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Abstract

We develop a method to study the implied volatility for exotic options
and volatility derivatives with European payoffs such as VIX options. Our
approach, based on Malliavin calculus techniques, allows us to describe
the properties of the at-the-money implied volatility (ATMI) in terms of
the Malliavin derivatives of the underlying process. More precisely, we
study the short-time behaviour of the ATMI level and skew. As an ap-
plication, we describe the short-term behavior of the ATMI of VIX and
realized variance options in terms of the Hurst parameter of the model,
and most importantly we describe the class of volatility processes that
generate a positive skew for the VIX implied volatility. In addition, we
find that our ATMI asymptotic formulae perform very well even for large
maturities. Several numerical examples are provided to support our the-
oretical results.
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1 Introduction

La raison d’ être of any financial model is to reproduce some behaviour or dy-
namic that is observed in the market. For instance, in the case of vanilla options
this conundrum is translated into fitting the market implied volatility surface.
To this end, several extensions of the Black-Scholes model have been proposed.
In particular, one that effectively achieves this task is the Dupire local volatility
model [18]. Nevertheless, when incorporating exotic products into the vanilla
universe, one finds that the local volatility model does not properly reproduce
the dynamics of the market (see [23] for details on barrier options). A different
and popular approach is to allow the volatility to be a stochastic process itself
(see for example Hull and White [28], Scott [39], Heston [24], Stein and Stein
[40] and Ball and Roma [8]). It is well known that classical stochastic volatility
(SV) models, where the volatility follows a diffusion process, can explain some
important properties of the implied volatility, as its variation with respect to the
strike price, described graphically as the smile or skew (see Renault and Touzi
[37]) and the leverage effect. Most importantly, aside from static properties
they provide realistic dynamics of the spot in order to price exotic products. In
spite of all this facts, this first generation of SV models does not capture some
other important features of market data, as the term structure (dependence on
the time to maturity) of the implied volatility. In an attempt to fix this issue,
Bergomi [15] introduced a second generation of SV models coupled with the
concept of forward variance, which allows time dependent structures of forward
volatilities. Then one may successfully solve the calibration problem by con-
sidering a local stochastic volatility (LSV) model as suggested by Lipton [32]
and obtain a model that both fits the implied volatility surface and has realistic
dynamics on the spot.

In spite of the popularity of LSV models, the addition of volatility derivatives
in the picture dramatically complicates the calibration and pricing. Concretely,
in a LSV model the value of a log-contract (or idealised variance swap) is given
by

1

T
E

∫ T

0

vu(σ(Su, u))2du, T > 0 (1)

where v represents the pure stochastic volatility process, S represents the spot
and σ(·, ·) is the local volatility component. In this setting, the sole pricing of
VIX options or even futures (involving conditional expectations and nonlinear-
ities) is extremely involved. This is the reason why Bergomi [15] type of SV
models are gaining popularity i.e. their friendly structure of the log-contract in
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(1) with σ(·, ·) = 1.

With this picture in mind, the main challenge on equity markets is to jointly fit
spot vanilla and VIX smiles, whilst providing realistic dynamics on both, spot
and volatility processes. In order to construct models that allow us to describe
this complexity, it is important to develop tools that allow us to identify the
class of models that are able to generate the desired behaviour. One first step in
this direction was developed in Alòs, León and Vives [4], where the authors de-
scribed the short-time behavior of the at-the-money implied volatility (ATMI)
skew in terms of the Malliavin derivative operator of the SV process. This result
establishes that the blow-up in this slope ( observed in real market data), can
be described by a volatility process σ such that Dsσr → ∞ as s → r, where
D denotes the Malliavin derivative operator (see for example Nualart (2005)).
This property is satisfied by stochastic volatility models based on the fractional
Brownian motion (fBm) with Hurst parameter H < 1

2 .

This observation has lead to the recent development of rough volatility models
(see for example Fukasawa [19] or Bayer, Friz and Gatheral [12]). Remarkably,
rough volatility models not only provide a realistic implied volatility surface, but
also agree with the historical dynamics of volatility as shown by Gatheral, Jais-
son and Rosenbaum [20] and Bennedsen, Lunde and Pakkanen [14]. We must
emphasize here that neither of the first nor second generation of SV models
were found to agree with the historical dynamics of volatility. Not surprisingly
though, there is a price to pay for such innovative model; Markovianity. In
order to overcome the lack of Markovianity and the lost of classical tools (such
as PDE’s and Itô’s lemma) a vast literature has emerged from this active area
of research (see [5], [13], [21], [35], [29], [34], [26] and [30] among others).

Our main objective in this paper is to study the ATMI short-time level and
skew of realized variance (RV) options and VIX options. As a first step, we
will see that exotic option prices on a underlying A coincide with vanilla option
prices where the underlying is a SV model where the volatility is determined
by the Malliavin derivative of the underlying process A. This will allow us to
apply previous results on the implied volatility level and skew (see Alòs and
Shiraya [5] and Alòs, León and Vives [4]). Our results provide a method based
on the techniques of Malliavin calculus to estimate the ATMI rate of the short-
dated level and skew. In particular, we will see that, if Dsσr = O(s − r)H− 1

2 ,

for some H ∈
(

1
2 , 0
)
, the ATMI level and skew are of the order O((T )H−

1
2 )

for RV options and of the order O(1) for VIX options. Moreover, we develop
an easy-to-apply criteria to determine the class of stochastic volatility models
such that the corresponding VIX skew is positive, as observed in real market
data. This simple tool allows us to check that the VIX skew is negative for the
Heston model and zero for the SABR, while it becomes positive with a ”mixing
lognormals” solution. This coincides with previous results (see Baldeaux and
Badran [7] and Bergomi [16]).
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VIX options and futures are becoming increasingly popular both in the industry
and academic research (see [11] and [27] for instance). We find that our results
along with Bergomi [16] and De Marco [17] (in the rough volatility context)
combine the necessary conditions to generate models with positive VIX skew
in forward variance form. Concretely, Proposition 18 gives such conditions for
a large family of models covered by both authors. In addition, we find that
our asymptotic formulas yield accurate approximation for maturities up to 6
months that could help understand the joint dynamics of VIX and S&P 500,
also analysed by Guyon [22] using a different approach.

This paper is organized as follows. In Section 2 we introduce some basic con-
cepts on Malliavin calculus. Section 3 is devoted to see how exotic option prices
on a underlying A coincide with vanilla option prices where the underlying is
a stochastic volatiliy model where the volatility is determined by the Malliavin
derivative of the process A. As a consequence, in Section 4, we obtain our results
for the ATMI level and skew. In section 5, we present a family of models that
we will use in subsequent sections. Finally, the cases of VIX and RV options
are studied in Sections 6 and 7, respectively.

2 Preliminaries on Malliavin calculus

We assume that the reader is familiar with the elementary notions of Malliavin
calculus, as given for instance in Nualart [36]. Consider a Brownian motion W
defined on a probability space (Ω,F ,P). The set D1,2

W will denote the domain
of the derivative operator D with respect to the Brownian Motion W . It is
well-known that D1,2

W is a dense subset of L2(Ω) and that D is a closed and
unbounded operator from L2(Ω) into L2([0, T ] × Ω). We will also consider the
iterated derivatives Dn, for n > 1, whose domains will be denoted by Dn,2Z . We

will also make use of the notation Ln,2 := L2([0, T ];Dn,2Z ).

Consider now a process X given by the equation

dXt = φ2
tdWt −

1

2
φ2
tdt, (2)

where φt is a positive and square integrable process adapted to the filtration
generated by W . We will make use of the following anticipating Itô’s formula
(see for example Alòs (2006)).

Proposition 1 Consider the model (2) and define the process Y as Yt :=∫ T
t
φ2
sds. Let F : [0, T ] × R2 → R be a function in C1,2([0, T ] × R2) such

that there exists a positive constant C such that, for all t ∈ [0, T ] , F and its
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partial derivatives evaluated in (t,Xt, Yt) are bounded by C. Then it follows that

F (t,Xt, Yt) = F (0, X0, Y0) +

∫ t

0

∂sF (s,Xs, Ys)ds

−1

2

∫ t

0

∂xF (s,Xs, Ys)φ
2
sds

+

∫ t

0

∂xF (s,Xs, Ys)
√
φ2
sdWs

−
∫ t

0

∂yF (s,Xs, Ys)φ
2
sds+

∫ t

0

∂2
xyF (s,Xs, Ys)Θsds

+
1

2

∫ t

0

∂2
xxF (s,Xs, Ys)φ

2
sds, (3)

where Θs := (
∫ T
s
DW
s φ

2
rdr)φs.

3 Exotic options and vanilla options

This paper focuses on the study of exotic options with maturity T , defined by
a payoff of European type

(A−K)+,

where A is a square-integrable random variable defined on a risk neutral prob-
ability space (Ω,F ,P). We assume that A is FWT -adapted, where FW denotes
the sigma-algebra generated by a d-dimensional Brownian motion W . Assume,
for the sake of simplicity, that the interest rate is zero. Then, the price of this
option at a moment 0 < t < T is given by

Vt := E(A−K)+,

where E denotes the expectation with respect to the probability P.

This section is devoted to see that the above exotic option can be seen as a
European call option on a forward stock, under a stochastic volatility model.
Towards this end, we define the martingale MT

t := Et(A). It is clear that

Vt = E(MT
T −K)+.

Observe that, by the martingale representation theorem (see, for instance, Kar-
atzas and Shreve [31], theorem 3.4.15), there exists a d-dimensional FWt -adapted
process (m1(T, ·), ...,md(T, ·)) such that

MT
t = E(MT

T ) +

d∑
i=1

∫ t

0

mi(T, s)dW
i
s . (4)
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Example 2 (Vanilla options) Consider a vanilla call option with A = FT ,
where F is a forward stock price given by a stochastic volatility model of the
form

dFt = φtFt

(
ρdW 1

t +
√

1− ρ2W 2
t

)
, (5)

where φ is a positive and square-integrable process adapted to the filtration gen-
erated by W 1. Then (4) holds with d = 2, MT

t = Ft, m1(T, t) = ρφtFt and

m2(T, s) =
√

1− ρ2φtFt.

Example 3 (VIX options) Consider as underlying the random variable V IXT

given by

V IXT =

√
1

∆
ET

∫ T+∆

T

vsds, (6)

where v is a positive process adapted to the filtration generated by a Brownian
motion W . Then, d = 1 and, if V IXT ∈ D1,2

W , the Clark-Ocone formula and
Proposition 1.2.8 in [36] give us that

m(T, t) =
1

2∆
Et

(
1

V IXT
ET

∫ T+∆

T

(Dtvs)ds

)

=
1

2∆
Et

(
1

V IXT

∫ T+∆

T

(Dtvs)ds

)
. (7)

Example 4 (Realized variance options) Consider the case

RVT =
1

T

∫ T

0

vsds, (8)

where v is a positive and square-integrable process adapted process as in Example
3. Then, d = 1 and the Clark-Ocone formula gives us that (4) holds with

m(T, t) =
1

T

∫ T

t

Et(Dtvs)ds.

Remark 5 We remark that, in the case d = 1, (4) can be written as

MT
t = E(MT

T ) +

∫ t

0

m(T, s)

MT
t

MT
t dWs. (9)

That is, a European option on A can be seen as a European call option on a
forward stock given by a stochastic volatility volatility model of the form (5) with
ρ = 1 and

φt =
m(T, t)

MT
t

. (10)

In particular, when A = V IXT ,

φt =
1

2∆MT
t

Et

(
1

V IXT

∫ T+∆

T

(Dtvs)ds

)
(11)
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and when A is the RV,

φt =
1

T

∫ T
t
Et(Dtvs)ds

MT
t

. (12)

4 Implied volatility for exotic options

Our purpose in this section is to develop the tools to study the short-time be-
havior of the at-the-money implied volatility (ATMI) for exotic options. Later,
we will apply these results to VIX options and RV options, where we assume
the underlying volatility process given by

√
v, where v is a postive and square-

integrable process adapted to the filtration generated by a Brownian motion W .

Let us define the implied volatility as the quantity ITt (k) such that

Vt = BS(t, ln(E(A)), k, ITt (k)),

where BS(t, x, k, σ) denotes the classical Black-Scholes price for a European call
with time to maturity T − t, log-stock price x, log-strike price k and volatility
σ. That is,

BS(t, x, k, σ) = exN(d+(k, σ))− ekN(d−(k, σ)),

where N denotes the cumulative probability function of the standard normal
law and

d± (k, σ) :=
x− k

σ
√
T − t

± σ

2

√
T − t.

For sake of simplicity we will denote ITt := ITt (ln(E(A)) the corresponding
ATMI. Notice that ITt = BS−1(t, ln(EtA), ln(EtA), v). In the sequel we will
write BS−1(t, v) = BS−1(t, ln(EtA), ln(EtA), v).

4.1 The ATMI short-time limit

Now our first objective is to study the short-time behaviour of the implied
volatility level of exotic options. We will need the following hypotheses.

(H1) A ∈ L1,p for all p > 1

(H2) 1
MT ∈ Lp, for all p > 1.

(H3) The terms

E

(∫ T

0

1

u2
s(T − s)

Θsds

)
,

and

1

T 2uT0
E

∫ T

0

(∫ T

s

Dsφ
2
rdr

)2

ds

 ,
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are well defined and tend to zero as T → 0, where uTt :=
√

1
T−t

∫ T
t
φ2
sds,

with φ and Θ defined as in (10) and Theorem 1.

(H4) There exists γ ∈
(
− 1

2 , 0
]

such that the term

1

T
1
2 +γ

E

√∫ T

0

φ2
sds

has a finite limit as T → 0.

Remark 6 Notice that, if A ∈ L1,p, the process MT
t is also in L1,p and DsM

T
t =

Et(DsA) (see Proposition 1.2.8 in Nualart (2005)). Moreover, Clark-Ocone for-
mula gives us that m(T, t) = Et(DtA), which allows us to see that m(T, t) ∈ L1,2

and Dsm(T, t) = Et(DsDtA) for all s < t. Then it follows that φ is also in L1,p

and

Dsφt =
Dsm(T, t)MT

t −m(T, t)DsM
T
t

(MT
t )2

=
Et(DsDtA)Et(A)− Et(DtA)Et(DsA)

(Et(A))2
.

We will need the following result, that is an adaptation of Theorem 4.2 in [4]to
the context of our problem.

Theorem 7 (Adaptation of Theorem 4.2 in Alòs, León and Vives ([4]))
Assume that hypotheses (H1), (H2) and (H3) hold. Then we have that the option
price Vt = E(AT − E(At)) is given by

Vt = Et (BS (0, ln(E(A)), k, ut))+
1

2
E

(∫ T

0

∂G

∂x
(s, ln(MT

s ), ln(E(A)), us)Θsds

)
,

(13)
where G := (∂2

xx − ∂x)BS.

Proof. This proof is based on the same arguments as in the proof of Theorem
4.2 in [4]. Notice that

Vt = Et (BS (T, ln(A), ln(E(A)), uT )) .

Then, applying Theorem 1 and taking expectations we obtain that

Vt = Et (BS (T, ln(A), ln(E(A)), uT ))

= Et (BS (t, ln(E(A), ln(E(A)), u0))

+ Et

∫ T

t

LBS(us)BS(s, ln(Es(A)), ln(A), us)ds

+ Et

(∫ T

t

∂2BS

∂x∂u
(s, ln(Es(A)), ln(E(A)), us)

1

2us
√
T − s

Θsds

)
, (14)

8



where LBS(us) denotes the Black-Scholes operator LBS(us) = 1
2

(
∂2
xx − ∂x

)
u2
s+

∂s. Now the result follows from the fact that LBS(us)BS(s,Xs, k, us) = 0 and
taking into account that ∂BS

∂u = us
√
T − sG. Notice that by (H3) and the fact

that
∂G

∂x
(s, x, k, σ) =

exN ′(d+ (k, σ))

σ
√
T − s

(
1− d+ (k, σ)

σ
√
T − s

)
,

the integral term in (14) is well defined.

The following result is a direct consequence of the arguments in the proof of
Theorems 3 and 8 in Alòs and Shiraya [5].

Theorem 8 Assume that hypotheses (H1), (H2) and (H3) hold. Then

lim
T→0

IT0 − E
√

1

T

∫ T

0

φ2
sds

 = 0.

Proof. This proof is based on the same arguments as in Theorems 3 and 8 in
[5]. By definition, the ATMI is given by

IT0 = BS−1(0, ln(EtA), ln(E(A)), V0)

= BS−1(0, ln(EtA), ln(E(A)),ΓT ),

where

Γr = E
(
BS

(
0, ln(E(A)), k, uT0

))
+

1

2
E

(∫ r

0

∂G

∂x
(s, ln(MT

s ), ln(E(A)), uTs )Θsds

)
,

Now, Theorem 7 allows us to write

IT0 = E
(
BS−1(0,Γ0

)
)

+ E

∫ T

t

(BS−1)′(ln(E(A)),Γs)
∂G

∂x
(s, ln(EsA), ln(E(A)), uTs )Θsds,

where (BS−1)′ denotes the first derivative of BS−1 with respect to Γ. Now, as
as (

BS−1
)′

(k,Γs) =
1

exN ′(d+ (k,Γs))
√
T
,

and
∂G

∂x
(s, x, k, σ) =

exN ′(d+ (k, σ))

σ
√
T − s

(
1− d+ (k, σ)

σ
√
T − s

)
,

it is easy to see that (H3) implies that the second term in (15) tends to zero.
For the first term, we can write(

BS−1(0, E(BS
(
0, ln(E(A)), ln(E(A)), uT0 )

))
= E

(
BS−1(0, BS

(
0, ln(E(A)), ln(E(A)), uT0 )

))
+ E

(
BS−1(0, E(BS

(
0, ln(E(A)), ln(E(A)), uT0 )

))
− BS−1(0, BS

(
0, ln(E(A)), ln(E(A)), uT0 )

)
9



Notice that the first term in the right hand side of the above equation is equal
to uT0 . For the last two terms we can write

BS
(
0, ln(E(A)), ln(E(A)), uT0 )

)
= BS

(
0, ln(E(A)), ln(E(A)), uT0 )

)
+

∫ T

t

UsdWs,

(15)
where, by the Clark-Ocone formula,

Us = Es
[
DW
s

(
BS

(
0, ln(E(A)), ln(E(A)), uT0 )

))]
= Es

[
AN ′(d+

(
ln(E(A)), uT0

)
)

∫ T
s
DW
s φ

2
sds

2
√
TuT0

]
. (16)

Define Λr = Er
(
BS

(
0, ln(E(A)), ln(E(A)), uT0 )

))
. Then, classical Itô’s formula

and (15) give us that

E
(
BS−1(0, E(BS

(
0, ln(E(A)), ln(E(A)), uT0 )

))
− BS−1(0, BS

(
0, ln(E(A)), ln(E(A)), uT0 )

)
= Et

[
BS−1(ln(E(A)),Λ0)−BS−1(ln(E(A)),ΛT )

]
= −1

2
Et

[∫ T

t

(
BS−1

)′′
(ln(E(A)),Λr)U

2
r dr

]
. (17)

This, jointly with (16), (H3) and the fact that

(
BS−1

)′′
(X0,Λr) =

BS−1(X0,Λr)

4 (exp(Xt)N ′(d+ (X0, BS−1(X0,Λr))))
2 ,

allows us to prove that the last term in (17) tends to zero. Now the proof is
complete

This result gives us, if (H4) holds, the following corollary.

Corollary 9 Assume a random variable A such that hypotheses (H1), (H2),
(H3) and (H4) hold. Then

lim
T→0

T−γITt = lim
T→0

1

T
1
2 +γ

E

√∫ T

0

φ2
sds.

4.2 The ATMI short-time skew

Our main goal in this section is to study the ATM short-time limit of the implied
volatility skew. In particular, we will characterize the class of stochastic volatilty
process that reproduce a positive VIX skew, as observed in real market data.
Towards this end we will need the following hypotheses

(H1’) A ∈ L2,p for all p > 1

10



(H5) The terms

1√
T

6∑
k=4

E

(∫ T

0

(uTs (T − s))− k
2

(∫ T

s

Θrdr

)
Θsds

)
and

1√
T

4∑
k=3

E

(∫ T

0

1√
T

(uTs (T − s))− k
2

(∫ T

s

DsΘrdr

)
φsds

)
tend to zero as T → 0.

(H6) There exists λ ∈
(
− 1

2 , 0
)

such that the term

E
[∫ T

0

(
φTs D

W
s φ

2
udu

)
ds
]

(uT0 )3T 2+λ

has a finite limit as T → 0.

Theorem 10 Consider a random variable A such that Hypotheses (H1’), (H2),
(H3), (H5) and (H6) hold. Then

lim
T→t

T−λ
∂IT0
∂k

(ln(E(A)) =
1

2
lim
T→t

Et

[∫ T
0

(
φs
∫ T
s
Dsφ

2
udu

)
ds
]

u3
0T

2+λ
(18)

Proof. This proof follows the same steps as those of Proposition 5.1 and Pro-
position 6.2 in [4] and Theorem 4.5 in [3]. Taking partial derivatives with respect
to k on the expression V0 = BS

(
0, ln(E(A)), k, IT0 (k)

)
we obtain

∂V0

∂k
=

∂BS

∂k
(0, ln(E(A)), k, IT0 (k)))

+
∂BS

∂σ
(0, ln(E(A)), k, IT0 (k)))

∂IT0
∂k

(k). (19)

On the other hand, from (15) we deduce that

∂V0

∂k
= Et

(
∂BS

∂k
(0, ln(E(A)), k, uT0 )

)
+E

(∫ T

0

∂F

∂k
(s, ln(Es(A))), k, uTs )Θsds

)
,

(20)
where

F (s, x, k, σ) :=
1

2

∂G

∂x
(s, x, k, σ).

After some algebra (see [4]) it is easy to see that

E

(
∂BS

∂k
(0, ln(E(A)), ln(E(A)), uT0 )− ∂BS

∂k
(t, ln(E(A)), ln(E(A)), IT0 ))

)
=

1

2
E

(∫ T

0

F (s, ln(Es(A))), k, uTs )Θsds

)
,

11



This, jointly with (19) and (20) implies that

∂IT0
∂k

(ln(E(A)) =
E
(∫ T

0
L(s, ln(Es(A))), k, uTs )Θsds

)
∂BS
∂σ

(
0, ln(E(A)), ln(E(A)), IT0

) , (21)

where L := ( 1
2 + ∂

∂k )F . Now

E

(∫ T

0

L(s, ln(Es(A))), k, uTs )Θsds

)

= E

(
L(0, ln(E(A)), k, uT0 )

∫ T

t

Θsds

)

+
1

2
E

(∫ T

0

(
∂3

∂x3
− ∂2

∂x2

)
L(s, ln(Es(A))), k, uTs )

(∫ T

s

Θrdr

)
Θsds

)

+ E

(∫ T

0

∂L

∂k
(s, ln(Es(A))), k, uTs )

(∫ T

s

DsΘrdr

)
φsds

)
=: T1 + T2 + T3. (22)

Now, a simple calculation gives us that(
∂3

∂x3
− ∂2

∂x2

)
L(s, ln(Es(A))), k, uTs ) ≤

6∑
k=4

(uTs (T − s))− k
2 , (23)

∂L

∂k
(s, ln(Es(A))), k, uTs ) ≤

4∑
k=3

(uTs (T − s))− k
2 , (24)

and

L(0, ln(E(A)), k, uT0 ) =
1

2

A exp
(
− (uT

0 )2T
8

)
√

2πuT0
√
T

[
1

(uT0 )2T
− 1

2

]
. (25)

Then, (49), (24), (48) together with (21), (22) and the fact that

∂BS

∂σ
(0, x, x, σ) =

A exp
(
−σ

2T
8

)√
T

√
2π

allow us to complete the proof.

Remark 11 Notice that Dsφ
2
t = 2φtDsφt. Then the above theorem gives us

that the sign of the short-time skew is positive if

lim
s,t→0

E (f(s, t)Dsφt − C)
p

= 0

for some a positive function f(s, t) such that lims,t→0 f(s, t) ≥ 0 and for some
constants C > 0 and p > 1. By (10), this condition holds if

lim
s,t→0

E
[
f(s, t)(Dsm(T, t)MT

t −m(T, t)DsM
T
t )− c

]q
= 0, (26)
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for some c > 0 and q > 1. Notice that (26) gives us a tool to identify those
stochastic volatility models that can reproduce a short-time positive skew, as we
will see in the next section.

5 A General family of models

Building on the Truncated Brownian semistationary processes (T BSS) intro-
duced by Barndorff-Nielsen and Schmiegel [10] we consider the following family
of models:

Model 12 (Mixed Generalized rough volatility models) Let us define the
following instantaneous variance dynamics:

vt = v0

(
γE
(
ν
√

2HBt
)

+ (1− γ)E
(
η
√

2HBt
))

, ν ≥ 0, η ≥ 0

where

Bt =

∫ t

0

exp (−β(t− s)) (t− s)H−1/2dWs, β ≥ 0

and E(·) denotes the Wick stochastic exponential. It is then easy to see that

Dsvu =
(
γνE(ν

√
2HBu) + (1− γ)ηE(η

√
2HBu

)√
2H(t−s)H−1/2 exp(−β(u−s)),

for all s < u. Then hypotheses (H1)-(H6) hold for the underlyings V IXT and
RV , with λ = 0 and λ = H − 1

2 , respectively.

This class of models covers most of the lognormal models considered in the
literature (SABR [23], (rough) Bergomi [15, 12], etc.). Moreover, we consider
a mixing weight solution as proposed by Bergomi [16] to overcome flat VIX
smiles. We also emphasize that [25, 29] provide theoretical justification to the
Monte Carlo simulation of these processes.

Remark 13 The term mixing makes reference to the fact that we have a sum of
two lognormal random variables with different weights. The reader should note
that when we do not explicitly use the term mixed, this corresponds to γ = η = 0.

6 VIX options

This section is devoted to apply the results in Section 4 to the study of the ATMI
level and skew of VIX options. First of all, let us illustrate the typical behaviour
of these quantities in the market. Figure 1 shows the historical behaviour of
the ATMI term structure (source: OptionMetrics). A very sharp decrease of
the ATMI level between the first two available maturities is usually observed.
Also, the cloud of points in Figure 1 is rather wide, meaning that volatility of
volatility itself changes with time. In Figure 2 we observe that the skew is clearly
positive, but also decreasing as a function of time to maturity, since smiles tend
to flatten.

13



Figure 1: VIX ATMI daily behaviour 2015-2016. Source: OptionMetrics.

Figure 2: VIX options implied volatility surface on 08/04/2016. Solid lines rep-
resent the ATMI level corresponding to each maturity. Source: OptionMetrics.

6.1 ATMI of VIX options

Proposition 14 Consider the process V IXT given by (6), with v = f(Y ),
where f is a function in C2 such that f, f ′, f ′′ ∈ Lp, for all p > 1, and Y =∫ t

0
(t− s)H− 1

2 g(t− s)dWs, where H < 1
2 and g ∈ C1

b . Then we have

lim
T→0

ITt (lnE(V IXT )) =
f ′(Y0)

2∆(V IX0)2
φ(∆). (27)

14



Proof. Then (H1)-(H4) hold with λ = 0 and Corollary 9 gives us that

lim
T→0

ITt (lnE(V IXT )) = lim
T→0

1

T
1
2

E

√∫ T

0

σ2
sds

= lim
T→0

1

T
1
2

E

√√√√∫ T

0

(
1

2∆MT
s V IXs

∫ T+∆

T

Es(Ds(vu))du

)2

ds

=
f ′(Y0)

2∆M0
0V IX0

(∫ ∆

0

uH−
1
2 g(u)du

)

=
f ′(Y0)

2∆(V IX0)2

(∫ ∆

0

uH−
1
2 g(u)du

)

=:
f ′(Y0)

2∆(V IX0)2
φ(∆).

Example 15 (Mixed Generalized rough volatility models) We consider
Model 12, then applying Proposition 14 we get

lim
T→0

ITt (lnE(V IXT )

=
(γν + (1− γ)η)

√
2H

2∆

(∫ ∆

0

uH−
1
2 exp(−βu)du

)

=
(γν + (1− γ)η)

√
2H

2∆
β−H−

1
2 Γlow

(
H +

1

2
, β∆

)
, (28)

where Γ(·) is the Gamma function and Γlow(1+α, x) =
∫ x

0
t−αe−tdt is the lower

incomplete Gamma function.

In Figure 3 we present numerical approximations with γ = η = 0 that support
the theoretical short time limit. In order to produce the Monte Carlo estimate,
Algorithm 3.9 in Jacquier, Martini and Muguruza [29] and T = 10−4 was used.

15



Figure 3: VIX ATMI Short time limit in an exponential T BSS with ν = 2

Remark 16 If we consider the SABR case, i.e. H = 1
2 and β = 0 in (28), we

obtain limT→0 I
T
t = ν

2 . In particular, we notice that this limit is not affected by
the window size ∆.

6.1.1 A semi close-form formula for the ATMI level of VIX

We consider a small T approximation of the limit given in (27), which turns
out to be very sharp even for relatively long maturities (up to 5 years in some
cases). We consider the following approximation inspired by (27):

IT ≈
f ′(Y0)

v02∆T
1
2

√√√√∫ T

0

(∫ T+∆

T

(u− s)H− 1
2 g(u− s)du

)2

ds (29)

In Figures 4 and 5 we use formula (29) with Model 12. As previously mentioned
we observe that formula 29 indeed performs very well, specially in the case
γ = η = 0 even for relatively large maturities.

Remark 17 In practice, one may use approximation (29) to control the ATMI
level of VIX in our model. Moreover, in most cases (SABR, exponential OU,
exponential fBm, etc.) (29) admits a close-form formula without any numerical
integration.
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Figure 4: VIX ATMI in a Generalized rough volatility model with ν = 2

Figure 5: VIX ATMI in a Mixed Generalized rough volatility model with
(γ, ν, η) = (1/2, 2, 1)

6.2 ATMI skew of VIX options

The following result proves that, for models based on T BSS, the ATMI VIX
skew if of the order O(1) as time to maturity tends to zero.

Proposition 18 Consider an instantaneous variance model of the form

vt = v0f(Yt)

where Yt =
∫ t

0
(t−s)H−1/2 exp(−β(t−s))dWs for some H ≤ 1

2 and some β ≥ 0,
and where f is a function in C2 such that f, f ′, f ′′ ∈ Lp, for all p > 1. Then,

17



the ATMI skew for VIX options is given by:

lim
T→0

∂IT0
∂k

(lnE(V IXT )) =
1

2

(
G(H,∆, β)

J(H,∆, β)

f ′′(Y0)

f ′(Y0)
− J(H,∆, β)

∆

f ′(Y0)

(M0
0 )V IX0

)
.

where

G(H,∆, β) =

(2β)−2HΓlow(2H, 2β∆) if β > 0

∆2H

2H
if β = 0

J(H,∆, β) =

β
−H−1/2Γlow(H + 1/2, β∆) if β > 0

∆H+1/2

H + 1/2
if β = 0

.

Proof. The proof is postponed to Appendix A to ease the flow of the paper.

Example 19 (Mixed Generalized rough volatility model) We consider Model
12, then we have that the ATMI skew for RV options is given by

lim
T→0

∂IT0
∂k

(lnE(V IXT ))

=

√
2H

2

((
γν2 + (1− γ)η2

)
G(H,∆, β)

(γν + (1− γ)η) J(H,∆, β)
− (γν + (1− γ)η) J(H,∆, β)

∆

)
.

Figure 6 shows the accuracy of the asymptotic limit with a Monte Carlo bench-
mark of T = 10−4 and γ = η = 0. The derivative was approximated using a
central difference scheme.

Figure 6: Generalized rough volatility model ATMI skew on VIX options with
ν = 2.5
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6.2.1 The sign of the VIX skew

As indicated in Remark 11, the positivity of the short-time VIX skew is linked
to the positivity of

Dsm(T, t)MT
t −m(T, t)DsM

T
t .

In this section we will apply this criteria to study the short-time VIX skew
corresponding to the Heston model and the SABR model.

Example 20 (Heston) For the Heston model, we have that

dvt = k(θ − vt) + ν
√
vtdWt,

for some positive constants k, θ and ν. Notice that, if the Feller condition 2kθ >
ν2 holds, the Heston process is positive. For the sake of simplicity, we will
assume v0 = θ. Then we have

Dsm(T, t)MT
t −m(T, t)DsM

T
t

→ ν2(1− exp(−k∆))

4k∆

(
1− 2(1− exp(−k∆))

k∆

)
, (30)

in L2(Ω), as T → 0.

Proof. The computation of the limit is given in Appendix B.

Under reasonable market conditions for the reversion level k, we have that (50)
is negative. Then, condition (26) holds with f(t, s) = 1, which implies that the
corresponding VIX skew is negative.

Example 21 (SABR) Consider the SABR model given by v = σ2, where

dσt = ασtdWt,

for some positive constant α. Then it follows that, for s < t, Dsvt = 2αvt. This
implies that

lim
t→0

MT
t = v0, lim

s,t→0
DsM

T
t = 2αv0, lim

s,t→0
Dsm

T
t = 4α2v0,

from where we deduce that

Dsm(T, t)MT
t −m(T, t)DsM

T
t → 0.

This gives us that the SABR model generates a short-time flat skew.

6.2.2 Lognormal models and flat VIX smiles

Based on Figure 6 one may conclude that for small values of H one can achieve
large skews. Nevertheless we show in Figure 7 the the skew decays almost
immediately. This behaviour is consistent with the fact that lognormal models
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generate flat smiles, hence the skew should be zero. On the contrary, Figure
8 shows the effect of Mixing lognormals, which produces a much higher level
of skew. In particular we notice that in the mixed SABR case (H = 1/2 and
β = 0), the skew is given by

lim
T→0

∂IT0
∂k

(lnE(V IXSABR
T )) =

√
2H

2

((
γν2 + (1− γ)η2

)
(γν + (1− γ)η)

− (γν + (1− γ)η)

)
.

We clearly have that (31) is non-zero unless γ ∈ {0, 1} or ν = η. Moreover, in
Figure 8 the skew is constant at this level for maturities up to 6 month. In order
to obtain the approximating formulas we are inspired by the computations in
Appendix A, which yield the following expression before taking the limit:

∂IT0
∂k

(lnE(V IXT ))

≈
√

2H
√
T
√∫ T

0
K2(T,∆, u)du

×

((
γν2 + (1− γ)η2

) ∫ T
0
K(T,∆, s)

∫ T
s
K(T,∆, u)I(∆, T, s, u)duds

(γν + (1− γ)η)

−
(γν + (1− γ)η)

∫ T
0
K2(T,∆, s)

∫ T
s
K2(T,∆, u)duds

∆

)
.

where K(·) and I(·) are defined in Appendix A. We observe that the approx-
imation performs very well for maturities smaller than 6 months and could be
useful to control the ATMI skew level of VIX in a given model.

Figure 7: Generalized rough volatility model ATMI skew with ν = 2.5
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Figure 8: Mixed generalized rough volatility model ATMI skew with (γ, ν, η) =
(1/2, 3, 1)

7 Realized variance options

This section is devoted to study the ATMI short-time level and skew of RV
options. Figure 9 shows a empirical term structure of the ATMI, which is
usually close to a power law.

Figure 9: Realized variance ATMI for S&P 500 on February 27, 2018.
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7.1 ATMI on realized variance options

Proposition 22 Consider the process v = f(Y ), where f is a function in C2

such that f, f ′, f ′′ ∈ Lp, for all p > 1, and Y =
∫ t

0
(t− s)H− 1

2 g(t− s)dWs, where

H < 1
2 and g ∈ C1

b . Then we have that the short-time limit of the ATMI for
RV options is given by

lim
T→0

T
1
2−HITt (lnE(RVT )) =

f ′(Y0)g(0)

(H + 1
2 )
√

2H + 2M0
0

. (31)

Proof. We may directly apply Theorem 8 since (H1), (H2) and (H3) hold with
λ = H − 1

2 . Thus,

lim
T→0

T
1
2−HITt (lnE(RVT ))

= lim
T→0

1

TH
E

√∫ T

0

φ2
sds

= lim
T→0

1

T 1+H
E

√√√√∫ T

0

(
1

MT
s

∫ T

s

Es(Ds(vu))du

)2

ds

=
f ′(Y0)g(0)

M0
0

lim
T→0

1

T 1+H
E

√√√√∫ T

0

(∫ T

s

(u− s)H− 1
2 du

)2

ds

=
f ′(Y0)g(0)

(H + 1
2 )M0

0

lim
T→0

1

T 1+H
E

√∫ T

0

(T − s)2H+1
ds

=
f ′(Y0)g(0)

(H + 1
2 )
√

2H + 2M0
0

. (32)

Remark 23 We emphasize that (32) implies that, for short maturities the

ATMI is of order O(TH−
1
2 ), which is consistent with real market data on equity

markets as shown in Figure 9.

Example 24 (Mixed Generalized Rough volatility) We consider again the
Model 12, applying 13 we obtain the following short-time ATMI limit:

lim
T→0

T 1/2−HITt (lnE(RVT ))

= (γν + (1− γ)η)
√

2H lim
T→0

1

TH+1

√√√√∫ T

0

(∫ T

s

exp (−β(u− s)) (u− s)H−1/2du

)2

ds

=
(γν + (1− γ)η)

√
2H

(H + 1
2 )
√

2H + 2
.
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7.1.1 A semi close-form formula for the ATMI level of RV options

Once again, we consider a short-time approximation of the ATMI level, inspired
by the short-time limit given in Corollary 32. More precisely, we consider the
following approximation:

IT ≈
f ′(Y0)

v0T
3
2

√√√√∫ T

0

(∫ T

s

(u− s)H− 1
2 g(u− s)du

)2

ds (33)

In Figure 10 we present the numerical results for the approximation for different
values of H and β in Model 12 with γ = η = 0. We observe a very sharp fit to
the Monte Carlo estimates obtained using the rDonsker scheme introduced in
Horvath, Jacquier and Muguruza [25].

Remark 25 In light of the accuracy of the approximating scheme given in (33),
this can be used in practice to both control the ATMI level in a model and
calibrate the parameters H and β. In particular, when β = 0 this reduces to a
power-law fit of order H − 1

2 as previously shown in Example 24.

Figure 10: Realized variance option ATMI with ν = 2

7.2 ATMI skew for realized variance options

Proposition 26 Consider an instantaneous variance model of the form

vt = v0f(Yt)
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where Yt =
∫ t

0
(t−s)H−1/2dWs and f is a function in C2 such that f, f ′, f ′′ ∈ Lp,

for all p > 1, and Y =
∫ t

0
(t − s)H− 1

2 g(t − s)dWs, where H < 1
2 and g ∈ C1

b

Then, the ATMI skew for RV options is given by

lim
T→0

T
1
2−H

∂IT0
∂k

(lnE(RVT ))

=

(
f ′′(Y0)I(H)(2H + 2)3/2(H + 1/2)

f ′(Y0)
− f ′(Y0)

v0(2H + 1)
√

(2H + 2)

)
.

Proof. The proof and definition of I(H) are postponed to Appendix C to ease
the flow of the paper.

Example 27 (Mixed Rough Bergomi) We consider the Mixed rough Ber-
gomi model as a subclass of the models presented in Model 12 with instantaneous
variance given by:

vt = v0γE
(
ν
√

2H

∫ t

0

(t− s)H−1/2dWs

)
+(1−γ)E

(
η
√

2H

∫ t

0

(t− s)H−1/2dWs

)
,

Applying Proposition 26 we have that the ATMI skew for RV options is given
by

lim
T→0

T
1
2−H

∂IT0
∂k

(lnE(RVT ))

=
√

2H

(
γν2 + (1− γ)η2

γν + (1− γ)η
I(H)(2H + 2)3/2(H + 1/2)− γν + (1− γ)η

(2H + 1)
√

(2H + 2)

)
.

Figures 11 and 12 illustrate the accuracy of the asymptotic formula for different
values of H.
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Figure 11: ATMI skew short time limit for RV options in a rough Bergomi
model with ν = 2.

Figure 12: ATMI skew short time limit for RV options in a mixed rough Bergomi
model with (γ, ν, η) = (1/2, 2, 1).
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A Computations of the ATMI skew on VIX op-
tions

To ease the forthcoming computations we introduce the following functions

G(H,∆, β) =

(2β)−2HΓlow(2H, 2β∆) if β > 0

∆2H

2H
if β = 0

J(H,∆, β) =

β
−H−1/2Γlow(H + 1/2, β∆) if β > 0

∆H+1/2

H + 1/2
if β = 0

.

Using Remark 6 we get

Dsφ
2
u =

2φuDsm(T, u)MT
u

(MT
s )2

− 2φum(T, u)DsM
T
u

(MT
s )2

. (34)

We recall the reader that in the context of VIX options we have

φt =
1

MT
t 2∆

Et

(
1

V IXT

∫ T+∆

T

(Dtvs)ds

)
.

and we have the limiting behaviour for 0 ≤ t ≤ T

lim
T→0

E(φt) = lim
T→0

f ′(Y0)

M0
0 2∆V IX0

∫ T+∆

T

(r − t)H−1/2 exp(−β(r − t))dr

=: lim
T→0

f ′(Y0)

M0
0 2∆V IX0

K(T,∆, t)

=
f ′(Y0)

M0
0 2∆V IX0

J(H,∆, β).

On one hand we have,
Es(DsM

T
u ) = m(T, s). (35)

Hence, we may rewrite (34) under unconditional expectation as

E
(
Dsφ

2
u

)
= E

2φuDsm(T, u)MT
u

(MT
s )2

− 2φum(T, u)φs
MT
s

. (36)
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On the other hand,

Dsm(T, u)

=
1

2∆
DsEu

1

V IXT

∫ T+∆

T

(Du(vr))dr

=
1

2∆
Eu

(∫ T+∆

T
Ds(Du(vr))drV IXT −Ds(V IXT )

∫ T+∆

T
(Du(vr))dr

(V IXT )2

)

= Eu

(∫ T+∆

T
Ds(Du(vr))dr

2∆V IXT
−
∫ T+∆

T
(Ds(vr))dr

∫ T+∆

T
(Du(vr))dr

4∆2∆(V IXT )3

)

= Eu

(∫ T+∆

T
Ds(Du(vr))dr

2∆V IXT
− m(T, s)m(T, u)

V IXT

)

Therefore we further develop (36) into

E
(
Dsφ

2
u

)
= E

(
−2φu

∫ T+∆

T
Ds(Du(vr))dr

2∆V IXT
− 2φum(T, u)φs

(
1

MT
s

+
1

V IXT

))
:= A(T, s, u) +B(T, s, u). (37)

Taking limits for the expression B(T, s, u) as in Theorem 10 up to the normal-
izing terms and using the definition of φs along with (37) we obtain

lim
T→0

E

∫ T

0

φs

(∫ T

s

B(T, s, u)du

)
ds

= lim
T→0

E

∫ T

0

φs

(∫ T

s

−4φuφsm(T, u)

M0
0

du

)
ds

= lim
T→0

E

∫ T

0

−4φ2
s

MT
s

(∫ T

s

φum(T, u)du

)
ds

= lim
T→0

E
−4(f ′(Y0))2

(M0
0 2∆V IXT )2

∫ T

0

φ2
s

(∫ T

s

K(T,∆, u)2du

)
ds

= lim
T→0

E
−4(f ′(Y0))4

(M0
0 2∆V IXT )4

∫ T

0

K(T,∆, s)2

(∫ T

s

K(T,∆, u)2du

)
ds

=
−4(f ′(Y0))4

(M0
0 2∆V IX0)4

T 2

2
(J(H,∆, β))4

where in the last step we use T ≥ u ≥ s ≥ 0 along with continuity of K(·).
Finally, using the ATMI result that gives

lim
T→0

u0 = lim
T→0

E

√
1

T

∫ T

0

φ2
sds =

f ′(Y0)

2∆V IX0
J(H,∆, β),
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we get

1

2
lim
T→0

E

∫ T
0
φs

(∫ T
s
B(T, s, u)du

)
ds

u3
0

= lim
T→0
− 1

2∆

f ′(Y0)

V IX0M0
0

J(H,∆, β)T 2 (38)

On the other hand, we proceed similarly with A(T, s, u). First we have

lim
T→0

E
1

2∆

Eu
∫ T+∆

T
Ds(Du(vr))dr

V IXT

=
f ′′(Y0)

2∆V IX0

∫ T+∆

T

((r − u)(r − s))H−1/2 exp(−β(2r − u− s))dr

=
f ′′(Y0)

2∆V IX0
I(T,∆, s, u).

Moreover, due to the fact that s < u < T , we have

lim
T→0

E
1

2∆

Eu
∫ T+∆

T
Ds(Du(vr))dr

V IXT
=

f ′′(Y0)

2∆V IX0
G(H,∆, β).

Carrying similar computations, as with B(T, s, u), we obtain

lim
T→0

E

∫ T

0

φs

(∫ T

s

A(T, s, u)du

)
ds

= lim
T→0

E

∫ T

0

φs

(∫ T

s

2φuDsm(T, u)MT
u du

(MT
s )2

)
ds

= lim
T→0

2

M0
0

E

∫ T

0

φs

(∫ T

s

φuDsm(T, u)du

)
ds

= lim
T→0

2f ′′(Y0)∆−1

M0
0 2V IX0

E

∫ T

0

φs

(∫ T

s

φuI(T,∆, u, s)du

)
ds

= lim
T→0

2f ′′(Y0)f ′(Y0)∆−2

(M0
0 )22V IX0

E

∫ T

0

φs

(∫ T

s

K(T,∆, u)I(T,∆, u, s)du

)
ds

= lim
T→0

2f ′′(Y0)(f ′(Y0))2∆−3

(M0
0 )3(2V IX0)3

∫ T

0

K(T,∆, s)

(∫ T

s

K(T,∆, u)I(T,∆, u, s)du

)
ds

= lim
T→0

f ′′(Y0)(f ′(Y0))2

(M0
0 )3(2V IX0)3

∆−3(J(H,∆, β))2G(H,∆, β)T 2.

were in the last step we use continuity of I(·) and K(·) and the fact 0 ≤ s ≤
u ≤ T . Finally, recalling the ATMI result for u3

0 we get

1

2
lim
T→0

E

∫ T
0
φs

(∫ T
s
A(T, s, u)du

)
ds

u3
0

=
G(H,∆, β)

2J(H,∆, β)

f ′′(Y0)

f ′(Y0)
T 2 (39)

To result follows directly using Theorem 10 along with expressions (39) and
(38).
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B Computations of the ATMI skew sign in He-
ston

We notice that ET (vr) = θ+ (vT − θ) exp(−k(r−T )). This implies that, for all
t < T

MT
t = Et

√
ET

1

∆

∫ T+∆

T

vrdr

= Et

√
θ + (vT − θ)

1

∆

∫ T+∆

T

exp(−k(r − T ))dr

= Et

√
θ + (vT − θ)

1− exp(−k∆)

k∆

→ E

√
θ + (v0 − θ)

1− exp(−k∆)

k∆
=
√
v0 (40)

in L2(Ω), as T → 0. On the other hand, for all s < t < T

DsM
T
t = Et

[
1

2MT
t

ET

(
1

∆

∫ T+∆

T

Dsvrdr

)]

=
1

2MT
t

Et

(
1

∆

∫ T+∆

T

Dsvrdr

)
. (41)

Now, notice that

vr = v0 exp (−kr) + θ

∫ r

0

exp (−k(r − u))du+ ν

∫ r

0

exp (−k(r − u))
√
vudWu,

(42)
which allows us to write

Dsvr = ν exp(−k(r − s))
√
vs + ν

∫ r

s

exp (−k(r − u))Ds
√
vudWu. (43)

Consequently, it follows that Et(Dsvr) → ν exp(−kr)√v0 in L2(Ω), as T → 0.
Then we get

DsM
T
t →

ν(1− exp(−k∆)

2k∆
(44)

in L2(Ω) as T → 0. On the other hand, (7) allows us to write

Dsm(T, t) =
1

2∆
Et

(
1

V IXT
ET

∫ T+∆

T

(DsDtvr)dr

)

− 1

4∆
Et

(
1

∆(V IXT )3

∫ T+∆

T

(Dtvr)dr

∫ T+∆

T

(Dsvr)dr

)
=: T1 + T2. (45)
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Let us first study the term T1. It is easy to deduce from (43) that, for s < t < r

DsDtvr = ν exp(−k(r − t))Ds
√
vt

+ν

∫ r

t

exp (−k(r − u))DtDs
√
vudWu. (46)

Lemma 5.3 in [2] gives us that, as s, t→ 0, Ds
√
vt → ν

2 in L2(Ω). This implies
that

ET (DsDtvr)→
ν2

2
exp(−kr), (47)

which in turn, gives

T1 →
ν2(1− exp(−k∆))

4k∆
√
v0

. (48)

Finally, we can write

T2 → −
ν2(1− exp(∆))2

4k2∆2
√
v0

. (49)

Then (44), (44), (48) and (49) give us that

Dsm(T, t)MT
t −m(T, t)DsM

T
t

→ ν2(1− exp(−k∆))

4k∆
− ν2(1− exp(−k∆))2

4k2∆2

−
(
ν(1− exp(−k∆)

2k∆

)2

=
ν2(1− exp(−k∆))

4k∆
− 2

ν2(1− exp(−k∆))2

4k2∆2

=
ν2(1− exp(−k∆))

4k∆

(
1− 2(1− exp(−k∆))

k∆

)
. (50)

C Computations of the ATMI skew on realized
variance options

Using Remark 6 we get

Dsφ
2
u =

2φuDsm(T, u)MT
u

(MT
s )2

− 2φum(T, u)DsM
T
u

(MT
s )2

=: A(T, s, u) +B(T, s, u)

First we will develop B(T, s, u). On one hand we have

Es(DsM
T
u ) = m(T, s). (51)
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Taking limits for the expression in Theorem 10 up to the normalizing terms and
using the definition of φs along with (51) we obtain

lim
T→0

E

∫ T

0

φs

(∫ T

s

B(T, s, u)du

)
ds

= lim
T→0

E

∫ T

0

φs

(∫ T

s

−2φuφsm(T, u)

MT
s

du

)
ds

= lim
T→0

E

∫ T

0

−2φ2
s

MT
s

(∫ T

s

φum(T, u)du

)
ds

= lim
T→0

−2(f ′(Y0))2

(M0
0 )2(H + 1/2)2T 2

∫ T

0

φ2
s

(∫ T

s

(T − u)2H+1du

)
ds

= lim
T→0

−2(f ′(Y0))2

(M0
0 )2(H + 1/2)2(2H + 2)T 2

∫ T

0

φ2
s(T − s)2H+2ds

= lim
T→0

−2(f ′(Y0))4

(M0
0 )4(H + 1/2)4(2H + 2)(4H + 4)T 4

T 4H+4

= lim
T→0

−2(f ′(Y0))4

v4
0(H + 1/2)4(2H + 2)(4H + 4)

T 4H

Finally, using the ATMI result that gives

lim
T→0

u0 = lim
T→0

E

√
1

T

∫ T

0

φ2
sds =

|f ′(Y0)|
(H + 1/2)

√
2H + 2v0

TH−1/2,

we get

1

2
lim
T→0

E

∫ T
0
φs

(∫ T
s
B(T, s, u)du

)
ds

u3
0

= lim
T→0

−f ′(Y0)(2H + 2)3/2

v0(2H + 1)(2H + 2)(4H + 4)
TH+3/2

= lim
T→0

−f ′(Y0)

v0(2H + 1)
√

(2H + 2)
TH+3/2.

On the other hand, we proceed similarly with A(T, s, u). First we have

Dsm(T, u) =
1

T

∫ T

u

Eu(Ds(Du(vr)))dr =
1

T

∫ T

u

Eu

(
(Dsf

′(Yr)(r − u)H−1/2
)
dr

=
1

T

∫ T

u

f ′′(Yr)((r − u)(r − s))H−1/2dr =: I(T, u, s).

Remark 28 Notice here that

lim
T→0

E(I(T, u, s)) =
1

T
f ′′(Y0)

(T − u)H+1/2(u− s)H−1/2

H + 1/2
F

(
T − u
s− u

)
where F (·) = 2F1 (1/2−H,H + 1/2, H + 3/2, ·) denotes the Gaussian hyper-
geometric function.
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Carrying similar computations, as with B(T, s, u), we obtain

lim
T→0

E

∫ T

0

φs

(∫ T

s

A(T, s, u)du

)
ds

= lim
T→0

E

∫ T

0

φs

(∫ T

s

−2φuDsm(T, u)MT
u du

(MT
s )2

)
ds

= lim
T→0

−2

M0
0

E

∫ T

0

φs

(∫ T

s

φuI(T, u, s)du

)
ds

= lim
T→0

−2f ′(Y0)

(M0
0 )2(H + 1/2)T

E

∫ T

0

φs

∫ T

s

I(T, u, s)(T − u)H+1/2duds

= lim
T→0

−2(f ′(Y0))2

(M0
0 )3(H + 1/2)2T 2

∫ T

0

(T − s)H+1/2

∫ T

s

I(T, u, s)(T − u)H+1/2duds

= lim
T→0

−2(f ′(Y0))2f ′′(Y0)

(M0
0 )3(H + 1/2)2T 3

×
∫ T

0

(T − s)H+1/2

∫ T

s

(T − u)2H+1(u− s)H−1/2

H + 1/2
F

(
T − u
s− u

)
duds

= lim
T→0

−2f ′(Y0))2f ′′(Y0)I(H)

v3
0(H + 1/2)2

T 4H

where we define I(H) as the finite limit

I(H) = lim
T→0

∫ T

0

(T − s)H+1/2

∫ T

s

(T − u)2H+1(u− s)H−1/2

H + 1/2
F

(
T − u
s− u

)
duds

T 4H+3
.

(52)

Remark 29 In practice, I(H) can be easily approximated using numerical in-
tegration packages and expression (52) for small T .

Finally, recalling the ATMI result for u3
0 we get

1

2
lim
T→0

E

∫ T
0
φs

(∫ T
s
A(T, s, u)du

)
ds

u3
0

= lim
T→0

f ′′(Y0)(2H + 2)3/2(H + 1/2)I(H)

f ′(Y0)
TH+3/2.
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To conclude the proof we make use of Theorem 10 and obtain

lim
T→0

∂IT0
∂k

(X0) =
1

2
lim
T→0

E

∫ T
0

(
φs
∫ T
s
DW
s φ

2
udu

)
ds

u3
0T

2

= lim
T→0

1

2
lim
T→0

E

∫ T
0
φs

(∫ T
s
A(T, s, u)du

)
ds

u3
0

+ E

∫ T
0
φs

(∫ T
s
B(T, s, u)du

)
ds

u3
0

= lim
T→0

(
f ′′(Y0)I(H)(2H + 2)3/2(H + 1/2)

f ′(Y0)
− f ′(Y0)

v0(2H + 1)
√

(2H + 2)

)
TH−1/2.
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