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1 Introduction
There are many thousands of papers on forecasting volatility using a host
of increasingly sophisticated, even Nobel-Prize-winning, statistical tech-
niques. A possible goal of these is, presumably, to help one exploit mis-
pricings in derivatives, and so profit from volatility arbitrage. There is a
similar order of magnitude of papers on various, and again, increasingly
complicated, volatility models calibrated to vanilla option prices and used
to price fancy exotic contracts. The former set of papers usually stop short
of the application of the volatility forecasts to options and how to actually
make that volatility arbitrage profit via delta hedging. And the second set
blind us with science without ever checking the accuracy of the volatility

models against data for the underlying. (A marvelous exception to this is
the paper by Schoutens, Simons & Tistaert (2004) which rather exposes the
Emperor for his lack of attire.) In this paper we are going to do none of this
clever stuff. No, we are going right back to basics. 

In this paper we address the obvious question of how to make money
from volatility arbitrage. We are going to keep the model and analysis
very simple, hardly straying from the Black–Scholes world at all. We are
going to analyze different delta-hedging strategies in a world of constant
volatility. Or more accurately, three constant volatilities: Implied, actual
and hedging.

Much of what we will examine is the profit to be made hedging
options that are mispriced by the market. This is the subject of how to

Abstract: In this paper we examine the statistical properties of the profit to be made from hedging vanilla options that are mispriced by the market and/or hedged using a
delta based on different volatilities. We derive formulas for the expected profit and the variance of profit for single options and for portfolios of options on the same underly-
ing. We suggest several ways to choose optimal portfolios.
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delta hedge when your estimate of future actual volatility differs from
that of the market as measured by the implied volatility (Natenberg,
1994). Since there are two volatilities in this problem, implied and actual,
we have to study the effects of using each of these in the classical delta
formula (Black & Scholes, 1973). But why stop there? Why not use a
volatility between implied and actual, or higher than both or lower? We
will look at the profit or loss to be made hedging vanilla options and
portfolios of options with different ‘hedging volatilities.’

We will see how you can hedge using a delta based on actual volatility
or on implied volatility, or on something different. Whichever hedging
volatility you use you will get different risk/return profiles. Part of what
follows repeats the excellent work of Carr (2005) and Henrard (2003). Carr
derived the expression for profit from hedging using different volatili-
ties. Henrard independently derived these results and also performed
simulations to examine the statistical properties of the possibly path-
dependent profit. He also made important observations on portfolios of
options and on the role of the asset’s growth rate in determining the
profit. Our paper extends their analyses in several directions.

Other relevant literature in this area includes the paper by Carr &
Verma (2005) which expands on the problem of hedging using the
implied volatility but with implied volatility varying stochastically.
Dupire (2005) discusses the advantages of hedging using volatility based
on the realized quadratic variation in the stock price. Related ideas
applied to the hedging of barrier options and Asians can be found in
Forde (2005).

In Section 2 we set up the problem by explaining the role that volatil-
ity plays in hedging. In Section 3 we look at the mark-to-market profit
and the final profit when hedging using actual volatility. In Section 4 we
then examine the mark-to-market and total profit made when hedging
using implied volatility. This profit is path dependent. Sections 3 and 4
repeat the analyses of Carr (2005) and Henrard (2003). Because the final
profit depends on the path taken by the asset when we hedge with
implied volatility we look at simple statistical properties of this profit. In
Section 4.1 we derive a closed-form formula for the expected total profit
and in Section 4.2 we find a closed-form formula for the variance of this
profit. 

In Section 5 we look at hedging with volatilities other than just
implied or actual, examining the expected profit, the standard deviation
of profit as well as minimum and maximum profits. In Section 6 we look
at the advantages and disadvantages of hedging using different volatili-
ties. For the remainder of the paper we focus on the case of hedging
using implied volatility, which is the more common market practice. 

Portfolios of options are considered in Section 7, and again we find
closed-form formulas for the expectation and variance of profit. To find
the full probability distribution of total profit we could perform simula-
tions (Henrard, 2003) or solve a three-dimensional differential equation.
We outline the latter approach in Section 8. This is to be preferred gener-
ally since it will be faster than simulations, therefore making portfolio
optimizations more practical. In Section 9 we outline a portfolio selection

method based on exponential utility. In Section 10 we briefly mention
portfolios of options on many underlyings, and draw conclusions and
comment on further work in Section 11. Technical details are contained in
an appendix.

Some of the work in this paper has been used successfully by a volatil-
ity arbitrage hedge fund.

Before we start, we present a simple plot of the distributions of
implied and realized volatilities, Figure 1. This is a plot of the distribu-
tions of the logarithms of the VIX and of the rolling 30-day realized SPX
volatility using data from 1990 to mid 2005. The VIX is an implied volatil-
ity measure based on the SPX index and so you would expect it and the
realized SPX volatility to bear close resemblance. However, as can be seen
in the figure, the implied volatility VIX seems to be higher than the real-
ized volatility. Both of these volatilities are approximately lognormally
distributed (since their logarithms appear to be Gaussian), especially the
realized volatility. The VIX distribution is somewhat truncated on the
left. The mean of the realized volatility, about 15%, is significantly lower
than the mean of the VIX, about 20%, but its standard deviation is
greater.

2 Implied versus Actual, Delta Hedging
but Using which Volatility?

Actual volatility is the amount of ‘noise’ in the stock price, it is the coef-
ficient of the Wiener process in the stock returns model, it is the amount

^
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Figure 1: Distributions of the logarithms of the VIX and the rolling realized
SPX volatility, and the normal distributions for comparison.
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of randomness that ‘actually’ transpires. Implied volatility is how the
market is pricing the option currently. Since the market does not have
perfect knowledge about the future these two numbers can and will be
different.

Imagine that we have a forecast for volatility over the remaining life
of an option, this volatility is forecast to be constant, and further assume
that our forecast turns out to be correct.

We shall buy an underpriced option and delta hedge to expiry. But
which delta do you choose? Delta based on actual or implied volatility? 

Scenario: Implied volatility for an option is 20%, but we believe that
actual volatility is 30%. Question: How can we make money if our forecast
is correct? Answer: Buy the option and delta hedge. But which delta do
we use? We know that

� = N(d1)

where

N(x) = 1√
2π

∫ x

−∞
e− s2

2 ds

and

d1 = ln(S/E) + (
r + 1

2 σ 2
)
(T − t)

σ
√

T − t
.

We can all agree on S, E, T − t and r (almost), but not on σ . So should we
use σ = 0.2 or 0.3? 

In what follows we use σ to denote actual volatility and σ̃ to represent
implied volatility, both assumed constant.

3 Case 1: Hedge with Actual Volatility, σ
By hedging with actual volatility we are replicating a short position in a
correctly priced option. The payoffs for our long option and our short repli-
cated option will exactly cancel. The profit we make will be exactly the
difference in the Black–Scholes prices of an option with 30% volatility
and one with 20% volatility. (Assuming that the Black–Scholes assump-
tions hold.) If V(S, t; σ ) is the Black–Scholes formula then the guaranteed
profit is

V(S, t; σ ) − V(S, t; σ̃ ).

But how is this guaranteed profit realized? Let us do the analysis on a
mark-to-market basis.

In the following, superscript ‘a’ means actual and ‘i’ denotes implied,
these can be applied to deltas and option values. For example, �a is the
delta using the actual volatility in the formula. Vi is the theoretical
option value using the implied volatility in the formula. Note also that V,
�, � and � are all simple, known, Black–Scholes formulas.

The model is the classical

dS = µS dt + σ S dX.

Now, set up a portfolio by buying the option for Vi and hedge with �a

of the stock. The values of each of the components of our portfolio are
shown in the following table, Table 1.

Leave this hedged portfolio ‘overnight,’ and come back to it the next
‘day.’ The new values are shown in Table 2. (We have included a continu-
ous dividend yield in this.)

Therefore we have made, mark to market,

dVi − �a dS − r(Vi − �a S) dt − �aDS dt.

Because the option would be correctly valued at Va we have

dVa − �a dS − r(Va − �a S) dt − �aDS dt = 0.

So we can write the mark-to-market profit over one time step as

dVi − dVa + r(Va − �a S) dt − r(Vi − �a S) dt

= dVi − dVa − r(Vi − Va) dt = ert d
(
e−rt(Vi − Va)

)
.

That is the profit from time t to t + dt. The present value of this profit at
time t0 is

e−r(t−t0 )ert d
(
e−rt(Vi − Va)

) = ert0 d
(
e−rt(Vi − Va)

)
.

So the total profit from t0 to expiration is

ert0

∫ T

t0

d
(
e−rt(Vi − Va)

) = Va − Vi.

This confirms what we said earlier about the guaranteed total profit by
expiration.

Component Value

Option Vi

Stock −�a S
Cash −Vi + �a S

TABLE 1: PORTFOLIO
COMPOSITION AND
VALUES, TODAY.

Component Value

Option Vi + dVi

Stock −�a S − �a dS
Cash (−Vi + �a S)(1 + r dt) − �aDS dt

TABLE 2: PORTFOLIO COMPOSITION 
AND VALUES, TOMORROW.
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We can also write that one time step mark-to-market profit (using
Itô’s lemma) as

�i dt + �i dS + 1
2 σ 2S2� i dt − �a dS − r(Vi − �aS) dt − �aDS dt

= �i dt + µS(�i − �a) dt + 1
2 σ 2S2� i dt − r(Vi − Va) dt

+ (�i − �a)σ S dX − �aDS dt

= (�i − �a)σ S dX + (µ + D)S(�i − �a) dt + 1
2

(
σ 2 − σ̃ 2

)
S2� i dt

(using Black–Scholes with σ = σ̃ )

= 1
2 (σ 2 − σ̃ 2)S2� i dt + (�i − �a)((µ − r + D)S dt + σ S dX).

The conclusion is that the final profit is guaranteed (the difference
between the theoretical option values with the two volatilities) but how
that is achieved is random, because of the dX term in the above. On a
mark-to-market basis you could lose before you gain. Moreover, the mark-
to-market profit depends on the real drift of the stock, µ. This is illustrat-
ed in Figure 2. The figure shows several simulations of the same delta-
hedged position. Note that the final P&L is not exactly the same in each
case because of the effect of hedging discretely, we hedged ‘only’ 1000
times for each realization. The option is a one-year European call, with a
strike of 100, at the money initially, actual volatility is 30%, implied is
20%, the growth rate is 10% and interest rate 5%.

When S changes, so will V . But these changes do not cancel each other
out. This leaves us with a dX in our mark-to-market P&L and from a risk
management point of view this is not ideal.

There is a simple analogy for this behavior. It is similar to owning a
bond. For a bond there is a guaranteed outcome, but we may lose on a
mark-to-market basis in the meantime. 

4 Case 2: Hedge with Implied Volatility, σ∼
Compare and contrast now with the case of hedging using a delta based
on implied volatility. By hedging with implied volatility we are balancing
the random fluctuations in the mark-to-market option value with the
fluctuations in the stock price. The evolution of the portfolio value is
then ‘deterministic’ as we shall see.

Buy the option today, hedge using the implied delta, and put any cash
in the bank earning r. The mark-to-market profit from today to tomorrow is

dVi − �i dS − r(Vi − �iS) dt − �iDS dt

= �i dt + 1
2 σ 2S2� i dt − r(Vi − �iS) dt − �iDS dt

= 1
2

(
σ 2 − σ̃ 2

)
S2� i dt.

(1)

Observe how the profit is deterministic, there are no dX terms. From a
risk management perspective this is much better behaved. There is
another advantage of hedging using implied volatility, we do not even
need to know what actual volatility is. To make a profit all we need to
know is that actual is always going to be greater than implied (if we are
buying) or always less  (if we are selling). This takes some of the pressure
off forecasting volatility accurately in the first place.

Integrate the present value of all of these profits over the life of the
option to get a total profit of

1

2

(
σ 2 − σ̃ 2

) ∫ T

t0

e−r(t−t0 )S2� i dt.

This is always positive, but highly path dependent. Being path
dependent it will depend on the drift µ. If we start off at the money
and the drift is very large (positive or negative) we will find our-
selves quickly moving into territory where gamma and hence
expression (1) is small, so that there will be not much profit to be
made. The best that could happen would be for the stock to end up
close to the strike at expiration, this would maximize the total prof-
it. This path dependency is shown in Figure 3. The figure shows sev-
eral realizations of the same delta-hedged position. Note that the
lines are not perfectly smooth, again because of the effect of hedg-
ing discretely. The option and parameters are the same as in the
previous example.

The simple analogy is now just putting money in the bank. The
P&L is always increasing in value but the end result is random.

Carr (2005) and Henrard (2003) show the more general result
that if you hedge using a delta based on a volatility σh then the PV
of the total profit is given by

V(S, t; σh) − V(S, t; σ̃ ) + 1

2

(
σ 2 − σ 2

h

) ∫ T

t0

e−r(t−t0 )S2�h dt, (2)

TECHNICAL ARTICLE 3

Figure 2: P&L for a delta-hedged option on a mark-to-market basis, hedged using
actual volatility.
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where the superscript on the gamma means that it uses the Black–
Scholes formula with a volatility of σh . 

From this equation it is easy to see that the final profit is bounded by

V(S, t; σh) − V(S, t; σ̃ )

and

V(S, t; σh) − V(S, t; σ̃ ) + E
(
σ 2 − σ 2

h

)
e−r(T−t0 )

√
T − t0

σh

√
2π

.

The right-hand side of the latter expression above comes from maximiz-
ing S2�h . This maximum occurs along the path ln(S/E) + (r − D − σ 2

h /2)

(T − t) = 0, that is

S = E exp
(− (

r − D − σ 2
h /2

)
(T − t)

)
.

4.1 The expected profit after hedging using implied
volatility

When you hedge using delta based on implied volatility the profit each
‘day’ is deterministic but the present value of total profit by expiration is
path dependent, and given by

1

2

(
σ 2 − σ̃ 2

) ∫ T

t0

e−r(s−t0 )S2� i ds.

Introduce

I = 1

2

(
σ 2 − σ̃ 2

) ∫ t

t0

e−r(s−t0 )S2� i ds.

Since therefore

dI = 1
2

(
σ 2 − σ̃ 2

)
e−r(t−t0 )S2� i dt

we can write down the following partial differential equation for
the real expected value, P(S, I, t), of I

∂P

∂ t
+ 1

2
σ 2S2 ∂2P

∂S2
+ µS

∂P

∂S
+ 1

2

(
σ 2 − σ̃ 2

)
e−r(t−t0 )S2� i ∂P

∂ I
= 0,

with

P(S, I, T) = I.

Look for a solution of this equation of the form

P(S, I, t) = I + F(S, t)

so that

∂F

∂ t
+ 1

2
σ 2S2 ∂2F

∂S2
+ µS

∂F

∂S
+ 1

2

(
σ 2 − σ̃ 2

)
e−r(t−t0 )S2� i = 0.

The source term can be simplified to

E
(
σ 2 − σ̃ 2

)
e−r(T−t0 )e−d2

2 /2

2σ̃
√

2π(T − t)
,

where

d2 = ln(S/E) + (r − D − 1
2 σ̃ 2)(T − t)

σ
√

T − t
.

Change variables to

x = ln(S/E) + 2

σ 2

(
µ − 1

2
σ 2

)
τ and τ = σ 2

2
(T − t),

where E is the strike and T is expiration, and write

F(S, t) = w(x, τ ).

The resulting partial differential equation is a then simpler.

Result 1: After some manipulations we end up with the expected profit
initially (t = t0, S = S0, I = 0) being the single integral

Figure 3: P&L for a delta-hedged option on a mark-to-market basis, hedged using
implied volatility.
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F(S0, t0) = Ee−r(T−t0 )(σ 2 − σ̃ 2)

2
√

2π

∫ T

t0

1√
σ 2(s − t0) + σ̃ 2(T − s)

exp

(
−

(
ln(S0/E) + (

µ − 1
2 σ 2

)
(s − t0) + (

r − D − 1
2 σ̃ 2

)
(T − s)

)2

2(σ 2(s − t0) + σ̃ 2(T − s))

)
ds.

Derivation: See Appendix. 

Results are shown in the following figures.
In Figure 4 is shown the expected profit versus the growth rate µ.

Parameters are S = 100, σ = 0.3, r = 0.05, D = 0, E = 110, T = 1, σ̃ = 0.2.
Observe that the expected profit has a maximum. This will be at the
growth rate that ensures, roughly speaking, that the stock ends up close
to at the money at expiration, where gamma is largest. In the figure is
also shown the profit to be made when hedging with actual volatility.
For most realistic parameter regimes the maximum expected profit
hedging with implied is similar to the guaranteed profit hedging with
actual.

In Figure 5 is shown expected profit versus E and µ. You can see how
the higher the growth rate the larger the strike price at the maximum.
The contour map is shown in Figure 6.

The effect of skew is shown in Figure 7. Here we have used a linear
negative skew, from 22.5% at a strike of 75, falling to 17.5% at the 125

strike. The at-the-money implied volatility is 20% which in this case is the
actual volatility. This picture changes when you divide the expected prof-
it by the price of the option (puts for lower strikes, call for higher), see
Figure 8. There is no maximum, profitability increases with distance
away from the money. Of course, this does not take into account the risk,
the standard deviation associated with such trades.

TECHNICAL ARTICLE 3

Figure 4: Expected profit, hedging using implied volatility, versus growth rate µ;

S = 100, σ = 0.4, r = 0.05, D = 0, E = 110, T = 1, ~σ = 0.2. The dashed line is the prof-
it to be made when hedging with actual volatility.

Figure 5: Expected profit, hedging using implied volatility,
versus growth rate µ and strike E; S = 100, σ = 0.4, r = 0.05, 
D = 0, T = 1, ~σ = 0.2.

Figure 6: Contour map of expected profit, hedging using implied
volatility, versus growth rate µ and strike E; S = 100, σ = 0.4, r = 0.05, 
D = 0, T = 1, ~σ = 0.2.
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4.2 The variance of profit after hedging using implied
volatility

Once we have calculated the expected profit from hedging using implied
volatility we can calculate the variance in the final profit. Using the above

notation, the variance will be the expected value of I2 less the square of
the average of I. So we will need to calculate v(S, I, t) where

∂v

∂ t
+ 1

2
σ 2S2 ∂2v

∂S2
+ µS

∂v

∂S
+ 1

2

(
σ 2 − σ̃ 2

)
e−r(t−t0 )S2� i ∂v

∂ I
= 0,

with

v(S, I, T) = I2.

The details of finding this function v are rather messy, but a solution can
be found of the form

v(S, I, t) = I2 + 2I H(S, t) + G(S, t).

Result 2: The initial variance is G(S0, t0) − F(S0, t0)
2 , where

G(S0, t0) = E2(σ 2 − σ̃ 2)2e−2r(T−t0 )

4πσ σ̃

∫ T

t0

∫ T

s

ep(u,s;S0 ,t0 )

√
s − t0

√
T − s

√
σ 2(u − s) + σ̃ 2(T − u)√

1

σ 2(s − t0)
+ 1

σ̃ 2(T − s)
+ 1

σ 2(u − s) + σ̃ 2(T − u)

du ds (3)

where

p(u, s; S0, t0) = − 1

2

(x + α(T − s))2

σ̃ 2(T − s)
− 1

2

(x + α(T − u))2

σ 2(u − s) + σ̃ 2(T − u)

+ 1

2

(
x + α(T − s)

σ̃ 2(T − s)
+ x + α(T − u)

σ 2(u − s) + σ̃ 2(T − u)

)2

1

σ 2(s − t0)
+ 1

σ̃ 2(T − s)
+ 1

σ 2(u − s) + σ̃ 2(T − u)

and

x = ln(S0/E) + (
µ − 1

2 σ 2
)
(T − t0), and α = µ − 1

2 σ 2 − r + D + 1
2 σ̃ 2.

Derivation: See Appendix.  

In Figure 9 is shown the standard deviation of profit versus growth
rate, S = 100, σ = 0.4, r = 0.05, D = 0, E = 110, T = 1, σ̃ = 0.2. Figure 10
shows the standard deviation of profit versus strike, S = 100, σ = 0.4,
r = 0.05, D = 0, µ = 0.1, T = 1, σ̃ = 0.2.

Note that in these plots the expectations and standard deviations
have not been scaled with the cost of the options.

In Figure 11 are shown expected profit divided by cost versus standard
deviation divided by cost, as both strike and expiration vary. In these
S = 100, σ = 0.4, r = 0.05, D = 0, µ = 0.1, σ̃ = 0.2. To some extent,
although we emphasize only some, these diagrams can be interpreted in a
classical mean-variance manner. The main criticism is, of course, that we
are not working with normal distributions, and, furthermore, there is no
downside, no possibility of any losses.

Figure 12 completes the earlier picture for the skew, since it now con-
tains the standard deviation.

Figure 7: Effect of skew, expected profit, hedging using implied volatility,
versus strike E; S = 100, µ = 0, σ = 0.2, r = 0.05, D = 0, T = 1.

Figure 8: Effect of skew, ratio of expected profit to price, hedging using
implied volatility, versus strike E; S = 100, µ = 0, σ = 0.2, r = 0.05, D = 0, T = 1.
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Figure 9: Standard deviation of profit, hedging using implied volatility,
versus growth rate µ; S = 100, σ = 0.4, r = 0.05, D = 0, E = 110, T = 1, ~σ =
0.2. The expected profit is also shown.

Figure 10: Standard deviation of profit, hedging using implied volatility, ver-
sus strike E; S = 100, σ = 0.4, r = 0.05, D = 0, µ = 0, T = 1, ~σ = 0.2. The expected
profit is also shown.

Figure 11: Scaled expected profit versus scaled standard deviation; S = 100, 
σ = 0.4, r = 0.05, D = 0, µ = 0.1, ~σ = 0.2. Four different expirations, varying strike.

Figure 12: Effect of skew, ratio of expected profit to price, and ratio of
standard deviation to price, versus strike E; S = 100, µ = 0, σ = 0.2, r = 0.05,
D = 0, T = 1.
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5 Hedging with Different Volatilities
We will briefly examine hedging using volatilities other than actual or
implied, using the general expression for profit given by (2). 

The expressions for the expected profit and standard deviations now
must allow for the V(S, t; σh) − V(S, t; σ̃ ), since the integral of gamma
term can be treated as before if one replaces σ̃ with σh in this term.
Results are presented in the next sections.

5.1 Actual volatility = Implied volatility
For the first example let’s look at hedging a long position in a correctly
priced option, so that σ = σ̃ . We will hedge using different volatilities,
σ h . Results are shown in Figure 13. The figure shows the expected profit
and standard deviation of profit when hedging with various volatilities.
The chart also shows minimum and maximum profit. Parameters are
E = 100, S = 100, µ = 0, σ = 0.2, r = 0.1, D = 0, T = 1, and σ̃ = 0.2.

With these parameters the expected profit is small as a fraction of the
market price of the option ($13.3) regardless of the hedging volatility. The
standard deviation of profit is zero when the option is hedged at the
actual volatility. The upside, the maximum profit is much greater than
the downside. Crucially all of the curves have zero value at the
actual/implied volatility.

5.2 Actual volatility > Implied volatility
In Figure 14 is shown the expected profit and standard deviation of profit
when hedging with various volatilities when actual volatility is greater
than implied. The chart again also shows minimum and maximum profit.

Parameters are E = 100, S = 100, µ = 0, σ = 0.4, r = 0.1, D = 0, T = 1,
and σ̃ = 0.2. Note that it is possible to lose money if you hedge at below
implied, but hedging with a higher volatility you will not be able to lose
until hedging with a volatility of approximately 75%. The expected profit
is again insensitive to hedging volatility. 

5.3 Actual volatility < Implied volatility
In Figure 15 is shown properties of the profit when hedging with various
volatilities when actual volatility is less than implied. We are now selling
the option and delta hedging it. Parameters are E = 100, S = 100, µ = 0,
σ = 0.4, r = 0.1, D = 0, T = 1, and σ̃ = 0.2. Now it is possible to lose
money if you hedge at above implied, but hedging with a lower volatility
you will not be able to lose until hedging with a volatility of approxi-
mately 10%. The expected profit is again insensitive to hedging volatility.
The downside is now more dramatic than the upside.

6 Pros and Cons of Hedging with each
Volatility

Given that we seem to have a choice in how to delta hedge it is instructive
to summarize the advantages and disadvantages of the possibilities.

6.1 Hedging with actual volatility
Pros: The main advantage of hedging with actual volatility is that you
know exactly what profit you will get at expiration. So in a classical
risk/reward sense this seems to be the best choice, given that the expected

Figure 13: Expected profit, standard deviation of profit, minimum and
maximum, hedging with various volatilities. E = 100, S = 100, µ = 0, σ = 0.2,
r = 0.1, D = 0, T = 1, ~σ = 0.2.

Figure 14: Expected profit, standard deviation of profit, minimum and
maximum, hedging with various volatilities. E = 100, S = 100, µ = 0, σ = 0.4, 
r = 0.1, D = 0, T = 1, ~σ = 0.2.
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profit can often be insensitive to which volatility you choose to hedge
with whereas the standard deviation is always going to be positive away
from hedging with actual volatility.

Cons: The P&L fluctuations during the life of the option can be daunt-
ing, and so less appealing from a ‘local’ as opposed to ‘global’ risk man-
agement perspective. Also, you are unlikely to be totally confident in
your volatility forecast, the number you are putting into your delta for-
mula. However, you can interpret the previous two figures in terms of
what happens if you intend to hedge with actual but don’t quite get it
right. You can see from those that you do have quite a lot of leeway before
you risk losing money.

6.2 Hedging with implied volatility
Pros: There are three main advantages to hedging with implied volatility.
The first is that there are no local fluctuations in P&L, you are continual-
ly making a profit. The second advantage is that you only need to be on
the right side of the trade to profit. Buy when actual is going to be high-
er than implied and sell if lower. Finally, the number that goes into the
delta is implied volatility, and therefore easy to observe.

Cons: You don’t know how much money you will make, only that it is
positive.

6.3 Hedging with another volatility
You can obviously balance the pros and cons of hedging with actual and
implied by hedging with another volatility altogether. See Dupire (2005)
for work in this area.

In practice which volatility one uses is often determined by whether
one is constrained to mark to market or mark to model. If one is able to
mark to model then one is not necessarily concerned with the day-to-day
fluctuations in the mark-to-market profit and loss and so it is natural to
hedge using actual volatility. This is usually not far from optimal in the
sense of possible expected total profit, and it has no standard deviation of
final profit. However, it is common to have to report profit and loss based
on market values. This constraint may be imposed by a risk management
department, by prime brokers, or by investors who may monitor the
mark-to-market profit on a regular basis. In this case it is more usual to
hedge based on implied volatility to avoid the daily fluctuations in the
profit and loss.

We can begin to quantify the ‘local’ risk, the daily fluctuations in
P&L, by looking at the random component in a portfolio hedged using a
volatility of σ h . The standard deviation of this risk is

σ S | �i − �h |
√

dt. (4)

Note that this expression depends on all three volatilities.
Figure 16 shows the two deltas (for a call option), one using implied

volatility and the other the hedging volatility, six months before expira-
tion. If the stock is far in or out of the money the two deltas are similar
and so the local risk is small. The local risk is also small where the two
deltas cross over. This ‘sweet spot’ is at

ln(S/E) + (r − D + σ̃ 2/2)(T − t)

σ̃
√

T − t
= ln(S/E) + (r − D + σ h2

/2)(T − t)

σ h
√

T − t
,
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Figure 15: Expected profit, standard deviation of profit, minimum and
maximum, hedging with various volatilities. E = 100, S = 100, µ = 0, σ = 0.2,
r = 0.1, D = 0, T = 1, ~σ = 0.4.

Figure 16: Deltas based on implied volatility and hedging volatility. 
E = 100, S = 100, r = 0.1, D = 0, T = 0.5, ~σ = 0.2, σ h = 0.3.
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that is,

S = E exp

(
− T − t

σ̃ − σ h

(
σ̃ (r − D + σ h2

/2) − σ h(r − D + σ̃ 2/2)

))
.

Figure 17 shows a three-dimensional plot of expression (4), without
the 

√
dt factor, as a function of stock price and time. Figure 18 is a con-

tour map of the same. Parameters are E = 100, S = 100, σ = 0.4, r = 0.1,
D = 0, T = 1, σ̃ = 0.2, σ h = 0.3.

In the spirit of the earlier analyses and formulas we would ideally like
to be able to quantify various statistical properties of the local mark-to-
market fluctuations. This will be the subject of future work.

For the remainder of this paper we will only consider the case of
hedging using a delta based on implied volatility, although the ideas can
be easily extended to the more general case.

7 Portfolios when Hedging with Implied
Volatility

A natural extension to the above analysis is to look at portfolios of
options, options with different strikes and expirations. Since only an
option’s gamma matters when we are hedging using implied volatility,
calls and puts are effectively the same since they have the same gamma.

The profit from a portfolio is now

1

2

∑
k

qk

(
σ 2 − σ̃ 2

k

) ∫ Tk

t0

e−r(s−t0 )S2� i
k ds,

where k is the index for an option, and qk is the quantity of that option.
Introduce

I = 1

2

∑
k

qk

(
σ 2 − σ̃ 2

k

) ∫ t

t0

e−r(s−t0 )S2� i
k ds, (5)

as a new state variable, and the analysis can proceed as before. Note that
since there may be more than one expiration date since we have several
different options, it must be understood in Equation (5) that � i

k is zero for
times beyond the expiration of the option.

The governing differential operator for expectation, variance, etc. is
then

∂

∂ t
+ 1

2
σ 2S2 ∂2

∂S2
+ µS

∂

∂S
+ 1

2

∑
k

(
σ 2 − σ̃ 2

k

)
e−r(t−t0 )S2� i

k

∂

∂ I
= 0,

with final condition representing expectation, variance, etc.

7.1 Expectation
Result 3: The solution for the present value of the expected profit
(t = t0 , S = S0 , I = 0) is simply the sum of individual profits for each
option,

F(S0, t0) =
∑

k

qk
Eke−r(Tk−t0 )(σ 2 − σ̃ 2

k )

2
√

2π

∫ Tk

t0

1√
σ 2(s − t0) + σ̃ 2

k (Tk − s)

exp

(
−

(
ln(S0/Ek) + (

µ − 1
2 σ 2

)
(s − t0) + (

r − D − 1
2 σ̃ 2

k

)
(Tk − s)

)2

2(σ 2(s − t0) + σ̃ 2
k (Tk − s))

)
ds.

Derivation: See Appendix.  

Figure 17: Local risk as a function of stock price and
time to expiration. E = 100, S = 100, σ = 0.4, r = 0.1, D = 0,
T = 1, ~σ = 0.2, σ h = 0.3.

Figure 18: Contour map of local risk as a function of stock price and time to
expiration. E = 100, S = 100, σ = 0.4, r = 0.1, D = 0, T = 1, ~σ = 0.2, σ h = 0.3.
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7.2 Variance
Result 4: The variance is more complicated, obviously, because of the cor-
relation between all of the options in the portfolio. Nevertheless, we can
find an expression for the initial variance as G(S0, t0) − F(S0, t0)

2 where

G(S0, t0) =
∑

j

∑
k

qjqkGjk(S0, t0)

where

Gjk(S0, t0) = EjEk(σ
2 − σ̃ 2

j )(σ 2 − σ̃ 2
k )e−r(Tj−t0 )−r(Tk−t0 )

4πσ σ̃k

∫ min (Tj ,Tk )

t0

∫ Tj

s

ep(u,s;S0 ,t0 )

√
s − t0

√
Tk − s

√
σ 2(u − s) + σ̃ 2

j (Tj − u)√
1

σ 2(s − t0)
+ 1

σ̃ 2
k (Tk − s)

+ 1

σ 2(u − s) + σ̃ 2
j (Tj − u)

du ds (6)

where

p(u, s; S0, t0) = − 1

2

(ln(S0/Ek) + µ̄(s − t0) + r̄k(Tk − s))2

σ̃ 2
k (Tk − s)

− 1

2

(ln(S0/Ej) + µ̄(u − t0) + r̄j(Tj − u))2

σ 2(u − s) + σ̃ 2
j (Tj − u)

+ 1

2

( ln(S0/Ek) + µ̄(s − t0) + r̄k(Tk − s)

σ̃ 2
k (Tk − s)

+ ln(S0/Ej) + µ̄(u − t0) + r̄j(Tj − u)

σ 2(u − s) + σ̃ 2
j (Tj − u)

)2

1

σ 2(s − t0)
+ 1

σ̃ 2
k (Tk − s)

+ 1

σ 2(u − s) + σ̃ 2
j (Tj − u)

and

µ̄ = µ − 1
2 σ 2, r̄j = r − D − 1

2 σ̃ 2
j and r̄k = r − D − 1

2 σ̃ 2
k .

Derivation: See Appendix.  

7.3 Portfolio optimization possibilities
There is clearly plenty of scope for using the above formulas in portfolio
optimization problems. Here we give one example. 

The stock is currently at 100. The growth rate is zero, actual volatility
is 20%, zero dividend yield and the interest rate is 5%. Table 3 shows the
available options, and associated parameters. Observe the negative skew.
The out-of-the-money puts are overvalued and the out-of-the-money calls
are undervalued. (The ‘Profit Total Expected’ row assumes that we buy a
single one of that option.)

Using the above formulas we can find the portfolio that maximizes or
minimizes target quantities (expected profit, standard deviation, ratio of
profit to standard deviation). Let us consider the simple case of maximiz-
ing the expected return, while constraining the standard deviation to be
one. This is a very natural strategy when trying to make a profit from

volatility arbitrage while meeting constraints imposed by regulators, bro-
kers, investors etc. The result is given in Table 4.

The payoff function (with its initial delta hedge) is shown in Figure 19.
This optimization has effectively found an ideal risk reversal trade. This
portfolio would cost −$0.46 to set up, i.e. it would bring in premium. The
expected profit is $6.83.

TECHNICAL ARTICLE 3

A B C D E

Type Put Put Call Call Call

Strike 80 90 100 110 120

Expiration 1 1 1 1 1

Volatility, Implied 0.250 0.225 0.200 0.175 0.150

Option Price, Market 1.511 3.012 10.451 5.054 1.660

Option Value, Theory 0.687 2.310 10.451 6.040 3.247

Profit Total Expected −0.933 −0.752 0.000 0.936 1.410

TABLE 3: AVAILABLE OPTIONS.

A B C D E

Type Put Put Call Call Call
Strike 80 90 100 110 120

Quantity −2.10 −2.25 0 1.46 1.28

TABLE 4: AN OPTIMAL PORTFOLIO.

Figure 19: Payoff with initial delta hedge for optimal portfolio; S = 100, 
µ = 0, σ = 0.2, r = 0.05, D = 0, T = 1. See text for additional parameters 
and information.

Payoff function (with initial delta hedge)
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Because the  state variable representing the profit, I, is not normally
distributed a portfolio analysis based on mean and variance is open to
criticism. So now we shall look at other ways of choosing or valuing a
portfolio.

8 Other Optimization Strategies
Rather than choose an option or a portfolio based on mean and variance
it might be preferable to examine the probability density function for I.
The main reason for this is the observation that I is not normally distrib-
uted. Mathematically the problem for the cumulative distribution func-
tion for the final profit I′ can be written as C(S0, 0, t0; I′) where C(S, I, t; I′)
is the solution of

∂C

∂ t
+ 1

2
σ 2S2 ∂2C

∂S2
+ µS

∂C

∂S
+ 1

2

∑
k

(
σ 2 − σ̃ 2

k

)
e−r(t−t0 )S2� i

k

∂C

∂ I
= 0,

subject to the final condition

C(S, I, Tmax ; I′) = H(I ′ − I),

where Tmax is the expiration of the longest maturity option and H(·) is the
Heaviside function. The same equation, with suitable final conditions,
can be used to choose or optimize a portfolio of options based on criteria
such as the following.

• Maximize probability of making a profit greater than a specified
amount or, equivalently, minimize the probability of making less
than a specified amount 

• Maximize profit at a certain probability threshold, such as 95% (a
Value-at-Risk type of optimization, albeit one with no possibility of a
loss)

Constraints would typically need to be imposed on these optimization
problems, such as having a set budget and/or a limit on number of posi-
tions that can be held.

In the spirit of maximizing expected growth rate (Kelly Criterion) we
could also examine solutions of the above three-dimensional partial differ-
ential equation having final condition being a logarithmic function of I.

9 Exponential Utility Approach
Rather than relying on means and variances, which could be criticized
because we are not working with a Gaussian distribution for I, or solving
a differential equation in three dimensions, which may be slow, there is
another possibility, and one that has neither of these disadvantages. This
is to work within a utility theory framework, in particular using con-
stant absolute risk aversion with utility function

− 1

η
e−ηI.

The parameter η is then a person’s absolute risk aversion.

The governing equation for the expected utility, U, is then

∂U

∂ t
+ 1

2
σ 2S2 ∂2U

∂S2
+ µS

∂U

∂S
+ 1

2

∑
k

(
σ 2 − σ̃ 2

k

)
e−r(t−t0 )S2� i

k

∂U

∂ I
= 0,

with final condition 

U(S, I, Tmax ) = − 1

η
e−ηI.

where Tmax is the expiration of the longest maturity option.
We can look for a solution of the form

U(S, I, t) = − 1

η
e−ηIQ (S, t),

so that

∂Q

∂ t
+ 1

2
σ 2S2 ∂2Q

∂S2
+ µS

∂Q

∂S
− ηQ

2

∑
k

(
σ 2 − σ̃ 2

k

)
e−r(t−t0 )S2� i

k = 0,

with final condition 

Q (S, Tmax ) = 1.

Being only a two-dimensional equation this will be very quick to solve
numerically. One can then pose and solve various optimal portfolio prob-
lems. We shall not pursue this in this paper.

10 Many Underlyings and Portfolios 
of Options

Although methodologies based on formulas and/or partial differential
equations are the most efficient when the portfolio only has a small
number of underlyings, one must use simulation techniques when there
are many underlyings in the portfolio.

Because we know the instantaneous profit at each time, for a given
stock price, via simple option pricing formulas for each option’s gamma,
we can very easily simulate the P&L for an arbitrary portfolio. All that is
required is a simulation of the real paths for each of the underlyings.

10.1 Dynamics linked via drift rates
Although option prices are independent of real drift rates, only depend-
ing on risk-neutral rates, i.e. the risk-free interest adjusted for dividends,
the profit from a hedged mispriced option is not. As we have seen above
the profit depends crucially on the growth rate because of the path
dependence. As already mentioned, ideally we would like to see the stock
following a path along which gamma is large since this gives us the high-
est profit. When we have many underlyings we really ought to model the
drift rates of all the stocks as accurately as possible, something that is not
usually considered when simply valuing options in complete markets. In
the above example we assumed constant growth rates for each stock, but
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in reality there may be more interesting, interacting dynamics at work.
Traditionally, in complete markets the sole interaction between stocks
that need concern us is via correlations in the dXi terms, that is, a rela-
tionship at the infinitesimal timescale. In reality, and in the context of
the present work, there will also be longer timescale relationships oper-
ating, that is, a coupling in the growth rates. This can be represented by

dSi = µi(S1, . . . , Sn) dt + σiSi dXi.

11 Conclusions and Further Work
This paper has expanded on the work of Carr and Henrard in terms of
final formulas for the statistical properties of the profit to be made hedg-
ing mispriced options. We have also indicated how more sophisticated
portfolio construction techniques can be applied to this problem rela-
tively straightforwardly. We have concentrated on the case of hedging
using deltas based on implied volatilities because this is the most com-
mon in practice, giving mark-to-market profit the smoothest behavior.  

Appendix: Derivation of Results
Preliminary results
In the following derivations we often require the following simple
results.

First, ∫ ∞

−∞
e−ax2

dx =
√

π

a
. (7)

Second, the solution of 

∂w

∂τ
= ∂2w

∂x2
+ f (x, τ )

that is initially zero and is zero at plus and minus infinity is 

1

2
√

π

∫ ∞

−∞

∫ τ

0

f (x′, τ ′)√
τ − τ ′ e−(x−x′)2 /4(τ −τ ′)dτ ′dx′. (8)

Finally, the transformations 

x = ln(S/E) + 2

σ 2

(
µ − 1

2
σ 2

)
τ and τ = σ 2

2
(T − t),

turn the operator

∂

∂ t
+ 1

2
σ 2 ∂2

∂S2
+ µS

∂

∂S
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1

2
σ 2

(
− ∂

∂τ
+ ∂2

∂x2

)
. (9)

Result 1: Expectation, single option
The equation to be solved for F(S, t) is

∂F

∂ t
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2
σ 2S2 ∂2F

∂S2
+ µS

∂F

∂S
+ 1

2

(
σ 2 − σ̃ 2

)
e−r(t−t0 )S2� i = 0,

with zero final and boundary conditions. Using the above changes of
variables this becomes F(S, t) = w(x, τ ) where

∂w
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2 /2

σ σ̃
√

πτ

where

d2 = σ

σ̃

x − 2

σ 2

(
µ − 1

2
σ 2

)
τ + 2

σ 2

(
r − D − 1

2
σ̃ 2

)
τ

√
2τ

.

The solution of this problem is, using (8), 

1

2π

E
(
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dτ ′dx′.

If we write the argument of the exponential function as

−a(x′ + b)2 + c

we have the solution
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It is easy to show that
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With

s − t = 2

σ 2
τ ′

we have

c = −
(
ln(S/E) + (

µ − 1
2 σ 2

)
(s − t) + (

r − D − 1
2 σ̃ 2

)
(T − s)

)2

2(σ 2(s − t) + σ̃ 2(T − s))
.

From this follows Result 1, that the expected profit initially (t = t0,
S = S0, I = 0) is

Ee−r(T−t0 )(σ 2 − σ̃ 2)

2
√

2π
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Result 2: Variance, single option
The problem for the expectation of the square of the profit is

∂v

∂ t
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2
σ 2S2 ∂2v

∂S2
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2
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with

v(S, I, T) = I2.

A solution can be found of the form

v(S, I, t) = I2 + 2I H(S, t) + G(S, t).

Substituting this into Equation (10) leads to the following equations
for H and G (both to have zero final and boundary conditions):
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Comparing the equations for H and the earlier F we can see that

H = F = Ee−r(T−t0 )(σ 2 − σ̃ 2)
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)
ds.

Notice in this that the expression is a present value at time t = t0, hence
the e−r(T−t0 ) term at the front. The rest of the terms in this must be kept as
the running variables S and t.

Returning to variables x and τ , the governing equation for G(S, t) =
w(x, τ ) is
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+ 2
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and a and c are as above.
The solution is therefore
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and in a and c all τ s become τ ′s and all τ ′s become τ ′′s, and in d2 all τ s
become τ ′s and all xs become x′s.

The coefficient in front of the integral signs simplifies to
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The integral term is of the form
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This exponent is, in full,
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This can be written in the form

−d(x′ + f )2 + g,

where

d = 1

4

σ 2

σ̃ 2

1

τ ′ + 1

4

1

τ − τ ′ + 1

4

σ 2

σ 2(τ ′ − τ ′′) + σ̃ 2τ ′′

and

g = − σ 2

4σ̃ 2τ ′

(
x − 2ατ ′

σ 2

)2

− σ 2

4(σ 2(τ ′ − τ ′′) + σ̃ 2τ ′′)

(
x − 2ατ ′′

σ 2

)2

+ 1

4

(
σ 2

σ̃ 2τ ′

(
x − 2ατ ′

σ 2

)
+ σ 2

(σ 2(τ ′ − τ ′′) + σ̃ 2τ ′′)

(
x − 2ατ ′′

σ 2

))2

σ 2

σ̃ 2

1

τ ′ + 1

τ − τ ′ + σ 2

σ 2(τ ′ − τ ′′) + σ̃ 2τ ′′

,

where

α = µ − 1
2 σ 2 − r + D + 1

2 σ̃ 2.

Using Equation (7) we end up with

1

4π 3/2

E2
(
σ 2 − σ̃ 2

)2
e−2r(T−t0 )

σ 2 σ̃ 2∫ τ

0

∫ τ ′

0

1√
τ ′√τ ′′√τ − τ ′√τ ′ − τ ′′√a

√
π

d
exp(g)dτ ′′dτ ′.

Changing variables to 

τ = σ 2

2
(T − t), τ ′ = σ 2

2
(T − s), and τ ′′ = σ 2

2
(T − u),

and evaluating at S = S0, t = t0, gives the required Result 2.

Result 3: Expectation, portfolio of options
This expression follows from the additivity of expectations.
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Result 4: Variance, portfolio of options
The manipulations and calculations required for the analysis of the port-
folio variance are similar to that for a single contract. There is again a
solution of the form

v(S, I, t) = I2 + 2I H(S, t) + G(S, t).

The main differences are that we have to carry around two implied
volatilities, σ̃j and σ̃k and two expirations, Tj and Tk . We will find that the
solution for the variance is the sum of terms satisfying diffusion equa-
tions with source terms like in Equation (11). The subscript ‘k’ is then
associated with the gamma term, and so appears outside the integral in
the equivalent of (11), and the subscript ‘j’ is associated with the integral
and so appears in the integrand.

There is one additional subtlety in the derivations and that concerns
the expirations. We must consider the general case Tj �= Tk . The integra-
tions in (6) must only be taken over the intervals up until the options
have expired. The easiest way to apply this is to use the convention that
the gammas are zero after expiration. For this reason the s integral is
over t0 to min(Tj, Tk).
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