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Option Profit and Loss Attribution and Pricing:
A New Framework

A foolish consistency is the hobgoblin of little minds. — Ralph Waldo Emerson

Different modeling frameworks serve different purposes. A major focus of the present option

pricing literature is to derive option values that are internally consistent across all strikes and ma-

turities. The literature specifies the full dynamics of the underlying security price, including the

full dynamics of its instantaneous variance rate, and performs valuation of all options by taking

risk-neutral expectations of their terminal payoffs. The full dynamics specification creates the sin-

gle reference distribution of the relevant terminal random variable, which is then used for taking

the expectation. Under this approach, even if the assumed dynamics are wrong, the valuations on

the option contracts remain consistent with one another relative to this erroneous reference.

It is good to have consistency, but it is not good to be wrong. Unfortunately, the assumed

dynamics of the underlying security price and its instantaneous volatility often deviate strongly

from reality. For example, to price long-dated options, this approach needs to make projections

on the underlying security price and its instantaneous volatility far into the future. The accuracies

of long-dated projections are understandably low, and seemingly innocuous stationarity assump-

tions on the instantaneous volatility dynamics often generate much lower price variations (Giglio

and Kelly (2018)) and much flatter implied volatility smiles (Carr and Wu (2003)) in long-term

contracts than actually observed in the data.

In practice, as long as one does not hold the contracts to maturity, one does not necessarily need

to make long-run predictions to trade long-dated contracts. An investor can hold a very long-dated

contract for a very short period of time. In this case, the investor concern is less about the terminal

payoff, than about the factors that drive the profit and loss over the short holding period. In fact,

the standard recommended practice of marking to market for financial securities makes it vitally

important for investors to understand the magnitude and sources of the daily value fluctuation,

regardless of their intended holding period. The process of attributing the profit and loss (P&L)

of an investment on a given date to different risk exposures is commonly referred to as the P&L

attribution process.
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This paper develops a new valuation framework that links the pricing of a security at a given

time to its P&L attribution, without directly referring to the terminal payoffs of the investment. The

P&L attribution necessitates the specification of a risk structure for computing the investment’s

risk exposures and risk magnitudes. This paper takes the investment in a European option as an

example and performs the P&L attribution on the option contract via the explicit Black-Merton-

Scholes (BMS) option pricing formula. Black and Scholes (1973) and Merton (1973) derive their

option pricing formula by assuming constant volatility geometric Brownian motion dynamics for

the underlying security price. Their assumptions do not match reality as return volatilities tend to

vary strongly over time; nevertheless, their pricing equation can and has indeed been used widely

by practitioners, as a simple and intuitive representation of the option value in terms of its major

risk sources, i.e., variations in the underlying security price and its return volatility. In addition

to the security price and contract terms (such as strike and maturity), the pricing equation takes

a volatility input that can be used to match the observed option price. The volatility input that

matches the observed option price is commonly referred to as the BMS option implied volatility.

A Taylor series expansion of the BMS option pricing formula attributes the option investment

P&L to partial derivatives in time, the underlying security price, and the option’s implied volatility.

When the underlying security price and the option’s implied volatility move continuously over

time, expanding to the first order in time and second order in price and volatility is sufficient to

bring the residual error to an order lower than the length of the short investment horizon.

Taking risk-neutral expectation on the P&L attribution via the BMS pricing formula and de-

manding no dynamic arbitrage results in a simple pricing equation that relates the option’s implied

volatility level to the underlying instantaneous volatility as well as corrections due to the implied

volatility’s expected direction, its variance, and its covariance with the security return.

In contrast to the traditional option pricing approach, which links the values of all option con-

tracts to a single reference dynamics specification, our new approach links the current fair value

of one option contract’s implied volatility to current conditional moments of log changes in the

security price and this contract’s implied volatility. This subtle — but vital — shift in perspective

is due to the use of the option’s own implied volatility as a state variable, rather than the use of the
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underlying security’s instantaneous variance as a state variable. This new perspective allows one

to completely localize the valuation of the implied volatility level of an option contract at a point

in time to the moment conditions of this particular implied volatility at that particular time.

For comparison, one can regard the traditional option pricing framework as a bottom-up val-

uation approach, with the key focus being specifying the appropriate basis that centralizes the

valuation of all contracts. The key strength of this centralized bottom-up approach is the mainte-

nance of cross-sectional consistency through the usage of one reference dynamics. By contrast,

our new framework is top down and decentralized. By pricing an option contract based only on

its own risk-neutral moment conditions, the theory does not impose cross-sectional consistency

across different option contracts. The new approach is decidedly local in terms of the investment

horizon it considers, and very much decentralized in terms of the contract it values.

Under this new approach, to compare the valuation of two or more distinct option contracts,

one must first compare the risk exposures and risk magnitudes on these contracts. One can impose

common factor structures on the moment conditions of different contracts to link the valuations of

these contracts. Nevertheless, their commonality, or lack thereof, is left purely as an empirical de-

termination — or theoretical construction — but not a no-arbitrage condition. Therefore, whereas

the traditional bottom-up research is about the search for the omnipotent basis reference, the new

top-down approach is more about accurate forecasts of the moment conditions for the particular

contract. The two approaches do not directly compete, but rather complement each other. Dynam-

ics specifications from the traditional approach can provide insights for formulating hypotheses

on moment condition estimation, and empirically identified co-movement patterns in the moment

conditions can provide guidance for reference dynamics specification.

For illustration, this paper explores the cross-sectional pricing implications of the new frame-

work under various commonality assumptions. First, we define the at-the-money option at a given

maturity as the particular option whose log strike-forward ratio is equal to half of the option’s total

implied variance, which is the BMS risk-neutral mean of the log security return to maturity. The

fair valuation of this at-the-money option does not depend on the variance and covariance of the

implied volatility change, but only depends on its risk-neutral drift and the instantaneous variance

3

Electronic copy available at: https://ssrn.com/abstract=3148796



rate level. By imposing a common risk-neutral drift on two nearby at-the-money option contracts,

we can extract the common risk-neutral drift from the term structure slope defined by these two

nearby contracts. Alternatively, by assuming a common one-factor mean-reverting structure on the

at-the-money implied variance rate, we can define an at-the-money implied variance term structure

function as an exponentially weighted average of the short- and the long-dated implied variance

rates, analogous to implications from traditional stochastic volatility models (e.g., Heston (1993)).

At a fixed time to maturity, we propose to take the at-the-money implied variance as the ref-

erence point and perform a vega hedge of other contracts using the at-the-money option. We can

then represent the implied volatility skew of an option contract relative to the at-the-money implied

volatility at this maturity as a function of the implied volatility’s variance and covariance with the

security return. Assuming that proportional movements have common variance and covariance

within a certain strike range, we can extract the common variance and covariance rate from the

implied volatility smile shape within this strike range .

Another way to look at the traditional option pricing framework is from the perspective of

spanning as articulated by Bakshi and Madan (2000), who regard the characteristic function of the

underlying security return as the basis that spans most derivative securities. The dynamics spec-

ification dictates the pricing of Arrow and Debreu (1954) securities, which spans the payoff of

most contingent claims. The payoff spanning perspective has a strong cross-sectional focus. It is

because of this focus that pricing errors from traditional option pricing models are often regarded

as the starting point for statistical arbitrage trading (e.g., Duarte, Longstaff, and Yu (2007) and

Bali, Heidari, and Wu (2009)). By contrast, our new pricing framework is much more centered

around the risk-return tradeoff for a particular contract, in that the pricing of the contract is made

consistent with one’s view on that contract’s risk exposures and risk magnitudes, rather than being

made consistent with the pricing of other contracts. Because of this different perspective, our new

approach can take outsourced expert forecasts on risks and risk premiums underlying a particular

investment, convert them into risk-neutral moment conditions, and directly generate pricing im-

plications, without the need to understand the source or rationale of these forecasts. Reversely,

we can infer moment conditions from market prices and examine the information content of these

moment conditions. In empirical analysis on S&P 500 index options, we show that the risk-neutral
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drift extracted from the at-the-money implied volatility term structure can be used to forecast fu-

ture implied volatility movements, and the variance and covariance rates extracted from the im-

plied volatility smile can be combined with historical moment estimates to generate better future

realized variance and covariance forecasts. We also show that these forecasts can be incorporated

profitably into investment decisions in the derivative contracts. Different from traditional statistical

arbitrage trading based on the reversion assumption on pricing errors, the time-series variance and

covariance forecasts allow us to identify investment opportunities with better risk-return trade-offs.

While investors can in principle make money from both approaches, our new framework provides

a complementary perspective that can potentially expand profitable investment opportunities.

As the BMS pricing formula has been widely adopted in the industry as a transformation tool,

P&L attribution based on the BMS pricing equation is also common practice Bergomi (2016)).

The industry also has an option valuation method based on options’ BMS vega, vanna, and volga,

commonly referred to as the vanna-volga model (e.g., Castagna and Mercurio (2007) and Wystup

(2010)). To value an option, the method starts by defining a reference volatility level and gener-

ating a reference value for the option based on the BMS model. The price difference of the target

contract from the reference value is assumed to be linear in the price differences of three pillar

options from their respective reference values. The three coefficients are determined by equating

vega, vanna, and volga of the target option and the portfolio of the three pillar options, with all

the greeks evaluated at the reference volatility. The method has been used to value both European

options and exotic options based on observed prices on three appropriately chosen pillar options.

It relies on the idea that the risk exposures of an option contract, defined via the BMS represen-

tation, can approximately be spanned by the risk exposures of three appropriately chosen option

contracts. The vanna-volga model is similar to our approach in that both rely on the BMS pricing

representation in defining risk exposures, but is different otherwise both in implementation and in

perspective. Our BMS risk exposures on a contract are computed against the implied volatility of

that contract instead of a reference volatility, and our pricing result links the implied volatility level

of an option contract to its own risk-neutral moment conditions, rather than linking the value of

one option contract to the values of three other option contracts. Indeed, the spanning perspective

of the vanna-volga model is much closer to the traditional option pricing approach than to our
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risk-return tradeoff perspective.

The industry has also proposed some variations of the vanna-volga pricing approach. For

example, like us, Arslan, Eid, Khoury, and Roth (2009) and Gershon (2018) propose to calculate

BMS risk exposures of a contract using the implied volatility of that contract instead of a reference

volatility, but they both adopt the spanning perspective of the vanna-volga model and demand

consistency with the observed prices of three pillars.

Also related is the strand of the practitioner literature that attempts to directly model the implied

volatility dynamics for the pricing of exotic contracts.1 These attempts, often labeled as market

models of implied volatility, take the observed implied volatility as given while specifying the

continuous martingale component of the volatility surface. From these two inputs, they attempt to

derive the no-arbitrage restrictions on the risk-neutral drift of the implied volatility dynamics. The

approach is analogous to the Heath, Jarrow, and Morton (1992) model on forward interest rates

and can in principle be used for pricing derivatives written on the implied volatility surface. What

prevents these attempts from successfully achieving their objective is that the knowledge of the

current implied volatility surface shape places constraints on the specification of the continuous

martingale component for its future dynamics. In this paper, rather than ignoring these constraints,

we fully exploit them in building a simple, direct linkage between the current level of the implied

volatility and its first and second risk-neutral moment conditions.

In the academic literature, Israelov and Kelly (2017) recognize the limitations of standard op-

tion pricing models and propose to directly predict the distribution of the option investment return

empirically. Earlier empirical analysis on option investment returns includes Coval and Shumway

(2001) and Jones (2006). Several recent studies strive to link option returns to various firm char-

acteristics: An, Ang, Bali, and Cakici (2014) link future option implied volatility variation to past

stock return performance; Boyer and Vorkink (2014) link ex post option returns to ex ante implied

volatility skew; Byun and Kim (2016) link option returns to the underlying stock’s lottery-like

characteristics; Hu and Jacobs (2017) identify linkages between option returns and the underlying

stock’s volatility level. Our research shares the same shift of focus from terminal payoffs to the

1See, for example, Avellaneda and Zhu (1998), Schönbucher (1999), Hafner (2004), Fengler (2005), and Daglish,
Hull, and Suo (2007).
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behavior of short-term investment returns. Our theory provides the foundation for how to analyze

option investment returns and how to link the predicted investment return behavior to its pricing.

The remainder of this paper is organized as follows. Section I sets up the notation and estab-

lishes the P&L attribution for an option contract based on the BMS pricing formula. Section II

takes risk-neutral expectation on the return attribution and derives the no-arbitrage pricing impli-

cations. Section III examines the cross-sectional pricing implications of the theory under different

local and global commonality assumptions. Section IV performs empirical analysis on the S&P

500 index options and explores different applications of the new theory. Section V discusses the

theory’s general implications, its limitations, and the risk representations. Section VI concludes.

I. P&L Attribution on Option Investments

We consider a market with a riskfree bond, a risky asset, and one vanilla European option writ-

ten on the risky asset. For simplicity, we assume zero interest rates and zero carrying costs/benefits

on the risky asset. In practical implementation, one can readily accommodate a deterministic term

structure of financing rates by modeling the forward value of the underlying security and defining

moneyness of the option against the forward. The risky asset can be any type of tradable security,

but we will refer to it as the stock for concreteness. In the US, exchange-traded options on indi-

vidual stocks are American style. To apply our new theory to American options, a commonly used

shortcut is to extract the BMS implied volatility from the price of an American option based on

some tree/lattice method, and use the implied volatility to compute a European option value for the

same maturity date and strike.2

We assume frictionless and continuous trading in the riskfree bond, the stock, and the option

contract written on the stock. We assume no-arbitrage between the stock and the bond. As a result,

there exists a risk-neutral probability measure Q, equivalent to the statistical probability measure

P, such that the stock price S is a martingale. We further assume that the option value we seek does

not allow arbitrage against any portfolio of the stock and the riskless bond.

2See Carr and Wu (2010) for a detailed discussion on data pre-processing of individual stock options.
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We start by considering a long position in a European call option. Holding the call to expiry

generates a P&L dictated by the terminal payoff of the call. Classic option valuation starts with

the terminal payoff function and takes expectation of the terminal payoff based on assumptions

governing the dynamics of the underlying asset price. Our new pricing approach focuses on the

instantaneous investment P&L over the next instant. The short-term P&L fluctuation of the option

investment is mainly driven by the option’s exposures to various risk sources and the variation of

these risk sources. Accordingly, our analysis relies more on defining risk exposures and quantify-

ing risk magnitudes than on describing terminal payoffs.

We propose to attribute the short-term investment P&L on the option contract by making use of

the explicit Black-Merton-Scholes (BMS) pricing formula. The formula attributes the variation of

an option contract’s value to variations in the calendar time t, the underlying security price St , and

the option’s BMS implied volatility It . Formally, let B(t,St , It ;K,T ) denote the BMS representation

of the option value as a function of the three variates (t,St , It) for a European call option contract

with strike price K and expiry date T . The pricing formula is given by,

B(t,St , It ;K,T )≡ StN

(
−

k− 1
2 I2

t τ

It
√

τ

)
−KN

(
−

k+ 1
2 I2

t τ

It
√

τ

)
, (1)

where N(·) denotes the cumulative normal function, τ ≡ T − t denotes the time to maturity, and

k≡ ln(K/St) denotes the relative strike. We henceforth use the terms z± ≡
(
k± 1

2 I2
t τ
)

to represent

the convexity-adjusted moneyness of the call under the risk-neutral measure and the share measure,

respectively, in the BMS model environment.

For a given option contract, the BMS pricing formula represents the option value at time t as

a function of the stock price St and the option implied volatility It . As long as the option price

does not allow arbitrage against the underlying risky stock and the riskless bond, one can always

find a positive implied volatility input to the BMS pricing formula to match that price (Hodges

(1996)). The BMS pricing formula builds a monotonic linkage between the option price and the

option’s implied volatility, and captures all random shocks to the option, other than shocks to the

underlying security price level, through the implied volatility.
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Through the BMS pricing equation, we can attribute the instantaneous P&L of the option in-

vestment to the variations in the calendar time, the stock price, and the implied volatility,

dB = [Btdt +BSdSt +BIdIt ]+
[

1
2BSS (dSt)

2 + 1
2BII (dIt)

2 +BIS (dStdIt)
]
+ Jt , (2)

where we suppress the arguments, (t,St , It ;K,T ), of the pricing function and use Bt , BS, BI , BSS,

BII , and BIS to denote the partial derivatives (sensitivities) of the pricing function against the cal-

endar time t, the security price S, and the option’s implied volatility I. The partial derivatives

are commonly labelled as the option’s theta (Bt), delta (BS), vega (BI), gamma (BSS), volga (BII),

and vanna (BIS), respectively. The first bracket collects first-order derivatives, the second bracket

collects second-order derivatives, and the last term Jt captures the contribution of potential higher

order derivatives due to random jumps in the stock price and option implied volatility. When both

the stock price and the option implied volatility show purely continuous movements, the first and

second derivatives indicated capture all the relevant movements for the option price over a short

time interval. We henceforth assume continuous dynamics and link option pricing to its first and

second-order derivatives/exposures.

II. Risk-neutral Expectation and Implied Volatility Valuation

We assume continuous dynamics, take expectation on the option P&L attribution in equa-

tion (2) under the risk-neutral measure Q, and divide the expected P&L by the instantaneous in-

vestment horizon dt,

Et [dB]
dt

= Bt +BIItµt +
1
2

BSSS2
t σ

2
t +

1
2

BIII2
t ω

2
t +BISItStγt , (3)

where Et [·] denotes the expectation operation under the risk-neutral measure conditional on time-t

filtration, µt denotes the annualized risk-neutral expected rate of percentage change in the BMS

implied volatility of the option contract,

µt ≡ Et

[
dIt
It

]
/dt, (4)
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and σ2
t ,ω

2
t ,γt denote the time-t conditional variance and covariance rate of the stock return and the

implied volatility change:

σ
2
t ≡ Et

[(
dSt

St

)2
]
/dt, ω

2
t ≡ Et

[(
dIt
It

)2
]
/dt, γt ≡ Et

[(
dSt

St
,
dIt
It

)]
/dt. (5)

Under the zero financing cost assumption, the risk-neutral expected stock return is zero.

The zero financing cost assumption and no dynamic arbitrage dictate that the risk-neutral ex-

pected return on the option investment is also zero:

0 = Bt +BIItµt +
1
2

BSSS2
t σ

2
t +

1
2

BIII2
t ω

2
t +BISItStγt . (6)

We can regard equation (6) as a pricing relation. As long as the option price satisfies no dynamic

arbitrage and generates a risk-neutral expected return of zero, the option price must satisfy the

constraints imposed by this equation. This pricing equation is not based on the full specification

of the underlying security price dynamics, but rather on the first and second conditional moments

of the security price and the option’s implied volatility movements at time t.

The pricing relation in (6) highlights the short-term tradeoffs among the different sources of

expected gains and losses from holding an option. By being long in an option, one loses time value

as calendar time passes. The rate of loss is captured by the option’s theta, Bt . This theta loss is

compensated by expected gains from the security price variation, measured by the security’s return

variance σ2
t , due to the option’s positive gamma exposure BSS. Variations of the option’s implied

volatility (ω2
t ) and its covariation with the security return (γt) induce additional expected gains or

losses due to the option’s volga (BII) and vanna (BIS) exposures, respectively. The option’s positive

vega exposure (BI) can be another source of expected gain or loss depending on the expected

direction (µt) of the implied volatility movement. The no-arbitrage condition dictates that the

option be priced such that these different sources of expected gains and losses at any point in time

balance out to produce a zero risk-neutral expected excess return on the investment.

Theorem 1 Under continuous price and implied volatility movements and zero financing costs,

no dynamic arbitrage requires that an option must be priced to balance out the option’s theta loss
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with expected gains and losses from the option’s vega, gamma, volga, and vanna exposures at any

point in time,

−Bt = BIItµt +
1
2

BSSS2
t σ

2
t +

1
2

BIII2
t ω

2
t +BISItStγt . (7)

The gains and losses from these exposures are determined, respectively, by the expected rate of the

option’s implied volatility movement (µt), the security’s return variance σt , the implied volatility’s

variance ω2
t , and the covariance between the security return and the implied volatility γt .

Under this pricing relation, determining whether an option is fairly priced at any point in time

amounts to determining whether the option’s exposures are balanced out with the associated first

and second moment forecasts at that time. The pricing relation does not specify how to determine

these forecasts and how the forecasts vary over time. Thus, an interesting feature of the pricing

relation is that the risk forecasting process can be completely separated from the pricing process.

Corollary 1 Under continuous price movements and constant implied volatility for an option con-

tract, with zero financing, the theta loss is compensated fully by the gamma gain,

−Bt =
1
2

BSSS2
t σ

2
t .

When the option’s implied volatility does not move over time, the only source of variation is from

the security price, and the theta loss is balanced out completely by the gamma gain. This is the

case under the BMS model environment when the instantaneous return volatility σ is a constant.

A particularly nice feature of the BMS pricing equation is that the BMS theta (Bt), cash vega

(BIIt), cash vanna (BISItSt), and cash volga (BIII2
t ) can all be represented in terms of the BMS cash

gamma (BSSS2
t ),

Bt =−1
2 I2

t BSSS2
t , BIIt = I2

t τBSSS2
t ,

BISItSt = z+BSSS2
t , BIII2

t = z+z−BSSS2
t .

(8)

The Appendix provides the derivation. For an option contract with strictly positive cash gamma,

we can define the option investment return as the investment P&L per unit of cash gamma so

that we can factor out the cash gamma component from the pricing relation in (7) to obtain the
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following algebraic equation,

I2
t =

[
2τµtI2

t +σ
2
t
]
+
[
2γtz++ω

2
t z+z−

]
. (9)

Theorem 2 Assuming continuous price and implied volatility movements, and performing instan-

taneous P&L attribution on a European option investment based on the BMS pricing equation,

we arrive at a no-arbitrage pricing relation between the time-t fair value of the option’s im-

plied volatility level and the time-t risk-neutral conditional mean and variance rates of the implied

volatility percentage change (µt and ω2
t ), the conditional variance rate of the underlying security

return (σ2
t ), and the conditional covariation rate between the two (γt).

Compared to traditional option pricing practice, equation (9) represents an extremely simple

formulation of the option’s fair value. Traditional option pricing emphasizes cross-sectional con-

sistency as its chief objective. To achieve this objective, one specifies the full risk-neutral dynamics

on the underlying security, and prices all options by taking expectations of their terminal payoff

functions based on the same dynamics assumption. This assumed dynamics on the underlying

security serves as a single yardstick for all option contracts. The same yardstick guarantees that

valuations of all options are consistent with this yardstick and hence with one another.

By contrast, by starting with a localized P&L attribution of one option contract, the pricing

equation (9) only guarantees that the time-t valuation of this contract is consistent with the first and

second risk-neutral conditional moments of the underlying security price and this option’s implied

volatility. It guarantees no dynamic arbitrage between this option contract and the underlying

security and cash under the assumed moment conditions, but nothing more. Thus, instead of

providing a yardstick for analyzing cross-sectional consistency among different option contracts,

the new approach provides a more direct, top-down linkage between the fair implied volatility

valuation of an option contract at any given point in time and its conditional moment conditions

at that time. In this sense, while traditional option pricing focuses on cross-sectional consistency

across contracts, the new pricing relation focuses on the risk-return tradeoff for one particular

contract.
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III. Commonality and Cross-sectional Pricing

The pricing relation in (9) applies to one particular option contract, with no reference to any

other option contracts. This relation allows one to compare the valuation of an option contract to

one’s projection of the first and second moment conditions of the underlying security price and the

option’s implied volatility. To make valuation comparisons across different option contracts under

this framework, one must first make comparisons on the first and second conditional moments of

the corresponding option implied volatilities.

At least under the BMS model environment, the implied volatilities of all options underlying

the same security are the same. In reality, option implied volatilities at different strikes and ma-

turities tend to differ; nevertheless, at most times. they tend to move together. Furthermore, the

implied volatility levels tend to be closer to each other and their co-movements tend to be stronger

as the strike and maturity distances between the option contracts become closer. As such, the im-

plied volatility surface across strike and maturity tends to possess a smooth shape. These basic

observations can become the starting point in analyzing the commonalities and differences in the

implied volatility movements across different strikes and maturities underlying one security.

In this section, under our new pricing framework, we examine the cross-sectional pricing im-

plications of different commonality assumptions. The validity of some of the commonality as-

sumptions is examined in the empirical section. The analysis serves as an illustration of how

the new pricing framework generates cross-sectional implications based on explicit commonality

assumptions on the underlying moment conditions.

A. The At-the-money Implied Variance Term Structure

To separate the term structure effect from the moneyness effect, we define the at-the-money

option as the option with z+ = k+ 1
2 I2

t τ = 0, which corresponds to the strike price that equates the

relative strike k to the risk-neutral expected value of ln(ST/St) under the BMS model environment.

At z+ = 0, equation (8) shows that the option has both zero volga and zero vanna. Investing

in such an option only exposes the investor to delta, vega, and gamma risk. The pricing equation
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in equation (9) also simplifies as the terms in the second bracket are reduced to zero. If we use a

different notation, At , to denote the at-the-money implied volatility at a certain time to maturity τ,3

we can write the pricing equation for the at-the-money implied volatility as,

A2
t = 2τµtA2

t +σ
2
t . (10)

The at-the-money option with z+ = 0 is the only strike point where the option has both zero volga

and zero vanna. It is also the only strike point where the implied volatility level depends only on

the risk-neutral expected rate of change of the implied volatility, but not on its variance and covari-

ance with the security return. The separation presents a clean channel for us to analyze expected

volatility changes and the term structure without interference from the second-order effects.

To extract the expected rate of change from the at-the-money implied volatility term structure,

we propose to make the following local commonality assumption:

Assumption (Local commonality on rates of change) The expected rates of change for at-the-money

implied volatilities of nearby maturities are the same,

µt(τ1)
.
= µt(τ2), (11)

when |τ1− τ2| is small.

With the local commonality assumption, we can extract the common expected rate of change

from the implied variance slope within this maturity range.

Proposition 1 When the implied volatilities of at-the-money option contracts within a maturity

range [τ1,τ2] share the same risk-neutral expected rate of change µt at time t, this common rate

can be extracted from the at-the-money implied variance slope within this maturity range,

µt =
A2

t (τ2)−A2
t (τ1)

2(A2
t (τ2)τ2−A2

t (τ1)τ1)
. (12)

3When no confusion shall occur, we drop the functional dependence of At on the time to maturity to reduce
notational cluttering.
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Equation (12) can be readily derived by applying equation (10) twice at the two maturities τ1 and

τ2, respectively, with the common expected rate of change µt .

The accuracy and validity of the extracted common rate of change depends on both the data

quality of the implied volatility observations and the actual stability of the rate of change across

the term structure. In representing the local commonality assumption, equation (11) uses the ap-

proximate equal sign “ .
=” to highlight the approximate nature of the assumption. The term “local”

is not an exact phrasing, either. Accordingly, the extracted rate of change from (12) represents an

approximate estimate of the true underlying rate of change, with the approximation error becom-

ing smaller as the maturity distance and/or the rate of change variation across the term structure

become smaller. In the empirical section, we examine within what range the local commonality

assumption holds reasonably well and when the assumption can break down.

B. The Implied Volatility Smile

To isolate the moneyness effect from the term structure effect, we can consider vega hedg-

ing with the at-the-money contract of the same expiry, assuming strong implied volatility co-

movements for options at the same expiry. In so doing, we can take the at-the-money implied

volatility level At as given, and represent the implied volatility levels of other option contracts at

the same expiry as spreads (skews) relative to the at-the-money implied volatility level.

In particular, if we assume that the expected rate of change scale proportionally with the at-the-

money contract according to,

µtI2
t = µA

t A2
t , (13)

we can subtract (10) from (9) to highlight the implied volatility smile effect across moneyness,

I2
t −A2

t = 2γtz++ω
2
t z+z−. (14)

At each strike and accordingly each moneyness level z±, the variance and covariance rates of the

implied volatility movement (ω2
t ,γt) jointly determine how far the implied variance level at that

strike I2
t deviates from the at-the-money implied variance level A2

t . Thus, the shape of the implied
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volatility smile at any time is dictated by how much the implied volatility is expected to move

over the next instant and how it is expected to co-move with the security price. If one expects the

implied volatility to move a lot in the next instant, one cannot expect the implied volatility smile

to be flat.

As the variance and covariance rates (ω2
t ,γt) jointly determine the shape of the implied volatility

smile, we can reverse engineer and extract the market-expected variance and covariance rates from

the observed shape of the implied volatility smile. In order to do so, we make local commonality

assumptions on the movements of the implied volatilities across moneyness.

Assumption (Local commonality on variance and covariance rates) The variance and covariance

rates of implied volatilities across a range of strikes at the same maturity are the same,

ω
2
t (k)

.
= ω

2
t ,γ

2
t (k)

.
= γt , (15)

for all k within a certain strike range.

Since near-the-money options are the most actively traded, it is of high practical interest to ex-

tract the variance and covariance rates of the at-the-money implied volatility by assuming common

variance and covariance rates for strikes within a certain range of the forward, or equivalently for

the convexity-adjusted moneyness measure z+ to be within a certain range around zero.

It is often observed that the implied volatility smile tends to have a smooth shape, and the

implied volatilities at nearby strikes tend to strongly co-move, a stylized observation that we will

document in the empirical section. The local commonality assumption in (15) amounts to assuming

that the implied volatilities at nearby strikes move by the same expected proportional magnitude.

Proposition 2 With the local commonality assumption in (13) and (15), we can estimate the locally

common variance and covariance rates from a simple local linear cross-sectional regression of the

implied variance spreads (I2
t −A2

t ) on the two convexity-adjusted moneyness measures [2z+,z+z−].

The empirical section estimates the variance and covariance of the at-the-money implied volatil-

ity from a cross-sectional regression within a narrow range of moneyness around zero, and exam-

ines their information content in predicting future implied volatility variations.

16

Electronic copy available at: https://ssrn.com/abstract=3148796



IV. Empirical Analysis on S&P 500 Index Options

We perform empirical analysis on S&P 500 index (SPX) options. The SPX options are actively

traded on the Chicago Board of Options Exchange (CBOE). We obtain the history of closing option

prices and implied volatilities on SPX options, as well as the underlying index level and interest

rate series, from the data vendor OptionMetrics. The sample period is from January 4, 1996 to

April 29, 2016, spanning 5,111 business days. Over the sample period, the index level started

around 617 and ended around 2,065, with an annualized daily return volatility estimate of 19.5%.

The new theory prices an option on the basis of the first and second risk-neutral moment con-

ditions of the implied volatility changes of that particular contract. Since the data we have are

quotes on exchange-traded option contracts, we can easily compute the implied volatility changes

of an option contract following its variation over consecutive days. To examine how the statistical

moment conditions of the implied volatility changes vary across different moneyness and time to

maturities, and how the variations are related to the pricing of the implied volatility term structure

and the implied volatility smile, we construct floating series on the implied volatility changes at

different moneyness and time-to-maturity grids via local smoothing interpolation. We first pro-

vide evidence on the local commonality in the co-movements among the floating implied volatility

change series. Second, based on the local commonality observations, we extract the locally com-

mon expected rate of change from the at-the-money implied volatility term structure of adjacent

maturities. We examine the information content of the extracted rate of change in predicting future

implied volatility changes. Third, we construct the variance and covariance estimates of the float-

ing implied volatility time series and compare them with the locally common risk-neutral variance

and covariance estimates extracted from the local implied variance smile around at-the-money.

We examine how much the future realized variance and covariance estimates can be jointly pre-

dicted by their corresponding historical time-series estimates and the cross-sectionally extracted

risk-neutral estimates. We also construct a trading strategy based on the difference between the

future variance and covariance forecasts and the risk-neutral moments currently priced in the local

smile. We show that the trading strategy can capture large risk premiums with high information

ratios, and that this strategy is distinct from traditional statistical arbitrage strategies.
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A. Construct Floating Series of Implied Volatility Percentage Changes

The new theory relates the fair level of the implied volatility of an option contract to the first and

second risk-neutral moments of the implied volatility changes of that particular contract. Since the

data we have are quotes on fixed option contracts, we can readily compute their implied volatility

changes by following the pricing of each contract over consecutive days. Nevertheless, in order

to examine how the moment conditions of these implied volatility changes vary across different

moneyness and time to maturity, we need to construct floating time series on implied volatility

changes at fixed moneyness and time to maturity grids. The constructed floating series also allow

us to better explore both the global factor structures and the local commonalities in the implied

volatility changes across the moneyness and time to maturity grids.

It is important to point out that most existing empirical studies examine the behavior of float-

ing implied volatility time series at fixed time to maturities and fixed moneyness. Changes in

such floating implied volatility time series can be quite different from the fixed-contract implied

volatility changes that we are about to construct. The difference can be particularly large when

the implied volatility surface has a steep term structure and/or a strong implied volatility skew or

smile. Even if the implied volatility of each option contract remains the same, sliding along the

term structure (due to time running forward) and along the skew (due to spot price movement)

can lead to large changes in the floating implied volatility series. Reversely, even if the implied

volatility surface — as a function of time to maturity and standardized moneyness — remains the

same, the implied volatility for a particular option contract with fixed expiry date and strike price

can change as its time-to-maturity and its relative moneyness vary over time.

To estimate the statistical moment conditions of the implied volatility changes, we need to

construct time series of implied volatility changes of fixed contracts at floating time to maturity

and moneyness points. The option contracts that trade on the exchange have fixed strike prices and

expiry dates. Thus, their time to maturity declines as time moves forward and their moneyness

changes as the underlying index level fluctuates.

From the observations on fixed option contracts, we construct floating time series on both

the implied volatility levels and the fixed-contract implied volatility changes via local smoothing
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interpolation. Specifically, at each date t, for each option contract i available on that date, we

retrieve its implied volatility on both date t, Ii
t , and the next business date t +1, Ii

t+1, and compute

the log percentage implied volatility change, Ri
t+1 ≡ ln(Ii

t+1/Ii
t ), on this option contract. We then

smooth interpolate to generate both the time-t level and the change at floating time to maturity and

moneyness points.

We build the floating time series at a grid of five time to maturities and nine moneyness levels.

The chosen time to maturity (τ) grids are at 1 month (30 days), 2 months (60 days), 3 months (91

days), 6 months (182 days), and 12 months (365 days). The maturity spacing choice is similar to

common industry practice with finer grids at shorter maturities where the option trading activities

are concentrated and where the term structure varies the most.

At each maturity, the moneyness grids are constructed based on the standardized moneyness

measure x ≡ z+/It
√

τ, which can be interpreted as the number of standard deviations by which

the log strike ln(K) exceeds the mean of the log terminal price ln(ST ) under the BMS model

environment. We build the grids up to two standard deviations with a uniform interval of half a

standard deviation, x = 0,±0.5,±1,±1.5,±2.

We estimate both the implied volatility level It and the log implied volatility change Rt+1 of

an option contract at each maturity-moneyness grid (τ,x) via local averaging, with the following

weighting schemes. First, at each strike, there can be two quotes, one from the call option and

the other quote from the put option. We put more weight on the out-of-the-money option contract

which tends to be more actively traded and hence tends to have more reliable quote. We use one

minus the absolute value of the option’s forward delta as the weight, and further truncate the weight

to zero when the absolute delta is greater than 80%. The truncation sets the weights on deep in-

the-money options to zero when the absolute delta is over 80%, where the quotes tend to become

unreliable.

Second, we weigh each observation based on its distance to the target log time to maturity

(lnτ) and its distance to the target moneyness level (x) based on an independent bivariate Gaussian

kernel with default bandwidth choices. Taking logarithm on time to maturity gives more resolution

to the shorter time to maturity.
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Taken together, to construct the implied volatility level and percentage change of an option

contract at a target maturity-moneyness grid (τ,x), we have the weight on each contract i as,

wi = (1−|δi|)I|δi|<.8 exp
(
−(xi− x)2

2h2
x

)
exp
(
−(lnτi− lnτ)2

2h2
τ

)
, (16)

where δi denotes the BMS forward delta of the option, and (hx,hτ) denote the two bandwidths.

Our interpolation scheme is based on industry best practice. Common variations in the inter-

polation scheme include the relative weighting between call and put options at the same strike and

the degree of smoothing applied to the quotes. Small variations in the interpolation methodology

do not affect the general conclusion of the analysis.

B. Local Commonality and Global Factor Structures

Our new theory links an option’s implied volatility level to its own first and second risk-neutral

conditional moments. To extract the moment conditions from the observed implied volatility level

via reverse engineering, we propose to make local commonality assumptions that implied volatil-

ities of nearby contracts (with strikes and maturities close to one another) tend to move closely

together and thus share similar moment conditions. The assumption is not meant to be exact as the

terms “local” and “nearby” are relative and approximate concepts, very different from the exact

specification of the number of factors in a traditional stochastic volatility model. Nevertheless, the

assumption is meant to capture a common and robust qualitative feature of the implied volatility

surface predicted by most stochastic volatility models. Naturally, nearby option contracts have

similar option payoffs and, accordingly, similar loading coefficients to the stochastic volatility fac-

tors, unless the models have peculiar calendar-day or price-threshold dependent behaviors.4

The implied volatilities of option contracts with large distances in maturities and strikes (say

one-month option versus one-year option) can move either together or differently, crucially depen-

4An earnings event with a known announcement date represents one such calendar day effect, which can lead to
rather different implied volatility behaviors for options maturing before and after the event date, even if the maturity
difference is merely one day apart. A near-term announced or rumored corporate event with a specific triggering stock
price level can also potentially cause discontinuity in implied volatility behavior around the triggering strike price.
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dent on the underlying factor structure of the volatility dynamics. However, implied volatilities of

nearby option contracts (say, 11- and 12-month at-the-money options) tend to co-move strongly

regardless of the particular specification of the underlying volatility dynamics. In the limit, the

implied volatilities of option contracts with the same strike and expiry should be identical by arbi-

trage regardless of dynamics assumptions. The local commonality assumption is an extension of

the same logic. It depends less on model assumption but more on contract similarity.

The local commonality assumption also captures the natural response of shrewd options market

makers who tend to hedge their exposures to a derivative contract with some nearby contracts. Wu

and Zhu (2016) show the theoretical and empirical robustness of hedging with nearby contracts.

Our local commonality assumption strives to capture this practical robustness.

Notwithstanding the natural appeal of the local commonality assumption, it is important to

gauge how far the assumption can be pushed in practice in terms of the distance in maturity and

moneyness. For this purpose, we examine how the co-movements of implied volatility changes

across contracts vary as the maturity and moneyness distances between the contracts vary.

First, we measure the cross-correlation of the percentage implied volatility change series and

examine how the correlation estimates vary with the distance in maturity and moneyness. For

better visualization, Figure 1 takes the three-month at-the-money option at the center of maturity-

moneyness grid as the reference point, and shows how the correlation estimates of the implied

volatility changes between this contract and all other contracts vary across moneyness at different

maturities. The solid line denotes the correlation estimates with contracts at the same maturity.

The estimates are well over 90% for contracts within one standard deviation in moneyness (|x| ≤ 1)

and are over 98% for contracts within half a standard deviation (|x| ≤ 0.5). These extremely high

correlation estimates suggest that it is reasonable to apply the local commonality assumption within

one standard deviation of moneyness at the same maturity.

[Figure 1 about here.]

The correlation estimates decline as the options become further out of the money. The corre-

lation estimates with contracts at two standard deviations away stay around 75%, suggesting that
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using one common set of variance/covariance rates will not be sufficient to capture the implied

volatility smile across the whole moneyness range.

Figure 1 uses two dashed lines to represent the correlation estimates with contracts at the two

adjacent two- and six-month maturities, and uses two dash-dotted lines to represent the correlation

estimates with contracts further apart at one-month and 12-month maturities. As the maturity

distance increases, the correlation estimates decline further. Nevertheless, if we focus on the at-

the-money term structure, the correlation estimates with the two adjacent maturities are at 99%

(with two-month maturity) and 97% (with six-month maturity), respectively. The high correlation

estimates with the two adjacent maturities suggest that we can also apply the local commonality

assumption to the local at-the-money term structure defined by two adjacent maturities.

On the other hand, the correlation estimates with the further apart maturities drop to 94% with

the one-month option and 88% with the 12-month option, highlighting the insufficiency of a one-

factor model in capturing the global term structure variation over the whole maturity span.

Figure 1 represents the visualization of one slice of the whole correlation matrix using the three-

month at-the-money contract as the reference point. For the whole correlation matrix excluding

the diagonal elements, the average correlation estimate is 79%, the median is 81%, the maximum

is 99.15%, the minimum is 28.09%, and the standard deviation is 13.55%. Hence, the pairwise

correlation estimates can vary over a wide range depending on the particular pair. To formally

test our hypothesis that the correlation estimates decline with the absolute distances between the

contracts in terms of maturity and moneyness, we perform the following bivariate regression on

the lower triangular elements of the correlation matrix excluding the diagonal elements,

ρi j = α+βx|xi− x j|+βτ| lnτi− lnτ j|+ e. (17)

Table I reports the regression results. The regression generates a high R-squared estimate at 77.6%.

The intercept is close to the null value of one when the contract distances are zero. The slope

coefficient estimates on both distance measures are strongly negative and highly significant. Each

one standard deviation distance in moneyness leads to correlation decline by 7.8 percentage points,

and each one unit of log maturity distance leads to correlation decline by 10.2 percentage points.
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[Table I about here.]

Under the new theory, analyzing the implied volatility surface does not need to start with the

full specification of the underlying security price and volatility dynamics, but can start with ana-

lyzing the co-movement structure on the percentage implied volatility changes of contracts across

different maturity and moneyness levels. Based on such analysis, one can directly impose cross-

sectional factor structures on their variance and covariance rates, from which the theory generates

pricing implications on the level and shape of the implied volatility surface. To gain some under-

standing of the factor structure that governs the implied volatility movements across the surface,

we perform principal component analysis on the interpolated implied volatility changes series.

We estimate the covariance matrix of the 45 series and perform eigenvalue and eigenvector de-

composition of the covariance matrix. The eigenvalue vector, up to a normalization, represents the

explained variation by each principal component, whereas the eigenvector corresponding to each

eigenvalue can be interpreted as the loading of that principal component on the implied volatility

surface. Figure 2 uses a bar chart in Panel A to highlight the percentage variation explained by

each of the top ten principal components. The first component explains 83.13% of the variation,

suggesting that the whole implied volatility surface shares a large proportion of common move-

ments. Panel B plots the loading of the first principal component, which is universally positive

across all maturities and moneyness. The loading estimates are larger at shorter maturities and

higher strikes, potentially highlighting their higher variation.

[Figure 2 about here.]

The second principal component explains 9.02% of the variation, which is still highly signif-

icant albeit much smaller than the dominant first principal component. Panel C shows that the

loading of this second principal component has a distinct moneyness pattern as the loadings are

positive at low-strike regions but negative at high-strike regions, effectively capturing the move-

ment of the implied volatility skew at each maturity.

The third principal component explains 2.97% of the variation. Its effect, as shown in Panel D

of Figure 2, is to capture the variation along the term structure. At each moneyness, the loading is
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negative at short maturities, but positive at long maturities.

Together, within the confines of our data setting, the first three principal components explain

over 95% of the variation on the implied volatility surface. While the first principal component

captures the movement of the overall implied volatility, the next two principal components capture

the slope changes of the surface along the moneyness and maturity dimensions.

The relative significance of the variations along the two slopes depends on data sampling. The

variation along the moneyness dimension tends to be more significant for exchange-traded options

which cover a wide range of moneyness but a narrow range of maturities. For over-the-counter

option quotes — which tend to span a narrower range of moneyness but a much wider range to

maturity — the term structure variation can become more significant. In general, it is important

to realize that the principal component analysis is highly data dependent. To explain the same

proportion of variation, one usually needs fewer principal components if the data span a narrower

strike or maturity range, but more when the range of data is extended. This feature may indeed be

the limitation of efforts to identify global factor structures. A seemingly sufficient factor structure

under a certain data setting can often be easily rejected when the data range is expanded.

C. The At-the-money Implied Variance Term Structure and Its Variation

Table II reports, in Panel A, the summary statistics of the interpolated floating at-the-money

implied volatility levels at the five time-to-maturities, At(τ) ≡ It(τ,0) at τ = 1, 2, 3, 6, and 12

months. The sample average of the implied volatility levels increases as the time to maturity

increases from one month to one year. The one-month at-the-money implied volatility averages

at 19.6%, very close to the full-sample return standard deviation estimate of 19.5%. The sample

average increases with maturity and reaches 21.5% at one-year maturity.

[Table II about here.]

The standard deviation of the at-the-money implied volatility series declines with maturity from

7.4% at one-month maturity to 5.6% at one-year maturity. The range between the historical mini-

mum and maximum also narrows with increasing maturity, consistent with the lowering standard
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deviation. The last row of the panel reports the autocorrelation of the floating series. All five series

show mean reversion behavior, stronger at short maturities than at long maturities.

Panel B of Table II reports the summary statistics for the daily log change of the at-the-money

implied volatility series, lnAt+1(τ)/At(τ), at the five maturities. The statistics on the daily changes

are annualized. As the floating series show no obvious trend during our sample period, the sam-

ple average of the daily change is very small, at merely about 3% per year across all maturities.

The annualized standard deviation estimates of the daily percentage change are very large, from

91.2% at one-month maturity to 36.5% at one-year maturity. The minimum and maximum daily

percentage changes also show a wide band. The autocorrelation estimates on the daily changes

are all negative due to the mean reverting behavior of the floating series. The last row reports the

contemporaneous correlation between the at-the-money volatility change and the security return.

The estimates are strongly negative and in similar absolute magnitudes across all maturities.

Panel C of Table II reports the summary statistics for the daily log implied volatility change of

the at-the-money contracts, RA
t+1(τ)≡ Rt+1(τ,0), which differs from the daily percentage changes

of the floating series in Panel B. Compared to Panel B, the daily log changes on the fixed contracts

show a higher annualized sample mean, from 13.3% at one-month maturity to 8.4% at one-year

maturity. According to the pricing equation (12) and ignoring variance risk premium, the positive

mean estimates imply an upward sloping at-the-money implied variance term structure.

The annualized standard deviation estimates in Panel C are smaller than those on the changes

of the floating series in Panel B. The estimates range from 52.9% at one-month maturity to 20% at

one-year maturity. The minimum and maximum also form a narrower band than in Panel B.

The autocorrelation estimates on the implied volatility changes of at-the-money contracts are

negative at short maturities, but become positive at long maturities. Thus, mean reversion in the

floating series does not always translate into mean reversion in the implied volatility changes of

the fixed maturity date contracts.

The last row reports the contemporaneous correlation with the index return. The estimates are

much smaller in absolute magnitude than the correlation estimates on the changes of the floating

series. Overall, sliding along the term structure and moneyness leads to large differences between
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the behavior of the floating and the fixed-contract implied volatility changes.

D. Extract Rate of Change from the At-the-money Term Structure

Assuming that the proportional movements in implied volatilities are the same for a pair of

nearby at-the-money contracts, Proposition 1 allows us to extract the conditional risk-neutral drift

of the implied volatility percentage changes (µt) within this maturity range from the at-the-money

implied variance term structure slope defined by the two nearby contracts. Figure 1 shows that the

implied volatility movements of at-the-money contracts at adjacent maturities are extremely highly

correlated, lending support to the local commonality assumption for adjacent maturities. Thus, we

propose to use the local at-the-money term structure slope defined by two adjacent maturities

(τi,τi+1) to estimate the risk-neutral drift at the mid-point of the two maturities,

µt(τi) =
A2

t (τi+1)−A2
t (τi)

2(A2
t (τi+1)τi+1−A2

t (τi)τi)
, τi = (τi + τi+1)/2. (18)

Specifically, we use the term structure slope defined by one-month and two-month at-the-money

implied volatilities to estimate the drift at 1.5 month, and use the term structure defined by two-

and three-month at-the-money implied volatilities to estimate the drift at 2.5 month, and so on. We

then linearly interpolate the drift estimates to obtain the estimate at each interpolated maturity.

Table III reports the summary statistics of the risk-neutral rate of change (µt) estimates. The first

row reports the sample average of the risk-neutral estimates, which are larger than the statistical

average (Panel C of Table II) at short maturities, but smaller at 12-month maturity. If we regard

the average difference as an average risk premium estimate, it would suggest that on average it

makes money to take short positions in the short-term option contract and take long positions in

the long-term option contract. Egloff, Leippold, and Wu (2010) obtain similar conclusions from

their estimation of dynamic term structure of variance models on variance swap rates.

[Table III about here.]

The risk-neutral drift estimates show large time-series variation. The standard deviation esti-
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mates are almost twice as large as the sample mean, and minimum and maximum estimates show

that the estimated rate of change can swing from large negative values to large positive values.

The autocorrelation estimates in the last row show that the drift estimates are persistent, with au-

tocorrelations from 0.932 at one month to 0.967 at 12 months. If we assume AR(1) dynamics, the

autocorrelation estimates imply a half-life of 11 to 23 business days.

To examine the information content of the risk-neutral rate of change estimates in predicting

future implied volatility changes, we perform the forecasting regression at each maturity τ,

RA
t+1(τ) = α+βµt(τ)+ et+1, (19)

where the log implied volatility change RA
t+1(τ) is annualized, and µt(τ) denotes the risk-neutral

expected rate of change estimated from the local at-the-money implied volatility term structure

at date t. Under the expectation hypothesis that the risk-neutral rate of change µt is an unbiased

estimator of the future rate of change, we have the null value of α = 0 and β = 1. If on the other

hand we expect no information content for the risk-neutral rate of change, the null value for the

slope will be β = 0. Table IV reports the regression estimates on the coefficients, their absolute

Newey and West (1987) t-values computed with 21 lags, and the regression R-squared.

[Table IV about here.]

The intercept estimates are negative for maturities from one to six months, but positive at the

12-month maturity. Nevertheless, the t-values are small for the intercept estimates and none of

them are significantly different from zero. The slope estimates (β) are close to the null value of

one for all but the 12-month maturity. The t-values against the non-informative null hypothesis of

β = 0 are strongly rejected at one to six month maturities, but the t-values against the unbiased null

hypothesis of β = 1 are all very small and cannot be rejected.

The R-square estimates of regressions are all very low, suggesting that predicting the directional

movements of the implied volatility for a fixed-expiry contract is inherently difficult. When an

investor cannot effectively predict the direction of the implied volatility movement, it is prudent to

perform vega hedge and explore opportunities on the implied volatility smile shape.
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E. The Implied Volatility Smile and its Variation

Table V reports in Panel A the sample average of the implied volatilities across five selected

moneyness level at each of the five interpolated maturities. At each maturity, the average implied

volatility level is higher at lower strikes than at higher strikes, forming the well-known implied

volatility skew pattern. While the skews at most maturities are monotonically downward sloping,

the slope tends to be more negative at lower strikes. At very short maturities, the plot shows more

curvature and becomes more of a smile pattern as the implied volatility level at very high strike

also becomes higher.

[Table V about here.]

The new pricing theory links the implied variance smile to the conditional risk-neutral variance

of the percentage implied volatility change and its covariance with the security return. Based on the

interpolated log implied volatility changes at each maturity moneyness grid Rt(τ,x) and the index

return, we construct the time-series estimates on the variance rate (ωt) and the covariance rate (γt)

with a 21-business day rolling window. Panel B of Table V reports the sample average of the

historical covariance rate estimates at each maturity and moneyness grid. The average covariance

rates are negative across all maturities and moneyness, broadly in line with the negatively skewed

implied volatility smile. Across maturity, especially around at the money, the covariance rate

estimates decline with increasing maturity. Panel C reports the sample average of the variance rate

estimates. The average variance rate estimates also decline with increasing maturity.

At each maturity, the average covariance rates are more negative at high strikes than at low

strikes, even though the skew tends to be more negative at low strikes. The variance rate estimates

are also higher at high strikes than at low strikes. While there is systematic institutional demand

for out-of-the-money index put options, the demand for out-of-the-money call options tend to be

more retail-driven and less systematic, leading to more idiosyncratic movements for out-of-the-

money calls. The larger idiosyncratic movements may partially account for the larger absolute

magnitude for the variance and covariance estimates at higher strikes. On the other hand, the

larger systematic demand for out-of-the-money index put options may have also pushed the implied
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volatility skew steeper at lower strikes, despite the smaller absolute magnitudes of the variance and

covariance estimates. This disparity between demand and historical magnitude of variation may

present profitable opportunities for investors who can manage the risk appropriately.

F. Extract Variance and Covariance Rates from the Implied Volatility Smile

Figure 1 shows that within one standard deviation of at the money (|x| ≤ 1), log implied volatil-

ity changes between the at-the-money contract and other contracts are highly correlated, with cor-

relation estimates over 90%. Based on this evidence, we apply the local commonality assumption

within one standard deviation of the at-the-money option (|x| ≤ 1), and extract the common risk-

neutral variance and covariance rates by performing the following cross-sectional regression,

I2
t −A2

t = γt(2z+)+ω
2
t (z+z−)+ et . (20)

At each date and maturity, we regress the implied variance difference from the at-the-money level

against the two moneyness measures (2z+) and (z+z−), while constraining the regression to the

five moneyness levels within one standard deviation of at the money. We can readily convert the

moneyness measure x to z+ and z− given the implied volatility estimate at each point. We impose

zero intercept and constrain the regression coefficient ω2
t to be positive. The regression captures

the implied variance smile around at the money. A negative implied volatility skew will generate

a negative estimate for the covariance rate estimate for γt while a positive curvature for the smile

leads to a positive estimate for the variance rate ω2
t .

Table VI reports the summary statistics of the slope coefficients and the R-squared estimates.

Panel A shows that the covariance rate estimates are universally negative across all maturities and

calendar days, suggesting that the implied volatility smiles on the S&P 500 index are persistently

negatively skewed. The estimates show high time-series persistence. The daily autocorrelation

estimates are high from 0.978 at one-month maturity to 0.995 at 12-month maturity.

[Table VI about here.]
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By choosing options around at-the-money to perform the regression, we can regard the re-

gression estimates as reflecting the moment conditions of the at-the-money contract. Comparing

the average cross-sectional regression (CS) covariance estimates with the average historical time-

series (TS) estimates for the at-the-money option in Table V, we observe that the cross-sectional

estimates are on average more negative than the time-series estimates, suggesting that the implied

volatility skew is on average steeper than warranted by the historical behavior of the covariation

between the implied volatility and the index return. The difference can be interpreted as a risk

premium (Driessen, Maenhout, and Vilkov (2009)).

The last row of Panel A measures the cross-correlation between these two sets of estimates.

The two series show high co-movements, with correlation estimates between 0.525 to 0.66. The

cross-correlation estimates tend to be higher at short maturities than at longer maturities.

Panel B of Table VI reports the summary statistics on the variance rate estimates identified from

the curvature of implied volatility smile. The average cross-sectional estimates are larger than the

average time-series variance estimates in Table V at short maturities, but the average magnitudes

are similar at the longest maturity (12-month), suggesting that the implied volatility smile has more

curvature at short maturities than at long maturities, and more so than supported by the time-series

variation of the implied volatility movements.

The standard deviation estimates show that the curvature estimates vary a lot more than the

slope estimates. In particular, the minimum estimates at all maturities are truncated at 0, sug-

gesting that across all maturities there are dates when the interpolated implied variance smiles

show little positive curvature. Furthermore, the autocorrelation estimates show that the curvature

estimates are less persistent than the slope estimates, and the cross-correlation estimates with the

time-series variance rate estimates are negative across all maturities. Taken together, the large stan-

dard deviation, the low persistence, and the negative correlation with historical estimates suggest

that the cross-sectional identification of the variance rate via the implied variance smile curvature

is less reliable than the identification of the covariance rate via the smile slope. When inspecting

the time series of the estimates in more detail, we find that during volatile times when the time-

series variance estimates become large, the smile tends to become highly negatively skewed and
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the curvature of the smile becomes harder to identify, leading to the negative correlation between

the time-series and cross-sectional variance rate estimates.

Panel C of Table VI reports the summary statistics on the R-squared estimates of the cross-

sectional regressions. The estimates are very high. Across all maturities, the average estimates are

99.9% or higher, and standard deviation estimates are merely 1%. The lowest R-squared estimate

is at one-month maturity and it is still as high as 98.3%. The extremely high R-squared estimates

suggest that at least within the narrow range of moneyness (|x| < 1), the regression in (20) can

capture the implied volatility smile very well, lending support to the local commonality assumption

within this moneyness range.

G. Trading the Implied Volatility Smile

The variance and covariance rates extracted from the cross-sectional regression (CS) on the

implied volatility smile can differ from the rolling-window time-series estimates (TS). There are

many reasons for the difference. First, the cross-sectional estimates are forward looking as they are

extracted from the pricing information today about the future, whereas the time-series estimates are

backward looking, estimated from recent history. Second, both sets of estimates can have estima-

tion errors, but from different sources. Third, the expected values for the two sets of estimates can

also differ due to risk premium when the price and/or implied volatility process contain random

jumps and these jump risks are priced by the market. In this section, we explore the implications

of their differences.

G.1. Forecasting Future Realized (Co)variance with Cross-sectional and Time-series Estimates

To examine whether the cross-sectional estimates can be combined with the time-series es-

timates to enhance the forecast on future realizations of the variance and covariance rates, we

perform the following forecasting regression,

RVt+1 = α+β1CSt +β2T St + et+1 (21)
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where RVt+1 denotes the realized variance and covariance estimator over the next month, and CSt

and T St denote the corresponding cross-sectional and time-series estimators, respectively. We

perform this regression for both the variance rate and covariance rates at each maturity. Table VII

summarizes the regression results for the covariance rate in Panel A and the variance rate in Panel

B. Entries report the coefficient estimates, the Newey and West (1987) absolute t-values computed

with 21 lags (in parentheses), and the R-squared estimates of the regressions.

[Table VII about here.]

The forecasting regressions on the covariance rates in Panel A generate high R-squared esti-

mates, from 20.23% at one-month to 25.85% at 12-month maturity. The loading coefficients on

both the cross-sectional and time-series estimators are positive, but the coefficient estimates are

larger, with higher t-values, for the time-series estimates. Thus, the time-series estimates — based

on recent historical behaviors of the implied volatility changes — represent a good starting point

for forecasting how the implied volatility interacts with the index return in the near future.

Panel B shows that the forecasting power on the variance rate is weaker, suggesting the variance

rate is less persistent or predictable. The R-squared estimates increase monotonically with maturity

from 3.53% at one month to 13.45% at 12 months. The coefficient estimates on the historical

time-series estimator are all positive and statistically significant. The contribution from the cross-

sectional estimator is smaller and the coefficient estimates become negative in all cases.

G.2. Risk-return Tradeoff Trading based on Time-series Forecasts

Given a set of forecasts on future realized variance and covariance rates and by assuming com-

mon movements within a moneyness range, our theory generates a breakeven value on the implied

volatility smile. The breakeven value represents the valuation of the implied volatility smile based

on the statistical forecasts on the variance and covariance rates while assuming zero risk premium.

When the observed implied volatility smile differs from this valuation, the misalignment can be

treated as a potential source of risk premium, and can represent potentially profitable trading op-

portunities. We examine the profitability through an out-of-sample investment exercise.
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Starting on January 3, 2000, at each date and for each option maturity, we use a four-year

rolling window to estimate the forecasting relation in (21) to generate out-of-sample forecasts on

the covariance rate γ̂t and the variance rate ω̂t . With the forecasts, we construct the breakeven

implied variance spread at the four moneyness levels x =±0.5,±1.0,

Î2
t −A2

t = 2γ̂tz++ ω̂
2
t z+z−, (22)

where we take the observed at-the-money implied volatility At as given and generate fair valuations

on the spreads. The two moneyness measures z+ and z− also depend on the implied volatility level.

We construct the measures using the observed implied volatility level.

At each moneyness, we form vega neutral spread option portfolios with the at-the-money con-

tract and track the delta-hedged P&L over the next month. Since out-of-the-money options tend

to be more actively traded than in-the-money options, we form put spreads at low strikes and call

spreads at high strikes. For each spread, we normalize the weight on the at-the-money contract to

be one and take short positions in the out-of-the-money contract to make the spread vega neutral.

We set the weight on each spread based on the difference between the observed implied vari-

ance spread I2
t −A2

t from the market and the breakeven valuation Î2
t −A2

t from equation (22),

wt = (I2
t − Î2

t )/A2
t , (23)

where the at-the-money implied variance is cancelled out in the numerator and we divide the dif-

ference by the at-the-money implied variance level to obtain a proportional number. When the

market observed spread is higher than the fair value, we long 100×wt dollars of notional of the

at-the-money contract and short the contract at the corresponding moneyness to make it vega neu-

tral. We hold the spread for 21 days while performing daily delta hedge with the underlying index

futures. In option investments, because of the small value of the option contract relative to the

potentially large risk exposures, investors often measure investments in terms of the notional expo-

sures rather than the money spent or received from buying or selling the option. Investing 100×wt

notional dollars is equivalent to normalizing the index level to $100 and investing wt shares in the
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normalized contract.

Table VIII reports the summary statistics of the investment weights. Each panel reports one

summary statistic. Within each panel, each column represents one moneyness level x, and each row

represents one time to maturity τ, represented in months. The average weights on the put spreads

at x = 0.5 and −1 are positive and on the call spreads at x = 0.5 and 1 are negative. The strategy

is, on average, short out-of-the-money puts and long out-of-the-money calls, benefiting from the

observation that the negative implied volatility skews are on average steeper than warranted by the

historical covariance estimates. The average weights are larger in absolute magnitude for further

out-of-the-money spreads at |x|= 1 than at |x|= 0.5, as are the standard deviation estimates.

[Table VIII about here.]

Nevertheless, the minimum weights are negative and the maximum weights are positive on all

spreads, suggesting that the investments based on the time-series forecasts can switch signs despite

the average bias. Lastly, the daily autocorrelation estimates in Panel E show that the investment

weights are highly persistent. This high persistence suggests low turnover for the strategy.

In the three panels in Table IX, we track the delta-hedged P&L of each spread portfolio and

report its annualized mean, annualized standard deviation, and annualized information ratio. Ta-

ble IX is similar to Table VIII in that within each panel, each column represents one moneyness

level, and each row represents one time to maturity. In addition to the four moneyness levels at

each maturity, we add one column labelled as “All,” which reports the P&L for investing in all four

spreads at each maturity.

[Table IX about here.]

The sample averages of the P&L on all spread investments are positive. The investments show

larger risk (standard deviation) at shorter maturities than at longer maturities, and also further out

of money at |x|= 1 than at |x|= 0.5. The average P&L also varies with maturity and moneyness,

but not as much as the risk. The net result is that the information ratios are higher for investments

at longer maturities than at shorter maturities. For example, combining the four spreads at one-

month maturity generates an annualized information ratio of 0.52. The information ratio becomes
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increasingly larger as the option maturity increases and reaches as high as 3.81 for investing in the

four spreads at the 12-month maturity. Several reasons contribute to the low profitability of the

trades on short-term contracts. First, short-term options are more sensitive to price and implied

volatility jumps, a component absent from our pricing relation. Second, the forecasting results

in Table VII show that the R-squared of the forecasting regression is lower at short maturities.

Thus, our forecasts of the breakeven spreads are also less accurate, further reducing the trading

performance. By contrast, for long-dated contracts, the variance and covariance rates of the im-

plied volatility series dominate the P&L variation of the option investments, and our forecasting

regression generates a decent forecast on what the future variance and covariance rate will be. As

a result, investing based on the difference between the observed smile and the breakeven valuation

— constructed with statistical moment condition forecasts — can generate high information ratios.

The difference between the market observation and the breakeven valuation reflects a potential

source of risk premium. By taking positions proportional to the difference as in (23), the strategy

strives to earn the risk premium while hedging away the delta and vega risk. To highlight the

risk premium positioning nature of the strategy, we label the strategy as the risk-return tradeoff

strategy, and contrast it in the next subsection with the statistical arbitrage strategies commonly

proposed based on cross-sectional fitting of no-arbitrage models.

Many papers have documented risk premiums on option investments, such as the early doc-

umentation of option returns by Coval and Shumway (2001), the average negative variance risk

premium by Carr and Wu (2009), and the particularly expensive nature of out-of-the-money stock

index puts by Wu (2006) and Bondarenko (2014). By linking the local smile shape to the variance

and covariance rates of the implied volatility of the underlying option contract, our new theory

allows us to identify the risk premium based on the difference between the cross-sectional and

time-series estimates of these variance and covariance rates.
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G.3. Statistical Arbitrage Trading based on Cross-sectional Fitting

A popular investment strategy commonly associated with no-arbitrage models is statistical ar-

bitrage trading based on the pricing errors of a cross-sectionally fitted no-arbitrage model.5 The

idea underlying this strategy is to regard the pricing errors as temporal market mispricing and to

form portfolios that are neutral to the risk factors of the model, so that the strategy does not take on

the risk premiums of these risk factors, but bet purely on the mean reversion of the pricing errors.

To highlight the difference between the two types of investment strategies, we consider a sta-

tistical arbitrage trading strategy within the same context of our risk-return tradeoff investment

exercise. Specifically, at each date and maturity, we perform the following cross-sectional regres-

sion on the implied volatility smile within |x| ≤ 1,

St = γt(2z+)+ω
2
t (z+z−)+ et . (24)

We have used this regression in equation (20) to estimate the risk-neutral variance and covariance

rates by assuming local commonality for moneyness within |x| ≤ 1. If our assumption is correct,

the pricing errors from this cross-sectional regression (et) can be regarded as temporary market

mispricing and can be treated as statistical arbitrage opportunities. We set the weight invested in

each spread proportional to the pricing error,

wt = 10et/A2
t . (25)

Different from the risk-return tradeoff strategy, the weight for this statistical arbitrage strategy does

not depend on time-series forecasts, but relies purely on the pricing errors from the cross-sectional

fitting. While the two strategies invest in the same spreads, their investment weights are based on

completely different source of information and assumptions.

As shown in Table VI, the local commonality assumption works well within the moneyness

5Duarte, Longstaff, and Yu (2007) describe the performance of several common statistical arbitrage strategies in
the fixed income market. Bali, Heidari, and Wu (2009) elaborate on the construction and performance of a statistical
arbitrage trading strategy on the swap rate curve based on pricing errors from multi-factor dynamic term structure
models.
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range, and this regression fits the smile extremely well. As a result, the pricing errors are very

small. We scale up the error by a magnitude of 10 in equation (25), so that the absolute magnitudes

of the weights are in a similar range as that from the risk-return tradeoff strategy.

Table X reports the summary statistics of the investment weights on the statistical arbitrage

strategy. Via scaling, we have made the standard deviation and the minimum-maximum range of

the investment weights to be in similar magnitudes to that for the risk-return strategy in Table VIII.

Nevertheless, we observe several differences. First, different from the large average bias on the

risk-return investment weights, the investments weights for the statistical arbitrage strategy, which

are determined by the fitting errors of the cross-sectional pricing relation, do not have any large

average biases. The lack of bias suggests that our pricing relation performs uniformly well within

our constrained moneyness range. Second, while the risk-return investment weights tend to be

larger in absolute magnitude and in variation for further out-of-the-money spreads, the statistical

arbitrage investment weights are much more uniform. Third, different from the high persistence for

the risk-return investment weights, the daily autocorrelation estimates for the statistical arbitrage

investment weights are much smaller, between 0.73 to 0.91, implying a half-life of merely three

to eight days under the AR(1) dynamics assumption. Since the purpose of the statistical arbitrage

strategy is to benefit from temporal mispricing, the investment weights are unlikely to persist in

one direction. The strategy necessarily involves higher turnover.

[Table X about here.]

Table XI reports the summary statistics on the investment P&L from the statistical arbitrage

strategy. Compared to corresponding investment performance from the risk-return strategy in Ta-

ble IX , the statistical arbitrage strategy does not work well at the individual spread level. The

average P&L estimates on the individual spread investments are small and in many cases are neg-

ative. Nevertheless, combining the four spreads at each maturity leads to positive information

ratio estimates across all maturities, albeit lower than those from the risk-return tradeoff strategy

in Table IX.

[Table XI about here.]
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The investment performance difference between the two strategies reflects less about one strat-

egy being superior than the other, but more about the particular setting of the exercise and the

different applications of the two strategies. The key for a profitable risk-return tradeoff strategy is

to identify a robust source of risk premium and accurately predict its time variation. The setting

of our investment exercise is tilted toward this purpose: The exercise focuses on a narrow range of

moneyness at each maturity so that we can apply the local commonality assumption and link the

implied volatility smile within this range to a common set of variance and covariance rates.

By contrast, the statistical arbitrage strategy does not take on systematic risks to benefit from

risk premiums, but bets on the reversion of the remaining pricing errors. As a result, the investment

performance of the statistical arbitrage strategy does not depend on the accurate identification of

the risk premiums, but depends on the existence of multiple sources of independent, highly mean-

reverting pricing errors. Given our focus on a narrow moneyness range and the selection of a

limited number of contracts, it is understandable that the statistical arbitrage strategy does not

perform as well. Its performance can be enhanced by considering a large cross section by, say,

calibrating a multi-factor stochastic volatility model on the whole implied volatility surface and

forming a portfolio of many options neutralized to the underlying risk factors.6

In line with the different focus of the two strategies, we also observe very different cross-

correlation behaviors for the P&L series on different option spreads. For the risk-return investment

strategy, because all the spreads are betting on a similar source of risk premium, the P&L series on

the four option spreads at each maturity tend to be positively correlated. The correlation estimates

on the P&L series average from 36% at one-month maturity to over 80% for maturities at three

months and longer. As a result of the positive correlation, combining the four spread at each

maturity does not enhance the information ratio much. By contrast, because the pricing errors

from the cross-sectional fitting are supposed to be idiosyncratic, the P&L series from the statistical

arbitrage strategy tend to be low or negatively correlated. Combining the different series into one

portfolio tend to enhance the information ratio much more significantly.

The out-of-sample exercise is very stylized: The allocation weights are simply set proportional

6One can either estimate a multi-factor stochastic volatility model (e.g., Carr and Wu (2017b)) while maintaining
time-series consistency or use a simpler model (e.g., Bakshi, Cao, and Chen (1997)) but with frequency re-calibration.
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to the pricing deviations without further optimization, and the exercise does not adjust for trans-

action costs. In practical implementations, trading cost tends to be a smaller concern for the risk-

return strategy due to low turnover. By contrast, the statistical arbitrage strategy is more suited for

market makers who receive bid-ask spread in entering the trades. The purpose of a market maker

is rarely to make money on systematic risk premiums, but rather to receive bid-ask spreads as

compensation for providing liquidity while maintaining a well-hedged inventory. A well-specified

bottom-up no-arbitrage model can be the basis for managing the risk of the inventory.

The exercise highlights the difference, from the perspective of investment applications, be-

tween traditional bottom-up option pricing models that emphasize valuation consistency across a

large cross section of interrelated derivative securities and our new pricing framework that empha-

sizes risk-return tradeoff on a particular contract. The distinction is, of course, not absolute. At

least in principle, it is possible to identify risk premiums on the underlying risk factors of a bottom-

up option pricing model via an estimation approach that includes both the time series and the cross

section (e.g., Pan (2002) and Carr and Wu (2017b)). It is equally possible to derive cross-sectional

constraints on our new pricing framework by making global factor or commonality assumptions

on the moment conditions. Nevertheless, the two approaches allow one to examine the valuation

of an option contract from two different perspectives and to draw potentially different insights.

V. Implications, Limitations, and Risk Representation

Traditional derivative pricing models specify the underlying security price dynamics so that

one can take expectations on future payoffs and discount them to obtain the present value. The

approach is analogous to classic discounted cash flow valuation of primary securities. By con-

trast, our new theory is built on the analysis of an option investment’s instantaneous return, and is

therefore closer to traditional risk-return analysis, such as the classic capital asset pricing model

(CAPM). Under our assumptions and with discrete time notation, the time-t conditional joint risk-

neutral return distribution of the underlying security and the option’s implied volatility can be
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written as,  RS
t+1 ≡

∆St+1
St

RI
t+1 ≡

∆It+1
It

∼ N

 0

µt

 ,
 σ2

t γt

γt ω2
t

 . (26)

The mean-variance structure determines the pricing of the option contract as,

I2
t = σ

2
t +2τµtI2

t +2γtz++ω
2
t z+z−. (27)

Pricing multiple option contracts on the same underlying security amounts to expanding the mean-

variance structure in (26) to include a vector of returns on multiple option contracts. Pricing options

on a large universe of underlying securities amounts to expanding the structure further to include

all the securities of interest, analogous to traditional mean-variance analysis on primary securities.

Under this new mean-variance derivative pricing framework, the pricing and investment deci-

sions on derivatives are as good as the forecasts for the mean vector and the covariance matrix.

Exploring how to obtain robust risk-neutral estimates to generate robust option pricing, and how

to obtain accurate statistical forecasts to make profitable investment decisions represents ample

research opportunities for the future. To make investment decisions on a large universe of finan-

cial securities, the industry has developed large factor structures (e.g., BARRA) to enhance the

robustness of the covariance matrix estimates. Analogous structures can be developed to construct

the covariance matrix of the implied volatility returns for pricing, for risk management, and for

investment decisions on derivatives.

Discounted cash flow valuations and risk-return analyses are different sides of the same coin.

They do not directly compete, but strive to offer insights from complementary perspectives. Our

proposed framework for mean-variance analysis on derivatives serves a similar complementary

role to traditional derivative pricing models.

A. Implications

In discounted cash flow valuations for stocks, one usually makes an assumption on some per-

manent growth rate for projections of cashflows infinitely into the future and some convergence
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of risk to some steady level. These far-into-the future assumptions are impossible to be accurate,

but can nevertheless have a sizable impact on the valuations. In derivative pricing, the analogy

is usually some stationarity assumption on stochastic volatilities. Stationarity assumptions seem

innocuous and reasonable, but they can often generate conflicting implications.

Giglio and Kelly (2018) show that in a wide range of applications commonly used stationary

models calibrated to short maturities generate variations for long-dated contracts that are much

smaller than observed. Carr and Wu (2003) observe that as long as stochastic volatilities are

stationary, central limit theorem should hold and the implied volatility smiles at long maturities

should flatten out, but the implied volatility skews on the S&P 500 index options are not becoming

flatter but becoming steeper as maturity increases to as long as five years (Foresi and Wu (2005)).

The steep skew at long maturities is consistent with the observed large variation of the implied

volatility, but neither the large variation nor the steep skew match the implications of a stationary

stochastic volatility model estimated with data at shorter maturities.

By linking the pricing to the current variation of the implied volatility of the same contract,

our new theory does not rely on such stationarity assumptions on some instantaneous variables,

but depend more on direct observations of its own variation. What may appear puzzling from the

perspective of long-run stationarity no longer appears so when considered from its own observed

magnitude of variation.

The currency options market has also experienced a similar transition in perspectives. When

broker dealers are asked to offer quotes on long-dated currency option contracts, they often use

short-dated exchange-traded options as a starting point and perform extrapolation. In the early

years, the common practice is to flat extrapolate the at-the-money option implied volatility from

short to long maturities when there is no additional information about the long-run behavior. To

extrapolate the implied volatilities for out-of-the-money options, broker dealers and quantitative

researchers recognized the effect of central limit theorem, which led them to quote increasingly

flatter implied volatility smiles as the extrapolated maturity increases. Yet, years of investment

experiences made them realize the inadequacy and inconsistency of such an extrapolation scheme.

Since the early 2000s, the common practice has shifted to extrapolating the whole implied volatility
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smile shape instead of just the at-the-money implied volatility level. The new extrapolation scheme

implies that the risk-neutral return skewness and kurtosis will stay the same as the conditional

horizon increases. This implication seems to run against the central limit theorem; nevertheless,

out of the two schemes, only the new one is consistent with the implication of our new theory:

If one flat extrapolates the at-the-money implied volatility from one year to 10 years, both the

variation and covariation of the 10-year implied volatility will be identical to that of the one-year

implied volatility, and our new pricing theory dictates that the two maturities must share the same

implied volatility smile shape as well. The implication of the central limit theorem based on

stationarity assumptions cannot kick in as long as the variation of the implied volatility remains

large.

B. Limitations

Mean-variance analysis has been the pillar of modern finance Our new theory can become the

stepping stone for expanding the mean-variance analysis to derivative securities. However, the

mean-variance framework fails to account for is the presence of rare but large events (jumps). The

literature covers numerous efforts to integrate jumps into the mean-variance analysis for both pric-

ing and investment decisions on primary securities. One line for future research can be examining

how to integrate jumps into our new framework for derivative pricing.

In many cases, incorporating jumps results in complications that make the analysis lose its

original clarity and appeal. In such cases, instead of complicating the analysis via integration,

one can follow the same spirit that our new theory advocates and decentralize, by analyzing the

normal-day behavior via the simple mean-variance structure while analyzing the effects of rare,

large events separately via scenario analysis and stress tests.

C. Risk Representation

In deriving our pricing equation for a vanilla option contract, we use the BMS model to trans-

form the option price into the BMS implied volatility as a representation of the main risk source of
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the option contract, analogous to the common practice in the fixed income market of transforming

bond prices into yield to maturities to highlight the underlying interest rate risk.

Traditional option pricing models represent the risk of many option contracts via a few global

risk factors. To generate localized pricing implications, we require that the risk representation be

local to the particular option contract. Just as yield to maturity is local to the particular coupon

bond, so is the implied volatility local to the particular option contract. Accordingly, in choosing a

particular form of risk representation for our purpose, the first requirement is that the transforma-

tion is a local, unique, monotone, and one-to-one mapping to the option price. For this purpose,

the local volatility model of Dupire (1994) or stochastic volatility models such as Heston (1993)

are not good candidates.

The second requirement is that the transformed quantities become more stable and more com-

parable across contracts and over time than the raw contract prices. For bonds, if the instantaneous

interest rate is constant, yield to maturity across all bonds will be the same. For options, if the

security price follows a diffusive process with a constant instantaneous return volatility, the BMS

implied volatility will be the same across all option contracts underlying the same security. This

analogous feature allows them both to be somewhat stable and comparable across contracts and

over time. Just as yields of nearby maturities tend to be similar and move together by nature of

arbitrage trading, so do implied volatilities of option contracts at nearby strikes and maturities.

A third requirement is ease of interpretation in that the transformed quantities have some spe-

cific and intuitive economic meaning, at least under certain model environments. The yield to

maturity has the economic meaning of being the return to the bond investment if one buys the

bond at the current price and holds the bond to maturity assuming no default. The BMS implied

volatility has the economic meaning of being the security return volatility under the BMS model

environment. More generally, under continuous price dynamics, the BMS implied variance repre-

sents the risk-neutral expected value of the integrated future instantaneous return variance weighted

by the BMS gamma along the sample path.

Nevertheless, it is important to emphasize that although the BMS formula represents a very

intuitive and simple representation of the underlying risk sources for an option contract, one can
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explore other transformations that may represent the underlying risk sources even better. As an

example, a recent working paper by Shue and Townsend (2018) suggests that people tend to think

additively instead of multiplicatively so that stock price movements look more arithmetic than

geometric. If this is indeed the case, an alternative representation would be the Bachelier (1900)

model, under which one measures volatility on price changes instead of percentage returns.

Finally, this paper uses the option contract as an example and uses the well-adopted BMS

implied volatility as the transformation. For other financial contracts, it is natural to find the risk

representation that best suits the particular contracts under consideration. As we have discussed,

if the analysis is on coupon bonds, the yield-to-maturity transformation will be the natural choice

(Carr and Wu (2017a)).

VI. Concluding Remarks

We develop a new option pricing framework based on the P&L attribution analysis of op-

tion investments. The analysis starts with the Black-Merton-Scholes option pricing equation and

attributes the instantaneous return of an option investment to calendar decay, to the underlying

security price movement, to the option’s implied volatility movement, and to higher-order effects.

Taking risk-neutral expectation and applying dynamic no-arbitrage constraints results in a pricing

relation that links the option’s fair implied volatility level to the implied volatility’s own expected

direction of movement, its variance, and its covariance with the security return. The valuation does

not need to specify where the first and second moment conditions come from and how they vary in

the future, thus allowing us to make top down, localized valuations based on what we know best

about the particular contract.

The top-down perspective does not preclude us from making either local commonality assump-

tions on the implied volatility co-movements across nearby option contracts, or global commonal-

ity assumptions based on principal component analysis or some other factor structures. Imposing

these commonality assumptions on our pricing equation leads to cross-sectional pricing implica-

tions either for a selected number or range of contracts, or across the whole implied surface.
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By shifting the focus from terminal payoffs to short-term P&L fluctuation, our new theory not

only provides simple and flexible pricing solutions for derivative contracts of interest, but also

tightly links the pricing to risk management practices on marking to market risks, and provides a

foundation for expanding classic mean-variance risk-return analysis to derivative contracts.

For future research, one can expand existing return factor structures on primary securities by

developing analogous factor structures on the implied volatility changes of the underlying option

contracts. The joint return/implied volatility factor structure has direct pricing implications on

the option contracts, making it suitable as the foundation for investment analysis on the expanded

universe that includes both primary securities and derivative contracts.

Appendix. BMS Sensitivities

The standard greeks of the BMS model is well known and is available in standard textbooks,

such as Chapter 17 in Hull (2009). A call option’s BMS delta is,

BS = N(d1), d1 =
lnSt/K + 1

2 I2
t τ

It
√

τ
=− z−

It
√

τ
, (28)

where N(·) is the cumulative normal function. The BMS gamma is,

BSS =
n(d1)

StIt
√

τ
, (29)

where n(·) denotes the probability density function of the standard normal variable. The cash

gamma BSSS2
t is therefore,

BSSS2
t =

Stn(d1)

It
√

τ
. (30)

All other sensitivity measures of interest can be represented in terms of the cash gamma. The BMS

theta is,

Bt =−
1
2

Stn(d1)It/
√

τ =−1
2

I2
t BSSS2

t . (31)
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The BMS vega is

BI = St
√

τn(d1), (32)

so that the cash vega BIIt can be represented as

BIIt = StIt
√

τn(d1) = I2
t τBSSS2

t . (33)

Vanna and volga are not in standard textbooks but can be derived just as easily. The vanna is

BIS =
∂BI

∂St
=
√

τn(d1)−d1n(d1)/It , (34)

so that the dollar vanna BISItSt can be represented as

BISItSt = Stn(d1)(It
√

τn(d1)−d1) =
Stn(d1)

It
√

τ

(
lnK/St +

1
2

I2
t τ

)
= BSSS2

t z+. (35)

Finally, the volga is

BII =
∂BI

∂It
= St
√

τn(d1)(−d1)

(
− lnSt/K

I2
t
√

τ
+

1
2
√

τ

)
, (36)

so that the dollar volga BIII2
t can be represented as

BIII2
t = Stn(d1)(−d1)

(
− lnSt/K +

1
2

I2
t τ

)
= BSSS2

t z−z+. (37)
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Table I
Correlation Dependence on Maturity and Moneyness Distance

Entries report results from the bivariate regression of the pairwise correlation estimates between
daily percentage implied volatility changes of different contracts against the absolute distances
between the pair of the contracts in terms of moneyness x and log maturity (lnτ),

ρi j = α+βx|xi− x j|+βτ| lnτi− lnτ j|+ e.

The regression is performed on the lower triangular of the correlation matrix excluding the diagonal
elements.

α βx βτ R2

Estimates 1.022 –0.078 –0.102 0.776
Std Error 0.005 0.003 0.002 —

51

Electronic copy available at: https://ssrn.com/abstract=3148796



Table II
Summary Statistics of At-the-money Implied Volatility Levels and Daily Changes

Entries report the summary statistics of the at-the-money implied volatility level (Panel A), its
daily percentage change (Panel B), and the daily percentage changes of the at-the-money contracts
(Panel C) at time-to-maturities of 1, 2, 3, 6, and 12 months. The statistics include the sample
average (“Mean”), sample standard deviation (“Stdev”), minimum, maximum, and the daily au-
tocorrelation (“Auto”) estimates. In Panels B and C, we annualize the mean, standard deviation,
minimum, and maximum statistics, and also report the correlation with the index return in the last
row (“Corr”).

Maturity (τ) 1 2 3 6 12

Panel A: At-the-money Implied Volatility Level, At(τ)
Mean 0.196 0.199 0.202 0.209 0.215
Stdev 0.074 0.070 0.068 0.061 0.056
Minimum 0.086 0.097 0.103 0.113 0.120
Maximum 0.736 0.702 0.670 0.587 0.526
Auto 0.984 0.987 0.989 0.993 0.995

Panel B: Daily Log Change in At-the-money Implied Volatility, lnAt+1(τ)/At(τ)
Mean 0.036 0.033 0.033 0.032 0.030
Stdev 0.912 0.734 0.634 0.470 0.365
Minimum -82.543 -67.682 -65.370 -55.132 -58.003
Maximum 121.716 99.542 86.031 74.590 55.347
Auto -0.106 -0.081 -0.063 -0.038 -0.032
Corr -0.749 -0.776 -0.787 -0.795 -0.781

Panel C: Daily Log Implied Volatility Change for At-the-money Contracts, RA
t+1(τ)

Mean 0.133 0.096 0.101 0.102 0.084
Stdev 0.529 0.407 0.348 0.256 0.200
Minimum -40.088 -37.851 -37.726 -29.608 -22.723
Maximum 78.000 61.714 52.921 37.376 35.131
Auto -0.090 -0.052 -0.030 0.015 0.056
Corr -0.437 -0.474 -0.488 -0.498 -0.473
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Table III
Extract Rate of Change from At-the-money Implied Variance Term Structure

Entries report the summary statistics of the risk-neutral drift (µt) extracted from the at-the-money
implied variance local term structure defined by the two nearest maturities. The statistics include
the sample average (“Mean”), standard deviation (“Stdev”), minimum, maximum, and the daily
autocorrelation (“Auto”) estimates.

Maturity 1 2 3 6 12

Mean 0.243 0.219 0.178 0.104 0.048
Stdev 0.497 0.367 0.241 0.147 0.081
Minimum -4.428 -2.756 -0.950 -1.285 -1.047
Maximum 1.186 0.953 0.687 0.390 0.232
Auto 0.932 0.941 0.958 0.969 0.967

Table IV
Predict Implied Volatility Changes With the Term Structure Slope

Entries report the coefficient estimates, the absolute Newey-West t-values (in parentheses), and the
R-squared of the following forecasting regression at each maturity τ,

RA
t+1(τ) = α+βµt(τ)+ et+1,

where the daily log implied volatility change of the at-the-money contract RA
t+1(τ) is annualized

and the risk-neutral expected rate of change µt(τ) is extracted from the local at-the-money implied
variance term structure defined by the two adjacent maturities. The t-values are computed with a
lag of one month. For the β estimates, the table reports the t-values for both the null hypothesis of
β = 0 and the null hypothesis of β = 1.

Maturity α̂ H : α = 0 β̂ H : β = 0 H : β = 1 R2, %

1 -0.095 ( 0.59 ) 0.935 ( 2.56 ) ( 0.18 ) 0.31
2 -0.128 ( 1.01 ) 1.027 ( 3.06 ) ( 0.08 ) 0.34
3 -0.136 ( 1.15 ) 1.332 ( 3.26 ) ( 0.81 ) 0.34
6 -0.014 ( 0.16 ) 1.115 ( 2.20 ) ( 0.23 ) 0.16
12 0.072 ( 0.99 ) 0.243 ( 0.28 ) ( 0.88 ) 0.00
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Table V
Mean Implied Volatility Smile and Time-series Variance/Covariance Estimates

Entries report the sample average of the implied volatility levels (Panel A), the covariance rate
(Panel B), and the variance rate (Panel C) at each selected moneyness (x) and maturity (τ) grid. The
variance and covariance rates are historical time series estimators constructed with a 21-business
day rolling window.

τ\x -2.0 1.0 0 1.0 2.0

Panel A: Mean Implied Volatility Smile
1 0.349 0.254 0.196 0.164 0.157
2 0.352 0.260 0.199 0.165 0.153
3 0.354 0.264 0.202 0.166 0.152
6 0.359 0.273 0.209 0.170 0.151

12 0.361 0.278 0.215 0.173 0.152

Panel B: Historical Covariance Rate Estimates γt
1 -0.000 -0.025 -0.045 -0.082 -0.152
2 -0.009 -0.026 -0.038 -0.063 -0.115
3 -0.012 -0.025 -0.033 -0.053 -0.095
6 -0.013 -0.022 -0.025 -0.038 -0.066

12 -0.012 -0.018 -0.019 -0.028 -0.048

Panel C: Historical Variance Rate Estimates ωt
1 0.192 0.194 0.280 0.536 1.063
2 0.103 0.118 0.166 0.303 0.630
3 0.074 0.088 0.121 0.214 0.450
6 0.045 0.051 0.066 0.112 0.248

12 0.033 0.033 0.040 0.069 0.149
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Table VI
Cross-sectional Regression Estimates of Variance and Covariance Rates

Entries report the summary statistics of the covariance rate γt , the variance rate ω2
t , and the R-

squared estimates from the cross-sectional regressions of the implied variance spread over the
at-the-money level against the two moneyness measures (2z+) and (z+z−). The regression is per-
formed at each date and each maturity using the estimates at the five interpolated moneyness levels
within |x| ≤ 1. The statistics include the sample average (“Mean”), sample standard deviation
(“Stdev”), minimum, maximum, and the daily autocorrelation (“Auto”). For the covariance and
variate rate estimates in panels A and B, we also report the correlation (“Corr”) with the corre-
sponding time-series covariance and variance estimates using a 21-business day rolling window.

Maturity 1 2 3 6 12

Panel A. Covariance Rate Estimates γt
Mean -0.142 -0.107 -0.090 -0.068 -0.050
Stdev 0.066 0.046 0.037 0.026 0.018
Minimum -0.499 -0.360 -0.292 -0.202 -0.132
Maximum -0.040 -0.038 -0.034 -0.026 -0.018
Auto 0.978 0.986 0.989 0.993 0.995
Corr 0.646 0.660 0.640 0.580 0.525

Panel B. Variance Rate Estimates ω2
t

Mean 1.002 0.451 0.270 0.102 0.038
Stdev 0.461 0.207 0.128 0.056 0.027
Minimum 0.000 0.000 0.000 0.000 0.000
Maximum 2.552 1.065 0.647 0.275 0.240
Auto 0.905 0.933 0.941 0.956 0.958
Corr -0.141 -0.172 -0.171 -0.130 -0.122

Panel C. Regression R-squared Estimates
Mean 0.999 0.999 0.999 1.000 1.000
Stdev 0.001 0.001 0.001 0.001 0.001
Minimum 0.983 0.986 0.988 0.984 0.990
Maximum 1.000 1.000 1.000 1.000 1.000
Auto 0.695 0.756 0.738 0.791 0.821
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Table VII
Predict Realized Variance/Covariance with Cross-sectional and Time-series Estimators

We predict one-month ahead realized covariance rate γt (Panel A) and variance rate ω2
t (Panel B)

for the at-the-money implied volatility series with their corresponding cross-sectional estimator
(CS) extracted from the implied volatility smile and the one-month rolling historical time-series
estimator (TS),

RVt+1 = α+β1CSt +β2T St + et

where we use RVt+1 to denote the one-month ahead realized estimator. Entries report the forecast-
ing regression coefficient estimates, Newey-West absolute t-values (in parentheses), and R-squared
for each regression. Each row is for one maturity (in months).

Maturity α β1 β2 R2, %

Panel A. Covariance Rate γt
1 -0.011 ( 1.64 ) 0.120 ( 1.79 ) 0.377 ( 2.97 ) 20.23
2 -0.011 ( 1.65 ) 0.097 ( 1.20 ) 0.433 ( 3.45 ) 23.11
3 -0.012 ( 1.70 ) 0.070 ( 0.76 ) 0.463 ( 3.84 ) 24.18
6 -0.009 ( 1.63 ) 0.056 ( 0.58 ) 0.484 ( 4.21 ) 25.28
12 -0.004 ( 1.11 ) 0.129 ( 1.61 ) 0.466 ( 4.00 ) 25.85

Panel B. Variance Rate ωt
1 0.231 ( 7.02 ) -0.004 ( 0.15 ) 0.19 ( 3.72 ) 3.52
2 0.148 ( 6.84 ) -0.040 ( 1.07 ) 0.22 ( 3.86 ) 5.40
3 0.116 ( 6.62 ) -0.091 ( 1.83 ) 0.25 ( 4.08 ) 7.63
6 0.063 ( 6.47 ) -0.160 ( 2.16 ) 0.29 ( 3.95 ) 10.28
12 0.034 ( 6.58 ) -0.198 ( 2.26 ) 0.34 ( 3.30 ) 13.46
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Table VIII
Summary Statistics on the Risk-Return Strategy Investment Weights

Entries report the summary statistics of the investment weights on each option spread for the risk-
return strategy, where the weights are determined by the difference between the observed spread
and the breakeven spread computed based on the time-series forecasts of future realized variance
and covariance of the implied volatility changes.

τ\x -1.0 -0.5 0.5 1.0

Panel A. Sample Average
1 0.481 0.178 -0.117 -0.189
2 0.455 0.175 -0.117 -0.194
3 0.440 0.174 -0.120 -0.201
6 0.416 0.175 -0.131 -0.221

12 0.353 0.158 -0.132 -0.227

Panel B. Standard Deviation
1 0.149 0.056 0.038 0.068
2 0.140 0.053 0.037 0.066
3 0.142 0.054 0.038 0.066
6 0.148 0.057 0.038 0.064

12 0.156 0.058 0.038 0.061

Panel C. Minimum
1 -0.132 -0.071 -0.278 -0.472
2 -0.355 -0.168 -0.223 -0.368
3 -0.592 -0.256 -0.222 -0.373
6 -0.762 -0.305 -0.221 -0.375

12 -0.802 -0.208 -0.232 -0.391

Panel D. Maximum
1 0.986 0.386 0.037 0.084
2 0.945 0.343 0.103 0.189
3 0.921 0.337 0.163 0.272
6 0.847 0.319 0.165 0.245

12 1.209 0.319 0.076 0.116

Panel E. Daily Autocorrelation
1 0.946 0.933 0.946 0.957
2 0.962 0.946 0.958 0.969
3 0.969 0.956 0.964 0.972
6 0.979 0.975 0.976 0.980

12 0.977 0.983 0.983 0.984
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Table IX
Out-of-sample Option Investment P&L Statistics from the Risk-return Tradeoff Strategy

Entries report the annualized mean (Panel A), the annualized standard deviation (Panel B), and the
annualized information ratio (Panel C) of the out-of-sample option investment P&L from the risk-
return tradeoff strategy on each option spread. Within each panel, each row is one maturity, and
each column is one moneyness level. The last column under “All” represents the P&L for investing
in all the four moneyness levels at each maturity. Each investment is made vega neutral with the
at-the-money contract of the same maturity. The investment in each contract at each time is based
on the difference between the observed implied variance and its forecasted breakeven level.

τ\x -1.0 -0.5 0.5 1.0 All

Panel A. Annualized Mean
1 0.582 0.060 0.060 0.182 0.884
2 1.109 0.195 0.104 0.305 1.713
3 1.053 0.191 0.105 0.311 1.660
6 0.822 0.160 0.101 0.304 1.387

12 0.517 0.109 0.082 0.254 0.962

Panel B. Annualized Standard Deviation
1 1.298 0.258 0.166 0.524 1.689
2 0.624 0.107 0.060 0.183 0.888
3 0.417 0.077 0.047 0.147 0.638
6 0.238 0.047 0.033 0.109 0.401

12 0.146 0.029 0.023 0.079 0.252

Panel C. Annualized Information Ratio
1 0.45 0.23 0.36 0.35 0.52
2 1.78 1.82 1.75 1.67 1.93
3 2.52 2.47 2.25 2.11 2.60
6 3.46 3.39 3.06 2.79 3.46

12 3.53 3.76 3.59 3.21 3.81
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Table X
Summary Statistics on the Statistical Arbitrage Strategy Investment Weights

Entries report the summary statistics of the investment weights on each option spread for the sta-
tistical arbitrage strategy, where the weights are determined by the cross-sectional fitting errors on
the implied variance smile at each maturity.

τ\x -1.0 -0.5 0.5 1.0

Panel A. Sample Average
1 -0.004 -0.012 -0.028 0.002
2 -0.008 0.005 -0.021 0.003
3 -0.013 0.019 -0.026 0.007
6 -0.016 0.027 -0.047 0.019

12 -0.015 0.011 -0.056 0.016

Panel B. Standard Deviation
1 0.053 0.135 0.081 0.074
2 0.049 0.137 0.086 0.074
3 0.047 0.137 0.087 0.077
6 0.038 0.121 0.080 0.070

12 0.038 0.108 0.076 0.063

Panel C. Minimum
1 -0.457 -0.883 -0.408 -0.853
2 -0.375 -0.723 -0.350 -0.619
3 -0.316 -0.559 -0.361 -0.603
6 -0.298 -0.447 -0.339 -0.570

12 -0.382 -0.386 -0.511 -0.596

Panel D. Maximum
1 0.227 0.648 0.372 0.240
2 0.177 0.574 0.325 0.196
3 0.142 0.562 0.361 0.217
6 0.133 0.443 0.460 0.184

12 0.109 0.382 0.312 0.169

Panel E. Daily Autocorrelation
1 0.713 0.746 0.733 0.707
2 0.786 0.817 0.826 0.855
3 0.801 0.858 0.855 0.886
6 0.806 0.906 0.894 0.913

12 0.813 0.933 0.914 0.895
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Table XI
Out-of-sample Option Investment P&L Statistics from the Statistical Arbitrage Strategy

Entries report the annualized mean (Panel A), the annualized standard deviation (Panel B), and
the annualized information ratio (Panel C) of the out-of-sample option investment P&L from the
risk-return tradeoff strategy on each option spread. Within each panel, each row is one maturity,
and each column is one moneyness level. The last column under “All” represents the P&L for
investing in all the four moneyness levels at each maturity. Each investment is made vega neutral
with the at-the-money contract of the same maturity. The investment in each contract at each time
is based on the fitting errors from a cross-sectional regression on the implied variance smile.

τ\x -1.0 -0.5 0.5 1.0 All

Panel A. Annualized Mean
1 0.075 -0.019 0.015 0.008 0.079
2 -0.006 0.037 0.019 -0.014 0.035
3 -0.026 0.050 0.024 -0.015 0.032
6 -0.027 0.032 0.035 -0.019 0.021

12 -0.023 0.010 0.037 -0.010 0.014
Panel B. Annualized Standard Deviation
1 0.220 0.249 0.113 0.218 0.369
2 0.138 0.111 0.048 0.085 0.061
3 0.103 0.095 0.041 0.075 0.047
6 0.050 0.059 0.034 0.065 0.036

12 0.029 0.035 0.021 0.040 0.020
Panel C. Annualized Information Ratio
1 0.31 -0.08 0.13 0.03 0.23
2 -0.04 0.34 0.38 -0.15 0.53
3 -0.25 0.53 0.58 -0.19 0.66
6 -0.54 0.55 1.04 -0.28 0.61

12 -0.79 0.28 1.77 -0.24 0.68
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Figure 1. Implied volatility change correlation with the three-month at-the-money option.
The plots show the cross-correlation estimates of percentage implied volatility changes between
the reference three-month at-the-money option contract and contracts at other maturities and mon-
eyness. Each line represents the correlation variation across moneyness at one maturity. The solid
line denotes the correlation estimates with contracts at the same three-month maturity. The two
dashed lines denote estimates with contracts at the two adjacent maturities at two and six months.
The two dash-dotted lines denote estimates with contracts at further apart maturities at one and 12
months.
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Panel A. Explained Variation Panel B. Loading of the 1st PC
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Panel C. Loading of the 2nd PC Panel D. Loading of the 3rd PC
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Figure 2. Principal component analysis on implied volatility movements. Panel A uses bar
charts to show the explained variation of the top ten principal components on the 45 interpolated
implied volatility change series. Panels B-D plot the loadings of the first, second, and third prin-
cipal component, respectively, across different moneyness at different maturities, with the solid
lines denoting the one-month maturity, dashed lines denoting two- and three-month maturities,
and dash-dotted lines denoting six- and 12-month maturities.
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