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Variance Risk Premia

Abstract

We propose a direct and robust method for quantifying thamae risk premium on financial assets. We
show that the risk-neutral expected value of return vagaalso known as the variance swap rate, is well
approximated by the value of a particular portfolio of opBoWe propose to use the difference between
the realized variance and this synthetic variance swagaataantify the variance risk premium. Using
a large options data set, we synthesize variance swap nadeseestigate the historical behavior of

variance risk premia on five stock indexes and 35 individtcals.



Variance Risk Premia

It has been well-documented that return variance is stticha#/hen investing in a security, an investor
faces at least two sources of uncertainty, namely the wingrtabout the return as captured by the return
variance, and the uncertainty about the return varianedf.itét is important to know how investors deal
with the uncertainty in return variance to effectively mgaaisk and allocate assets, to accurately price and

hedge derivative securities, and to understand the bahaf/imancial asset prices in general.

We develop a direct and robust method for quantifying thernetariance risk premium on an asset using
the market prices of options written on this asset. Our nektlses the notion of a variance swap, which is an
over-the-counter contract that pays the difference batveestandard estimate of the realized variance and
the fixed variance swap rate. Since variance swaps cost@emtdr, the variance swap rate represents the
risk-neutral expected value of the realized variance. Vdgvghat the variance swap rate can be synthesized
accurately by a particular linear combination of optiorcps. We propose to use the difference between the

ex post realized variance and this synthetic variance satapo quantify the variance risk premium.

Using a large options data set, we synthesize variance stegpusing options data on five stock indexes
and 35 individual stocks during the past seven years. We ammihe synthetic variance swap rates to

realized variance, and study the historical behaviors néwkae risk premia on different assets.

We find that the average variance risk premia are stronglativegfor the S&P 500 and 100 indexes
and for the Dow Jones Industrial Average. The estimates dimidual stocks show large cross-sectional
variation. We conjecture that there exists a common stéicheariance risk factor in the stock market that
asks for a highly negative risk premium. When we use the nagiaon the S&P 500 index as a proxy for
this common variance risk factor and estimate a varianaefoeeach stock by regressing the stock’s return
variance on the index variance, we find that the varianceprisknia are more negative for stocks with higher
variance beta. The negative sign on the variance risk pramiaates that variance buyers are willing to
accept a negative average excess return to hedge away umeeethents in stock market volatility. In other

words, investors regard increases in market volatilityrgfavworable shocks to the investment opportunity.



Return variance varies stochastically either due to itsetation with the stock price or return (e.g.,
the constant elasticity of variance model of Cox (1996) dedidcal volatility model of Dupire (1994) and
Derman and Kani (1994)), or due to its independent varia®a separate source of risk (e.g., the stochastic
volatility models of Heston (1993) and Hull and White (19870r both. Accordingly, variance risk premia
can come from either its correlation with the return risk agrn risk premium, or a separate premium on
the independent variance variation, or both. We investigdiether the classic capital asset pricing model
can explain the negative variance risk premia. We find thatnibgative correlation between stock index
returns and the return variance generates a strongly medagia, but this negative beta only explains a
small portion of the negative variance risk premia. Othsk factors identified by the recent literature,
such as size, book-to-market, and momentum, cannot exiplaistrongly negative variance risk premia,
either. Therefore, we conclude that the majority of the raslariance risk premium is generated by an

independent variance risk factor.

We also analyze the dynamics of the variance risk premia tmgutating expectation hypothesis regres-
sions. Under the null hypothesis of constant variance risknia, a regression of the realized variance on
the variance swap rate generates a slope estimate of onevidpuhe slope estimates from our regressions
are significantly lower than one for the S&P and Dow indexesl, @so for many of the individual stocks,
suggesting that the market variance risk premia are tinmgingand correlated with the variance swap rate.
Nevertheless, when we regress the log realized varianckeolog variance swap rate, the slope estimates
are much closer to one, suggesting that although the lognairisk premia are strongly negative, they are

not strongly correlated with the logarithm of the variane&p rate.

We check the robustness of our results from several aspgécss, we use numerical analysis to gauge
the magnitude of approximation errors in synthesizing #ugawnce swap rates due to jumps and discretiza-
tion. We find that under commonly used models and model pdeasyghe approximation errors from the
two sources are small. Second, we measure the impacts optioa® bid-ask spreads on the variance risk
premia estimates, and find that the variance risk premia da && Dow indexes remain strongly negative,
regardless of whether we synthesize the variance swap usiteg bid, mid, or ask option prices. Third,

we evaluate the error-in-variable issue in our expectdiigrothesis regressions. We find that measurement



errors in the synthetic variance swap rate do bias our slsfima&tes toward zero, but that our general con-
clusions remain valid after correcting for the biases: Tlaek®at variance risk premia are time-varying and
correlated with the variance swap rate when defined in d@lemns, but become closer to an independent
series when defined in log returns. Finally, we divide ouadato two subsample periods, with one corre-
sponding broadly to a bullish market and the other to a bleanerket. We find that the variance risk premia

on stock indexes are significantly negative under bothdjubind bearish market conditions.

In related works, Bakshi and Kapadia (2003a,b) considepttbfit and loss arising from delta-hedging a
long position in a call option. They argue that this profit &gk is approximately neutral to the directional
movement of the underlying asset return, but is sensitithéanovement in the return volatility. Thus, by
analyzing the profit and loss from these delta-hedged pasitithey can infer useful qualitative properties
for the variance risk premia without referring to a specificdal. Our approach maintains and enhances the
robustness of their model-free approach, as we provide atitptave measure of the variance risk premia.

As a result, we can analyze not only the sign, but also thetijatve properties of the premia.

Bates (1996, 2000, 2003), Eraker (2004), Jones (2003), andZ02) analyze variance risk premia
in conjunction with return risk premia by estimating vaisgoarametric option pricing models with either
Bayesian methods or efficient methods of moments. Most tiycéiit-Sahalia and Kimmel (2007) propose
a maximum likelihood method for estimating stochastic tiitya dynamics and volatility risk premia based
on closed-form approximations (developed in Ait-Sah@&@02, 2007)) to the true likelihood function of
the joint observations on the underlying asset and optimegr Wu (2005) propose to estimate the variance
dynamics and variance risk premia without specifying ttierredynamics using realized variance estimators
from high-frequency return data and variance swap ratefegized from option prices. Bollerslev, Gibson,
and Zhou (2004) construct a risk aversion index using redlizariance estimators and the VIX, which

approximates the 30-day variance swap rate on the S&P 5@@ i{@hrr and Wu (2006)).

Ang, Hodrick, Xing, and Zhang (2004) form stock portfolicanked by their sensitivity to volatility
risk and analyze the difference among these different spackolios. From the analysis, they infer the

impact of volatility risk on the expected stock return. Cloaad Shumway (2001) study how returns on



option investment vary with strike choices and whether fassic capital asset pricing theory can explain

the returns. Bondarenko (2004) links the market price atwae risk to hedge fund behavior.

Our empirical analysis of the variance risk premia is base@dwr theoretical work on synthesizing a
variance swap using European options and futures contr@ets and Madan (1998), Demeterfi, Derman,
Kamal, and Zou (1999a,b), and Britten-Jones and Neube?@&O0] use the same replicating strategy, but
under the assumption of continuity in the underlying assieep Jiang and Tian (2004) extend the result
to a jump-diffusion stochastic volatility model. Our dexfion is under the most general setting possible.
We also quantify the approximation error induced by jumpssMmportantly, we exploit the theoretical

developments in synthesizing variance swaps for variaskeremia analysis.

The remainder of the paper is organized as follows. Sectlagslout the theoretical foundation on how
we synthesize the variance swap from vanilla options andwuevinfer the variance risk premia based on
the difference between the synthetic variance swap ratéh@nebalized return variance. Section 2 describes
the data and the methodologies that we use to synthesizatibase swap rates and to calculate the realized
variance and variance risk premia. Section 3 investigates$istorical behavior of the variance risk premia.

Section 4 performs robustness analysis. Section 5 corglude

1. Variance Swap Rates and Variance Risk Premia

A return variance swap has zero net market value at entry. atinty, the payoff to the long side of the
swap is equal to the difference between the realized vagianer the life of the contract and a constant

called thevariance swap rate

RV 1 —SWr]L, (1)

whereRV 1 denotes the realized annualized return variance betweat &ndT, SWt denotes the fixed
variance swap rate that is determined at ttnaad paid at tim&, andL denotes the notional dollar amount

that converts the variance difference into a dollar payhih. arbitrage dictates that the variance swap rate



equals the risk-neutral expected value of the realizedned,

SWt =EZ[RV 1], (2)

whereE{ [-] denotes the timé-conditional expectation operator under some risk-neutesure).

1.1. Synthesizing variance swap rates from options

We use§ to denote the timé-spot price of an asset, afgits time+ futures price of maturityf > t. We
assume that the futures contract marks to market contityddes arbitrage dictates that there exists a risk-
neutral probability measur@ defined on a probability spa¢€, 7 ,Q) such that the futures pridg solves

the following stochastic differential equation:
dR R0 AW+ [ R (@~ 1) udx d) — ve(axa. (3)

whereW is aQ-standard Brownian motiofR® denotes the real line excluding zeFp, denotes the futures
price just prior to any jump at timg and the random counting measyr@x, dt) realizes to a nonzero
value for a givenx if and only if the futures price jumps frorR_ to ik = R_€* at timet. The process

vt (X) compensates the jump process so that the last term in eqd)ies the increment of &-pure jump
martingale. Therefore, equation (3) models the futureseprhange as the summation of the increments of
two orthogonal martingales, a purely continuous martiegeld a purely discontinuous (jump) martingale.
This decomposition is generic for any continuous-time mgales (Jacod and Shiryaev (1987)). To avoid

notational complexity, we assume that the jump processéslinite variation: fro (|X| A 1) vy (X)dX < oo,

The time subscripts og;  andv¢(x) indicate that both are stochastic and predictable witheesio
the filtration 7. We further restrict;_ andv(x) so that the futures prich is always positive. Finally, we
assume deterministic interest rates so that the futuree prid the forward price are identical. So long as

futures contracts trade, we need no assumptions on divsdend



Under the specification in equation (3), the quadratic tiarieon the futures return from timeo T is,

T T
Vit :/ o§7d3+/ / x°p(dx ds). 4
t t RO

The annualized return variance Bt = %\/LT. We show that this return quadratic variation can be
replicated up to a higher-order error term by a static pasith a portfolio of options of the same horizon
T and a dynamic position in futures. As the risk-neutral exgeealue of futures trading is zero, the risk-
neutral expected value of the quadratic variation can beoappated by the value of the options in the static

portfolio.

Proposition 1 Under no arbitrage, the time-t risk-neutral expected vabfi¢he return quadratic variation
of an asset over horizojh, T] defined in (4) can be approximated by the continuum of Europes of-the-

money option prices across all strikesK0 and at the same maturity date T:

Q 2 ree(KT)
E! [R\m_T_t/o TRz e (5)

where B(T) denotes the time-t price of a bond paying one dollar a®f(K, T) denotes the time-t value of
an out-of-the-money option with strike pricexXK0 and maturity T>t (a call option when K> K and a put
option when K< R), ande denotes the approximation error, which is zero when thedgtprice process is
purely continuous. When the futures price can jump, the@ppration errore is of order Q(gt—'i)3) and is

determined by the compensator of the discontinuous compone

. -2 Q T X2
e_T_tEt/t /Ro[ex—l—x—f]vs(x)dxds (6)

Refer to Appendix A for the derivation. Equation (5) servastheoretical basis for inferring variance swap

rates from vanilla options.



1.2. Quantifying variancerisk premia using variance swap rates and realized variance

UsingP to denote the statistical probability measure, we link thiance swap rate to the realized variance
through the following valuation equation,

B Ef M 1RV 7]

_mwP
SWr =i~ B MRV, (7)

whereM; T denotes a pricing kernel amd 1 = M; 7 /Ef [M; 7]. No arbitrage guarantees the existence of at

least one such pricing kernel that prices all traded asBetfi¢ (1992)).

Equation (7) can be decomposed into two terms:

SWr =E; [m1R\V1] =Ef [RV1]+CoV (M 1,RV1). (8)

The first termE{ [R\ 1] represents the time-series conditional mean of the rehliagance. The second
term captures the conditional covariance between the rimedapricing kernel and the realized variance.
The negative of this covariance defines tearn variance risk premiumThus, a direct estimate of the
average variance risk premium is the sample average of ffezatice between the variance swap rate and
the realized varianc&R 1 = R 1 — SWr. This difference also measures the terminal profit and lasa f

long a variance swap contract and holding it to maturity.

Dividing both sides of equation (8) W, we can represent the decomposition in excess returns:

RV T
SW+

)- (9)

R R
1:E]tp [”LT \'{,T}:E]tp{ \'{,T

Sw) =% gy ok m

If we regardSW t as the forward cost of a variance swap investm@r¥ 1 /SWr — 1) captures the excess
return from the investment. The sample average of the exetss represents an estimate of the negative of
the covariance term in equation (9), hence the risk premitomake the distribution closer to normality, we

represent the excess return in continuously compounded dod label it as théog variance risk premium

LRR = In(R\LT/SW,T).



2. Data and Methodologies

The options data are from OptionMetrics, which providesahnisal prices of options based on closing quotes
at the Chicago Board of Options Exchange. Our data sampis §taJanuary 1996 and ends in February
2003. From the data set, we filter out market prices of optmmdive stock indexes and 35 individual
stocks. The list of securities is selected mainly based ateqavailability. Specifically, we compute the
number of valid option quotes on each security in the datgpkarand select the securities with the highest
number of valid option quotes. In computing the number oidvgliotes, we only retain options that have
time-to-maturities within one year, and have strictly figsibid quotes and strictly positive bid-ask spreads.
Options on some securities are very actively quoted, byt dafing a short period of our data sample. In
selecting our samples, we further require that the numbactife days be greater than 900 for stock indexes
and 600 for individual stocks. We apply the following criter to determine the number of active days: (1)
The nearest available maturity must be within 90 days. (& d¢tual stock price level must be greater than
one dollar. (3) The number of strikes is at least three at e&tie two nearest maturities. We compute the

synthetic variance swap rates only on the active days deéibede.

Table 1 lists the five stock indexes and 35 individual stocksur sample. For each security, the table
lists the company name, the starting and ending dates, thbenof active daydY), and the average number
of strikes (NK) at the chosen maturities. The index options on the S&P 5@é&xinthe Dow Jones Industrial
Index, and the Nasdaqg-100 index are European options optiténslexes. Options on the S&P 100 index
and the other 35 individual stocks and the QQQ (the Nasd@dg+a@king stock) are all American options
on the underlying spot. The data set includes closing bidaakdquotes for each option contract and the
Black-Scholes implied volatilities based on the mid quéter. the European options, implied volatilities are
directly inferred from the Black-Scholes option pricingrfaula. For the American options, OptionMetrics
employs a binomial tree approach that takes account of tHg egercise premium. The data set also
includes the interest rate curve and the projected divigiégld. Our analysis directly employs the implied

volatilities provided by OptionMetrics.

[Insert Table 1 about here.]
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We choose a 30-day horizon for the synthetic variance swigs.réAt each date for each stock, we
choose the two nearest maturities, except when the shaonegstity is within eight days. Then we switch

to the next two maturities to avoid potential microstrueteffects of very short-dated options.

At each maturity, we first linearly interpolate implied viilities at different moneyness levels, defined
ask =In(K/F), to obtain a fine grid of implied volatilities. For moneyndsslow the lowest available
moneyness level in the market, we use the implied volatdityhe lowest strike price. Fdr above the
highest available moneyness, we use the implied volatiityhe highest strike. Using this interpolation
and extrapolation procedure, we generate a fine grid of 2r@ped volatility points with a strike range of
+8 standard deviations from at-the-money. The standardatieniis approximated by the average implied
volatility. Given the fine grid of implied volatilities, weamnpute the out-of-the-money option prices using

the Black-Scholes formula and replicate the variance satgpaccording to a discretization of equation (5).

At each datet, we interpolate the synthetic variance swap rates at thentatrities to obtain the
variance swap rate at a fixed 30-day horizon. The intermuiasi linear in total variance:

1 [SWr(Ti—t)(T—T)+SWr(To—t)(T1—T)

SWr =14 T, T ’

(10)

whereT; andT, denote the two maturity dates, afddenotes the interpolated maturity date such Thatt
is 30 days. We have experimented with different interpotaichemes, but found that our main conclusions

are not materially affected by the particular choice of titeripolation method.

Corresponding to each 30-day variance swap rate, we alsputenthe annualized 30-day realized

variance,

365 30 <Ft+i,t+30 - Ft+i1.t+30> 27 (11)

RMt 30 = or
130 0 i; Rti-1t+30

whereF 1 denotes the timéforward price with expiry date at timé& (in days). A small difference exists
between the return variance defined in equation (11) anduhdrgtic variation in (4) due to the difference
between daily monitoring and continuous monitoring. Sitieestock prices in the OptionMetrics data set

are not adjusted for stock splits, we manually adjust thekssplits for each stock in calculating the realized

11



variance. We have also downloaded stock prices from Bloogntzecheck for robustness. Our definition
of the realized variance in equation (11) is similar to th@rigon in most variance swap contracts in the
industry. For robustness, we have also computed alteenaalized variance measures based on spot prices

and demeaned returns. These variations do not alter oulusimts.

Table 2 reports the summary statistics of the annualizdizeglavarianceRV) and the synthetic variance
swap rate $W). The sample averages of the variance swap rates are higimethie average realized variance
for all the five stock indexes and most of the individual sexckhe realized variance series are persistent
given the overlapping nature of the estimates. The varian@® rates are also highly persistent, reflecting
the persistence of the return variance process. Both wariawap rates and the realized variance show

positive skewness and positive excess kurtosis for moskstand indexes.

[Insert Table 2 about here.]

3. Historical Behavior of Variance Risk Premia

To analyze the historical behavior of variance risk premiafirst establish the existence, sign, and average
magnitude of the variance risk premia. Then, we investigdtether the risk premia can be explained by
classic risk factors. Finally, we analyze the dynamic priee of the premia using expectation hypothesis

regressions.

3.1. Doinvestorspricevariancerisk?

If investors price variance risk, the sample averages afghkized variance will differ from the average vari-
ance swap rates. Table 3 reports the summary statistice afiffierence between the realized variance and
the variance swap ratBP= (R 1 — SWr) x 100, in panel A and the log different&®P=In (R 1 /SW)

in panel B. The variance risk premiRP show large kurtosis and sometimes large skewness. The skewn

and kurtosis are much smaller for the log variance risk padtRiP.

12



[Insert Table 3 about here.]

The sample averages of the variance risk premia and lognearidsk premia are negative for all the
five stock indexes and most of the individual stocks. Tablés8 eeports thé-statistics on the significance
of the mean risk premia, adjusted for serial dependencediogoto Newey and West (1987) with 30 lags.
The largest-statistics come from the S&P 500 and S&P 100 indexes and theIdnes Industrial Average,
which are strongly significant for both variance risk premua log variance risk premia. Thestatistics for

the Nasdag-100 index and its tracking stock are lower, baaie strongly significant.

The two definitions of variance risk premia in Table 3 repnégavo ways of computing returns for
variance swap investments. The mean estimates in parf@\A;- SW) x 100, represent the average dollar
profit and loss for each $100 notational investment in theaae swap contract. Thus, if we long a 30-day
variance swap contract with a notional of $100 on S&P 500xradel hold the contract to maturity, during

our sample period the average return per $100 notional times® is—$2.74.

Alternatively, if we regard the variance swap rate as thevéod cost of the variance swap contract,
the log variance risk premium (RV/SW) in panel B can be thought of as the continuously compounded
excess return to going long the variance swap contract aldéhlydt to maturity. Based on this calculation,
the average excess return-$%6% for long 30-day variance swap contracts on the S&P 508xind he
different magnitudes in the two panels mainly come fromeddht scaling. Panel A regards the $100
notional as the initial investment whereas panel B usesdheafrd cost (i.e., the variance swap rate) as
the initial investment. For the S&P 500 index, a $100 noticr@responds to an average forward cost
of $6.81 (Table 2). For the same dollar profit and loss, thellsmbase number generates larger return

estimates in panel B.

Despite the different representations, it is clear thasters are willing to accept a significantly negative
average return to long variance swaps on the S&P and Dow @sdeXccordingly, shorting variance swap
contracts on the indexes generates significantly positreeage excess returns during our sample period.
To gauge the profitability of such a trading strategy, wenestie the annualized Sharpe ratio on shorting the

30-day variance swap contracts, and report them in the ddstnm of Table 3 under “IR.” The Sharpe ratio

13



is computed as the sample mean of the log excess retlmfRV/SW) divided by its standard deviation
and multiplied by\/m for annualization. The standard deviation is adjustedsésial dependence
according to Newey and West (1987) with 30 lags. The Sharpe eatimates are 0.98, 0.85, and 0.87 for
shorting variance swaps on the S&P 500, the S&P 100, and thelbdexes, significantly higher than an

average stock portfolio investment.

Nevertheless, it is important to point out that the Sharpiesare computed using synthetic variance
swap rates. The actual profitability depends on severatipahdactors, such as the actual availability
of variance swap quotes, their bid-ask spreads, and thmitasity to our synthetic values. Furthermore,
given the nonlinear payoff structure, caution should bdiagpvhen interpreting Sharpe ratios on derivative

trading strategies, e.g., Goetzmann, Ingersoll Jr., 8hiagd Welch (2002).

The average variance risk premia and log variance risk gre&miindividual stocks show large cross-
sectional variation. The standard deviation estimateshenvariance risk premiaRP) of the individual
stocks are all larger than those on the S&P and Dow indexes r&sult, out of the 35 individual stocks,
only seven generate variance risk premia that are signifjcaegative at the 95% confidence level. By
contrast, the standard deviation estimates on the logneaigisk premial(RP) are much more uniform
across all stock indexes and individual stocks. For 23 o@bdhdividual stocks, the mean log variance risk

premia are significantly negative at the 95% confidence level

The cross-sectional variation of the variance risk premgsiply suggests that the market does not price
all return variance risk in each single stock, but only mieesystematic variance risk component in the
stock market portfolio. Based on this hypothesis, the ayeerariance risk premium on each stock is not
proportional to the total variation of the return varianbat to the covariation of the return variance with
the market portfolio return variance. To test this hypothese use the realized variance on S&P 500 index

return as the market portfolio variance, and estimate thedwnce beta” for each stock as,
BY =CouInRV,,InRVspx)/Var(In Rvspx), (12)

where the variance and covariance are measured using thaosample of the two realized variance

14



series. We estimate the variance beta using log variandeefter distributional behaviors.

Given the variance beta estimates, our hypothesis sugtiegtthe average variance risk premia are
more negative on stocks with higher variance beta. Regmgsise average log variance risk premia on the

variance beta across the 40 stocks and stock indexes gen#ratfollowing estimates,

[RP, = 00061 — 03283 BY +e R’=184% 13

(0.09) (—2.96)
with t-statistics reported in the parentheses below the estimé&tensistent with our hypothesis, the slope

estimate is negative and statistically significant.

Therefore, we identify a systematic variance risk factat tthe market prices heavily. The negative
sign on the market variance risk premia suggests that iorgeate willing to pay a premium to hedge away
upward movements in the return variance of the stock matketther words, investors regard increases
in market volatility as unfavorable shocks to the investtmgwportunity and demand a high premium for

bearing such shocks.

Table 3 also reports the average non-overlapping 30-daycawrtlation for the variance risk premia.
The autocorrelation estimates are low, averaging@023 forRPand—0.006 forLRP. Therefore, although
return variance is strongly predictable, investors haweegrthis predictability into options, so that excess

returns on synthetic variance swap investments are noatgmgly predictable.

3.2. Can classicrisk factorsexplain the variancerisk premia?

Return variance can vary either by itself as in stochastiatility models of Heston (1993) and Hull and
White (1987), or it can vary as a function of the stock pricénathe constant elasticity of variance model
of Cox (1996) and the local volatility model of Dupire (199nd Derman and Kani (1994). In the first
case, the independent variance variation represents atioadt source of risk (in addition to the return
risk), which can ask for a risk premium in addition to the pnem on the return risk. In the latter case, the

variance risk premium is induced purely by the underlyirtgmerisk and return risk premium.

15



The classic capital asset pricing model (CAPM) argues thateikpected excess return on an asset is
only proportional to the beta of the asset on the market glastfUnder this model, variance risk premium
cannot come from an independent source of risk, but can awyecdrom the variance swap’s correlation
with the market portfolio. Qualitatively, the negative egs return on the variance swap contract on the
stock indexes is consistent with the well-documented megabrrelation between index returns and index
return variance. The question is whether this negativeetairon can fully account for the negative variance

risk premia.

To answer this question, we estimate the following CAPMesgions,

INR7/SWt = a+BERY +e (14)

for the five stock indexes and 35 individual stocks, whEf" denotes the excess return on the market
portfolio, for which we consider two proxies. First, we ude tS&P 500 index to proxy for the market
portfolio and compute the excess returnE" = InSF'/RT. Our second proxy is the value-weighted
return on all NYSE, AMEX, and NASDAQ stocks (from CRSP) mirthe one-month Treasury bill rate
(from Ibbotson Associates). This excess return is publebilable at Kenneth French’s online data library.
The data are monthly. The sample period that matches owrgptiata is from January 1996 to December
2002. We estimate the regressions using the generalizétbdsdf moments (GMM), with the weighting
matrix computed according to Newey and West (1987) with 88 far the overlapping daily series and six

lags for the non-overlapping monthly series.

Table 4 reports the estimates (arstatistics in parentheses). The results from the two nhgdxefolio
proxies are similar. Thp estimates are strongly negative for all the stock indexdsawst of the individual
stocks. The estimates are the most negative for S&P and Ddex@s. Nevertheless, the intercept
estimates remain strongly negative, especially for the &&& Dow indexes, indicating that the negative
beta cannot fully account for the negative variance risknpae Indeed, the estimates farare not much

smaller than the mean variance risk premia reported in Tablde results call for additional risk factors.

[Insert Table 4 about here.]
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Kraus and Litzenberger (1976) propose a three-momentat@giset pricing model, in which the excess
return on a security is proportional not only to the excessrneon the market portfolio, but also to the

squared deviation of the market portfolio return from itpested value,

INRV1/SW1 = a+BERY+Y(Rn—Rn)’+e (15)

whereR, denotes the market portfolio return aRgl denotes its expected value. We R, to proxy Rm

in constructing the squared deviation factor. The loadimgfficient estimates foy are mostly insignificant
and thea estimates are close to what we have obtained from the régmeiss(14). Hence(Ry, — §m)2 is

not the factor that we are looking for in explaining the vada risk premia. To save space, we do not report

the estimation results but they are available upon request.

Fama and French (1993) identify two additional risk factorthe stock market that are related to the
firm size SMB) and book-to-market valudHML), respectively. We investigate whether these additional

common risk factors explain the variance risk premia. Werege the following relations:
INRV7/SWt = o+BERT+SSMBt+hHMLT+e (16)

Data on all three risk factors are available on Kenneth Frsranline data library. We refer the interested
readers to Fama and French (1993) for details on the defingti@l construction of these common risk
factors. The sample period that overlaps with our optiorta damonthly from January 1996 to December
2002. Again,ER™ denotes the excess return to the market portfolio. FurtbeepbothSMBandHML
are in terms of excess returns on zero-cost portfolios. &fbeg, the intercepit represents the expected
excess return on an investment that is neutral to all thetefaictors. Table 5 reports the GMM parameter
estimates anthstatistics. The intercept estimates for the indexes nersiadngly negative, the magnitudes
only slightly smaller than the average variance risk preimi@able 3. Thus, the Fama-French risk factors

can only explain a small portion of the variance risk premia.

[Insert Table 5 about here.]
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In the regression, both the marlieR™ and the siz&MBfactors generate significantly negative loadings,
indicating that the return variance is not only negativedyrelated with the market portfolio return, but also
with the SMBfactor. Hence, going long the variance swap contract als@ses an insurance against the

SMBfactor going up. The loading estimates on HiklL factor are mostly insignificant.

Fama and French (1993) also consider two bond-market faatelated to the bond maturitf ERM)
and default DEF) risks. Furthermore, Jegadeesh and Titman (1993) ideatifyomentum phenomenon
that past winners often continue to outperform past los#sconstruct thd ERMandDEF factors using
Treasury and corporate yield data from the Federal Resdntest®al Release. Kenneth French’s data
library also provides a momentum factds NID) similar to that from Carhart (1997). However, single-
factor regressions on these three factors show that noreesé tfactors have a significant loading on the

variance risk premia. Therefore, they cannot explain thi@mee risk premia, either.

The bottom line story here is that classic risk factors cafuity account for the negative variance risk
premia on the stock indexes. Either there exists a largéidreafcy in the market for index variance or else
the majority of the variance risk is generated by an indepehdsk factor that the market prices heavily.
Investors are willing to receive a negative excess returheidge against market volatility going up, not
only because market volatility movement is negatively elated with stock market portfolio return, but
also because investors regard market volatility hikes byndelves as unfavorable shocks and demand high

compensation for bearing such shocks.

There are several potential reasons for the negative wariask premia. Take the market portfolio of
stocks as an example, which the market holds in aggregatib. tild same expected return, the increase in
return variance implies a decline in performance in termhefSharpe ratio. Hence, one way to guarantee
a minimum performance is to buy options to hedge againstirefariance increases. Furthermore, going
long the variance swap contrast is an effective strategyetiyé against risks associated with the random
arrival of discontinuous price movements. Finally, corsadions on meeting value-at-risk requirements and
preventing shortfalls and draw-downs also make long vadawap an attractive strategy that investors are

willing to take even with a negative expected excess return.
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3.3. Arevariancerisk premia constant or time-varying?

To understand the dynamic behavior of variance risk prewgaiun the expectation hypothesis regression,
Ryt = a+bSWrt+e (a7)

Under the null hypothesis of zero variance risk premia idadderms: Co{%?(mt;, R\ 1) =0 as defined in
equation (8), we hava= 0 andb = 1. In particular, the slope estimate deviating from zero M@uggest

that the variance risk premia are time-varying and coreelatith the variance swap rate.

Table 6 reports the GMM estimates of equation (17) andatistics under the null hypotheses of
a=0andb=1in panel A. All the slope estimates are positive, but maeyi@wer than one. Thiestatistics
show that over half of the stock indexes and individual stagnerate regression slopes that are significantly

lower than the null value of one.

[Insert Table 6 about here.]

Since the variance and variance swap rates show positivensiss (Table 2), we also run the expectation

hypothesis regression in log terms and report the resufianel B of Table 6:

INRY 1T =a+bInSWt +e (18)

Under the null hypothesis of zero variance risk premia inmeterms: Cof/(m T, %) = 0 as defined in

equation (9), the slope estimdishould be zero and the intercept estimate should be lowerziv® due to

the convexity term induced by the variance of the log vargansk premia. The estimation results in panel
B of Table 6 show that for all the stock indexes and many of titkvidual stocks, the slope estimates are
no longer significantly different from one at the 95% conficetevel. The difference between the slope
estimates of the two regressions indicates that the riskigreefined in log returns is closer to a constant

or independent series than the risk premia defined in dafang.
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4. Robustness Analysis

Our results on variance risk premia rely on the accuracy®ftriance swap rates that we synthesize from
the options market. For robustness check, we first gaugepim®xdmation error of the synthetic variance

swap rate due to price jumps and discretization. Secondnalgze the impact of options bid-ask spreads
on our results. Third, we evaluate the impacts of errorariable problems on our expectation hypothesis
regressions where the synthetic variance swap rate is ssadeagressor. Finally, we analyze whether the

variance risk premia behavior varies significantly ovefedént subsample periods.

4.1. Replication errorsdueto price jumps and discretization

The replication of the payoff to a variance swap in equatirhas an instantaneous error of ord}éfgt—ﬁﬁ).
We refer to this error agimp error as it vanishes under continuous path monitoring if therenargimps.
Furthermore, equation (5) asks for a continuum of optiongwiat all strikes. We use a simple interpola-
tion/extrapolation scheme to generate 2,000 option puees +-8 standard deviations from the available
option quotes. We then sum over the 2,000 option prices tlaceghe integration in equation (5). The
scheme introduces a second source of error due to the ifdggodextrapolation and the discrezation of the

integral. We refer to this error as thlescretization error

To gauge the magnitude of these two sources of errors, wenaihe illustrate three standard option
pricing models: (1) the Black-Scholes model (BS), (2) thetule (1976) jump-diffusion model (MJD), and
(3) a combination of the MJD model with Heston (1993) stotihasmlatility (MJDSV), as in Bates (1996)
and Bakshi, Cao, and Chen (1997). The risk-neutral dynaaiitte underlying futures price process under

these three models are:

BS: dFt/Ft - 0dW7

MID:  dR/R- = odW+dJ(A)—Agdt, (19)
MIDSV: dR/R- = %dW +dJ(\)—Agdt,

whereW denotes a standard Brownian motion al{dl) denotes a compound Poisson jump process with
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constant intensity\. Conditional on a jump occurring, the MJD model assumestti@msize of the jump
in log price is normally distributed with mean and variances?, with the mean percentage price change
induced by a jump given by = gv+295 _ 1. Inthe MIDSV model, the diffusion variance ragés stochastic

and follows a mean-reverting square-root process:

dy =K (0 —w)dt+oy/wdZ, (20)

wherez; is another standard Brownian motion, correlated Wittby E [dZ dW] = pdt.

The MJIDSV model nests the MJD model, which in turn nests thenB8el. We regard the progression
from BS to MJD and then from MJD to MJDSV as one of increasinmplexity. All three models are
analytically tractable, allowing us to numerically cakd risk-neutral expected values of variance. The
difference in the BS model between the synthetic variancapstate and the constant variance rate are
purely due to the discretization. The increase in the erum @ the use of the MJD model instead of
BS allows us to numerically gauge the magnitude of the jurngrén the presence of discrete strikes. The
change in approximation error from MJD to MJDSYV allows usuorically gauge the impact of stochastic

volatility in the presence of discrete strikes and jumps.

For the numerical analysis, we normalize the current fistprece to $100 and assume a constant riskfree
rate atr = 5.6%. We seio = 0.37 in the BS model and.85 in the MJD model. The other parameters are
settoh =04, =-0.09,0; =0.18k =1.04,06 = 0.35,0, = 0.9, andp = —0.7. These parameters reflect

approximately those estimated from S&P 500 index optioogs;i e.g., in Bakshi, Cao, and Chen (1997).

In parallel to our empirical study, we fix the option maturity 30 days. We assume that only five
option quotes are available at this maturity at strikes &, $®0, $100, $110, and $120. Since all the stock
indexes and individual stocks in our data sample averageswmthan five strikes at each chosen maturity,
the choice of five options for the numerical analysis is reabte and conservative. First, we compute the
prices of the five options under each model and convert théoninmplied volatilities. Second, we employ
the same interpolation/extrapolation method as in our Bogbistudy to obtain a fine grid of 2,000 implied

volatilities. Third, we convert the fine grid of implied vdilities into out-of-the-money option prices and
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approximate the integral in equation (5) with a summatiameni-this procedure, we compute the synthetic
variance swap raté\N,T, where the hat stresses the approximations involved. Tferelce between this
approximate synthetic variance swap r§& and the analytically computed variance swap ﬂa%R\{,T]

represents the total approximation error.

Under the BS model, the annualized return variance rateristant ato?. Under MJD, this variance
rate is constant ai? + A (1% + 03). In both cases, the variance swap rate equals to the constaance.
Under MJDSYV, the variance rate is stochastic, and the vegiawap rate depends on the current level of the
instantaneous variance rae

E¢ [RM 1] =0 +A (15 +03), (21)

wherea? is given by
—K(T—t)

e (% —6). (22)

1
2 Q —
Oy = E¢ Vsds=0-+
t T-t /t s

Our replicating strategy for the variance swap contracta&ewhen the underlying dynamics are purely
continuous, but has a higher order approximation errorémptiesence of jumps. Thus, under the BS model,
the theoretical approximation error is zeeo:= 0. Under the two jump-diffusion models MJD and MJDSV,

the compound Poisson jump component has the following casgter:

(x-1y)?
1 o = , (23)
\/ 2103

from which we can compute the jump-induced elg@ccording to equation (6):

V(X) =A

e=2\(g—W—03/2).

Table 7 reports the analytical variance swap rﬁ]@% [RV]), the synthetic variance swap ra@Tf(/), the
total approximation errorﬂi@ [RV] — STN) and the jump-induced errog)(under each model. Under the BS
model, the jump errore] is zero. Furthermore, since the implied volatility is ctamg and equal to at all

strikes, there is no interpolation or extrapolation eriidre only potential error comes from the discretization
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of the integration. Table 7 shows that this error is pratificzero.

[Insert Table 7 about here.]

Under MJD, the jump erroref is 0.0021, which is merely 1.51 percent of the variancellat6.1387.
The total error is also 0.0021, indicating that the inteaioh and extrapolation scheme does not introduce

any noticeable additional errors in this case.

Under MJDSV, we consider different instantaneous varidagels, represented by its log difference
from the mean, It /0). As the variance levek varies, the jump error is fixed at 0.0021 because the jump
arrival rate does not change. Table 7 indicates that theappoximation error increases with the volatility
level. The largest absolute error is 0.0221 when the vagiaweap rate reaches as high as 2.3782. The
error is less than one percent of the variance level. Thexefwven under stochastic volatility and when the
volatility level is very high, the interpolation and extation across the five implied volatility quotes do
not add much additional approximation error. The numems@&rcise shows that our simple interpolation

and extrapolation method works well.

4.2. Bid-ask spreads

We synthesize variance swap rates by interpolating impl@dltilities computed from the mid-quotes of
the option prices. The mid-quote may not reflect the fairgifdhe bid and ask quotes are not symmetric
around the fair price. To gauge how much our conclusions fieetad by the mid-quote choice, we re-
construct the synthetic variance swap rates using bid dndsn prices, respectively. When direct quotes
are not available, we can regard these as synthetic bid &&hap rate quotes, respectively. For European
options, we directly convert the bid and ask option pricés bid and ask implied volatilities, and perform
the interpolation and extrapolation on each side. For Aaerioptions, we first convert the OptionMetrics
implied volatility into a mid-quote European option pricEhen we superimpose the bid-ask spread of the
American option quotes on this mid price to generate bid akdearopean option prices, from which we

compute the bid and ask implied volatilities, respectively
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Table 8 reports the sample averages of the synthetic bidasksdof the variance swap rates, as well as
the variance risk premia defined in both dollar terms and édgrns. For the risk premia, we also report in
parentheses the serial-dependence adjusstatistics on the significance of the mean value. The bkd-as
spreads for the synthetic variance swap rates range fro2t0.86.75. Converting the variance swap rates
into volatility percentage points per industry quoting wemtion, we obtain the average bid-ask spreads
ranging from 1.55 to 8.28 volatility percentage points. @ilethe spreads are larger for individual stocks

than for stock indexes.

[Insert Table 8 about here.]

It is important to point out that currently there exists ativecover-the-counter market for variance
swap contracts on stock indexes. Although it is difficult érieve long histories, current quotes from
several broker dealers are readily available from commaméial data sources. The bid-ask spreads on
these variance swap rate quotes are normally within ondiltylpercentage point. Our synthetic variance
swap bid-ask spreads for the five stock indexes are from ©.8%® volatility points, much wider than the

actual spreads from the over-the-counter market.

Nevertheless, even with the exaggerated bid-ask spreadsnan conclusions on the variance risk
premia remain valid whether we measure the premia usingytiithetic bid swap rates or ask swap rates.
Using the synthetic ask rates makes the variance risk premeia more negative. Using the bid swap rates
lowers the absolute magnitude of the negative risk premiawever, even when we use the synthetic bid
swap rates to compute the variance risk premia, the premriairesignificantly negative for S&P and Dow

indexes, whether the premia are measured in dollar ternogyaeturns.

4.3. Errorsin variables

Since the synthetic variance swap rates are measured wath the error-in-variable issue arises when they
are used as regressors in the expectation hypothesissiegre (17) - (18). Thus, the fact that the slope

estimate for equation (17) is significantly below the nulpbthesis of one for S&P and Dow indexes could
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be either due to time-varying risk premium, as we have comjed, or simply due to the bias induced by

the error-in-variable problem.

To gauge the size of the bias caused by the error-in-variaolelem in equation (17), we propose the

following expanded formulation:
RV 1
St

a+bSWr +e,
SW,T + na

(24)

whereSW denotes the true swap rate a8/ denotes the synthetic swap rate, which is regarded as a noisy
estimator of the true swap rate, withcapturing the measurement error. Furthermore, we speciusil-

iary AR(1) dynamics for the true 30-day variance swap rate:

SWi1=6(1—@) + @SW.1 + €11 (25)

If we assume independent normal distributions on the eerang €,n, €) with variance(a2, oﬁ,og), respec-
tively, we can use the maximum likelihood method joint withlian filter to estimate the parameters of the
system. In this estimation, we regard equation (25) as #ie-piropagation equation and equation (24) as the
measurement equation. Given initial parameter guessessavkalman filter to obtain the forecasted mean
values and variances on the measurement series. Then, steudthe likelihood based on the forecasting

2,02,0%)

errors, which are normally distributed under our assumptibhe model paramete(s, b, 8, ¢,0g, o7,

are estimated by maximizing the likelihood value. Using thiethod, we learn not only the bias-corrected
expectation hypothesis coefficiensslf), but also the variances of the measurement errors andugnewrap

rates.

We perform the likelihood estimation on the three S&P and Dadexes that have generated regres-
sion slope coefficients significantly lower than one. Tabteg@orts the maximum likelihood estimates and
standard errors of the parameters. Take the S&P 500 inder agaample. The slope estimate 508,
larger than the least square estimate .d68 reported in Table 6. The difference between the two aséisn
captures the bias induced by the measurement errors in tileesig variance swap rates. Nevertheless,

after correcting for this bias, the slope coefficient on t&” %00 index remains significantly lower than
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the null value of one. The results are similar for the othay imdexes. Therefore, our earlier conclusion
remains valid after controlling for the error-in-varial$sue. Especially for the S&P and Dow indexes, the
expectation hypothesis regression slope estimate idisigmily below the null value of one, suggesting that

the variance risk premium in dollar terms is time-varyingl @orrelated with the variance swap rate.

[Insert Table 9 about here.]

4.4. Subsample analysis

The stock market had been largely bullish since the beginofrour sample in 1996 until the burst of the
Nasdag bubble in March 2000, after which the stock markebkaa going down till the end of our sample
in 2003. As a concrete example, the S&P 500 index startedoandr600 in January 1996, and climbed
over 1500 points before it started to fall after March 200.tlB end of our sample in February, 2003, the
S&P 500 index retreated to around 800. Thus, we can largeigiedbur whole sample into two subsample

periods, a bullish period from 1996 to March 2000, and a kaaseriod after March 2000.

To study whether the variance risk premia behavior varidsuilish versus bearish market conditions,
we divide our sample into two subsamples, with March 24, 2&9the dividing point. The first subsample
includes dates before March 23, 2000. The second subsangilelés March 24, 2000 and after. Table 10
reports the summary statistics of the realized varianceavee swap rates, and the variance risk premia
under the two subsample periods. On average, both theedalariance and the variance swap rates are
higher during the bearish period (the second subsampla)dheng the bullish period. Nevertheless, the

variance risk premia are strongly negative under both niadkeditions for the S&P and Dow indexes.

[Insert Table 10 about here.]
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5. Conclusion

In this paper, we propose a direct and robust method to dydhé variance risk premia on financial assets
underlying options. Our method uses the notion of a variaweap, which is an over-the-counter contract
that pays the difference between the realized variancehanfided swap rate. Since the variance swap rate
represents the risk-neutral expected value of the realiagdnce, we propose to use the difference between
the realized variance and the variance swap rate to quahtfyariance risk premium. We show that the
variance swap rate can be well approximated by the value aftecplar portfolio of options. Using a large
options data set, we synthesize variance swap rates angzanariance risk premia on five stock indexes

and 35 individual stocks.

We find that the variance risk premia are strongly negativetie S&P and Dow indexes. Further
analysis shows that there exists a systematic variancdaassr in the stock market that asks for a highly
negative risk premium. When we investigate whether thesmdasset pricing model can explain the negative
variance risk premia, we find that the well-documented negatorrelation between index returns and
volatility generates a strongly negative beta, but thisatieg beta can only explain a small portion of the
negative variance risk premia. The Fama-French factorsataccount for the strongly negative variance
risk premia, either. Therefore, we conclude that eitherethe a large inefficiency in the market for index
variance or else the majority of the variance risk is gemerély an independent risk factor that the market
prices heavily. The negative sign on the variance risk paendicates that investors regard market volatility

going up as unfavorable shocks, and are willing to pay a largenium to hedge against market volatility

going up.

To analyze the dynamic properties of the variance risk prenve formulate expectation-hypothesis
regressions. When we regress the realized variance on tiamea swap rate, we obtain slope estimates
that are significantly lower than one, the null value underttyppothesis of constant or independent variance
risk premia. The slope estimates become closer to one wieregfnession is on the logarithm of variance.
These regression results indicate that although the lagnae risk premia are strongly negative, they are

not strongly correlated with the logarithm of the variane&p rate.
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The simple, direct, and robust method that we propose touneasriance risk premium opens fertile
ground for future research. Given the evidence on stochaatiance and strongly negative variance risk
premia, it is important to understand the pricing kerneldw&dr as a function of both the market portfolio
return and return variance. Recent studies, e.g., JadkW2000) and Engle and Rosenberg (2002) have
found some puzzling behaviors on the pricing kernel pregcin the equity index return alone. Accurately
estimating the pricing kernel as a joint function of the deturn and return variance can prove fruitful
not only for understanding the variance risk premia behatiot also for resolving the puzzling behaviors

observed on the pricing kernels projected on the indexmeilone.

The empirical analysis in this paper focuses on the variam@p rate and variance risk premium over
a fixed 30-day horizon. As over-the-counter variance swapqaotes are becoming increasingly available
at many different maturities, an important line for futuesearch is to design and estimate stochastic return
variance models that can capture the term structure ofn@iawap rates and variance risk premia, e.g.,

Egloff, Leippold, and Wu (2006).
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Appendix A. Synthesizing variance swap contracts
Let f(F) be a twice differentiable function &. By Itd’s lemma for semi-martingales:

(Fr) = f(R)+ [ F(F)dR 2 [ (R )0 ds

T
[ (R~ f(Fe )~ F'(Fe )P (€~ D] ds), (A1)
t R

Applying equation (A1) to the functiofi(F) = InF, we have:

In(Fr) — +/ Fs,dFS_z/ os,ds+/ / X— & + u(dx ds). (A2)

Adding and subtracting[g -1+ ftT x2u(dx, ds) and re-arranging, we obtain the following representation:

Vet = /tTog,ds+/th2u(dx,ds)= {%—1 ( )]+2/ {g——]d&
—2/tT/RO {ex—l—x—x—;] w(dx ds). (A3)

A Taylor expansion with remainder of iy about the poink implies:
nFr =R+ 2 (Fr-R) -~ [ (K- Ftdk— [ (R k)oK (A%)
- R 0 K2 R K2 :

Combining equations (A3) and (A4) and noting tkat= Sr, we have:

R o)
Ver = 2[/ %(K—sTﬁdKJr/H %(&—K)*dK]

+2/ [i‘_] dR
—2/t /RO {ex—l—x—x—zz] w(dx ds). (A5)

Thus, we can replicate the return quadratic variation ujnte T by the sum of (i) the payoff from a static position
in 2d—K European options on the underlying spot at stkkand maturityT (first line), (ii) the payoff from a dynamic
trading strategy holdingBs(T) {— — —} futures at times (second line), and (iii) a higher-order error term induced
by the discontinuity in the futures price dynamics (thimkl). The options are all out-of-the-money forward, i.ell, ca

options wherly > K and put options wheK < k.
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Taking expectations under meast@eon both sides, we obtain the risk-neutral expected valubefjuadratic
variation on the left hand side. We also obtain the forwatdevaf the startup cost of the replicating strategy and the

replication error on the right hand side:

© 20 (K, T T 2
B Ml = %)KZ)dK—Z]EP/t /RO [ex—l—x—%]vs(x)dxds

By the martingale property, the expected value of the gaora flynamic futures trading is zero under the risk-neutral

measure. Dividing byT —t) on both sides, we obtain the result on the annualized reusdrmtic variation.
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Notes

1The variance risk premia on the Nasdg-100 index and its imgaktock QQQ also show some differences due to, among other

things, their different sample periods

2The address it t p: / / mba. t uck. dar t mout h. edu/ pages/ f acul ty/ ken. french/data_l i brary. htni .
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Table 1

List of stocks and stock indexesused in our study

No.  Ticker Starting Date EndingDate N NK Name
1 SPX 04-Jan-1996  28-Feb-2003 1779 26  S&P 500 Index
2 OEX 04-Jan-1996  28-Feb-2003 1780 27 S&P 100 Index
3 DJX 06-Oct-1997  28-Feb-2003 1333 12  Dow Jones Industriat@ge
4 NDX 04-Jan-1996  28-Feb-2003 1722 19 Nasdaq 100 Stock Index
5 QQQ 10-Mar-1999 28-Feb-2003 978 22 Nasdag-100 Index irrg&tock
6 MSFT 04-Jan-1996  28-Feb-2003 1766 9  Microsoft Corp
7 INTC 04-Jan-1996  28-Feb-2003 1653 8 Intel Corp
8 IBM 04-Jan-1996  28-Feb-2003 1768 9 International Busihéschines Corp
9 AMER 04-Jan-1996  28-Feb-2003 1648 9 Nanobac Pharmaakuticc
10 DELL 04-Jan-1996  28-Feb-2003 1650 7 Delllnc
11 CscCoO 04-Jan-1996  28-Feb-2003 1554 7  Cisco Systems Inc
12 GE 04-Jan-1996  28-Feb-2003 1458 6 General Electric Co
13 CPQ 04-Jan-1996 03-May-2002 1272 6 Compaq Computer Corp
14 YHOO 09-Sep-1997  28-Feb-2003 1176 14  Yahoo! Inc
15 SUNW 04-Jan-1996  28-Feb-2003 1395 8  Sun Microsystems Inc
16 MU 04-Jan-1996  28-Feb-2003 1720 8 Micron Technology Inc
17 MO 04-Jan-1996  28-Feb-2003 1474 5  Altria Group Inc
18 AMZN 19-Nov-1997 28-Feb-2003 1078 12 Amazon.Com Inc
19 ORCL 04-Jan-1996  28-Feb-2003 1104 6 Oracle Corp
20 LU 19-Apr-1996  28-Feb-2003 981 7 Lucent Technologies Inc
21 TRV 04-Jan-1996  28-Feb-2003 1279 5 Thousand Trails Inc
22 WCOM 04-Jan-1996 21-Jun-2002 1104 6 WorldCom Inc
23 TYC 05-Jan-1996  28-Feb-2003 979 6 Tyco International Ltd
24  AMAT 04-Jan-1996  28-Feb-2003 1671 8 Applied Materiats In
25 QCOM 04-Jan-1996 28-Feb-2003 1613 8 QualcommInc
26 TXN 04-Jan-1996  28-Feb-2003 1610 7  Texas Instruments Inc
27 PFE 04-Jan-1996  28-Feb-2003 1420 6 Pfizer Inc
28 MOT 04-Jan-1996  28-Feb-2003 1223 6 MotorolaInc
29 EMC 04-Jan-1996  28-Feb-2003 1188 7 EMC Corp
30 HWP 04-Jan-1996  28-Feb-2003 1395 6 Hewlett-Packward Co
31 AMGN 04-Jan-1996  28-Feb-2003 1478 6 Amgenlinc
32 BRCM 28-Oct-1998  28-Feb-2003 1003 12 Broadcom Corp
33 MER 04-Jan-1996  28-Feb-2003 1542 6 Merill Lynch & Co Inc
34 NOK 04-Jan-1996  28-Feb-2003 1176 6 Nokia OYJ
35 CHL 04-Jan-1996  28-Feb-2003 1422 5 China Mobile Hong Kdrg
36 UNPH 16-Sep-1996  28-Feb-2003 745 12 JDS Uniphase Corp
37 EBAY 01-Feb-1999  28-Feb-2003 1000 12 eBaylInc
38 JNPR 07-Oct-1999  28-Feb-2003 627 15 Juniper Networks Inc
39 CIEN 14-May-1997  28-Feb-2003 998 9 Ciena Corp
40 BRCD 30-Nov-1999  28-Feb-2003 693 10 Brocade Commuuwicatbystems Inc

Entries list the ticker, the starting date, the ending dasample lengthN), the average number of available strikes
per maturity NK), and the full name for each of the five stock indexes and 3Withahl stocks used in our study.
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Table 2
Summary statistics for the realized variance and the synthetic variance swap rate

Ticker Panel A: Realized variandey x 100 Panel B: Variance swap rag@\Vx 100
Mean Std  Auto  Skew Kurt Mean Std  Auto  Skew Kurt

SPX 4.07 3.43 0.98 2.23 8.76 6.81 3.87 0.88 2.45 13.95
OEX 4.53 3.82 0.98 2.13 8.26 6.90 3.65 0.96 1.77 6.94
DJX 4.39 3.66 0.98 2.15 7.55 6.98 3.60 0.93 2.18 9.59
NDX 16.69 15.62 0.98 231 9.61 19.12 11.86 0.98 0.96 3.32
QQQ 22.61 16.53 0.98 1.60 5.32 26.54 11.29 0.94 0.82 3.58
MSFT 16.59 13.44 0.98 2.33 9.10 19.79 11.80 0.76 480 63.40
INTC 27.67  23.25 0.98 2.25 8.49 2517 14.06 0.94 1.80 7.97
IBM 15.15 11.39 0.97 1.76 6.52 16.83 8.56 0.89 219 11.64
AMER 41.13 25.49 0.97 1.12 4.07 4464 21.04 0.90 1.25 5.37
DELL 32.90 21.95 0.97 1.60 5.48 37.33 17.29 0.93 224 1297
CsCo 31.10 28.53 0.98 2.09 7.83 33.40 20.96 0.94 2.01 7.92
GE 11.91 8.83 0.98 1.84 6.54 14.15 7.93 0.90 1.38 5.53
CPQ 31.01 21.46 0.96 1.66 5.94 32.14 16.48 0.81 2.06 10.81
YHOO 72.25 4352 0.97 0.91 3.29 73.92 43.08 0.78 2.78 18.63
SUNW 36.71 27.14 0.98 1.83 6.61 37.63 23.13 0.84 3.22 25.06
MU 56.68 31.16 0.97 1.43 5.37 59.43 2553 0.87 1.75 12.10
MO 13.63 11.04 0.96 1.99 8.24 15.44 9.79 0.84 241 16.68
AMZN 88.62  48.69 0.96 0.63 2.99 103.81  55.77 0.95 1.80 7.60
ORCL 43.72  33.83 0.97 1.70 5.84 48.11  43.62 0.94 440 29.09
LU 3143 30.86 0.97 322 1731 31.25 29.02 0.68 6.22  79.86
TRV 19.36 17.40 0.95 2.46 9.24 19.02 11.44 0.93 2.83 15.27
WCOM 26.84 24.12 0.97 2.76  13.82 27.81 2081 0.92 2.22 8.94
TYC 32.61 38.22 0.98 2.32 8.71 40.74 53.24 0.90 446  30.54
AMAT 43.89 26.91 0.97 1.89 7.37 4578  20.18 0.91 1.30 4.98
QCOM 46.98 32.35 0.98 1.31 4.26 48.70  23.65 0.93 141 5.45
TXN 37.24  25.65 0.98 1.90 7.24 3540 18.21 0.94 1.27 4.65
PFE 12.65 7.96 0.97 1.69 7.06 14.19 5.88 0.88 0.97 4.69
MOT 29.28 25.44 0.96 2.04 7.23 27.09 18.70 0.84 1.97 9.56
EMC 4193 37.67 0.98 2.62 10.39 38.05 22.29 0.91 1.71 6.10
HWP 2519 17.24 0.96 1.34 4.34 2494 1352 0.91 1.58 6.18
AMGN 23.78 17.93 0.98 1.82 6.75 25.66 15.64 0.95 1.42 4,71
BRCM 91.22 57.64 0.98 1.68 6.06 90.56 45.18 0.95 1.68 6.56
MER 23.26  15.12 0.97 1.77 7.12 2405 1151 0.93 1.61 8.81
NOK 33.67 20.99 0.96 0.97 3.32 32,15 15.99 0.83 1.34 7.90
CHL 19.23 17.65 0.98 3.12 16.78 20.10 14.30 0.96 2.62 13.02
UNPH 83.74 59.74 0.97 1.47 5.40 7716  42.70 0.95 1.02 3.44
EBAY 69.16  59.28 0.98 1.29 4.18 73.10 42.97 0.96 1.00 3.81
JNPR 104.72  56.79 0.97 1.02 3.30 11450 49.41 0.93 0.99 3.54
CIEN 96.26  65.37 0.97 1.26 4.39 91.04 47.70 0.92 1.05 5.51
BRCD 110.11  65.55 0.97 1.01 3.45 100.75 40.78 0.92 0.38 251

Entries report summary statistics for the annualized zedlivariancdrV and the synthetic variance swap r&eV.
Columns under Mean, Std, Auto, Skew, Kurt report the sampdeage, standard deviation, daily autocorrelation,
skewness, and excess kurtosis, respectively.
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Table 3
Summary statistics of variance risk premia

Ticker Panel ARV — SW) x 100 Panel B: IiRV/SW) IR

Mean Std Auto Skew Kurt t Mean Std Auto Skew Kurt t

SPX -2.74 3.63 -0.04 -1.44 17.86 -8.39 -0.66 0.57 0.05 0.1823 3-11.83 0.98
OEX -2.36 3,57 -0.07 0.21 6.69 -7.02 -0.58 0.56 0.06 0.36 2490.34 0.85
DJX -258 3.86 -0.05 -0.15 8.28 -6.37 -0.61 0.58 0.07 0.63 13.39.07 0.87
NDX -243 10.24 0.05 149 942 -254 -0.28 047 0.11 040 3.4bB.49 0.55
QQQ -3.93 1255 0.12 0.83 4.68 -2.62 -0.29 048 0.21 0.16 2.8891 0.55

MSFT -3.20 12.31 -0.10 -1.91 57.68 -3.32 -0.30 0.52 -0.08 80.03.48 -6.62 0.55
INTC 249 19.07 -0.13 191 896 134 -0.02 0.51 -0.19 0.42 13.30.44 0.04
IBM -1.68 10.24 -0.04 0.67 9.38 -1.80 -0.24 0.60 0.02 0.01 42.94.35 0.36
AMER  -3.51 23.76 -0.08 0.63 4.62 -2.05 -0.17 0.57 -0.06 0.03.063 -3.79 0.33
DELL -443 2135 014 049 7.05 -2.15 -0.23 055 0.18 0.22 73.04.17 0.36
CSCO -2.30 20.31 -0.11 151 10.80 -1.42 -0.27 0.83 0.05 -671#41 -4.06 0.36
GE -2.24 7.63 -0.14 059 7.68 -3.52 -0.25 0.49 -0.04 0.28 3.38.60 0.51
CPQ -1.14 20.66 -0.02 0.17 7.66 -0.62 -0.13 0.59 -0.07 0.1427 3.-2.54 0.25
YHOO -1.67 4358 -0.21 -1.17 16.82 -0.42 -0.09 0.56 -0.16 70.02.97 -1.63 0.17
SUNW  -0.92 20.32 0.03 -1.97 40.32 -0.53 -0.11 0.48 -0.01 80.08.32 -2.54 0.24
MU -2.75 29.38 -0.12 0.68 6.71 -1.12 -0.10 0.47 -0.12 0.22 53.2-2.70 0.23
MO -1.81 11.76 0.10 0.52 9.99 -1.66 -0.24 0.69 0.05 0.21 3.29.79 0.34
AMZN -15.19 59.66 -0.06 -0.30 5.14 -2.14 -0.22 0.59 -0.14 00.12.75 -3.33 0.35
ORCL -4.39 46.26 0.04 -4.55 33.85 -0.82 -0.14 0.66 0.04 -1.5®W93 -1.92 0.20

LU 0.18 29.35 0.06 -3.43 79.81 0.08 -0.08 054 0.18 0.05 3.53.55 0.17
TRV 0.35 16.04 0.20 2.38 10.88 0.22 -0.12 0.64 0.14 0.93 5.03.85- 0.18
wCOM -097 2122 -0.11 139 11.29 -0.38 -0.13 0.63 -0.07 00.12.84 -1.78 0.19
TYC -8.13 48.26 0.06 -2.16 26.08 -1.55 -0.34 0.74 -0.13 0.90134 -4.00 0.45

AMAT  -1.89 2420 -0.08 1.08 7.08 -0.93 -0.11 0.48 -0.14 0.20.213 -2.72 0.23
QCoM -1.73 28.20 -0.11 0.82 5.18 -0.69 -0.15 0.59 -0.06 -0.1&77 -2.77 0.24

TXN 1.84 1993 -0.07 122 7.33 1.00 -0.02 047 -0.11 0.16 2.9D.59 0.05
PFE -1.54 8.08 -0.06 144 7.92 -1.92 -0.21 0.60 0.03 -0.14 7 4.23.35 0.31
MOT 219 20.13 -0.12 0.09 1091 1.23 -0.02 0.57 -0.08 -0.29433.-0.31 0.03
EMC 3.87 2891 035 225 1162 121 -0.02 053 0.05 0.55 3.68.47- 0.05

HWP 0.25 1456 -0.01 0.712 7.28 0.19 -0.08 0.54 -0.01 0.27 3.72.67 0.16
AMGN -1.88 1511 -0.07 0.71 594 -1.26 -0.16 0.55 -0.02 0.10.762 -3.01 0.27
BRCM 0.66 48.32 0.07 0.64 4.89 0.12 -0.05 0.48 0.17 0.20 2.40.99- 0.11

MER -0.79 13.11 0.05 1.04 590 -0.68 -0.11 0.50 -0.13 0.26 92.92.50 0.22
NOK 151 1873 0.07 -0.11 7.86 0.79 -0.03 0.55 0.08 0.07 3.3D.54- 0.05
CHL -0.87 15.10 -0.11 1.91 14.02 -0.60 -0.15 0.54 -0.14 0.36613 -2.84 0.26

UNPH 6.59 4942 -0.16 0.79 4.88 1.12 -0.01 0.58 -0.04 -0.32003.-0.25 0.03
EBAY -3.95 4588 -0.05 144 654 -0.69 -0.27 058 0.17 0.35972. -3.48 0.38
JNPR -9.79 54.78 -0.15 -0.21 3.74 -1.27 -0.14 0.52 -0.12 4-0.8.20 -2.07 0.29
CIEN 522 62,53 -0.07 080 6.64 0.68 -0.03 0.61 -0.07 0.47 84.1:0.33 0.04
BRCD 9.36 59.99 0.10 059 359 1.08 0.00 0.56 0.08 -0.25 2.63.020 -0.00

Entries report summary statistics of variance risk prerd&fjined as the difference between the realized variance
and the variance swap rate in panel A and as the log differienganel B. Columns under Mean, Std, Auto, Skew,
Kurt report the sample average, standard deviation, agenag-overlapping 30-day autocorrelation, skewness, and
excess kurtosis, respectively. Columns urtdexport thet-statistics of the mean risk premia, which are adjusted for
serial dependence according to the Newey-West method wéb af 30 days. The last column of the table under
“IR” reports the annualized Sharpe ratio of shorting thedd§-variance swap contracts, computed as the mean of
—In(RV/SW) divided by its Newey-West standard déviation (with 30 lags)l then annualized by/365/30.



Table 4
Explaining variancerisk premiawith CAPM beta

Proxy Panel A: S&P 500 Index Panel B: Valued-Weighted MaRatfolio

a B 23 a B R

SPX  -0.646 (-13.554) -4510 (-5.644) 0.173 -0.641 (-10P36:5.508 (-4.751) 0.245
OEX -0.562 (-11.630) -4.473 (-5.653) 0.175 -0.571 (-9.112%.536 (-4.936) 0.247
DJX  -0.613 (-10.820) -4.681 (-5.165) 0.206 -0.617 (-9.362).668 (-3.828) 0.205
NDX -0.273 (-6.689) -2.450 (-3.742) 0.078 -0.237 (-5.998)3.617 (-3.225) 0.182
QQQ -0.301 (-5.257) -1.157 (-1.707) 0.018 -0.320 (-5.3302.964 (-1.702) 0.117
MSFT -0.287 (-6.722) -2.168 (-4.134) 0.048 -0.339 (-5.981%.495 (-2.870) 0.068
INTC -0.011 (-0.252) -2.211 (-2.706) 0.051 -0.045 (-0.912)3.793 (-3.021) 0.150
IBM  -0.235 (-4.302) -2.181 (-2.737) 0.037 -0.269 (-4.448)2.185 (-1.759) 0.041
AMER -0.164 (-3.595) -2.133 (-3.161) 0.038 -0.242 (-5.077)1.695 (-1.604) 0.026
DELL -0.214 (-4.145) -2.723 (-3.582) 0.068 -0.271 (-3.645)3.527 (-3.673) 0.130
CSCO -0.269 (-3.583) -0.966 (-0.603) 0.004 -0.272 (-3.948)1.998 (-0.888) 0.043
GE -0.240 (-5.855) -2.648 (-3.868) 0.087 -0.287 (-5.461) .648 (-1.488) 0.046
CPQ  -0.107 (-1.959) -2.426 (-2.336) 0.039 -0.028 (-0.5583.292 (-2.646) 0.099
YHOO -0.089 (-1.630) -0.582 (-0.800) 0.003 -0.171 (-2.540)0.752 (0.791) 0.006
SUNW -0.095 (-2.250) -2.295 (-3.378) 0.054 -0.111 (-1.9778.978 (-3.162) 0.178
MU  -0.096 (-2576) -1.215 (-2.055) 0.018 -0.105 (-2.364) .452 (-3.664) 0.093
MO  -0.246 (-3.818) 0.375 (0.400) 0.001 -0.253 (-3.980) ©0.530.473) 0.002
AMZN -0.217 (-3.323) 0.075 (0.072) 0.000 -0.164 (-1.722) 48% (0.464) 0.002
ORCL -0.125 (-1.805) -2.311 (-2.706) 0.032 -0.179 (-2.488%.606 (-2.408) 0.099
LU -0.065 (-1.269) -1.463 (-1.740) 0.018 -0.047 (-0.877) .74B (-2.757) 0.099
TRV  -0.122 (-1.885) -2.075 (-2.584) 0.034 -0.167 (-1.647)1.025 (-0.626) 0.010
WCOM -0.099 (-1.432) -3.588 (-3.550) 0.078 -0.066 (-0.715}.256 (-2.821) 0.140
TYC  -0.349 (-4.025) -1.726 (-1.591) 0.017 -0.405 (-3.885).778 (0.260) 0.002
AMAT -0.104 (-2.641) -0.972 (-1.700) 0.011 -0.119 (-2.482)}2.839 (-3.515) 0.110
QCOM -0.149 (-2.747) -1.062 (-1.358) 0.009 -0.164 (-2.629R.573 (-2.129) 0.059
TXN  -0.022 (-0.546) -0.603 (-1.150) 0.005 -0.086 (-1.596)0.783 (-1.046) 0.009
PFE  -0.206 (-3.307) -2.016 (-1.862) 0.035 -0.230 (-3.541).967 (-1.213) 0.035
MOT  -0.003 (-0.055) -1.955 (-1.956) 0.030 -0.024 (-0.329)3.479 (-1.926) 0.099
EMC  -0.007 (-0.150) -2.865 (-2.967) 0.079 -0.069 (-0.845)1.090 (-3.950) 0.167
HWP  -0.070 (-1.444) -1.669 (-2.037) 0.024 -0.048 (-0.802).996 (-1.650) 0.052
AMGN -0.159 (-2.979) -0.947 (-1.028) 0.009 -0.128 (-1.478)0.164 (-0.116) 0.000
BRCM -0.046 (-0.867) 0.861 (1.140) 0.010 -0.082 (-0.950) .82@ (-0.423) 0.006
MER -0.106 (-2.419) -1.184 (-1.601) 0.016 -0.145 (-2.354)1.294 (-1.147) 0.021
NOK -0.031 (-0.537) -1.708 (-1.959) 0.028 -0.037 (-0.563)2.132 (-1.765) 0.074
CHL -0.144 (-2.752) -1.662 (-1.840) 0.029 -0.105 (-2.405)1.968 (-2.173) 0.050
UNPH -0.014 (-0.236) -1.676 (-1.440) 0.023 -0.057 (-1.276%.015 (-1.209) 0.074
EBAY -0.266 (-3.401) 0.214 (0.219) 0.000 -0.293 (-2.267) .145 (-0.122) 0.000
JNPR  -0.147 (-2.151) -0.484 (-0.572) 0.003 -0.184 (-2.4942.091 (-1.082) 0.042
CIEN -0.020 (-0.258) -2.320 (-1.738) 0.039 -0.062 (-0.653¥.433 (-1.929) 0.148
BRCD 0.004 (0.054) 0.182 (0.190) 0.000 0.006 (0.060) -2.792.301) 0.104

Entries report the GMM estimates (atidtatistics in parentheses) of the following relation,

INRV;7/SWt =a+B;ERT +e

whereER™ denotes the excess return on the market portfolio, whichdgyed by the return on the S&P 500 index
forward in panel A and the excess return on the CRSP valueghtesl stock portfolio in panel B. Thestatistics are
computed according to Newey and West (1987) with 30 lagshfeoverlapping daily series in panel A and six lags
for the non-overlapping monthly series in panel B. $blummdar “R2” report the unadjusted R-squared.



Table5
Explaining variancerisk premia with Fama-French risk factors

Ticker a ERM SMB HML R

SPX  -0.633 (-9.070) -5.205 (-3.853) -2.858 (-2.098) -0.1950.227)  0.287
OEX  -0.561 (-8.294) -5.268 (-4.030) -3.292 (-2.472) -0.4430.477)  0.300
DJX  -0.604 (-8.251) -4.601 (-3.246) -3.603 (-3.074) -1.3461.743) 0.275
NDX  -0.235 (-5.943) -2.851 (-2.614) -1.958 (-2.216)  1.3911.780) 0.269
QQQ  -0.304 (-5.213) -2.204 (-1.461) -1.694 (-1.548)  1.5432.470)  0.229
MSFT -0.321 (-6.617) -2.530 (-2.758) -4.960 (-4.839) -58%-2.164)  0.225
INTC  -0.037 (-0.886) -3.875 (-3.119) -2.961 (-3.026) -T17-1.530)  0.205
IBM  -0.259 (-4.963) -2.027 (-1.567) -3.063 (-1.944) -0.6600.428)  0.089
AMER -0.229 (-5.607) -1.692 (-1.225) -3.084 (-2.154) -G19§-0.930)  0.080
DELL -0.268 (-3.664) -2.987 (-3.459) -2.968 (-2.293)  0.4200.344) 0.203
CSCO -0.282 (-4.458) -1.084 (-0.479)  1.461 (1.092)  2.130.472) 0.081
GE -0.267 (-6.495) -1537 (-1.281) -2.834 (-2.871) -0.8180.973)  0.132
CPQ  -0.030 (-0.653) -2.907 (-2.005) 0.790 (0.661)  0.910 906)  0.106
YHOO -0.170 (-2.554)  0.104 (0.087)  0.669 (0.432) -0.876 .[8B)  0.024
SUNW -0.117 (-2.220) -3.066 (-2.066) -1.507 (-1.466)  1.1101.188)  0.227
MU -0.101 (-2.400) -2.650 (-3.792) -0.646 (-0.811) -0.7451.066) 0.101
MO -0.255 (-4.129) 0709 (0.529) -0.527 (-0.286) 0.556 ©@&3 0.005
AMZN -0.173 (-2.025) -0.110 (-0.069) -1.775 (-0.746) -188%(-1.182)  0.035
ORCL -0.174 (-2.355) -3.814 (-3.008) -0.110 (-0.068) -@3%-0.334)  0.100
LU -0.046 (-0.859) -3.377 (-2.586) -0.918 (-0.546) -1.3331.087) 0.125
TRV  -0.129 (-1581) -0.496 (-0.283) -5.906 (-4.769) -1.1941.066)  0.209
WCOM -0.073 (-0.835) -4.910 (-2.768) -2.263 (-1.419) -B7%-1.660) 0.167
TYC  -0.367 (-3.334) 0253 (0.107) -4.234 (-1.611) -2.6681.875) 0.078
AMAT -0.100 (-2.769) -2.617 (-2.867) -4.062 (-4.045) -1310(-1.667)  0.247
QCOM -0.164 (-2.657) -1.657 (-1.330) -3.863 (-3.097)  0.7400.716)  0.136
TXN  -0.073 (-1.382) -1.007 (-1.600) -4.353 (-4575) -1.9972.073)  0.163
PFE  -0.208 (-3.746) -1.504 (-0.834) -3.795 (-2.047) -1.160.582) 0.107
MOT  -0.029 (-0.354) -2.860 (-1.650)  0.706 (0.452)  1.002 869.)  0.109
EMC  -0.071 (-0.994) -2.482 (-2.356) -1.771 (-2.035)  2.0032.848) 0.270
HWP  -0.044 (-0.751) -2.456 (-1.744) -0.918 (-0.816) -1.1381.026)  0.067
AMGN -0.122 (-1.555) -0.421 (-0.276) -1.367 (-1.030) -M1§-1.352) 0.019
BRCM -0.049 (-0.633) -0.313 (-0.148) -3.039 (-2.407) -®4%-0.389)  0.079
MER  -0.138 (-2.573) -0.899 (-0.737) -2.030 (-1.382)  0.3130.346)  0.063
NOK  -0.023 (-0.339) -2.001 (-1.745) -2.276 (-2.111) -0.6460.800)  0.127
CHL  -0.102 (-2.498) -1.830 (-1.927) -2.866 (-2.234) -0.550.568)  0.112
UNPH -0.044 (-0.604) -1.688 (-0.757) -1.547 (-0.868)  1.3820.999)  0.152
EBAY -0.263 (-2.003) 0446 (0.412) -2.835 (-2.125) 0336 .2%) 0.073
JNPR  -0.105 (-1.506) -3.192 (-2.421) -3.368 (-2.146) -3.2p-3.041)  0.158
CIEN  -0.040 (-0.452) -5.340 (-2.403) -2.960 (-2.350) -257-1.565)  0.202
BRCD 0.060 (0.510) -2.025 (-1.699) -3.496 (-2.457) -0.7230.637) 0.223

Entries report the GMM estimates (atidtatistics in parentheses) of the following relation,
INRV;1/SWr =0 +BERY +SSMBt +hHML 1 + ¢

where the regressors are the three stock-market risk fadefined by Fama and French (1993): the excess return
on the market portfolioE R™), the size factor§MB), and the book-to-market factar(i/L). Data are monthly from
January 1996 to December 2002. Tth&tatistics are computed according to Newey and West (188H)six lags.
Columns underR?” report the unadjusted R-squared of the regression.
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Table 6
Expectation hypothesis regressions on constant variance risk premia

Ticker Panel ARM 1 =a+bSWt+e Panel B: IRV{ =a+bInSWt +e

a b R a b R

SPX 0.010 (1.416) 0.455 (-4596) 0.262 -0.891 (-2.593) ©.90-0.684) 0.378
OEX  0.006 (0.981) 0568 (-3.933) 0294 -0.600 (-1.797) D.90-0.065) 0.408
DJIX 0.013 (1.524) 0.443 (-4.046) 0.190 -1.210 (-2.859) 0.78-1.467) 0.253
NDX  -0.023 (-1.329) 0.995 (-0.042) 0571 -0.170 (-1.233) 06D (0.876) 0.672
QQQ -0.027 (-0.887) 0.953 (-0.326) 0.424 -0.281 (-1.466) 00I1. (0.060) 0.445
MSFT  0.046 (1.804) 0.605 (-2.726) 0.282 -0.465 (-2.677) 08.9(-1.040) 0.395
INTC  0.038 (1.067) 0.948 (-0.302) 0.328 -0.263 (-1.724) 30.8(-1.922) 0.404
IBM 0.039 (2.164) 0670 (-2.707) 0.253 -0.594 (-2.975) @8(-1.881) 0.264
AMER 0.145 (4.138) 0596 (-5.697) 0.242 -0.408 (-5.318) 48.7(-3.014) 0.271
DELL 0.126 (3.260) 0.543 (-3.954) 0.183 -0.583 (-4.082) 686(-2.934) 0.202
CSCO -0.009 (-0.295) 0.957 (-0.419) 0.494 -0.117 (-0.863).121 (0.983) 0.343
GE 0.026 (2557) 0657 (-4.075) 0.348 -0.660 (-4.239) 0.803.013) 0.455
CPQ 0129 (2.922) 0562 (-2.858) 0.187 -0.540 (-3.257) B.67-2.455) 0.229
YHOO 0354 (4.335) 0.499 (-4.679) 0.244 -0.204 (-3.569) 30.7(-2.823)  0.299
SUNW 0.065 (1.295) 0.802 (-1.293) 0.468 -0.233 (-2.021) 90.8(-1.134)  0.445
MU 0.221 (4.816) 0582 (-5.174) 0.228 -0.309 (-4.773) 0.6664.078)  0.255
MO 0.072 (5.406) 0.415 (-7.421) 0.135 -0.971 (-4.791) 0.648B.795) 0.222
AMZN 0565 (5.120) 0.309 (-8.470) 0.125 -0.246 (-4.035) 526(-2.559) 0.238
ORCL 0.323 (3.758) 0.238 (-3.502) 0.095 -0.513 (-2.013) 00.6(-1.847) 0.255
LU 0.141 (2.435) 0554 (-2.232) 0271 -0.330 (-2.348) 0.8(7.128) 0.454
TRV 0066 (2.557) 0.673 (-2.921) 0196 -0.722 (-3.327) B.66-2.911) 0.220
WCOM 0.087 (3.201) 0.652 (-2.520) 0.316 -0.500 (-2.721) 5@0.7(-2.305) 0.358
TYC  0.185 (3.862) 0.347 (-17.988) 0.233 -0.535 (-4.928) 50.8(-2.009) 0.462
AMAT 0.132 (3.524) 0.670 (-3.464) 0252 -0.377 (-4.362) 9W6(-3.847) 0.275
QCOM 0.117 (2.474) 0.724 (-2.833) 0.281 -0.361 (-3.516) 40.7(-2.439)  0.249
TXN  0.056 (1.489) 0.893 (-0.813) 0.402 -0.211 (-1.983) ©.88-1.971) 0.435
PFE 0.059 (4.270) 0.473 (-6.469) 0.122 -1.052 (-6.084) D.584.779) 0.160
MOT  0.063 (2.393) 0.846 (-1.133) 0.387 -0.325 (-2.022) 0.70-2.348)  0.427
EMC  0.006 (0.099) 1.087 (0.461) 0.414 -0.203 (-1.450) 0.838.532) 0.399
HWP  0.069 (2.836) 0.733 (-2.849) 0.330 -0.378 (-2.659) 4.80-2.159) 0.349
AMGN 0.061 (2.617) 0.691 (-2.832) 0.363 -0.451 (-3.461) 09.8(-2.395) 0.405
BRCM 0.240 (2.010) 0.742 (-1.692) 0338 -0.112 (-1.802) 08.7(-2.868) 0.322
MER  0.061 (2.844) 0714 (-2.766) 0295 -0.479 (-3.292) 8.76-2.726) 0.346
NOK  0.119 (2.872) 0.676 (-2.395) 0.265 -0.366 (-2.913) 0.78-2.776) 0.323
CHL  0.051 (2525) 0.704 (-2.373) 0.326 -0.347 (-2.277) 0.88-1.377) 0.491
UNPH 0213 (2.056) 0.809 (-1.080) 0.334 -0.092 (-1.050) 00.8(-1.702) 0.372
EBAY 0.047 (0.506) 0.882 (-0.882) 0.408 -0.166 (-2.100) OL2 (2.481) 0.637
JNPR 0422 (2.837) 0546 (-2.997) 0226 -0.121 (-1.728) 53.5-3.302) 0.185
CIEN 0435 (3.038) 0580 (-2.784) 0.179 -0.103 (-1.362) 7B.6(-2.582) 0.305
BRCD 0386 (2561) 0710 (-1.702) 0.195 -0.026 (-0.318) 66.6(-2.341) 0.231

Entries report the GMM estimates (atidtatistics in parentheses) of the following relations,

Panel A RMr = a+bSWt+e
Panel B: INRMT = a+bInSWrt+e

Thet-statistics are calculated according to Newey and West{L@&h 30 lags, under the null hypothesisat
0,b = 1. Columns underR?” report the unadjusted Il?lbsquared.



Table7
Numerical illustration of the approximation error for variance swap rates

Inv /0 EQ[RV] SW Total Error E2[RV] — SW) Jump Error €)

The Black-Scholes Model:

0.0 0.1369 0.1369 0.0000 0.0000

The Merton Jump-Diffusion Model:

0.0 0.1387 0.1366 0.0021 0.0021

The MJD-Stochastic Volatility Model:

-3.0 0.0272 0.0273 -0.0001 0.0021
-2.5 0.0310 0.0313 -0.0003 0.0021
-2.0 0.0372 0.0376 -0.0004 0.0021
-1.5 0.0475 0.0477 -0.0001 0.0021
-1.0 0.0645 0.0637 0.0008 0.0021
-0.5 0.0925 0.0905 0.0020 0.0021
0.0 0.1387 0.1356 0.0031 0.0021
0.5 0.2148 0.2107 0.0041 0.0021
1.0 0.3403 0.3353 0.0051 0.0021
15 0.5472 0.5410 0.0062 0.0021
2.0 0.8884 0.8799 0.0085 0.0021
2.5 1.4509 1.4377 0.0132 0.0021
3.0 2.3782 2.3561 0.0221 0.0021

Entries report the analytical 30-day variance swap rBf&RV)), the synthetic approximation of the variance swap
rate 6\7\0 based on interpolation and extrapolation over five impliethtility quotes, the total approximation error
(Total Error =EQ[RV] — S/\\M and the error induced by jumps in the underlying asseepgrunder each model.
For the MJD-stochastic volatility model, the first colummdées the log difference between the current instantaneous
variance level; and its long-run meaf. For ease of comparison, we represent all swap rates arms arreolatility
percentage points.

41



Table 8
Mean synthetic variance swap rates and variance risk premiafrom bid and ask option prices

Ticker  Panel ASWx 100 Panel B{RV — SW) x 100 Panel C: IfRV/SW)

Ask Bid Ask Bid Ask Bid
SPX 7.52 6.41 -3.45 (-9.81) -2.34 (-7.44) -0.76 (-13.48) 6060.(-10.81)
OEX 7.44 6.62 -2.90 (-8.32) -2.08 (-6.26) -0.65 (-11.73) 54. (-9.53)
DJX 7.90 6.33 -3.51 (-8.15) -1.94 (-4.94) -0.73 (-10.93) 520. (-7.60)

NDX  20.76 18.09  -4.06 (-4.29)  -1.40 (-1.43) -0.36 (-8.29) .2 (-5.30)
QQQ  29.48 2468  -6.88 (-451)  -2.07 (-1.39) -0.40 (-6.51) .220 (-3.74)
MSFT  22.34 1812  -575 (-559)  -153 (-1.62) -0.41 (-9.18)0.21 (-4.61)
INTC  27.69 2360  -0.03 (-0.01) 407 (215) -011 (-2.37) 40.0 (0.90)
IBM 18.23 16.06  -3.08 (-3.24)  -0.92 (-0.99) -032 (-5.73) .2® (-3.50)
AMER  48.68 4226  -755 (-4.37)  -1.13 (-0.65) -0.26 (-5.73)0.12 (-2.49)
DELL 4151 3457  -8.61 (-417)  -1.67 (-0.81) -0.33 (-6.14)0.15 (-2.69)
CSCO  37.03 3115  -593 (-3.96) -0.05 (-0.03) -0.37 (-5.54)0.2% (-3.00)
GE 16.12 1280  -421 (-597) -0.89 (-1.46) -037 (-8.16) 140. (-3.35)
CPQ 37.18 2860  -6.17 (-3.26) 240 (1.34) -027 (-5.05) 20.0(-0.31)
YHOO  79.74 70.77  -7.49 (-1.82) 148 (0.38) -0.16 (-2.94) O0%0. (-0.83)
SUNW  43.28 3369  -6.58 (-3.72) 3.02 (1.71) -0.25 (-5.58) 10.0(0.12)
MU 64.64 56.35  -7.96 (-3.21) 0.33 (0.13) -0.18 (-4.93) -0.05-1.24)
MO 17.84 13.72  -421 (-355)  -0.09 (-0.09) -0.38 (-5.94) 1D. (-1.94)
AMZN 112.47 98.81 -23.84 (-3.08) -10.18 (-1.53) -0.30 (8)3 -0.17 (-2.66)
ORCL  53.46 4459  -9.73 (-1.82) -0.86 (-0.16) -0.25 (-3.58)0.05 (-0.65)
LU 34.63 20.07  -3.20 (-1.52) 2.36 (1.07) -0.17 (-3.45) -0.0{-0.23)
TRV 21.38 17.41  -2.02 (-1.26) 1.95 (1.20) -0.24 (-3.70) 20.0(-0.40)
WCOM  32.49 2444 565 (-2.04) 2.40 (0.98) -0.29 (-3.85) 20.0(0.31)
TYC 45.10 37.94 -1249 (-2.18)  -533 (-1.07) -0.45 (-5.22)0.26 (-3.10)
AMAT  51.27 4213 -7.38 (-3.59) 1.76 (0.86) -0.23 (-5.74) OD. (-0.36)
QCOM  53.38 4576  -6.40 (-2.54) 1.22 (0.49) -0.25 (-4.49) 080. (-1.47)
TXN 39.23 3291  -1.99 (-1.07) 432 (235) -0.13 (-3.08)  0.051.31)
PFE 16.14 12.82  -3.48 (-421) -017 (-021) -034 (-5.34) .110 (-1.68)
MOT  30.43 2480 -1.16 (-0.64) 448 (2.49) -013 (-2.46) 0.0 1.50)
EMC  42.83 3483  -0.90 (-0.29) 710 (2.19) -0.15 (-2.81) 0.081.48)
HWP  27.60 2320  -2.41 (-1.80) 1.99 (1.57) -0.19 (-3.74) 00.0(-0.03)
AMGN  28.33 2395  -455 (-3.02) -0.17 (-0.11) -0.27 (-5.10) 0.08 (-1.42)
BRCM  97.50 86.72  -6.28 (-1.11) 450 (0.81) -0.12 (-2.29) 010. (-0.20)
MER  26.18 2275  -2.92 (-2.50) 052 (0.44) -0.20 (-4.48) 50.0(-1.10)
NOK  35.57 29.92  -1.90 (-0.97) 3.74 (1.95) -0.13 (-2.18) 0.040.67)
CHL 22.59 18.38  -3.36 (-2.18) 0.85 (0.59) -0.27 (-5.02) 50.0(-1.05)
UNPH  82.99 74.07 0.75 (0.13) 9.68 (1.61) -0.09 (-1.44) 0.030.44)
EBAY  78.23 70.37  -9.07 (-1.59)  -1.22 (-0.21) -0.34 (-4.37)0.23 (-2.95)
JNPR 12276  110.14 -18.05 (-2.24)  -543 (-0.73) -021 (82.9 -0.10 (-1.53)
CIEN  99.05 86.25  -2.79 (-0.34)  10.01 (1.33) -0.11 (-1.38) 030. (0.38)
BRCD 110.90 9416  -0.80 (-0.09) 1595 (1.80) -0.09 (-1.20) .070 (0.88)

Entries compare sample mean of synthetic variance swag) s3tethetic volatility swap rate, and variance risk premia
when the synthesis is based on ask and bid option pricegatsgly. We also report in parenthesis thgtatistics on

the significance of the mean variance risk premia, which dpested for serial dependence according to the Newey-
West method with a lag of 30 days.
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Table 9
Maximum likelihood estimates of the expectation hypothesis regression on S& P 500 index

Ticker SPX OEX DJIX

a -0.144 (0.162) -0.151 (0.160) -0.110 (0.184)
b 0.618 (0.012) 0.698 (0.013) 0.569 (0.013)
0 3.719 (1.383) 3.720 (1.422) 3.748 (0.921)
® 0.988 (0.002) 0.990 (0.003) 0.995 (0.003)
02 6.782 (0.152) 6.803 (0.136) 7.083 (0.168)
02 1.989 (0.031) 1.851 (0.105) 1.122 (0.049)
02 0.549 (0.028) 0.422 (0.044) 0.536 (0.036)

Entries report the maximum likelihood estimates of the pai@rs (and standard errorsin parentheses) of the folgpwin
system of equations:

RM1 = a+bSWr+e
§\\A4,T = SWT +n,
SWi1 = 6(1—@) +@SW,i1+ &1

where the error terms are independently normal with zeraaed variancesog, 62,02). The realized variance and
swap rates are both scaled up by 100 for the estimation.
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Table 10

Summary statistics of variance risk premiafrom different subsamples

Ticker RVx100  SWx 100 (RV — SW) x 100 In(RV/SW)
S1 s2 S1  s2 s1 S2 s1 S2

SPX 323 531 612 7.83 -2.89 (-8.99) -2.52 (-7.83) -0.764(26) -0.52 (-9.91)
OEX 351 6.06 584 848 -232(-8.02) -2.42 (-6.28) -0.65255) -0.47 (-8.30)
DJX 384 488 691 7.03 -3.07 (-6.96) -2.15 (-6.19) -0.720(48) -0.51 (-8.62)
NDX  9.84 2651 12.19 29.05 -2.35 (-4.78) -2.55 (-1.90) -0.328.15) -0.23 (-4.86)
QQQ 1515 25.36 18.74 29.42 -3.59 (-5.45) -4.06 (-2.42) 10.8-8.93) -0.28 (-4.37)
MSFT 12.95 22.12 16.37 24.96 -3.43 (-6.26) -2.84 (-2.21)310.(-8.37) -0.27 (-5.24)
INTC 18.03 4250 18.06 36.13 -0.03 (-0.04) 6.37 (2.32) -0.051.52) 0.03 (0.53)
IBM  13.06 18.26 1455 20.21 -1.49 (-1.85) -1.95 (-1.78) 20.4-4.47) -0.27 (-4.27)
AMER 44.84 3467 4824 3835 -3.41 (-1.94) -3.69 (-2.24) 160.(-3.67) -0.20 (-4.02)
DELL 30.24 36.85 37.71 36.75 -7.47 (-5.10) 0.10 (0.04) -0.276.61) -0.17 (-2.40)
CSCO 18.78 5554 24.37 51.31 -559 (-5.97) 4.23 (1.94) -04®.67) -0.02 (-0.54)
GE 8.63 1599 10.33 1891 -1.70 (-3.43) -2.92 (-3.80) -0.24553) -0.26 (-5.71)
CPQ 25.87 4862 2896 43.06 -3.09 (-2.32) 556 (2.08) -0.1B.56) -0.01 (-0.13)
YHOO 67.28 77.79 65.33 8351 195 (0.48) -572 (-1.54) -0.060.91) -0.12 (-2.82)
SUNW 26.75 64.20 30.03 58.59 -3.29 (-2.57) 561 (2.38) -0.073.74) 0.03 (0.92)
MU  49.94 67.42 5057 73.56 -0.63 (-0.33) -6.14 (-2.04) -0.g71.96) -0.15 (-3.85)
MO  13.03 14.53 1391 17.74 -0.88 (-0.77) -3.21 (-3.26) -0.162.55) -0.37 (-5.93)
AMZN 99.63 77.32 93.34 11457 6.30 (1.38) -37.24 (-5.15) 00.0(0.02) -0.44 (-7.69)
ORCL 3294 6156 41.31 59.37 -8.37 (-1.34) 2.19 (0.70) -0.472.15) -0.07 (-1.50)
LU 2170 61.12 2349 5493 -1.79 (-1.50) 6.19 (1.80) -0.122.%9) 0.06 (1.23)
TRV  19.25 19.47 18.76 19.26 0.49 (0.44) 0.21 (0.11) -0.05.990 -0.19 (-2.50)
WCOM 18.68 47.27 19.67 48.19 -0.99 (-0.73) -0.91 (-0.21) 150.(-2.22) -0.08 (-0.97)
TYC 2483 37.35 2530 50.17 -0.47 (-0.22) -12.81 (-2.03)210.(-2.68) -0.42 (-4.88)
AMAT 37.21 54.36 37.99 57.98 -0.78 (-0.51) -3.62 (-1.45) 08. (-2.16) -0.15 (-3.65)
QCOM 38.79 57.82 40.01 60.22 -1.22 (-0.54) -2.40 (-0.86)150.(-2.55) -0.16 (-3.09)
TXN 27.67 51.51 25.81 49.70 1.86 (1.43) 1.80 (0.75) -0.00 .@6Q -0.06 (-1.44)
PFE  13.11 12.07 14.16 14.23 -1.05 (-1.66) -2.16 (-2.24) 2-0.0-2.96) -0.33 (-4.08)
MOT 20.00 49.25 1878 44.97 121 (1.34) 428 (155) 001 90.2-0.08 (-1.19)
EMC 27.37 66.85 2858 54.28 -1.20 (-0.83) 12,57 (2.74) -0.081.82) 0.07 (1.15)
HWP 19.88 36.02 19.05 36.95 0.83 (0.62) -0.94 (-0.78) -0.061.17) -0.12 (-3.01)
AMGN 21.81 26.00 19.52 32.60 229 (2.07) -6.60 (-4.01) -0.940.81) -0.30 (-5.66)
BRCM 73.73 99.72 64.07 103.44 9.67 (3.55) -3.72 (-0.60) 0.02.43) -0.12 (-2.22)
MER 23.24 2330 21.65 27.01 159 (1.28) -3.71 (-4.15) -0.020.4) -0.21 (-5.61)
NOK 25.34 43.30 23.27 4243 208 (1.07) 0.86 (0.46) -0.02 .340 -0.05 (-1.17)
CHL 1539 2506 14.85 28.09 054 (0.50) -3.03 (-1.62) -0.161.92) -0.22 (-4.45)
UNPH 58.47 112.73 56.11 101.30 2.37 (0.53) 11.43 (1.61) 4-0.0-0.65) 0.01 (0.23)
EBAY 04.39 58.85 94.19 64.49 0.21 (0.03) -5.64 (-1.28) -0.g50.70) -0.36 (-4.89)
JNPR  82.78 109.59 90.77 119.78 -7.99 (-1.25) -10.19 (-1.3D)14 (-1.83) -0.14 (-2.20)
CIEN 80.18 11523 71.03 114.64 9.15 (1.27) 059 (0.07) 0.03.3%) -0.09 (-1.28)
BRCD 86.29 112.83 68.60 104.42 17.69 (3.46) 8.41 (0.97) 0.g9.61) -0.01 (-0.11)

Entries report the sample averages of the annualized eelaliariance, the synthetic variance swap rates, and the
(log) variance risk premia during two subsamples. The fusisample (S1) is from January 4, 1996 to March 23,
2000. The second subsample (S2) is from March 24, 2000 tauBgbP8, 2003. We also report in parenthesis the
t-statistics on the significance of the mean variance risknaewhich are adjusted for serial dependence according to
the Newey-West method with a lag of 30 days.
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