(t−1) := Ft|(r+1):(t−1)(xt|xr+1, ..., xt−1).

By recursive conditioning on s = 1, 2, ..., t− 1 one then obtains

ft|1:(t−1)(xt|x1, ...xt−1) =

f(xt)ct−1,t(F (xt−1), F (xt))
t−2∏
r=1

cr,t|(r+1):(t−1)(ur|(r+1):(t−1), ut|(r+1):(t−1)).
(2.2)

Finally, plugging Equation (2.2) into Expression (2.1) gives

f(x1, ..., xT ) =

T∏
t=1

f(xt)

T∏
t=2

t−1∏
r=1

cr,t|(r+1):(t−1)(ur|(r+1):(t−1), ut|(r+1):(t−1)).

This is the product of T (T − 1)/2 bivariate copulas, so-called pair-copulas, and the marginal

densities evaluated at each time point xt, t = 1, ..., T . The construction does not require the

selection of a particular copula family, so that very flexible models can be deduced from it.

However, it is clear that copulas corresponding to the same time lag have to be identical. For

example Ct−2,t−1 and Ct−1,t must not be different.

The above construction is called pair-copula decomposition and was introduced by Aas et al.

(2009). The particular way described here is called D-vine and belongs to the more general

class of regular vines (R-vines) introduced by Joe (1996) and Bedford and Cooke (2001, 2002)

and described in more detail in Kurowicka and Cooke (2006) and Kurowicka and Joe (2011).

R-vines are a graphic theoretic model to determine which pairs are included in a pair-copula

decomposition. The following definition is taken from Kurowicka and Cooke (2006).

Definition 2.1 (Regular vine). A regular vine (R-vine) on d variables is a sequence of linked

trees (connected acyclic graphs) T1, ..., Td−1 with nodes Ni and edges Ei for i = 1, ..., d−1 which

satisfy the following three conditions.
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X1 X2 X3 X4 X5

X1, X2 X2, X3 X3, X4 X4, X5

X1, X2 X2, X3 X3, X4 X4, X5

X1, X3|X2 X2, X4|X3 X3, X5|X4

X1, X3|X2 X2, X4|X3 X3, X5|X4

X1, X4|X2:3 X2, X5|X3:4

X1, X4|X2:3 X2, X5|X3:4

X1, X5|X2:4

Figure 1: D-vine for T = 5 with edge labels.

(i) Tree T1 has nodes N1 = {1, ..., d}.

(ii) For i = 2, ..., d− 1 tree Ti has nodes Ni = Ei−1.

(iii) If two edges in tree Ti are joined in tree Ti+1, they must share a common node in tree Ti.

The last property is called proximity condition.

D-vines are R-vines, where each node is connected to at most two other nodes. The D-vine

corresponding to the above decomposition is shown in Figure 1.

By associating each edge e = j(e), k(e)|D(e) in an R-vine with a bivariate copula density

cj(e),k(e)|D(e), the complete pair-copula decomposition is defined. The nodes j(e) and k(e) are

called conditioned nodes and D(e) the conditioning set, where in each tree from top to bottom

an additional variable is added in the conditioning set of the bivariate copula.

Theorem 2.2 (R-vine density (Kurowicka and Cooke 2006, Theorem 4.2)). The joint density

of X1, ..., Xd is uniquely determined and given by

f(x1, ..., xd) =

[
d∏

k=1

fk(xk)

]
×

d−1∏
i=1

∏
e∈Ei

cj(e),k(e)|D(e)(F (xj(e)|xD(e)), F (xk(e)|xD(e)))

 , (2.3)

where xD(e) denotes the sub-vector of x = (x1, ..., xd)
′ determined by the indices in D(e).

In (2.3) the arguments of copulas in tree Ti can be recursively computed from copulas in

trees T1, ..., Ti−1 using the general formula

F (x|v) =
∂Cxvj |v−j

(F (x|v−j), F (vj |v−j))
∂F (vj |v−j)

, (2.4)

where Cxvj |v−j
is a bivariate copula, vj is an arbitrary component of v and v−j denotes the

vector v excluding vj .
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To facilitate statistical inference of R-vines, they can be conveniently stored in matrix no-

tation as recently proposed by Morales-Nápoles (2011) and further explored by Dißmann et al.

(2012). Let M ∈ {0, ..., d}d×d be a lower triangular matrix, where the diagonal entries of M

are the numbers 1, ..., d in decreasing order. In this matrix, according to technical conditions,

each row from the bottom up represents a tree, where the conditioned set is identified by a

diagonal entry and by the corresponding column entry of the row under consideration, while the

conditioning set is given by the column entries below this row. Corresponding copula types and

parameters can conveniently be stored in matrices related to M . The fixed ordering of diagonal

entries ensures uniqueness of the R-vine matrix.

The serial D-vine decomposition presented above can be stored in the following matrix

XT

X1 XT−1

X2 X1
. . .

...
...

. . .
. . .

...
...

. . . X3

XT−2 XT−3 · · · · · · X1 X2

XT−1 XT−2 · · · · · · X2 X1 X1


,

which is easily extendible to include future observations {XT+1, XT+2, ...}. For example, the

second entry in the first column identifies the conditioned pair X1 and XT given {X2, ..., XT−1}.
Corresponding copula types are stored in the off-diagonal entry associated with the pair:

C1,T |2:(T−1)
C2,T |3:(T−1) C1,T−1|2:(T−2)

...
...

. . .
...

...
. . .

CT−2,T |T−1 CT−3,T−1|T−2 · · · · · · C1,3|2
CT−1,T CT−2,T−1 · · · · · · C2,3 C1,2


.

Here in each row the same copula type must be used. For deriving the joint likelihood the

pair-copulas have to be evaluated in conjunction with the conditional distribution functions.

Using this matrix notation Dißmann et al. (2012) give algorithms to compute the log-

likelihood of an R-vine and to sample from an R-vine. Thus maximum likelihood estimation

of copula parameters is feasible. Copula types are often selected sequentially starting from the

first tree (see also Brechmann et al. (2012)).

3 The copula autoregressive model

Let {Xt}t=1,...,T and {Yt}t=1,...,T be two univariate time series jointly observed at time point

t = 1, ..., T . The aim of this paper is to derive a flexible multivariate distribution of {Xt} and
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{Yt}, in particular allowing for non-linear dependence—serial as well as between-series. On the

one hand, such a distribution can be used to investigate the dependence among the time series

(in-sample fit). This involves for instance testing for Granger causality which will be discussed

below. On the other hand and most importantly, future values can be predicted based on this

distribution (out-of-sample prediction).

Our model is based on a particular R-vine structure and defined as follows.

Definition 3.1 (COPAR). The copula autoregressive model (COPAR) for time series {Xt}t=1,...,T

and {Yt}t=1,...,T has the following components.

(i) Unconditional marginal distributions FX and FY of {Xt} and {Yt}, respectively.

(ii) An R-vine for the serial and between-series dependence of {Xt} and {Yt}, where the

following pairs are selected.

(a) Serial dependence of {Xt}: The pairs of a serial D-vine for X1, ..., XT , i.e.

Xs, Xt|Xs+1, ..., Xt−1, 1 ≤ s < t ≤ T. (3.1)

(b) Between-series dependence:

Xs, Yt|Xs+1, ..., Xt, 1 ≤ s ≤ t ≤ T, (3.2)

and

Ys, Xt|X1, ..., Xt−1, Ys+1, ..., Yt−1, 1 ≤ s < t ≤ T. (3.3)

(c) Conditional serial dependence of {Yt}: The pairs of a serial D-vine for Y1, ..., YT
conditioned on all previous values of {Xt}, i.e.

Ys, Yt|X1, ..., Xt, Ys+1, ..., Yt−1, 1 ≤ s < t ≤ T. (3.4)

Pair-copulas of the same lag length t− s, t ≥ s, are identical. We associate

(a) copula CXt−s := CXs,Xt|X(s+1):(t−1)
with Expression (3.1),

(b) copulas CXYt−s := CXs,Yt|X(s+1):t
and CY Xt−s := CYs,Xt|X1:(t−1),Y (s+1):(t−1)

with Expres-

sions (3.2) and (3.3), respectively, and

(c) copula CYt−s := CYs,Yt|X1:t,Y (s+1):(t−1)
with Expression (3.4).

Remark 3.2. The number of different pair-copulas utilized in the COPAR model of Definition

3.1 is 4T−3: For CXt−s, C
Y X
t−s and CYt−s with s < t there are T−1 different ones each. In addition,

there are T different copulas CXYt−s , since s ≤ t.

The joint density of the COPAR model can be derived through Expression (2.3). To illustrate

the rather technical definition, we present a small-dimensional example.

Example 3.3. Let T = 4. Then the COPAR model of Definition 3.1 for the variables X1, ..., X4

and Y1, ..., Y4 is constructed as shown in Figure 2. �
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X1 X2 X3 X4

Y1 Y2 Y3 Y4

(3.1) (3.1) (3.1)

(3.2) (3.2) (3.2) (3.2)

X1, X2 X2, X3 X3, X4

X1, Y1 X2, Y2 X3, Y3 X4, Y4

(3.1) (3.1)

(3.3) (3.2) (3.2) (3.2)

X1, X3|X2 X2, X4|X3

Y1, X2|X1 X1, Y2|X2 X2, Y3|X3 X3, Y4|X4

(3.1)

(3.3) (3.2) (3.2)

(3.4)

X1, X4|X2:3

Y1, Y2|X1:2 Y2, X3|X1:2 X1, Y3|X2:3 X2, Y4|X3:4

(3.3) (3.2)

(3.3) (3.4)

Y1, X3|X1:2, Y2 Y2, Y3|X1:3 Y3, X4|X1:3 X1, Y4|X2:4

(3.4) (3.3) (3.4)

Y1, Y3|X1:3, Y2 Y2, X4|X1:3, Y3 Y3, Y4|X1:4

(3.3) (3.4)

Y1, X4|X1:3,Y 2:3 Y2, Y4|X1:4, Y3

(3.4)

Figure 2: Example for T = 4. Edge labels relate to Definition 3.1.

Clearly, {Xt} plays a pivotal role in this modeling approach: While the serial dependence

of {Xt} is modeled unconditionally, that of {Yt} is specified conditionally on {Xt}. In other

words, the roles of {Xt} and {Yt} cannot be simply interchanged, since the time series play

different roles. On the other hand, the R-vine structure specifies the full joint distribution of

{Xt} and {Yt} so that this is mainly an issue of interpretability. Its implications will be treated

in more detail when prediction is discussed (see Section 3.3). However note that the fitted joint

distribution may in the end actually look differently depending on the order of variables in the

modeling, since different copulas can be used. In the case of Gaussian pair-copulas, this is not

the case, since then the R-vine copula corresponds to a multivariate Gaussian copula, where the
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correlation matrix can be computed from conditional correlations as given by the R-vine copula

parameters.

While the serial dependence is rather straightforward to understand from this model, the

modeling of the between-series dependence warrants a more detailed examination. For this

purpose it is useful to look at the R-vine matrices associated to the R-vine structure of Definition

3.1. Here, we continue with Example 3.3 first.

Example 3.4. The R-vine matrix corresponding to the R-vine structure in Figure 2 can be

derived as 

Y4
Y1 X4

Y2 Y1 Y3
Y3 Y2 Y1 X3

X1 Y3 Y2 Y1 Y2
X2 X1 X1 Y2 Y1 X2

X3 X2 X2 X1 X1 Y1 Y1
X4 X3 X3 X2 X2 X1 X1 X1


. (3.5)

The solid line is drawn to highlight the structure. On the diagonal, values of {Xt} and {Yt}
appear alternately starting with X1 and increasing from right to left. It is clear that in this way

the matrix can easily be extended to include new observations as additional columns on the left.

This will prove useful for forecasting as discussed in Section 3.3. To gain detailed insight into

the structure and the dependence properties the model implies, we take all odd numbered and

all even numbered columns, that is columns 1, 3, 5 and 7 and 2, 4, 6 and 8, respectively, and

look at them separately. Note however that these sub-matrices are not valid R-vine matrices

themselves.

• Even numbered columns: 

X4

Y1
Y2 X3

Y3 Y1
X1 Y2 X2

X2 X1 Y1
X3 X2 X1 X1


. (3.6)

Now it becomes clear that the pairs below the solid line specify the serial dependence of

{Xt} (see Expression (3.1)). The pairs above the solid line however model between-series

dependence: Given past values of {Xt} (and of {Yt}), dependence of {Xt} with regard

to previous values of {Yt} is modeled (see Expression (3.3)). The first column gives the

following pairs: Y3, X4|X1:3, Y2, X4|X1:3, Y3 and Y1, X4|X1:3, Y2:3.
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• Odd numbered columns: 

Y4
Y1
Y2 Y3
Y3 Y1
X1 Y2 Y2
X2 X1 Y1
X3 X2 X1 Y1
X4 X3 X2 X1


. (3.7)

Here, the pairs below the solid line also model between-series dependence, namely that of

{Yt} with respect to previous values of {Xt} given realizations of {Xt} between the two

time indices under consideration (see Expression (3.2)). For example the first column spec-

ifies the following pairs: X4, Y4 (unconditional dependence), X3, Y4|X4, X2, Y4|X3:4 and

X1, Y4|X2:4. Finally the pairs above the solid line specify the serial dependence structure

of {Yt} conditioned on all observed values of {Xt} up to the maximal time index of the

pair (see Expression (3.4)). If {Xt} and {Yt} are independent, the dependence structure

of {Yt} also is an unconditional serial D-vine.

The R-vine copula matrices corresponding to these two sub-matrices are then given as follows:

• Even numbered columns:

CY1X4|X1:3Y 2:3

CY2X4|X1:3Y3

CY3X4|X1:3
CY1X3|X1:2Y2

CX1X4|X2:3
CY2X3|X1:2

CX2X4|X3
CX1X3|X2

CY1X2|X1

CX3X4 CX2X3 CX1X2


=



CY X3

CY X2

CY X1 CY X2

CX3 CY X1

CX2 CX2 CY X1

CX1 CX1 CX1


.

• Odd numbered columns:

CY1Y4|X1:4Y 2:3

CY2Y4|X1:4Y3

CY3Y4|X1:4
CY1Y3|X1:3Y2

CX1Y4|X2:4
CY2Y3|X1:3

CX2Y4|X3:4
CX1Y3|X2:3

CY1Y2|X1:2

CX3Y4|X4
CX2Y3|X3

CX1Y2|X2

CX4Y4 CX3Y3 CX2Y2 CX1Y1


=



CY3
CY2
CY1 CY2
CXY3 CY1
CXY2 CXY2 CY1
CXY1 CXY1 CXY1

CXY0 CXY0 CXY0 CXY0


.

This illustrates the notation of pair-copulas in Definition 3.1. For the serial D-vine dependence

of {Xt} and {Yt} it is clear that copulas for the same lag length are identical. For instance

9



· · · Xt−1 Xt

· · · Yt−1 Yt

Figure 3: Simplified illustration of the dependence structure of the COPAR model. Solid lines

represent serial dependence, dashed and dotted lines between-series dependence given by the

entries specified below the solid line in matrix (3.7) and above the solid line in matrix (3.6),

respectively.

CX1 = CX1X2 = CX2X3 = CX3X4 . This translates to the other copulas: Copulas with the

same lag length of the conditioned nodes are identical, e.g. CY X1 = CY1X2|X1
= CY2X3|X1:2

=

CY3X4|X1:3
. When combining these two matrices, one obtains the complete R-vine copula matrix

corresponding to the structure matrix (3.5) utilizing 13 different pair-copulas. �

Similar to Matrix (3.5) the general R-vine structure matrix of the joint distribution of

{Xt}t=1,...,T and {Yt}t=1,...,T as defined in Definition 3.1 can be derived as

YT
Y1 XT

Y2 Y1 YT−1
... Y2 Y1 XT−1
...

... Y2 Y1
. . .

YT−1
...

... Y2
. . .

. . .

X1 YT−1 YT−2
...

. . .
. . .

. . .

X2 X1 X1 YT−2
. . .

. . . X3

... X2 X2 X1
. . . Y1 Y2

...
...

... X2 Y2 Y1 X2

...
...

...
... X1 X1 Y1 Y1

XT XT−1 XT−1 XT−2 · · · · · · · · · X2 X2 X1 X1 X1



. (3.8)

The interpretation of this 2T -by-2T -matrix is the same as in the above example. The corre-

sponding copula matrix is also found in exactly the same way and therefore not shown here.

Figure 3 depicts the dependence structure specified by the different blocks of the matrices.

As noted in Remark 3.2 the COPAR model requires 4T−3 copulas for dependence modeling,

while a standard R-vine specification would use T (2T−1). In other words, the number of copulas

grows only linearly in the number of time points in contrast to quadratic growth of a standard

R-vine. This number even reduces when assuming an autoregressive structure of a specific order.

We therefore define the following model.
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Definition 3.5 (COPAR(k)). The copula autoregressive model of order k (COPAR(k)) is de-

fined as the COPAR model of Definition 3.1, where all pair-copulas corresponding to a lag length

greater than k are independence copulas, that is

CXt−s = CXYt−s = CY Xt−s = CYt−s = Π for t− s > k,

where Π denotes the independence copula.

Remark 3.6. Let k denote the autoregressive order, then the number of different pair-copulas

in the COPAR(k) model of Definition 3.5 is 4k + 1.

Clearly, the COPAR model of Definition 3.1 then corresponds to a COPAR(T − 1) model.

We continue Examples 3.3 and 3.4 to illustrate this definition.

Example 3.7. If we assume a COPAR(1) model for the dependence of X1, ..., X4 and Y1, ..., Y4,

some of the copulas specified in the R-vine copula matrix of Example 3.3 simplify to indepen-

dence copulas. For example CY2 and CXY3 are independence copulas. The sub-matrices that we

considered before can therefore be reduced as follows, where independence copulas are indicated

by the symbol Π. The left matrix corresponds to even numbered columns, the right to odd

numbered columns:



Π

Π

CY X1 Π

Π CY X1

Π Π CY X1

CX1 CX1 CX1


,



Π

Π

CY1 Π

Π CY1
Π Π CY1

CXY1 CXY1 CXY1

CXY0 CXY0 CXY0 CXY0


.

The number of different pair-copulas thus reduces from 13 to 5. Similarly, assuming an autore-

gressive structure of order 2 would still reduce the number of copulas to 9. �

Clearly, the number of different pair-copulas (see Remark 3.6) no longer depends on the

number of time points T and thus allows for a very parsimonious modeling. For example, if an

autoregressive structure of order 2 is assumed, only 9 different copulas are required for describing

the dependence of {Xt}t=1,...,T and {Yt}t=1,...,T , while T may be 1000 or greater. In terms of

model parameters this means that only a small number is needed, since most common bivariate

copulas have at most two parameters and also marginal distributions have rarely more than

three or four parameters. In particular, compared to the model complexity of the bivariate VAR

model (1.1) there is essentially no difference: While a VAR(k) model requires 4k+ 1 parameters

(k 2-by-2-matrices with 4 entries each as well as the off-diagonal entry Σ12 of the covariance

matrix Σ) for modeling the serial and the between-series dependence, the COPAR(k) model

needs exactly the same number if only one parameter copulas are used. Additionally, a VAR
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model uses two constant regressors as well as two residual variances (the diagonal entries Σ11

and Σ22 of the covariance matrix Σ) to model the margins. In contrast, a COPAR model needs

the full specification of marginal distributions, which however usually does not require many

parameters (e.g. for skew-normal margins as used in Section 4 below, six parameters are needed

for the COPAR model in contrast to four needed by the VAR model).

3.1 Extension to higher dimensions

The above construction for two time series {Xt}t=1,...,T and {Yt}t=1,...,T can also be extended

to an arbitrary number of time series. The following example illustrates the case of three time

series {Xt}, {Yt} and {Zt}.

Example 3.8. Again let T = 4. Similarly to Definition 3.1 and Examples 3.3 and 3.4 an

appropriate R-vine structure for the variables X1, ..., X4, Y1, ..., Y4, Z1, ..., Z4 is constructed as

the following R-vine structure matrix:

Z4

Z1 Y4
Z2 Z1 X4

Z3 Z2 Z1 Z3

Y1 Z3 Z2 Z1 Y3
Y2 Y1 Z3 Z2 Z1 X3

Y3 Y2 Y1 Y1 Z2 Z1 Z2

Y4 Y3 Y2 Y2 Y1 Z2 Z1 Y2
X1 X1 Y3 Y3 Y2 Y1 Y1 Z1 X2

X2 X2 X1 X1 X1 Y2 Y2 Y1 Z1 Z1

X3 X3 X2 X2 X2 X1 X1 X1 Y1 Y1 Y1
X4 X4 X3 X3 X3 X2 X2 X2 X1 X1 X1 X1



. (3.9)

The patterns clearly resemble those of the two-dimensional case. Serial dependence of {Xt}
and {Yt} is again modeled using serial D-vine structures (for {Yt} conditionally on observed

values of {Xt}). In the same way, the serial dependence of {Zt} is captured by a serial D-vine

structure conditioned on observed values of {Xt} and {Yt}, that means in terms of the pairs

Zs, Zt|X1, ..., Xt, Y1, ..., Yt, Zs+1, ..., Zt−1, 1 ≤ s < t ≤ 4. Between-series dependence of {Yt} and

{Zt} is also specified conditionally on values of {Xt}. �

Along the lines of this example, multivariate time series can be modeled by iteratively con-

ditioned D-vines and appropriate between-series copulas. Let m ∈ N be the number of differ-

ent time series {Xtj}, j = 1, ...,m, where {Xt1} is the pivotal time series, {Xt2} the second

pivot, and so on. Using the notation of Definition 3.1, an adequate R-vine based autoregres-

sive model can then be specified in terms of m blocks of T − 1 pair-copulas C
Xj

t−s each for

(conditional) serial dependence of {Xtj}, j = 1, ...,m, as well as
(
m
2

)
blocks of T pair-copulas

C
XiXj

t−s each for between-series dependence of {Xti} and {Xtj} with i < j and
(
m
2

)
blocks of

12



T − 1 pair-copulas C
XjXi

t−s each for between-series dependence when i > j. The number of pair-

copulas used in such a model is m(T − 1) +
(
m
2

)
T +

(
m
2

)
(T − 1) = m2T −m(m+ 1)/2 and can

again be significantly reduced by assuming an appropriate autoregressive order k, namely to

mk +
(
m
2

)
(k + 1) +

(
m
2

)
k = m2k +m(m− 1)/2, which is also the number of parameters used in

a VAR(k) model for between-series dependence of m time series (not counting parameters used

for marginal modeling).

This modeling approach opens up new possibilities in constructing flexible autoregressive

models for arbitrary numbers of time series. For simplicity and for illustrative reasons we

concentrate here on the case of two time series.

3.2 Model estimation and selection

In this section we discuss several issues related to selection and estimation of COPAR models.

We begin with a note on the marginal distributions.

The problem about the selection of appropriate marginal distributions is that no i.i.d. obser-

vations are available based on which the distribution could be chosen. The selection is therefore

subject to uncertainty and should be handled carefully. We hence advocate using rather more

complex versions of common univariate distributions, such as skew-normal or skew-t distribu-

tions, to be able to capture features of the data which may be otherwise disguised through the

serial dependence.

With respect to parameter estimation, all parameters of a COPAR(k) model can be estimated

jointly by maximum likelihood techniques, since the model is rather parsimonious. A common

alternative in the literature is estimation using inference functions for margins (IFM) by Joe

and Xu (1996). This means that first the parameters of the marginal distributions are estimated

and then, given these parameters, the copula parameters. As noted above, there is no i.i.d. data

available for the margins, so that IFM estimation is not possible in our case. Given a good

selection of the marginal distributions, IFM-type estimation ignoring the serial dependence is

however useful for selection of copula types in a pre-parameter-estimation step.

When constructing a COPAR(k) model, 4k+ 1 different copulas need to be chosen, where k

denotes the autoregressive order. Since for example the copula CX1X3|X2
depends on the copulas

CX1X2 and CX2X3 through its input arguments, copula selection will proceed sequentially. Figure

4 depicts the interdependencies of the copulas for a COPAR(2) model, more details are given in

Appendix A. Copula selection itself can be done for example using the AIC to penalize copula

families with more parameters. Note that models can also be estimated in this sequential way.

Resulting IFM-type estimates are typically good starting values for a full maximum likelihood

estimation.

Finally, the autoregressive order has to be selected. We propose two methods. First, when

selecting copulas, an independence test can be used to check whether the independence copula

is appropriate. If all copulas with lag greater than k∗ are selected as independence, then k∗

is the selected autoregressive order of the COPAR model. Alternatively, one may fit different

COPAR(k) models for different lag lengths k ≥ 1. The optimal lag k∗ can then be chosen

such that the COPAR(k∗) model minimizes an information criterion such as the Akaike (AIC),

13
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Figure 4: Interdependencies of pair-copulas in a COPAR(2) model.

Bayesian (BIC) or Hannan-Quinn (HQC):

AIC(k) = −2ˆ̀
k + 2pk,

BIC(k) = −2ˆ̀
k + log(2T )pk,

HQC(k) = −2ˆ̀
k + 2 log(log(2T ))pk,

(3.10)

where ˆ̀
k denotes the estimated log likelihood of the COPAR(k) model and pk the number of its

parameters (4k + 1 plus marginal parameters).

3.3 Forecasting

A major purpose of autoregressive modeling is forecasting. The autoregressive R-vine model

can easily be used for this. Given time series {Xt}t=1,...,T and {Yt}t=1,...,T , we like to forecast

XT+h and YT+h, where h ≥ 1 (h-step prediction).

In the case h = 1 (one-step prediction) this can be established iteratively using the following

decomposition of the distribution function of XT+1, YT+1|X1, ..., XT , Y1, ..., YT :

F (xT+1, yT+1|x1, ..., xT , y1, ..., yT ) = F (xT+1|x1, ..., xT , y1, ..., yT )F (yT+1|x1, ..., xT+1, y1, ..., yT ),

where the two univariate conditional distribution functions can be described in closed form using

pair-copulas of our R-vine model. By conditional inverse sampling first ofXT+1|X1, ..., XT , Y1, ..., YT
and then of YT+1|X1, ..., XT+1, Y1, ..., YT , a forecast can be derived. This means that the selec-

tion which time series corresponds to {Xt} and {Yt}, respectively, determines which variable

can be directly predicted and which conditionally.

If h > 1, then XT+h and YT+h can be predicted in essentially the same way by iteration:

first predict XT+1 and YT+1, then XT+2 and YT+2 and so on.

An illustrative example provides more details.

Example 3.9. In the setting of Example 3.3 we would like to predict X5 and Y5 given X1, ..., X4

and Y1, ..., Y4. Since the dependence model of the latter eight variables is already known, the

additional variables X5 and Y5 have to be integrated into this model appropriately such that

we are able to determine the conditional distribution of X5, Y5|X1, ..., X4, Y1, ..., Y4. This is

straightforward using the model building principles of Definition 3.1 and illustrated in Figure

10 in Appendix B.
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In terms of the R-vine structure matrix this means the addition of two new columns:

Y5
Y1 X5

Y2 Y1 Y4
Y3 Y2 Y1 X4

Y4 Y3 Y2 Y1 Y3
X1 Y4 Y3 Y2 Y1 X3

X2 X1 X1 Y3 Y2 Y1 Y2
X3 X2 X2 X1 X1 Y2 Y1 X2

X4 X3 X3 X2 X2 X1 X1 Y1 Y1
X5 X4 X4 X3 X3 X2 X2 X1 X1 X1



.

Using Expression 2.4 the conditional distribution of X5|X1, ..., X4, Y1, ..., Y4 can then be derived

from this structure matrix as

F (x5|x1, ..., x4, y1, ..., y4) =
∂CY1X5|X1:4Y 2:4

(F (x5|x1, ..., x4, y2, ..., y4), F (y1|x1, ..., x4, y2, ..., y4))
∂F (y1|x1, ..., x4, y2, ..., y4)

,

where the arguments can be iteratively decomposed in the same way in terms of bivariate copulas

specified in the model. For instance,

F (y1|x1, ..., x4, y2, ..., y4) =
∂CY1Y4|X1:4Y 2:3

(F (y1|x1, ..., x4, y2, y3), F (y4|x1, ..., x4, y2, y3))
∂F (y4|x1, ..., x4, y2, y3)

,

and so on. However note that the model requires copulas CX4 = CX1X5|X1:4
and CY X4 =

CY1X5|X1:4Y 2:4
. These copulas however are not known from the model and have to be taken as

independence copulas. In general, this will never be a problem, since in a COPAR(k) model

with k ≤ T − 1 (here T = 4) these pair-copulas are independence copulas anyway and a forecast

based on only four values is not quite sensible but only used for illustration here.

The case of the distribution Y5|X1, ..., X5, Y1, ..., Y4 is similar and therefore not discussed

here in more detail. �

Clearly, forecasting XT+h and YT+h given X1, ..., XT , Y1, ..., YT simply requires to extend

the R-vine matrices according to the model construction principles and then determining the

conditional distribution functions in terms of bivariate conditional distribution functions which

are derived from the corresponding bivariate copulas. An appropriate autoregressive structure

of order k ensures that all required copulas are well-defined and also simplifies the computational

burden significantly, since not all observed values have to be taken into account in the modeling.

Finally a note on conditional forecasting. In order to forecast YT+1 givenX1, ..., XT , Y1, ..., YT ,

we derived the conditional distribution of YT+1|X1, ..., XT+1, Y1, ..., YT , which depends on the

value of XT+1. To obtain a joint forecast of XT+1 and YT+1, the variable XT+1 is also predicted.

If however the true (observed) value of XT+1 is employed here, this is called conditional forecast-

ing, which is a very attractive tool of autoregressive models. On the one hand, it is interesting

in economics, since, for example, economic indicators such as inflation and unemployment rates
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are often not released simultaneously. Let us assume that inflation rates are released first. This

information could then be used to obtain more accurate forecasts of unemployment rates. Ad-

ditionally, conditional forecasting is very useful for scenario analysis, for instance to investigate

the impact of shocks to markets.

3.4 Granger causality

Granger causality of a time series {Yt}t=1,...,T with respect to another time series {Xt}t=1,...,T

means that {Yt} provides statistically significant information about {Xt}, in other words, it is

helpful to predict {Xt}. This is often denoted as {Yt} → {Xt} (“{Yt} Granger causes {Xt}.”).

On the other hand, {Yt}t=1,...,T does not Granger cause {Xt}t=1,...,T if it does not have any

explanatory power with respect to future observations XT+s, s ≥ 1.

Granger causality of one time series on another can easily be investigated using the COPAR

model. As discussed above, the COPAR model directly gives the conditional distribution of

XT+1|X1, ..., XT , Y1, ..., YT . If {Yt} does not Granger cause {Xt}, then this distribution is equal

to that of XT+1|X1, ..., XT , which means that all the pairs specifying between-series dependence

of {Xt} and {Yt} (see Expressions (3.2) and (3.3)) are independent. The model then collapses

to two independent serial D-vines for {Xt} and {Yt}, respectively. When pair-copulas of these

two serial D-vines are chosen as for the pairs in the full model, then the two models are nested

(most copulas, in particular those that will be considered in this paper, include the independence

copula as special or boundary case) and a standard likelihood-ratio test can be used to investigate

Granger causality. Let `RV denote the log likelihood of the joint model of {Xt} and {Yt} and

`DV the cumulative one of the two separate D-vines for {Xt} and {Yt} constructed with the

same pair-copulas as the joint model, then

2(`RV − `DV )
as.∼ χ2

pRV −pDV
, (3.11)

where χ2
q denotes a χ2 distribution with q degrees of freedom and pRV and pDV denote the

number of parameters of the full (R-vine) and the reduced (two D-vines) model, respectively.

If copula families are however chosen differently, then a test for non-nested hypotheses such as

the one by Vuong (1989) can be used.

To summarize, in order to investigate Granger causality of a time series {Yt}t=1,...,T on

another time series {Xt}t=1,...,T , the COPAR model can be used in conjunction with a likelihood-

ratio test. If Granger causality of {Xt} on {Yt} is to be investigated, the roles of the two time

series have to be interchanged.

4 Applications

In this section we discuss three relevant applications. First, we analyze four monthly macro-

economic indicators pairwisely, namely inflation and interest rates as well as stock returns and

industrial production. Since this is the classical area of application of VAR models it is partic-

ularly interesting to see what COPAR models can add here. Second, COPAR models are used

to model daily electricity load demands in four Australian states. Due to geography there is a
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strong interdependence among states which needs to be captured. Finally, monthly Fama bond

portfolio returns with medium duration are analyzed.

In each of the three data sets we compare the COPAR model to relevant benchmark mod-

els in terms of out-of-sample predictive ability: First, VAR(k) models are fitted using the

R-package vars (Pfaff 2008). Second, we also fit standard copula models with AR(k) and

AR(k)-GARCH(1,1) margins, where the distribution of the innovations is chosen as in the

corresponding COPAR model and the copula used is selected according to the AIC from a

range of different copulas capturing all types of dependence (tail-independent Gaussian (N) and

Frank (F), symmetric-tail-dependent Student-t, lower-tail-dependent Clayton (C), upper-tail-

dependent Gumbel (G) and Joe (J), and their survival versions (SC, SG, SJ)). Note that the

copula model with AR(k)-GARCH(1,1) is a very tough competitor model, since it allows for

time-varying variances, which the COPAR and the VAR models do not. Since the use of copula-

GARCH models is a common tool for the analysis of financial time series, it is also included in

the analysis.

For COPAR models we distinguish

• unconditional prediction of XT+1 given X1, ..., XT , Y1, ..., YT ,

• joint prediction of XT+1 and YT+1 given X1, ..., XT , Y1, ..., YT , and

• conditional prediction of YT+1 given X1, ..., XT+1, Y1, ..., YT .

To speed up computations IFM-type sequential estimation as described in Section 3.2 is used

for out-of-sample prediction, since the model is re-estimated for each additional prediction. In

all three applications model parameters estimated in this way were very close to full maximum

likelihood estimates. Copulas are selected as described in Section 3.2 and from the same list as

above.

Predictions are evaluated in terms of two different loss functions. On the one hand, we

consider the classical root mean squared error

RMSE(x̂;x) =

√√√√ 1

T ∗

T ∗∑
t=1

(x̂i − xi)2,

where T ∗ denotes the number of out-of-sample predictions and x̂ = (x̂1, ..., x̂T ∗)
′ are point

forecasts of x = (x1, ..., xT ∗)
′. On the other hand, in order to check the coverage of empirical

prediction intervals, mean interval scores by Gneiting and Raftery (2007) are taken into account:

MISα(̂l, û;x) =
1

T ∗

T ∗∑
t=1

[(
ûi − l̂i

)
+

2

α

(
l̂i − xi

)
1{xi<l̂i} +

2

α

(
xi − ûi

)
1{ûi<xi}

]
,

where l̂ = (l̂1, ..., l̂T ∗)
′ and û = (û1, ..., ûT ∗)

′, and [l̂i, ûi], i = 1, ..., T ∗, are 100(1−α)% prediction

intervals. For the copula-based models these are determined as (α/2) and (1 − α/2) sample

quantiles; for the VAR model closed form expressions using normal quantiles are used.
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Figure 5: Macro-economic indicators: Time series.

4.1 Macro-economic indicators

The first application investigates the interdependencies of four monthly US macro-economic

indicators: continuously compounded real returns on the S&P500 index (MKT), real interest

rates of 30-day US Treasury Bills (RRF), continuously compounded growth rates of the US CPI

(INF) and continuously compounded growth rates of US industrial production (IPG). The data is

available at http://www.economagic.com/ and covers 493 monthly observations from December

1959 to December 2000, which we split into a training set of 393 and a testing set of 100

observations. Analyses of comparable data can be found in Lee (1992) and in Zivot and Wang

(2006, Chapter 11).

The time series are shown in Figure 5. From the very different behavior of the series one

may expect only little dependence between them. A look at rank correlations (not corrected

for serial dependence) confirms this, since most empirical values are below 0.1 in absolute terms

and only between inflation rates and stock returns as well as inflation rates and interest rates

there is a somewhat stronger negative dependence of −0.21 and −0.26, respectively. Therefore,

it will be particularly interesting to analyze Granger causality for this data.

For the marginal time series we choose skew-normal distributions to account for skewness in

the data, a common feature of many economic time series. In particular, we use the parametriza-

tion by Azzalini (1985), where a shape parameter controls the skewness. If the shape parameter

is 0, there is no skewness and the distribution reduces to the normal one.

In the following, we investigate the causal relationships of all twelve (ordered) pairs of these

four variables to see how the indicators influence each other.

We select the lag length as described in Section 3.2. Three of the twelve diagnostic plots are

shown in Figure 6. To facilitate estimation, all pair-copulas were chosen as Gaussian; Gaussian

pair-copulas are chosen as proxy, since they can model positive as well as negative symmetric

dependence and only use one parameter. The plots indicate an appropriate autoregressive order

of k = 2.

We then fitted a COPAR(2) model for the training data as described in the introduction to

this section. Selected copula types and estimated parameters are shown in Table 7 in Appendix

B. Although many tail-symmetric copulas (Gaussian, Student-t, Frank) were chosen, this de-

pendence is mostly non-Gaussian and there is also evidence for some asymmetric dependence,

e.g. the serial dependence of inflation rates. AIC, BIC and HQC (3.10) confirmed this: Us-

ing non-Gaussian copulas clearly improved the in-sample fit over an only Gaussian COPAR(2)
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Figure 6: Macro-economic indicators: Information criteria (3.10) for the fit of three variable

pairs at different lag lengths, where all pair-copulas are chosen as Gaussian.
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Figure 7: Macro-economic indicators: Granger causality of variables according to the COPAR(2)

model (left panel) and the VAR(2) model (right panel) at the 5% level.

model. In addition, there is also clear indication of skewness in the data as determined by the

estimated marginal parameters.

Next we compare unconditional and joint prediction using the COPAR(2) model to pre-

dictions obtained from VAR(2), copula-AR(2) and copula-AR(2)-GARCH(1,1) models on the

testing set of 100 out-of-sample observations. In addition, we investigate whether predictions

can be improved through conditional prediction, when the future realization of one variable is

already known.

Tables 1 and 2 show root mean squared errors and mean interval scores for all models and all

twelve variable pairs based on 100’000 samples. While the COPAR(2) model almost exclusively

outperforms the VAR(2) model, the inclusion of GARCH(1,1) effects in the standard copula-

AR(2) model still provides better predictions. Nevertheless, the standard copula-AR(2) model

is inferior to the COPAR(2) model which indicates that serial dependence is not linear unlike

modeled by the AR-margins. Rather surprisingly, conditional prediction is not useful for this

data. This however makes sense in light of the small dependence between series described above.

Finally, we investigate Granger causality between the time series using the likelihood ratio

test (3.11). The resulting causalities as identified by COPAR(2) and VAR(2) models are in-

dicated by arrows in Figure 7. The two models mainly identify the same interdependencies,

differences are likely due to the non-linear modeling of the COPAR model. In particular, infla-

tion rates are determined to significantly influence all other variables, while industrial production

growth only causes interest rates. Nonetheless, although there is Granger causality among most

variable pairs, conditional predictions did not improve the forecasting accuracy.

19



MKT|RRF MKT|INF MKT|IPG RRF|MKT RRF|INF RRF|IPG
uncond. COPAR(2) 0.02908 0.02869 0.02920 0.00043 0.00041 0.00042

joint COPAR(2) 0.02924 0.02861 0.02921 0.00044 0.00040 0.00042

VAR(2) 0.02900 0.02867 0.02923 0.00042 0.00042 0.00043

copula-AR(2) 0.02943 0.02948 0.02945 0.00046 0.00045 0.00046

copula-AR(2)-GARCH(1,1) 0.02897 0.02893 0.02895 0.00041 0.00041 0.00041

cond. COPAR(2) 0.02924 0.02912 0.02928 0.00043 0.00041 0.00043

INF|MKT INF|RRF INF|IPG IPG|MKT IPG|RRF IPG|INF
uncond. COPAR(2) 0.00144 0.00141 0.00144 0.00437 0.00441 0.00443

joint COPAR(2) 0.00144 0.00143 0.00143 0.00433 0.00437 0.00443

VAR(2) 0.00148 0.00144 0.00147 0.00446 0.00445 0.00445

copula-AR(2) 0.00156 0.00156 0.00156 0.00498 0.00498 0.00498

copula-AR(2)-GARCH(1,1) 0.00145 0.00146 0.00146 0.00437 0.00438 0.00437

cond. COPAR(2) 0.00152 0.00141 0.00143 0.00437 0.00434 0.00444

Table 1: Macro-economic indicators: Root mean squared errors of unconditional, joint and

conditional predictions from COPAR(2) models as well as of predictions from VAR(2) and

copula-AR(2)-(GARCH(1,1)-)models for all twelve variable pairs and 100 out-of-sample values.

Best performing methods (other than the conditional) are indicated in bold.

MKT|RRF MKT|INF MKT|IPG RRF|MKT RRF|INF RRF|IPG
uncond. COPAR(2) 0.1688 0.1639 0.1693 0.0024 0.0023 0.0023

joint COPAR(2) 0.1707 0.1649 0.1705 0.0026 0.0027 0.0028

VAR(2) 0.1649 0.1606 0.1646 0.0029 0.0029 0.0029

copula-AR(2) 0.1703 0.1712 0.1706 0.0030 0.0030 0.0030

copula-AR(2)-GARCH(1,1) 0.1611 0.1611 0.1622 0.0021 0.0021 0.0021

cond. COPAR(2) 0.1716 0.1626 0.1705 0.0026 0.0026 0.0026

INF|MKT INF|RRF INF|IPG IPG|MKT IPG|RRF IPG|INF
uncond. COPAR(2) 0.0084 0.0083 0.0084 0.0312 0.0316 0.0308

joint COPAR(2) 0.0084 0.0082 0.0084 0.0318 0.0316 0.0310

VAR(2) 0.0094 0.0092 0.0093 0.0317 0.0320 0.0311

copula-AR(2) 0.0094 0.0093 0.0094 0.0325 0.0325 0.0325

copula-AR(2)-GARCH(1,1) 0.0089 0.0089 0.0089 0.0284 0.0285 0.0286

cond. COPAR(2) 0.0086 0.0081 0.0084 0.0316 0.0310 0.0310

Table 2: Macro-economic indicators: Mean interval scores of unconditional, joint and conditional

95% prediction intervals from COPAR(2) models as well as of 95% prediction intervals from

VAR(2) and copula-AR(2)-(GARCH(1,1)-)models for all twelve variable pairs and 100 out-of-

sample values. Best performing methods (other than the conditional) are indicated in bold.
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Figure 8: Electricity load demands: Time series.

QLD NSW VIC SA

QLD 1.00 0.40 0.13 0.08

NSW 0.40 1.00 0.49 0.39

VIC 0.13 0.49 1.00 0.68

SA 0.08 0.39 0.68 1.00

Table 3: Electricity load demands: Unconditional empirical rank correlations between time

series (not corrected for serial dependence).

4.2 Australian electricity load demands

In this application we analyze average daily electricity load demands in Gigawatt for the Aus-

tralian states Queensland (QLD), New South Wales (NSW), Victoria (VIC) and South Australia

(SA). The observations have been calculated by averaging the half-hourly observed data for one

day which are available at http://www.aemo.com.au/. The observed time period is from May

16, 2005 to June 30, 2008 with 1135 daily observations, split into a training set of 635 and a

testing set of 500 observations. Figure 8 shows the time series after preprocessing the data to

remove trend and weekly and annual seasonalities.

To allow for possible skewness in the data we again choose the skew-normal distribution by

Azzalini (1985) for the margins. In contrast to the previous application there however is clear

between-series dependence. Unconditional empirical between-series dependence (not corrected

for serial dependence in the margins) is shown in Table 3. Since the Australian infrastructure is

concentrated near the coast, dependence is observed in particular for the pairs QLD-NSW, NSW-VIC

and VIC-SA, which mirror the geographical location of the states on the coastline. While focusing

on these pairs, we investigate the causal relationships of all twelve ordered pairs of these four

states.

The lag length of COPAR(k) models for daily electricity load demands is selected as k = 2

according to different information criteria as described in Section 3.2. The comparison of CO-

PAR(2) models with Gaussian copulas and with arbitrary copulas then shows that dependence

is mainly tail-symmetric but mostly non-Gaussian. In particular, tail-dependent Student-t cop-

ulas play a central role in describing the between-series dependence. Such tail dependence is

ignored by Gaussian copulas and therefore again stresses the need for non-Gaussian modeling.
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QLD|NSW QLD|VIC QLD|SA NSW|QLD NSW|VIC NSW|SA
uncond. COPAR(2) 0.653 0.648 0.645 0.692 0.674 0.679

joint COPAR(2) 0.663 0.670 0.657 0.706 0.674 0.689

VAR(2) 0.674 0.670 0.668 0.697 0.690 0.690

copula-AR(2) 0.673 0.674 0.673 0.697 0.697 0.697

copula-AR(2)-GARCH(1,1) 0.679 0.679 0.679 0.699 0.699 0.698

cond. COPAR(2) 0.606 0.624 0.627 0.654 0.603 0.639

VIC|QLD VIC|NSW VIC|SA SA|QLD SA|NSW SA|VIC
uncond. COPAR(2) 0.676 0.674 0.666 0.691 0.686 0.691

joint COPAR(2) 0.672 0.679 0.684 0.690 0.686 0.679

VAR(2) 0.693 0.692 0.685 0.687 0.684 0.688

copula-AR(2) 0.690 0.690 0.689 0.686 0.687 0.685

copula-AR(2)-GARCH(1,1) 0.692 0.692 0.692 0.687 0.687 0.687

cond. COPAR(2) 0.638 0.598 0.555 0.666 0.644 0.560

Table 4: Electricity load demands: Root mean squared errors of unconditional, joint and con-

ditional predictions from COPAR(2) models as well as of predictions from VAR(2) and copula-

AR(2)-(GARCH(1,1)-)models for all twelve variable pairs and 500 out-of-sample values. Best

performing methods (other than the conditional) are indicated in bold.

Selected copula types and estimated parameters are shown in Table 8 in Appendix B.

The out-of-sample predictive ability of the COPAR(2) model is evaluated on the testing set

of 500 observations. Evaluation criteria are computed based on 100’000 samples. Tables 4 and

5 show that the COPAR(2) model performs very strongly and clearly outperforms the VAR(2)

model and in most cases even the copula-AR(2)-GARCH(1,1) model.

Due to the clear geographical relationships between the states, conditional prediction clearly

improves the forecasting accuracy. In particular when the demand of the neighboring state is

known, there is a significant improvement. This result indicates that the COPAR model may

be useful for scenario analysis, e.g. to examine the effect of shocks like an extreme demand to

the electricity market.

4.3 Fama bond portfolio returns

After analyzing economic time series data in first two applications, we now investigate the inter-

dependencies among financial variables, namely monthly Fama bond portfolio1 returns obtained

from the CRSP Center for Research in Security Prices for maturities 12 and 24 months (variables

12M and 24M, respectively). The time series are observed from January 1952 to December 2003

with 684 monthly observations (training set of 584, testing set of 100 observations) and shown

in Figure 9.

1Artificial zero-coupon bonds constructed after first extracting the term structure from a subset of US bonds.
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QLD|NSW QLD|VIC QLD|SA NSW|QLD NSW|VIC NSW|SA
uncond. COPAR(2) 3.567 3.551 3.540 3.771 3.838 3.836

joint COPAR(2) 3.701 3.705 3.612 3.818 3.790 3.887

VAR(2) 3.901 3.855 3.839 3.788 3.987 3.968

copula-AR(2) 3.881 3.883 3.865 3.789 3.797 3.792

copula-AR(2)-GARCH(1,1) 3.697 3.706 3.705 3.843 3.849 3.845

cond. COPAR(2) 3.126 3.291 3.258 3.292 3.039 3.280

VIC|QLD VIC|NSW VIC|SA SA|QLD SA|NSW SA|VIC
uncond. COPAR(2) 3.766 3.781 3.834 3.262 3.237 3.288

joint COPAR(2) 3.770 3.809 3.881 3.299 3.287 3.235

VAR(2) 3.806 3.782 3.847 3.275 3.236 3.280

copula-AR(2) 3.817 3.798 3.813 3.248 3.239 3.244

copula-AR(2)-GARCH(1,1) 3.822 3.818 3.822 3.263 3.244 3.252

cond. COPAR(2) 3.300 3.175 3.074 3.010 2.946 2.658

Table 5: Electricity load demands: Mean interval scores of unconditional, joint and conditional

95% prediction intervals from COPAR(2) models as well as of 95% prediction intervals from

VAR(2) and copula-AR(2)-(GARCH(1,1)-)models for all tewlve variable pairs and 500 out-of-

sample values. Best performing methods (other than the conditional) are indicated in bold.

In contrast to the first two applications (low and medium between-series dependence, re-

spectively), unconditional empirical between-series rank correlation (not corrected for serial de-

pendence in the margins) between the Fama bond portfolio return series is quite strong (0.84).

Also in contrast to the first two applications we opt for a more sophisticated marginal

distribution to appropriately capture the behavior of the financial time series: We choose the

hyperbolic distribution which is widely used for financial return data and accounts for both fat

tails and skewness (see McNeil et al. (2005)). As for the skew-normal distribution, the hyperbolic

distribution is symmetric if the skewness parameter is 0. An additional shape parameter controls

how much weight is assigned to the tails and to the center of the distribution.

Serial dependence in the bond return data is more persistent than in the previous two

applications. Based on the discussion in Section 3.2 we select a lag length of k = 3 and there

even is some indication that maybe a higher order may be reasonable.

The in-sample fit and copula selection shows that there is clear non-Gaussian dependence in

the data (see Tables 9 and 10 in Appendix B). While Student-t and Frank copulas are central for

serial and between-series dependence modeling, also tail-asymmetric Joe, Gumbel and Clayton

copulas have been identified to determine the joint behavior of the time series.

Prediction evaluation criteria based on the out-of-sample testing set of 100 observations and

on 100’000 samples are shown in Table 6. The COPAR(3) model’s predictive ability is clearly

superior to that of the VAR(3) model as well as to a standard copula-AR(3) model with and

without GARCH(1,1) effects. Also conditional prediction improves the forecasting accuracy due
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Figure 9: Bond returns: Time series.

RMSE MIS

12M|24M 24M|12M 12M|24M 24M|12M
uncond. COPAR(3) 0.00140 0.00431 0.00796 0.02392

joint COPAR(3) 0.00144 0.00420 0.00803 0.02110

VAR(3) 0.00165 0.00457 0.01069 0.02595

copula-AR(3) 0.00171 0.00520 0.01087 0.02697

copula-AR(3)-GARCH(1,1) 0.00372 0.00472 0.04986 0.02344

cond. COPAR(3) 0.00081 0.00230 0.00411 0.01207

Table 6: Bond returns: Root mean squared errors and mean interval scores of unconditional,

joint and conditional predictions and 95% prediction intervals from COPAR(3) models as well

as of predictions and 95% prediction intervals from VAR(3) and copula-AR(3)-(GARCH(1,1)-

)models for both ordered variable pairs and 100 out-of-sample values. Best performing methods

(other than the conditional) are indicated in bold.

to the significant between-series dependence. As before this result may be used for scenario

analyses of the bond market: How do shocks to bonds with one maturity influence bonds with

the other maturity?

5 Conclusion

In this paper we described the novel copula autoregressive model which benefits from the flexi-

bility of R-vine copulas and allows to model non-linear dependence among multiple time series.

While three relevant applications to financial and economic time series demonstrate the useful-

ness of these models, their practical importance will be even more pronounced when stronger

non-linear and non-symmetric dependencies are present, in time as well as between series.

The applications however also showed that time-varying variance effects may be needed in

certain cases and improve over time-constant modeling. Approaches to this issue are subject of

future research.
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A Technical supplement

As noted in Section 3.2 sequential copula selection and likelihood computation is not straight-

forward in the COPAR model. Figure 4 illustrates the interdependencies among the copulas.

For likelihood computation, of course the R-vine matrix specification (3.8) could be used in-

stead. However, given that the number of time points T might be large, evaluation of this

2T -by-2T -matrix is computationally rather inefficient, since most matrix entries do not contain

any information due to the assumed autoregressive order (see Example 3.7).

In the following we therefore present how to sequentially select copulas in a COPAR(2) model

for data {xt}t=1,...,T and {yt}t=1,...,T . Rather than selecting copulas, preliminarily determined

copulas can be estimated or likelihoods can be evaluated by simply altering the respective lines.

(i) Serial dependence of {Xt}t=1,...,T : Xs, Xt|Xs+1, ..., Xt−1, 1 ≤ s < t ≤ T .

(a) Select copula CX1 = CXt−1Xt based on {FX(xt)}t=1,...,T−1 and {F (xt)}t=2,...,T .

(b) Compute F (xt|xt−1), t = 3, ..., T, and F (xt−1|xt), t = 2, ..., T, from CX1 using Ex-

pression (2.4).

(c) Select copula CX2 = CXt−2Xt|Xt−1
based on F (xt−1|xt), t = 2, ..., T−1, and F (xt|xt−1),

t = 3, ..., T .

(d) Compute F (xt−2|xt−1, xt), t = 3, ..., T, and F (xt|xt−2, xt−1), t = 3, ..., T, from CX2
using Expression (2.4).

(ii) Between-series dependence Xs, Yt|Xs+1, ..., Xt, 1 ≤ s ≤ t ≤ T .

(a) Select copula CXY0 = CXtYt based on {FX(xt)}t=1,...,T and {FY (yt)}t=1,...,T .

(b) Compute F (yt|xt), t = 2, ..., T, from CXY0 using Expression (2.4).

(c) Select copula CXY1 = CXt−1Yt|Xt
based on F (xt−1|xt), t = 2, ..., T, and F (yt|xt), t =

2, ..., T .

(d) Compute F (yt|xt−1, xt), t = 3, ..., T, from CXY1 using Expression (2.4).

(e) Select copula CXY2 = CXt−2Yt|X(t−1):t
based on F (xt−2|xt−1, xt), t = 3, ..., T, and

F (yt|xt−1, xt), t = 3, ..., T .

(f) Compute F (yt|xt−2, xt−1, xt), t = 3, ..., T − 1, from CXY2 using Expression (2.4).

(iii) Between-series dependence Ys, Xt|X1, ..., Xt−1, Ys+1, ..., Yt−1, 1 ≤ s < t ≤ T, and condi-

tional serial dependence of {Yt}t=1,...,T : Ys, Yt|X1, ..., Xt, Ys+1, ..., Yt−1, 1 ≤ s < t ≤ T .

(a) Select copula CY X1 = CYt−1Xt|X1:(t−1)
based on F (yt|x1, ..., xt), t = 1, ..., T − 1, and

F (xt|x1, ..., xt−1), t = 2, ..., T , where

F (yt|x1, ..., xt) =


F (y1|x1) t = 1

F (y2|x1, x2) t = 2

F (yt|xt−2, xt−1, xt) t ≥ 3

,
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and

F (xt|x1, ..., xt−1) =

{
F (x2|x1) t = 2

F (xt|xt−2, xt−1) t ≥ 3
.

(b) Compute F (xt|x1, ..., xt−1, yt−1), t = 3, ..., T, and F (yt−1|x1, ..., xt), t = 2, ..., T, from

CY X1 using Expression (2.4).

(c) Select copula CY1 = CYt−1Yt|X1:t
based on F (yt−1|x1, ..., xt), t = 2, ..., T, and F (yt|x1, ..., xt),

t = 2, ..., T , where

F (yt−1|x1, ..., xt) =


F (y1|x1, x2) t = 2

F (y2|x1, x2, x3) t = 3

F (yt−1|xt−3, ..., xt) t ≥ 4

.

(d) Compute F (yt−1|x1, ..., xt, yt), t = 2, ..., T − 1, and F (yt|x1, ..., xt, yt−1), t = 3, ..., T,

from CY1 using Expression (2.4).

(e) Select copula CY X2 = CYt−2Xt|X1:(t−1)Yt−1
based on F (yt−1|x1, ..., xt, yt), t = 2, ..., T −

1, and F (xt|x1, ..., xt−1, yt−1), t = 3, ..., T , where

F (yt−1|x1, ..., xt, yt) =


F (y1|x1, x2, y2) t = 2

F (y2|x1, x2, x3, y3) t = 3

F (yt−1|xt−3, xt−2, xt−1, xt, yt) t ≥ 4

,

and

F (xt|x1, ..., xt−1, yt−1) =


F (x3|x1, x2, y2) t = 3

F (x4|x1, x2, x3, y3) t = 4

F (xt|xt−4, xt−3, xt−2, xt−1, yt−1) t ≥ 5

.

(f) Compute F (yt−2|x1, ..., xt, yt−1), t = 3, ..., T, from CY X2 using Expression (2.4).

(g) Select copula CY2 = CYt−2Yt|X1:tYt−1
based on F (yt−2|x1, ..., xt, yt−1), t = 3, ..., T, and

F (yt|x1, ..., xt, yt−1), t = 3, ..., T , where

F (yt−2|x1, ..., xt, yt−1) =


F (y1|x1, x2, x3, y2) t = 3

F (y2|x1, x2, x3, x3, x4, y3) t = 4

F (yt−2|xt−4, ..., xt, yt−1) t ≥ 5

,

and

F (yt|x1, ..., xt, yt−1) =


F (y3|x1, x2, x3, y2) t = 3

F (y4|x1, x2, x3, x4, y3) t = 4

F (yt|xt−4, ..., xt, yt−1) t ≥ 5

.

For autoregressive orders higher than 2 the above procedure can be easily extended.
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B Additional figures and tables

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

X1, X2 X2, X3 X3, X4 X4, X5

X1, Y1 X2, Y2 X3, Y3 X4, Y4 X5, Y5

X1, X3|X2 X2, X4|X3 X3, X5|X4

Y1, X2|X1 X1, Y2|X2 X2, Y3|X3 X3, Y4|X4 X4, Y5|X5

X1, X4|X2:3 X2, X5|X3:4

Y1, Y2|X1:2 Y2, X3|X1:2 X1, Y3|X2:3 X2, Y4|X3:4 X3, Y5|X4:5

X1, X5|X2:4

Y1, X3|X1:2, Y2 Y2, Y3|X1:3 Y3, X4|X1:3 X1, Y4|X2:4 X2, Y5|X3:5

Y1, Y3|X1:3, Y2 Y2, X4|X1:3, Y3 Y3, Y4|X1:4 Y4, X5|X1:4 X1, Y5|X2:5

Y1, X4|X1:3,Y 2:3 Y2, Y4|X1:4, Y3 Y3, X5|X1:4, Y4 Y4, Y5|X1:5

Y1, Y4|X1:4,Y 2:3 Y2, X5|X1:4,Y 3:4 Y3, Y5|X1:5, Y4

Y1, X5|X1:4,Y 2:4 Y2, Y5|X1:5,Y 3:4

Figure 10: R-vine for X1, ..., X4, Y1, ..., Y4 extended to include X5 and Y5. Dashed lines indicate

additional edges to include X5, dotted those to include Y5.
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Margins Copulas
loc. scale skew CX

1 CX
2 CXY

0 CXY
1 CXY

2 CY X
1 CY X

2 CY
1 CY

2

MKT, 0.0352 0.0494 -1.8383 N F F SJ SJ C F F t
RRF 0.0027 0.0027 -1.3316 0.26 -0.49 -0.12 1.01 1.01 0.02 -0.71 15.6 0.24

7.17
0.17 -0.05 -0.01 0.01 0.01 0.01 -0.08 0.77 0.16

MKT, 0.0352 0.0494 -1.8383 N F F N N N SC G t
INF 5e-04 0.0049 2.679 0.25 -0.49 -1.02 -0.03 -0.06 -0.11 0.07 1.86 0.27

9.39
0.16 -0.05 -0.11 -0.02 -0.04 -0.07 0.03 0.46 0.18

MKT, 0.0352 0.0494 -1.8383 N F C SJ SG N N t F
IPG -0.0016 0.0104 0.7242 0.25 -0.52 0.02 1.01 1.02 -0.07 -0.09 0.40 1.00

9.95
0.16 -0.06 0.01 0.01 0.02 -0.04 -0.06 0.26 0.11

RRF, 0.0027 0.0027 -1.3316 F t F t F SJ C N F
MKT 0.0352 0.0494 -1.8383 15.52 0.23 0.21 0.04 -0.41 1.07 0.13 0.26 -0.41

6.71 13.95
0.77 0.15 0.02 0.02 -0.05 0.04 0.06 0.17 -0.05

RRF, 0.0029 0.0029 -1.3316 F t F t t F N G t
INF 5e-04 0.005 2.679 15.42 0.28 -0.58 0.05 0.07 -1.28 -0.04 1.92 0.28

7.25 30 24.91 14.96
0.77 0.18 -0.06 0.03 0.04 -0.14 -0.03 0.48 0.18

RRF, 0.0028 0.0027 -1.3316 F t C N t C C t F
IPG -0.0021 0.0104 0.7242 15.07 0.24 0.12 -0.05 -0.10 0.10 0.13 0.36 0.97

6.48 10.50 12.24
0.76 0.16 0.06 -0.03 -0.06 0.05 0.06 0.23 0.11

INF, 5e-04 0.0049 2.679 G t F F SC F N t F
MKT 0.0352 0.0494 -1.8383 1.91 0.27 -1.62 -0.56 0.09 0.31 -0.05 0.21 -0.53

11.64 20.08
0.48 0.17 -0.18 -0.06 0.04 0.03 -0.03 0.13 -0.06

INF, 5e-04 0.0049 2.679 G t F t N F t t t
RRF 0.0028 0.0027 -1.3316 1.95 0.26 -0.09 -0.06 -0.02 0.01 -0.09 0.93 0.16

12.18 30 17.43 4.61 4.62
0.49 0.17 -0.01 -0.04 -0.01 0.00 -0.06 0.77 0.10

INF, 6e-04 0.005 2.679 G t N N t F F t F
IPG -0.0016 0.0104 0.7242 1.92 0.26 -0.09 -0.10 -0.09 0.14 -0.06 0.39 0.93

12.48 30.00 9.88
0.48 0.17 -0.05 -0.06 -0.06 0.02 -0.01 0.25 0.10

IPG, -0.0016 0.0105 0.7242 t F C N N SG SG N F
MKT 0.0353 0.0488 -1.8383 0.39 1.03 0.04 -0.09 -0.10 1.03 1.09 0.25 -0.49

9.25
0.26 0.11 0.02 -0.06 -0.06 0.02 0.08 0.16 -0.05

IPG, -0.0021 0.0104 0.7242 t F C SJ SJ F t F SG
RRF 0.0027 0.0027 -1.3316 0.39 1.01 0.03 1.01 1.03 -0.07 -0.08 15.16 1.17

8.48 8.88
0.26 0.11 0.02 0.01 0.02 -0.01 -0.05 0.76 0.14

IPG, -0.0021 0.0104 0.7242 t F N N N t F G t
INF 5e-04 0.005 2.679 0.41 0.96 -0.09 -0.03 -0.03 -0.13 -0.71 1.91 0.26

10.31 30.00 12.17
0.27 0.11 -0.06 -0.02 -0.02 -0.08 -0.08 0.48 0.17

Table 7: Macro-economic indicators: Estimated parameters and chosen copulas of the CO-

PAR(2) models, where the first time series in each block corresponds to {Xt} and the second to

{Yt}. Italic numbers indicate corresponding Kendall’s τs.
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Margins Copulas
loc. scale skew CX

1 CX
2 CXY

0 CXY
1 CXY

2 CY X
1 CY X

2 CY
1 CY

2

QLD, 0.5347 1.1087 -0.6587 F F t F SC SC F F N
NSW -0.8134 1.2549 1.0882 7.05 -0.55 0.37 -0.20 0.05 0.18 -0.14 5.63 -0.07

8.63
0.56 -0.06 0.24 -0.02 0.02 0.08 -0.02 0.49 -0.04

QLD, 0.5627 1.1083 -0.6831 F F SJ F F F N F N
NSW -0.5783 1.0801 0.8359 7.03 -0.53 1.14 0.19 0.06 0.01 0.10 5.78 -0.12

0.56 -0.06 0.07 0.02 0.01 0.00 0.06 0.50 -0.08
QLD, 0.647 1.1597 -0.8191 F F SJ N F F F G F
SA -0.9021 1.4215 1.9323 7.05 -0.54 1.06 -0.02 -0.03 0.01 0.62 1.85 -0.53

0.56 -0.06 0.04 -0.01 0.00 0.00 0.07 0.46 -0.06
NSW, -0.8824 1.315 1.1642 F F t t G F G t F
QLD 0.7313 1.2351 -1.1263 6.46 -0.43 0.39 0.14 1.05 0.06 1.04 0.72 -0.52

9.47 18.29 13.81
0.54 -0.05 0.26 0.09 0.05 0.01 0.04 0.51 -0.06

NSW, -0.6892 1.2084 0.8284 F F t N F F t F F
VIC -0.6653 1.113 1.0071 6.36 -0.64 0.44 -0.16 -0.03 2.29 -0.10 4.70 -0.58

6.99 13.73
0.53 -0.07 0.29 -0.1 0.00 0.24 -0.07 0.44 -0.06

NSW, -0.913 1.3292 1.2318 F F t F N N N t F
SA -0.6843 1.1507 1.0412 6.43 -0.50 0.43 -0.51 0.01 0.35 -0.07 0.56 -0.55

5.57 8.65
0.54 -0.05 0.28 -0.06 0.01 0.22 -0.04 0.38 -0.06

VIC, -0.6205 1.0997 0.9191 F N SJ F N F C t F
QLD 0.7381 1.2083 -1.0317 5.88 -0.11 1.17 -0.06 0.04 0.33 0.03 0.76 -0.64

9.18
0.51 -0.07 0.09 -0.01 0.03 0.04 0.02 0.55 -0.07

VIC, -0.5819 1.0952 0.8255 F N t t F N F F F
NSW -0.7386 1.2001 1.0095 6.11 -0.12 0.43 0.31 0.47 -0.07 0.83 5.17 0.01

8.66 8.33
0.52 -0.07 0.28 0.20 0.05 -0.05 0.09 0.47 0.00

VIC, -0.6299 1.1162 0.9363 F N t N F t N G t
SA -0.7868 1.2349 1.4554 5.87 -0.11 0.67 -0.09 0.26 0.23 -0.12 1.48 -0.03

24.46 14.38 14.37
0.51 -0.07 0.47 -0.06 0.03 0.15 -0.08 0.32 -0.02

SA, -0.526 1.0738 0.8463 t N SJ F F F SC t F
QLD 0.7778 1.2763 -1.1955 0.63 -0.07 1.07 0.01 0.37 0.00 0.09 0.76 -0.56

10.76 10.11
0.43 -0.05 0.04 0.00 0.04 0.00 0.04 0.55 -0.06

SA, -0.6242 1.1364 1.0308 t N t N F N N F C
NSW -0.758 1.2212 1.079 0.63 -0.07 0.30 0.31 0.72 -0.04 0.08 5.28 0.01

10.76 5.30
0.44 -0.05 0.19 0.20 0.08 -0.03 0.05 0.47 0.01

SA, -0.5563 1.0947 0.8318 t N t t F N SC F N
VIC -0.6184 1.0878 0.9467 0.64 -0.07 0.65 0.26 0.21 -0.04 0.05 4.47 -0.04

10.53 24.75 8.63
0.44 -0.05 0.45 0.17 0.02 -0.02 0.02 0.42 -0.02

Table 8: Electricity load demands: Estimated parameters and chosen copulas of the COPAR(2)

models, where the first time series in each block corresponds to {Xt} and the second to {Yt}.
Italic numbers indicate corresponding Kendall’s τs.
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shape loc. scale skew

M12, 0.6872 0.0029 0.0032 0.0021

M24 0.0368 0.0027 0.0063 0.0029

M24, 0.0332 0.0024 0.0060 0.0027

M12 0.6864 0.0025 0.0027 0.0023

Table 9: Bond returns: Estimated marginal parameters of the COPAR(3) models.

CX
1 CX

2 CX
3 CXY

0 CXY
1 CXY

2 CXY
3 CY X

1 CY X
2 CY X

3 CY
1 CY

2 CY
3

M12, F t F G t F t t t F t F SG
M24 5.32 0.32 2.07 2.90 -0.27 -1.24 -0.08 -0.36 -0.27 -0.93 0.51 1.76 1.22

5.55 13.96 22.13 10.51 18.47 12.96
0.48 0.21 0.22 0.66 -0.17 -0.14 -0.05 -0.24 -0.18 -0.10 0.34 0.19 0.18

M24, J t F G SC t t SC SC SC t t t
M12 1.34 0.09 1.32 2.59 0.15 0.09 0.07 0.35 0.12 0.07 0.76 0.43 0.34

8.09 18.07 17.87 2.99 16.98 3.37
0.16 0.06 0.14 0.61 0.07 0.06 0.04 0.15 0.05 0.03 0.55 0.28 0.22

Table 10: Bond returns: Estimated parameters and chosen copulas of the COPAR(3) models,

where the first time series in each block corresponds to {Xt} and the second to {Yt}. Italic

numbers indicate corresponding Kendall’s τs.

32


	1 Introduction
	2 Pair-copula decompositions for univariate time series
	3 The copula autoregressive model
	3.1 Extension to higher dimensions
	3.2 Model estimation and selection
	3.3 Forecasting
	3.4 Granger causality

	4 Applications
	4.1 Macro-economic indicators
	4.2 Australian electricity load demands
	4.3 Fama bond portfolio returns

	5 Conclusion
	A Technical supplement
	B Additional figures and tables

