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A B S T R A C T   

Pair trading is a widely used market neutral strategy and also a statistical arbitrage method that 
allows investors to take a position in two assets with similar trends in their historical data in order 
to gain low-risk profits. Combining both “diversification” and “pair trading”, this study proposes a 
statistical learning method to explore the most promising pair among multiple pair assets for each 
trading time. We incorporate estimated volatility into tolerance limits as a predictive function for 
finding buying and selling signals in order to capitalize on market inefficiencies. One-step-ahead 
volatility prediction follows either the exponentially weighted moving average (EWMA) method 
or the GARCH model. The study selects five artificial intelligence (AI) stocks in the U.S. equities 
market to target profitability through the proposed strategy with a rolling window training 
approach over two annual testing periods from April 2017 to March 2019. We recommend that 
conservative investors use p-content at 95%, which is less adventurous and can generate positive 
excess profits. The idea behind this strategy is to help investments be more diversified and also 
more profitable.   

1. Introduction 

Diversification across asset classes is essential for the long-term success of a stock portfolio, but it is not a new concept in in-
vestment. The idea behind diversification is that a wider variety of investments will help yield a higher overall return; see Gallmeyer, 
Kaniel, and Tompaidis (2006); Gibson (2004). No matter how many assets are targeted, the main goal is to reduce risk and increase the 
diversification of an investment portfolio. The well-known strategy called pair trading is a common market-neutral trading tactic, as it 
allows investors the ability to gain low-risk profits by selecting two assets with similar trends in their historical data. This method is an 
important statistical arbitrage technique used by hedge funds after it was developed by the quantitative group under Nunzio Tartaglia 
at Morgan Stanley in the 1980 s. In fact, Do and Faff (2010) confirm that the pair trading strategy performs powerfully in profitability 
during periods of prolonged turbulence, including the 2008 global financial crisis. Krauss (2017) classifies pair-trading methods into 
five categories: distance methods, cointegration methods, time series methods, stochastic control methods, and other methods. Gatev, 
Goetzmann, and Rouwenhorst (2006) first promote using standardized historical prices to find potential pairs based on the distance 
method, followed by Bowen, Hutchinson, and O’Sullivan (2010); Do and Faff (2010); Engelberg, Gao, and Jagannathan (2009), and 
many others. 

There are several ways to find matched pairs and pair-trading thresholds. Most choices of pairs adhere to the minimum distance 
method, the cointegration method (e.g. Law, Li, & Yu, 2018), or expert opinions. Chen and Lin (2017); Chen, Wang, Sriboonchitta, and 
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Lee (2017) employ both the minimum distance method and expert opinions, in which the latter consider some common pair trades of 
similar companies in the same industry. Applying the cointegration test for identifying potential pairs may not always make it possible 
to find enough cointegration pairs in the sample (Chen, Lin, & Huang, 2019). Therefore, our study focuses on pairs in the same sector. 

In order to find a transaction entry and exit signal, Chen, Chen, and Chen (2014) propose to use the upper and lower bounds from a 
three-regime threshold autoregressive model with GARCH specifications. Alternatively, Chen et al. (2017) use a smooth transition 
GARCH model with a second-order logistic function to generate the lower and upper bounds and further utilize one-step-ahead 
quantile forecasts to find a possible transaction opportunity. Chen and Lin (2017); Chen et al. (2019) suggest applying 
nonparametric/semi-parametric one-sided tolerance limits for return spreads in order to find trading entry and exit signals. Most of 
these studies suggest two pairs of trading strategies. 

As a pair trade is a market-neutral strategy, the direction of the overall market does not theoretically affect its gain or loss, yet 
a diversified investment based on a pair-trading strategy to more practicable contents is still challenging. Combining both “diversi-
fication” and “pair trading”, this study proposes a statistical learning method to explore the most promising pair among multiple pair 
assets for each trading time. The idea of statistical learning is to handle the problem of finding a predictive function from data - that is, 
this study introduces a simultaneous multiple pair-trading strategy through supervised learning, with a focus on semi-parametric 
tolerance limits that incorporate volatility forecasting. One-step-ahead volatility prediction is either via the exponentially weighted 
moving average (EWMA) method or the GARCH model of Bollerslev (1986). We then choose the lower and upper tolerance limits from 
the largest discrepancy return spread as a predictive function. 

The advantages of our proposal include the following factors: 1) diversification, as we consider multiple pairs simultaneously; 2) 
easy to use for practical implications; and 3) we do not need to consider a long time-series period, but rather only a few months of 
historical datapoints are needed. More precisely, this strategy only needs a short training period for estimation, look-back sample sizes 
of 60, 80, or 100, based on EWMA volatility, or a 2-year training period for GARCH volatility suggested by Hwang and Pereira (2006). 
Chen et al. (2014); Chen et al. (2017) require a much longer time period as the training period since they employ nonlinear time series 
models, but this makes it impossible to execute pair trading from recently listed S&P500 companies. The novelty of this study’s 
contribution with respect to that of Chen, Lin and Huang’s proposal (2019) is that it helps investments be more diversified with a multi- 
asset pair-trading basket and GARCH volatility. We utilize a Gaussian pseudo-likelihood approach for estimating GARCH parameters 
for which the time series is not actually from a normal distribution. 

To demonstrate the proposed strategy, this study selects five companies to represent artificial intelligence (AI) stocks - Alphabet, 
Amazon.com, Apple, Facebook, and Microsoft - covering April 1, 2017 to March 31, 2019, and extends the pair trading of Chen et al. 
(2019) from two assets to multiple pair assets. We consider two annual testing periods based on a rolling window training approach for 
evaluation: April 1, 2017 to March 31, 2018 and April 1, 2018 to March 31, 2019. We call this the “testing period” instead of the 
common term “testing set” since we deal with time series data and calculate profit from an investment at the end of the testing period, 
which includes transection cost. The results show that the proposed method generates extremely large returns of 44.96%. 

The rest of this paper runs as follows. Section 2 introduces the nonparametric tolerance interval and one-step-ahead volatility 
prediction. Section 3 illustrates the algorithm for pair trading of multiple assets. Section 4 describes our data for ten baskets of AI stocks 
in the U.S. equity markets. We perform the pair trading strategy on each basket. Section 5 explains the proposed semi-parametric 
version of the tolerance interval approach to generate trading entry and exit signals and shows our multi-asset pair-trading profit-
ability. Section 6 provides our concluding remarks. 

2. Semi-parametric version of the tolerance interval 

A population probability distribution function in practice is usually unknown. Tolerance limits in reality indicate the endpoints of 
the tolerance interval and are often used as important statistical tools for reference thresholds. Krishnamoorthy and Mathew (2009) 
note that the tolerance interval widely appears in various practical applications, such as quality control, environmental monitoring, 
industrial hygiene, and so on. Chen and Lin (2017) are pioneers in applying nonparametric one-sided tolerance limits to find trading 
entry and exit signals, whereas Chen et al. (2019) combine the nonparametric tolerance interval and volatility forecasting with the 
EWMA model into semi-parametric version of the tolerance interval. We apply pair trading to multiple assets by using this method and 
discuss the process in detail below. 

If a sample is from a continuous population and does not fit a parametric model or fits a parametric model for which tolerance 
intervals are difficult to obtain, then one may seek nonparametric tolerance intervals for an intended application. Wilks (1941) is the 
first to treat the problem of determining tolerance limits and proposes that if a sample is from a continuous distribution, then the 
distribution of the p-content of the population between two order statistics is independent of the population sampled. Moreover, it is a 
function of only the particular order statistics chosen. 

We assume the random sample X1, ...,Xn is from a continuous, nondecreasing probability distribution. Let X(i) denote the ith smallest 
observation of {X1, ...,Xn} and be the order statistics for the sample. In order to construct a (p,1 − α) two-sided nonparametric tolerance 
interval, Wilk’s result allows us to choose X(m) and X(k), m < k, and requires positive integers m and k so that: 

PX(m) ,X(k)

{
PX

(
X(m) ≤ X ≤ X(k)|X(m),X(k)

)
≥ p

}
= 1 − α. (1)  

Similarly, a (p,1 − α) one-sided lower nonparametric tolerance interval requires finding a positive integer l such that: 

PX(l)

{
PX

(
X ≥ X(l)

⃒
⃒X(l)

)
≥ p

}
= 1 − α. (2) 
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On the other hand, a (p,1 − α) one-sided upper nonparametric tolerance interval requires finding a positive integer u such that: 

PX(u)

{
PX

(
X ≤ X(u)

⃒
⃒X(u)

)
≥ p

}
= 1 − α. (3)  

According to the above, we find 
(
X(l),X(u)

)
as the lower and upper trading signals. 

We utilize an R package provided by Young (2010) to obtain the tolerance intervals with content, including discrete and continuous 
conditions and regression tolerance limits. We further estimate the reference threshold as a predictive function by using the R-package 
“tolerance” to obtain the nonparametric one-sided tolerance of the spread value. 

Forecasting volatility is an important task when dealing with financial trades. We consider two widely used methods to predict 
volatility and to supervise risks in the stock market. One is RiskMetricsTM developed by J.P. Morgan (1996), and the other is the 
GARCH model of Bollerslev (1986). The EWMA and GARCH models are as follows: 

Rt = μ+ at  

at = σtεt, εt ∼ NID(0, 1),

EWMA : σ2
t = (1 − δ)a2

t− 1 + δσ2
t− 1, (4A)  

GARCH(1, 1) : σ2
t = ω + αa2

t− 1 + βσ2
t− 1, (4B)  

where NID(0,1) stands for normally and independently distributed a standardized normal distribution. Note that we utilize a Gaussian 
pseudo-likelihood approach for estimating GARCH parameters for which the time series is not actually from a normal distribution. The 
EWMA model is a special case of the integrated GARCH model, which usually assumes that the decay factor δ for daily data and 
monthly data is 0.94 and 0.97, respectively. It is thus necessary to impose restricted conditions on the GARCH parameters to ensure 
positive variance and covariance stationary: 

ω > 0, 0 ≤ α, β < 1, α + β < 1.

Implementation of the EWMA (or the volatility of RiskMetrics) forecast requires an initial value for σ2
0, which we set to be the mean of 

the squared of initial observations. 

3. A procedure for pair trading of multiple assets 

The proposed model in this study only needs the recent n observations in the learning period (named the “look-back” sample size) in 
order to capture the recent variation. The continuously compounded return is the difference between the current period price and the 
preceding period price under a natural logarithm. In this study we shall conveniently denote it as the return: 

rk
t =

[
ln
(
Pk

t

)
− ln

(
Pk

t− 1

) ]
× 100, t = 1, ..., n , (5)  

where Pk
t is the price of stock k on day t, and n is the “look-back” sample size. The return spread based on the selected pair is: 

Rt = rAi
t − rAj

t , t = 1, ..., n. (6)  

The return spread is composed of the return of two assets. To incorporate estimated volatility information into the tolerance limits, we 
modify the return spread based on Xt, named as the adjusted return spread: 

Xt = Rt
/

σ̂ t, t = 1, ..., n, (7)  

where σ̂2
t is the estimated volatility of Rt obtained from either (4A) or (4B). 

We assume h assets A1, ...,Ah and consider all possible h(h − 1)/2 pairs. We now illustrate the proposed trading procedure as follows. 

Step 1: Calculate all pairwise return spreads, 
{

RAi − Aj
t

}
, where t = 1, ..., n, i ∕= j as in Eq. (6) for the “look-back” sample sizes n that 

are specified as 60, 80, and 100 days. 

Step 2: Estimate all pairwise volatilities of 
{

RAi − Aj
t

}
based on either the EWMA or GARCH model,

{
σ̂Ai − Aj

t

}
, where 

t = 1, ..., n, i ∕= j . 

Step 3: Calculate all possible pairs’ adjusted return spreads, 
{

XAi − Aj
t

}
, where t = 1, ..., n, i ∕= j , which is given in Eq. (7). Next, 

choose the maximum value of them at each time t, 
{
Xmax

t
}
, which we call the maximum adjusted return spreads. 

Step 4: Use {Xmax
t } to calculate both lower and upper one-sided tolerance limits with (p,1 − α) = (90%, 0.95) and (95%, 0.95) in 

Eqs. (2) and (3), which we take as trading entry and exit signals. 
Step 5: Calculate the one-step-ahead forecast σ̂Ai − Aj

n+1 , where i ∕= j from either the EWMA or GARCH model. Combine the semi- 
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parametric tolerance limits and volatility forecasts as a predictive function. Let XAi − Aj
n+1 = RAi − Aj

n+1 /σ̂Ai − Aj
n+1 , where i ∕= j, and then choose the 

maximum XAi − Aj
n+1 , where i ∕= j at time t, in which we call it Xmax

n+1. When Xmax
n+1 is above the upper tolerance limit at time n + 1, we sell one 

unit (share) of stock Ai and buy one unit (share) of stock Aj. If Xmax
n+1 is below the lower tolerance limit at time n + 1, then we sell one unit 

(share) of stock Aj and buy one unit (share) of stock Ai at time n + 1. 
Step 6: The two annual testing periods run Step 1 to Step 5 by a rolling window training approach when a new datapoint is 

observed, and then the window shifts one-step ahead. 
Step 7: Close the trading position and calculate the trading return when the given testing period ends. Suppose there is a total of T 

days during the period. The formula for realized and unrealized gains goes as follows. 

Rev =
∑

d

∑h

m=1

PAm
LB

∑h
k=1

(
PAk

LB
) ln

(
PAm

d

PAm
d− 1

)

, (8)  

where d = 1,⋯T, PAm
d stands for the stock price of stock Am on day d, and PAm

LB represents the total purchase price of all remaining Am 

shares as of day (d − 1). 
It is important to note several points.  

1) The profit formula in (8) changes based on how many stocks the portfolio currently holds during each trade.  
2) This study reflects the cost spent in the entire testing period, for which the multi-asset profit formula in (8) is different from that of 

Chen and Lin (2017); Chen et al. (2017), and Chen, Lin, Huang (2019).  
3) For volatility strategy, we advise to use at least 500 historical datapoints for GARCH(1,1) models in order to obtain σ̂2

t ; otherwise, 
practitioners use the EWMA volatility based on the look-back sample period. 

4. Data analytics from taking three stocks as a sample 

AI now impacts most people’s daily life, changing the way one lives, works, and plays. Its influence is likely to grow even more in 
the future. Moreover, the large fluctuations in AI stock prices, coupled with their frequent trading, have become a popular subject for 
both investors and news media. We select five AI stocks in the U.S. equities market - Alphabet, Amazon, Apple, Facebook, and 
Microsoft, whose daily opening prices are available from Yahoo Finance. We design three stocks among the five as one basket and 
obtain a total of ten baskets. Next, we establish the learning period from April 1, 2016, to March 31, 2017 and consider two annual 
testing periods for evaluation: April 1, 2017 to March 31, 2018 (named H1) and April 1, 2018 to March 31, 2019 (named H2). Table 1 
lists the baskets of the three stocks as A1, A2, and A3 and displays ten baskets of their stock codes and corresponding companies. These 
stock code symbols help with descriptive analysis. 

Figs. 1 and 2 depict the time series plots of standardized prices for the ten baskets with the learning period and testing period from 
April 1, 2016 to March 31, 2019. It is very interesting to test the performance of the proposed method, because from the second half of 
2018 all stocks fell significantly due to the sharp drop in the U.S. equities market, especially for Facebook. 

Investors primarily utilize pair trading on highly correlated assets. Such standardized price changes are more meaningful than just 
standardized prices alone. Table 2 shows the set of Pearson correlation coefficients for the standardized price changes of two stocks 
from April 1, 2016 to March 31, 2017. Here, the pair correlation (GOOGL, MSFT) is as high as 0.6635, while the pair correlation 
(MSFT, AAPL) is as low as 0.2961. 

5. Results 

We now use the concept of a semi-parametric tolerance interval for the trading entry and exit signals. When Xmax
n+1 exceeds the upper 

limit, we sell the former and buy the latter; on the contrary, when Xmax
n+1 is below the lower limit, we sell the latter and buy the former. 

Fig. 3 shows the trading points for EWMA volatility. Because we employ three stocks, there are three pairs for each transaction. The red 
square represents the trading point of A1A2, the green circle is the trading point of A2A3, and the blue triangle is the trading point of 

Table 1 
Description of the ten baskets.  

Basket CompanyA1  Code CompanyA2  Code CompanyA3  Code 

1 Apple AAPL Amazon AMZN Facebook FB 
2 Apple AAPL Amazon AMZN Alphabet GOOGL 
3 Apple AAPL Amazon AMZN Microsoft MSFT 
4 Apple AAPL Facebook FB Alphabet GOOGL 
5 Apple AAPL Facebook FB Microsoft MSFT 
6 Apple AAPL Alphabet GOOGL Microsoft MSFT 
7 Amazon AMZN Facebook FB Alphabet GOOGL 
8 Amazon AMZN Facebook FB Microsoft MSFT 
9 Amazon AMZN Alphabet GOOGL Microsoft MSFT 
10 Facebook FB Alphabet GOOGL Microsoft MSFT  
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Fig. 1. Time series of standardized prices for baskets (1–6) from April 1, 2016 to March 31, 2019.  

Fig. 2. Time series of standardized prices for baskets (7–10) from April 1, 2016 to March 31, 2019.  
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A1A3. 
We compare the efficiency in the number of different investments based on return of investment (ROI). The ROI formula is: 
ROI = (current value of investment - cost of investment) / cost of investment. Since ROI is in percentage terms, we can clearly 

compare it with the returns from various set-ups (p-content and sample sizes), allowing one to measure a variety of time periods and 
baskets of investments against one another. 

To help distinguish between the better strategy at each scenario, Tables 3 and 4 outline the averages of ROIs according to the groups 
of “p-content” and “sample size” at the end of the testing periods built on EWMA volatility and GARCH volatility, respectively. At the 
end of H1, the best average of ROIs occurs at the 95%-content and hits 18.71% (24.79%) according to EWMA volatility (GARCH 
volatility). In terms of H2, the best average of ROIs also appears at the 95%-content with 15.58% (14.15%) profits via EWMA volatility 
(GARCH volatility). The distribution of H1 is consistently skewed to the right since the corresponding mean is larger than the median. 
Three out of four have extremely high CV (coefficient of variation) when (p, n) = (90%,100). Overall, the CV of 90%-content in fixed 
sample sizes is larger than that of 95%-content, while the opposite result occurs on the mean. In other words, the ROI of 95%-content is 
better and more stable than 90%-content. 

Fig. 4 sums up the averages of ROIs in the two testing periods for 10 baskets. Generally, the 3rd basket (AAPL, AMZN, MSFT) has the 
highest profitability, while the 5th basket (AAPL, FB, MSFT) has the lowest one. The proposed strategy incorporating GARCH (1,1) 
volatility outperforms that of EWMA volatility in H1 period, but the opposite result occurs in H2 period. Overall, the ROI over the H1 

Table 2 
Pearson correlation coefficient of the standardized price changes of five AI stocks during the training period (April 1, 2016 to March 31, 2017).  

Stock AAPL AMZN FB GOOGL MSFT 

AAPL  1.0000  0.3189  0.3269  0.4022  0.2961 
AMZN  0.3189  1.0000  0.4710  0.5708  0.4765 
FB  0.3269  0.4710  1.0000  0.5187  0.4121 
GOOGL  0.4022  0.5708  0.5187  1.0000  0.6635 
MSFT  0.2961  0.4765  0.4121  0.6635  1.0000  

Fig. 3. The trading plots of p-content 90% and a sample size of 100 for the 8th basket (AMZN, FB, MSFT) using the EWMA volatility from April 1, 
2018 to March 31, 2019. 

Table 3 
Summary statistics of ROIs with transaction cost of 0.2% and incorporating EWMA volatility during the two testing periods.  

Period p-content Sample size Mean SD Min. Median Max. CV (%) 

H1  90% 60  17.93  13.73  1.13  14.28  43.12  76.58 
80  15.96  11.89  1.62  15.28  40.96  74.51 
100  14.36  13.54  1.62  11.51  42.52  94.28 

95% 60  16.29  6.86  7.97  15.21  29.65  42.13 
80  18.71  12.45  1.66  14.43  44.96  66.55 
100  17.79  12.59  1.53  15.17  41.05  70.74 

H2  90% 60  13.56  10.22  − 3.08  14.91  29.60  75.35 
80  10.64  11.07  − 12.67  12.56  22.49  104.04 
100  7.60  10.94  − 10.29  9.70  22.77  144.00 

95% 60  15.56  6.68  1.65  15.07  26.66  42.93 
80  14.24  6.61  − 0.76  15.27  23.27  46.40 
100  15.58  4.26  10.32  14.96  23.27  27.35 

Note: CV: coefficient of variation. 
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time period is higher than that over H2. However, there is less evidence that it can enhance trading profits considerably just due to the 
prediction from the complicated GARCH model. 

Fig. 5 displays the ROIs of each basket under two p-content conditions (90%, 95%) for EWMA volatility during the two testing 
periods, representing the average ROI on the look-back sample size (60, 80, 100). Except for the 5th and 8th baskets of 90%-content at 
H2, all other trading scenarios have positive average returns. All trading scenarios exhibit a positive average ROI over the H1 time 
period, with the highest ROI in the 3rd basket and the lowest in the 4th basket. In most cases, the ROI of 95%-content is better than 
90%-content. Overall, the variation of ROI for the H1 period is greater than that of H2. 

Tables 5 and 6 list all baskets of ROIs with a transaction cost of 0.2% for EWMA volatility and the number of trades. We state our 
findings as follows.  

1. The ranges of ROIs are (1.13%, 44.96%) and (-12.67%, 29.60%) for H1 and H2, respectively. There are three outliers with negative 
ROIs that happen in H2. We can avoid those negative profits if we employ p-content at 95%. The testing time horizon is a critical 
factor when we want to take profit from the trade.  

2. The overall average ROIs are 16.84% and 12.86% for the H1 and H2 time periods, respectively.  
3. The mean number of trades for H1 and H2 is about 4 times and 3.5 times, respectively.  
4. In period H1, the highest ROI occurs at the 8th basket (AMZN, FB, MSFT), (p, n) = (95%,80), as long as the number of trades is 2 

times, and the lowest ROI happens at the 4th basket (AAPL, FB, GOOGL), (p, n) = (90%,60), where the number of trades is 5 times. 
Nevertheless, the ROI is still 1.13% for the 4th basket.  

5. In period H2, the highest ROI occurs at the 1st basket (AAPL, AMZN, FB), (p, n) = (90%,60), as long as the number of trades is 4.5 
times, and the lowest ROI occurs at the 8th basket (AMZN, FB, MSFT), (p, n) = (90%, 80), where the number of trades is 4.5 times. 

Table 4 
Summary statistics of ROIs with transaction cost of 0.2% and incorporating GARCH (1,1) volatility during two testing periods.  

Period p-content Sample size Mean SD Min. Median Max. CV (%) 

H1  90% 60  22.79  11.36  7.57  22.63  39.31  49.85 
80  18.18  10.25  5.72  13.90  40.72  56.39 
100  21.87  10.86  9.56  20.12  39.28  49.66 

95% 60  20.38  11.72  0.75  17.21  44.08  57.51 
80  22.33  13.79  0.75  17.21  44.08  61.78 
100  24.79  9.82  14.23  22.03  39.87  39.61 

H2  90% 60  7.42  8.54  − 7.15  6.95  20.43  115.24 
80  6.54  6.96  − 3.71  5.29  17.33  106.37 
100  4.32  9.89  − 10.52  4.72  19.86  228.99 

95% 60  12.60  6.32  − 0.27  15.33  18.63  50.19 
80  14.15  9.13  − 0.86  14.87  33.69  64.48 
100  7.62  11.07  − 16.73  10.36  24.06  145.25 

Note: CV: coefficient of variation. 

Fig. 4. Sum of averages of ROIs in the two testing periods for 10 baskets.  
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6. Conclusion 

This study contributes towards utilizing the proposed statistical learning method that monitors deviations in multiple pair assets 
and triggers buying and selling signals in order to capitalize on market inefficiencies. Different from previous studies in the literature, 
the statistical learning method herein selects a pair of stocks among multiple pair assets for each trading time. Combining semi- 
parametric tolerance limits and volatility forecasts as a predictive function, we find trading entry and exit signals. The selection re-
flects the lower and upper tolerance limits from the largest discrepancy return spread. 

We use five AI stocks and take the baskets of look-back sample sizes (60, 80, 100) and p-content (90%, 95%) during two annual 
testing periods. According to the empirical results, this method generates most of the positive excess returns. Even though all selected 
AI stocks took a bit of a beating at the end of 2018 during the testing period, the ROIs of H2 are still profitable. We recommend that 
conservative investors use p-content at 95%, which is less adventurous and can generate positive excess profits based on the two annual 
testing periods. As for the sample size setting, it is not a key factor for profit analysis. 

Fig. 5. The averages of ROIs for 10 baskets based on p-content (90%, 95%) for EWMA volatility during the two testing periods.  

Table 5 
Baskets’ 1–4: ROI with transaction cost of 0.2% and the number of trades during the two testing periods for the basket of look-back sample sizes (60, 
80, 100) and p-content (90%, 95%).  

No. Basket p-content Sample size H1  H2  

No. of round-trip trades 0.2% cost ROI No. of round-trip trades 0.2% cost ROI 

1 AAPL 90% 60 5.5  3.61 4.5  29.60 
AMZN 80 6.5  3.62 4.5  22.49 
FB 100 7.5  3.36 5.5  22.77  

95% 60 3  7.97 3.5  26.66  
80 3  7.97 1  10.49  
100 3  4.50 2  11.53 

2 AAPL 90% 60 5  30.40 4  10.90 
AMZN 80 5.5  28.07 5  8.36 
GOOGL 100 5  30.52 4  10.44  

95% 60 3.5  21.83 2  15.04  
80 1.5  15.91 1.5  15.43  
100 4  19.24 2  15.04 

3 AAPL 90% 60 4.5  43.12 3  22.00 
AMZN 80 6.5  40.96 3  22.00 
MSFT 100 7.5  42.52 5  21.51  

95% 60 2.5  19.43 2.5  23.27  
80 1.5  24.56 2.5  23.27  
100 3  15.81 2.5  23.27 

4 AAPL 90% 60 5  1.13 3  − 1.90 
FB 80 5  1.62 4  10.47 
GOOGL 100 5  1.62 4  10.47  

95% 60 2.5  8.03 2.5  11.85  
80 2.5  1.66 2  − 0.76  
100 3  1.53 2.5  11.88 

Note: The result is based on EWMA volatility. 
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The advantage of our method is to provide investors with simple trading signal settings and to make investments more efficient. We 
utilize “tolerance” (Young, 2010) and “rugarch” (Ghalanos, 2020) packages in R for tolerance limits and GARCH volatility to 
implement this statistical learning base for the pair-trading strategy, and it takes only up to one minute CPU time for one basket in one 
testing period. Finally, this statistical learning base for multiple asset pair trading is not just for stocks, but can also be applied to bonds, 
commodities, currencies, and cash equivalents. 
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