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Variance Risk Premia

Abstract

We propose a direct and robust method for quantifying the variance risk premium on financial assets. We

show that the risk-neutral expected value of return variance, also known as the variance swap rate, is well

approximated by the value of a particular portfolio of options. We propose to use the difference between

the realized variance and this synthetic variance swap rateto quantify the variance risk premium. Using

a large options data set, we synthesize variance swap rates and investigate the historical behavior of

variance risk premia on five stock indexes and 35 individual stocks.
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Variance Risk Premia

It has been well-documented that return variance is stochastic. When investing in a security, an investor

faces at least two sources of uncertainty, namely the uncertainty about the return as captured by the return

variance, and the uncertainty about the return variance itself. It is important to know how investors deal

with the uncertainty in return variance to effectively manage risk and allocate assets, to accurately price and

hedge derivative securities, and to understand the behavior of financial asset prices in general.

We develop a direct and robust method for quantifying the return variance risk premium on an asset using

the market prices of options written on this asset. Our method uses the notion of a variance swap, which is an

over-the-counter contract that pays the difference between a standard estimate of the realized variance and

the fixed variance swap rate. Since variance swaps cost zero to enter, the variance swap rate represents the

risk-neutral expected value of the realized variance. We show that the variance swap rate can be synthesized

accurately by a particular linear combination of option prices. We propose to use the difference between the

ex post realized variance and this synthetic variance swap rate to quantify the variance risk premium.

Using a large options data set, we synthesize variance swap rates using options data on five stock indexes

and 35 individual stocks during the past seven years. We compare the synthetic variance swap rates to

realized variance, and study the historical behaviors of variance risk premia on different assets.

We find that the average variance risk premia are strongly negative for the S&P 500 and 100 indexes

and for the Dow Jones Industrial Average. The estimates on individual stocks show large cross-sectional

variation. We conjecture that there exists a common stochastic variance risk factor in the stock market that

asks for a highly negative risk premium. When we use the variance on the S&P 500 index as a proxy for

this common variance risk factor and estimate a variance beta for each stock by regressing the stock’s return

variance on the index variance, we find that the variance riskpremia are more negative for stocks with higher

variance beta. The negative sign on the variance risk premiaindicates that variance buyers are willing to

accept a negative average excess return to hedge away upwardmovements in stock market volatility. In other

words, investors regard increases in market volatility as unfavorable shocks to the investment opportunity.
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Return variance varies stochastically either due to its correlation with the stock price or return (e.g.,

the constant elasticity of variance model of Cox (1996) and the local volatility model of Dupire (1994) and

Derman and Kani (1994)), or due to its independent variationas a separate source of risk (e.g., the stochastic

volatility models of Heston (1993) and Hull and White (1987)), or both. Accordingly, variance risk premia

can come from either its correlation with the return risk andreturn risk premium, or a separate premium on

the independent variance variation, or both. We investigate whether the classic capital asset pricing model

can explain the negative variance risk premia. We find that the negative correlation between stock index

returns and the return variance generates a strongly negative beta, but this negative beta only explains a

small portion of the negative variance risk premia. Other risk factors identified by the recent literature,

such as size, book-to-market, and momentum, cannot explainthe strongly negative variance risk premia,

either. Therefore, we conclude that the majority of the market variance risk premium is generated by an

independent variance risk factor.

We also analyze the dynamics of the variance risk premia by formulating expectation hypothesis regres-

sions. Under the null hypothesis of constant variance risk premia, a regression of the realized variance on

the variance swap rate generates a slope estimate of one. However, the slope estimates from our regressions

are significantly lower than one for the S&P and Dow indexes, and also for many of the individual stocks,

suggesting that the market variance risk premia are time-varying and correlated with the variance swap rate.

Nevertheless, when we regress the log realized variance on the log variance swap rate, the slope estimates

are much closer to one, suggesting that although the log variance risk premia are strongly negative, they are

not strongly correlated with the logarithm of the variance swap rate.

We check the robustness of our results from several aspects.First, we use numerical analysis to gauge

the magnitude of approximation errors in synthesizing the variance swap rates due to jumps and discretiza-

tion. We find that under commonly used models and model parameters, the approximation errors from the

two sources are small. Second, we measure the impacts of the options bid-ask spreads on the variance risk

premia estimates, and find that the variance risk premia on S&P and Dow indexes remain strongly negative,

regardless of whether we synthesize the variance swap ratesusing bid, mid, or ask option prices. Third,

we evaluate the error-in-variable issue in our expectationhypothesis regressions. We find that measurement
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errors in the synthetic variance swap rate do bias our slope estimates toward zero, but that our general con-

clusions remain valid after correcting for the biases: The market variance risk premia are time-varying and

correlated with the variance swap rate when defined in dollarterms, but become closer to an independent

series when defined in log returns. Finally, we divide our data into two subsample periods, with one corre-

sponding broadly to a bullish market and the other to a bearish market. We find that the variance risk premia

on stock indexes are significantly negative under both bullish and bearish market conditions.

In related works, Bakshi and Kapadia (2003a,b) consider theprofit and loss arising from delta-hedging a

long position in a call option. They argue that this profit andloss is approximately neutral to the directional

movement of the underlying asset return, but is sensitive tothe movement in the return volatility. Thus, by

analyzing the profit and loss from these delta-hedged positions, they can infer useful qualitative properties

for the variance risk premia without referring to a specific model. Our approach maintains and enhances the

robustness of their model-free approach, as we provide a quantitative measure of the variance risk premia.

As a result, we can analyze not only the sign, but also the quantitative properties of the premia.

Bates (1996, 2000, 2003), Eraker (2004), Jones (2003), and Pan (2002) analyze variance risk premia

in conjunction with return risk premia by estimating various parametric option pricing models with either

Bayesian methods or efficient methods of moments. Most recently, Aı̈t-Sahalia and Kimmel (2007) propose

a maximum likelihood method for estimating stochastic volatility dynamics and volatility risk premia based

on closed-form approximations (developed in Aı̈t-Sahalia(2002, 2007)) to the true likelihood function of

the joint observations on the underlying asset and option prices. Wu (2005) propose to estimate the variance

dynamics and variance risk premia without specifying the return dynamics using realized variance estimators

from high-frequency return data and variance swap rates synthesized from option prices. Bollerslev, Gibson,

and Zhou (2004) construct a risk aversion index using realized variance estimators and the VIX, which

approximates the 30-day variance swap rate on the S&P 500 index (Carr and Wu (2006)).

Ang, Hodrick, Xing, and Zhang (2004) form stock portfolios ranked by their sensitivity to volatility

risk and analyze the difference among these different stockportfolios. From the analysis, they infer the

impact of volatility risk on the expected stock return. Coval and Shumway (2001) study how returns on
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option investment vary with strike choices and whether the classic capital asset pricing theory can explain

the returns. Bondarenko (2004) links the market price of variance risk to hedge fund behavior.

Our empirical analysis of the variance risk premia is based on our theoretical work on synthesizing a

variance swap using European options and futures contracts. Carr and Madan (1998), Demeterfi, Derman,

Kamal, and Zou (1999a,b), and Britten-Jones and Neuberger (2000) use the same replicating strategy, but

under the assumption of continuity in the underlying asset price. Jiang and Tian (2004) extend the result

to a jump-diffusion stochastic volatility model. Our derivation is under the most general setting possible.

We also quantify the approximation error induced by jumps. Most importantly, we exploit the theoretical

developments in synthesizing variance swaps for variance risk premia analysis.

The remainder of the paper is organized as follows. Section 1lays out the theoretical foundation on how

we synthesize the variance swap from vanilla options and howwe infer the variance risk premia based on

the difference between the synthetic variance swap rate andthe realized return variance. Section 2 describes

the data and the methodologies that we use to synthesize the variance swap rates and to calculate the realized

variance and variance risk premia. Section 3 investigates the historical behavior of the variance risk premia.

Section 4 performs robustness analysis. Section 5 concludes.

1. Variance Swap Rates and Variance Risk Premia

A return variance swap has zero net market value at entry. At maturity, the payoff to the long side of the

swap is equal to the difference between the realized variance over the life of the contract and a constant

called thevariance swap rate:

[RVt,T −SWt,T ]L, (1)

whereRVt,T denotes the realized annualized return variance between time t andT, SWt,T denotes the fixed

variance swap rate that is determined at timet and paid at timeT, andL denotes the notional dollar amount

that converts the variance difference into a dollar payoff.No arbitrage dictates that the variance swap rate
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equals the risk-neutral expected value of the realized variance,

SWt,T = E
Q
t [RVt,T ] , (2)

whereE
Q
t [·] denotes the time-t conditional expectation operator under some risk-neutralmeasureQ.

1.1. Synthesizing variance swap rates from options

We useSt to denote the time-t spot price of an asset, andFt its time-t futures price of maturityT > t. We

assume that the futures contract marks to market continuously. No arbitrage dictates that there exists a risk-

neutral probability measureQ defined on a probability space(Ω,F ,Q) such that the futures priceFt solves

the following stochastic differential equation:

dFt = Ft−σt−dWt +

Z

R0
Ft− (ex−1) [µ(dx,dt)−νt(x)dxdt] , (3)

whereWt is aQ-standard Brownian motion,R0 denotes the real line excluding zero,Ft− denotes the futures

price just prior to any jump at timet, and the random counting measureµ(dx,dt) realizes to a nonzero

value for a givenx if and only if the futures price jumps fromFt− to Ft = Ft−ex at time t. The process

νt(x) compensates the jump process so that the last term in equation (3) is the increment of aQ-pure jump

martingale. Therefore, equation (3) models the futures price change as the summation of the increments of

two orthogonal martingales, a purely continuous martingale and a purely discontinuous (jump) martingale.

This decomposition is generic for any continuous-time martingales (Jacod and Shiryaev (1987)). To avoid

notational complexity, we assume that the jump process exhibits finite variation:
R

R0 (|x|∧1)νt(x)dx< ∞.

The time subscripts onσt− andνt(x) indicate that both are stochastic and predictable with respect to

the filtrationF t . We further restrictσt− andνt(x) so that the futures priceFt is always positive. Finally, we

assume deterministic interest rates so that the futures price and the forward price are identical. So long as

futures contracts trade, we need no assumptions on dividends.
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Under the specification in equation (3), the quadratic variation on the futures return from timet to T is,

Vt,T =

Z T

t
σ2

s−ds+
Z T

t

Z

R0
x2µ(dx,ds). (4)

The annualized return variance isRVt,T = 1
T−tVt,T . We show that this return quadratic variation can be

replicated up to a higher-order error term by a static position in a portfolio of options of the same horizon

T and a dynamic position in futures. As the risk-neutral expected value of futures trading is zero, the risk-

neutral expected value of the quadratic variation can be approximated by the value of the options in the static

portfolio.

Proposition 1 Under no arbitrage, the time-t risk-neutral expected valueof the return quadratic variation

of an asset over horizon[t,T] defined in (4) can be approximated by the continuum of European out-of-the-

money option prices across all strikes K> 0 and at the same maturity date T :

E
Q
t [RVt,T ] =

2
T − t

Z ∞

0

Θt(K,T)

Bt(T)K2 dK+ ε, (5)

where Bt(T) denotes the time-t price of a bond paying one dollar at T ,Θt(K,T) denotes the time-t value of

an out-of-the-money option with strike price K> 0 and maturity T≥ t (a call option when K> Ft and a put

option when K≤ Ft), andε denotes the approximation error, which is zero when the futures price process is

purely continuous. When the futures price can jump, the approximation errorε is of order O((dFt
Ft−

)3) and is

determined by the compensator of the discontinuous component,

ε =
−2

T − t
E

Q
t

Z T

t

Z

R0

[
ex−1−x− x2

2

]
νs(x)dxds. (6)

Refer to Appendix A for the derivation. Equation (5) serves our theoretical basis for inferring variance swap

rates from vanilla options.
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1.2. Quantifying variance risk premia using variance swap rates and realized variance

UsingP to denote the statistical probability measure, we link the variance swap rate to the realized variance

through the following valuation equation,

SWt,T =
EP

t [Mt,TRVt,T ]

EP
t [Mt,T ]

= EP
t [mt,TRVt,T ] , (7)

whereMt,T denotes a pricing kernel andmt,T = Mt,T/EP
t [Mt,T ]. No arbitrage guarantees the existence of at

least one such pricing kernel that prices all traded assets (Duffie (1992)).

Equation (7) can be decomposed into two terms:

SWt,T = EP
t [mt,TRVt,T ] = EP

t [RVt,T ]+CovP
t (mt,T ,RVt,T). (8)

The first termEP
t [RVt,T ] represents the time-series conditional mean of the realized variance. The second

term captures the conditional covariance between the normalized pricing kernel and the realized variance.

The negative of this covariance defines thereturn variance risk premium. Thus, a direct estimate of the

average variance risk premium is the sample average of the difference between the variance swap rate and

the realized variance,RPt,T ≡ RVt,T −SWt,T . This difference also measures the terminal profit and loss from

long a variance swap contract and holding it to maturity.

Dividing both sides of equation (8) bySWt,T , we can represent the decomposition in excess returns:

1 = EP
t

[
mt,T

RVt,T

SWt,T

]
= EP

t

[
RVt,T

SWt,T

]
+CovP

t (mt,T ,
RVt,T

SWt,T
). (9)

If we regardSWt,T as the forward cost of a variance swap investment,(RVt,T/SWt,T −1) captures the excess

return from the investment. The sample average of the excessreturn represents an estimate of the negative of

the covariance term in equation (9), hence the risk premium.To make the distribution closer to normality, we

represent the excess return in continuously compounded form and label it as thelog variance risk premium,

LRPt ≡ ln(RVt,T/SWt,T).
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2. Data and Methodologies

The options data are from OptionMetrics, which provides historical prices of options based on closing quotes

at the Chicago Board of Options Exchange. Our data sample starts in January 1996 and ends in February

2003. From the data set, we filter out market prices of optionson five stock indexes and 35 individual

stocks. The list of securities is selected mainly based on quote availability. Specifically, we compute the

number of valid option quotes on each security in the data sample, and select the securities with the highest

number of valid option quotes. In computing the number of valid quotes, we only retain options that have

time-to-maturities within one year, and have strictly positive bid quotes and strictly positive bid-ask spreads.

Options on some securities are very actively quoted, but only during a short period of our data sample. In

selecting our samples, we further require that the number ofactive days be greater than 900 for stock indexes

and 600 for individual stocks. We apply the following criterion to determine the number of active days: (1)

The nearest available maturity must be within 90 days. (2) The actual stock price level must be greater than

one dollar. (3) The number of strikes is at least three at eachof the two nearest maturities. We compute the

synthetic variance swap rates only on the active days definedabove.

Table 1 lists the five stock indexes and 35 individual stocks in our sample. For each security, the table

lists the company name, the starting and ending dates, the number of active days (N), and the average number

of strikes (NK) at the chosen maturities. The index options on the S&P 500 index, the Dow Jones Industrial

Index, and the Nasdaq-100 index are European options on the spot indexes. Options on the S&P 100 index

and the other 35 individual stocks and the QQQ (the Nasdaq-100 tracking stock) are all American options

on the underlying spot. The data set includes closing bid andask quotes for each option contract and the

Black-Scholes implied volatilities based on the mid quote.For the European options, implied volatilities are

directly inferred from the Black-Scholes option pricing formula. For the American options, OptionMetrics

employs a binomial tree approach that takes account of the early exercise premium. The data set also

includes the interest rate curve and the projected dividendyield. Our analysis directly employs the implied

volatilities provided by OptionMetrics.

[Insert Table 1 about here.]
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We choose a 30-day horizon for the synthetic variance swap rates. At each date for each stock, we

choose the two nearest maturities, except when the shortestmaturity is within eight days. Then we switch

to the next two maturities to avoid potential microstructure effects of very short-dated options.

At each maturity, we first linearly interpolate implied volatilities at different moneyness levels, defined

as k ≡ ln(K/F), to obtain a fine grid of implied volatilities. For moneynessbelow the lowest available

moneyness level in the market, we use the implied volatilityat the lowest strike price. Fork above the

highest available moneyness, we use the implied volatilityat the highest strike. Using this interpolation

and extrapolation procedure, we generate a fine grid of 2,000implied volatility points with a strike range of

±8 standard deviations from at-the-money. The standard deviation is approximated by the average implied

volatility. Given the fine grid of implied volatilities, we compute the out-of-the-money option prices using

the Black-Scholes formula and replicate the variance swap rate according to a discretization of equation (5).

At each datet, we interpolate the synthetic variance swap rates at the twomaturities to obtain the

variance swap rate at a fixed 30-day horizon. The interpolation is linear in total variance:

SWt,T =
1

T − t

[
SWt,T1(T1− t)(T2−T)+SWt,T2(T2− t)(T1−T)

T2−T1

]
, (10)

whereT1 andT2 denote the two maturity dates, andT denotes the interpolated maturity date such thatT − t

is 30 days. We have experimented with different interpolation schemes, but found that our main conclusions

are not materially affected by the particular choice of the interpolation method.

Corresponding to each 30-day variance swap rate, we also compute the annualized 30-day realized

variance,

RVt,t+30 =
365
30

30

∑
i=1

(
Ft+i,t+30−Ft+i−1,t+30

Ft+i−1,t+30

)2

, (11)

whereFt,T denotes the time-t forward price with expiry date at timeT (in days). A small difference exists

between the return variance defined in equation (11) and the quadratic variation in (4) due to the difference

between daily monitoring and continuous monitoring. Sincethe stock prices in the OptionMetrics data set

are not adjusted for stock splits, we manually adjust the stock splits for each stock in calculating the realized
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variance. We have also downloaded stock prices from Bloomberg to check for robustness. Our definition

of the realized variance in equation (11) is similar to the definition in most variance swap contracts in the

industry. For robustness, we have also computed alternative realized variance measures based on spot prices

and demeaned returns. These variations do not alter our conclusions.

Table 2 reports the summary statistics of the annualized realized variance (RV) and the synthetic variance

swap rate (SW). The sample averages of the variance swap rates are higher than the average realized variance

for all the five stock indexes and most of the individual stocks. The realized variance series are persistent

given the overlapping nature of the estimates. The varianceswap rates are also highly persistent, reflecting

the persistence of the return variance process. Both variance swap rates and the realized variance show

positive skewness and positive excess kurtosis for most stocks and indexes.

[Insert Table 2 about here.]

3. Historical Behavior of Variance Risk Premia

To analyze the historical behavior of variance risk premia,we first establish the existence, sign, and average

magnitude of the variance risk premia. Then, we investigatewhether the risk premia can be explained by

classic risk factors. Finally, we analyze the dynamic properties of the premia using expectation hypothesis

regressions.

3.1. Do investors price variance risk?

If investors price variance risk, the sample averages of therealized variance will differ from the average vari-

ance swap rates. Table 3 reports the summary statistics of the difference between the realized variance and

the variance swap rate,RP= (RVt,T −SWt,T)×100, in panel A and the log differenceLRP= ln(RVt,T/SWt,T )

in panel B. The variance risk premiaRPshow large kurtosis and sometimes large skewness. The skewness

and kurtosis are much smaller for the log variance risk premia LRP.
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[Insert Table 3 about here.]

The sample averages of the variance risk premia and log variance risk premia are negative for all the

five stock indexes and most of the individual stocks. Table 3 also reports thet-statistics on the significance

of the mean risk premia, adjusted for serial dependence according to Newey and West (1987) with 30 lags.

The largestt-statistics come from the S&P 500 and S&P 100 indexes and the Dow Jones Industrial Average,

which are strongly significant for both variance risk premiaand log variance risk premia. Thet-statistics for

the Nasdaq-100 index and its tracking stock are lower, but remain strongly significant.1.

The two definitions of variance risk premia in Table 3 represent two ways of computing returns for

variance swap investments. The mean estimates in panel A,(RV−SW)×100, represent the average dollar

profit and loss for each $100 notational investment in the variance swap contract. Thus, if we long a 30-day

variance swap contract with a notional of $100 on S&P 500 index and hold the contract to maturity, during

our sample period the average return per $100 notional investment is−$2.74.

Alternatively, if we regard the variance swap rate as the forward cost of the variance swap contract,

the log variance risk premium ln(RV/SW) in panel B can be thought of as the continuously compounded

excess return to going long the variance swap contract and holding it to maturity. Based on this calculation,

the average excess return is−66% for long 30-day variance swap contracts on the S&P 500 index. The

different magnitudes in the two panels mainly come from different scaling. Panel A regards the $100

notional as the initial investment whereas panel B uses the forward cost (i.e., the variance swap rate) as

the initial investment. For the S&P 500 index, a $100 notional corresponds to an average forward cost

of $6.81 (Table 2). For the same dollar profit and loss, the smaller base number generates larger return

estimates in panel B.

Despite the different representations, it is clear that investors are willing to accept a significantly negative

average return to long variance swaps on the S&P and Dow indexes. Accordingly, shorting variance swap

contracts on the indexes generates significantly positive average excess returns during our sample period.

To gauge the profitability of such a trading strategy, we estimate the annualized Sharpe ratio on shorting the

30-day variance swap contracts, and report them in the last column of Table 3 under “IR.” The Sharpe ratio
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is computed as the sample mean of the log excess return− ln(RV/SW) divided by its standard deviation

and multiplied by
√

365/30 for annualization. The standard deviation is adjusted for serial dependence

according to Newey and West (1987) with 30 lags. The Sharpe ratio estimates are 0.98, 0.85, and 0.87 for

shorting variance swaps on the S&P 500, the S&P 100, and the Dow Indexes, significantly higher than an

average stock portfolio investment.

Nevertheless, it is important to point out that the Sharpe ratios are computed using synthetic variance

swap rates. The actual profitability depends on several practical factors, such as the actual availability

of variance swap quotes, their bid-ask spreads, and their similarity to our synthetic values. Furthermore,

given the nonlinear payoff structure, caution should be applied when interpreting Sharpe ratios on derivative

trading strategies, e.g., Goetzmann, Ingersoll Jr., Spiegel, and Welch (2002).

The average variance risk premia and log variance risk premia on individual stocks show large cross-

sectional variation. The standard deviation estimates on the variance risk premia (RP) of the individual

stocks are all larger than those on the S&P and Dow indexes. Asa result, out of the 35 individual stocks,

only seven generate variance risk premia that are significantly negative at the 95% confidence level. By

contrast, the standard deviation estimates on the log variance risk premia (LRP) are much more uniform

across all stock indexes and individual stocks. For 23 out of35 individual stocks, the mean log variance risk

premia are significantly negative at the 95% confidence level.

The cross-sectional variation of the variance risk premia possibly suggests that the market does not price

all return variance risk in each single stock, but only prices a systematic variance risk component in the

stock market portfolio. Based on this hypothesis, the average variance risk premium on each stock is not

proportional to the total variation of the return variance,but to the covariation of the return variance with

the market portfolio return variance. To test this hypothesis, we use the realized variance on S&P 500 index

return as the market portfolio variance, and estimate the “variance beta” for each stock as,

βV
j = Cov(lnRVj , lnRVSPX)/Var(lnRVSPX), (12)

where the variance and covariance are measured using the common sample of the two realized variance
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series. We estimate the variance beta using log variance forbetter distributional behaviors.

Given the variance beta estimates, our hypothesis suggeststhat the average variance risk premia are

more negative on stocks with higher variance beta. Regressing the average log variance risk premia on the

variance beta across the 40 stocks and stock indexes generates the following estimates,

LRPj = 0.0061 − 0.3283 βV
j +e, R2 = 18.4%,

(0.09) (−2.96)
(13)

with t-statistics reported in the parentheses below the estimates. Consistent with our hypothesis, the slope

estimate is negative and statistically significant.

Therefore, we identify a systematic variance risk factor that the market prices heavily. The negative

sign on the market variance risk premia suggests that investors are willing to pay a premium to hedge away

upward movements in the return variance of the stock market.In other words, investors regard increases

in market volatility as unfavorable shocks to the investment opportunity and demand a high premium for

bearing such shocks.

Table 3 also reports the average non-overlapping 30-day autocorrelation for the variance risk premia.

The autocorrelation estimates are low, averaging at−0.023 forRPand−0.006 forLRP. Therefore, although

return variance is strongly predictable, investors have priced this predictability into options, so that excess

returns on synthetic variance swap investments are no longer strongly predictable.

3.2. Can classic risk factors explain the variance risk premia?

Return variance can vary either by itself as in stochastic volatility models of Heston (1993) and Hull and

White (1987), or it can vary as a function of the stock price asin the constant elasticity of variance model

of Cox (1996) and the local volatility model of Dupire (1994)and Derman and Kani (1994). In the first

case, the independent variance variation represents an additional source of risk (in addition to the return

risk), which can ask for a risk premium in addition to the premium on the return risk. In the latter case, the

variance risk premium is induced purely by the underlying return risk and return risk premium.
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The classic capital asset pricing model (CAPM) argues that the expected excess return on an asset is

only proportional to the beta of the asset on the market portfolio. Under this model, variance risk premium

cannot come from an independent source of risk, but can only come from the variance swap’s correlation

with the market portfolio. Qualitatively, the negative excess return on the variance swap contract on the

stock indexes is consistent with the well-documented negative correlation between index returns and index

return variance. The question is whether this negative correlation can fully account for the negative variance

risk premia.

To answer this question, we estimate the following CAPM regressions,

lnRVt,T/SWt,T = α+ β j ERm
t,T +e, (14)

for the five stock indexes and 35 individual stocks, whereERm denotes the excess return on the market

portfolio, for which we consider two proxies. First, we use the S&P 500 index to proxy for the market

portfolio and compute the excess return asERm
t,T = lnSm

T /Fm
t,T . Our second proxy is the value-weighted

return on all NYSE, AMEX, and NASDAQ stocks (from CRSP) minusthe one-month Treasury bill rate

(from Ibbotson Associates). This excess return is publiclyavailable at Kenneth French’s online data library.2

The data are monthly. The sample period that matches our options data is from January 1996 to December

2002. We estimate the regressions using the generalized methods of moments (GMM), with the weighting

matrix computed according to Newey and West (1987) with 30 lags for the overlapping daily series and six

lags for the non-overlapping monthly series.

Table 4 reports the estimates (andt-statistics in parentheses). The results from the two market portfolio

proxies are similar. Theβ estimates are strongly negative for all the stock indexes and most of the individual

stocks. The estimates are the most negative for S&P and Dow indexes. Nevertheless, the interceptα

estimates remain strongly negative, especially for the S&Pand Dow indexes, indicating that the negative

beta cannot fully account for the negative variance risk premia. Indeed, the estimates forα are not much

smaller than the mean variance risk premia reported in Table3. The results call for additional risk factors.

[Insert Table 4 about here.]
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Kraus and Litzenberger (1976) propose a three-moment capital asset pricing model, in which the excess

return on a security is proportional not only to the excess return on the market portfolio, but also to the

squared deviation of the market portfolio return from its expected value,

lnRVt,T/SWt,T = α+ βERm
t,T + γ

(
Rm−Rm

)2
+e, (15)

whereRm denotes the market portfolio return andRm denotes its expected value. We useERm to proxyRm

in constructing the squared deviation factor. The loading coefficient estimates forγ are mostly insignificant

and theα estimates are close to what we have obtained from the regression in (14). Hence,(Rm− R̄m)
2 is

not the factor that we are looking for in explaining the variance risk premia. To save space, we do not report

the estimation results but they are available upon request.

Fama and French (1993) identify two additional risk factorsin the stock market that are related to the

firm size (SMB) and book-to-market value (HML), respectively. We investigate whether these additional

common risk factors explain the variance risk premia. We estimate the following relations:

lnRVt,T/SWt,T = α+ βERm
t,T +sSMBt,T +hHMLt,T +e. (16)

Data on all three risk factors are available on Kenneth French’s online data library. We refer the interested

readers to Fama and French (1993) for details on the definition and construction of these common risk

factors. The sample period that overlaps with our options data is monthly from January 1996 to December

2002. Again,ERm denotes the excess return to the market portfolio. Furthermore, bothSMBandHML

are in terms of excess returns on zero-cost portfolios. Therefore, the interceptα represents the expected

excess return on an investment that is neutral to all three risk factors. Table 5 reports the GMM parameter

estimates andt-statistics. The intercept estimates for the indexes remain strongly negative, the magnitudes

only slightly smaller than the average variance risk premiain Table 3. Thus, the Fama-French risk factors

can only explain a small portion of the variance risk premia.

[Insert Table 5 about here.]

17



In the regression, both the marketERm and the sizeSMBfactors generate significantly negative loadings,

indicating that the return variance is not only negatively correlated with the market portfolio return, but also

with theSMBfactor. Hence, going long the variance swap contract also serves as an insurance against the

SMBfactor going up. The loading estimates on theHML factor are mostly insignificant.

Fama and French (1993) also consider two bond-market factors, related to the bond maturity (TERM)

and default (DEF) risks. Furthermore, Jegadeesh and Titman (1993) identifya momentum phenomenon

that past winners often continue to outperform past losers.We construct theTERMandDEF factors using

Treasury and corporate yield data from the Federal Reserve Statistical Release. Kenneth French’s data

library also provides a momentum factor (UMD) similar to that from Carhart (1997). However, single-

factor regressions on these three factors show that none of these factors have a significant loading on the

variance risk premia. Therefore, they cannot explain the variance risk premia, either.

The bottom line story here is that classic risk factors cannot fully account for the negative variance risk

premia on the stock indexes. Either there exists a large inefficiency in the market for index variance or else

the majority of the variance risk is generated by an independent risk factor that the market prices heavily.

Investors are willing to receive a negative excess return tohedge against market volatility going up, not

only because market volatility movement is negatively correlated with stock market portfolio return, but

also because investors regard market volatility hikes by themselves as unfavorable shocks and demand high

compensation for bearing such shocks.

There are several potential reasons for the negative variance risk premia. Take the market portfolio of

stocks as an example, which the market holds in aggregate. With the same expected return, the increase in

return variance implies a decline in performance in terms ofthe Sharpe ratio. Hence, one way to guarantee

a minimum performance is to buy options to hedge against return variance increases. Furthermore, going

long the variance swap contrast is an effective strategy to hedge against risks associated with the random

arrival of discontinuous price movements. Finally, considerations on meeting value-at-risk requirements and

preventing shortfalls and draw-downs also make long variance swap an attractive strategy that investors are

willing to take even with a negative expected excess return.
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3.3. Are variance risk premia constant or time-varying?

To understand the dynamic behavior of variance risk premia,we run the expectation hypothesis regression,

RVt,T = a+bSWt,T +e. (17)

Under the null hypothesis of zero variance risk premia in dollar terms: CovPt (mt,T ,RVt,T) = 0 as defined in

equation (8), we havea = 0 andb = 1. In particular, the slope estimate deviating from zero would suggest

that the variance risk premia are time-varying and correlated with the variance swap rate.

Table 6 reports the GMM estimates of equation (17) and thet-statistics under the null hypotheses of

a= 0 andb= 1 in panel A. All the slope estimates are positive, but many are lower than one. Thet-statistics

show that over half of the stock indexes and individual stocks generate regression slopes that are significantly

lower than the null value of one.

[Insert Table 6 about here.]

Since the variance and variance swap rates show positive skewness (Table 2), we also run the expectation

hypothesis regression in log terms and report the results inpanel B of Table 6:

lnRVt,T = a+b lnSWt,T +e. (18)

Under the null hypothesis of zero variance risk premia in return terms: CovPt (mt,T ,
RVt,T

SWt,T
) = 0 as defined in

equation (9), the slope estimateb should be zero and the intercept estimate should be lower than zero due to

the convexity term induced by the variance of the log variance risk premia. The estimation results in panel

B of Table 6 show that for all the stock indexes and many of the individual stocks, the slope estimates are

no longer significantly different from one at the 95% confidence level. The difference between the slope

estimates of the two regressions indicates that the risk premia defined in log returns is closer to a constant

or independent series than the risk premia defined in dollar terms.
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4. Robustness Analysis

Our results on variance risk premia rely on the accuracy of the variance swap rates that we synthesize from

the options market. For robustness check, we first gauge the approximation error of the synthetic variance

swap rate due to price jumps and discretization. Second, we analyze the impact of options bid-ask spreads

on our results. Third, we evaluate the impacts of error-in-variable problems on our expectation hypothesis

regressions where the synthetic variance swap rate is used as a regressor. Finally, we analyze whether the

variance risk premia behavior varies significantly over different subsample periods.

4.1. Replication errors due to price jumps and discretization

The replication of the payoff to a variance swap in equation (5) has an instantaneous error of orderO((dFt
Ft−

)3).

We refer to this error asjump error as it vanishes under continuous path monitoring if there areno jumps.

Furthermore, equation (5) asks for a continuum of option prices at all strikes. We use a simple interpola-

tion/extrapolation scheme to generate 2,000 option pricesover±8 standard deviations from the available

option quotes. We then sum over the 2,000 option prices to replace the integration in equation (5). The

scheme introduces a second source of error due to the interpolation/extrapolation and the discrezation of the

integral. We refer to this error as thediscretization error.

To gauge the magnitude of these two sources of errors, we numerically illustrate three standard option

pricing models: (1) the Black-Scholes model (BS), (2) the Merton (1976) jump-diffusion model (MJD), and

(3) a combination of the MJD model with Heston (1993) stochastic volatility (MJDSV), as in Bates (1996)

and Bakshi, Cao, and Chen (1997). The risk-neutral dynamicsof the underlying futures price process under

these three models are:

BS: dFt/Ft = σdWt ,

MJD: dFt/Ft− = σdWt +dJ(λ)−λgdt,

MJDSV: dFt/Ft− =
√

vtdWt +dJ(λ)−λgdt,

(19)

whereWt denotes a standard Brownian motion andJ(λ) denotes a compound Poisson jump process with
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constant intensityλ. Conditional on a jump occurring, the MJD model assumes thatthe size of the jump

in log price is normally distributed with meanµJ and varianceσ2
J, with the mean percentage price change

induced by a jump given byg= eµJ+
1
2σ2

J −1. In the MJDSV model, the diffusion variance ratevt is stochastic

and follows a mean-reverting square-root process:

dvt = κ(θ−vt)dt+ σv
√

vtdZt , (20)

whereZt is another standard Brownian motion, correlated withWt by E [dZtdWt ] = ρdt.

The MJDSV model nests the MJD model, which in turn nests the BSmodel. We regard the progression

from BS to MJD and then from MJD to MJDSV as one of increasing complexity. All three models are

analytically tractable, allowing us to numerically calculate risk-neutral expected values of variance. The

difference in the BS model between the synthetic variance swap rate and the constant variance rate are

purely due to the discretization. The increase in the error due to the use of the MJD model instead of

BS allows us to numerically gauge the magnitude of the jump error in the presence of discrete strikes. The

change in approximation error from MJD to MJDSV allows us to numerically gauge the impact of stochastic

volatility in the presence of discrete strikes and jumps.

For the numerical analysis, we normalize the current futures price to $100 and assume a constant riskfree

rate atr = 5.6%. We setσ = 0.37 in the BS model and 0.35 in the MJD model. The other parameters are

set toλ = 0.4, µJ =−0.09,σJ = 0.18,κ = 1.04,θ = 0.35,σv = 0.9, andρ =−0.7. These parameters reflect

approximately those estimated from S&P 500 index option prices, e.g., in Bakshi, Cao, and Chen (1997).

In parallel to our empirical study, we fix the option maturityto 30 days. We assume that only five

option quotes are available at this maturity at strikes of $80, $90, $100, $110, and $120. Since all the stock

indexes and individual stocks in our data sample average no less than five strikes at each chosen maturity,

the choice of five options for the numerical analysis is reasonable and conservative. First, we compute the

prices of the five options under each model and convert them into implied volatilities. Second, we employ

the same interpolation/extrapolation method as in our empirical study to obtain a fine grid of 2,000 implied

volatilities. Third, we convert the fine grid of implied volatilities into out-of-the-money option prices and
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approximate the integral in equation (5) with a summation. From this procedure, we compute the synthetic

variance swap rate,̂SWt,T , where the hat stresses the approximations involved. The difference between this

approximate synthetic variance swap ratêSW and the analytically computed variance swap rateE
Q
t [RVt,T ]

represents the total approximation error.

Under the BS model, the annualized return variance rate is constant atσ2. Under MJD, this variance

rate is constant atσ2 + λ
(
µ2

J + σ2
J

)
. In both cases, the variance swap rate equals to the constantvariance.

Under MJDSV, the variance rate is stochastic, and the variance swap rate depends on the current level of the

instantaneous variance ratevt ,

E
Q
t [RVt,T ] = σ2

t + λ
(
µ2

J + σ2
J

)
, (21)

whereσ2
t is given by

σ2
t ≡

1
T − t

E
Q
t

Z T

t
vsds= θ+

1−e−κ(T−t)

κ(T − t)
(vt −θ) . (22)

Our replicating strategy for the variance swap contract is exact when the underlying dynamics are purely

continuous, but has a higher order approximation error in the presence of jumps. Thus, under the BS model,

the theoretical approximation error is zero:ε = 0. Under the two jump-diffusion models MJD and MJDSV,

the compound Poisson jump component has the following compensator:

ν(x) = λ
1√
2πσ2

J

e
− (x−µJ)2

2σ2
J , (23)

from which we can compute the jump-induced errorε according to equation (6):

ε = 2λ
(
g−µJ−σ2

J/2
)
.

Table 7 reports the analytical variance swap rate (E
Q
t [RV]), the synthetic variance swap rate (̂SW), the

total approximation error (EQ
t [RV]− ŜW), and the jump-induced error (ε) under each model. Under the BS

model, the jump error (ε) is zero. Furthermore, since the implied volatility is constant and equal toσ at all

strikes, there is no interpolation or extrapolation error.The only potential error comes from the discretization
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of the integration. Table 7 shows that this error is practically zero.

[Insert Table 7 about here.]

Under MJD, the jump error (ε) is 0.0021, which is merely 1.51 percent of the variance level at 0.1387.

The total error is also 0.0021, indicating that the interpolation and extrapolation scheme does not introduce

any noticeable additional errors in this case.

Under MJDSV, we consider different instantaneous variancelevels, represented by its log difference

from the mean, ln(vt/θ). As the variance levelvt varies, the jump error is fixed at 0.0021 because the jump

arrival rate does not change. Table 7 indicates that the total approximation error increases with the volatility

level. The largest absolute error is 0.0221 when the variance swap rate reaches as high as 2.3782. The

error is less than one percent of the variance level. Therefore, even under stochastic volatility and when the

volatility level is very high, the interpolation and extrapolation across the five implied volatility quotes do

not add much additional approximation error. The numericalexercise shows that our simple interpolation

and extrapolation method works well.

4.2. Bid-ask spreads

We synthesize variance swap rates by interpolating impliedvolatilities computed from the mid-quotes of

the option prices. The mid-quote may not reflect the fair price if the bid and ask quotes are not symmetric

around the fair price. To gauge how much our conclusions are affected by the mid-quote choice, we re-

construct the synthetic variance swap rates using bid and ask option prices, respectively. When direct quotes

are not available, we can regard these as synthetic bid and ask swap rate quotes, respectively. For European

options, we directly convert the bid and ask option prices into bid and ask implied volatilities, and perform

the interpolation and extrapolation on each side. For American options, we first convert the OptionMetrics

implied volatility into a mid-quote European option price.Then we superimpose the bid-ask spread of the

American option quotes on this mid price to generate bid and ask European option prices, from which we

compute the bid and ask implied volatilities, respectively.
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Table 8 reports the sample averages of the synthetic bids andasks of the variance swap rates, as well as

the variance risk premia defined in both dollar terms and log returns. For the risk premia, we also report in

parentheses the serial-dependence adjustedt-statistics on the significance of the mean value. The bid-ask

spreads for the synthetic variance swap rates range from 0.82 to 16.75. Converting the variance swap rates

into volatility percentage points per industry quoting convention, we obtain the average bid-ask spreads

ranging from 1.55 to 8.28 volatility percentage points. Overall, the spreads are larger for individual stocks

than for stock indexes.

[Insert Table 8 about here.]

It is important to point out that currently there exists an active over-the-counter market for variance

swap contracts on stock indexes. Although it is difficult to retrieve long histories, current quotes from

several broker dealers are readily available from common financial data sources. The bid-ask spreads on

these variance swap rate quotes are normally within one volatility percentage point. Our synthetic variance

swap bid-ask spreads for the five stock indexes are from 1.55 to 4.62 volatility points, much wider than the

actual spreads from the over-the-counter market.

Nevertheless, even with the exaggerated bid-ask spreads, our main conclusions on the variance risk

premia remain valid whether we measure the premia using the synthetic bid swap rates or ask swap rates.

Using the synthetic ask rates makes the variance risk premiaeven more negative. Using the bid swap rates

lowers the absolute magnitude of the negative risk premia. However, even when we use the synthetic bid

swap rates to compute the variance risk premia, the premia remain significantly negative for S&P and Dow

indexes, whether the premia are measured in dollar terms or log returns.

4.3. Errors in variables

Since the synthetic variance swap rates are measured with error, the error-in-variable issue arises when they

are used as regressors in the expectation hypothesis regressions in (17) - (18). Thus, the fact that the slope

estimate for equation (17) is significantly below the null hypothesis of one for S&P and Dow indexes could
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be either due to time-varying risk premium, as we have conjectured, or simply due to the bias induced by

the error-in-variable problem.

To gauge the size of the bias caused by the error-in-variableproblem in equation (17), we propose the

following expanded formulation:

RVt,T = a+bSWt,T +e,

ŜWt,T = SWt,T + η,
(24)

whereSWdenotes the true swap rate and̂SWdenotes the synthetic swap rate, which is regarded as a noisy

estimator of the true swap rate, withη capturing the measurement error. Furthermore, we specify an auxil-

iary AR(1) dynamics for the true 30-day variance swap rate:

SWt+1 = θ(1−φ)+ φSWt+1 + εt+1. (25)

If we assume independent normal distributions on the error terms (e,η,ε) with variance(σ2
e,σ2

η,σ2
ε), respec-

tively, we can use the maximum likelihood method joint with Kalman filter to estimate the parameters of the

system. In this estimation, we regard equation (25) as the state-propagation equation and equation (24) as the

measurement equation. Given initial parameter guesses, weuse Kalman filter to obtain the forecasted mean

values and variances on the measurement series. Then, we construct the likelihood based on the forecasting

errors, which are normally distributed under our assumption. The model parameters(a,b,θ,φ,σ2
e,σ2

η,σ2
ε)

are estimated by maximizing the likelihood value. Using this method, we learn not only the bias-corrected

expectation hypothesis coefficients (a,b), but also the variances of the measurement errors and the true swap

rates.

We perform the likelihood estimation on the three S&P and Dowindexes that have generated regres-

sion slope coefficients significantly lower than one. Table 9reports the maximum likelihood estimates and

standard errors of the parameters. Take the S&P 500 index as an example. The slope estimate is 0.618,

larger than the least square estimate of 0.455 reported in Table 6. The difference between the two estimates

captures the bias induced by the measurement errors in the synthetic variance swap rates. Nevertheless,

after correcting for this bias, the slope coefficient on the S&P 500 index remains significantly lower than
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the null value of one. The results are similar for the other two indexes. Therefore, our earlier conclusion

remains valid after controlling for the error-in-variableissue. Especially for the S&P and Dow indexes, the

expectation hypothesis regression slope estimate is significantly below the null value of one, suggesting that

the variance risk premium in dollar terms is time-varying and correlated with the variance swap rate.

[Insert Table 9 about here.]

4.4. Subsample analysis

The stock market had been largely bullish since the beginning of our sample in 1996 until the burst of the

Nasdaq bubble in March 2000, after which the stock market hasbeen going down till the end of our sample

in 2003. As a concrete example, the S&P 500 index started at around 600 in January 1996, and climbed

over 1500 points before it started to fall after March 2000. By the end of our sample in February, 2003, the

S&P 500 index retreated to around 800. Thus, we can largely divide our whole sample into two subsample

periods, a bullish period from 1996 to March 2000, and a bearish period after March 2000.

To study whether the variance risk premia behavior varies inbullish versus bearish market conditions,

we divide our sample into two subsamples, with March 24, 2000as the dividing point. The first subsample

includes dates before March 23, 2000. The second subsample includes March 24, 2000 and after. Table 10

reports the summary statistics of the realized variance, variance swap rates, and the variance risk premia

under the two subsample periods. On average, both the realized variance and the variance swap rates are

higher during the bearish period (the second subsample) than during the bullish period. Nevertheless, the

variance risk premia are strongly negative under both market conditions for the S&P and Dow indexes.

[Insert Table 10 about here.]
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5. Conclusion

In this paper, we propose a direct and robust method to quantify the variance risk premia on financial assets

underlying options. Our method uses the notion of a varianceswap, which is an over-the-counter contract

that pays the difference between the realized variance and the fixed swap rate. Since the variance swap rate

represents the risk-neutral expected value of the realizedvariance, we propose to use the difference between

the realized variance and the variance swap rate to quantifythe variance risk premium. We show that the

variance swap rate can be well approximated by the value of a particular portfolio of options. Using a large

options data set, we synthesize variance swap rates and analyze variance risk premia on five stock indexes

and 35 individual stocks.

We find that the variance risk premia are strongly negative for the S&P and Dow indexes. Further

analysis shows that there exists a systematic variance riskfactor in the stock market that asks for a highly

negative risk premium. When we investigate whether the classic asset pricing model can explain the negative

variance risk premia, we find that the well-documented negative correlation between index returns and

volatility generates a strongly negative beta, but this negative beta can only explain a small portion of the

negative variance risk premia. The Fama-French factors cannot account for the strongly negative variance

risk premia, either. Therefore, we conclude that either there is a large inefficiency in the market for index

variance or else the majority of the variance risk is generated by an independent risk factor that the market

prices heavily. The negative sign on the variance risk premia indicates that investors regard market volatility

going up as unfavorable shocks, and are willing to pay a largepremium to hedge against market volatility

going up.

To analyze the dynamic properties of the variance risk premia, we formulate expectation-hypothesis

regressions. When we regress the realized variance on the variance swap rate, we obtain slope estimates

that are significantly lower than one, the null value under the hypothesis of constant or independent variance

risk premia. The slope estimates become closer to one when the regression is on the logarithm of variance.

These regression results indicate that although the log variance risk premia are strongly negative, they are

not strongly correlated with the logarithm of the variance swap rate.
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The simple, direct, and robust method that we propose to measure variance risk premium opens fertile

ground for future research. Given the evidence on stochastic variance and strongly negative variance risk

premia, it is important to understand the pricing kernel behavior as a function of both the market portfolio

return and return variance. Recent studies, e.g., Jackwerth (2000) and Engle and Rosenberg (2002) have

found some puzzling behaviors on the pricing kernel projected on the equity index return alone. Accurately

estimating the pricing kernel as a joint function of the index return and return variance can prove fruitful

not only for understanding the variance risk premia behavior, but also for resolving the puzzling behaviors

observed on the pricing kernels projected on the index return alone.

The empirical analysis in this paper focuses on the varianceswap rate and variance risk premium over

a fixed 30-day horizon. As over-the-counter variance swap rate quotes are becoming increasingly available

at many different maturities, an important line for future research is to design and estimate stochastic return

variance models that can capture the term structure of variance swap rates and variance risk premia, e.g.,

Egloff, Leippold, and Wu (2006).
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Appendix A. Synthesizing variance swap contracts

Let f (F) be a twice differentiable function ofF. By Itô’s lemma for semi-martingales:

f (FT) = f (Ft)+

Z T

t
f ′(Fs−)dFs+

1
2

Z T

t
f ′′(Fs−)σ2

s−ds

+
Z T

t

Z

R0
[ f (Fs−ex)− f (Fs−)− f ′(Fs−)Fs−(ex−1)]µ(dx,ds), (A1)

Applying equation (A1) to the functionf (F) = lnF, we have:

ln(FT) = ln(Ft)+
Z T

t

1
Fs−

dFs−
1
2

Z T

t
σ2

s−ds+
Z T

t

Z

R0
[x−ex +1]µ(dx,ds). (A2)

Adding and subtracting 2[FT
Ft
−1]+

R T
t x2µ(dx,ds) and re-arranging, we obtain the following representation:

Vt,T ≡
Z T

t
σ2

s−ds+
Z T

t
x2µ(dx,ds) = 2

[
FT

Ft
−1− ln

(
FT

Ft

)]
+2

Z T

t

[
1

Fs−
− 1

Ft

]
dFs

−2
Z T

t

Z

R0

[
ex−1−x− x2

2

]
µ(dx,ds). (A3)

A Taylor expansion with remainder of lnFT about the pointFt implies:

lnFT = lnFt +
1
Ft

(FT −Ft)−
Z Ft

0

1
K2 (K −FT)+dK−

Z ∞

Ft

1
K2 (FT −K)+dK. (A4)

Combining equations (A3) and (A4) and noting thatFT = ST , we have:

Vt,T = 2

[
Z Ft

0

1
K2 (K−ST)+dK+

Z ∞

Ft

1
K2 (ST −K)+dK

]

+2
Z T

t

[
1

Fs−
− 1

Ft

]
dFs

−2
Z T

t

Z

R0

[
ex−1−x− x2

2

]
µ(dx,ds). (A5)

Thus, we can replicate the return quadratic variation up to time T by the sum of (i) the payoff from a static position

in 2dK
K2 European options on the underlying spot at strikeK and maturityT (first line), (ii) the payoff from a dynamic

trading strategy holding 2Bs(T)
[

1
Fs− − 1

Ft

]
futures at times (second line), and (iii) a higher-order error term induced

by the discontinuity in the futures price dynamics (third line). The options are all out-of-the-money forward, i.e., call

options whenFt > K and put options whenK ≤ Ft .
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Taking expectations under measureQ on both sides, we obtain the risk-neutral expected value of the quadratic

variation on the left hand side. We also obtain the forward value of the startup cost of the replicating strategy and the

replication error on the right hand side:

E
Q
t [Vt,T ] =

Z ∞

0

2Θt(K,T)

Bt(T)K2 dK−2E
Q
t

Z T

t

Z

R0

[
ex−1−x− x2

2

]
νs(x)dxds.

By the martingale property, the expected value of the gains from dynamic futures trading is zero under the risk-neutral

measure. Dividing by (T − t) on both sides, we obtain the result on the annualized return quadratic variation.
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Notes

1The variance risk premia on the Nasdq-100 index and its tracking stock QQQ also show some differences due to, among other

things, their different sample periods

2The address is:http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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Table 1
List of stocks and stock indexes used in our study

No. Ticker Starting Date Ending Date N NK Name

1 SPX 04-Jan-1996 28-Feb-2003 1779 26 S&P 500 Index
2 OEX 04-Jan-1996 28-Feb-2003 1780 27 S&P 100 Index
3 DJX 06-Oct-1997 28-Feb-2003 1333 12 Dow Jones Industrial Average
4 NDX 04-Jan-1996 28-Feb-2003 1722 19 Nasdaq 100 Stock Index
5 QQQ 10-Mar-1999 28-Feb-2003 978 22 Nasdaq-100 Index Tracking Stock
6 MSFT 04-Jan-1996 28-Feb-2003 1766 9 Microsoft Corp
7 INTC 04-Jan-1996 28-Feb-2003 1653 8 Intel Corp
8 IBM 04-Jan-1996 28-Feb-2003 1768 9 International Business Machines Corp
9 AMER 04-Jan-1996 28-Feb-2003 1648 9 Nanobac Pharmaceuticals Inc

10 DELL 04-Jan-1996 28-Feb-2003 1650 7 Dell Inc
11 CSCO 04-Jan-1996 28-Feb-2003 1554 7 Cisco Systems Inc
12 GE 04-Jan-1996 28-Feb-2003 1458 6 General Electric Co
13 CPQ 04-Jan-1996 03-May-2002 1272 6 Compaq Computer Corp
14 YHOO 09-Sep-1997 28-Feb-2003 1176 14 Yahoo! Inc
15 SUNW 04-Jan-1996 28-Feb-2003 1395 8 Sun Microsystems Inc
16 MU 04-Jan-1996 28-Feb-2003 1720 8 Micron Technology Inc
17 MO 04-Jan-1996 28-Feb-2003 1474 5 Altria Group Inc
18 AMZN 19-Nov-1997 28-Feb-2003 1078 12 Amazon.Com Inc
19 ORCL 04-Jan-1996 28-Feb-2003 1104 6 Oracle Corp
20 LU 19-Apr-1996 28-Feb-2003 981 7 Lucent Technologies Inc
21 TRV 04-Jan-1996 28-Feb-2003 1279 5 Thousand Trails Inc
22 WCOM 04-Jan-1996 21-Jun-2002 1104 6 WorldCom Inc
23 TYC 05-Jan-1996 28-Feb-2003 979 6 Tyco International Ltd
24 AMAT 04-Jan-1996 28-Feb-2003 1671 8 Applied Materials Inc
25 QCOM 04-Jan-1996 28-Feb-2003 1613 8 Qualcomm Inc
26 TXN 04-Jan-1996 28-Feb-2003 1610 7 Texas Instruments Inc
27 PFE 04-Jan-1996 28-Feb-2003 1420 6 Pfizer Inc
28 MOT 04-Jan-1996 28-Feb-2003 1223 6 Motorola Inc
29 EMC 04-Jan-1996 28-Feb-2003 1188 7 EMC Corp
30 HWP 04-Jan-1996 28-Feb-2003 1395 6 Hewlett-Packward Co
31 AMGN 04-Jan-1996 28-Feb-2003 1478 6 Amgen Inc
32 BRCM 28-Oct-1998 28-Feb-2003 1003 12 Broadcom Corp
33 MER 04-Jan-1996 28-Feb-2003 1542 6 Merill Lynch & Co Inc
34 NOK 04-Jan-1996 28-Feb-2003 1176 6 Nokia OYJ
35 CHL 04-Jan-1996 28-Feb-2003 1422 5 China Mobile Hong KongLtd
36 UNPH 16-Sep-1996 28-Feb-2003 745 12 JDS Uniphase Corp
37 EBAY 01-Feb-1999 28-Feb-2003 1000 12 eBay Inc
38 JNPR 07-Oct-1999 28-Feb-2003 627 15 Juniper Networks Inc
39 CIEN 14-May-1997 28-Feb-2003 998 9 Ciena Corp
40 BRCD 30-Nov-1999 28-Feb-2003 693 10 Brocade Communications Systems Inc

Entries list the ticker, the starting date, the ending date,the sample length (N), the average number of available strikes
per maturity (NK), and the full name for each of the five stock indexes and 35 individual stocks used in our study.
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Table 2
Summary statistics for the realized variance and the synthetic variance swap rate

Ticker Panel A: Realized variance,RV×100 Panel B: Variance swap rate,SW×100

Mean Std Auto Skew Kurt Mean Std Auto Skew Kurt

SPX 4.07 3.43 0.98 2.23 8.76 6.81 3.87 0.88 2.45 13.95
OEX 4.53 3.82 0.98 2.13 8.26 6.90 3.65 0.96 1.77 6.94
DJX 4.39 3.66 0.98 2.15 7.55 6.98 3.60 0.93 2.18 9.59
NDX 16.69 15.62 0.98 2.31 9.61 19.12 11.86 0.98 0.96 3.32
QQQ 22.61 16.53 0.98 1.60 5.32 26.54 11.29 0.94 0.82 3.58
MSFT 16.59 13.44 0.98 2.33 9.10 19.79 11.80 0.76 4.80 63.40
INTC 27.67 23.25 0.98 2.25 8.49 25.17 14.06 0.94 1.80 7.97
IBM 15.15 11.39 0.97 1.76 6.52 16.83 8.56 0.89 2.19 11.64
AMER 41.13 25.49 0.97 1.12 4.07 44.64 21.04 0.90 1.25 5.37
DELL 32.90 21.95 0.97 1.60 5.48 37.33 17.29 0.93 2.24 12.97
CSCO 31.10 28.53 0.98 2.09 7.83 33.40 20.96 0.94 2.01 7.92
GE 11.91 8.83 0.98 1.84 6.54 14.15 7.93 0.90 1.38 5.53
CPQ 31.01 21.46 0.96 1.66 5.94 32.14 16.48 0.81 2.06 10.81
YHOO 72.25 43.52 0.97 0.91 3.29 73.92 43.08 0.78 2.78 18.63
SUNW 36.71 27.14 0.98 1.83 6.61 37.63 23.13 0.84 3.22 25.06
MU 56.68 31.16 0.97 1.43 5.37 59.43 25.53 0.87 1.75 12.10
MO 13.63 11.04 0.96 1.99 8.24 15.44 9.79 0.84 2.41 16.68
AMZN 88.62 48.69 0.96 0.63 2.99 103.81 55.77 0.95 1.80 7.60
ORCL 43.72 33.83 0.97 1.70 5.84 48.11 43.62 0.94 4.40 29.09
LU 31.43 30.86 0.97 3.22 17.31 31.25 29.02 0.68 6.22 79.86
TRV 19.36 17.40 0.95 2.46 9.24 19.02 11.44 0.93 2.83 15.27
WCOM 26.84 24.12 0.97 2.76 13.82 27.81 20.81 0.92 2.22 8.94
TYC 32.61 38.22 0.98 2.32 8.71 40.74 53.24 0.90 4.46 30.54
AMAT 43.89 26.91 0.97 1.89 7.37 45.78 20.18 0.91 1.30 4.98
QCOM 46.98 32.35 0.98 1.31 4.26 48.70 23.65 0.93 1.41 5.45
TXN 37.24 25.65 0.98 1.90 7.24 35.40 18.21 0.94 1.27 4.65
PFE 12.65 7.96 0.97 1.69 7.06 14.19 5.88 0.88 0.97 4.69
MOT 29.28 25.44 0.96 2.04 7.23 27.09 18.70 0.84 1.97 9.56
EMC 41.93 37.67 0.98 2.62 10.39 38.05 22.29 0.91 1.71 6.10
HWP 25.19 17.24 0.96 1.34 4.34 24.94 13.52 0.91 1.58 6.18
AMGN 23.78 17.93 0.98 1.82 6.75 25.66 15.64 0.95 1.42 4.71
BRCM 91.22 57.64 0.98 1.68 6.06 90.56 45.18 0.95 1.68 6.56
MER 23.26 15.12 0.97 1.77 7.12 24.05 11.51 0.93 1.61 8.81
NOK 33.67 20.99 0.96 0.97 3.32 32.15 15.99 0.83 1.34 7.90
CHL 19.23 17.65 0.98 3.12 16.78 20.10 14.30 0.96 2.62 13.02
UNPH 83.74 59.74 0.97 1.47 5.40 77.16 42.70 0.95 1.02 3.44
EBAY 69.16 59.28 0.98 1.29 4.18 73.10 42.97 0.96 1.00 3.81
JNPR 104.72 56.79 0.97 1.02 3.30 114.50 49.41 0.93 0.99 3.54
CIEN 96.26 65.37 0.97 1.26 4.39 91.04 47.70 0.92 1.05 5.51
BRCD 110.11 65.55 0.97 1.01 3.45 100.75 40.78 0.92 0.38 2.51

Entries report summary statistics for the annualized realized varianceRV and the synthetic variance swap rateSW.
Columns under Mean, Std, Auto, Skew, Kurt report the sample average, standard deviation, daily autocorrelation,
skewness, and excess kurtosis, respectively.
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Table 3
Summary statistics of variance risk premia

Ticker Panel A:(RV−SW)×100 Panel B: ln(RV/SW) IR

Mean Std Auto Skew Kurt t Mean Std Auto Skew Kurt t

SPX -2.74 3.63 -0.04 -1.44 17.86 -8.39 -0.66 0.57 0.05 0.18 3.23 -11.83 0.98
OEX -2.36 3.57 -0.07 0.21 6.69 -7.02 -0.58 0.56 0.06 0.36 2.90-10.34 0.85
DJX -2.58 3.86 -0.05 -0.15 8.28 -6.37 -0.61 0.58 0.07 0.63 3.31 -9.07 0.87
NDX -2.43 10.24 0.05 1.49 9.42 -2.54 -0.28 0.47 0.11 0.40 3.41-6.49 0.55
QQQ -3.93 12.55 0.12 0.83 4.68 -2.62 -0.29 0.48 0.21 0.16 2.88-4.91 0.55
MSFT -3.20 12.31 -0.10 -1.91 57.68 -3.32 -0.30 0.52 -0.08 0.08 3.48 -6.62 0.55
INTC 2.49 19.07 -0.13 1.91 8.96 1.34 -0.02 0.51 -0.19 0.42 3.31 -0.44 0.04
IBM -1.68 10.24 -0.04 0.67 9.38 -1.80 -0.24 0.60 0.02 0.01 2.94 -4.35 0.36
AMER -3.51 23.76 -0.08 0.63 4.62 -2.05 -0.17 0.57 -0.06 0.03 3.06 -3.79 0.33
DELL -4.43 21.35 0.14 0.49 7.05 -2.15 -0.23 0.55 0.18 0.22 3.07 -4.17 0.36
CSCO -2.30 20.31 -0.11 1.51 10.80 -1.42 -0.27 0.83 0.05 -6.1470.41 -4.06 0.36
GE -2.24 7.63 -0.14 0.59 7.68 -3.52 -0.25 0.49 -0.04 0.28 3.32-5.60 0.51
CPQ -1.14 20.66 -0.02 0.17 7.66 -0.62 -0.13 0.59 -0.07 0.14 3.27 -2.54 0.25
YHOO -1.67 43.58 -0.21 -1.17 16.82 -0.42 -0.09 0.56 -0.16 0.07 2.97 -1.63 0.17
SUNW -0.92 20.32 0.03 -1.97 40.32 -0.53 -0.11 0.48 -0.01 -0.08 3.32 -2.54 0.24
MU -2.75 29.38 -0.12 0.68 6.71 -1.12 -0.10 0.47 -0.12 0.22 3.25 -2.70 0.23
MO -1.81 11.76 0.10 0.52 9.99 -1.66 -0.24 0.69 0.05 0.21 3.29 -3.79 0.34
AMZN -15.19 59.66 -0.06 -0.30 5.14 -2.14 -0.22 0.59 -0.14 0.10 2.75 -3.33 0.35
ORCL -4.39 46.26 0.04 -4.55 33.85 -0.82 -0.14 0.66 0.04 -1.598.93 -1.92 0.20
LU 0.18 29.35 0.06 -3.43 79.81 0.08 -0.08 0.54 0.18 0.05 3.53 -1.55 0.17
TRV 0.35 16.04 0.20 2.38 10.88 0.22 -0.12 0.64 0.14 0.93 5.03 -1.85 0.18
WCOM -0.97 21.22 -0.11 1.39 11.29 -0.38 -0.13 0.63 -0.07 -0.10 2.84 -1.78 0.19
TYC -8.13 48.26 0.06 -2.16 26.08 -1.55 -0.34 0.74 -0.13 0.90 4.13 -4.00 0.45
AMAT -1.89 24.20 -0.08 1.08 7.08 -0.93 -0.11 0.48 -0.14 0.20 3.21 -2.72 0.23
QCOM -1.73 28.20 -0.11 0.82 5.18 -0.69 -0.15 0.59 -0.06 -0.143.77 -2.77 0.24
TXN 1.84 19.93 -0.07 1.22 7.33 1.00 -0.02 0.47 -0.11 0.16 2.97-0.59 0.05
PFE -1.54 8.08 -0.06 1.44 7.92 -1.92 -0.21 0.60 0.03 -0.14 4.17 -3.35 0.31
MOT 2.19 20.13 -0.12 0.09 10.91 1.23 -0.02 0.57 -0.08 -0.29 3.43 -0.31 0.03
EMC 3.87 28.91 0.35 2.25 11.62 1.21 -0.02 0.53 0.05 0.55 3.64 -0.47 0.05
HWP 0.25 14.56 -0.01 0.71 7.28 0.19 -0.08 0.54 -0.01 0.27 3.72-1.67 0.16
AMGN -1.88 15.11 -0.07 0.71 5.94 -1.26 -0.16 0.55 -0.02 0.10 2.76 -3.01 0.27
BRCM 0.66 48.32 0.07 0.64 4.89 0.12 -0.05 0.48 0.17 0.20 2.41 -0.99 0.11
MER -0.79 13.11 0.05 1.04 5.90 -0.68 -0.11 0.50 -0.13 0.26 2.99 -2.50 0.22
NOK 1.51 18.73 0.07 -0.11 7.86 0.79 -0.03 0.55 0.08 0.07 3.31 -0.54 0.05
CHL -0.87 15.10 -0.11 1.91 14.02 -0.60 -0.15 0.54 -0.14 0.36 3.61 -2.84 0.26
UNPH 6.59 49.42 -0.16 0.79 4.88 1.12 -0.01 0.58 -0.04 -0.32 3.00 -0.25 0.03
EBAY -3.95 45.88 -0.05 1.44 6.54 -0.69 -0.27 0.58 0.17 0.35 2.97 -3.48 0.38
JNPR -9.79 54.78 -0.15 -0.21 3.74 -1.27 -0.14 0.52 -0.12 -0.54 3.20 -2.07 0.29
CIEN 5.22 62.53 -0.07 0.80 6.64 0.68 -0.03 0.61 -0.07 0.47 4.18 -0.33 0.04
BRCD 9.36 59.99 0.10 0.59 3.59 1.08 0.00 0.56 0.08 -0.25 2.63 0.02 -0.00

Entries report summary statistics of variance risk premia,defined as the difference between the realized variance
and the variance swap rate in panel A and as the log differencein panel B. Columns under Mean, Std, Auto, Skew,
Kurt report the sample average, standard deviation, average non-overlapping 30-day autocorrelation, skewness, and
excess kurtosis, respectively. Columns undert report thet-statistics of the mean risk premia, which are adjusted for
serial dependence according to the Newey-West method with alag of 30 days. The last column of the table under
“IR” reports the annualized Sharpe ratio of shorting the 30-day variance swap contracts, computed as the mean of
− ln(RV/SW) divided by its Newey-West standard deviation (with 30 lags), and then annualized by

√
365/30.37



Table 4
Explaining variance risk premia with CAPM beta

Proxy Panel A: S&P 500 Index Panel B: Valued-Weighted MarketPortfolio

α β R2 α β R2

SPX -0.646 ( -13.554 ) -4.510 ( -5.644 ) 0.173 -0.641 ( -10.236) -5.508 ( -4.751 ) 0.245
OEX -0.562 ( -11.630 ) -4.473 ( -5.653 ) 0.175 -0.571 ( -9.112 )-5.536 ( -4.936 ) 0.247
DJX -0.613 ( -10.820 ) -4.681 ( -5.165 ) 0.206 -0.617 ( -9.362 )-4.668 ( -3.828 ) 0.205
NDX -0.273 ( -6.689 ) -2.450 ( -3.742 ) 0.078 -0.237 ( -5.998 ) -3.617 ( -3.225 ) 0.182
QQQ -0.301 ( -5.257 ) -1.157 ( -1.707 ) 0.018 -0.320 ( -5.330 ) -2.964 ( -1.702 ) 0.117
MSFT -0.287 ( -6.722 ) -2.168 ( -4.134 ) 0.048 -0.339 ( -5.981 )-2.495 ( -2.870 ) 0.068
INTC -0.011 ( -0.252 ) -2.211 ( -2.706 ) 0.051 -0.045 ( -0.912 )-3.793 ( -3.021 ) 0.150
IBM -0.235 ( -4.302 ) -2.181 ( -2.737 ) 0.037 -0.269 ( -4.448 ) -2.185 ( -1.759 ) 0.041
AMER -0.164 ( -3.595 ) -2.133 ( -3.161 ) 0.038 -0.242 ( -5.077 )-1.695 ( -1.604 ) 0.026
DELL -0.214 ( -4.145 ) -2.723 ( -3.582 ) 0.068 -0.271 ( -3.645 )-3.527 ( -3.673 ) 0.130
CSCO -0.269 ( -3.583 ) -0.966 ( -0.603 ) 0.004 -0.272 ( -3.948 )-1.998 ( -0.888 ) 0.043
GE -0.240 ( -5.855 ) -2.648 ( -3.868 ) 0.087 -0.287 ( -5.461 ) -1.648 ( -1.488 ) 0.046
CPQ -0.107 ( -1.959 ) -2.426 ( -2.336 ) 0.039 -0.028 ( -0.558 ) -3.292 ( -2.646 ) 0.099
YHOO -0.089 ( -1.630 ) -0.582 ( -0.800 ) 0.003 -0.171 ( -2.540 )0.752 ( 0.791 ) 0.006
SUNW -0.095 ( -2.250 ) -2.295 ( -3.378 ) 0.054 -0.111 ( -1.977 )-3.978 ( -3.162 ) 0.178
MU -0.096 ( -2.576 ) -1.215 ( -2.055 ) 0.018 -0.105 ( -2.364 ) -2.452 ( -3.664 ) 0.093
MO -0.246 ( -3.818 ) 0.375 ( 0.400 ) 0.001 -0.253 ( -3.980 ) 0.539 ( 0.473 ) 0.002
AMZN -0.217 ( -3.323 ) 0.075 ( 0.072 ) 0.000 -0.164 ( -1.722 ) 0.486 ( 0.464 ) 0.002
ORCL -0.125 ( -1.805 ) -2.311 ( -2.706 ) 0.032 -0.179 ( -2.488 )-3.606 ( -2.408 ) 0.099
LU -0.065 ( -1.269 ) -1.463 ( -1.740 ) 0.018 -0.047 ( -0.877 ) -2.713 ( -2.757 ) 0.099
TRV -0.122 ( -1.885 ) -2.075 ( -2.584 ) 0.034 -0.167 ( -1.647 ) -1.025 ( -0.626 ) 0.010
WCOM -0.099 ( -1.432 ) -3.588 ( -3.550 ) 0.078 -0.066 ( -0.715 )-4.256 ( -2.821 ) 0.140
TYC -0.349 ( -4.025 ) -1.726 ( -1.591 ) 0.017 -0.405 ( -3.885 ) 0.778 ( 0.260 ) 0.002
AMAT -0.104 ( -2.641 ) -0.972 ( -1.700 ) 0.011 -0.119 ( -2.482 )-2.839 ( -3.515 ) 0.110
QCOM -0.149 ( -2.747 ) -1.062 ( -1.358 ) 0.009 -0.164 ( -2.629 )-2.573 ( -2.129 ) 0.059
TXN -0.022 ( -0.546 ) -0.603 ( -1.150 ) 0.005 -0.086 ( -1.596 ) -0.783 ( -1.046 ) 0.009
PFE -0.206 ( -3.307 ) -2.016 ( -1.862 ) 0.035 -0.230 ( -3.541 ) -1.907 ( -1.213 ) 0.035
MOT -0.003 ( -0.055 ) -1.955 ( -1.956 ) 0.030 -0.024 ( -0.329 ) -3.479 ( -1.926 ) 0.099
EMC -0.007 ( -0.150 ) -2.865 ( -2.967 ) 0.079 -0.069 ( -0.845 ) -4.090 ( -3.950 ) 0.167
HWP -0.070 ( -1.444 ) -1.669 ( -2.037 ) 0.024 -0.048 ( -0.802 ) -1.996 ( -1.650 ) 0.052
AMGN -0.159 ( -2.979 ) -0.947 ( -1.028 ) 0.009 -0.128 ( -1.478 )-0.164 ( -0.116 ) 0.000
BRCM -0.046 ( -0.867 ) 0.861 ( 1.140 ) 0.010 -0.082 ( -0.950 ) -0.824 ( -0.423 ) 0.006
MER -0.106 ( -2.419 ) -1.184 ( -1.601 ) 0.016 -0.145 ( -2.354 ) -1.294 ( -1.147 ) 0.021
NOK -0.031 ( -0.537 ) -1.708 ( -1.959 ) 0.028 -0.037 ( -0.563 ) -2.132 ( -1.765 ) 0.074
CHL -0.144 ( -2.752 ) -1.662 ( -1.840 ) 0.029 -0.105 ( -2.405 ) -1.968 ( -2.173 ) 0.050
UNPH -0.014 ( -0.236 ) -1.676 ( -1.440 ) 0.023 -0.057 ( -1.276 )-3.015 ( -1.209 ) 0.074
EBAY -0.266 ( -3.401 ) 0.214 ( 0.219 ) 0.000 -0.293 ( -2.267 ) -0.145 ( -0.122 ) 0.000
JNPR -0.147 ( -2.151 ) -0.484 ( -0.572 ) 0.003 -0.184 ( -2.494 )-2.091 ( -1.082 ) 0.042
CIEN -0.020 ( -0.258 ) -2.320 ( -1.738 ) 0.039 -0.062 ( -0.653 )-4.433 ( -1.929 ) 0.148
BRCD 0.004 ( 0.054 ) 0.182 ( 0.190 ) 0.000 0.006 ( 0.060 ) -2.790( -2.301 ) 0.104

Entries report the GMM estimates (andt-statistics in parentheses) of the following relation,

lnRVt,T/SWt,T = α+ β j ERm
t,T +e,

whereERm denotes the excess return on the market portfolio, which is proxyed by the return on the S&P 500 index
forward in panel A and the excess return on the CRSP valued-weighted stock portfolio in panel B. Thet-statistics are
computed according to Newey and West (1987) with 30 lags for the overlapping daily series in panel A and six lags
for the non-overlapping monthly series in panel B. Columns under “R2” report the unadjusted R-squared.38



Table 5
Explaining variance risk premia with Fama-French risk factors

Ticker α ERm SMB HML R2

SPX -0.633 ( -9.070 ) -5.205 ( -3.853 ) -2.858 ( -2.098 ) -0.195( -0.227 ) 0.287
OEX -0.561 ( -8.294 ) -5.268 ( -4.030 ) -3.292 ( -2.472 ) -0.443( -0.477 ) 0.300
DJX -0.604 ( -8.251 ) -4.601 ( -3.246 ) -3.603 ( -3.074 ) -1.346( -1.743 ) 0.275
NDX -0.235 ( -5.943 ) -2.851 ( -2.614 ) -1.958 ( -2.216 ) 1.391 (1.780 ) 0.269
QQQ -0.304 ( -5.213 ) -2.204 ( -1.461 ) -1.694 ( -1.548 ) 1.543 (2.470 ) 0.229
MSFT -0.321 ( -6.617 ) -2.530 ( -2.758 ) -4.960 ( -4.839 ) -1.855 ( -2.164 ) 0.225
INTC -0.037 ( -0.886 ) -3.875 ( -3.119 ) -2.961 ( -3.026 ) -1.177 ( -1.530 ) 0.205
IBM -0.259 ( -4.963 ) -2.027 ( -1.567 ) -3.063 ( -1.944 ) -0.660( -0.428 ) 0.089
AMER -0.229 ( -5.607 ) -1.692 ( -1.225 ) -3.084 ( -2.154 ) -0.964 ( -0.930 ) 0.080
DELL -0.268 ( -3.664 ) -2.987 ( -3.459 ) -2.968 ( -2.293 ) 0.420( 0.344 ) 0.203
CSCO -0.282 ( -4.458 ) -1.084 ( -0.479 ) 1.461 ( 1.092 ) 2.130 ( 2.473 ) 0.081
GE -0.267 ( -6.495 ) -1.537 ( -1.281 ) -2.834 ( -2.871 ) -0.818 (-0.973 ) 0.132
CPQ -0.030 ( -0.653 ) -2.907 ( -2.005 ) 0.790 ( 0.661 ) 0.910 ( 0.906 ) 0.106
YHOO -0.170 ( -2.554 ) 0.104 ( 0.087 ) 0.669 ( 0.432 ) -0.876 ( -0.783 ) 0.024
SUNW -0.117 ( -2.220 ) -3.066 ( -2.066 ) -1.507 ( -1.466 ) 1.119( 1.188 ) 0.227
MU -0.101 ( -2.400 ) -2.650 ( -3.792 ) -0.646 ( -0.811 ) -0.745 (-1.166 ) 0.101
MO -0.255 ( -4.129 ) 0.709 ( 0.529 ) -0.527 ( -0.286 ) 0.556 ( 0.394 ) 0.005
AMZN -0.173 ( -2.025 ) -0.110 ( -0.069 ) -1.775 ( -0.746 ) -1.828 ( -1.182 ) 0.035
ORCL -0.174 ( -2.355 ) -3.814 ( -3.008 ) -0.110 ( -0.068 ) -0.334 ( -0.334 ) 0.100
LU -0.046 ( -0.859 ) -3.377 ( -2.586 ) -0.918 ( -0.546 ) -1.333 (-1.287 ) 0.125
TRV -0.129 ( -1.581 ) -0.496 ( -0.283 ) -5.906 ( -4.769 ) -1.194( -1.066 ) 0.209
WCOM -0.073 ( -0.835 ) -4.910 ( -2.768 ) -2.263 ( -1.419 ) -1.756 ( -1.660 ) 0.167
TYC -0.367 ( -3.334 ) 0.253 ( 0.107 ) -4.234 ( -1.611 ) -2.668 ( -1.875 ) 0.078
AMAT -0.100 ( -2.769 ) -2.617 ( -2.867 ) -4.062 ( -4.045 ) -1.103 ( -1.667 ) 0.247
QCOM -0.164 ( -2.657 ) -1.657 ( -1.330 ) -3.863 ( -3.097 ) 0.749( 0.716 ) 0.136
TXN -0.073 ( -1.382 ) -1.007 ( -1.600 ) -4.353 ( -4.575 ) -1.997( -2.073 ) 0.163
PFE -0.208 ( -3.746 ) -1.504 ( -0.834 ) -3.795 ( -2.047 ) -1.163( -0.582 ) 0.107
MOT -0.029 ( -0.354 ) -2.860 ( -1.650 ) 0.706 ( 0.452 ) 1.002 ( 0.869 ) 0.109
EMC -0.071 ( -0.994 ) -2.482 ( -2.356 ) -1.771 ( -2.035 ) 2.003 (2.848 ) 0.270
HWP -0.044 ( -0.751 ) -2.456 ( -1.744 ) -0.918 ( -0.816 ) -1.138( -1.026 ) 0.067
AMGN -0.122 ( -1.555 ) -0.421 ( -0.276 ) -1.367 ( -1.030 ) -1.184 ( -1.352 ) 0.019
BRCM -0.049 ( -0.633 ) -0.313 ( -0.148 ) -3.039 ( -2.407 ) -0.432 ( -0.389 ) 0.079
MER -0.138 ( -2.573 ) -0.899 ( -0.737 ) -2.030 ( -1.382 ) 0.313 (0.346 ) 0.063
NOK -0.023 ( -0.339 ) -2.001 ( -1.745 ) -2.276 ( -2.111 ) -0.626( -0.800 ) 0.127
CHL -0.102 ( -2.498 ) -1.830 ( -1.927 ) -2.866 ( -2.234 ) -0.565( -0.568 ) 0.112
UNPH -0.044 ( -0.604 ) -1.688 ( -0.757 ) -1.547 ( -0.868 ) 1.382( 0.999 ) 0.152
EBAY -0.263 ( -2.003 ) 0.446 ( 0.412 ) -2.835 ( -2.125 ) 0.336 ( 0.296 ) 0.073
JNPR -0.105 ( -1.506 ) -3.192 ( -2.421 ) -3.368 ( -2.146 ) -3.227 ( -3.041 ) 0.158
CIEN -0.040 ( -0.452 ) -5.340 ( -2.403 ) -2.960 ( -2.350 ) -2.574 ( -1.565 ) 0.202
BRCD 0.060 ( 0.510 ) -2.025 ( -1.699 ) -3.496 ( -2.457 ) -0.723 (-0.637 ) 0.223

Entries report the GMM estimates (andt-statistics in parentheses) of the following relation,

lnRVt,T/SWt,T = α+ βERm
t,T +sSMBt,T +hHMLt,T +e,

where the regressors are the three stock-market risk factors defined by Fama and French (1993): the excess return
on the market portfolio (ERm), the size factor (SMB), and the book-to-market factor (HML). Data are monthly from
January 1996 to December 2002. Thet-statistics are computed according to Newey and West (1987)with six lags.
Columns under “R2” report the unadjusted R-squared of the regression.
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Table 6
Expectation hypothesis regressions on constant variance risk premia

Ticker Panel A:RVt,T = a+bSWt,T +e Panel B: lnRVt,T = a+blnSWt,T +e

a b R2 a b R2

SPX 0.010 ( 1.416 ) 0.455 ( -4.596 ) 0.262 -0.891 ( -2.593 ) 0.919 ( -0.684 ) 0.378
OEX 0.006 ( 0.981 ) 0.568 ( -3.933 ) 0.294 -0.600 ( -1.797 ) 0.992 ( -0.065 ) 0.408
DJX 0.013 ( 1.524 ) 0.443 ( -4.046 ) 0.190 -1.210 ( -2.859 ) 0.781 ( -1.467 ) 0.253
NDX -0.023 ( -1.329 ) 0.995 ( -0.042 ) 0.571 -0.170 ( -1.233 ) 1.060 ( 0.876 ) 0.672
QQQ -0.027 ( -0.887 ) 0.953 ( -0.326 ) 0.424 -0.281 ( -1.466 ) 1.007 ( 0.060 ) 0.445
MSFT 0.046 ( 1.804 ) 0.605 ( -2.726 ) 0.282 -0.465 ( -2.677 ) 0.903 ( -1.040 ) 0.395
INTC 0.038 ( 1.067 ) 0.948 ( -0.302 ) 0.328 -0.263 ( -1.724 ) 0.839 ( -1.922 ) 0.404
IBM 0.039 ( 2.164 ) 0.670 ( -2.707 ) 0.253 -0.594 ( -2.975 ) 0.814 ( -1.881 ) 0.264
AMER 0.145 ( 4.138 ) 0.596 ( -5.697 ) 0.242 -0.408 ( -5.318 ) 0.743 ( -3.014 ) 0.271
DELL 0.126 ( 3.260 ) 0.543 ( -3.954 ) 0.183 -0.583 ( -4.082 ) 0.668 ( -2.934 ) 0.202
CSCO -0.009 ( -0.295 ) 0.957 ( -0.419 ) 0.494 -0.117 ( -0.863 ) 1.127 ( 0.983 ) 0.343
GE 0.026 ( 2.557 ) 0.657 ( -4.075 ) 0.348 -0.660 ( -4.239 ) 0.803( -3.013 ) 0.455
CPQ 0.129 ( 2.922 ) 0.562 ( -2.858 ) 0.187 -0.540 ( -3.257 ) 0.673 ( -2.455 ) 0.229
YHOO 0.354 ( 4.335 ) 0.499 ( -4.679 ) 0.244 -0.204 ( -3.569 ) 0.730 ( -2.823 ) 0.299
SUNW 0.065 ( 1.295 ) 0.802 ( -1.293 ) 0.468 -0.233 ( -2.021 ) 0.892 ( -1.134 ) 0.445
MU 0.221 ( 4.816 ) 0.582 ( -5.174 ) 0.228 -0.309 ( -4.773 ) 0.656( -4.078 ) 0.255
MO 0.072 ( 5.406 ) 0.415 ( -7.421 ) 0.135 -0.971 ( -4.791 ) 0.641( -3.795 ) 0.222
AMZN 0.565 ( 5.120 ) 0.309 ( -8.470 ) 0.125 -0.246 ( -4.035 ) 0.652 ( -2.559 ) 0.238
ORCL 0.323 ( 3.758 ) 0.238 ( -3.502 ) 0.095 -0.513 ( -2.013 ) 0.600 ( -1.847 ) 0.255
LU 0.141 ( 2.435 ) 0.554 ( -2.232 ) 0.271 -0.330 ( -2.348 ) 0.817( -2.128 ) 0.454
TRV 0.066 ( 2.557 ) 0.673 ( -2.921 ) 0.196 -0.722 ( -3.327 ) 0.665 ( -2.911 ) 0.220
WCOM 0.087 ( 3.201 ) 0.652 ( -2.520 ) 0.316 -0.500 ( -2.721 ) 0.751 ( -2.305 ) 0.358
TYC 0.185 ( 3.862 ) 0.347 ( -17.988 ) 0.233 -0.535 ( -4.928 ) 0.851 ( -2.009 ) 0.462
AMAT 0.132 ( 3.524 ) 0.670 ( -3.464 ) 0.252 -0.377 ( -4.362 ) 0.690 ( -3.847 ) 0.275
QCOM 0.117 ( 2.474 ) 0.724 ( -2.833 ) 0.281 -0.361 ( -3.516 ) 0.747 ( -2.439 ) 0.249
TXN 0.056 ( 1.489 ) 0.893 ( -0.813 ) 0.402 -0.211 ( -1.983 ) 0.839 ( -1.971 ) 0.435
PFE 0.059 ( 4.270 ) 0.473 ( -6.469 ) 0.122 -1.052 ( -6.084 ) 0.587 ( -4.779 ) 0.160
MOT 0.063 ( 2.393 ) 0.846 ( -1.133 ) 0.387 -0.325 ( -2.022 ) 0.794 ( -2.348 ) 0.427
EMC 0.006 ( 0.099 ) 1.087 ( 0.461 ) 0.414 -0.203 ( -1.450 ) 0.838( -1.532 ) 0.399
HWP 0.069 ( 2.836 ) 0.733 ( -2.849 ) 0.330 -0.378 ( -2.659 ) 0.804 ( -2.159 ) 0.349
AMGN 0.061 ( 2.617 ) 0.691 ( -2.832 ) 0.363 -0.451 ( -3.461 ) 0.809 ( -2.395 ) 0.405
BRCM 0.240 ( 2.010 ) 0.742 ( -1.692 ) 0.338 -0.112 ( -1.802 ) 0.705 ( -2.868 ) 0.322
MER 0.061 ( 2.844 ) 0.714 ( -2.766 ) 0.295 -0.479 ( -3.292 ) 0.758 ( -2.726 ) 0.346
NOK 0.119 ( 2.872 ) 0.676 ( -2.395 ) 0.265 -0.366 ( -2.913 ) 0.734 ( -2.776 ) 0.323
CHL 0.051 ( 2.525 ) 0.704 ( -2.373 ) 0.326 -0.347 ( -2.277 ) 0.889 ( -1.377 ) 0.491
UNPH 0.213 ( 2.056 ) 0.809 ( -1.080 ) 0.334 -0.092 ( -1.050 ) 0.809 ( -1.702 ) 0.372
EBAY 0.047 ( 0.506 ) 0.882 ( -0.882 ) 0.408 -0.166 ( -2.100 ) 1.207 ( 2.481 ) 0.637
JNPR 0.422 ( 2.837 ) 0.546 ( -2.997 ) 0.226 -0.121 ( -1.728 ) 0.553 ( -3.302 ) 0.185
CIEN 0.435 ( 3.038 ) 0.580 ( -2.784 ) 0.179 -0.103 ( -1.362 ) 0.675 ( -2.582 ) 0.305
BRCD 0.386 ( 2.561 ) 0.710 ( -1.702 ) 0.195 -0.026 ( -0.318 ) 0.666 ( -2.341 ) 0.231

Entries report the GMM estimates (andt-statistics in parentheses) of the following relations,

Panel A: RVt,T = a+bSWt,T +e,
Panel B: lnRVt,T = a+b lnSWt,T +e.

The t-statistics are calculated according to Newey and West (1987) with 30 lags, under the null hypothesis ofa =

0,b = 1. Columns under “R2” report the unadjusted R-squared.
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Table 7
Numerical illustration of the approximation error for variance swap rates

lnvt/θ EQ[RV] ŜW Total Error (EQ[RV]− ŜW) Jump Error (ε)

The Black-Scholes Model:

0.0 0.1369 0.1369 0.0000 0.0000

The Merton Jump-Diffusion Model:

0.0 0.1387 0.1366 0.0021 0.0021

The MJD-Stochastic Volatility Model:

-3.0 0.0272 0.0273 -0.0001 0.0021
-2.5 0.0310 0.0313 -0.0003 0.0021
-2.0 0.0372 0.0376 -0.0004 0.0021
-1.5 0.0475 0.0477 -0.0001 0.0021
-1.0 0.0645 0.0637 0.0008 0.0021
-0.5 0.0925 0.0905 0.0020 0.0021
0.0 0.1387 0.1356 0.0031 0.0021
0.5 0.2148 0.2107 0.0041 0.0021
1.0 0.3403 0.3353 0.0051 0.0021
1.5 0.5472 0.5410 0.0062 0.0021
2.0 0.8884 0.8799 0.0085 0.0021
2.5 1.4509 1.4377 0.0132 0.0021
3.0 2.3782 2.3561 0.0221 0.0021

Entries report the analytical 30-day variance swap rate (EQ[RV]), the synthetic approximation of the variance swap
rate (ŜW) based on interpolation and extrapolation over five impliedvolatility quotes, the total approximation error
(Total Error =EQ[RV]− ŜW), and the error induced by jumps in the underlying asset price (ε) under each model.
For the MJD-stochastic volatility model, the first column denotes the log difference between the current instantaneous
variance levelvt and its long-run meanθ. For ease of comparison, we represent all swap rates and errors in volatility
percentage points.
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Table 8
Mean synthetic variance swap rates and variance risk premia from bid and ask option prices

Ticker Panel A:SW×100 Panel B:(RV−SW)×100 Panel C: ln(RV/SW)

Ask Bid Ask Bid Ask Bid

SPX 7.52 6.41 -3.45 ( -9.81 ) -2.34 ( -7.44 ) -0.76 ( -13.48 ) -0.60 ( -10.81 )
OEX 7.44 6.62 -2.90 ( -8.32 ) -2.08 ( -6.26 ) -0.65 ( -11.73 ) -0.54 ( -9.53 )
DJX 7.90 6.33 -3.51 ( -8.15 ) -1.94 ( -4.94 ) -0.73 ( -10.93 ) -0.51 ( -7.60 )
NDX 20.76 18.09 -4.06 ( -4.29 ) -1.40 ( -1.43 ) -0.36 ( -8.29 ) -0.23 ( -5.30 )
QQQ 29.48 24.68 -6.88 ( -4.51 ) -2.07 ( -1.39 ) -0.40 ( -6.51 ) -0.22 ( -3.74 )
MSFT 22.34 18.12 -5.75 ( -5.59 ) -1.53 ( -1.62 ) -0.41 ( -9.18 ) -0.21 ( -4.61 )
INTC 27.69 23.60 -0.03 ( -0.01 ) 4.07 ( 2.15 ) -0.11 ( -2.37 ) 0.04 ( 0.90 )
IBM 18.23 16.06 -3.08 ( -3.24 ) -0.92 ( -0.99 ) -0.32 ( -5.73 ) -0.20 ( -3.50 )
AMER 48.68 42.26 -7.55 ( -4.37 ) -1.13 ( -0.65 ) -0.26 ( -5.73 ) -0.12 ( -2.49 )
DELL 41.51 34.57 -8.61 ( -4.17 ) -1.67 ( -0.81 ) -0.33 ( -6.14 ) -0.15 ( -2.69 )
CSCO 37.03 31.15 -5.93 ( -3.96 ) -0.05 ( -0.03 ) -0.37 ( -5.54 ) -0.21 ( -3.00 )
GE 16.12 12.80 -4.21 ( -5.97 ) -0.89 ( -1.46 ) -0.37 ( -8.16 ) -0.14 ( -3.35 )
CPQ 37.18 28.60 -6.17 ( -3.26 ) 2.40 ( 1.34 ) -0.27 ( -5.05 ) -0.02 ( -0.31 )
YHOO 79.74 70.77 -7.49 ( -1.82 ) 1.48 ( 0.38 ) -0.16 ( -2.94 ) -0.05 ( -0.83 )
SUNW 43.28 33.69 -6.58 ( -3.72 ) 3.02 ( 1.71 ) -0.25 ( -5.58 ) 0.01 ( 0.12 )
MU 64.64 56.35 -7.96 ( -3.21 ) 0.33 ( 0.13 ) -0.18 ( -4.93 ) -0.05( -1.24 )
MO 17.84 13.72 -4.21 ( -3.55 ) -0.09 ( -0.09 ) -0.38 ( -5.94 ) -0.12 ( -1.94 )
AMZN 112.47 98.81 -23.84 ( -3.08 ) -10.18 ( -1.53 ) -0.30 ( -4.39 ) -0.17 ( -2.66 )
ORCL 53.46 44.59 -9.73 ( -1.82 ) -0.86 ( -0.16 ) -0.25 ( -3.58 ) -0.05 ( -0.65 )
LU 34.63 29.07 -3.20 ( -1.52 ) 2.36 ( 1.07 ) -0.17 ( -3.45 ) -0.01( -0.23 )
TRV 21.38 17.41 -2.02 ( -1.26 ) 1.95 ( 1.20 ) -0.24 ( -3.70 ) -0.03 ( -0.40 )
WCOM 32.49 24.44 -5.65 ( -2.04 ) 2.40 ( 0.98 ) -0.29 ( -3.85 ) 0.02 ( 0.31 )
TYC 45.10 37.94 -12.49 ( -2.18 ) -5.33 ( -1.07 ) -0.45 ( -5.22 ) -0.26 ( -3.10 )
AMAT 51.27 42.13 -7.38 ( -3.59 ) 1.76 ( 0.86 ) -0.23 ( -5.74 ) -0.01 ( -0.36 )
QCOM 53.38 45.76 -6.40 ( -2.54 ) 1.22 ( 0.49 ) -0.25 ( -4.49 ) -0.08 ( -1.47 )
TXN 39.23 32.91 -1.99 ( -1.07 ) 4.32 ( 2.35 ) -0.13 ( -3.08 ) 0.05( 1.31 )
PFE 16.14 12.82 -3.48 ( -4.21 ) -0.17 ( -0.21 ) -0.34 ( -5.34 ) -0.11 ( -1.68 )
MOT 30.43 24.80 -1.16 ( -0.64 ) 4.48 ( 2.49 ) -0.13 ( -2.46 ) 0.08( 1.50 )
EMC 42.83 34.83 -0.90 ( -0.29 ) 7.10 ( 2.19 ) -0.15 ( -2.81 ) 0.08( 1.48 )
HWP 27.60 23.20 -2.41 ( -1.80 ) 1.99 ( 1.57 ) -0.19 ( -3.74 ) -0.00 ( -0.03 )
AMGN 28.33 23.95 -4.55 ( -3.02 ) -0.17 ( -0.11 ) -0.27 ( -5.10 ) -0.08 ( -1.42 )
BRCM 97.50 86.72 -6.28 ( -1.11 ) 4.50 ( 0.81 ) -0.12 ( -2.29 ) -0.01 ( -0.20 )
MER 26.18 22.75 -2.92 ( -2.50 ) 0.52 ( 0.44 ) -0.20 ( -4.48 ) -0.05 ( -1.10 )
NOK 35.57 29.92 -1.90 ( -0.97 ) 3.74 ( 1.95 ) -0.13 ( -2.18 ) 0.04( 0.67 )
CHL 22.59 18.38 -3.36 ( -2.18 ) 0.85 ( 0.59 ) -0.27 ( -5.02 ) -0.05 ( -1.05 )
UNPH 82.99 74.07 0.75 ( 0.13 ) 9.68 ( 1.61 ) -0.09 ( -1.44 ) 0.03 (0.44 )
EBAY 78.23 70.37 -9.07 ( -1.59 ) -1.22 ( -0.21 ) -0.34 ( -4.37 ) -0.23 ( -2.95 )
JNPR 122.76 110.14 -18.05 ( -2.24 ) -5.43 ( -0.73 ) -0.21 ( -2.98 ) -0.10 ( -1.53 )
CIEN 99.05 86.25 -2.79 ( -0.34 ) 10.01 ( 1.33 ) -0.11 ( -1.38 ) 0.03 ( 0.38 )
BRCD 110.90 94.16 -0.80 ( -0.09 ) 15.95 ( 1.80 ) -0.09 ( -1.20 ) 0.07 ( 0.88 )

Entries compare sample mean of synthetic variance swap rates, synthetic volatility swap rate, and variance risk premia
when the synthesis is based on ask and bid option prices, respectively. We also report in parenthesis thet-statistics on
the significance of the mean variance risk premia, which are adjusted for serial dependence according to the Newey-
West method with a lag of 30 days.
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Table 9
Maximum likelihood estimates of the expectation hypothesis regression on S&P 500 index

Ticker SPX OEX DJX

a -0.144 ( 0.162 ) -0.151 ( 0.160 ) -0.110 ( 0.184 )
b 0.618 ( 0.012 ) 0.698 ( 0.013 ) 0.569 ( 0.013 )
θ 3.719 ( 1.383 ) 3.720 ( 1.422 ) 3.748 ( 0.921 )
φ 0.988 ( 0.002 ) 0.990 ( 0.003 ) 0.995 ( 0.003 )
σ2

e 6.782 ( 0.152 ) 6.803 ( 0.136 ) 7.083 ( 0.168 )
σ2

η 1.989 ( 0.031 ) 1.851 ( 0.105 ) 1.122 ( 0.049 )
σ2

ε 0.549 ( 0.028 ) 0.422 ( 0.044 ) 0.536 ( 0.036 )

Entries report the maximum likelihood estimates of the parameters (and standard errors in parentheses) of the following
system of equations:

RVt,T = a+bSWt,T +e,

ŜWt,T = SWt,T + η,

SWt+1 = θ(1−φ)+ φSWt+1+ εt+1.

where the error terms are independently normal with zero mean and variances (σ2
e,σ2

η,σ2
ε). The realized variance and

swap rates are both scaled up by 100 for the estimation.
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Table 10
Summary statistics of variance risk premia from different subsamples

Ticker RV×100 SW×100 (RV−SW)×100 ln(RV/SW)

S1 S2 S1 S2 S1 S2 S1 S2

SPX 3.23 5.31 6.12 7.83 -2.89 ( -8.99 ) -2.52 ( -7.83 ) -0.76 ( -14.26 ) -0.52 ( -9.91 )
OEX 3.51 6.06 5.84 8.48 -2.32 ( -8.02 ) -2.42 ( -6.28 ) -0.65 ( -12.55 ) -0.47 ( -8.30 )
DJX 3.84 4.88 6.91 7.03 -3.07 ( -6.96 ) -2.15 ( -6.19 ) -0.72 ( -10.49 ) -0.51 ( -8.62 )
NDX 9.84 26.51 12.19 29.05 -2.35 ( -4.78 ) -2.55 ( -1.90 ) -0.32( -8.15 ) -0.23 ( -4.86 )
QQQ 15.15 25.36 18.74 29.42 -3.59 ( -5.45 ) -4.06 ( -2.42 ) -0.31 ( -8.93 ) -0.28 ( -4.37 )
MSFT 12.95 22.12 16.37 24.96 -3.43 ( -6.26 ) -2.84 ( -2.21 ) -0.31 ( -8.37 ) -0.27 ( -5.24 )
INTC 18.03 42.50 18.06 36.13 -0.03 ( -0.04 ) 6.37 ( 2.32 ) -0.05( -1.52 ) 0.03 ( 0.53 )
IBM 13.06 18.26 14.55 20.21 -1.49 ( -1.85 ) -1.95 ( -1.78 ) -0.23 ( -4.47 ) -0.27 ( -4.27 )
AMER 44.84 34.67 48.24 38.35 -3.41 ( -1.94 ) -3.69 ( -2.24 ) -0.16 ( -3.67 ) -0.20 ( -4.02 )
DELL 30.24 36.85 37.71 36.75 -7.47 ( -5.10 ) 0.10 ( 0.04 ) -0.27( -6.61 ) -0.17 ( -2.40 )
CSCO 18.78 55.54 24.37 51.31 -5.59 ( -5.97 ) 4.23 ( 1.94 ) -0.40( -5.67 ) -0.02 ( -0.54 )
GE 8.63 15.99 10.33 18.91 -1.70 ( -3.43 ) -2.92 ( -3.80 ) -0.24 (-5.53 ) -0.26 ( -5.71 )
CPQ 25.87 48.62 28.96 43.06 -3.09 ( -2.32 ) 5.56 ( 2.08 ) -0.17 (-3.56 ) -0.01 ( -0.13 )
YHOO 67.28 77.79 65.33 83.51 1.95 ( 0.48 ) -5.72 ( -1.54 ) -0.06( -0.91 ) -0.12 ( -2.82 )
SUNW 26.75 64.20 30.03 58.59 -3.29 ( -2.57 ) 5.61 ( 2.38 ) -0.17( -3.74 ) 0.03 ( 0.92 )
MU 49.94 67.42 50.57 73.56 -0.63 ( -0.33 ) -6.14 ( -2.04 ) -0.07( -1.96 ) -0.15 ( -3.85 )
MO 13.03 14.53 13.91 17.74 -0.88 ( -0.77 ) -3.21 ( -3.26 ) -0.16( -2.55 ) -0.37 ( -5.93 )
AMZN 99.63 77.32 93.34 114.57 6.30 ( 1.38 ) -37.24 ( -5.15 ) 0.00 ( 0.02 ) -0.44 ( -7.69 )
ORCL 32.94 61.56 41.31 59.37 -8.37 ( -1.34 ) 2.19 ( 0.70 ) -0.17( -2.15 ) -0.07 ( -1.50 )
LU 21.70 61.12 23.49 54.93 -1.79 ( -1.50 ) 6.19 ( 1.80 ) -0.12 ( -2.59 ) 0.06 ( 1.23 )
TRV 19.25 19.47 18.76 19.26 0.49 ( 0.44 ) 0.21 ( 0.11 ) -0.05 ( -0.99 ) -0.19 ( -2.50 )
WCOM 18.68 47.27 19.67 48.19 -0.99 ( -0.73 ) -0.91 ( -0.21 ) -0.15 ( -2.22 ) -0.08 ( -0.97 )
TYC 24.83 37.35 25.30 50.17 -0.47 ( -0.22 ) -12.81 ( -2.03 ) -0.21 ( -2.68 ) -0.42 ( -4.88 )
AMAT 37.21 54.36 37.99 57.98 -0.78 ( -0.51 ) -3.62 ( -1.45 ) -0.08 ( -2.16 ) -0.15 ( -3.65 )
QCOM 38.79 57.82 40.01 60.22 -1.22 ( -0.54 ) -2.40 ( -0.86 ) -0.15 ( -2.55 ) -0.16 ( -3.09 )
TXN 27.67 51.51 25.81 49.70 1.86 ( 1.43 ) 1.80 ( 0.75 ) -0.00 ( -0.06 ) -0.06 ( -1.44 )
PFE 13.11 12.07 14.16 14.23 -1.05 ( -1.66 ) -2.16 ( -2.24 ) -0.12 ( -2.96 ) -0.33 ( -4.08 )
MOT 20.00 49.25 18.78 44.97 1.21 ( 1.34 ) 4.28 ( 1.55 ) 0.01 ( 0.29 ) -0.08 ( -1.19 )
EMC 27.37 66.85 28.58 54.28 -1.20 ( -0.83 ) 12.57 ( 2.74 ) -0.08( -1.82 ) 0.07 ( 1.15 )
HWP 19.88 36.02 19.05 36.95 0.83 ( 0.62 ) -0.94 ( -0.78 ) -0.06 (-1.17 ) -0.12 ( -3.01 )
AMGN 21.81 26.00 19.52 32.60 2.29 ( 2.07 ) -6.60 ( -4.01 ) -0.04( -0.81 ) -0.30 ( -5.66 )
BRCM 73.73 99.72 64.07 103.44 9.67 ( 3.55 ) -3.72 ( -0.60 ) 0.09( 2.43 ) -0.12 ( -2.22 )
MER 23.24 23.30 21.65 27.01 1.59 ( 1.28 ) -3.71 ( -4.15 ) -0.03 (-0.64 ) -0.21 ( -5.61 )
NOK 25.34 43.30 23.27 42.43 2.08 ( 1.07 ) 0.86 ( 0.46 ) -0.02 ( -0.24 ) -0.05 ( -1.17 )
CHL 15.39 25.06 14.85 28.09 0.54 ( 0.50 ) -3.03 ( -1.62 ) -0.10 (-1.92 ) -0.22 ( -4.45 )
UNPH 58.47 112.73 56.11 101.30 2.37 ( 0.53 ) 11.43 ( 1.61 ) -0.04 ( -0.65 ) 0.01 ( 0.23 )
EBAY 94.39 58.85 94.19 64.49 0.21 ( 0.03 ) -5.64 ( -1.28 ) -0.05( -0.70 ) -0.36 ( -4.89 )
JNPR 82.78 109.59 90.77 119.78 -7.99 ( -1.25 ) -10.19 ( -1.32 )-0.14 ( -1.83 ) -0.14 ( -2.20 )
CIEN 80.18 115.23 71.03 114.64 9.15 ( 1.27 ) 0.59 ( 0.07 ) 0.03 (0.35 ) -0.09 ( -1.28 )
BRCD 86.29 112.83 68.60 104.42 17.69 ( 3.46 ) 8.41 ( 0.97 ) 0.09( 1.61 ) -0.01 ( -0.11 )

Entries report the sample averages of the annualized realized variance, the synthetic variance swap rates, and the
(log) variance risk premia during two subsamples. The first subsample (S1) is from January 4, 1996 to March 23,
2000. The second subsample (S2) is from March 24, 2000 to February 28, 2003. We also report in parenthesis the
t-statistics on the significance of the mean variance risk premia, which are adjusted for serial dependence according to
the Newey-West method with a lag of 30 days.
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