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Abstract

This study aims to present different techniques in order
to capture the mean reverting phenomenon on the mar-
ket. The data used are the return of 398 assets extracted
from American stocks over the period 2004-2017. To
capture this structure, it is necessary to use algorithms
such as principal component analysis, sparse principal
component analysis, which eliminates noise compared
to the first technique. Neural networks are also tested,
autoencoders and LSTMs. These four algorithms en-
able us to reconstruct the returns. This reconstruction
is compared with actual returns. The difference between
actual returns and their reconstructions is considered as
an anomaly. Indeed, if a daily actual return differs from
the reconstructed return, this means that the real value
does not correspond to the market structure. The mean-
reverting in a market assumes that if a return deviates
from the expected value then it will return to its stan-
dard value imposed by the market structure. Thus, this
anomaly suggests taking a position of buying or selling
for the concerned action. We construct strategies using
anomalies that make it possible to compose portfolios on
a daily basis. As result, the study shows that the strate-
gies are generally successful over the test period, which
validates the existence of mean-reverting on the market.

1 Introduction

In investment, it is important to have robust and winning
strategies. This study cares about the existence of mean-
reverting phenomenon in the market and to be able to
capture this phenomenon with unsupervised algorithms.
Our approach to detect the mean-reverting phenomenon
is: first we want construct a model to capture the mar-
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ket structure, then we detect anomalies in this structure,
finally we show that the anomalies are corrected in time.
This work follows the Antoine Isnardy’s study [6], who
tested different autoencoder models to capture the mean-
reverting phenomenon.
The mean-reverting is the returns variations around a
mean reversion, this means that if a return deviates from
this mean then it will return to its standard value. So, we
can set up strategies on this phenomenon.
This study aims to make a benchmark of several solu-
tions like PCAs, Autoencoders and LSTMs in order to
capture the mean-reverting phenomenon and built robust
and winning strategies based on the hypothesis of the ex-
istence of the mean-reverting phenomenon in the market.
The rest of the paper is organized as follows. Section
2 presents the experiment as a whole and step by step.
Section 3 reports the results of this experiment and the
paper is concluded in Section 4.

2 Experiment

This section is to provide an overview of the study and
present it step by step.

2.1 Experiment presentation

The aim of the study is to detect the mean-reverting
phenomenon. The mean-reverting strategy exploit dif-
ference between the value of an asset and its reference
value. When the value exceeds the reference value, pos-
itively or negatively, then the value will revert to refer-
ence value. We consider this difference as an anomaly,
the problem is thus an anomaly detection problem. The
aim is therefore to find a function f modeling market’s
structure, f must re-built the market, like:

f : Rn → Rn

r = (r1, ...,rn) 7→ r̃ = (r̃1, ..., r̃n)
(1)
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We calculate f using machine learning algorithm, f is
not the identity. The reconstruction of the asset i is
noted r̃i, the real return of the ith asset is expressed as:
ri = f (r1, ...,rn)i +εi = r̃i +εi, with εi the reconstruction
error.

Figure 1: Global view of the study

The figure 1 present the general principle of the study.
The study is to detect the mean-reverting phenomenon
from an anomaly detection problem. To this end we try
to reconstruct the daily returns with machine learning al-
gorithms like a Principal Component Analysis (PCA),
an Autoencoder or a LSTM. This reconstruction is com-
pared to the actual returns and the difference between
this both returns is considered as an anomaly. We use
this anomaly to build portfolio strategy.

2.2 Datasets
As dataset, we use American stocks in the period 2004-
2017. So, we need to have assets quoted on the stock ex-
change since 2004 and not stopped before 2017. It is why
we select 398 assets on 500. From 2004 to 2014, data are
the training dataset, 10% of this dataset is used for vali-
dation and the rest, from 2014 to 2017 is held out as the
testing dataset. 31% of the assets have a positive average
return in the period 2004-2017. The average return of
an asset during that period is -0,0082% and the standard
deviation is 0,036% so the returns oscillate around 0.

2.3 Machine Learning for anomaly detec-
tion

In this part, we present the four machine learning algo-
rithms we use for anomaly detection. We begin with
Principal Component Analysis and Principal Component
Analysis on a sparse covariance matrix, then we intro-
duce our Autoencoder model and our LSTM models.

Principal Component Analysis (PCA)
A Principal Component Analysis transforms correlated
variables into uncorrelated variables called principal
components. With this technique, we bring out patterns

and select the most important information in dataset. In
our study, we use a PCA or a sparse PCA followed by a
regression. What we call a sparse PCA, it is a PCA on
a sparse covariance matrix. D’Aspremont uses semidef-
inite optimization to select covariance and he shows the
difference between a covariance matrix and the sparse
covariance matrix. The variable selection is more impor-
tant with the sparse covariance matrix and the patterns in
dataset are stronger [4] [5].

Figure 2: Principal Component Analysis model

Figure 2 shows the process of our PCA and regres-
sion. We begin with the calculation of covariance matrix,
sparse or not. With our dataset, we obtain a covariance
matrix with 79 202 parameters to calibrate. We extract of
this matrix the eigenvectors. We choose 83 eigenvectors
because they explain 80% variance. We project data X in
83 eigenvectors matrix P and we obtain Z = XPT.
Then we proceed with the linear regression with which
we rebuilt the real returns X with Z, the regression is as
follows: X = αZ+β . The linear regression estimate α

and β coefficients to find the actual returns.

Autoencoder
An autoencoder is a data compression algorithm with a
compression function and a decompression function [2].
Each function is implemented with neural network. We
create an autoencoder with two fully-connected layers.
The first layer is the encoder and the second is the de-
coder to rebuilt the input. We can see our model in fig-
ure 3, every day the autoencoder has daily returns of 398
assets and he tries to reconstruct this daily returns.
We evaluate the anomaly detection performance of Au-
toencoder in terms of Mean Absolute Error. The number
of neurons for the hidden layer is chosen from the num-
ber of eigenvectors selected in PCA and then we test in-
creasing and reducing the width of this layer to achieve
the best performance. By increasing the width of the hid-
den layer we increase the number of parameter too, as we
can see in table 1.

Long-Short Term Memory
Thanks to a Long-Short Term Memory network, called
LSTM, we hope to capture a time structure in financial
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Figure 3: Autoencoder model for study

Hidden Layer Learning Cost Parameters1

Width time (s) number
(30) 51.56 0.0091 24 308
(83) 61.9 0.0077 66 549

Table 1: Learning time, cost and parameters number for
each autoencoder model

series. Indeed, with its four gates and its cell state, a
LSTM is special kind of recurrent neural network, capa-
ble of learning long-term dependencies [3].
As we want to capture a time structure, the neural net-
works have to learn on a sliding window. We study the
returns of each day of a week and we realize the returns
are more important on Monday and Friday. This study
determines the size of a sliding windows, it must have a
size of 5 days minimum to take a full trading week into
account.
To answer to our anomaly detection problem, we imple-
ment a LSTM many-to-one, it means that we learn on
many variables to build one variable. We construct a
LSTM that it learns of 5 successive trading days and re-
built the 5th day, as we can see in figure 4. One day is
made up of the return of 398 assets.

Figure 4: LSTM model for study

The aim of the study is to obtain robust strategies based
on the hypothesis of the existence of the mean-reverting
phenomenon. Even if the reconstruction is perfect but
strategies are poor, the solution is unacceptable. With
600 neurons on the LTSM, the reconstruction is almost

perfect but the number of parameters is 2.5 times taller
than our dataset, it is overfitting.
As we can see in table 2, the parameters number in-
creases considerably with the neural network width. The
structure the most interesting in our case is the first struc-
ture thanks to the number of parameters being reasonable
against our data.

LSTM Learning Cost Parameters
dimension time (s) number2

(30) 15.95 0.0091 63 818
(80) 61.9 0.0084 185 518
(600) 233 0.0031 2 636 798

(600,80,30) 334 0.101 2 641 178

Table 2: Learning time, cost and parameters number for
each LSTM model

We test another structure of the LSTM, see figure 5, we
construct a predictive LSTM [1]. Instead of learning on
5 successive days and reconstructing the last day of this
5 days, we learn on 5 successive days and we predict the
398 returns of the next day.

Figure 5: Predictive LSTM model for study

2.4 Error detection method
Thanks to machine learning algorithms we obtain the re-
turns reconstruction (r̃1, ..., r̃n) of real returns (r1, ...,rn).
our problem is a anomaly detection problem and we use
this anomalies to set up strategies. The error is also de-
fined as the difference between the reconstructed return
and the actual return that means ∀i ∈ [1,n],εi = r̃i− ri.
With this error definition, that can be deduced is that if:

• εi� 0, the actual return is superior to estimated re-
turn, this asset is most cost-effective than expected,
it has to be sold.

• εi � 0, the real return is lower to estimated return,
this asset is less cost-effective than expected, it has
to be bought.

There are different approaches to take decision to sale or
buy an asset like relative error or endogenous threshold.
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Relative error
The relative error calculate the error importance i.e.
εi
|ri| =

r̃i−ri
|ri| . We can measure the error against the real

return, so we use the importance of the error against its
expected value.

Endogenous threshold
The second that we use to consider if an error is impor-
tant or not, is the endogenous threshold. We calculate
two thresholds for each asset. Each threshold is a quan-
tile calibrated using the training error for each asset, thus
they take the behavior of each asset into account. So,
we have two quantiles on the distribution of errors of ith

asset, qi, α
2

at α

2 % and qi,1− α
2

at 1− α

2 %. When the test
error is in the first quantile, we sell this asset and when
the test error is in the second quantile, we buy this asset.
Define this threshold can to take the behavior of each
action into account and ensure that each asset participates
α% of time in strategies.

2.5 Financial strategies

To evaluate algorithms performance and to check the ex-
istence of mean-reverting phenomenon, we use financial
strategies.

Study strategy
The first strategy is a study strategy that means we study
net long/short portfolio. A net long portfolio is a portfo-
lio built with bought assets whereas a net short portfolio
is a portfolio built with sold assets. It is a question of
studying the robustness of this strategy i.e. the impact of
addition of an asset in one of portfolio.
To determinate the importance of the error and the de-
cision to sell or buy, we use the relative error and each
asset in this portfolio has equal weight.

Production strategy
The second financial strategy is the production strategy.
This strategy uses the endogenous threshold to take a de-
cision to sell or buy an action. With this technique, we
have a variable number of assets in each strategy. The
assets are allowed in a portfolio with Equally-weighted
Risk Contributions. The weight for an asset is inversely
proportional to its volatility, its risk and it is as follows:

wi =
σ
−1
i

∑
n
j=1 σ j−1 .

To compare the strategies results, we construct a bench-
mark that is a net long portfolio with the 398 assets of
the market weighted by the ERC method [7].

3 Experiment Results

In this section, we present our results throughout the er-
ror distributions and the strategies.

3.1 Error distributions
The first point to mention is the error distributions are
centered as we can see in table 3 with the means of dis-
tributions. The sign of error is an indication to sell or buy
and action, if it is negative we have to sell this asset and
buy if the error is positive. So, it is important to have a
centered distribution that does not affect the purchase or
the sale of an asset. No bias is introduced.

Algorithm and time Mini Mean Maxi Mean
PCA train -5.2×10−18 4.6×10−19

PCA test -1.5×10−18 1.8×10−18

Sparse PCA train -2.6×10−18 3.7×10−18

Sparse PCA test -2.2×10−18 2.2×10−18

Autoencoder train -0.006 0.005
Autoencoder test -0.007 0.006
LSTM train -0.002 0.004
LSTM test -0.008 0.008

Table 3: Error means for each algorithm

3.2 Strategy results
The aim is to have robust and winning strategies in order
to confirm the existence of mean-reverting phenomenon.
We evaluate each strategy with the Sharpe ratio to know
its robustness and its gain. The Sharpe ratio is defined as
SR = r̄

σ
that is the ratio between the performance and the

volatility of the strategy.

Study strategy
For the study strategy, we plot matrix of Information Ra-
tio i.e. we have matrix where each cell is the Information
Ratio of the strategy when you buy l assets against you
sell s assets every day. For example, we study the robust-
ness when we buy 50 assets and we sell 40 assets each
day.
In the table 4, we report the means of Information Ratio
for each test period. We note that with a PCA we obtain
a good strategy in 2014 but these results are not robust
in time because the Information Ratio decreases in time.
The sparse PCA gives similar results even if the results
appear little more robust in time. With the autoencoder
with 30 neurons, we have robust and winning strategy in
time because the deviations between each period are low.
By contrast, with the autoencoder with 83 neurons, the
deviations are more important, the market is very volatile
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in 2015 and this autoencoder does not succeed to capture
this structure and make winning strategies. The LSTM
succeed to capture the structure of this volatile year but
for the other year, the success is not the same. Here we
can note that the predictive LSTM is not a good structure
as an answer to our problem.

Algorithm Mean of Ratio Sharpe
2014 2015 2016 2014-2017

PCA 0.15 0.06 0.03 0.07
Sparse PCA 0.14 0.05 0.07 0.08

Autoencoder 30 0.14 0.11 0.08 0.10
Autoencoder 83 0.16 0.04 0.09 0.9

LSTM 0.09 0.18 0.07 0.11
Pred LSTM 0.007 0.017 -0.01 0.0001

Table 4: Mean of Information Ratio for each algorithm
with study strategy

Production strategy
Comparing this four next tables, tables 5, 6, 7, we can
say all algorithms, beyond the predictive LSTM, allow
to obtain stronger and more efficient strategies than the
benchmark.
With the production strategy, we choose a parameter α

to calculate the size of the two quantiles. α has a value
in 0.3, 0.6, 0.9, 0.95. When α is 0.9 or 0.95 we take
in consideration almost all assets so all the market. By
contrast, when we choose α at 0.3 or 0.6, we have less
assets in the strategy, this strategy is also riskier. Thus,
these two values of α are the most interesting in order to
obtain a robust and winning strategies.
In table 5 relevant to 2014, we remark that the PCAs and
the autoencoders have good values of Information Ratio.
The Information Ratio for the LSTMs are lower than the
benchmark for α in 0.3, 0.6, 0.9.

Algorithm α

0.3 0.6 0.9 0.95
PCA 0.20 0.18 0.24 0.23

Sparse PCA 0.10 0.09 0.07 0.08
Autoencoder 30 0.12 0.19 0.18 0.18
Autoencoder 83 0.11 0.19 0.22 0.20

LSTM 0.05 0.10 0.10 0.11
Pred LSTM -0.02 -0.02 -0.01 -0.001
Benchmark 0.102

Table 5: Information Ratio for production strategy in
2014

In table 6 relevant to 2015, we can see the values for the
PCA and autoencoders stay robust even if this year is
very volatile. The LSTMs are again under our expecta-
tions.

Algorithm α

0.3 0.6 0.9 0.95
PCA 0.05 0.10 0.17 0.18

Sparse PCA 0.03 0.09 0.09 0.09
Autoencoder 30 0.09 0.14 0.12 0.13
Autoencoder 83 0.04 0.11 0.10 0.10

LSTM 0.01 0.02 0.06 0.10
Pred LSTM -0.03 -0.02 -0.02 -0.02
Benchmark 0.007

Table 6: Information Ratio for production strategy in
2015

In table 7 relevant to 2016, the results for the PCA are
poorer than the other years and this confirms that the
PCA is not robust in time. The sparse PCA succeeds
this year.

Algorithm α

0.3 0.6 0.9 0.95
PCA 0.09 0.07 0.07 0.07

Sparse PCA 0.14 0.14 0.13 0.13
Autoencoder 30 0.09 0.12 0.11 0.10
Autoencoder 83 0.11 0.12 0.12 0.12

LSTM 0.1 0.07 0.07 0.07
Pred LSTM 0.04 0.03 0.03 0.03
Benchmark 0.077

Table 7: Information Ratio for production strategy in
2016

The two autoencoders allow to obtain robust Informa-
tion Ratio in time unlike the PCAs. The LSTM obtains
poorer results than the other algorithms and even some-
times poorer than the benchmark. We can confirm with
this tables that the predictive LSTM is not a model for
our data and our problem.

4 Conclusion and Discussion

On one hand, the autoencoder with 30 neurons learns
with less parameters than the other algorithms and the
autoencoder with 83 neurons, reminded in table 8. On
the other hand, with this autoencoder the strategies are
robust in time and they are winning. So, the autoencoder
is the best answer to our study to detect the existence of
mean-reverting phenomenon. We can confirm too that
the mean-reverting phenomenon exists in the American
stocks considering these strategies are winning.
With its ability to capture a time structure, we hoped
LSTM learn the returns structure of financial series, but it
does not. We have 398 returns on 2500 days i.e. about 1
million of data, 2500 days is certainly not enough to cal-
ibrate the LSTM. Indeed, at each step the LSTM have
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Algorithm Parameters number
PCA 79 202

sparse PCA 79 202
Autoencoder 30 24 308
Autoencoder 83 66 549

LSTM 63 818

Table 8: Parameters number for each algorithm

to reconstruct 398 information with an historical of 5
days and long-term memory. To conclude the structure
of the LSTM does not match with the data and an au-
toencoder with 30 neurons is enough to obtain robust and
winning strategies with the hypothesis of the existence of
the mean-reverting phenomenon.
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Notes
1Parameters number for a dense layer formula: input dim ×

out put dim+out put dim
2Parameters number for a LSTM layer formula: 4× ((input dim+

1)×out put dim+out put dim2)
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