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Abstract

This paper assumes that the market returns follow a two-state Markov process that
randomly switches between bull and bear states. We show that in this case, the exponential
moving average (EMA) represents the optimal trend-following rule. The paper provides
the analytical solution to the optimal window size (decay constant) in the EMA rule. We
estimate the optimal window size for timing the S&P 500 stock market index using real-
world data. A comparative statics analysis finds that the optimal window size depends
mainly on the signal-to-noise ratio of returns and the state transition probabilities.
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1 Introduction

The econometric literature documents a number of stylized facts about financial asset returns.

These facts include negative skewness, positive excess kurtosis, serial dependence, and volatility

clustering. A two-state Markov Switching Model (MSM) reproduces most of these stylized

facts. In this model, the returns follow a process that randomly switches between bull and

bear states. The market states are identifiable and persistent. Consequently, this model

justifies trend-following trading.

There are many alternative trend-following indicators (rules) that are designed to identify

the bull and bear states of the market. Most of these indicators are based on moving averages

of past prices. The most popular is the Simple Moving Average (SMA). Less commonly used

types of moving averages are the Linear Moving Average (LMA) and Exponential Moving

Average (EMA). Each moving average is computed using an averaging window of a particular

size. Besides, a trend-following indicator can be computed using either a single moving average

or a combination of moving averages.1 In this regard, the natural question is: What trend-

following indicator is optimal when the returns follow a two-state MSM?

To the best knowledge of the authors, there is only a series of papers that answer this

question using a continuous-time model and assuming the existence of trading costs (see Dai,

Zhang, and Zhu (2010), Nguyen, Tie, and Zhang (2014a), Nguyen, Yin, and Zhang (2014b),

Dai, Yang, Zhang, and Zhu (2016), and Jingzhi Tie (2016)). A typical goal in such a paper is to

maximize a specific reward function, for example, the expected return to the trading strategy.

The optimal trading strategy is represented by two time-dependent boundaries on the stock

price. When the stock price is above (below) the upper (lower) boundary, a Buy (Sell) signal

is generated. Finding these optimal boundaries turns out to be a difficult numerical task.

In contrast to the aforementioned papers, we consider a discrete-time model without trans-

action costs. We demonstrate that, in this case, the model is analytically tractable. We show

that the EMA indicator represents the optimal trend-following rule and find the solution to

the optimal window size (decay constant) in this indicator. We investigate how the optimal

window size depends on the model’s parameters through a comparative statics analysis. In

a simple empirical application, we fit the model to real-world data and estimate the optimal

1For example, a moving average “crossover” is an indicator constructed using two moving averages: one with
a short window size and another with a long window size.
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window size for timing the S&P 500 stock market index.

2 Markov Switching Model for Returns

We denote by xt the period-t return on a financial asset and assume that xt is a stochastic

process that randomly switches between two states: A and B. Formally, the state space of the

process is St ∈ {A,B} and the return distribution depends on the state St as follows

xt =


µA + σAzt if St = A,

µB + σBzt if St = B,

(2.1)

where µA and σA are the mean and standard deviation of returns in state A, µB and σB are the

mean and standard deviation of returns in state B, and zt is an identically and independently

distributed random variable with zero mean and unit variance. We assume that state A is a

bull state of the market, while state B is a bear state of the market.

The conditional probabilities Prob(St+1 = J |St = I) = pIJ are called one-period transition

probabilities. For example, pAB is the probability that the process transits from state A to

state B over a single period. We assume the following transition probability matrix:

P =

pAA pAB

pBA pBB

 =

1− α α

β 1− β

 . (2.2)

Formally, in this model the return distribution is given by a two-component mixture model.

Even if zt is a standard normal independent random variable, the distribution of xt is an asym-

metric distribution with fat tails, volatility clustering, and positive autocorrelations. Specif-

ically, the lag-k return autocorrelation is given by (see Timmermann (2000) and Frühwirth-

Schnatter (2006, Chapter 10)):

ρk =
πAπB(µA − µB)

2

σ2
(1− α− β)k, (2.3)

where π′ = [πA, πB] is the vector of the steady-state (stationary or ergodic) probabilities

πA = Prob(St = A) =
β

α+ β
, πB = Prob(St = B) =

α

α+ β
, (2.4)
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and σ2 is the variance of xt

σ2 = πAσ
2
A + πBσ

2
A + πAπB(µA − µB)

2. (2.5)

In short notation, the lag-k return autocorrelation can be written as

ρk = cδk, (2.6)

where δ = 1− α− β and the variable c is given by

c =
πAπB(µA − µB)

2

σ2
. (2.7)

3 Exponential Moving Average Indicator

The EMA of prices is a trend-following indicator that is computed as

EMAt(n) = (1− λ)
∞∑
k=0

λkPt−k, λ =
n− 1

n+ 1
, (3.1)

where t is the time of computation, λ is a decay constant, 0 < λ < 1, and Pt−k is the closing

price at time t − k. In contrast to all other types of moving averages, the EMA is computed

using the averaging window of an infinite size. The parameter n in the EMA denotes the size

of the averaging window in the SMA that has the same average lag time as the EMA (see

Zakamulin (2017, Chapter 3)). This convention (to quote n instead of λ) is used to unify

the notation for all types of moving averages. The trading signal is generated depending on

whether the last closing price is above or below the EMA of prices. In particular, the Buy

(Sell) signal is generated when the last closing price is above (below) the EMA.

Alternatively, any trading indicator based on moving averages of prices can be computed

using a moving average of returns (see Acar (1998), Lequeux (2005), Beekhuizen and Hallerbach

(2017), and Zakamulin (2017)). Generally, the weighting function for returns differs from the

weighting function for prices. However, in the case of the EMA, both weighting functions are
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identical. That is, the same EMA can be computed using returns instead of prices

EMAt(n) = (1− λ)
∞∑
k=0

λkxt−k. (3.2)

When the EMA is computed using returns, the trading signal is generated depending on the

sign of the indicator. Specifically, the Buy (Sell) signal is generated when the indicator is

positive (negative). Note that the same trading signal can be generated when the EMA is

computed as

EMAt(n) =

∞∑
k=0

λkxt−k. (3.3)

This is because the sign of the product a×EMAt(n) equals the sign of the EMAt(n), where

a is any positive real number.2

4 Analytical Results

There exists a close relationship between Markov models and ARMA models. Specifically,

Poskitt and Chung (1996) prove that the process in a p-state MSM can be represented by

an ARMA(p − 1, p − 1) process. Consequently, the observations of the return process in a

two-state MSM are indistinguishable from the observations of the return process that follows

an ARMA(1,1) model. Put differently, the return process defined by equation (2.1) admits an

ARMA(1,1) representation. In particular, the return process can alternatively be specified by

xt = φxt−1 + εt − θεt−1, (4.1)

where φ and θ are some constants and εt is a homogeneous zero-mean white noise process. We

assume that φ and θ satisfy the stationarity conditions.

It is well-known that any ARMA(p, q) process admits an AR(∞) representation. The

AR(∞) representation of the process specified by equation (4.1) is given by

xt = (φ− θ)
∞∑
k=1

θk−1xt−k + εt.

Therefore, the best linear predictor of the next period return is given by (see Box, Jenkins,

2In our case, a = (1− λ)−1.
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Reinsel, and Ljung (2016, Chapter 5))

x̂t+1 = (φ− θ)
∞∑
k=0

θkxt−k.

Note that the goal of a trend-following indicator is to predict the sign of the future return, not

the return per se. That is, the goal is to predict whether the price will increase or decrease

in the future. Therefore, the sign of the next period return in an ARMA(1, 1) model can be

predicted by

ŝign(xt+1) =

∞∑
k=0

θkxt−k. (4.2)

The similarity of the right-hand sides of equations (3.3) and (4.2) allows us to conclude that

the EMA indicator represents the optimal predictor of the sign of the next period return in

an ARMA(1, 1) model and, therefore, in a two-state MSM model as well. The optimal decay

constant in the EMA rule λ = θ. Our next goal is to find the analytical expressions for φ and

θ.

The lag-1 autocorrelation of the ARMA(1, 1) process is given by (see Box et al. (2016,

Chapter 3))

ρ1 =
(φ− θ)(1− φθ)

1− 2φθ + θ2
. (4.3)

Then for every ρk, k > 1, we have

ρk = ρ1φ
k−1. (4.4)

The functional form of the lag-k return autocorrelation given by equation (4.4) is similar to

that of the lag-k return autocorrelation specified by equation (2.6). This similarity is nothing

else than a direct consequence of the duality between a 2-state MSM process and an ARMA(1,1)

process. A comparison of (4.4) and (2.6) suggests that

φ = δ = 1− α− β. (4.5)

This expression is natural from the viewpoint that φ is interpreted as the persistence of the

ARMA(1, 1) process. The smaller the values of α and β, the higher the value of φ, and the

process is more likely to stay in the same state than to transit to another state.

Remains to find the analytical expression for θ. We find it by matching the expressions
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(4.3) and (2.6) for k = 1. This gives us the following equation:

(φ− θ)(1− φθ)

1− 2φθ + θ2
= cφ. (4.6)

The result is a quadratic equation in θ that has two roots:

θ1 = d−
√

d2 − 1, θ2 = d+
√
d2 − 1,

where d is given by

d =
1 + φ2(1− 2c)

2φ(1− c)
. (4.7)

Since d > 1 (otherwise, both roots are complex numbers), we conclude that θ2 > 1 and,

therefore, in this case the ARMA(1, 1) process is non-stationary. Hence, the only sensible

solution to equation (4.6) is provided by θ1. Consequently, the analytical solution to both the

constant θ and the optimal decay constant λ in the EMA indicator is given by

θ = λ = d−
√
d2 − 1. (4.8)

5 Empirical Application

In our empirical application, we use the monthly capital gain returns3 on the S&P 500 stock

market index over the period from January 1926 to December 2020. This index is commonly

used as a proxy for the US stock market. The data are provided by the Center for Research

in Security Prices (CRSP). We reconstruct the stock index values from returns and identify

the bull and bear markets using the method proposed by Pagan and Sossounov (2003). This

method seems to be the most widely accepted method among researchers for such purposes.

In brief, this method adopts, with minor modifications, the dating algorithm developed by Bry

and Boschan (1971) to identify the US business cycle turning points using the GDP data.

Table 1 presents the summary statistics of the bull and bear markets. The values of the

descriptive statistics agree closely with those reported in the papers by Pagan and Sossounov

(2003) and Gonzalez, Powell, Shi, and Wilson (2005). From 1926 to 2020, there were 26 bull

3In practice, a moving average of prices is computed using closing prices not adjusted for dividends. That
is, one uses prices directly observable in the market. Since we compute the EMA using returns, we use returns
not adjusted for dividends.
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Statistic Bull markets Bear markets

Number of states 26 25
Average duration 28.54 13.48

Stationary probability, % 67.92 32.08
Transition probability, % 3.50 7.42

Mean return, % 23.79 -28.69
Standard deviation, % 16.19 19.70

Table 1: Summary statistics of the bull and bear market states. Duration is measured in months. Mean
returns and standard deviations are annualized and reported in percentages. Transition probability is
the probability to transit to another state over a month.

and 25 bear states in the US stock market. The average bull (bear) market duration is 28.5

(13.5) months. The average bull market duration is approximately twice as long as the average

bear market duration. The values of the stationary state probabilities confirm this observation.

In particular, the probability that the US stock market is in the bull (bear) state amounts to

67.9% (32.1%). Similarly, the transition probability from a bear to a bull state, β, is about

twice as large as the transition probability from a bull to a bear state, α. Finally, the mean

return is equal to 23.8% (-28.7%) in a bull (bear) state of the market, while the standard

deviation of returns amounts to 16.2% (19.7%) in a bull (bear) market.

The estimated optimal decay constant in the EMA indicator is λ = 0.797. Consequently,

the optimal n in the EMA indicator is n = 8.85. Since n must be an integer number, the

optimal EMA indicator is computed using the “averaging window” of 9 months. This number

corresponds very well with the trading practice and can be justified as follows. The most

popular trend-following indicator among traders is the 10-month SMA (see, for example, Faber

(2007)). The paper by Zakamulin and Giner (2020) provides a number of results on the

similarity of various trading indicators based on moving averages. The illustrations provided

in Section 5 of this paper suggest that the trading signal of the 9-month EMA has the highest

correlation (among all EMA(n) indicators) with the trading signal of the 10-month SMA, and

this correlation is close to 100%.

6 Comparative Statics Analysis

In the preceding section, we estimate the optimal size of the averaging window in the EMA

indicator. Yet, we still lack a fundamental understanding of how the optimal window size

depends on the model parameters. We fill this gap by conducting a comparative statics analysis.
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There are totally six parameters in our two-state MSM for returns: α, β, µA, µB, σA, and

σB. Note that the market states differ mainly in the value of mean return, not in the value

of standard deviation. Roughly, the standard deviation is the same in both states, while the

state absolute mean returns are approximately equal. Thus, for simplicity, we assume that

µA = −µB = µ and σA = σB = σ. Further note that the transition probability β is roughly

twice as large as the transition probability α. Therefore, for simplicity, we assume that β = 2α.

Consequently, our task reduces to investigating how the optimal n in the EMA(n) indicator

depends on three parameters: µ, σ, and α.

First of all, we fix α = 0.05 and σ ∈ {20%, 30%} and compute the optimal n for various

µ ∈ [10%, 40%]. The results are depicted in Figure 1, Panel A. Second, we fix α = 0.05 and

µ ∈ {20%, 30%} and compute the optimal n for various σ ∈ [10%, 40%]. The results are

shown in Figure 1, Panel B. The clear-cut conclusion that can be drawn from the curves in

these panels is that the optimal window size increases when either the state volatility increases

or the mean state return decreases. In this regard, the fraction |µA−µB |
σ can be interpreted

as the signal-to-noise ratio of the market returns.4 The higher the signal-to-noise ratio, the

smaller the optimal n and vice versa. Finally, we investigate how the optimal n depends on

the transition probability α. For this purpose, we fix |µA−µB |
σ ∈ {2, 3} (in annual terms) and

vary α ∈ [0.02, 0.20]. Panel C in Figure 1 plots the results. We conclude that the optimal n

decreases as the state transition probability increases.

In concluding this section, we suggest an economic interpretation of the results of our

comparative statics analysis. Any trend-following indicator must simultaneously target two

goals: to achieve the best accuracy in determining the trend direction and to identify turning

points in the trend as early as possible. In this respect, first, it is worth mentioning that any

trend-following indicator identifies the turning points in the trend with some delay. Second,

it is pretty evident that increasing the averaging window size increases both the accuracy in

forecasting the trend direction and the lag time in determining the trend change.5 Therefore,

one cannot achieve the two goals simultaneously; it is only possible to find the optimal trade-off

between the accuracy and the lag time.

The higher the signal-to-noise ratio of returns, the easier to identify the trend direction.

4This fraction is motivated by the expression for the lag-k return autocorrelation specified by equation (2.3).
5Specifically, the lag time of the EMA(n) indicator equals (n− 1)/2, see Zakamulin (2017, Chapter 3).

9

Electronic copy available at: https://ssrn.com/abstract=4092437



6

7

8

9

10

11

12

10 15 20 25 30 35 40

Mean state return, %

O
p

ti
m

a
l 
w

in
d

o
w

 s
iz

e
, 

n

Volatility

20%

30%

Panel A

4

5

6

7

8

9

10

11

10 15 20 25 30 35 40

Volatility, %

O
p

ti
m

a
l 
w

in
d

o
w

 s
iz

e
, 

n

Mean return

20%

30%

Panel B

2

4

6

8

10

12

14

16

18

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Transition probability α

O
p

ti
m

a
l 
w

in
d

o
w

 s
iz

e
, 

n

Signal−to−noise

2

3

Panel C

Figure 1: Comparative statics analysis.

Hence, a high signal-to-noise ratio allows one to decrease the lag time without considerable

sacrifice in the accuracy by shorting the averaging window size. This explains why the opti-

mal window size decreases when either the state mean return increases or the state volatility

decreases. The negative relationship between the state transition probability and the optimal

window size can be explained along similar lines. In particular, the larger the state transition

probability, the shorter time the market stays in the same state. Consequently, if the market

state changes frequently, one needs an indicator with a shorter delay time. A shorter delay

time is achieved by decreasing the averaging window size.

7 Conclusions

A two-state Markov switching model has become increasingly popular in economic and financial

studies because it reproduces most of the stylized facts of financial asset returns. Using a
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discrete-time model without transaction costs, we show that the EMA indicator represents the

optimal trend-following rule and provide the analytical solution to the optimal window size

(decay constant) in this rule. Using a comparative statics analysis, we find that the optimal

window size depends mainly on the signal-to-noise ratio of returns and the state transition

probabilities. Specifically, the optimal window size decreases when either the signal-to-noise

ratio or the state transition probability increases. We estimate that the 9-month EMA rule is

optimal for timing the S&P 500 stock market index.
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