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Abstract
Volatility is a common risk measure in the field of finance that describes the magnitude of an
asset’s up and down movement. From only being a risk measure, volatility has become an asset
class of its own and volatility derivatives enable traders to get an isolated exposure to an asset’s
volatility. Two kinds of volatility derivatives are volatility swaps and variance swaps.

The problem with volatility swaps and variance swaps is that they require estimations of the
future variance and volatility, which are used as the strike price for a contract. This thesis
will manage that difficulty and estimate strike prices with several different models. I will de-
scribe how the variance strike for a variance swap can be estimated with a theoretical replicating
scheme and how the result can be manipulated to obtain the volatility strike, which is a tech-
nique that require Laplace transformations. The famous Black-Scholes model is described and
how it can be used to estimate a volatility strike for volatility swaps. A new model that uses the
Greeks vanna and vomma is described and put to the test. The thesis will also cover a couple
of stochastic volatility models, Exponentially Weighted Moving Average (EWMA) and Gener-
alized Autoregressive Conditional Heteroskedasticity (GARCH).

The models’ estimations are compared to the realized volatility. A comparison of the mod-
els’ performance over 2015 is made as well as a more extensive backtesting for Black-Scholes,
EWMA and GARCH.

The GARCH model performs the best in the comparison and the model that uses vanna and
vomma gives a good result. However, because of limited data, one can not fully conclude that
the model that uses vanna and vomma can be used when calculating the fair volatility strike for
a volatility swap.
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Sammanfattning
Volatilitet är ett vanligt riskmått i finansbranschen som beskriver storleken på en tillgångs
upp- och nedgångar i pris. Från att enbart vara ett riskmått så har volatilitet blivit ett eget
tillgångsslag med volatilitetsderivat som möjliggör för investerare att få en isolerad exponering
mot en tillgångs volatilitet. Två typer av volatilitetsderivat är volatilitesswappar och varianss-
wappar.

Svårigheten med volatilitets- och variansswappar är hur strikepriset för dem ska beräknas. Den
här uppsatsen hanterar den svårigheten och beräknar strikepriser med olika modeller. Jag kom-
mer först undersöka en teoretiskt replikeringsmetod för att bestämma strikepriset för en vari-
ansswap och hur strikepriset för en volatilitetsswap kan tas fram från resultatet, en teknik som
kräver Laplacetransformationer. Den kända modellen Black-Scholes beskrivs och hur den kan
avändas till att estimera strikepriser för volatilitetsswappar. En helt ny modell som använder
sig av vanna och vomma, greker från Black-Scholes modell, beskrivs och testas. Uppsatsen
täcker även in de två stokastiska volatilitetsmodellerna Exponentially Weighted Moving Aver-
age (EWMA) och Generalized Autoregressive Conditional Heteroskedasticity (GARCH).

Modellernas volatilitetsestimat jämförs med den realiserade volatiliteten. En jämförelese mel-
lan modellernas resultat över data från 2015 är gjord. För Black-Scholes, EWMA och GARCH
så innehåller resultatet även en lång backtesting.

GARCH-modellen presterar bäst under jämförelsen och modellen som använder sig av vanna
och vomma ger ett bra resultat. På grund av begränsningar i mängden data så kan det inte
säkerställas till fullo att modellen med vanna och vomma fungerar när strikepriset för en volatilitetss-
wap ska beräknas.
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1 Introduction
This introductory chapter first explains the background of the thesis in Section 1.1. Section
1.2 explains why volatility derivatives exists and what models that will be used when valuing
volatility and variance swaps. A problem statement is formulated in Section 1.3 as well as an
approach for completing the thesis.

1.1 Background
The financial markets have evolved significantly over the last decades. It now consists of many
complex derivatives such as exotic options, swaps, warrants and futures (Hull, 2012). During
the 2008 financial crisis, shortcomings in risk management and the supervision of banks and fi-
nancial institutions were exposed. As a result of poor risk management policies and ineffective
supervision, the investment bank Lehman Brothers went bankrupt and caused instability across
the global financial system (Adu-Gyamfi, 2016). One key factor of a solid risk management
system for a financial institution is to value the derivatives in their portfolios accurately.

Volatility is a common risk measure in the field of finance that describes the magnitude of
an asset’s up and down movement. It is measured as the standard deviation of logarithmic re-
turns and the variance is simply the variance of the returns, or volatility squared. From only
being a risk measure, volatility has become an asset class of its own and volatility derivatives
enable traders to get an isolated exposure to an asset’s volatility. Volatility derivatives is a way
for traders to generate profits by speculating on future realized volatility/variance of an asset if
they sense to know something about the near future. As shown later, volatility derivatives can
also be used in a hedging strategy for avoiding future losses.

A difficulty with volatility swaps and variance swaps is how to calculate the fair volatility/vari-
ance strike. This thesis will manage that difficulty on how to accurately calculate the volatility
strike and variance strike. The calculations can be done using several different models. I will
first look at a theoretical replicating scheme for estimating the variance strike for a variance
swap. In theory, the replication require an infinite number of European put and call options but
as later shown, the replication can be approximated with a finite number of options. How the
conversion from obtaining the volatility strike from an estimated variance strike follows from the
replicating scheme, which is a technique that require Laplace transformations because of a con-
vexity error in the payoff for the variance swap. The famous Black-Scholes model which can be
used to generate a closed-form formula for options is described and how it can be used together
with market prices of European options to estimate a volatility strike for volatility swaps. The
thesis will also cover a couple of stochastic volatility models, Exponentially Weighted Moving
Average (EWMA) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH).
When evaluating these models, they are backtested for a long period of time.

Recently, a new model has come to life that uses vanna and vomma, which are Greeks from the
Black-Scholes model, to approximate the fair volatility strike. The model is brand new which
is why is does not even have a name yet, but it will hereafter in the thesis be referred to as the
Vanna-Vomma model (VV model for short). Because it is new, the accuracy of this model has
not been put to the test, besides from a comparison to the stochastic volatility model Heston,
in the article that describes it (Rolloos & Arslan, 2017). One goal of this thesis is therefore to
conclude if the model can be used or not when calculating the volatility strike for a volatility
swap. A summary of the different models and a brief explanation of them are described in Table
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1 below.

To the extent of the author’s knowledge, there are no studies that makes a thorough comparison
of the models. Comparing the models’ performances can be complicated because of the dif-
ferent ways of measuring them. The estimated fair volatility/variance can be compared to the
realized volatility/variance systematically over a time period with market data. The result can
be used to observe which model that has the lowest mean deviation from the realized volatili-
ty/variance. Another measure is to investigate the distribution of the deviations and find which
model that has the smallest extreme outcomes, i.e. the distribution with the thinnest tail. How
user friendly the model is, measured in implementation difficulty and time complexity, will
also effect the model’s overall valuation. The purpose of this thesis is to, beside from exam-
ine the new Vanna-Vomma model, apply and evaluate several models for calculating the fair
volatility/variance strike and test their performance based on the several measures.

Table 1: Overview of the models.

Model Description Ref.

Black-Scholes (BS)
Estimates the fair volatility/variance strike
from the implied volatility of option prices. 1,2,3

Replicating scheme
Estimates the fair variance strike
with a discrete set of European options. 4,5

Vanna-Vomma model
(VV)

Uses the greeks Vanna and Vomma from the
BS model to derive a formula to
approximate the fair volatility strike.

6

EWMA
Uses historical returns to forecast volatility/variance.
Gives recent observations greater weight when
forecasting and the weights descends exponentially.

7,8

GARCH
Uses historical returns to forecast volatility/variance.
It is an autoregressive model, ie. it depends on its own
previous values.

7,8

1: Black & Scholes, 1973. 2: Flemming, 1998. 3: Christensen & Prabhala, 1998. 4: Demeterfi et. al,
1999. 5: Broadie & Jain, 2008. 6: Rolloos & Arslan, 2017. 7: Danielsson, 2011. 8: Alexander, 2008.

1.2 Problem statement
• Which model has the best performance when calculating the fair variance/volatility strike?
• Can the VV-model be used when calculating the fair volatility strike for a volatility swap?

1.3 Approach
When evaluating the models, the comparisons are done with the models’ estimations of volatil-
ity and realized volatility. Each model is implemented to calculate volatility strikes and the
estimations are then compared to realized volatility of historical data. The calculations in the
VV-model are made from European put and call options that are written on the Standard &
Poor’s 500 stock index. The parameter estimations for EWMA and GARCH are made from
daily returns from the same stock index. The realized volatility is calculated from Standard &
Poor’s 500. The parameter estimations for all formulas, as well as the EWMA and GARCH
simulations are made in Matlab.
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The models’ performance is measured on the mean value of the differences from the estima-
tions and the realized volatility. The standard deviation of the differences is another measure
that is used and compared between the models. The tails of the distribution of the differences
between estimations and realized volatility is measured by the the 1st and 99th percentile of the
differences. The 1st percentile is denoted as the lower tail and the 99th percentile is denoted as
the upper tail.

1.4 Outline
The rest of the thesis that follows from this introduction begin with a section that defines volatil-
ity and variance together with a description of volatility swaps and variance swaps. The de-
scription of volatility and variance swaps explains how they are structured and why financial
institutions trade them.

Two sections that describe the different models are presented afterwards in Section 3 and Section
4, where Section 3 describe deterministic volatility models and Section 4 describes stochastic
volatility models. What data that is used and how the models are implemented are explained in
Section 5. The results when the models’ estimations are compared to the realized volatility are
presented in Section 6.

Ending this thesis, some discussions of the result are presented in Section 7, which covers
conclusions, limitations and possible extensions and finally an outlook for volatility derivatives.
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2 Volatility and variance swaps
This chapter gives the reader an overview of volatility and variance swaps. Section 2.1 de-
fines volatility and variance and describes how they are calculated. The phenomenon known as
volatility clustering is explained and proven by using historical returns of the Standard & Poor’s
500. With the proven fact that volatility moves in clusters, it is explained that the volatility in
the Standard & Poor’s 500, and other stock indexes, can be slightly predictable.

An overview of swaps in general is described in section 2.2 together with the structure and the
components for a variance swap and a volatility swap. In the end of this section, the reader gets
explanations of the motives to trade volatility and variance swaps.

2.1 What is volatility and variance?
Volatility is often used as a risk measure for an asset. An asset with high volatility has larger
movements of the return compared to an asset with lower volatility, and is therefore riskier to
hold as an investor. Working with a discrete sample of n observations in asset prices, volatility
is defined as the standard deviation of the logarithmic returns with the assumption that the av-
erage daily return is zero.

We are interested in calculating a realized volatility for an underlying asset of a swap contract
with maturity T years. The discrete annualized volatility is denoted as σd(0, T, n), where the
subscript indicates that the sampling is discrete. To calculate the annual realized volatility over
the interval [0, T ] with n observations with equal length, the following formula can be used

σd(0, T, n) =

√√√√ AF

n− 1

n−1∑
i=0

(
log
(
Si+1

Si

))2

, (1)

where Si is the price of the asset at time i. AF is an annualization factor and is defined as n/T .
It has the purpose to make the calculated realized volatility measured as an annual volatility. For
instance, when calculating the realized volatility with daily observations for a volatility swap
with a maturity of one year, the annualization factor is 252, as the number of trading days in
one year is 252.

Another way of calculating the volatility is to view it as a continuous sample of fluctuations.
The continuous volatility is often used as a way of describing the realized volatility for an asset
in a swap contract (Brockhaus & Long, 2000). The continuous volatility over [0, T ] is

σc(0, T ) =

√
1

T

∫ T

0

σ2
udu. (2)

The discrete volatility approaches the continuous volatility as the number of observations, n,
approaches infinity (Broadie & Jain, 2008)

σc(0, T ) = lim
n→∞

σd(0, T, n). (3)

Variance is another statistical measure of how much the asset’s returns deviate from its mean,
and it is the squared volatility. The formula for calculating the realized variance for a variance
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swap with maturity T ,

σ2
d(0, T, n) =

AF

n− 1

n−1∑
i=0

(
log
(
Si+1

Si

))2

, (4)

is Equation (1) squared.

Variance can also take the form as a continuous sample of fluctuations and is often used as a
way of describing the realized variance for an asset in swap contract (Brockhaus & Long, 2000).
For a variance swap with maturity T , the continuous realized variance of the underlying asset is
denoted by σ2

c (0, T ) and defined as

σ2
c (0, T ) =

1

T

∫ T

0

σ2
udu. (5)

2.1.1 Volatility clustering

Research of financial returns has shown an interesting fact regarding its volatility. One charac-
teristic that can be seen in most financial returns is that the volatilities of financial returns tends
to cluster together. This phenomenon is called Volatility clustering and is one of the stylized
facts of financial returns (Danielsson, 2011).

The Chicago Board Options Exchange (CBOE) manage a Volatility Index, denoted VIX, that
measure the market’s expectation of volatility over a 30 day period from observed option prices.
It is a widely used measure of market risk and is also known as the ”investor fear gauge”, ”fear
index” or ”risk index”. Since its introduction in 1993, it has increased the interest of volatil-
ity derivatives and CBOE now offer as much as 25 different volatility products for investors to
trade.

Studying Figure 1, which illustrate the evolution of the VIX from 1990 to 2016, the volatil-
ity clustering can easily be observed. During the years between 1991 and prior to the burst of
the dot-com bubble in 1999, the volatility levels stayed fairly low, but then increased and had a
constant higher level for the following four years approximately. Afterwards, another period of
low volatility took place during 2003 to 2007. The following years showed an enormous spike
in the volatility levels during the financial crisis, which was the start of another cluster with
higher volatility.

Another way of illustrating volatility clusters is by using an autocorrelation function (ACF) on
the returns. The ACF measures how correlated a one day return is with returns from previous
days. Volatility does not consider if the returns are negative of positive. To measure the auto-
correlation independently of the direction of the return, the squared returns can be investigated
instead and measure if they are correlated with previous squared returns. Figure 2 shows an
ACF plot of daily S&P500 squared returns with lags (number of previous days) on the x-axis.
The figure clearly shows how the squared return have a correlation to the squared returns that
occurred in the recent days. A high volatility today will most likely result in a high volatility
tomorrow and if the volatility is low today, it is likely to be low tomorrow. The correlation de-
creases exponentially with the number of lags. For example, the volatility today will correlate
with yesterday’s volatility but it will have no correlation with the volatility 1000 days ago.
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Figure 1: Evolution of the Volatility Index. The data was retrieved from Yahoo Finance on
2017-03-10.

Volatility clusters implies that the volatility in the near future is slightly predictable as it auto-
correlates with a few number of lags. This is a fact that a lot of models for forecasting volatility
takes into account and will be important when valuing volatility and variance swaps.
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Figure 2: Autocorrelation plot of daily Standard & Poor’s 500 squared returns from 1950 to
2016. The data was retrieved from Yahoo Finance on 2017-03-10.
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2.2 Swaps
A swap is an agreement between two parties to exchange cash flows in the future. The first swap
contract was introduced in the beginning of the 1980s and the market for swaps has since then
grown rapidly (Hull, 2012). In the financial industry, there exist a lot of different swaps but the
two most common are interest rate swaps and currency swaps. There are a couple of variants
of interest rate swaps but the most common are the plain vanilla interest rate swap (Hull, 2012).
In a plain vanilla interest rate swap one of the parties agrees to pay a cash flow that is equal to a
predetermined fixed rate of a notional amount and in return, it receives interest at a floating rate
of the same notional amount. The floating rate is usually the London Interbank Offered Rate
(LIBOR). In a currency swap, the parties exchange cash flows in different currencies. Other
examples of swap contracts are credit default swaps, currency swaps, compounding swaps and
equity swaps (Hull, 2012). The development of new swap contracts is described by John C.
Hull as:

”Swaps are limited only by the imagination of financial engineers and the desire of corporate
treasurers and fund managers for exotic structures” (2012, page 175).

Variance swaps and volatility swaps are thus only two varieties in a wide spectrum of swaps.
Swaps are traded Over-The-Counter and are categorized as OTC derivatives, which implies that
they are traded between financial institutions or companies (Hull, 2012). Variance swaps and
volatility swaps can be written on single stocks, stock indexes or on other assets.

2.2.1 A variance swap contract

A variance swap contract consist of three main parts, the realized variance, denoted σ2
d(0, T, n),

the fair variance strike, denotedKvar, and a notional amount, denotedNvar. The notional amount
is agreed by the two counterparties when entering a swap. When trading variance swaps, it is
common to define the notional amount in terms of volatility that is expressed as a vega notional.
The vega notional is the profit or loss for every 1% change in volatility (Bossu, Strasser &
Guichard, 2005). The notional amount for a variance swap is,

Nvar =
Nvega

2×
√
Kvar

. (6)

The realized variance is described in Section 2.1 and in Equation (4). It is the variance that
has occurred in the assets returns on the interval [0, T ] or during the lifespan of the contract.
The fair variance strike is predetermined in the beginning of the contract. It is set to be equal
to the expected future realized variance over the interval [0, T ]. Assuming that the variance is
calculated discretely, the variance strike is chosen such that

Kvar = E0[σ
2
d(0, T, n)]. (7)

The fair variance strike is also commonly referred to as the variance strike price, despite the fact
that it is a level of variance and not a price. The strike price and the realized variance are both
quoted in annual terms. It is also common that the variance strike price is quoted as a volatility
level squared, Kvar = (25%)2 for example (Demeterfi et al., 1999).

The two counterparties exchange cash flows at the end of the contract, as illustrated in Figure 3.
Counterparty 1 pays the notional amount multiplied with the variance strike price and receives
the notional amount multiplied with the realized variance from Counterparty 2. Thus, the payoff

7



Counterparty 1 Counterparty 2
N

var
*K

var

N
var

* 2
d
(0,T,n)

Figure 3: Illustration of the exchange of cash flows for the two counterparties in a variance
swap

of the variance swap at maturity is, for Counterparty 1 in Figure 3, the notional amount multi-
plied with the difference between the variance strike and the realized variance. That means that
the expected payoff of a variance swap is zero at initiation

payoff = Nvar × (σ2
d(0, T, n)−Kvar). (8)

2.2.2 A volatility swap contract

The structure of a volatility swap is very similar to a variance swap. It also have a notional
amount, where the notional is expressed as the vega amount Nvega, but the volatility swap uses
the realized volatility over the interval [0, T ] instead of using the realized variance. How to
calculate the realized volatility is described in Section 2.1 and in Equation (1).

The fair volatility strike, Kvol, is chosen in the same way as for the variance swap. It is set to be
equal to the expected future realized volatility over [0, T ] (Rolloos & Arslan, 2017),

Kvol = E0[σd(0, T, n)]. (9)

Counterparty 1 Counterparty 2
N

vega
*K

vol

N
vega

*
d
(0,T,n)

Figure 4: Illustration of the exchange of cash flows for the two counterparties in a volatility
swap

The two counterparties in a volatility swap exchange cash flows in the same way as for the
variance swap. The cash flows that occur in a volatility swap is illustrated in Figure 4. For
Counterparty 1 in Figure 4, the volatility swap has the following payoff at expiry date T ,

payoff = Nvega × (σd(0, T, n)−Kvol). (10)

2.3 Usage of volatility and variance swaps
Why trade with volatility? Stock investors trade stocks when they think that they know the
direction of the stock market or of the individual stocks. Bond investors act in the same way,
as they believe to know the direction of future interest rates. Derivatives have been invented as
tools to generate extra profits, but also as a way of protecting capital and hedging of portfolios
(Hull, 2012). Volatility and variance swaps are no different than other derivatives and enables
financial institutions and banks to speculate on future volatility or variance and to hedge their
portfolios to protect capital from losses.
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2.3.1 Speculation

Volatility traders may have some idea of what the future volatility levels will be and can there-
fore use volatility swaps and variance swaps to speculate and generate profits. The investor
can also believe that the current volatility levels, or that the expectation of future volatility, are
incorrect making volatility swaps a good way to make money on that error.

Happenings like the release of companies’ annual reports, upcoming elections and other po-
litical situations are common examples that may result in increasing volatility in the financial
markets.

2.3.2 Hedging

Having volatility derivatives in a portfolio is a good diversification strategy to reduce the mar-
ket risk. During financial turmoil and difficult times in the finance industry, the volatility levels
tends to increase. Volatility and financial stock returns are therefore negatively correlated, which
makes usage of volatility swaps and variance swaps a good way to reduce losses and for protec-
tion of capital. Figure 5 illustrates the evolution of the Volatility Index (VIX) together with the
Standard & Poor’s 500 stock index (S&P500). The negative correlation is especially noticeable
during the 2008 financial crisis, where the value of the S&P500 fell substantially and the level
of the VIX rose to an all time high.

It might be very difficult to know beforehand that a market crash is about to emerge. However,
investors who could sense that the financial crisis was coming their way and held a long position
in some volatility swaps and/or variance swaps, would have reduced their losses significantly.

Another way of reducing losses in a market crash is to by put options. The upside of using
volatility swaps or variance swaps rather than put options is that if the market instead rises, the
volatility and variance swaps can still generate a profit but the put options will be worth zero.
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Figure 5: Evolution of the Volatility Index and Standard & Poor’s 500. The data was retrieved
from Yahoo Finance on 2017-03-10.

3 Valuation using deterministic volatility models
This section covers deterministic volatility models for calculating the variance strike for a vari-
ance swap and for calculating the volatility strike for a volatility swap. How the variance strike
can be approximated by a portfolio of a discrete set European options is described in Section
3.1 and Section 3.2 describes a way to approximate the volatility strike from a variance strike, a
technique that require Laplace transformations.

Section 3.3 covers the Black-Scholes model. The model is firstly described together with the
assumptions that are made in the model. With the assumptions and model in place, an equation
for pricing European call and put options are derived, which is used for calculating the implied
volatility from option prices in the market. The implied volatility is an expectation of future
volatility. The connection to the volatility indexes VIX, VXV and VXMT provided by CBOE
are also described in this section as well as how they can be used as estimations of volatility.

The Vanna-Vomma model is closing this section. Vanna and vomma are Greeks from the Black-
Scholes model and are defined in Subsection 3.4.1. Some flaws in the Black-Scholes model,
regarding the implied volatility, is presented and how the Vanna-Vomma model handles that
problem. The approach to approximate the volatility strike using vanna and vomma is described
in Subsection 3.4.2 and the motivation of why it works theoretically is presented in Section
3.4.3.

3.1 Deriving the fair variance strike with a replication scheme
3.1.1 Assumptions

A variance swap contract is straightforward and its payoff is simple to understand with its three
parts. The notional amount does not require any calculations since it is only a number that the
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counterparties agrees to and the realized variance can be calculated with Equation (4). The dif-
ficulty is how to accurately calculate the variance strike, Kvar. Deriving the fair variance strike
can be made without complex models by using a replicating portfolio scheme. The fair variance
strike can in that way be determined with a portfolio that replicates the variance swap contract.
(Demeterfi et al., 1999).

The replicating portfolio must be the same as the variance strike by arguments of an arbitrage
free market. To replicate the swap, the portfolio need to consist of a static long position in a
forward contract on the underlying asset and short position in a log-contract that is dynamically
re-hedged. A log contract is a theoretical exotic option that depends on the logarithm of the
underlying asset’s price. The log contract is not traded, but its payoff can be replicated using a
range of European call and put options with different strike prices (Demeterfi et al., 1999).

An assumption about the underlying asset of the replicating portfolio has to be made. The
assumption is that the asset has similar characteristics to a Geometric Brownian Motion (GBM),

dSt = µ(t, ...)Stdt+ σ(t, ...)StdWt, (11)

with the difference that the drift term µ and the continuously-sampled volatility σ are arbitrary
functions of time and other parameters, compared to being constants in a GBM (Demeterfi et al.,
1999). The stochastic part of the equation is determined by the Wiener process, Wt, which to-
gether with the diffusion term, σ, make up the deviations from the expected return. The Wiener
process has the following properties (Björk, 2009):

1. W0 = 0.
2. The process has independent increments. Thus, if r < s ≤ t < u then Wu − Wt and
Ws −Wr are independent stochastic variables.

3. For s < t, the stochastic variable Wt−Ws has the Gaussian distribution N [0,
√
t− s], i.e.

it is normally distributed with mean zero and standard deviation
√
t− s.

4. W has continuous trajectories.

The asset is assumed to pay no dividends for simplicity. With the assumption in Equation (11),
Demeterfi et al. (1999) show that the fair variance strike price is given by the equation

Kvar =
2

T

[
rT −

(
S0

S∗
erT − 1

)
− log

(
S∗
S0

)
+ erT

(∫ S∗

0

1

K2
P (K)dK +

∫ ∞
S∗

1

K2
C(K)dK

)]
.

(12)

P (K) and C(K) respectively denotes the fair values for European put and call options that
are written on the underlying asset described above, with strike price K and maturity T . The
integrals in Equation (12) sum up an infinite number of European put and call options with
continuous strike spectra and r is the risk-free discount rate. The options are written on the
same underlying asset as the variance swap whose strike is approximated with the replication.
The maturity of the options are the same as the maturity of the variance swap. S∗ define the
moneyness, or ratio between the underlying assets price and the strike price, boundary between
the put and call options. The moneyness boundary can be seen as the approximate at-the-money
(ATM) forward stock level (Demeterfi et. al., 1999). ATM is the moneyness where the strike
price is equal to the price of the underlying asset. For simplicity, S∗ can be set equal to S0 which
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gives the simplification

Kvar =
2

T

[
1 + rT − erT + erT

(∫ S0

0

1

K2
P (K)dK +

∫ ∞
S0

1

K2
C(K)dK

)]
. (13)

With the assumption that S∗ = S0, the portfolio consist of one ATM call option, one ATM put
option and the rest of the options are out-of-the-money (OTM).

3.1.2 Replication with a discrete set of options

Because there are only a finite number of available options in the market which have a discrete
set of strikes, the hypothetical portfolio implied by the integrals in Equation (12) require an
approximation by a portfolio of finite traded options. As shown below, the payoff at maturity
for the hypothetical portfolio in Equation (12) is

f(ST ) =
2

T

[
ST − S∗
S∗

− log
(
ST
S∗

)]
. (14)

This is also the payoff of a portfolio with two assets, a future on the underlying asset St with
strike price S∗ and a log contract on S∗, both with maturity T . The market price of these port-
folios, if they were traded on the market, would be the same by argument of an arbitrage-free
market. In practice, neither of the two portfolios are traded but as shown shortly, the payoff
function in Equation (14) can be approximated by a finite number of traded options. This will
be the replicating portfolio and because the payoff at maturity for the hypothetical option port-
folio can be replicated with a discrete set of options, their current market values are the same
and will provide an estimate of the strike price in Equation (12).

If the present value of the portfolio with a finite number of options is denoted ΠCP, and is
substituted with the hypothetical portfolio in Equation (12), the approximation for Kvar is

Kvar ≈
2

T

[
rT −

(
S0

S∗
erT − 1

)
− log

(
S∗
S0

)]
+ erTΠCP, (15)

or when S∗ = S0

Kvar ≈
2

T

[
1 + rT − erT

]
+ erTΠCP. (16)

3.1.3 Derivation of the payoff function and how it can be approximated

To determine that Equation (14) is indeed the payoff at maturity of the hypothetical portfolio, a
derivation is made with a simple example. It is given that put options have the payoff at maturity
of max(K − ST , 0) and call options have the payoff at maturity of max(ST − K, 0). Assume
that the stock price at maturity, ST , is in the interval (0, S∗). The call options have zero value
and the payoff only depends on the put options, resulting in the following payoff for ΠCP
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f(ST ) =
2

T

[∫ S∗

ST

1

K2
(K − ST )dK + 0

]
=

2

T

[∫ S∗

ST

1

K
− ST
K2

dK
]

=
2

T

[[
log(K) +

ST
K

]S∗

ST

]
=

2

T

[
log(S∗)− log(ST ) +

ST
S∗
− ST
ST

]
=

2

T

[
ST − S∗
S∗

− log
(
ST
S∗

)]
,

(17)

which is the same as Equation (14). If we investigate a different case where the stock price
at maturity is instead in the interval (S∗,∞), the same result is obtained. In this case, the put
options have zero value instead as in the previous example and the payoff only depends on the
call options

f(ST ) =
2

T

[
0 +

∫ ST

S∗

1

K2
(ST −K)dK

]
=

2

T

[∫ ST

S∗

ST
K2
− 1

K
dK
]

=
2

T

[[
−ST
K
− log(K)

]ST
S∗

]
=

2

T

[
−ST
ST

+
ST
S∗
− log(ST ) + log(S∗)

]
=

2

T

[
ST − S∗
S∗

− log
(
ST
S∗

)]
.

(18)

To complete the argument, it only remains to show how the payoff in Equation (14) can be repli-
cated by a finite set of European call and put options. Assuming that you can trade European
call options with strikesKc

0 = S∗ = S0 < Kc
1 < Kc

2 < ... and European put options with strikes
Kp

0 = S∗ = S0 > Kp
1 > Kp

2 > ... The strike prices’ subscript indicates the individual number
of the option and the superscript indicates whether it is the strike price for a put or for a call
option. Using these options with individual weights, the payoff, f(ST ), can be approximated
with a piece-wise linear function. The first segment to the right of S∗ is the same as the payoff
of a call option with strike K0. The weight of that option is determined by the slope

wc0(K
c
0) =

f(Kc
1)− f(Kc

0)

Kc
1 −Kc

0

. (19)

Figure (6) illustrate the linear approximation of the payoff curve, where the slope between K0

and Kc
1 is the weight of the call option with strike K0. The slope of the segment between the

strike prices Kc
1 and Kc

2 is steeper than the slope of the first segment, which can be explained
by the additional option that is now in-the-money and increases the payoff. The payoff of the
portfolio consisting of two options is

wc0(K
c
0)(ST −K0) + wc1(K

c
1)(ST −K1), (20)

and when deriving it with respect to ST and setting it equal to the slope of the segment it yields
the expression

wc0(K
c
0) + wc1(K

c
1) =

f(Kc
2)− f(Kc

1)

Kc
2 −Kc

1

. (21)

Since we are interested in calculating the weight wc1(K
c
1), we need to subtract wc0(K

c
0) from the
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left hand side of the expression. This yields the final expression for calculating the weight

wc1(K
c
1) =

f(Kc
2)− f(Kc

1)

Kc
2 −Kc

1

− wc0(Kc
0). (22)

Another way of understanding the equation for determining the weight of the second option is
to think that the payoff already consists of wc0(K

c
0) which need to be subtracted. Continuing

this method for all the options, the entire payoff curve for f(ST ) can be approximated. The
individual weights of each option can generally be determined by

wcn(Kc
n) =

f(Kc
n+1)− f(Kc

n)

Kc
n+1 −Kc

n

−
n−1∑
i=0

wci (K
c
i ), (23)

wpn(Kp
n) =

f(Kp
n+1)− f(Kp

n)

Kp
n −Kp

n+1

−
n−1∑
i=0

wpi (K
p
i ). (24)
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Figure 6: Linear approximation of the payoff curve with a discrete set of options.

Since the payoff at maturity for the option portfolio now is replicated with a discrete set of
options, they have the same present value. With the weights for every individual option deter-
mined, the value of the option portfolio is obtained by

ΠCP =
∑
i=0

P (Kp
i )wpi (K

p
i ) +

∑
i=0

C(Kc
i )w

c
i (K

c
i ). (25)

With the replicating portfolio defined one can use Equations (15), (23), (24) and (25) and a
discrete set of European call and put options to calculate Kvar.
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3.1.4 Numerical example

Consider an example where we can trade options with strike prices that are uniformly spaced
by five points and have a range between 50 and 110. Assume that the initial underlying stock
price S0 is 80, the risk free interest rate r is 5%, the dividend yield is zero and the maturity T
for the swap is 3 months. The ATM implied volatility is assumed to be 22%, and have a smile
(described in more detail in Subsection 3.3.3), causing the implied volatility to decrease with
one percentage point for every 5 point increase in the strike price. The discrete set of options
are illustrated in Table 2.

Table 2: Example of a portfolio consisting of European options used for calculating the vari-
ance strike with the replication scheme.

Option Strike Volatility (%) Weight BS price Contribution
Put 50 28 16.08 0.0006 0.0102
Put 55 27 13.28 0.0054 0.0713
Put 60 26 11.15 0.0319 0.3552
Put 65 25 9.50 0.1407 1.3363
Put 70 24 8.18 0.4829 3.9524
Put 75 23 7.13 1.3293 9.4741
Put 80 22 3.26 3.0127 9.8264
Call 80 22 3.00 4.0065 12.0219
Call 85 21 5.55 1.8140 10.0603
Call 90 20 4.95 0.6342 3.1365
Call 95 19 4.44 0.1589 0.7052
Call 100 18 4.01 0.0260 0.1040
Call 105 17 3.63 0.0025 0.0089
Call 110 16 3.31 0.0001 0.0004

Total: 51.0631

The weights in Table 2 are calculated using Equations (23) and (24) and the option values are
determined using Black-Scholes formula for put and call options. The contribution of every
individual option is its weight multiplied with its BS price. The sum of all contributions make
up the total cost of the portfolio and is the value for ΠCP according to Equation (25). One can
notice that the options that have a strike price close to the underlying stock price are the ones
that contributes most to the total cost of the portfolio. The contributions then decrease as the
options are more out-of-the-money and the reason for that is mostly because of the decreasing
option value. Compared to the put options, the contributions decrease more rapidly for the call
options as they become more and more out-of-the-money. This effect occur because the weight
and the option price both decreases as the call options move out of the money, compared to the
put options where the weights increase instead.

With the value of the option portfolio determined, one can use Equation (16), since S∗ = S0 in
this case, to estimate Kvar. For the example above, the fair variance strike is (22.74%)2 which is
to be compared to the at-the-money implied volatility of 22%. The approximation is adequate
and slightly overestimate the true value. The overestimation is expected as the approximation
of ΠCP will always overestimate the true value, causing an overestimation of Kvar.

When applying this replication scheme in practice, it causes imperfections since there are not
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an infinite amount of options in the market to accurately replicate the log contract. Using a
discrete set of options will always overestimate the true theoretical value because of the linear
approximation of the convex payoff function (Demeterfi et al., 1999). The scheme also require
continuous purchasing of options which will be expensive in practice because of transaction
costs and bid-ask spreads. Another fact that can cause imperfections in the estimated value for
Kvar is that the calculations are made with the assumption that no jumps occur in the underlying
assets price movements, which may not replicate an assets price movement real life.

3.2 Deriving the fair volatility strike using Laplace transformations
Since volatility is the square root of variance, an approach that seem feasible up front is to use
the square root of the calculated fair variance strike with the replication scheme,

Kvol =
√
Kvar. (26)

When doing so for deriving the fair value of a volatility strike price will cause an error since
the convexity of the square root function is neglected. By calculating the payoffs for a variance
swap and volatility swap with Equations (8) and (10), the payoff convexity in realized volatility
for the variance swap is observed.
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Figure 7: Convexity error for a variance swap with strike 0.252 and Nvega = 1.

Figure 7 illustrate the payoffs for a variance swap and a volatility swap with strike 0.25 when the
realized volatility is ranged from 0.10 to 0.40. The payoff for the volatility swap is linear with
the realized volatility but the payoff for the variance swap is not. The convexity of the payoff
function for the variance swap is easily observed in the left side of the figure. The right side of
the figure show the magnitude of the convexity error as the realized volatility deviates from the
variance strike, quoted in volatility points. For the vega notional Nvega = 1 is the corresponding
notional for the variance swap, according to Equation (6), Nvar = 1

2×0.25 = 2.

The variance strike and the convexity of the square root function can however be used for
creating an upper bound for the volatility strike (Broadie & Jain, 2008). As a consequence
of Jensen’s inequality,

E
[√

X
]
≤
√
E [X], (27)
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and substituting the random variable X for the continuous realized variance in (27) we get the
upper bound for Kvol (Rolloos & Arslan, 2017),

Kvol = E

√ 1

T

∫ T

0

σ2
udu

 ≤√E

[
1

T

∫ T

0

σ2
udu
]

=
√
Kvar. (28)

To deal with the convexity error, Brockhaus and Long (2000) have derived a convexity cor-
rection term with the use of a second order Taylor expansion on the square root function and
expectations under the risk-neutral measure. Starting out by defining a square root function F
as

F (x) =
√
x, (29)

which has the first and second order derivatives

F ′(x) =
1

2
√
x
, (30)

F ′′(x) = − 1

4
√
x
3 . (31)

Performing a Taylor-Series expansion for F around x0 we obtain

F (x) ≈ F (x0) + F ′(x0)(x− x0) +
1

2
F ′′(x0)(x− x0)2

≈ x
1/2
0 +

x− x0
2
√
x0
− 1

8

(x− x0)2√
x0

3

≈ x+ x0
2
√
x0
− (x− x0)2

8
√
x0

3 ,

(32)

and when choosing x = X and x0 = E[X]

√
X ≈ X + E[X]

2
√
E[X]

− (X − E[X])2

8
√
E[X]

3 . (33)

Taking expectations on both sides yields

E[
√
X] ≈ E[X] + E[X]

2
√
E[X]

− E[(X − E[X])2]

8
√
E[X]

3 , (34)

simplifying to √
E[X]− E[

√
X] ≈ Var(X)

8
√
E[X]

3 . (35)

Using the definitions for volatility strike and variance strike from Equations (26), (27) and (28)
the approximated convexity error has the form (Brockhaus & Long, 2000),√

Kvar −Kvol ≈
Var(σ2

c (0, T ))

8
√
Kvar

3 . (36)
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The magnitude of the convexity error depends on which model that is used to calculate the
strike prices. For example, when estimating the volatility strike with the Heston model or with
the Merton Jump Diffusion model, two models that are beyond the extent of this thesis, the
convexity error approximation in Equation (36) will not be accurate (Broadie & Jain, 2008).
The poor approximation will occur as a consequence of the fact that the error term will consist
of a Taylor expansion of the third and fourth order as well. The higher order Taylor expansions
makes the approximation a lot more complex and not very applicable.

The solution to the problem is to use a Laplace transformation (Broadie & Jain, 2008). This
approach presents a way to solve the volatility strike price using the variance strike price by
expressing the square root function as (Schürger, 2002)

√
X =

1

2
√
π

∫ ∞
0

1− e−sX

s
3
2

ds. (37)

Using Fubini’s theorem which makes it possible to switch the order of integration and evaluating
(37) with expectations on both sides of the equal sign, the expression evolves into

E
[√
X
]

=
1

2
√
π

∫ ∞
0

1− E
[
e−sX

]
s

3
2

ds. (38)

Substituting the random variable X in Equation (38) with the continuous realized variance we
obtain a solution formula for calculating the volatility strike. The substitution gives

Kvol = E
[√

σ2
c (0, T )

]
=

1

2
√
π

∫ ∞
0

1− E
[
e−sσ

2
c (0,T )

]
s

3
2

ds. (39)

Or equivalently when assuming discrete realized variance,

Kvol = E

[√
σ2

d(0, T, n)

]
=

1

2
√
π

∫ ∞
0

1− E
[
e−sσ

2
d (0,T,n)

]
s

3
2

ds. (40)

To solve these equations and determine the volatility strike from the variance strike, one will
have to use numerical integration techniques.

3.3 Black-Scholes model and implied volatility
3.3.1 Assumptions

It is possible to receive a volatility forecast from option prices that are observed in the market
for European options. Using the Black-Scholes model to derive an explicit formula for calcu-
lating the option prices, the expected volatility can be received through a process of algebraic
manipulation. The process consist of choosing a volatility that when used in the formula match
the observed market price of the option. The resulting volatility is referred to as the implied
volatility.

The Black-Scholes model was introduced in 1973 and has since then been widely used in the fi-
nance industry for pricing derivatives (Black & Scholes, 1973). The model include assumptions
about the underlying asset and for the market. The underlying asset, St, is assumed to fol-
low a random walk, or a geometric Brownian motion (GBM) and thus satisfying the following
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stochastic differential equation

dSt = µStdt+ σStdWt, (41)

where the drift term, µ, and the diffusion term, σ, are constants and quoted in annual terms. The
drift is the annual expected return for the asset meaning that µdt is the expected return over a
infinitesimal period of time. The Wiener process Wt is described in Subsection 3.1.1.

Other assumptions for the model are that there exist a bank account B with deterministic and
constant interest rate r, there are zero transaction costs, that St can be traded continuously in
any quantity required. Dividends are assumed to be paid continuously with yield q. With the
assumption that the stock price follow a GBM, as described in Equation (41), it is log normally
distributed,

log(St) ∼ N

[
log(St) +

(
µ− 1

2
σ2

)
(T − t), σ

√
(T − t)

]
. (42)

3.3.2 The Black-Scholes equation and formulas

With the assumptions and dynamic of the underlying asset described, we can continue to derive
a formula for pricing derivatives. The payoff for the derivatives depends on the evolution of the
underlying asset. The derivative to be priced is given the notation V (S, t) which is a function
whose value depends on time and the underlying asset’s price. A risk-neutral portfolio can be
created using an option with value V (S, t) and a quantity of the asset St. Assuming that the
portfolio consist of a long position of the option and a short position of ∆ quantities of the
asset. Using arguments of no-arbitrage, letting ∆ = ∂V (S,t)

∂St
and applying Itô’s lemma on the

portfolio dynamics, the following partial differential (PDE) equation appear. For full derivation,
the reader is referred to (Björk, 2009) and (Black & Scholes, 1973)

∂V (S, t)

∂t
+ rSt

∂V (S, t)

∂St
+

1

2
σ2S2

t

∂2V (S, t)

∂S2
t

= rV (S, t). (43)

The PDE (43) is called the Black-Scholes equation which describes the price of the option over
time (Björk, 2009). When pricing a derivative written on an underlying asset with dynamics
described in Equation (41), the payoff function has to be a solution to the Black-Scholes equa-
tion. Fortunately, this is the case for European call and put options. The payoff at maturity for
a European call option is

C(S, T ) = max(ST −K, 0), (44)

where ST is the price of the underlying asset at maturity, T and K is the strike price. For the
European put option, the payoff at maturity is

P (S, T ) = max(K − ST , 0). (45)

Solving the Black-Scholes partial differential equation using the Feynman-Kac theorem and
risk-neutral expectations of the possible outcomes for the options we get formulas for pricing
both call and put options. The formulas are called the Black-Scholes formulas and are well-
known and often used in the finance industry (Rolloos & Arslan, 2017).
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The price of a European call option is given by

CBS(St, K, σ, τ, r, q) = Ste
−qτN(d1)−Ke−rτN(d2), (46)

and the price for a European put option is given by

PBS(St, K, σ, τ, r, q) = Ke−rτN(−d2)− Ste−qτN(−d1), (47)

where τ = T − t is the time until maturity, σ is the volatility of the underlying asset and q is the
dividend yield. N(x) is the standard normal cumulative distribution function defined by

N(x) =
1√
2π

∫ x

−∞
e−

z2

2 dz, (48)

and the parameters d1 and d2 are defined as

d1 =
log
(
St
K

)
+
(
r − q + σ2

2

)
τ

σ
√
τ

, (49)

d2 = d1 − σ
√
τ . (50)

Using the Black-Scholes formulas in Equations (46) and (47) on observed market prices for Eu-
ropean call and put options it is possible to obtain a volatility forecast. The forecast is referred
to as the implied volatility, as it is the volatility that is implied by the market and option prices.
The implied volatility is extracted by finding the volatility in the Black-Scholes formulas that
match the market price of the option. The implied volatility is a market expectation of future
realized volatility and can therefore be used as a tool for valuing volatility swaps.

The volatility index, VIX, mentioned in Subsection 2.1.1 is derived from the implied volatility
from the Black-Scholes model using European options that are written on the Standard & Poor’s
500 index. The calculations are made from options with a near term maturity, making the
values of the index a 30 day forecast of volatility (CBOE, 2014). CBOE also have other indexes
that corresponds to implied volatility of options with longer maturity. The index VXV is a
volatility index that measure the 3 month implied volatility and can therefore be used as a
3 month volatility forecast. CBOE also provide an index that measure the 6 month implied
volatility, which is called VXMT and can be used as a forecast of 6 month volatility.

3.3.3 Volatility smile

Since the volatility term in the Black-Scholes model is constant, European options that are writ-
ten on the same underlying asset should have the same implied volatility regardless of the strike
price and maturity (Alexander, 2008). When the implied volatility is calculated from market
prices of options one should obtain a flat surface of the volatility level, under the assumption
that the Black-Scholes model gives the accurate value of all the options.

If the implied volatility from market values of traded options with different strike prices and
maturities are plotted in a three dimensional graph, a surface appear that is not flat. This phe-
nomenon is called the implied volatility smile, as the implied volatility follows the shape of a
smile.

Figure 8 illustrate the volatility smile phenomenon. The implied volatility surface should be a
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Figure 8: Implied volatility surface from call options that are written on the Standard & Poor’s
500 on 2017-04-19.

flat plane in the graph, but it is not. The surface is obtained from market prices of about eight
thousand call options that are written on the Standard & Poor’s 500 on 2017-04-19. The option
data is downloaded from CBOEs website.

3.4 Vanna-Vomma model
The Vanna-Vomma model proposed by Rolloos and Arslan (2017) uses Greeks from the Black-
Scholes model to determine the volatility strike for a volatility swap. As described in section
3.3.3, an option with a certain maturity have an implied volatility that depends on the strike
price because of the volatility smile. Estimations of the volatility strike done by calculating the
implied volatility of an arbitrary chosen option, with the same maturity as the volatility swap,
will differ depending on the strike price of the option. To know in advance which strike price
that corresponds to the ”correct” implied volatility is difficult. This is where the usage of the
Greeks vanna and vomma comes to the rescue, as they can determine the strike price of which
option to use to estimate the volatility strike price.

The model is very new and has therefore not been used that frequently and not tested enough to
conclude if the results are accurate. To derive the resulting formula for calculating the volatility
strike, a stochastic volatility model is included in order to motivate that the formula is correct
and applicable to reality. To start the description of the model, the required Greeks from the
Black-Scholes model are introduced.

3.4.1 Greeks

Greeks are sensitivities of how the value of an option change with the parameters of the under-
lying asset. The Greeks needed for this model are delta (∆), vega (ν), vanna (vaBS) and vomma
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(voBS) (Rolloos & Arslan, 2017):

∆call =
∂C(S, T )

∂S
= e−qTN(d1), (51)

∆put =
∂P (S, T )

∂S
= −e−qTN(−d1), (52)

νBS =
∂C(S, T )

∂σ
=
∂P (S, T )

∂σ
= Se−qTn(d1)

√
T , (53)

vaBS =
∂2C(S, T )

∂S∂σ
=
∂2P (S, T )

∂S∂σ
= −e

−qTd2
σ

n(d1), (54)

voBS =
∂2C(S, T )

∂σ2
=
∂2P (S, T )

∂σ2
=
d1d2
σ

ν. (55)

Delta measure how sensitive the option price is to the underlying asset’s price. Vega is another
sensitivity that measure how much the option price change with the underlying asset’s volatil-
ity. Vanna and vomma are second order sensitivities. Vanna is the second order derivative of
the price of the option, with respect to the underlying asset’s price and to the underlying asset’s
volatility. It can also be viewed as the sensitivity of the option delta with respect to volatility,
or equivalently, the sensitivity of the option vega with respect to the underlying asset’s price.
Vomma is the second derivative of the option price with respect to the underlying asset’s volatil-
ity.

Noticeable is that delta for both call and put options are expressed using the standard normal
cumulative distribution function, described in Equation (48) but vega and vanna instead are
expressed using the standard normal probability density function,

n(x) =
1√
2π
e−

x2

2 . (56)

The Greeks, their behavior and usage are interesting (Haug, 2003) but this model focuses on
vanna and vomma. Inspecting the formulas for vanna and vomma one can notice that they both
are proportional to d2 and that they will both be zero when d2 = 0. This fact will be vital for
deriving the result.

3.4.2 Approach

Implied volatility can be viewed as a function of the option strike price, σ(K). Using market
data, the implied volatility can be determined for any traded option with strike price K. By
interpolating, one can approximate σ(K) for any K within the traded range of strike prices.

As explained in the next section, we want to extract the implied volatility corresponding to the
strike for which both vanna and vomma are zero, that is, when d2 = 0. One can note that d2 is
an increasing function of K, and there exists a unique K such that d2 = 0. If we let Kd2 be the
strike price when d2 = 0, let σd2 be the corresponding implied volatility, use the formula for d2,
(50), and solve for K we get

Kd2 = Ste
(r−q− 1

2
σ2
d2

)T . (57)

If a unique solution, Kd2 , exists, the implied volatility σ(Kd2) gives the estimated volatility
strike for a volatility swap, that is Kvol = σ(Kd2). Thus, to calculate the volatility strike, all
one needs to do is to solve Equation (57) and find the corresponding implied volatility for that
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particular strike price.

An alternative method is to plot the vanna or vomma of all available quoted options and find
the point for which the implied volatility corresponds to a vanna or vomma that is equal to zero
(Rolloos & Arslan, 2017).

3.4.3 Motivation of the model

To motivate the accuracy of the Vanna-Vomma model one can present a stochastic volatil-
ity framework to illustrate how the result satisfies assumptions about stochastic volatility. In
a stochastic volatility framework, the dynamics of the underlying asset price process and its
volatility can be written as

dSt = rStdt− σtStdW s
t , (58)

dσt = a(σt, t)dt+ b(σt, t)dW σ
t , (59)

where dW s
t and dW σ

t are correlated Weiner processes

dW s
t dW σ

t = ρdt. (60)

The functions a(σt, t) and b(σt, t) and their parameters are calibrated so that the price of Eu-
ropean options under the stochastic volatility framework are equal to the market prices. Sup-
pose that CSV(St, t,K, T, σt) denotes the price of a European call option under the stochastic
volatility framework (58)-(60) where the parameters has been calibrated to market prices and
Cmkt(St, t,K, T ) denote the market price of the option. Then, by definition of implied volatility,

CSV(St, t,K, T, σt) = Cmkt(St, t,K, T ) = CBS(St, t,K, T, σ). (61)

Based on the work done by Hull and White (1987), Romano and Touzi (1997) and Willard
(1997), a connection between the stochastic volatility price and the Black-Scholes price was
established by Rolloos and Arslan (2017),

CSV(St, t,K, T, σt) = Et

[
CBS(StM(t, T, ρ), t,K, T, σc(t, T )

√
1− ρ2)

]
, (62)

where

M(t, T, ρ) = e
ρ2

2

∫ T
t σ2

udu+ρ
∫ T
t σudWσ

u , (63)

and σc(t, T ) is the continuous volatility on the period [t, T ], recall equation (2). Substituting the
price for the option with stochastic volatility with the price using the Black-Scholes model in
(62) we get,

CBS(St, t,K, T, σ) = Et

[
CBS(StM(t, T, ρ), t,K, T, σc(t, T )

√
1− ρ2)

]
. (64)

Taylor expanding equation (64) around the correlation parameter ρ leads to,

CBS(St, t,K, T, σ) ≈ Et [CBS(St, t,K, T, σc(t, T ))]

+ ρ
∂

∂ρ
Et

[
CBS(StM(t, T, ρ), t,K, T, σc(t, T )

√
1− ρ2)

]
ρ=0

+O(ρ2), (65)
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leading to,

CBS(St, t,K, T, σ) ≈ Et [CBS(St, t,K, T, σc(t, T ))]

+ ρStEt

[
∆call(St, t,K, T, σc(t, T ))

∫ T

t

σudWu

]
+O(ρ2). (66)

Continuing the derivation of the result, the specific choice K = Kd2 for which σ = σd2 are
made in Equation (66),

CBS(St, t,Kd2 , T, σd2) ≈ Et [CBS(St, t,Kd2 , T, σc(t, T ))]

+ ρStEt

[
∆call(St, t,Kd2 , T, σc(t, T ))

∫ T

t

σudWu

]
+O(ρ2), (67)

and then Taylor expanding CBS and ∆call on the right-hand side around σd2 gives:

CBS(St, t,Kd2 , T, σc(t, T )) ≈ CBS(St, t,Kd2 , T, σd2)

+ νBS(St, t,Kd2 , T, σd2)(σc(t, T )− σd2)

+
1

2
voBS(St, t,Kd2 , T, σd2)(σc(t, T )− σd2)2,

(68)

respectively,

∆call(St, t,Kd2 , T, σc(t, T )) ≈ ∆call(St, t,Kd2 , T, σd2)

+ vaBS(St, t,Kd2 , T, σd2)(σc(t, T )− σd2).
(69)

Using the fact that all quantities that does not depend on σc(t, T ) can be put outside the expec-
tation in Equation (67) and that

vaBS(St, t,Kd2 , T, σd2) = voBS(St, t,Kd2 , T, σd2) = 0, (70)

Equation (67) is simplified to

CBS(St, t,Kd2 , T, σd2) ≈ CBS(St, t,Kd2 , T, σd2)

+ νBS(St, t,Kd2 , T, σd2)Et [(σc(t, T )− σd2)] .
(71)

This can however only be the case if

Kvol = Et [σc(t, T )] ≈ σd2 , (72)

and thus is the formula for the volatility strike fully derived and motivated. Despite the model’s
straight forward approach and that the calculations does not require any heavy computations, it
still consider assumptions about stochastic volatility in it’s estimations of the volatility strike.
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4 Valuation using stochastic volatility models
This section covers stochastic volatility models that can be used when forecasting volatility. The
section first covers the Exponentially weighted moving average (EWMA) model. Afterwards,
the generalized autoregressive conditional heteroskedasticity (GARCH) model is described and
derived. EWMA and GARCH do not require any option data as they both use historical prices
of the same asset as the one that the forecast is made for. In this thesis, it is historical prices on
the Standard & Poor’s 500 stock index.

4.1 Exponentially Weighted Moving Average
EWMA uses recently past asset returns to estimate the future volatility levels. It is an average of
a certain number of past squared returns where the individual weights of each observed squared
return decrease exponentially, giving the most recent observations highest contribution to the
forecast. The number of past observations in the asset price is called estimation window and is
denoted WE . As described in Subsection 2.1.1, volatility levels tends to move in clusters, which
is why the letting the individual weight of each observation exponentially decline into the past is
a good idea. The basis of deriving the EWMA model is by calculating the conditional variance
at time t (Danielsson, 2011) with the formula

σ2
t =

1− λ
λ(1− λWE)

WE∑
i=1

λiy2t−i. (73)

The model was first introduced by J.P. Morgan by the name RiskMetrics where they used λ =
0.94 for a daily sample of returns, which is the λ of choice in this thesis (J.P. Morgan, 1996).
When λ = 0.94, λWE approach zero very quickly as the estimation window increase, and as
described shortly, the formula above can be rewritten to an explicit formula that is used in this
thesis for forecasting volatility. The EWMA model is defined as

σ2
t = (1− λ)y2t−1 + λσ2

t−1, (74)

where 0 < λ < 1 is in this case a persistence parameter to describe how persistent recent
variance is to the estimation of the variance for the next period. (1− λ) is a reaction parameter
and describes the asset’s returns impact of the estimated variance.

4.1.1 Derivation of the model

Since the exponential λWE decrease rapidly, one can approximate Equation (73) by its limit if
we let WE approach infinity (Danielsson, 2011)

σ2
t =

1− λ
λ

∞∑
i=1

λiy2t−i. (75)

For a WE that is large enough, but not necessarily very large as shortly explained, the weights
beyond the estimation window, λn, are extremely small and can be neglected for all n ≥ WE .
Figure 9 illustrate the rapid decline for the weights as the estimation window increase and shows
that the estimation window does not have to be very large for the weights to approach zero. For
example, by using an estimation window of 60 days, the last weight λWE is 0.0244 and the
weights beyond 60 days continues to decrease.

25



0 10 20 30 40 50 60 70 80 90 100

Estimation window

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e
ig

h
t

Decline of weights

Figure 9: The decline of weights as the estimation window increase when λ = 0.94.

Hence, for i > n, the terms in the summation can be considered equal to zero. Taking out the
first term of the summation, Equation (75) turns into

σ2
t = (1− λ)y2t−1 +

1− λ
λ

∞∑
i=2

λiy2t−i, (76)

and if the indices are rearranged in the summation and for the λs before it, the equation becomes

σ2
t = (1− λ)y2t−1 + (1− λ)

∞∑
i=1

λiy2t−1−i. (77)

Looking at Equation (73) one can see that the expression above is very similar to the conditional
variance at time t− 1, which can be rearranged to

λ(1− λWE)

1− λ
σ2
t−1 =

WE∑
i=1

λiy2t−1−i. (78)

Substituting the summations and this equality while considering λWE = 0 for a WE large
enough we get the EWMA formula described in Equation (74).

The formula for EWMA gives a one period forecast only. We need to forecast volatility and
variance over several periods (days) which require simulation of the asset’s returns. Since the
EWMA forecasts most likely differ because of the simulated asset return at each time step, a
Monte Carlo simulation of each EWMA forecast can be made to get a more reliable result. The
procedure for calculating the volatility strike and variance strike with Monte Carlo simulations
and EWMA is later described in Subsection 5.2.3.
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4.2 Generalized autoregressive conditional heteroskedasticity
Generalized autoregressive conditional heteroskedasticity (GARCH) is a model that is a bit
more complex than EWMA. GARCH and EWMA look similar but the main difference is
the parameter estimations that are made in GARCH. The general notation for this model is
GARCH(p,q) and is defined as (Danielsson, 2011)

σ2
t = ω +

p∑
i=1

αiY
2
t−i +

q∑
j=1

βjσ
2
t−j. (79)

This thesis investigates the performance of GARCH(1,1),

σ2
t = ω + αY 2

t−1 + βσ2
t−1. (80)

Beside from the constant ω, the GARCH(1,1) model is the same as EWMA where the names of
the parameters α and β corresponds to the EWMA parameters (1− λ) and λ, respectively.

The parameters in the GARCH model have a couple of restrictions (Danielsson, 2011)

• ω, α, β > 0 : To ensure that all forecasts are positive
• α + β < 1 : To ensure covariance stationarity

With the parameter estimation in place, the forecasting of volatility and variance with GARCH(1,1)
are done in the same fashion as for the EWMA model, with a Monte Carlo simulation for every
estimation.
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5 Method
In this section, the methods for calculating the volatility strike for the different models are
explained. The data that has been used is firstly presented in Section 5.1. Section 5.2 covers
the implementation of the models, which explains what necessary assumptions that are made
and how the simulations for EWMA and GARCH are done. The simulations for EWMA and
GARCH require Monte Carlo simulations.

5.1 Data
The data for S&P500 and the volatility indexes VIX, VXV and VXMT used in this thesis are
daily closing prices. They are downloaded from Yahoo Finance into matlab with the function
hist stock data, which is available for download at www.mathworks.com. VXMT have data
available which goes back to 2008-01-07 and that is the start of the backtesting for the models
Black-Scholes, EWMA and GARCH.

The option data required for the Vanna-Vomma model is downloaded from CBOE:s service
livevol, consisting of European call and put options written on S&P500 and initiated during
2015. The options are filtered by removing the options that are non-traded (usually the ones
that are far out-of-the-money) since they have big bid-ask spreads and their prices are therefore
not reliable.

The maturities for the options vary with each day as the expiration dates occur the third Satur-
day each month. The option data for a particular day have expiration dates for the following
three months, and then there are options with quarterly expirations. The options with quarterly
expirations are filtered out. The data set also consist of so called Long-Term Equity Anticipa-
tion Securities (LEAPs), which are also filtered out when using the option data.

The Vanna-Vomma model require a risk free interest rate when calculating the implied volatility.
The risk free interest that is used is the 1 year US Treasury yield. The interest rate is downloaded
from www.treasury.gov and consists of daily interest rates during 2015.

5.2 Implementation
5.2.1 Black-Scholes model

The closing prices for the volatility indexes are downloaded to matlab and compared to the
realized volatility.

5.2.2 Vanna-Vomma model

To get an estimation of the volatility strike with the Vanna-Vomma model, equation (57) is
solved for the filtered set of options, that is, the strike price for the option corresponding to a
vanna that is equal to zero. The implied volatility for the option with that particular strike is the
estimate for the volatility strike.

The comparison of the models are done with maturities of 1, 2 and 3 months. Since the options
only expire once a month, we get an estimation for each maturity once a month. For example,
the options quoted in January will expire the third Saturday of February, March and April. The
exact dates for the expirations vary from month to month. In February does the options expire
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on the twentieth and it is the same for the options expiring in March. For April however does
the options expire on the seventeenth. The estimations of the volatility strike are thus done on
options quoted on January 20 for maturities 1 and 2 months and on January 17 for the swap with
maturity of 3 months.

If no solution is found where vomma is zero, the option with the strike price corresponding to
the vomma that is closest to zero is chosen instead.

The interest rate that is used when calculating the implied volatility is the 1 year US Treasury
yield observed on the particular day that the implied volatility is calculated.

5.2.3 EWMA

The EWMA estimations are done with Monte Carlo simulation because of it’s stochastic na-
ture when forecasting the volatility. The procedure of using N Monte Carlo simulations for
calculating the annual volatility and variance forecast of n days is as following:
• Start by calculating the initial squared log return y2t−1 and variance σ2

t−1.
• For every Monte Carlo simulation N :

– At t = 1:
∗ Use equation (74) to forecast the variance, σ2

1 = (1− λ)y2t−1 + λσ2
t−1.

∗ Take the square root for volatility, σ1.
∗ Preparation for the next period: Calculate the log return Y1 by multiplying the

forecast volatility with an independent and identically distributed (IID) random
variable with mean 0 and variance 1, Zt. The distribution of Zt is assumed to be
normal but Student-t distribution is another that is frequently used (Danielsson,
2011). Y1= σ1Z1.

– At t = 2:
∗ Input the log return and variance calculated in the previous step in equation (74)

to forecast the variance at t = 2: σ2
2 = (1− λ)Y 2

1 + λσ2
1 .

∗ Take the square root for volatility, σ2.
∗ Do the same as the time step before: Y2= σ2Z2.

– Continue this process until t = n .
• Let Σ(n,N) and Σ2(n,N) respectively denote n×N matrices of the n daily forecasts

of volatility and variance by N simulations. By calculating the mean of Σ(n,N) and
Σ2(n,N) column wise, the average daily volatility and variance for every simulationN
is obtained. To get the values in annual terms, the volatilities are multiplied with

√
252

and the variance is multiplied with 252. The vectors of the average annual volatility and
variance for every simulation N can be denoted by σ̄ and σ̄2, respectively. To complete
the calculations, the mean of σ̄ and σ̄2 are respectively calculated, which results in the
estimations of Kvol and Kvar

In this thesis, 10 000 Monte Carlo simulations are made for each estimation.

5.2.4 GARCH

GARCH use the same procedure as the EWMA when forecasting the volatility with Monte
Carlo simulations. The difference is the parameter estimations that are done daily before each
group of Monte Carlo simulations. The parameters ω, α and β are calibrated with a maximum
likelihood estimation from 10 years of previous logarithmic returns and are updated daily for
every new estimation. The long estimation window is chosen in order to get a stable estimation.
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6 Results
This section covers the results from the different models’ estimations of volatility strikes com-
pared to the realized volatility. Firstly, a comparison of the models’ performance over 2015
are made. To test the models’ performance, they are measured in a number of performance
measures. The measures are the mean value, standard deviation and upper and lower tail of
the difference of the estimations from the realized volatility. For the Vanna-Vomma model, the
results are made from options with maturities 1, 2 and 3 months that are initiated during the
year of 2015 and the estimates from the other models are calculated with returns from S&P500
during the same time periods as for the estimations with the Vanna-Vomma model.

To get a more robust valuation of the models’ performance, the comparison of performance with
data from 2015 is followed by a section where the BS model, EWMA model and GARCH model
are backtested. The backtesting is done for a maturity of 6 months and over the period 2008-
01-08 to 2016-12-31. The Vanna-Vomma model is left out because of limitations of historical
options data. To get even more material for the comparisons, an even longer backtesting have
been made for EWMA and GARCH when the maturities are 1, 3 and 12 months. The results
from the long backtesting is presented in Appendix C.

6.1 Comparison of the models
The comparison of the models Vanna-Vomma, Black-Scholes, EWMA and GARCH are made
from the data set from year 2015. It covers the performance measures mean value, standard
deviation and upper and lower tails from the distribution of the deviations of the models’ es-
timations of volatility from the realized volatility. The realized volatility are calculated on the
S&P500. The upper and lower tail are the 1th and 99th percentile of the differences of the esti-
mations from the realized volatility, respectively.

Figure 10 illustrates the performance of the individual models for the maturities 1, 2 and 3
months.
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Figure 10: A comparison of the models’ performance based on mean value, standard deviation,
and upper and lower tails of the differences between estimates and realized volatility.

6.2 Backtesting
To get at more extensive comparison with more data and longer maturity, the Black-Scholes
model, EWMA and GARCH are backtested from 2008 to the end of 2016 when the maturity
is 6 months. For the BS model is the VXMT index used as the 6 month forecast of volatility.
Figure 11 illustrate the evolution of the forecasts together with a histogram of each models fore-
casts’ deviations from the realized volatility. The histograms are fitted to a normal distribution,
which are the black lines in the histograms.

Appendix C consist of an even more extensive backtesting, which is done for EWMA and
GARCH from 1995-01-01 to 2016-12-31 and for the maturities 1, 3 and 12 months.
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Figure 11: The evolution of the realized volatility and the volatility forecasts of the Black-
Scholes model, EWMA and GARCH.
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7 Discussion
Volatility derivatives are securities that enable traders to speculate on future volatility levels and
to hedge their portfolios. Accurate pricing of derivatives are crucial for keeping the financial
markets stable. In this thesis, I have investigated four salient methods for predicting future
volatility and hence the strike price of volatility derivatives. I have also shown how the strike
price for a variance swap can be approximated with a replicating scheme. Taken together, my
results show that volatility can be accurately estimated, especially with the stochastic volatility
models EWMA and GARCH, and that the implied volatility calculated from market prices of
options overestimate the future volatility. I have also shown that the use of vanna and vomma
when calculating the volatility strike takes care of the problem with the volatility smile in the
Black-Scholes model, which is illustrated in Figure 8.

Ending the discussion chapter, and this thesis, is a possible outlook of volatility derivatives and
the methods of how they can be priced.

7.1 Conclusions and discussions of the results
From Figure 10 one can see how the GARCH model overall perform the best. For a swap with
maturity of 1 and 2 months, the mean value of the difference between the GARCH estimations
and the realized volatility is the lowest for all the models. When the maturity is 3 months, the
mean value of the difference is close to zero, but it is beaten by the Vanna-Vomma model by
a fraction. By investing the extreme outcomes by looking at the tails for the GARCH model,
it is clear that it performs well. The upper tail is the lowest of all models for all maturities,
except for the Vanna-Vomma model when the maturity is 2 months, where the upper tail for
Vanna-Vomma is slightly lower. Investigating the lower tails for the models, the Black-Scholes
model is the winner, followed by the Vanna-Vomma model when the maturity is 1 month and
by the GARCH model when the maturity is 2 and 3 months.

When looking at the lower tail, the Black-Scholes model performs the best. However, that is be-
cause is tends to overestimate the future volatility, as the mean value of the difference between
its estimates and the realized volatility is highly above zero. The BS model’s overestimation can
also be quantified by looking at the lower tail when the maturity is 3 months. The extreme value
for the Black-Scholes model when the maturity is 3 months is -0.0007. So the most extreme
outcome is almost zero, meaning that all the other estimations is likely to be above zero and
hence an overestimation of the true value of the future realized volatility. The overestimations
is easily observed in Figure 11 as the forecast of implied volatility is, beside from the beginning
of the period, almost constantly above the realized volatility.

The overestimation of the implied volatility could have an explanation in the human psychol-
ogy. Because of the financial crisis that occurred in the beginning of the backtesting period, the
risk of that happening again in the close future could have been overestimated by the consensus
of the financial market, which effects the option prices that the implied volatility is calculated
from. The psychology of the human behavior in the field of finance is beyond this thesis but
worth mentioning. Especially when comparing the estimations for the Black-Scholes model
with EWMA and GARCH during the couple of years after the financial crisis. The estimations
for EWMA and GARCH followed the realized volatility as it went down. However, the implied
volatility did not follow the decline in the realized volatility and thus gave an overestimation.
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The Vanna-Vomma model perform well beside from an extremely high outcome in the upper tail
when the maturity is 1 month, but the mean value is still decent. For the maturity of 2 months,
the mean value is the second best and when the maturity is 3 months, the mean value is the best
compared to all the other models. The standard deviation of the differences is however not that
good, as it is the highest for all the models and maturities.

The results for EWMA and GARCH are very similar but the results for GARCH are slightly
better at all performance measures. This is expectable as the EWMA model only has one pa-
rameter, λ that is constant for every simulation but the parameters for GARCH, α, β and ω are
estimated before every forecast of volatility. The parameter estimations for the GARCH model
comes at a cost of time. The time required for the estimations can be observed in Tables 8, 9
and 10 in Appendix C, where the results from the long backtesting from 1995 is presented. The
time to run the EWMA forecast takes about half the time compared to the GARCH forecasts.

One interesting note is the fact that for EWMA and GARCH does the estimations tend to get
better as the maturities increase. Especially when looking at the mean value, standard deviation
and the lower tail where the results get better when the maturities get longer. This might be
because a severe change in the realized volatility in the short run is not captured by the models
but in the long run, these changes evens out. The increase in performance as the maturity gets
longer is however small, but noticeable.

As a conclusion, for the models described in this thesis, the best one for calculating the volatil-
ity strike price for a volatility swap is the GARCH model. The EWMA model can be used
instead as the results are very similar but the upside is the easier implementation compared to
the GARCH model.

The Vanna-Vomma model yields a very good result for calculating the volatility strike price.
However, the lack of extensive data and one extreme outlier in the upper tail for the maturity
of 1 month, one can not fully conclude that the model can be used for calculating the volatility
strike price for a volatility swap.

7.2 Limitations and extensions
The first limitation is the lack of extensive option data. For the Vanna-Vomma model have only
option data of one year been used. To test the performance of the model thoroughly one would
preferably use option data from several years.

The result is limited to the models described in this thesis. However, there exist several other
models that can be used to forecast volatility. One example is the Merton Jump Diffusion model.
Because of assumptions in the Black-Scholes model such as a constant volatility, constant in-
terest rate and that the underlying stock price follows a random walk (or geometric Brownian
motion), the model is a simplification of the reality (Merton, 1975). To better reflect the real-
ity of assets’ price movements when estimating the fair volatility/variance strike, one can use
a model with a jump process for the underlying asset’s price, which is what the Merton Jump
Diffusion model does.

Another model that can be used for further research is the Heston model which is the model
that the Vanna-Vomma model is compared to in Rolloos and Arslans article (2017). For the
Monte Carlo simulations when the volatility forecasting is made with EWMA and GARCH,
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the random variable multiplied with the past volatility is assumed to be normal distributed. An
extension there is to compare the results if the random variable is instead Student-t distributed.

For the GARCH model there are several variants of extensions, such as Student-t GARCH,
APARCH, EGARCH and GJR-GARCH (Danielsson, 2011), that also can be used for forecast-
ing volatility and for further research.

Another example of extension that would be interesting to investigate is to estimate volatility
strike prices when the swaps have longer maturities. The comparison is made of maturities of
1, 2 and 3 months and the backtesting is done on a maturity of 6 months. Appendix C consists
of the evolution of the EWMA and GARCH forecast when the maturity is 12 months, but the
performance of the forecasts with maturities even longer might also be interesting to investigate.

The forecast are done on the S&P500 but other indexes or assets could be used instead. It would
be especially interesting to do a comparison of the models’ performance with stock indexes and
on other asset classes, such as gold, oil and other commodities and maybe even on currencies.

7.3 Outlook for volatility derivatives
Volatility is a common risk measure for an asset but it has evolved into a much greater use than
to only measure the risk of a security. The usage and number of trades of volatility derivatives
has since its introduction to the financial markets increased significantly. The usage of volatility
derivatives and the quantity of trades in the future is likely to increase, which will require more
and more accurate models for pricing them, if the financial markets is to remain stable and for
avoiding another financial crisis.

Perhaps will one of the mentioned models in this thesis be the most widely used when estimat-
ing a volatility or variance strike. The Vanna-Vomma model has the major upside that is easy
to implement and does not require any heavy computations, which is a factor that should be
advantageous when the quantity of trades increase.

One can only speculate on how the development of volatility models will be in the future. With
the theory and knowledge about financial markets today together with the technical development
in computing power, the quantitative analyst of tomorrow will surely develop new volatility
models. However, one thing is for certain, the place for volatility derivatives in the finance
industry is here to stay.
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Appendices

A Tables of the comparison of the models from done by data from year
2015

The result for the Vanna-Vomma model using option data from 2015 are depicted in Table 3.

Table 3: Vanna-Vomma results from 2015. Differences of the realized volatility from the estima-
tions of volatility.

T (Months) Mean Standard deviation Upper tail Lower tail
1 0.0150 0.1920 0.5961 -0.1829
2 -0.0139 0.0658 0.0532 -0.1438
3 0.0018 0.0778 0.1888 -0.0987

The result for the BS model using data of VIX and VXV from 2015 are depicted in Table 4.

Table 4: Black-Scholes results from 2015. Differences of the realized volatility from the estima-
tions of volatility.

T (Months) Mean Standard deviation Upper tail Lower tail
1 0.0516 0.0587 0.1143 -0.1021
3 0.0535 0.0429 0.1126 -0.0007

The result for the EWMA model using data from 2015 are depicted in Table 5.

Table 5: EWMA results from 2015. Differences of the realized volatility from the estimations of
volatility.

T (Months) Mean Standard deviation Upper tail Lower tail
1 -0.0192 0.0699 0.0691 -0.2109
2 -0.0165 0.0628 0.0740 -0.1476
3 -0.0139 0.0553 0.0782 -0.1027

Table 6 presents the result from the GARCH model of the year 2015.

Table 6: GARCH results from 2015. Differences of the realized volatility from the estimations
of volatility.

T (Months) Mean Standard deviation Upper tail Lower tail
1 -0.0135 0.0653 0.0554 -0.1965
2 -0.0071 0.0555 0.0545 -0.1244
3 -0.0026 0.0454 0.0540 -0.0714
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B Backtesting for BS, EWMA and GARCH from 2008 when T=6 months

Table 7: Result from the backtesting from 2008. Differences of the realized volatility from the
estimations of volatility.

Model Mean Standard deviation Upper tail Lower tail Time to run (s)
BS 0.0559 0.1017 0.1961 -0.3311
EWMA -0.0114 0.1060 0.2598 -0.3717 157.7411
GARCH 0.0032 0.0959 0.1769 -0.3656 289.2386
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C Backtesting for EWMA and GARCH from 1995.

Table 8: EWMA and GARCH backtesting from 1995 when T=1 month

Model Mean Standard deviation Upper tail Lower tail Time to run (s)
EWMA 0.0006 0.0674 0.1527 -0.2199 133.3611
GARCH 0.0056 0.0662 0.1488 -0.2216 447.9714

Histogram of the difference between the realized volatility

and the GARCH forecasts, T=1 months
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Figure 12: Evolution of EWMA and GARCH forecasts together with the realized volatility and
histograms of the differences between the forecasts and the realized volatility. T=1 month.
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Table 9: EWMA and GARCH backtesting from 1995 when T=3 months.

Model Mean Standard deviation Upper tail Lower tail Time to run (s)
EWMA -0.0065 0.0731 0.1655 -0.2292 238.3521
GARCH 0.0054 0.0703 0.1473 -0.2283 546.2230

Histogram of the difference between the realized volatility

and the GARCH forecasts, T=3 months
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Figure 13: Evolution of EWMA and GARCH forecasts together with the realized volatility and
histograms of the differences between the forecasts and the realized volatility. T=3 months.
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Table 10: EWMA and GARCH backtesting from 1995 when T=12 months.

Model Mean Standard deviation Upper tail Lower tail Time to run (s)
EWMA -0.0253 0.0826 0.2188 -0.2761 668.5762
GARCH 0.0026 0.0743 0.1485 -0.2670 973.0355

Histogram of the difference between the realized volatility

and the GARCH forecasts, T=12 months
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Figure 14: Evolution of EWMA and GARCH forecasts together with the realized volatility and
histograms of the differences between the forecasts and the realized volatility. T=12 months.
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