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Preface

This book emerges from three workshops held over the last three years
involving all the principal contributors to the vine-copula methodology.
Vines are possibly the most important recent development in dependence
modeling. Their flexibility in modeling various dependence structures as well
as their potential to construct rich set of distributions promises wide appli-
cation capabilities. As research and applications in vines have been growing
rapidly, there is a need for an authoritative handbook collating the basic
results, standardizing terminology and methods. Specifically, this handbook

(1) traces historical developments, standardizing notation and terminology,
(2) summarizes findings on bivariate and multivariate copulae,
(3) summarizes findings on regular vines, and
(4) gives an overview of applications.

Many of the results presented here are quite new and not readily available
in journals. New research directions in relation to vines are also discussed.

For available vine-copula software, please visit http://risk.ewi.tudelft.nl.

D. Kurowicka
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CHAPTER 1

Introduction: Dependence Modeling

Dorota Kurowicka

Delft University of Technology
Mekelweg 4, 2628CD Delft, The Netherlands

d.kurowicka@tudelft.nl
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1.1 Introduction

The vines described in this book are not climbing or trailing plants. Nor do
they refer to the Australian rock band. Vines are graphical structures that
represent joint probability distributions. They were named for their close
visual resemblance to grapes (compare Figs. 1.1 and 1.5)

Vines first appeared in mathematical publications in the late 1990s. It
took time before the community of researchers interested in this model grew
sufficiently and before vines were recognized in applications. Vines are still
young but now have sufficiently matured to deserve a comprehensive presen-
tation. This book is a joint effort of the vine-community and contains estab-
lished as well as the newest results concerning vines. Samuel Johnson once
said: “What is written without effort is in general read without pleasure”.

1
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Figure 1.1. Grapes.

A lot of effort has gone into this book and we hope that it will be read with
pleasure.

1.2 Investment Example

It is recognized that modeling dependence is of great importance for financial
and engineering applications. We present the motivation for this book in a
very simple financial example. When we invest $1000 for five years, the
five-year return is:

5yR = 1000(1 + r1)(1 + r2)(1 + r3)(1 + r4)(1 + r5)

where r1, r2, r3, r4, r5 are the interest rates in those five years. Interest rates
are not known with certainty. We can find their distribution in principle from
data but here they were assumed to be uniformly distributed on [0.05, 0.15].

To find the distribution of our fortune after five years, we require the
joint distribution of interest rates. If we assume that interest rates are inde-
pendent, then their joint distribution is a product of marginal distributions
and the five-year return can be easily calculated. If we recognize some sort of
dependence between interest rates, we must build a joint distribution with
given margins and given dependencies. A popular model recently used for
this purpose is a copula. A copula is a distribution on the unit hypercube
with uniform margins. It is also called a dependence function as it allows the
separation of information coming from margins and dependence in the joint
distribution. Different bivariate copulae, with the ability to model various
features of a joint distribution (correlation, tail dependence), are available
(see e.g., Refs. 12 and 20). In Fig. 1.2, scatter plots of the normal and
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Figure 1.2. Scatter plots of normal (left) and Clayton (right) copulae with correlation 0.8.

Clayton copulae are shown. We can see how different these distributions are
even for the same correlation value.

The choice of copula is an important question as this can affect the results
significantly. In the bivariate case, this choice is based on statistical tests
(see e.g., Ref. 9) when joint data are available. If only information about
rank correlation is given, then the minimum information copula with given
correlation is advocated.16 Bivariate copulae are well studied, understood
and applied (see e.g., Refs. 12 and 20).

Multivariate copulae are often limited in the range of dependence struc-
tures that they can handle. The most popular choice is the normal copula
that can model the full range of correlation structures but does not allow for
tail dependence. The student-t copula enjoys the flexibility of taking into
account dependence in the tails of the distribution. However, it has only
one parameter that controls tail dependence in all bivariate margins. Some
models involving constructions with Archimedean copulae are also available
(see e.g., Ref. 15 and Chapter 2). The choice of multivariate copula is usu-
ally based on its simplicity, popularity and possibility of modeling a given
dependence structure.

Graphical models with bivariate copulae as building blocks of the joint
distribution have recently become the tool of choice in dependence mod-
eling. Coming back to our example, let us assume that successive yearly
interest rates have a rank correlation of 0.7. Different dependence struc-
tures can be considered to satisfy the specified information. One possibility



October 11, 2010 12:18 9.75in x 6.5in b979-ch01

4 D. Kurowicka
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Figure 1.3. Tree for investment.
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r4
0.84

r5
0.84

Figure 1.4. Tree for investment with latent variable.

is the dependence tree given in Fig. 1.3. With this structure, the correlation
between r1 and r5 is much smaller than that between r1 and r2.

The second possibility is to correlate all yearly interests to a latent vari-
able with a rank correlation of 0.84 (see Fig. 1.4). This dependence structure
is symmetric and all interest rates are correlated at approximately 0.7.

Dependence structures that can be realized with trees are very limited.
For joint distribution on n variables, we can specify only n− 1 correlations
and realize them with different bivariate copulae. A new graphical model
introduced in 1997, called a regular vine, allows the specification of a joint
distribution on n variables with given margins by specifying

(n
2

)
bivariate

copulae and conditional copulae. Dependence trees are special cases of vines
where conditional copulae are the independence copulae.

Returning to the investment example, we may reflect that if the interest
is high in year 2, it is unlikely to be high in both years 1 and 3. We can
capture this with a D-vine structure with a rank correlation of −0.7 between
ri and ri+2 conditional on ri+1, i = 1, 2, 3, as shown in Fig. 1.5.
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Figure 1.5. D-vine for investment.

Table 1.1. Quantiles, means and variances of distributions for five-year
return in case of independence and for different dependence structures
realized with the normal copula.

Model 5%-quant. 50%-quant. 95%-quant. Mean Variance

5yRind 1459.03 1609.42 1769.03 1611.13 9038.33
5yRtree 1367.43 1615.72 1889.93 1618.66 27384.70
5yRlatent 1348.15 1611.04 1913.49 1618.89 34352.21
5yRvine 1403.41 1607.61 1831.79 1610.58 16817.76

The results of our investment after five years in the case of independence
between interest rates and for different dependence structures realized with
the normal copula are shown in Table 1.1 and Fig. 1.6.

We see that the distributions of our fortune after five years in the case
of different dependence structures are different even when realized by the
same copula. Different choices of copula can be made and they will lead to
different results (see results for Clayton copula in Table 1.2).

To decide if our investment is worth considering, imagine that there is
another investment that in five years yields $1900 with probability 95%.
From Table 1.1 we see that only if the latent model with normal copula was
appropriate for the joint distribution of interest rates would we prefer our
original investment. However, Table 1.2 shows that with none of the depen-
dence structures realized with the Clayton copula can we reach $1900 with
probability 95%. In this case, the competing investment would be preferred.
From this simple example we can appreciate the importance of getting the
dependence right. Flexible models that allow representation of a variety of
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Figure 1.6. CDFs for five-year return in case of independence and for different depen-
dence structures realized with the normal copula.

Table 1.2. Quantiles, means and variances of distributions for five-year
return in case of independence and for different dependence structures
realized with the Clayton copula.

Model 5%-quant. 50%-quant. 95%-quant. Mean Variance

5yRind 1459.33 1609.30 1768.85 1611.13 9039.08
5yRtree 1323.06 1638.60 1863.00 1618.64 27808.26
5yRlatent 1311.26 1639.51 1885.18 1619.20 33761.83
5yRvine 1337.70 1643.43 1792.84 1612.98 18665.36

dependence structures and different choices of copulae is essential for this
kind of problem. Vines are very promising in this respect.

1.3 Vines

A vine on n elements V = (T1, . . . , Tn−1) is a nested set of trees where the
edges of the tree j are nodes of the tree j+1 and each tree has the maximum



October 11, 2010 12:18 9.75in x 6.5in b979-ch01

Introduction: Dependence Modeling 7

number of edges. A regular vine on n elements is one in which two edges in
tree j are joined by an edge in tree j+1 only if these edges share a common
node.

For each edge of a vine, we define constraint, conditioned and conditioning
sets of this edge as follows: the nodes of the first tree reachable from a given
edge via the membership relation are called the constraint set of that edge.
When two edges are joined by an edge in the next tree, the intersection of
the respective constraint sets form the conditioning set, and the symmetric
difference of the constraint sets is the conditioned set of this edge. Formal
definitions can be found in Refs. 4, 3 and 13 are summarized in Chapter 3.
Copulae can be assigned to the edges of the vine such that the conditioned
variables correspond to the conditioned set, and the conditioning variables
to the conditioning set of an edge.

1.3.1 Graphical representation

In Fig. 1.5, a special type of vine on five elements, the D-vine, is shown.
Copulae and conditional copulae that can be assigned to the edges of this
vine are (from left to right), in T1, c12, c23, c34, c45; in T2, c13|2, c24|3, c35|4;
c14|23, c25|34 in the third tree; and only one copula c15|234 in the fourth. For
the D-vine the graphical representation in Fig. 1.5 is quite clear; however,
for other regular vines, this type of graphical representation can be a bit
messy (see the C-vine in Fig. 1.7).

1

2

3

4

5
c15

c14

c13

c12

c23|1

c24|1

c25|1

c34|12
c35|12

c45|123

Figure 1.7. C-vine on five variables with copulae and conditional copulae assigned to the
edges.
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1 2 3 4 5

12 23 34 45

13|2 24|3 35|4

14|23 25|34

15|234

Figure 1.8. Trees for D-vine in Fig. 1.5 where nodes of each tree are enumerated by
conditioned and conditioning sets of copula that can be assigned to it.

4 1 2

3

5

12 14

13

15

24|1 23|1 25|1

34|12 35|12

45|123

Figure 1.9. Trees for C-vine in Fig. 1.7 where nodes of each tree are enumerated by
conditioned and conditioning sets of copula that can be assigned to it.

Often it is clearer to show all trees in a vine separately (see Figs. 1.8
and 1.9 where all trees are shown separately for the D-vine in Fig. 1.5 and
the C-vine in Fig. 1.7 respectively).

A representation where all trees are kept separately is not very compact
in terms of storing information necessary to represent a given vine. For stor-
ing information necessary for any regular vine, an n by n array can be used
instead (for more information, see Ref. 18 or Chapters 9 and 10. We follow
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Table 1.3. Array for the D-vine in Fig. 1.5 (left)
and the C-vine in Fig. 1.7 (right).

3 3 3 2 4

2 2 3 3

4 4 2

1 1

5

1 1 1 1 1

2 2 2 2

3 3 3

4 4

5

here the notation used in Chapter 10). In Table 1.3, arrays containing all
information for the D-vine in Fig. 1.5 and the C-vine in Fig. 1.7 are shown.

The diagonal elements in arrays printed in bold denote an ordering of
variables in the vine, called the natural order. From the rightmost column of
the left array in Table 1.3, we can read that variable 5 is in the conditioned
set of the top node of the vine together with variable 1, and the conditioning
set consists of variables {2, 3, 4}. In the third tree, the variable 5 forms with
2 the conditioned set of an edge, and the conditioning set of this edge is
{3, 4}. In the second tree, 5 is paired with 3 and conditioned on 4, and in
the first tree 5 is connected with 4. Notice the very simple structure of the
array for the C-vine.

The bottom part of both arrays is empty and it can store, for instance,
information about the parameters of copulae that are assigned to the edges
of the vine.

1.3.2 Vine density

Bedford and Cooke3 show that the joint density of a regular vine copula with
margins f1, . . . , fn is a product of (conditional) copula densities assigned to
the edges of the vine and a product of marginal densities. For the C-vine in
Fig. 1.7, the density is of the form:

f1...5 = f1 . . . f5

4∏

i=1

5∏

j=i+1

cij|i+1...j−1(Fi|i+1...j−1, Fj|i+1...j−1). (1.1)

On the other hand, given a positive joint density f1...5 with standard
factorization

∏5
i=1 fi|1...i−1, we can see that the ith term of this factorization

(i > 1) can be expressed as:

fi|1...i−1 = ci,i−1|1...i−2(Fi|1...i−2, Fi−1|1...i−2)fi−1|1...i−2.

This recursive representation leads to the conclusion that every positive
multivariate density function can be expressed as a product of bivariate cop-
ula acting on several different conditional probability distributions. Hence,
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every positive joint density can be represented as a density of any regular
vine copula.

For most densities, the conditional copulae will depend on conditioning
variables as shown for the trivariate Frank’s copula density in Example 1.1.
Distributions belonging to the elliptical family factorize on a vine such that
conditional copulae do not depend on conditioning variables.

Example 1.1. Consider Frank’s copula with density

c(u, v; θ) = θη
e−θ(u+v)

(η − (1− e−θu)(1 − e−θv))2 (1.2)

where θ > 0, η = 1 − e−θ. It is shown in Ref. 12 that this copula can be
extended to the multivariate case. The trivariate copula density belonging
to Frank’s family is:

c123(u1, u2, u3; θ) = θ2η2e−θ(u1+u2+u3)

× η2 + (1− e−θu1)(1− e−θu2)(1− e−θu3)
(η2 − (1− e−θu1)(1 − e−θu2)(1 − e−θu3))3

. (1.3)

All three bivariate margins of (1.3) are Frank’s with the same parameter θ.
If we consider a D-vine with c12 and c13 of the form (1.2), then to get a vine
copula representation of the density (1.3) we must only find the conditional
copula c13|2, which is:

c13|2(u, v; θ, u2) =
2uv + (u− 3uv + v)e−θu2 + (1− u)(1 − v)e−2θu2

(1 + (1− u)(1− v)(e−θu2 − 1))3
.

The conditional copula does not belong to Frank’s family and it depends on
the conditioning variable.

1.3.3 Estimation

When estimating a vine copula from data it is usually assumed that con-
ditional copulae do not depend on conditioning variables.a Moreover, the
type of a vine structure is fixed and only few families of bivariate copulae
are taken into consideration.

The estimation of copula parameters using the maximum likelihood prin-
ciple, for the vine copula or pair-copula construction (PCC),2 is performed

aTo our knowledge, it is not known how severe this assumption is. For more information,
see Ref. 10.
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sequentially starting from the first tree. This landmark advance in associ-
ating bivariate copulae to a vine and estimating copula parameters from
data demonstrated the superiority of vines and opened up large areas of
application in mathematical finance, risk analysis and uncertainty model-
ing in engineering1 (for more information about PCC, see Chapter 3, and
Chapters 13, 15 and 16 for examples of applications).

The assumption of constant conditional copulae and consideration of only
a few types of bivariate families in fitting a vine to data cause a phenomenon
where some types of vines fit the data better than the others. To find the
best vine structure, we would in principle have to estimate all possible vines.
In dimensions higher than seven or eight, this is infeasible as the number of
vines grows rapidly with dimension (see Ref. 18 and Chapter 9). Moreover,
because of sequential estimation in PCC, estimates for parameters of condi-
tional copulae in higher-order trees are less reliable. For higher-dimensional
cases, some simplifying assumptions for fitting vines to data will have to be
made. Some ideas on this subject are based on optimal truncations of a vine
(see Chapter 11). Searching for the best vine model can also be approached
from a Bayesian perspective (see Chapter 12).

If joint data are not available, there exist protocols to elicit copula param-
eters from experts.19

1.3.4 Properties and applications

Some properties of vines are already well established (see Refs. 3, 4 and 13
and Chapter 3). In this volume, new properties of vine distributions are
presented. In Chapter 8, the similarities and differences in dependence for
different regular vines on n variables are studied. It is shown that for n ≤ 4,
only two types of vines are available, namely C-vines and D-vines. In higher
dimensions, other vine structures appear. Distributions corresponding to
different vines are compared from the perspective of marginal dependence.
It is shown that under some conditions the bivariate marginal dependence
from the C-vine is the highest of all vines on five nodes.

Tail dependence of vine copula is of great interest. It is shown in
Chapter 9 that vine copulae have flexible asymmetry in the joint upper and
lower tails. This flexibility can be achieved by appropriate choice of bivari-
ate copulae. Figure 1.10 shows contours of bivariate densities for (X1,X3)
with standard normal margins and a copula which is a bivariate margin of a
D-vine with copulae c12, c23 and c13|2. Rank correlations on the D-vine are
r12 = 0.5, r23 = 0.6 and r13|2 = 0.7 for all cases. They are, however, realized
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Figure 1.10. Contours of densities for (X1, X3) with standard normal margins and copula
obtained from the D-vine DV(1,2,3) with Spearman correlations r12 = 0.5, r23 = 0.6
and r13|2 = 0.7 realized by copulae (a) Normal, Gumbel, Clayton (b) Gumbel, Gumbel,
Gumbel (c) Clayton, Clayton, Clayton and (d) Frank, Frank, Frank.

by different bivariate copulae. A variety of distributions can be obtained
with different choices of bivariate copulae.

Copulae are naturally used for continuous variables. They can also
be useful in simulating models for high-dimensional count variables. The
normal copulae were utilized for the construction of multivariate discrete
distributions with specified correlation structure. However, due to the pos-
itive definiteness constraint, it is challenging to determine the appropriate
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normal copula parameters for a specified target correlation. Parameters of
the normal copula can, however, be reparameterized into an algebraically
independent set of partial correlations assigned to the edges of a vine. This
idea allows efficient sampling of high-dimensional count variables and is
presented in Chapter 4.

Vines are undirected graphical structures representing joint distributions.
In Chapter 14, a directed graphical model, Non-Parametric Bayesian Belief
Net (NPBBN), is presented and compared with vines. The most impor-
tant difference between NPBBNs and regular vines appears to be in the
conditional independencies that they can represent. The choice between
representing a multivariate distribution using a regular vine or a NPBBN
depends on many factors, some of which are discussed in Chapter 14.

1.4 Outline

The focus of this book is on vine copulae or PCCs. However, in Chapter 2,
different multivariate copula classes and construction schemes of multivari-
ate models are also reviewed. Popular multivariate copulae belonging to the
elliptical family as well as Archimedean copulae and their generalizations
are presented.

In Chapter 3, an introduction to the main idea of vines as graphical mod-
els is presented. This chapter traces the early history of vines and presents
the motivation for their construction. Important properties and applications
of vines are included.

In Chapter 4, vine copulae are used to sample multivariate count vari-
ables with target correlation structure.

Chapter 6 surveys the asymptotic theory of estimation of a copula from
a frequentistic perspective and presents the problems involved in frequen-
tistic model selection among several candidate copulae using the Maximum
Pseudo Likelihood Estimator (MPLE). Frequentistic copula model selec-
tion has recently been addressed through the development of the Copula
Information Criterion (CIC) — a model selection formula that extends the
Akaike Information Criterion (AIC), based on maximum likelihood, to the
MPLE.

Chapters 5 and 8 study tail dependence of various multivariate distribu-
tions. In Chapter 8, multivariate tail dependence functions are introduced
and applied to vine copulae.

Chapter 9 explores how many different vines and regular vines are avail-
able. It is shown that the number of possible vines grows rapidly with
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dimension. A few algorithms for generating regular vines are presented in
this chapter. It also contains a catalogue of regular vines up to dimension 9.

Chapter 10 shows an algorithm to generate all regular vines. This algo-
rithm is used to obtain some general results about the number of equivalence
classes for regular vines.

In Chapter 7, different types of five-dimensional vines are studied. Six
equivalence classes for five-dimensional vines have been found. They are
compared from the perspective of bivariate marginal dependence obtained
when the bivariate copulae at each level were assumed to be the same. An
interesting pattern of dependence emerges from this study, which may be
helpful in the use of vine copulae for modeling multivariate data.

For high-dimensional problems, simplifying assumptions have to be made
to reduce the complexity and computational burden involved in fitting vine
copulae. Chapter 11 explores truncations of vines and proposes a heuristic
search algorithm for the ‘best vine’ for the target correlation structure.

Chapter 12 reviews available MCMC estimation and model selection
algorithms as well as their possible extensions for D-vine pair-copula con-
structions based on bivariate t-copulae. Theory presented in this chapter is
then applied in Chapter 13 to Australian electricity load data.

Chapter 14 compares regular vines with the directed graphical mod-
els that represent joint distribution, called Non-Parametric Bayesian Belief
Nets.

Chapter 15 compares three constructions for modeling higher-
dimensional dependence: the Student copula, the partially nested
Archimedean construction and the pair-copula construction. It is shown
through two applications that the PCC provides a better fit to financial
data than the two other structures.

In Chapter 16, the dependence structure of multivariate financial returns
is modeled with a time-varying D-vine copula. Two different data sets, one
with six exchange rates and another with five Asian equity indices were used
for the analysis. The D-vine structure allows us to model the symmetric
dependence of exchange rates and the asymmetric one of Asian equities.
For both cases, the dependence structure was found to vary in time.

This book concludes with a short summary and a few future research
directions.

All chapters are self-contained and provided with their own set of ref-
erences. However, the notation in all chapters has been unified as much
as possible. The general notation for this book is presented in the next
section.
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1.5 Glossary and Notation

Random vectors, distributions, densities, copulae
X = (X1, . . . ,Xn) n-dimensional random vector;
FX = F1,2,...,n cumulative distribution function (cdf) of X,

FX(x) = F1,2,...,n(x1, . . . , xn) value at x = (x1, . . . , xn);
fX = f1,2,...,n probability density function (pdf) of X;
F̄ = F̄X the survival function of X;

FXi = Fi and fXi = fi marginal cdfs and pdfs, respectively;
FS marginal distribution, where S ⊂ {1, . . . , n},

FXi|X1,...,Xk
= Fi|1···k conditional distribution of Xi given X1, . . . ,Xk; its

value Fi|1···k(xi|x1, . . . , xk);
CX = C1,2,...,n copula for X with density cX where
FX = CX(F1, . . . , Fn) and fX = f1 · · · fn · cX(F1, . . . , Fn);

Ci1,i2|S (·|xk : k ∈ S) bivariate conditional copula of Fi1|S(·|xk : k ∈ S)
and Fi2|S(·|xk : k ∈ S) where Fi1|S and Fi2|S univariate
conditional cdfs and ij �∈ S for j = 1, 2.

Correlations

ρ(Xi,Xj) = ρij product moment (pearson) correlation of Xi,Xj

rXi,Xj = rij = ρ(Fi(Xi), Fj(Xj)) Spearman rank correlation of Xi,Xj .

Graphs

G = (N,E) graph, N vertex set, E edge set;
T = (N,E) tree;
V = V(n) = (T1, . . . , Tn−1) vine on n elements.

Information

I(f, g) or KL(f, g) information (Kullback–Leibler) divergence between f

and g;
MI(f) mutual information of f .

Time series

AR(m) autoregressive process of order m.
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bivariate dependence parameters. In L. Rüschendorf, B. Schweizer and M. D. Taylor
(eds.), Distributions with Fixed Marginals and Related Topics, 28:120–141.

12. Joe H. (1997). Multivariate Models and Dependence Concepts. Chapman & Hall,
London.

13. Kurowicka D. and Cooke R.M. (2006). Uncertainty Analysis with High Dimensional
Dependence Modelling. Wiley, New York.

14. Kurowicka D. and Cooke R.M. (2007). Sampling algorithms for generating joint uni-
form distributions using the vine-copula method. Computational Statistics and Data
Analysis, 51:2889–2906.

15. McNeil A.J., Frey R. and Embrechts P. (2006). Quantitative Risk Management:
Concepts, Techniques and Tools. Princeton University Press, Princeton.

16. Meeuwissen A. and Bedford T.J. (1997). Minimally informative distributions
with given rank correlation for use in uncertainty analysis. Journal of Statistical
Computation and Simulation, 57:143–175.

17. Min A. and Czado C. (2010). Bayesian inference for multivariate copulas using pair
copula constructions. Journal of Financial Econometrics. In press.
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Though dating back to 1959 when the term “copulae” was coined, copula models
only started their triumphal procession in the mid-1990s. Application of copulae
was primarily restricted to the world of finance and insurance but now the copula
concept has found its way into nearly all relevant statistical and mathematical
literature where multivariate dependence structures are involved. Whereas the
bivariate case was central in most of the publications and seems to be well-
explored at present, there is still an ongoing and active debate on the construction
of multivariate copula models. Apart from pair-copula constructions, which are
the focus of this book and intensively discussed in the following chapters, this
chapter briefly reviews both different copula classes and construction schemes of
multivariate models.
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2.1 Copulae

Loosely speaking, a copula incorporates the information on the dependence
structure of n > 1 random variables X1, . . . ,Xn. For reasons of simplicity,
let us assume that the corresponding distribution functions F1, . . . , Fn are
continuous with the inverse functions F−1

1 , . . . , F−1
n (details on discrete mar-

gins can be found, for instance, in Genest and Neslehova20). It follows from
the probability integral transform that Ui ≡ Fi(Xi) is uniformly distributed
on (0, 1) for i = 1, . . . , n. Conversely, Xi = F−1

i (Ui) for i = 1, . . . , n. With
this in mind,

P (X1 ≤ F−1
1 (x1), . . . ,Xn ≤ F−1

n (xn)) = P (U1 ≤ x1, . . . , Un ≤ xn)
≡ C(x1, . . . , xn).

Obviously, the function C is a distribution function with support on [0, 1]n

with uniform margins, a so-called copula.a Conversely, we obtain the follow-
ing decomposition:

P (X1 ≤ x1, . . . ,Xn ≤ xn) = P (F1(X1) ≤ F1(x1), . . . , Fn(Xn) ≤ Fn(xn))
= C(F1(x1), . . . , Fn(xn)).

Under the above assumptions, there is a one-to-one correspondence between
the copula C and the distribution of X = (X1, . . . ,Xn)′, as stated in the
fundamental theorem of Sklar.

Theorem 2.1 (Sklar43). Given random variables X1, . . . ,Xn with con-
tinuous distribution functions F1, . . . , Fn and joint distribution function F,

there exists a unique copula C such that for all x = (x1, . . . , xn)′ ∈ R
n:

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). (2.1)

Conversely, given any distribution functions F1, . . . , Fn and copula C, F

defined through Eq. (2.1) is an n-variate distribution function with marginals
F1, . . . , Fn.

According to (2.1), the copula “couples” the marginal distributions to the
joint distribution function F . Hence, Eq. (2.1) enables us to construct the
joint distribution function F as follows: At the first stage, the marginal
distribution F1, . . . , Fn have to be specified, whereas, at the second stage,

aA formal definition of multivariate copulae is provided by Nelsen.36
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the underlying copula model has to be selected. On the other hand, Eq. (2.1)
can be re-written as follows:

F (F−1
1 (x1), . . . , F−1

n (xn)) = C(u1, . . . , un). (2.2)

Equation (2.2) reveals how to extract the copula of a (given) multivariate
distribution. Take, for instance, elliptical copulae which are discussed in the
next subsection. We conclude this section with an example that contains
simple but prominent copulae.

Example 2.1.

• Independence copula: Assume that the random variables X1, . . . ,Xn are
independent. According to (2.1), the underlying (“independence”) copula
is given by

C⊥(u) ≡ C(u1, . . . , un) = u1 · · · un.
• Copula bounds: Every multivariate copula is bounded from above and

below by the so-called Fréchet–Hoeffding bounds, i.e.,

max{u1 + · · ·+ un − (n− 1), 0} ≤ C(u1, . . . , un) ≤ min{u1, . . . , un}.

Note that only the upper bound is a valid copula for n > 2.
By the end of this chapter, we will have looked at much more flexible,

parametric copula classes and construction schemes for multivariate copulae,
without claiming to be fully comprehensive. For a long time, both practition-
ers and theorists have relied solely on the multivariate Gaussian distribution
and Gaussian copula, respectively, where the dependence structure is com-
pletely determined by pairwise correlations. More generally, elliptical copu-
lae (see Section 2.2) still maintain many of their attractive properties. But
while elliptical distributions are able to model moderate and/or heavy tails,
they fail to capture asymmetric dependence structures. Among the classes
of non-elliptical copulae, Archimedean copulae and its generalizations enjoy
great popularity and are the subject of Section 2.3. Within this chapter,
the focus is primarily on these two copula classes and on selected construc-
tion schemes of multivariate copulae published recently (e.g., Refs. 17, 30,
35). Beyond that, there exist a bundle of multivariate copulae which are
excluded from this overview. To name only a few, we refer to multivariate
extreme-value copulae (see, for instance, McNeil et al.32 or Joe24), multi-
variate Farlie–Gumbel–Morgenstern copulae (see, for instance, Drouet and
Kotz12) or multivariate Marshall–Olkin copulae (see, for instance, Joe24).

For a detailed introduction to copulae we refer the reader to the
textbooks.12,24,36 Application of copulae to finance can be found in
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Refs. 7, 9, 32. Furthermore, overviews of copulae and some background the-
ory are provided in Genest and Favre,21 Embrechts et al.14,15 or, from a more
critical point of view, in Mikosch.34

2.2 Elliptical Copulae and Generalizations

2.2.1 Elliptical copulae

The class of elliptical copulae (EC) constitutes the prime example of implicit
copulae stated in (2.2). EC are copulae associated with elliptical distri-
butionsb and are widely used in statistics and econometrics, especially in
finance. Note that EC are not elliptical distributions themselves. EC have
the virtue that they extend easily to arbitrary dimensions n and are rich in
parameters, at least n(n−1)/2. However, radial asymmetries and asymmet-
ric tail behavior cannot be captured within this class. Due to their implicit
definition, explicit expressions for the copula are not available. Evaluating
an elliptical copula requires the calculation of multiple integrals without
closed-form solutions, which must be done numerically. Applications and
limitations of EC are discussed in more detail by Frahm et al.,19 whereas
Hult and Lindskog23 and Abdous et al.1 deal with extremal dependence and
tail dependence of elliptically contoured distributions. Within the elliptical
class, both Gaussian and t-copulae play a predominant role.

Example 2.2 (Gaussian copula). Let Φn
R denote the standardized

n-variate normal distribution with correlation matrix R. Applying (2.2),
the Gaussian copula is defined as follows:

C(u;R) = Φn
R(Φ−1(u1), . . . ,Φ−1(un)),

where Φ−1 denotes the quantile function of a univariate standard normal
distribution. Per construction, the Gaussian copula generates the standard
Gaussian joint distribution if and only if the margins follow a standard
normal distribution. The corresponding copula density is given by

c(u;R) =

1

(2π)n/2
√

|R| exp(−0.5ζ ′R−1ζ)
∏n
j=1

1√
2π

exp(−0.5ζ2
j )

=
exp(−0.5ζ ′(R−1 − In)ζ)√

|R|
,

with ζ ≡ (ζ1, . . . , ζn)′ and ζi = Φ−1(ui) for i = 1, . . . , n. Restricting to
the bivariate case, a bivariate Gaussian variable admits no tail dependence

bA detailed treatment of elliptically contoured distribution is provided by Fang et al.16
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(see, e.g., Ref. 15). Extensions to the Gaussian copula can be found in
Andersen and Sidenius.2

Example 2.3 (Student-t copula). Let Z ∼ Nn(0,Σ) and R =
√
ν/
√
S

with S ∼ χ2(ν), i.e. a chi-squared variable with ν degrees of freedom. Then
the R

n-valued random vector

Y ≡ RZ = (RZ1, . . . , RZn)

has a t-distribution with ν degrees of freedom. If ν > 2, Cov(Y) = ν
ν−2Σ.

Again, applying Sklar’s theorem and defining ρ ≡ (ρij)1≤i,j≤n with ρij ≡
Σij/

√
ΣiiΣjj, the implicit copula expression is given by

Ct(u; ν,ρ) = tnν,ρ(t−1
ν (u), t−1

ν (v)),

where t−1
ν denotes the inverse function of the classical univariate

t-distribution. The associated density function of the t-copula is given by

ct(u;ρ, ν) =
1√
|ρ|

Γ
(
ν+n

2

)

Γ
(
ν
2

)
(

Γ
(
ν
2

)

Γ
(
ν+1

2

)
)n ∏n

j=1

(
1 + t−1

ν (uj)
2

ν

)ν+1
2

(
1 + ζ′ρ−1ζ

ν

)ν+n
2

. (2.3)

Restricting again to the bivariate case, the t-copula has tail dependence
coefficient

λ = λU = λL = 2tν+1

(
−
√
ν + 1

√
1− ρ√

1− ρ

)
> 0,

provided that ρ ≥ −1. Venter44,45 deals with the estimation, application
and limitations of the Student t-copula, whereas Kole et al.28 perform stress
testing under Student’s t-dependence.

Still within the elliptical class, Mendes and Arslan33 favor a generalized
t-copula which allows for different degrees and types of linear and non-
linear dependence. In particular, they derive expressions for its coefficients
of upper and lower tail dependence and suggest applications in finance,
including portfolio optimization and computation of measures of contagion.

Example 2.4 (GT-copula). Arslan3 introduces a new family of multi-
variate generalized distributions as a scale mixture of a multivariate power
exponential distribution (see Gómez et al.22) and an inverse generalized
gamma distribution with a scale parameter, and shows that this family
of distributions belongs to the family of elliptically contoured distribu-
tions that includes the multivariate normal distribution and the multivari-
ate t-distribution as special or limiting cases. The corresponding copula



October 11, 2010 12:18 9.75in x 6.5in b979-ch02

24 M. Fischer

(“GT-copula”) is intensively discussed by Mendes and Arslan33 who show
that the bivariate copula density is given by

c(u1, u2; ρ, ν, β) =
K√

1− ρ2
·

[
ν
2 +

(
ζ21+ζ22−2ρζ1ζ2

1−ρ2
)β]− ν

2
− 1

β

f(ζ1;β, ν/2)f(ζ2;β, ν/2)
, (2.4)

with K ≡ β Γ(n/2)qq

πn/2B(q,n/2β)
, ζi ≡ F−1

GT (ui) for i = 1, 2 and where the marginal
density and distribution function of MGT marginals, respectively, are

f(x;β, q) = K

∫ ∞

x2

(y − x2)−1/2

(q + yβ)q+1/β
dy (2.5)

and

F (x;β, q) =
1
2

+
∫ ∞

x2

arcsin(x/
√
y)

(q + yβ)q+1/β
dy. (2.6)

Unfortunately, explicit formulae for the integrals in (2.5) and (2.6) are not
available and numerical procedures are required in order to evaluate both
copula and copula density.

Example 2.5 (Elliptical generalized hyperbolic (GH) copulae).
Dating back to Barndorff-Nielsen,4,5 both univariate and multivariate GH
distributions have become very popular in the last decade, especially
in finance (see, for instance, Prause38). This distribution family exhibits
heavier tails than the Gaussian distribution but lighter ones than the
t-distribution, both of which appear as limit cases. All moments of the GH
distribution exist and the moment-generating function is available in closed
form. Though multivariate GH distributions share the desirable characteris-
tics of the univariate one (i.e., flexibility, semi-heavy tails), this distribution
family possesses no parameter configuration for which the case of marginal
independence can be modeled. Above that, the bivariate GH distribution is
tail-independent (see, e.g., Schmidt41). In general, the multivariate version
arises as a normal mean-variance mixture, i.e., as a multivariate normal
distribution with (random) mean vector µ + βτ� and (random) covari-
ance matrix τ�, where τ itself follows a univariate generalized inverse
Gaussian distribution (see, e.g., Jørgensen25). The corresponding GH den-
sity is given by

fn(x;Θ) =

(
ψ

(ψ+β�β′)

)λ/2 (
(ψ+β�β′)

χ

)n/4

(2π)n/2Kλ(
√
ψχ)

·
Kλ−n/2(

√
(ψ + β�β′)(χ+ z))

(1 + z/χ)n/4−λ/2e−β′(x−µ)
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with z ≡ (x−µ)′�−1(x−µ), � being a positive definite matrix with deter-
minant 1, parameter vector Θ ≡ (µ, χ,β, ψ, λ,�)′ and where Kλ(x) denotes
the modified Bessel function of the third kind. Ellipticity is achieved only
if the asymmetry parameter vector β is set to zero. Despite the popularity of
the GH distribution, the literature on the corresponding GH copula itself is
relatively sparse (e.g., Schmidt41,42 and Lentzas29). Under a slightly differ-
ent parametrization (see McNeil et al.32) that has the property that mixing
parameters remain invariant under linear affine transformations, Lentzas29

derives the copula density of a GH distribution as follows:

cGH(u) =
k ·Kλ−n

2

(√
(χ+ (ζ − µ)′Σ−1(ζ − µ))(ψ + γ′Σ−1γ)

)

e−(ζ−µ)′Σ−1γ((χ+ (ζ − µ)′Σ−1(ζ − µ))(ψ + γ′Σ−1γ))
n
2
−λ

×




n∏

i=1

ki ·Kλ− 1
2

{√(
χ+ (ζi−µi)2

Σii

)(
ψ + γ2

i
Σii

)}

e
− γi(ζi−µi)

Σii

√(
χ+ (ζi−µi)2

Σii

)(
ψ + γ2

i
Σii

) 1
2
−λ




−1

with ζ ≡ (ζ1, . . . , ζn), ζi ≡ F−1
GH(ui) and constants given by

k ≡ (
√
ψχ)−λψλ(ψ + γ′Σ−1γ)

n
2
−λ

(2π)
n
2 |Σ| 12Kλ(

√
ψχ)

, ki ≡
(
√
ψχ)−λψλ

(
ψ + γ2

i
Σii

)1
2
−λ

√
2πΣiiKλ(

√
ψχ)

.

Note that the hyperbolic quantile function has to be approximated numer-
ically which complicates the evaluation of the GH copula. Lentzas29 also
deals with different estimation methods (ML estimation, rank correlation
ML, Monte Carlo rank correlation ML, simulated GMM and based on the
EM algorithm) for the unknown parameters of a GH copula.

2.2.2 Generalized t-copulae

The t-copula is often chosen when a multivariate model with extreme depen-
dence is needed. However, the use of the standard t-copula is often criticized
due to its restriction of having only a single parameter for the degrees of
freedom that may limit its capability to model the tail dependence structure
in a multivariate case. This motivates the next two examples, the grouped
t-copula and the IT-copula.

Example 2.6 (Grouped t-copula). In order to increase the flexibility
of the popular t-copula, Daul et al.10 and Demarta and McNeil11 introduce
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the grouped t-copula. Their aim is to describe the dependence among risk
factors of different classes. For a given partition of {1, . . . , n} into m subsets
of sizes s1, . . . , sm with s1 + · · ·+ sm = n,

Y ≡ (R1Z1, . . . , R1Zs1 , R2Zs1+1, . . . , R2Zs1+s2, . . . , RmZn)
′.

The random vector (Y1, . . . , Ys1)
′ has s1-dimensional t-distribution with ν1

degrees of freedom and, for k = 1, . . . ,m− 1, (Ys1+···+sk+1, . . . , Ys1+···+sk+1
)′

has sk+1-dimensional t-distribution with νk+1 degrees of freedom. Finally,
the grouped t-copula is the distribution function of the random vector

U = (tν1(Y1), . . . , tν1(Ys1), tν2(Ys1 + 1), . . . , tν2(Ys1+s2), . . . , tνm(Yn))′

where again tνi denotes the distribution function of a classical Student’s
t-distribution with νi degrees of freedom. Daul et al.10 also show how to
estimate the unknown parameters and give some application to credit risk
modeling.

Example 2.7 (The IT-copula). Instead of grouping variables a priori in
such a way that each group has a standard t-copula with its specific degrees
of freedom parameter, both Luo and Shevchenko31 and Barnett et al.6 pro-
pose the so-called “individual” t-copula, or IT-copula, where each group
boils down to one variable or risk factor only. Starting from the stochas-
tic random vector X ≡ (R1Z1, . . . , RnZn)′ with Ri, Zi as in Example 2.3,
the IT-copula is defined as the cumulative distribution function of the ran-
dom vector U ≡ (tν1(X1), . . . , tνn(Xn))′. Clearly, both t-copula and grouped
t-copula are special cases of this construction. Luo and Shevchenko31 derive
the corresponding explicit integral representation with ν ≡ (ν1, . . . , νn)

C(u; ν,Σ) =
∫ 1

0
Φn(z1(u1, s), . . . , zn(un, s)) ds (2.7)

with zi(ui, s) ≡ tνi(ui)/G
−1
νi

(s), where G−1
ν (x) corresponds to the distribu-

tion function of
√
ν/S for a χ2

ν -variable S and Φn denotes the classical mul-
tivariate Gaussian distribution function. From (2.7), the density derives as

c(u; ν,Σ) =

∫ 1
0 φn(z1(u1, s), . . . , zn(un, s))

∏n
i=1(G

−1
νi

(s))−1 ds
∏n
i=1 fνi(t

−1
νi (ui))

. (2.8)

Obviously, the multivariate copula density involves an additional one-
dimensional integration which makes fitting this copula more computa-
tionally demanding than fitting a standard t-copula. For details on model
calibration and application to risk quantification, we refer to Luo and
Shevchenko31 and Barnett et al.6
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2.3 Archimedean Copulae and Generalizations

2.3.1 Classical Archimedean copulae

Let ϕ: [0, 1] → [0,∞] be a continuous, strictly decreasing and convex func-
tion with ϕ(1) = 0, ϕ(0) ≤ ∞ and let ϕ[−1] be the so-called pseudo-inverse
of ϕ defined by

ϕ[−1](t) ≡
{
ϕ−1(t) 0 ≤ t ≤ ϕ(0),
0 ϕ(0) ≤ t ≤ ∞ .

It can be shown (see, e.g., Nelsen36) that

C(u1, u2) = ϕ[−1](ϕ(u1) + ϕ(u2))

defines a class of bivariate copulae, the so-called Archimedean copulae. The
function ϕ is called the (additive) generator of the copula. Furthermore,
if ϕ(0) = ∞, the pseudo-inverse describes an ordinary inverse function
(i.e., ϕ[−1] = ϕ−1) and in this case ϕ is known as a strict generator.

Given a strict generator ϕ: [0, 1]→ [0,∞], bivariate Archimedean copulae
can be extended to the n-dimensional case. For every n ≥ 2, the function
C: [0, 1]n → [0, 1] defined as

C(u) = ϕ−1(ϕ(u1) + ϕ(u2) + · · ·+ ϕ(un)) (2.9)

is an n-dimensional Archimedean copula if and only if ϕ−1 is completely
monotonic on R+, i.e., if ϕ−1 ∈ L∞ with

Lm ≡ {φ: R+ → [0, 1]|φ(0) = 1, φ(∞) = 0, (−1)kφ(k)(t) ≥ 0 , k ≤ m}.

The Gumbel copula is derived from the generator ϕ(t) = (− ln t)θ, θ ≥ 1
and the Clayton copula is generated by

ϕ(t) =
1
θ
(t−θ − 1), θ > 0. (2.10)

For an overview of further Archimedean copulae and the properties of the
aforementioned ones, we refer the reader to the monographs of Nelsen36 and
Joe.24

2.3.2 Non-exchangeable Archimedean copulae

In order to increase flexibility and to allow for non-exchangeable dependence
structures, several generalizations have emerged in the recent literature: A
simple one — the so-called fully nested Archimedean (FNA) copulae — can
be found in Joe24 (p. 89), Whelan46 and Savu and Trede,39 and requires
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n−1 generator functions ϕ1, . . . , ϕn−1 with ϕ−1
1 , . . . , ϕ−1

n−1 ∈ L∞ and ϕi+1 ◦
ϕ−1
i (t) = ϕi+1(ϕ−1

i (t)) ∈ L∗∞ for

L∗n = {φ: R+ → R+|φ(0) = 0, φ(∞) =∞, (−1)k−1φ(k)(t) ≥ 0 , k ≤ n}.

The structure of FNA n-copulae is rather simple: One first couples u1 and
u2, then the copula of u1 and u2 with u3 to form a new copula, which is
coupled afterwards with u4 and so on. Hence, the FNA four-copula is of the
form

C(u) = ϕ−1
3 [ϕ3(ϕ−1

2 [ϕ2(ϕ−1
1 [ϕ1(u1) + ϕ1(u2)]) + ϕ2(u3)]) + ϕ3(u4)].

(2.11)
Figure 2.1 illustrates one possible FNA copula for dimension n = 5.

Alternatively, mixing ordinary Archimedean and FNA copulae, partially
nested Archimedean (PNA) copulae may be used. Again, for ease of nota-
tion, we focus on the four-variate case:

C(u) = ϕ−1[ϕ (ϕ−1
12 [ϕ12 (u1) + ϕ12 (u2)])

+ϕ (ϕ−1
34 [ϕ34 (u3) + ϕ34 (u4)])]. (2.12)

Note that ϕ,ϕ12, ϕ34 are generators with ϕ−1, ϕ−1
12 , ϕ

−1
34 ∈ L∞ and ϕ ◦

ϕ−1
12 , ϕ ◦ ϕ−1

34 ∈ L∗∞. Obviously, one first couples the pairs u1, u2 and u3, u4

with distinct generators. The resulting copula pair is then coupled using a
third generator ϕ (which in turn might be coupled with an additional vari-
able u5 using a fourth generator ψ for an extension to the five-dimensional
case). Another possible structure of a PNA copula is illustrated in Fig. 2.2.

Third, copula C from (2.12) is also an example of a so-called hierarchical
Archimedean (HA) copula. Borrowing the notation of Savu and Trede,39 the
basic idea of this approach is to build a hierarchy of Archimedean copulae
with L different levels, indexed by l = 1, . . . , L. At each level l, there are nl
distinct objects, indexed by j = 1, . . . , nl. In a first step (i.e., in level 1), the

Figure 2.1. FNA copula for n = 5.
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Figure 2.2. PNA copula for n = 5.

variables u1, . . . , un are grouped into n1 ordinary multivariate Archimedean
copulae:

C1,j(u1,j) = ϕ−1
1,j

(
∑

u1,j

ϕ1,j(u1,j)

)
, j = 1, . . . , n1

with (possibly different) generators ϕ1,j and where u1,j denotes the set of
elements of u1, . . . , un belonging to C1,j. All copulae of the first level are
again grouped into copulae at level l = 2. These copulae C2,j with genera-
tor function ϕ2,j , j = 1, . . . , n2 are generalized Archimedean copulae, whose
dependence structure is only of partial exchangeability and consists of cop-
ulae from the previous level (as elements), denoted by

C2,j(C2,j) = ϕ−1
2,j

(
∑

C2,j

ϕ2,j(C2,j)

)
,

where C2,j represents the set of all copulae from level l = 1 enter-
ing copula C2,j . This procedure continues until only a single hierarchical
Archimedean copula CL,1 is achieved at level L. In order to ensure that
CL,1 is a proper copula, we have to proclaim that ϕ−1

l,j ∈ L∞ for l = 1, . . . , L
and j = 1, . . . , nl, and that ϕl+1,i ◦ ϕ−1

l,j ∈ L∗∞ for all l = 1, . . . , L and
j = 1, . . . , nl, i = 1, . . . , nl+1 such that Cl,j ∈ Cl+1,i. Moreover, a hierar-
chy is established if the number of copulae decreases at each level, if the
top level contains only a single object and if at each level the dimensions of
the copulae add up to n. Figure 2.3 displays the possible construction of a
five-dimensional HA copula.

2.3.3 Generalized multiplicative Archimedean copulae

In this section, we focus on methods recently proposed by Morillas35 and
Liebscher.30 Both approaches are based on a second functional represen-
tation of Archimedean copulae via so-called multiplicative generators (see



October 11, 2010 12:18 9.75in x 6.5in b979-ch02

30 M. Fischer

Figure 2.3. HA copula for n = 5.

Nelsen36). Setting ϑ(t) ≡ exp(−ϕ(t)) and ϑ[−1](t) ≡ ϕ[−1](−ln t), Eq. (2.9)
can be rewritten as

C(u1, . . . , un) = ϑ[−1](ϑ(u1) · ϑ(u2) · · · · · ϑ(un)). (2.13)

The function ϑ is called a multiplicative generator of C. Due to the relation-
ship between ϕ and ϑ, the function ϑ: [0, 1] → [0, 1] is continuous, strictly
increasing and concave with ϑ(1) = 1 and ϑ[−1](t) = 0 if 0 ≤ t ≤ ϑ(0) and
ϑ[−1](t) = ϑ−1(t) if ϑ(0) ≤ t ≤ 1.

Equation (2.13) can also be expressed using the independence copula
C⊥(u) =

∏n
i=1 ui:

C(u1, . . . , un) = ϑ[−1](C⊥(ϑ(u1), . . . , ϑ(un))).

Morillas35 substitutes C⊥ by an arbitrary n-copula C in order to obtain

Cϑ(u1, . . . , un) = ϑ[−1](C(ϑ(u1), ϑ(u2), . . . , ϑ(un))) (2.14)

and proves that Cϑ is an n-copula if ϑ[−1] is absolutely monotonic of order n
on [0, 1], i.e. if ϑ[−1](t) satisfies (ϑ[−1])(k)(t) = dkϑ[−1](t)

dtk
≥ 0 for k = 1, 2, . . . , n

and t ∈ (0, 1).
Examples of generator functions are stated in Morillas.35 Notice that

not every generator given there is absolutely monotonic for arbitrary n > 1.
As one can easily verify, the generator ϑ(t) = tr/(2 − tr), r ∈ (0, 1/3] (see
Table 1, no. 9 in Morillas35) has no absolutely monotonic pseudo-inverse of
order n ≥ 3 because the third derivative of ϑ[−1] becomes negative. Hence,
this generator is suitable only for a construction of generalized bivariate cop-
ulae. For the basic properties of such Morillas copulae we refer to Morillas.35

Another way of generalizing Archimedean copulae is the method pro-
posed by Liebscher.30 He introduces the following copula representation:

C(u1, . . . , un) = Ψ


 1
m

m∑

j=1

ψj1(u1) · ψj2(u2) · · · · · ψjn(un)


, (2.15)



October 11, 2010 12:18 9.75in x 6.5in b979-ch02

Multivariate Copulae 31

where Ψ and ψjk: [0, 1]→ [0, 1] are functions satisfying the following condi-
tions: First, it is assumed that Ψ(n) exists with Ψ(k)(u) ≥ 0 for k = 1, 2, . . . , n
and u ∈ [0, 1], and that Ψ(0) = 0. Second, ψjk is assumed to be differen-
tiable and monotone increasing with ψjk(0) = 0 and ψjk(1) = 1 for all k, j.
Third, Liebscher’s construction requires that

Ψ



 1
m

m∑

j=1

ψjk(v)



 = v for k = 1, 2, . . . , n and v ∈ [0, 1].

The three conditions guarantee that C as defined in (2.15) is actually a
copula.

It is easily seen that the approaches of Morillas and Liebscher coincide
for m = 1, ϑ[−1] = Ψ in (2.15) and Cϑ = C⊥ in (2.14).

Liebscher30 also states a general method for deriving appropriate func-
tions ψjk. Let hjk: [0, 1] → [0, 1], j = 1, . . . ,m, k = 1, . . . , n be a differen-
tiable and bijective function such that h′jk(u) > 0 for u ∈ (0, 1), hjk(0) = 0,
hjk(1) = 1 and m · u =

∑m
j=1 hjk(u), u ∈ [0, 1], k = 1, . . . , n. Let ψ = Ψ−1

be the differentiable inverse function of Ψ. An appropriate choice is setting
ψjk(u) = hjk(ψ(u)), since ψ′

jk(u) = h′jk(ψ(u)) · ψ′(u) > 0 for j = 1, . . . ,m
and u ∈ [0, 1].

2.3.4 Koehler–Symanowski copulae

Just like Archimedean copulae, Koehler–Symanowski (KS) copulae admit
closed-form representations. Although KS copulae are not Archimedean in
general, the (Archimedean) Clayton copula with generator function given in
(2.10) is included as a KS copula under certain parameter restrictions. More
generally, Koehler and Symanowski27 introduce a multivariate distribution
as follows: For the index set V = {1, 2, . . . , n}, let V denote the power set
of V and I ≡ {I ∈ V with |I| ≥ 2}. Let further X denote an n-dimensional
random vector with univariate marginal distributions Fi(xi), i ∈ V . For
all subsets I ∈ I, let αI ∈ R

+
0 and αi ∈ R

+
0 for all i ∈ V such that

αi+ = αi +
∑

I∈I αI > 0 for i ∈ I. Then the common distribution function
F is defined by

F (x) =
∏
i∈V Fi(xi)

∏
I∈I

[∑
i∈I
∏
j∈I,j �=i Fj(xj)αj+ − (|I| − 1)

∏
i∈I Fi(xi)αi+

]αI
.



October 11, 2010 12:18 9.75in x 6.5in b979-ch02

32 M. Fischer

The terms KI =
∑

i∈I
∏
j∈I,j �=i Fj(xj)

αj+−(|I|−1)
∏
i∈I Fi(xi)

αi+ are called
association terms. Moreover, Koehler and Symanowski27 showed that the
joint density function exists if the marginal density functions fi exist for all
i ∈ V . Due to the design of the Koehler–Symanowski (KS) distribution, the
corresponding copula has a similar functional form: setting ui = Fi(xi) for
all i ∈ V , the KS copula is

C(u1, . . . , ud) =
∏
i∈V ui

∏
I∈I

[∑
i∈I
∏
j∈I,j �=i u

αj+

j − (|I| − 1)
∏
i∈I u

αi+

i

]αI
.

In contrast to the cumulative distribution function, the functional repre-
sentation of the density is quite complicated due to complex factors with
additive components. Koehler and Symanowski27 gave an explicit formula
for the special case of a so-called KS(2) distribution (see also Caputo8),
where all parameters αI are set equal to zero for |I| > 2. The correspond-
ing copula is termed a KS(2) copula. Assuming that αij ≡ αji ≥ 0 for all
(i, j) ∈ V × V and αi+ = αi1 + αi2 + · · · + αin > 0 for all i ∈ V , the KS(2)
copula simplifies to

C(u1, u2, . . . , un) =
n∏

i=1

ui
∏

i<j

∏
K

−αij

ij (2.16)

with Kij ≡ u1/αi+

i + u
1/αj+

j − u1/αi+

i u
1/αj+

j = Kji.

Palmitesta and Provasi37 apply the KS(2) copula to financial return data.
They also argue that this copula has the ability to model complex depen-
dence structures among subsets of marginal distribution but they do not
present any goodness-of-fit measure or comparison with other copulae. In
contrast, Fischer et al.18 show that the goodness-of-fit can be improved con-
siderably if a four-dimensional association term is included as well.

2.4 Combinations of Arbitrary Copulae into a New One

Morillas’ construction scheme in (2.14) can be seen as a distortion of a
single but arbitrary copula. Similarly, one might be interested in construct-
ing a new copula C from d given copulae C1, . . . , Cd in order to increase
flexibility and/or introduce asymmetry. A simple way is to consider linear
combinations, where the weights sum up to one, i.e.,

C(u) ≡ α1C1(u) + · · ·+ αdCd(u) with α1 + · · ·+ αd = 1. (2.17)
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Putting things differently, the copula in (2.17) results from a weighted arith-
metic mean of C1, . . . , Cd. Klein et al.,26 more generally, deal with conditions
on the copulae such that the weighted Hölder mean of two copulae is again
a copula. Recently, Liebscher30 has discussed products of n-copulae of the
form

C(u1, . . . , un) =
d∏

j=1

Cj(gj1(u1), . . . , gjn(un))

with a set of d · n admissible functions g11, . . . , g1n, . . . , gd1, . . . , gdn, each of
which, being bijective, monotonously increasing or identically equal to 1,
satisfy

d∏

j=1

gji(v) = v, i = 1, . . . , n. (2.18)

Note that (2.18) reduces to g1i(v) = v for d = 1 and i = 1, . . . , n, and C
is recovered. In accordance with Liebscher,30 the possible choices are

gji(v) ≡ vθji with θji > 0 and
d∑

j=1

θji = 1 for i = 1, . . . , n

or, for θ > 0 and α ∈ (0, 1),

g1i(v) ≡ f(v), g2i(v) ≡
v

f(v)
, f(v) =

(
1− e−θiv

1− e−θi

)α
.

Finally, Fischer and Köck17 develop a construction scheme which includes
both Morillas copulae in (2.14) and Liebscher copulae in (2.15) as special
cases. The key idea of Morillas35 is to replace the independence copula
(which is implicitly assumed within the multiplicative Archimedean frame-
work) with an arbitrary copula C and to prove that the new function is a
copula, too. Taking a closer look at (2.15), one might be tempted to replace
the product with an arbitrary n-copula in order to extend Liebscher’s pro-
posal. Assuming that Ψ is absolutely monotonic of order d and ψij is dif-
ferentiable and monotone increasing with ψij(0) = 0, ψij(1) = 1 and that
Ψ( 1

m

∑m
j=1 ψjk(v)) = v, and C1, . . . , Cm are arbitrary copulae with existing

copula densities, Fischer and Köck17 showed that

C(u1, . . . , un) = Ψ



 1
m

m∑

j=1

Cj(ψj1(u1), . . . , ψjn(un))



, m ≥ 1, n ≥ 2

is again a copula.
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2.5 Summary

Whereas copulae seem to be well-explored in the bivariate case, there are
several open issues in the multivariate setting. In particular, the construc-
tion of multivariate copula models which allow us to rebuild various types of
dependencies and admit closed-form representations (at least for the copula
density) in order to perform fast and easy parameter estimation is a chal-
lenging task. Within this chapter, we reviewed both popular copula classes
and different construction schemes which emerged in the previous literature.
Apart from pair-copula constructions, which are the focus of this book, spe-
cial emphasis was put on elliptical copulae and selected generalizations as
well as on generalized Archimedean copulae.
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42. Schmidt R., Hrycej T. and Stützle E. (2006). Multidimensional data modelling with
generalized hyperbolic distributions. Computational Statistics and Data Analysis,
50:2065–2096.
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44. Venter G.G. (2002). Tails of copulas. Proceedings of the Casualty Actuarial Society,
89:68–113.

45. Venter G.G. (2003). Fit to a t-estimation, application and limitations of the t-copula.
ASTIN Colloquium, Berlin, Germany, available at http://www.actuaries.org/
ASTIN/Colloquia/Berlin/venter1.pdf.

46. Whelan N. (2004). Sampling from Archimedean copulas. Quantitative Finance, 4:
339–352.



October 11, 2010 12:18 9.75in x 6.5in b979-ch03

CHAPTER 3

Vines Arise

Roger M. Cooke,∗ Harry Joe† and Kjersti Aas‡

∗Resources for the Future, and Department of Mathematics
Delft University of Technology

Cooke@Rff.org
†Department of Statistics, University of British Columbia

Harry.Joe@ubc.ca
‡Norwegian Computing Centre

Kjersti.Aas@nr.no

An introduction to the main idea of vines as graphical models is presented, along
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3.1 Introduction

A vine is a graphical tool for labeling constraints in high-dimensional dis-
tributions. A regular vine is a special case in which all constraints are
two-dimensional or conditional two-dimensional. Regular vines generalize
trees, and are themselves specializations of something called Cantor trees.5

Combined with copulae, regular vines have proven to be a flexible tool in
high-dimensional dependence modeling. Copulae27,45 are multivariate distri-
butions with uniform univariate margins. Representing a joint distribution
as univariate margins plus copulae allows us to separate the problems of
estimating univariate distributions from those of estimating dependence.
This is handy inasmuch as univariate distributions in many cases can be
adequately estimated from data, whereas dependence information is rough-
hewn, involving summary indicators and judgments.3,33 Whereas the num-
ber of parametric multivariate copula families with flexible dependence is
limited, there are many parametric families of bivariate copulae. Regular
vines owe their increasing popularity to the fact that they leverage from
bivariate copulae and enable extensions to arbitrary dimensions. Sampling
theory and estimation theory for regular vines are well-developed,2,39 and
model inferential methods are being developed.2,36,37 Regular vines have
proven useful in other problems such as (constrained) sampling of corre-
lation matrices,28,40,41 building non-parametric continuous Bayesian belief
nets,17,18 and characterizing the set of rank correlation matrices.29

This chapter traces the historical development of vines and summarizes
their most important properties. We focus on formulating the main results
and indicating their role in the development; for proofs the reader is referred
to the original articles. Section 3.2 gives precise definitions while Section 3.3
describes different types of vines. Section 3.4 on historical origins gives an
informal rendering of the main ideas and Section 3.5 makes the links to
the compatibility of marginal distributions. Sections 3.6–3.9 treat sampling,
model inference and applications, respectively.
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3.2 Regular Vines

Graphical models called vines were introduced in Cooke,9 Bedford and
Cooke5 and Kurowicka and Cooke.34 A vine V on n variables is a nested
set of connected trees V = {T1, . . . , Tn−1} where the edges of tree j are the
nodes of tree j + 1, j = 1, . . . , n− 2. A regular vine on n variables is a vine
in which two edges in tree j are joined by an edge in tree j+ 1 only if these
edges share a common node, j = 1, . . . , n− 2. The formal definitions follow
(based on Section 4.4.1 of Kurowicka and Cooke36).

Definition 3.1 (Regular vine). V is a regular vine on n elements with
E(V) = E1 ∪ · · · ∪En−1 denoting the set of edges of V if

1. V = {T1, . . . , Tn−1},
2. T1 is a connected tree with nodes N1 = {1, . . . , n}, and edges E1;

for i = 2, . . . , n− 1, Ti is a tree with nodes Ni = Ei−1,

3. (proximity) for i = 2, . . . , n − 1, {a, b} ∈ Ei,#(a�b) = 2 where �
denotes the symmetric difference operator and # denotes the cardinality
of a set.

An edge in tree Tj is an unordered pair of nodes of Tj or, equivalently,
an unordered pair of edges of Tj−1. By definition, the order of an edge in
tree Tj is j − 1, j = 1, . . . , n − 1. The degree of a node is the number of
edges attached to that node. A regular vine is called a canonical or C-vine if
each tree Ti has a unique node of degree n− i, and hence has the maximum
degree. A regular vine is called a D-vine if all nodes in T1 have degrees no
higher than 2 (see Figs. 3.2 and 3.3).a

The constraint, conditioning and the conditioned set of an edge are
defined as follows:

Definition 3.2.

1. For e ∈ Ei, i ≤ n − 1, the constraint set associated with e is the
complete union U∗

e of e, that is, the subset of {1, . . . , n} reachable
from e by the membership relation.

aThe term canonical vine first appeared in Bedford and Cooke,4 with the abbreviation of
C-vine appearing in Kurowicka and Cooke;36 the term D-vine first appeared in Kurowicka
and Cooke.36,38 The designation “D” has nothing to recommend it, beyond being the
letter following “C” but it is linked to “drawable” on p. 93 of Kurowicka and Cooke36

(the suggestion that D-vine is an irreverent pun is unfounded).
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2. For i = 1, . . . , n − 1, e ∈ Ei, if e = {j, k} then the conditioning set
associated with e is

De = U∗
j ∩ U∗

k

and the conditioned set associated with e is

{Ce,j , Ce,k} = {U∗
j \De, U

∗
k\De}.

Note that for e ∈ E1, the conditioning set is empty. One can see that the
order of an edge is the cardinality of its conditioning set. For e ∈ Ei, i ≤
n− 1, e = {j, k} we have U∗

e = U∗
j ∪ U∗

k .
Figure 3.1 shows a regular vine (left) and a non-regular vine (right).

Figure 3.2 shows a D-vine on five variables with the constraint sets added.
Conditioning variables are shown to the right of “|”, conditioned variables to
the left. The trees at each echelon are drawn in a different style. Figure 3.3
shows similar information for the C-vine. Although the D-vine looks simpler,
in many ways the C-vine is simpler mathematically. Compare Algorithms 3.1
and 3.2 in Section 3.7 for maximum likelihood estimation.

The following propositions of regular vines are proved in Refs. 5, 34
and 38:

1 2 3 4 1 2 3 4

Figure 3.1. A regular (left) and a non-regular (right) vine on four variables.

1 2 3 4 5
T

T

T

T

1

2

3

1,2 2,3 3,4 4,5

1,3|2 2,4|3 3,5|4

1,4|23 2,5|34

1,5|234

4

Figure 3.2. A D-vine on five variables with constraint sets.



October 11, 2010 12:18 9.75in x 6.5in b979-ch03

Vines Arise 41

2,3|1

1

2 3 4 5

1,2
1,3 1,4

1,5

2,4|1

2,5|1 3,4|12

3,5|12

4,5|123

Figure 3.3. A C-vine on five variables with constraint sets.

Proposition 3.1. Let V = {T1, . . . , Tn−1} be a regular vine, then

(1) the number of edges is n(n− 1)/2,
(2) each conditioned set is a doubleton, each pair of variables occurs exactly

once as a conditioned set,
(3) if two edges have the same conditioning set, then they are the same

edge.

Definition 3.3 (m-child; m-descendant). If node e is an element of node
f , we say that e is an m-child of f ; similarly, if e is reachable from f via the
membership relation: e ∈ e1 ∈ · · · ∈ f , we say that e is an m-descendant
of f .

Proposition 3.2. For any node K of order k > 0 in a regular vine, if
variable i is a member of the conditioned set of K, then i is a member of the
conditioned set of exactly one of the m-children of K, and the conditioning
set of an m-child of K is a subset of the conditioning set of K.

The search for an optimal vine requires a method for enumerating and
searching all vines. The number of regular vines grows very quickly. A closed
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formula for the number of regular vines on n elements was found in Morales-
Nápoles et al.44:

Theorem 3.1.

(1) For any regular vine on n − 1 elements, the number of regular
n-dimensional vines which extend this vine is 2n−3.

(2) There are
(n
2

)
× (n− 2)!× 2(n−2)(n−3)/2 labeled regular vines in total.

Note that the number of extensions of a regular vine does not depend on
the vine itself.

From Kurowicka and Cooke36 (see also Chapter 7 in this volume), we
have that for n = 3, all vines are in the same equivalence class, and for
n = 4, all regular vines are either C-vines or D-vines. For n ≥ 5, there
are many vines that are neither C-vines nor D-vines. However, the C-vines
and D-vines are boundary cases of the possible vines. An extension to non-
regular vines is presented in Bedford and Cooke.5

We conclude this subsection with some examples to illustrate the nota-
tion. The examples consist of a C-vine for n = 3, a general C-vine, a general
D-vine, a D-vine for n = 4, and a vine for n = 5 that is neither a C-vine
nor a D-vine.

For a C-vine with n = 3, in T1, N1 = {1, 2, 3} and E1 = {{1, 2}; {1, 3}} =
{1, 2; 1, 3} = {12; 13}; then in T2, N2 = E1, and E2 = {[{1, 2}; {1, 3}]} =
{2, 3|1} = {23|1}. The shorthand notation with fewer commas and braces
is used for simplicity. For the edge e = 23|1 in T2, U∗

j = {1, 2}, U∗
k = {1, 3},

the conditioning set is De = {1, 2} ∩ {1, 3} = {1}, Ce,j = {1, 2}\{1} = {2},
Ce,k = {1, 3}\{1} = {3}, and the conditioned set is Ce,j ∪ Ce,k = {2, 3}.

For a general C-vine on n variables with standard indexing, E1 = {1, i :
i = 2, . . . , n}, E2 = {2, i|1 : i = 3, . . . , n}, . . ., E� = {�, i|1, . . . , i − 1 :
i = � + 1, . . . , n}, . . . , En−1 = {n − 1, n|1, . . . , n − 2}, T1 = {1, 2, . . . , n}
and T� = E�−1 for � = 2, . . . , n − 1}. For an edge e = [i1, i2|1, . . . , i1 − 1]
with 1 ≤ i1 < i2 ≤ n, the conditioning set is De = {1, . . . , i1 − 1} and the
conditioned set is {i1, i2}. If the indices {1, . . . , n} are permuted, the result
is still a C-vine, since the C-vine is characterized by the degrees of the nodes
for T1, . . . , Tn−1.

For a general D-vine on n variables with standard indexing, E1 = {i, i+
1 : i = 1, . . . , n − 1}, E2 = {i, i + 2|i + 1 : i = 1, . . . , n − 2}, . . . , E� =
{i, i + �|i + 1, . . . , i + � − 1 : i = 1, . . . , n − �}, . . . , En−1 = {1, n|2, . . . , n −
1}, T1 = {1, 2, . . . , n} and T� = E�−1 for � = 2, . . . , n − 1}. For an edge
e = [i1, i2|i1 + 1, . . . , i2 − 1] with 1 ≤ i1 < i2 ≤ n, the conditioning set is
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Figure 3.4. A regular vine on five variables which is neither a C-vine nor a D-vine with
constraint sets.

De = {i1 + 1, . . . , i2 − 1} and the conditioned set is {i1, i2}. If the indices
{1, . . . , n} are permuted, the result is still a D-vine.

Specific details in shorthand notation for the D-vine with n = 4 are:N1 =
{1, 2, 3, 4}, E1 = {12; 23, 34}; then in T2, N2 = E1 and E2 = {13|2; 24|3};
finally, in T3, N3 = E2 and E3 = {14|23}. For the edge in T3, the condition-
ing set is De = {2, 3} and the conditioned set is {1, 4}.

An example of a five-dimensional regular vine that is neither a C-vine nor
a D-vine is shown in Fig. 3.4. E1 = {12; 23; 24; 45}, E2 = {13|2; 14|2; 25|4},
E3 = {34|12; 15|24}, E4 = {35|124}.

3.3 Vine Types

Two main types of regular vines have been treated in the literature: vine
copulae and partial correlation vine representations. Vine copulae or pair-
copula constructions are obtained by assigning a bivariate copula to each
edge in the vine. Similarly, a partial correlation vine representation of a
correlation matrix is obtained by assigning a partial correlation to each edge
in the vine. In this section, the two types of specifications are discussed.

3.3.1 Vine copula or pair-copula construction

A bivariate copula vine specification is called a pair-copula construction1,2

or a vine copula (Section 4.4.2 of Kurowicka and Cooke36). It is obtained
by assigning a bivariate copula Ce to each edge e in the union E(V) =
E1∪· · ·∪En−1 of the vine defined in the preceding subsection. The set of

(
n
2

)

copulae is denoted by B. The elements of B can be chosen independently of
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each other (as long as they are bivariate copulae); this follows from Bedford
and Cooke.4

In general, the form of the joint density of a regular vine copula with
margins F1, . . . , Fn is given by the following theorem:

Theorem 3.2 (Bedford and Cooke4). Let V = (T1, . . . , Tn−1) be a reg-
ular vine on n elements. For an edge e ∈ E(V) with conditioned elements
e1, e2 and conditioning set De, let the conditional copula and copula density
be Ce1,e2|De

and ce1,e2|De
, respectively. Let the marginal distributions Fi with

densities fi, i = 1, . . . , n be given. Then the vine-dependent distribution is
uniquely determined, and has a density given by

f1···n = f1 · · · fn
∏

e∈E(V)

ce1,e2|De
(Fe1|De

, Fe2|De
). (3.1)

Equation (3.1) shows that vine copulae have closed-form densities when
F1, . . . , Fn and the bivariate copulae in B are differentiable.

Note that Ce is a marginal bivariate copula for edges in T1 and Ce is a
conditional bivariate copula for edges in T2, . . . , Tn−1. For a C-vine, the set
of bivariate copulae is denoted as B = {Ci1i2|1,...,i1−1 : 1 ≤ i1 < i2 ≤ n} =
{C12; . . . ;C1n;C23|1; . . . ;C2n|1; . . . , Cn−1,n|1,...,n−2}. For a D-vine, the set of
bivariate copulae is denoted as B = {Ci1i2|i1+1,...,i2−1 : 1 ≤ i1 < i2 ≤ n} =
{C12; . . . ;Cn−1,n;C13|2; . . . ;Cn−2,n|n−1; . . . , C1,n|2,...,n−1}. For the regular
vine in Section 3.2 that is not a C-vine or a D-vine, the set of bivariate
copulae is: B = {C12;C23;C24;C45;C13|2;C14|2;C25|4;C34|12;C15|24;C35|124}.

For applications, univariate margins F1, . . . , Fn are specified or esti-
mated, as well as the marginal or conditional copulae in B. The resulting
multivariate distribution in the Fréchet class F(F1, . . . , Fn) has a form that
can be shown recursively. We show the results for a C-vine with n = 3 and
and a D-vine with n = 4.

First note that assuming F1, F2, C12 are differentiable with respec-
tive densities f1, f2, c12, then F12 = C12(F1, F2) has density f12 =
c12(F1, F2) f1f2 and conditional density f2|1 = f12/f1 = c12(F1, F2) f2.

For the C-vine with n = 3, the trivariate distribution comes from the
specification {F1, F2, F3, C12, C13, C23|1}. The (1, 2) and (2, 3) margins are
F12 = C12(F1, F2) and F13 = C13(F1, F3), from which conditional distribu-
tion F2|1, F3|1 can be obtained; then

F123(x1, x2, x3) =
∫ x1

−∞
C23|1(F2|1(x2|z), F3|1(x3|z))dF1(z). (3.2)

If Fi are differentiable with respective densities fi, i = 1, 2, 3, and
C12, C13, C23|1 have densities c12, c13, c23|1 respectively, then the conditional
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densities f2|1, f3|1 exist, and the mixed third-order derivative of (3.2) (as a
special case of Theorem 3.2) is:

f123(x1, x2, x3) = c23|1(F2|1(x2|x1), F3|1(x3|x1)) f2|1(x2|x1) f3|1(x3|x1) f1(x1)

= c23|1(F2|1(x2|x1), F3|1(x3|x1)) c12(F1(x1), F2(x2)) f2(x2)

× c13(F1(x1), F3(x3)) f3(x3) f1(x1)

= c12(F1(x1), F2(x2)) c13(F1(x1), F3(x3))

× c23|1(F2|1(x2|x1), F3|1(x3|x1)) ·
3∏

i=1

fi(xi).

For the D-vine with n = 4, the four-variate distribution comes from the
specification {F1, F2, F3, F4, C12, C23, C34, C13|2, C24|3, C14|23}. The (i, i+ 1)
margins are Fi,i+1 = Ci,i+1(Fi, Fi+1), F123 and F234 have expressions like
(3.2), and then

F1234(x1, x2, x3, x4) =
∫ x2

−∞

∫ x3

−∞
C14|23(F1|23(x1|z2, z3), F4|23(x4|z2, z3))

× dF23(z2, z3). (3.3)

If Fi are differentiable with respective densities fi, i = 1, 2, 3, 4, and Ce have
densities ce for edges e in this vine, then the mixed fourth-order derivative
of (3.3) is:

f1234(x1, x2, x3, x4) = c14|23(F1|23(x1|x2, x3), F4|23(x4|x2, x3)) f1|23(x1|x2, x3)

×f4|23(x4|x2, x3) f23(x2, x3)

= c14|23(F1|23(x1|x2, x3), F4|23(x4|x2, x3)) f123(x1, x2, x3)

×f234(x2, x3, x4)/f23(x2, x3)

= c14|23(F1|23(x1|x2, x3), F4|23(x4|x2, x3))

×c13|2(F1|2(x1|x2), F3|2(x3|x2))

×c24|3(F2|3(x2|x3), F4|3(x4|x3))

×c12(F1(x1), F2(x2)) c23(F2(x2), F3(x3))

×c34(F3(x3), F4(x4)) ·
4∏

i=1

fi(xi).

In applications of vine copulae to date, a parameter (vector) is associated
with each Ce ∈ B, and then statistical inference can proceed with maximum
likelihood; see Section 3.7.



October 11, 2010 12:18 9.75in x 6.5in b979-ch03

46 R. M. Cooke, H. Joe and K. Aas

Normal copulae When each bivariate copula Ce is a bivariate normal cop-
ula, then the resulting multivariate copula is a multivariate normal copula.
For a multivariate normal copula represented as a vine, there is a correlation
or partial correlation parameter associated with each Ce, and the param-
eters can be summarized into a partial correlation vine; see Section 3.3.2.
Moreover, since the multivariate normal copula has the property that condi-
tional correlations do not depend on the values of the conditioning variables,
any multivariate normal copula has many representations as a vine copula.
It can also be shown that the multivariate tν copulae are special cases of
vine copulae.

Dependence properties The following dependence properties of vine cop-
ulae are shown in Joe26 and Joe et al.30:

(1) Let edge e be in E� with � > 1 and let the conditioned set for e be
{e1, e2}. If Ce is more concordant than C ′

e, then the margin Fe1,e2 is
more concordant than F ′

e1,e2 .
(2) If Ce has upper (lower) tail dependence for all e ∈ E1, and the remaining

copulae have support on [0, 1]2, all bivariate margins of F1···n(x1, . . . , xn)
have upper (lower) tail dependence.

(3) For parametric vine copulae with a parameter θe associated with Ce, a
wide range of dependence is obtained if each Ce(·; θe) can vary from the
bivariate Fréchet lower bound to the Fréchet upper bound. Consider the
Kendall tau triple (τ12, τ13, τ23) for n = 3. For a three-dimensional vine
copula, if C23|1 is the conditional Fréchet upper (lower) bound copula,
then τ23 achieves the maximum (minimum) possible, given τ12, τ13.

3.3.2 Partial correlation vine

In this section, we first give the definition of partial correlation. Then, we
describe the partial correlation vine structure and, finally, we mention two
applications of partial correlation vines.

3.3.2.1 Partial correlation

A partial correlation can be defined in terms of partial regression coeffi-
cients. Consider variable Xi with zero mean and standard deviation σi = 1,
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i = 1, . . . , n. Let the numbers bij;{1,...,n}\{i,j} minimize

E







Xi −
∑

j:j �=i
bij;{1,...,n}\{i,j}Xj




2

, i = 1, . . . , n.

Definition 3.4 (Partial correlation). The partial correlation of variables
1 and 2, given the remaining variables is:

ρ12;3,...,n = sgn(b12;3,...,n)(b12;3,...,nb21;3,...,n)1/2.

By permuting the indices, other partial correlations on n variables are
defined.

Equivalently, we could define the partial correlation as

ρ12;3,...,n = − K12√
K11K22

,

where Kij denotes the (i, j) cofactor of the correlation matrix. The par-
tial correlation ρ12;3,...,n can be interpreted as the correlation between the
orthogonal projections of X1 and X2 on the plane orthogonal to the space
spanned by X3, . . . ,Xn.

Partial correlations can be computed from correlations with the following
recursive formula52:

ρ12;3,...,n =
ρ12;3,...,n−1 − ρ1n;3,...,n−1 · ρ2n;3,...,n−1√

1− ρ2
1n;3,...,n−1

√
1− ρ2

2n;3,...,n−1

. (3.4)

3.3.2.2 Partial correlation vine

A partial correlation vine,5,34,41 which is a useful parametrization for a mul-
tivariate normal or elliptical distribution, is obtained by assigning a partial
correlation ρe, with a value chosen arbitrarily in the interval (−1, 1), to each
edge e in the union E(V) = E1∪· · ·∪En−1 of the vine defined in Section 3.2.
Note that ρe is a correlation for edges in T1 and ρe is a partial correlation
for edges in T2, . . . , Tn−1. Theorem 3.3 in Bedford and Cooke5 shows that
a regular vine provides a bijective mapping from (−1, 1)(

n
2) into the set of

positive definite matrices with 1’s on the diagonal.

Theorem 3.3. For any regular vine on n elements, there is a one-to-one
correspondence between the set of n×n positive definite correlation matrices
and the set of partial correlation specifications for the vine.
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All assignments of the numbers between −1 and 1 to the edges of a
partial correlation regular vine are consistent, and all correlation matrices
can be obtained this way. Specific examples of partial correlation vines are
the following: For a C-vine, the set of partial correlations is {ρi1i2;1,...,i1−1 :
1 ≤ i1 < i2 ≤ n} = {ρ12, . . . ; ρ1n, ρ23;1, . . . , ρ2n;1, . . . , ρn−1,n;1,...,n−2}. For a
D-vine, the set of partial correlations is {ρi1i2;i1+1,...,i2−1 : 1 ≤ i1 < i2 ≤ n} =
{ρ12, . . . , ρn−1,n, ρ13;2, . . . , ρn−2,n;n−1, . . . , ρ1,n;2,...,n−1}. For the regular vine
in Section 3.2 that is not a C-vine or a D-vine, the set of partial correlations
is {ρ12, ρ23, ρ24, ρ45, ρ13;2, ρ14;2, ρ25;4, ρ34;12, ρ15;24, ρ35;124}.

One verifies that the correlation between the ith and jth variables can
be computed from the sub-vine generated by the constraint set of the edge
whose conditioned set is {i, j}, using recursively Eq. (3.4) and the following
lemma.34

Lemma 3.1. If z, x, y ∈ (−1, 1), then also w ∈ (−1, 1), where

w = z
√

(1− x2)(1 − y2) + xy.

Thus, a regular vine may be seen as a way of picking out partial cor-
relations which uniquely determine the correlation matrix and which are
algebraically independent. The partial correlations in a partial correlation
vine need not satisfy any algebraic constraint like positive definiteness. The
“completion problem” for partial correlation vines is therefore trivial. An
incomplete specification of a partial correlation vine may be extended to a
complete specification by assigning arbitrary numbers in the (−1, 1) interval
to the unspecified edges in the vine.

Partial correlation vines have another important property: the product
of 1 minus the square of the partial correlations equals the determinant of
the correlation matrix.

Theorem 3.4 (Kurowicka and Cooke38). Let D be the determinant of
the n-dimensional correlation matrix (D > 0). For any partial correlation
vine,

D =
∏

e∈E(V)

(1− ρ2
e1,e2;De

). (3.5)

3.3.2.3 Applications

We mention two applications of partial correlation vines. One is the gen-
eration of random correlation matrices R that are uniform over the space
of correlation matrices. Another is a reparametrization of statistical models
where R is a parameter.
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Random correlation matrices In Joe,28 for the partial correlation D-vine,
and in Lewandowski et al.,41 for the general partial correlation vine, results
and algorithms are given for generating a random correlation matrix R
based on a partial correlation vine. This random correlation matrix gen-
eration is based on the property that the partial correlations in a regular
vine are algebraically independent. By choosing the distributions of ρe to be
appropriate beta distributions on (−1, 1), Lewandowski et al.41 have devel-
oped a method to obtain random correlation matrices with a uniform density
or, more generally, a density proportional to |R|η−1 where η > 0.

Numerically, using the partial correlation C-vine is fastest but one might
want to use a specific regular vine if there is an indexing of partial correla-
tions of interest.

Reparametrization of statistical models Statistical models such as the
multivariate probit model for ordinal data or the t-copula model have an
n × n correlation matrix R = (ρij) as a parameter. To avoid checking the
positive definiteness constraint in the middle of the numerical maximum like-
lihood iterations, the correlation matrix can be reparametrized via a partial
correlation vine. The idea of reparametrizing the correlation matrix to n−1
correlations and (n−1)(n−2)/2 partial correlations (D-vine) was applied in
Xu51 as a way of allowing the correlation matrix to be a function of covari-
ates. A more common way to deal with the positive definiteness constraint
is to reparametrize via the lower triangular Cholesky matrix A = (aij). The
partial correlation C-vine might be a more interpretable parametrization.
Note that if R = AA′, then

ai1 = ρ1i, i = 1, . . . , n,

aij = ρji;1···j−1

j−1∏

k=1

√
1− ρ2

ki;1···k−1, j = 3, . . . , n, i = j + 1, . . . , n,

aii = 1−
i−1∑

k=1

a2
ik, i = 2, . . . , n.

That is, each element of A that is below the diagonal is a function of partial
correlations in the C-vine.

As shown in Section 5.2 of Kurowicka and Cooke,36 with the use of
expert judgement, it might be convenient to specify the conditional bivari-
ate copulae by first assigning a constant conditional rank correlation to
each edge of the vine. For i = 1, . . . , n − 1, with e ∈ Ei having {j, k}
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as the conditioned variables and De as the conditioning variables, we
associate

rj,k|De
.

The resulting structure is called a conditional rank correlation vine.
In eliciting expert judgement on strengths of dependence, the conditional

rank correlation vine avoids the constraints in a matrix of rank correlations.
It is shown in Joe,29 using conditional distributions in the form of D-vines,
that in dimensions n ≥ 5, the possible rank correlation matrices (or corre-
lation matrices of dependent uniform random variables) is smaller than the
set of all positive definite matrices with 1 on the diagonal.

3.4 Historical Origins

The first regular vine, avant la lettre, was introduced by Joe.25 The motive
was to extend the bivariate extreme-value copula to higher dimensions.
Consider a multivariate survival function G(z1, . . . , zn) = Prob{Z1 >

z1, . . . , Zn > zn}. If G is “min-stable”, then it satisfies

G(tz1, . . . , tzn) = e−A(tz1,...,tzn) = e−tA(z1,...,zn). (3.6)

As shown by Pickands (Galambos,14 Chapter 5), the family of functions
A satisfying this equation is infinite-dimensional. Joe’s goal was to find
finite-dimensional parametric subfamilies that would cover the whole family
represented by (3.6). To this end, he introduced what would later be called
the D-vine.

Joe26 was interested in a class of n-variate distributions with given one-
dimensional margins, and n(n− 1) dependence parameters, whereby n − 1
parameters correspond to bivariate margins, and the others correspond to
conditional bivariate margins. In the case of multivariate normal distribu-
tions, the parameters would be n−1 correlations and (n−1)(n−2)/2 partial
correlations, which were noted to be algebraically independent in (−1, 1).
Implicit in this remark is the observation that partial correlations on what is
now called the D-vine provide an algebraically independent parametrization
of the set of positive definite correlation matrices.

One main idea26,27 comes from the Fréchet class F(FiS , FjS) where S is a
set of indices of variables that does not contain i and j. That is, F(FiS , FjS)
is the class of distributions of cardinality |S| + 2 with the margin FS in
common.
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If S = {k1, . . . , km} with m ≥ 1, a member of F(FiS , FjS) has the form
∫ xk1

0

· · ·
∫ xkm

0

Fij|S(xi, xj |yS) dFS(yS). (3.7)

By Sklar’s theorem, there are conditional copulae {Cij|S(·|yS)} such that
(3.7) is

∫ xk1

0
· · ·
∫ xkm

0
Cij|S(Fi|S(xi|yS), Fj|S(xy|yS)|yS) dFS(yS). (3.8)

By imitating multivariate Gaussian distributions, simpler distributions in
F(FiS , FjS) have a constant conditional copula: Cij|S(·|yS) ≡ Cij|S for all
yS . By adding a dependence parameter, one can have a bivariate parametric
copula family Cij|S(·|·;θ). A wide range of conditional dependence obtains
if Cij|S(·|·;θ) interpolates the Fréchet upper bound, independence and the
Fréchet lower bound.

Joe26,27 applied the above idea of Fréchet classes recursively in a D-
vine for F(Fi,i+1,...,j−1, Fj,i+1,...,j−1) with 1 ≤ i < j ≤ d. This was partly
motivated by variables that might be indices in time or in a one-dimensional
spatial direction. Properties of bivariate tail dependence, ordering by concor-
dance, and range of dependences were obtained. The basic sampling strategy
was also outlined.

An entirely different motivation underlays the first formal definition
of vines in Cooke.9 Uncertainty analyses of large risk models, such as
those undertaken for the European Union and the US Nuclear Regulatory
Commission for accidents at nuclear power plants, involve quantifying and
propagating uncertainty over hundreds of variables.16,19 Dependence infor-
mation for such studies had been captured by Markov trees,50 which are
trees constructed with nodes as univariate random variables and edges as
bivariate copulae. For n variables, there are at most n − 1 edges for which
dependence can be specified. New techniques at that time involved obtain-
ing uncertainty distributions on modeling parameters by eliciting experts’
uncertainties on other variables, which are predicted by the models. These
uncertainty distributions are pulled back onto the model’s parameters by
a process known as probabilistic inversion.15,36 The resulting distributions
often displayed a dependence structure that could not be captured as a
Markov tree (see Fig. 3.5).

This led to the invention of regular vines. Regular vines enable an addi-
tive decomposition of the mutual information that depends only on the
expected mutual information of each edge. Making any conditional cop-
ula the conditionally independent copula lowers the mutual information.9
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Figure 3.5. A simple Markov tree (left) and a vine (right) on three variables.

This remark shows that the minimal information completion of any partially
specified regular vine is trivially found by making the unspecified conditional
copulae conditionally independent. This situation compares favorably with
the problem of completing a partially specified correlation matrix. If a par-
tially specified regular vine has the property that no unspecified edge has
specified m-parents, then the partial specification is called m-saturated. If
we consider the indices in the conditioned sets of a partially specified regu-
lar vine, then placing an edge between two indices in the same conditioned
set generates a graph. m-saturation is equivalent to the decomposability of
this graph, which is equivalent to the graph being chordal and to the exis-
tence of a junction tree.38 Bedford and Cooke5 extend the result of Joe26

and show that partial correlations in (−1, 1) on the edges of any regular
vine provide an algebraically independent parametrization of the positive
definite correlation matrices, and introduce Cantor trees as a generalization
of regular vines. Bedford and Cooke4 give an explicit formula, factorizing
any multivariate density in terms of (conditional) copula densities on any
regular vine. This generalizes the Hammersley–Clifford theorem applied to
Markov trees.6

3.5 Compatibility of Marginal Distributions

n-dimensional vine copulae are based on
(n
2

)
bivariate copulae which can be

specified completely independently of each other. To do this, n − 1 of the
bivariate copulae are bivariate margins and the remaining (n− 1)(n− 2)/2
are conditional copulae. In this section, we provide some results on sets of
marginal distributions that can be compatible and hence provide some intu-
ition for the definition of vines and vine copulae (pair-copula construction)
in Section 3.2.

The Fréchet class F(Fj , 1 ≤ j ≤ n;Fjk, 1 ≤ j < k ≤ n) of given
(continuous) univariate and bivariate margins is hard to study; there is
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no general result on when the set of
(
n
2

)
bivariate margins or copulae are

compatible with an n-variate distribution. Assuming that bivariate margins
agree on the univariate margins, the maximal number of bivariate mar-
gins that can be compatible with no constraints is n − 1. The maximum
is attained if an acyclic condition is satisfied. Consider the Fréchet class
F(Fj , 1 ≤ j ≤ n,Fjiki

: ji < ki, i = 1, . . . , n − 1) with n − 1 distinct pairs.
This class is non-empty for any choice of the n− 1 bivariate margins if the
graph with nodes {1, . . . , n} and edges {(ji, ki) : i = 1, . . . , n − 1} has no
cycles. This result follows the compatibility condition in Kellerer,31 summa-
rized in Section 3.7 of Joe.27 It also follows from ideas presented below. If
any additional bivariate margin Fjnkn is added, then the graph will definitely
have a cycle, and some choices of the Fjiki

will lead to non-compatibility.
With the univariate margins fixed, let us illustrate the above results with

bivariate copulae. Because we can permute indices of the variables without
changing probabilistic properties, a simple way to get the n − 1 bivariate
margins is to have pairs

{(1, 2), (j2 , 3), . . . , (jn−1, n)}, ji ∈ {1, . . . , i}, i = 1, . . . , n − 1. (3.9)

The first edge has nodes 1 and 2 and edge (1, 2). The second edge adds
node 3 and connects to either node 1 or 2. The ith edge adds node i and
connects to one of the nodes between 1 and i− 1 inclusive. In this way, no
cycle is formed, and the result is a tree after n − 1 steps. If an nth edge
is added without adding another node, there will definitely be a cycle (the
reader can confirm this by drawing some diagrams).

Let us add the nth edge to get a cycle. By relabeling, we can assume that
the edges of the cyclical subgraph are {(1, 2), (2, 3), . . . , (m− 1,m), (1,m)}
where 3 ≤ m ≤ n. Consider copulae C12, C23, . . . , Cm−1,m, C1m. If
C12, C23, . . . , Cm−1,m are co-monotonic (Fréchet upper bound) and C1m is
counter-monotonic (Fréchet lower bound), then this set of bivariate margins
has no compatible n-variate or m-variate distribution.

We next show via an example why n− 1 bivariate margins satisfying the
tree condition (3.9) imply that there are no extra constraints for compati-
bility. Consider the Fréchet class of bivariate copulae F(C12, C13, C14, C25)
for n = 5; the choice of bivariate margins satisfies (3.9). C12, C13 can be
specified completely independently because this is the same as specifying
the univariate conditional distributions {C2|1(·|u1), C3|1(·|u1) : 0 < u1 < 1}.
For each u1, C2|1, C3|1 can be coupled with a conditional copula, and from
(3.7–3.8), one can construct all trivariate copulae with C12, C13 as bivari-
ate margins. The same statement holds for the pairs {C13, C14}. Hence,
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one can get distributions C123, C134 with bivariate margins {C12, C13, C14}.
For the resulting C123, C134, one can build a four-variate copula C1234 via
{C2|13(·;u1, u3), C4|13(·;u1, u3) : 0 < u1, u3 < 1} and (3.7). After adding
C25, one can get a trivariate distribution C125 with bivariate margins
{C12, C25}. By coupling the appropriate conditional distributions, one can
get C1235 with C123, C125 as trivariate margins. Finally, one can couple
C4|123(·|u1, u2, u3) and C5|123(·|u1, u2, u3) in (3.7) to get a five-variate cop-
ula C12345. Hence {C12, C13, C14, C25} is a set of compatible copulae with no
additional constraints.

The above example extends for any set of n − 1 bivariate copulae with
pairs of marginal indices of the form of (3.9). This explains the first tree
of a vine. However, vines also provide conditions for bivariate conditional
copulae. Working with bivariate conditional copulae is easier than studying
conditions for the compatibility of trivariate (and higher-dimensional) mar-
gins. We next show that conditions for compatible trivariate margins are
more complicated.

For trivariate margins, we take a subset of n−2 to consider compatibility.
For n = 5, n−2 = 3 and there are three possible patterns of three trivariate
margins from the full set of 10 =

(
5
3

)
.

(a) Two indices appear in all three triplets: e.g., {(1, 2, 3), (1, 2, 4), (1, 2, 5)}:
this is compatible with copulae for the univariate conditional distribu-
tions 3|12, 4|12 and 5|12.

(b) Two of the three pairs intersects in two indices and one pair intersects
in one index, e.g., {(1, 2, 3), (1, 2, 5), (1, 3, 4)}. The above construction
shows that something like this will always be compatible.

(c) One of the three pairs intersects in two indices and the other two pairs
intersect in one index, e.g., {(1, 2, 3), (2, 3, 4), (1, 4, 5)}. It is shown in
Example 3.4 in Joe27 that this set of trivariate margins does not satisfy
the compatibility condition in Kellerer.31

In general, the condition to determine which sets of trivariate margins
are always compatible is more complicated than the condition for bivariate
margins given above. Vines are a way to specify a set of compatible bivariate
margins and bivariate conditional distributions and they lead to compatible
marginal distributions of higher dimensions. The condition for compatibility
is straightforward to check, compared with something like Kellerer’s condi-
tion. The examples in this section show why the definition of vines involves
tree graphs and conditional distributions.
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3.6 Sampling

We assume that variables X1,X2, . . . ,Xn are uniform on (0, 1). Each edge in
a regular vine may be associated with a conditional copula, that is, a con-
ditional bivariate distribution with uniform margins. Given a conditional
rank correlation vine as defined in Section 3.3.2.3, we choose a class of cop-
ulae indexed by correlation coefficients in the interval (−1, 1) and select
the copulae with correlation corresponding to the conditional rank cor-
relation assigned to the edge of the vine. A joint distribution satisfying
the vine-copula specification can be constructed and sampled on the fly,
and will preserve maximum entropy properties of the conditional bivariate
distributions.4,9

The conditional rank correlation vine plus copula determines the whole
joint distribution. There are two strategies for sampling such a distribution,
which we term the cumulative and density approaches.

3.6.1 Sampling a D-vine

We first illustrate the cumulative approach with the distribution specified by
a D-vine on four variables, D(1,2,3,4). Sample four independent variables
distributed uniformly on interval [0, 1], U1, U2, U3, U4, and determine the
values of correlated variables X1,X2,X3,X4 as follows:

(1) x1 = u1,
(2) x2 = F−1

r12;x1
(u2),

(3) x3 = F−1
r23;x2

(F−1
r13|2;Fr12;x2(x1)

(u3)),

(4) x4 = F−1
r34;x3

(F−1
r24|3;Fr23;x3(x2)

(F−1
r14|23;Fr13|2;Fr23;x2(x3)(Fr12;x2(x1))

(u4)))

where Frij|k ;xi(Xj) denotes the cumulative distribution function of Xj ,
applied to Xj , given Xi = xi under the conditional copula with correla-
tion rij|k. Notice that the D-vine sampling procedure uses conditional and
inverse conditional distribution functions. A more general form of the above
procedure simply refers to conditional cumulative distribution functions:

x1 = u1,

x2 = F−1
2|1:x1

(u2),
x3 = F−1

3|2:x2
(F−1

3|12:F1|2(x1)
(u3)),

x4 = F−1
4|3:x3

(F−1
4|23:F2|3(x2)(F

−1
4|123:F1|23(x1)(u4))).

(3.10)
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X4

F4|23

F4|3

F4|123
U4

F-1
4|123(u4)

u4

x4

Figure 3.6. Staircase graph representation of D-vine sampling procedure.

Figure 3.6 depicts the sampling of X4 in the D-vine with a so-called staircase
graph. Following the dotted arrows, we start by sampling U4 (realization u4)
and use this with the copula for the conditional rank correlation of {1, 4}
given {2, 3} to find the argument of F−1

4|23, etc. Notice that for the D-vine,
values of F2|3 and F1|23 used to conditionalize copulae with correlations r24|3
and r14|23 to obtain F4|23 and F4|123, respectively, have to be calculated.

The staircase graph shows that if any of the cumulative conditional distri-
butions in Fig. 3.6 is uniform, then the corresponding abscissa and ordinates
can be identified. This corresponds to noting that the inverse cumulative
function in (3.10) is the identity, which in turn corresponds to a conditional
rank correlation being zero and the corresponding variables being condi-
tionally independent. Notice that the conditional rank correlations can be
chosen arbitrarily in the interval [−1, 1]; they need not be positive definite
or satisfy any further algebraic constraint.

3.6.2 Sampling an arbitrary regular vine

The content of this section is based on Section 6.4.2 of Kurowicka and
Cooke.36 A regular vine on n nodes will have a single node in tree n − 1.
It suffices to show how to sample one of the conditioned variables in this
node, say n, assuming we have sampled all the other variables. We proceed
as follows:

(1) By Lemma 3.2, the variable n occurs in trees 1, . . . , n−1 exactly once as
a conditioned variable. The variable with which it is conditioned in tree
j is called its j-partner. We define an ordering for n as follows: index the
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j-partner of variable n as variable j. We denote the conditional bivariate
constraints corresponding to the partners of n as:

(n, 1|∅), (n, 2|Dn
2 ), (n, 3|Dn

3 ), . . . , (n, n− 1|Dn
n−1).

Again, by Lemma 3.2, variables 1, . . . , n− 1 appear first as conditioned
variables (to the left of “|”) before appearing as conditioning variables
(to the right of “|”). Also,

0 = #Dn
1 < #Dn

2 < · · · < #Dn
n−1 = n− 2.

(2) Assuming that we have sampled all variables except n, sample one vari-
able uniformly distributed on the interval (0,1), denoted un. We use
the general notation Fa|b:D to denote Fa,b|D:Fb|D ; that is the conditional
distribution for {a, b|D} conditional on a value of the cumulative con-
ditional distribution Fb|D. Here, {a, b|D} is the conditional bivariate
constraint corresponding to a node in the vine.

(3) Sample xn as follows:

xn = F−1
n|1:Dn

1
(F−1

n|2:Dn
2
(· · · (F−1

n|n−1:Dn
n−1

(un)) · · · )). (3.11)

The innermost term of (3.11) is:

F−1
n|n−1:Dn

n−1
= F−1

n,n−1|Dn
n−1:Fn−1|Dn

n−1

= F−1
n,n−1|Dn

n−1:Fn−1,n−2|Dn−1
n−2

:F
n−2|Dn−1

n−2

.

See Chapter 7 in this volume for pseudocode for the regular vine.

3.6.3 Density approach sampling

When the vine-copula distribution is given as a density, the density approach
to sampling may be used. Assume that the marginal distributions in (3.1)
are uniform [0,1]. Then (3.1) can be rewritten as

∏

e∈E
cij|De

(Fi|De
(xi), Fj|De

(xj)), (3.12)

where, by uniformity, the density fi(xi) = 1. Expression (3.12) may be used
to sample the vine distribution; namely, draw a large number of samples
(x1, . . . , xn) uniformly, and then resample these with probability propor-
tional to (3.12). This is less efficient than the general sampling algorithm
given previously; however, it may be more convenient for conditionalization.
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3.7 Parametric Inference for a Specific Pair-Copula
Construction

Aas et al.2 develop a maximum likelihood procedure to estimate parameters
in copulae for D- and C-vines. The procedure can be extended to arbitrary
regular vines but the algorithms are less transparent.

For notation to cover the C-vine, D-vine and other vines, let
Ci1i2|m(ui1 , ui2) denote the copula with conditioned set {i1, i2} and con-
ditioning set m. If i1 < i2, then m = {1, . . . , i1 − 1} for the C-vine and
m = {i1 + 1, . . . , i2 − 1} for the D-vine. For the partial derivatives with
respect to uj and uj+i, we use the notation

Ci1|i2:m(ui1 |ui2) =
∂Ci1i2|m
∂ui2

, Ci2|i1:m(ui2 |ui1) =
∂Ci1i2|m
∂ui1

.

The next illustration of notation is for the C-vine in (3.2). If this three-
dimensional distribution is embedded in a C-vine of dimension four or more,
then the conditional distribution F3|12 is needed at the next stage, since (3.2)
involves C23|1. We use the notation F3|12 = F3|2:1 to show that it depends
on C3|2:1. Differentiating (3.2) with respect to x2, x3, and then dividing by
f12(x1, x2) leads to

F3|2:1(x3|x2, x1) = C3|2:1(F3|1(x3|x1)|F2|1(x2|x1)).
Expressions like this must be computed for the likelihood of a C-vine (more
generally, a regular vine).

Note that when estimating the parameters here, we assume that the con-
ditional bivariate copulae are constant over the values of the conditioning
variables; see Hobæk Haff et al.21 for examples that relate to this assump-
tion. In the general representation of any multivariate distribution in (3.1)
or (3.8), the conditional bivariate copula can vary over the values of the
conditioning variables.

Assume that we observe n variables at T time points, or more generally
a random sample of size T . Let xi = (xi,1, . . . , xi,T ), i = 1, . . . , n, denote
the ith observation vector in the data set. First, we assume for simplicity
that the T observations of each variable are independent over time. This is
not a limiting assumption, since in the presence of temporal dependence,
univariate time-series models can be fitted to the margins and the analysis
can henceforth proceed with the residuals.

It is important to emphasize that unless the margins are known (which
they never are in practice), the estimation method presented below must
rely on the normalized ranks of the data, or on a two-stage procedure where
univariate margins have been estimated first and then transformed to uni-
form. Normalized ranks are only approximately uniform and independent,
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meaning that what is being maximized is a pseudo-likelihood. A two-stage
procedure is better if inferences on tail probabilities are needed; the theory
of estimating equations applies for the inference in this case.

3.7.1 Inference for a C-vine

In this subsection, we provide an algorithm for computing the log-likelihood
of a parametric C-vine where there is a parameter θj,i associated with the
bivariate copula Cj,j+i|1···j−1(uj , uj+i), for i = 1, . . . , n− j, j = 1, . . . , n− 1.
Here j is the index for the tree level of the vine.

Further, let Θj,i be the set of parameters in the copula density
cj,j+i|1,...,j−1(Fj|1:2···j−1, Fj+i|1:2···j−1). Note that Fj+i|1:2···j−1 depends recur-
sively on θ�,k, k = 1, . . . , j − � and j + i− �, � = 1, . . . , j − 1.

For the canonical vine, the log-likelihood (for the copula parameters,
assuming univariate margins have been estimated or transformed to uni-
form) is given by

n−1∑

j=1

n−j∑

i=1

T∑

t=1

log[cj,j+i|1···j−1{Fj|j−1:1···j−2(xj,t|x
(j−1)
t ),

Fj+i|j−1:1···j−2(xj+i,t|x
(j−1)
t )}] (3.13)

where x(j−1)
t = (x1,t, . . . , xj−1,t). For each copula in the sum (3.13) there

is at least one parameter to be determined. The number depends on which
copula type is used. The log-likelihood must be numerically maximized over
all parameters. If parametric univariate margins are also estimated, say,
fi(·;αi), i = 1, . . . , n, then the added contribution to (3.13) is

n∑

i=1

T∑

t=1

log fi(xi,t;αi).

Algorithm 3.1 evaluates the likelihood for the canonical vine. The outer
for-loop corresponds to the outer sum in (3.13), corresponding to the tree
level of the vine. This for-loop consists in turn of two other for-loops. The
first of these corresponds to the sum over i in (3.13). In the other, the con-
ditional distribution functions needed for the next run of the outer for-loop
are computed. In the algorithm,

Lj,j+i(y,v,Θ) =
T∑

t=1

log{cj,j+i|1···j−1(yt, vt,Θ)} (3.14)

is the contribution to the log-likelihood from the copula cj,j+i|1···j−1.
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Algorithm 3.1.

1: log-likelihood ← 0

2: for i← 1, . . . , n do

3: v0,i ← xi (vectorized over t)

4: end for

5: for j ← 1, . . . , n− 1 do (tree level j)

6: for i← 1, . . . , n− j do

7: log-likelihood ← log-likelihood + Lj,j+i(vj−1,1,vj−1,i+1,Θj,i)

8: end for

9: if j == n− 1 then

10: Stop

11: end if

12: for i← 1, . . . , n− j do

13: vj,i ← Cj+i|j:1···j−1(vj−1,i+1|vj−1,1; Θj,i) (vectorized over t)

14: end for

15: end for

Starting values of the parameters needed in the numerical maximization
of the log-likelihood may be determined as follows:

(a) Estimate the parameters of the copulae in tree 1 from the original
data.

(b) Compute observations (i.e., conditional distribution functions) for tree
2 using the copula parameters from tree 1 and the conditional distribu-
tions.

(c) Estimate the parameters of the copulae in tree 2 using the observations
from (b).

(d) Compute observations for tree 3 using the copula parameters at level 2
and the conditional distributions.

(e) Estimate the parameters of the copulae in tree 3 using the observations
from (d).

(f) etc.

Note that each estimation here is easy to perform, since the data set is only
of dimension 2 in each step.
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3.7.2 Inference for a D-vine

Similar to the preceding subsection, for the D-vine, the log-likelihood is
given by

n−1∑

j=1

n−j∑

i=1

T∑

t=1

log[ci,i+j|i+1···i+j−1{Fi|i+j−1:i+1···i+j−2(xi,t|x
(i,j−1
t ),

Fi+j|i+1:i+2···i+j−1(xi+j,t|x
(i,j−1
t )}],

where x
(i,j−1)
t = (xi+1,t, . . . , xi+j−1,t). The D-vine log-likelihood must

also be numerically optimized. Algorithm 3.2 evaluates the likeli-
hood. Θj,i is the set of parameters of copula density ci,i+j|i+1,...,i+j−1

(Fi|i+j−1:i+1···i+j−2, Fi+j|i+1:i+2···i+j−1). Note that the algorithm requires
2(n−j−1) conditional distributions at step j for j = 1, . . . , n−1. For j = 1,
Ci|i+1, Ci+1|i, i = 1, . . . , n − 1, are all needed except for C2|1 and Cn−1|n. A
similar pattern holds for j > 1. In the notation in Algorithm 3.2, v′j,i is used
in the tree level j when the conditional distribution is Ci|i+j:i+1···i+j−1 and
vj,i is used when the conditional distribution is Ci+j|i:i+1···i+j−1.

Similar to the C-vine, in the D-vine algorithm,

Li,i+j(y,v,Θ) =
T∑

t=1

log{ci,i+j|i+1···i+j−1(yt, vt,Θ)}

is the contribution to the log-likelihood from the copula ci,i+j|i+1···i+j−1.

Algorithm 3.2.

1: log-likelihood ← 0

2: for i← 1, . . . , n do

3: v0,i ← xi (vectorized over t)

4: end for

5: for i← 1, . . . , n− 1 do

6: log-likelihood ← log-likelihood+ Li,1+i(v0,i,v0,i+1,Θ1,i)

7: end for

8: v′1,1 ← C1|2(v0,1|v0,2; Θ1,1) (vectorized over t; similarly below)

9: for k ← 1, . . . , n− 3 do

10: v1,k+1 ← Ck+2|k+1(v0,k+2|v0,k+1; Θ1,k+1)

11: v′1,k+1 ← Ck+1|k+2(v0,k+1|v0,k+2; Θ1,k+1)
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12: end for

13: v1,n−1 ← Cn|n−1(v0,n|v0,n−1; Θ1,n−1)

14: for j ← 2, . . . , n− 1 do (tree level j)

15: for i← 1, . . . , n− j do
16: log-likelihood ← log-likelihood+ Li,i+j(v′j−1,i,vj−1,i+1,Θj,i)

17: end for

18: if j == n− 1 then

19: Stop

20: end if
21: v′j,1 ← C1|j+1:2···j(v′j−1,1|vj−1,2; Θj,1)

22: if n > 4 then

23: for i← 1, 2, . . . , n− j − 2 do

24: vj,i+1 ← Ci+j+1|i+1:i+2···i+j(vj−1,i+2|v′j−1,i+1; Θj,i+1)

25: v′j,i+1 ← Ci+1|i+j+1:i+2···i+j(v′j−1,i+1|vj−1,i+2; Θj,i+1)

26: end for

27: end if

28: vj,n−j ← Cn|n−j:n−j+1···n−1(vj−1,n−j+1|v′j−1,n−j; Θj,n−j)
29: end for

Note that, similar to other algorithms for C-vines and D-vines, the D-vine
algorithm for the likelihood calculation is more complicated than that for
the C-vine. Other comments for the C-vine inference also apply to D-vine
inference.

3.8 Model Inference

Model inference relates to the problem of choosing a regular vine to model a
multivariate data set. If the conditional copulae are not constant, then any
regular vine can be used to describe any multivariate distribution. Following
Joe,26 the motive underlying the vine-copula approach to modeling is to have
a flexible low parameter set of models. In the first instance, this has led to
the restriction to constant conditional copulae. When a joint distribution
is defined by one particular regular vine with constant conditional copulae,
these copulae will not in general remain constant when a different regular
vine is used.
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In Section 3.7, we described how to do inference for some specific pair-
copula decompositions. However, this is only a part of the full estimation
problem. Full inference for a pair-copula decomposition should in principle
consider (a) the selection of a regular vine, (b) the choice of (conditional)
copula types and (c) the estimation of the copula parameters. For smaller
dimensions (say three and four), one may estimate the parameters of all
possible factorizations using the procedure described in Section 3.7 and
compare the resulting log-likelihoods, Akaike information criterion (AIC)
values or out-of-sample predictions. This is in practice infeasible for higher
dimensions, in view of Theorem 3.1. Heuristic strategies are required to
choose which decompositions to investigate. In this section, we review two
approaches that have been suggested for choosing the “best” regular vine;
the first is a modified version of the sequential estimation procedure outlined
in Section 3.7 while the other is based on the mutual information.

3.8.1 Sequential selection

In this approach, one first has to decide whether to use a C- or D-vine.
D-vines may be more appropriate than C-vines in situations where a dis-
tinguished variable of maximal degree at each echelon cannot readily be
identified. The next step is to decide the order of the variables. One possi-
bility that has turned out to be promising in practice is to base this decision
on the strength of dependence between the variables, ordering the variables
such that the copulae to be fitted in tree 1 in the decomposition are those
associated with the strongest dependence.

Given data and an assumed pair-copula decomposition, it is necessary
to specify the parametric shape of each pair-copula. For example, for the
decomposition in Section 3.7, we need to decide which copula type to use
for C12(·, ·), C23(·, ·) and C13|2(·, ·). The pair-copulae do not have to belong
to the same family. The resulting multivariate distribution will be valid if
we choose for each pair of variables the parametric copula that best fits
the data. If we choose not to stay in one predefined class, we need a way of
determining which copula to use for each pair of (transformed) observations.
We propose to use a modified version of the sequential estimation procedure
outlined in Section 3.7:

(1) Determine which copula types to use in tree 1 by plotting the original
data, and checking for tail dependence or asymmetries (these are the
patterns that make the multivariate normal copula inadequate).
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(2) Estimate the parameters of the selected copulae using the original data.
(3) Transform observations as required for tree 2, using the copula param-

eters from tree 1 and the conditional functions in Section 3.7.
(4) Determine which copula types to use in tree 2 in the same way as in

tree 1.
(5) Iterate.

The observations used to select the copulae at a specific level depend
on the specific pair-copulae chosen up-stream in the decomposition. This
selection mechanism does not guarantee a globally optimal fit. Having deter-
mined the appropriate parametric shapes for each copulae, one may use the
procedures in Section 3.7 to estimate their parameters.

3.8.2 Information-based model inference

A different approach to model learning inspired by Whittaker50 was devel-
oped in Kurowicka and Cooke,36 based on the factorization of the determi-
nant in Theorem 3.4. We sketch here a more general approach based on the
mutual information. Following Joe,23,24 the mutual information is taken as
a general measure of dependence. The strategy is to choose a regular vine
which captures the mutual information in a small number of conditional
bivariate terms, and to find a copula which renders these mutual informa-
tion values. Before describing the approach, we give some definitions.

3.8.2.1 Definitions and theorems

Definition 3.5 (Relative information, mutual information). Let f
and g be densities on R

n with f absolutely continuous with respect to g;

• the relative information of f with respect to g is

I(f |g) =
∫

1

· · ·
∫

n

f(x1, . . . , xn) ln
(
f(x1, . . . , xn)
g(x1, . . . , xn)

)
dx1 . . . dxn

• the mutual information of f is

MI(f) = I

(
f

∣∣∣∣
n∏

i=i

fi

)
(3.15)

where fi is the ith univariate marginal density of f and
Πn
i=1f(x1, . . . , xn) is the independent distribution with univariate

margins {fi}.
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Relative information is also called the Kullback–Leibler information and
the directed divergence. The mutual information is also called the infor-
mation proper. The mutual information will be used to capture general
dependence in a set of multivariate data. We do not possess something like
an “empirical mutual information”. It must rather be estimated with kernel
estimators, as suggested in Joe.24 For some copulae, the mutual information
can be expressed in closed form36:

Theorem 3.5. Let g be the elliptical copula with correlation ρ, then the
mutual information of g is

1 + ln 2 + ln(π
√

1− ρ2 ).

Let h be the diagonal band copula with vertical bandwidth parameter 1− α,
then the mutual information of h is

−ln(2|α|(1− |α|)).

Note that the mutual information of the elliptical copula with zero corre-
lation is not zero, reflecting the fact that zero correlation in this case does
not entail independence.

Theorem 3.6 (Whittaker50). Let f be a joint normal density with mean
vector zero, then

MI(f) = −1
2 ln(D),

where D is the determinant of the correlation matrix.

For a bivariate normal, Theorem 3.6 says that MI(f) = −1
2 ln

(1 − ρ2). Substituting the appropriate conditional bivariate normal distri-
butions on the right-hand side of (3.16), we find MI(f) = −1

2

∑
e∈E(V) ln

(1− ρ2
e1,e2;De

), which agrees with Theorem 3.4.

The determinant of a correlation matrix indicates the “amount of linear-
ity” in a joint distribution. It takes the value 1 if the variables are uncor-
related, and the value zero if there is a linear dependence. Theorem 3.6
suggests that

e−2MI(f)

is the appropriate generalization of the determinant to capture general
dependence.

Proposition 3.3. e−2MI(f) = 1 if and only if f = Πfi and e−2MI(f) = 0 if
f has positive mass on a set of Πfi measuring zero.
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Theorem 3.7 (Cooke,9 Bedford and Cooke5). Let g be an
n-dimensional density satisfying the bivariate vine specification (F,V, B)
with density g and one-dimensional marginal densities g1, . . . , gn; then

I

(
g

∣∣∣∣
n∏

i=1

gi

)
=

∑

e∈E(V)

EDeI(ge1,e2|De
|ge1|De

· ge2|De
). (3.16)

If De is vacuous, then by definition

EDeI(ge1,e2|De
|ge1|De

· ge2|De
) = I(ge1,e2|ge1 · ge2).

3.8.2.2 Strategy for model inference

Theorem 3.7 may be rewritten as

MI(f) =
∑

{i,j|K(ij)}∈V
bij;K(ij), (3.17)

where K(ij) is the conditioning set for the node in V with conditioned set
{i, j}. The terms bij;K(ij) will depend on the regular vine which we choose to
represent the dependence structure; however, the sum of these terms must
satisfy (3.17). We seek a regular vine for which the terms bij;K(ij) in (3.17)
are as “spread out” as possible. In other words, we wish to capture the
total dependence MI(f) in a small number of terms, with the remaining
terms being close to zero. This concept is made precise with the notion of
majorization.42

Definition 3.6. Let x, y ∈ R
n be such that

∑n
i=1 xi =

∑n
i=1 yi; then x

majorizes y if for all k; k = 1, . . . , n
k∑

j=1

x(j) ≤
k∑

j=1

y(j), (3.18)

where x(1) ≤ · · · ≤ x(j) ≤ · · · ≤ x(n) are the increasing arrangement of the
components of x, and similarly for {y(j)} and y.

In view of (3.17) the model inference problem may be cast as the prob-
lem of finding a regular vine whose terms bij;K(ij) are non-dominated in the
sense of majorization. In that case, setting the smallest mutual informations
equal to zero will change the overall mutual information as little as possible.
Pairs of variables whose (conditional) mutual information is zero are (con-
ditionally) independent. Finding non-dominated solutions may be difficult
but a necessary condition for non-dominance can be found by maximizing
any Schur convex function.
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Definition 3.7. A function φ : R
n → R is Schur convex if φ(x) ≥ φ(y)

whenever x majorizes y.

Schur convex functions have been studied extensively. A sufficient con-
dition for Schur convexity is given by Marshall and Olkin.42

Proposition 3.4. If φ : R
k → R may be written as φ(x) =

∑
ϕ(xi) with ϕ

convex, then φ is Schur convex.

Vine Inference Strategy: The following strategy for model inference sug-
gests itself:

(1) Choose a Schur convex function φ : R
n(n−1)/2 → R;

(2) Find a regular vine V(n) whose vector bij;K(ij) maximizes φ;
(3) Set the mutual information in V(n) equal to zero for which the terms

bij;K(ij) are smallest;
(4) Associate copulae with the nodes in the vine, such that the non-zero

mutual information values are preserved.

A different strategy for model inference is proposed in Chapter 11.

3.9 Applications

This section references applications in the wider sense, including uses of vine-
copula representations of multivariate distributions for mathematical and
modeling purposes, as well as applications to analysis of multivariate data.

3.9.1 Multivariate data analysis

Due to their high flexibility and simple structure, pair-copula constructions/
vines are becoming increasingly popular for constructing continuous multi-
variate distributions. While built exclusively from pair-copulae, they can
model a wide range of complex dependencies. Lately, a number of publica-
tions on applications of pair-copula constructions have appeared in the lit-
erature. Most of the publications treat financial applications1,2,8,11,13,20,43,48

while Kolbjornsen and Stien32 present a non-parametric petroleum-related
application of pair-copula constructions. For more details on some of these
applications, see the application chapters (beginning with Chapter 12) of
this book.

The studies of Aas and Berg1 and Fischer et al.13 also compare pair-
copula constructions with other multivariate models, e.g., n-dimensional
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parametric copulae and hierarchical Archimedean constructions,27 and con-
clude with the superiority of the pair-copula constructions. In Chapter 15
of this book, a short version of Aas and Berg1 is given.

Some more applications of vine copulae are as follows. Biller7 uses vine
copulae for copula-based multivariate time-series input models, and com-
pares them with Vector-Autoregressive-To-Anything (VARTA). De Michele
et al.12 and Salvadori et al.47 have application to a multivariate model of
sea storms.

3.9.2 Non-parametric Bayesian belief nets

Bayesian belief nets10,22,46,49 (BBNs) are directed acyclic graphs. The nodes
of the graph represent univariate random variables, which can be discrete
or continuous, and the arcs represent directed influences. BBNs provide a
compact representation of high-dimensional uncertainty distributions over
a set of variables (X1, . . . ,Xn) and encode the probability density of these
variables by specifying a set of conditional independence statements in the
form of an acyclic directed graph and a set of probability functions. In their
most popular form, BBNs were introduced in the 1980s as a knowledge
representation formalism to encode and use the information acquired from
human experts in automated reasoning systems to perform diagnostics and
predictions.46

Until recently, most BBNs were discrete. Moreover, there were only two
ways of dealing with continuous BBNs. One was to discretize the con-
tinuous variables and work with the corresponding discrete model, while
the other was to assume joint normality. Both these methods have serious
drawbacks. Therefore, non-parametric BBNs (NPBBNs) were introduced in
Kurowicka and Cooke35 and extended in Hanea.17 In the NPBBNs, nodes
are associated with arbitrary continuous invertible distributions and arcs
with (conditional) rank correlations that are realized by a chosen copula. No
joint distribution is assumed, which makes this BBN non-parametric. Non-
parametric BBNs have seen several applications to date, the most notable
being a very large model for civil aviation transport safety.3 There is a close
relationship between regular vines and NPBBNs. Chapter 14 of this book
provides some insights into the differences and similarities between the two
types of models.

In a BBN, the arcs of a directed graph can be associated with condi-
tional copula, where the conditioned variables are the source and sink of
the arc, and the conditioning variables are a subset of the other parents of
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the sink node. These conditional copulae, together with the one-dimensional
marginal distributions and the conditional independence statements implied
by the BBN graph uniquely determine the joint distribution, and every such
specification is consistent.35,36 This requires a copula type for which zero cor-
relation implies independence. The proof pivots on representing the parents
of a child node as a D-vine. When the number of non-independent con-
ditional copulae is not too large, BBNs provide a much more perspicuous
representation of the dependence structure than regular vines. In a regular
vine all edges must be drawn, even if the conditional copula is independent.
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Erhardt and Czado11 suggest an approximative method for sampling high-
dimensional count random variables with a specified Pearson correlation. They
utilize Gaussian copulae for the construction of multivariate discrete distribu-
tions. A major task is to determine the appropriate copula parameters for the
achievement of a specified target correlation. Erhardt and Czado11 develop an
optimization routine to determine these copula parameters sequentially. Thereby,
they use pair-copula decompositions of n-dimensional distributions, i.e., a decom-
position consisting only of bivariate copula with one parameter each. C-vines, a
graphical tool to organize such pair-copula decompositions, are used to select
a possible decomposition. In the paper mentioned, the approach was compared
to the NORTA method for discrete margins described in Ref. 2. Here, we will
compare it to a widely used naive sampling approach for an even larger vari-
ety of marginal distributions such as the Poisson, generalized Poisson, negative
binomial and zero-inflated generalized Poisson distributions.
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4.1 Introduction

Erhardt and Czado11 suggest a method for approximately sampling high-
dimensional count variables with a prespecified Pearson correlation. The
goal of this chapter is to sample from count random variables (rv’s)
Y1, . . . , Yn with Yi ∼ Fi (e.g. Poisson), i = 1, . . . , n with prespecified
corr(Y ) = ΣY , with (i, j)th element ΣY

ij = ρij and ρii = 1. Genest and
Neslehova13 review several facts about copulae linked to discrete margins
specifically for rank-based dependence measures. Multivariate discrete dis-
tributions discussed in the literature have several shortcomings which we
consider now. Kawamura18 defines a multivariate Poisson distribution which
can be obtained as a limiting case of a multivariate binomial distribution.
Since these multivariate Poisson models only allow for a single common
correlation parameter ρij = ρ,17 we are able to construct a model which
allows for individual correlations between each pair of variables. However,
these pairwise correlations are required to satisfy the positive definiteness
constraint. According to Tsiamyrtzis and Karlis,29 the usefulness of multi-
variate discrete models is limited since calculating the required probabilities
is difficult. Therefore, they suggest algorithms that calculate the joint prob-
abilities in a more efficient way, thus reducing the computational time. A
multivariate negative binomial distribution has been discussed, for example,
by Kopocinski.19 A multivariate generalization of the generalized Poisson
distribution (see Ref. 9) capable of modeling only exchangeable covariance
structures has been developed by Vernic30 and applied to the insurance field.

In the sampling approach of Erhardt and Czado,11 dependency is
modeled using a pair-copula decomposition of a general multivariate dis-
tribution. The graphical tool for organizing such decompositions is called a
regular vine and goes back to the work on vines by Refs. 3, 4, 15 and 5.
Aas et al.1 propose a new method to perform inference of such pair-copula
decompositions. In particular, the approach of Erhardt and Czado11 is based
on the Gaussian copula and a C-vine decomposition. The idea is to use a con-
ditional sampling approach where conditional cdfs and quantiles are defined
via a pair-copula construction. Here the bivariate copulae have only one
parameter each, therefore a root-finding routine such as bisection can be
utilized to sequentially determine optimal parameters for each pair-copula.
They compare their approach to a widely used naive sampling approach.

An approximate method for sampling correlated continuous random vari-
ables from partially specified distributions has been introduced by Lurie
and Goldberg.21 This method is an enhancement of an approach by Li and
Hammond20 and is based on the multivariate normal distribution. Their
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approach optimizes the set of parameters such that the empirical correla-
tions come close to the target correlations according to some distance mea-
sure, therefore the empirical and target correlations will closely match, if
not agree. Whereas Erhardt and Czado11 compare their sampling approach
to the NORTA method, in this chapter, we will compare it to a “naive” sam-
pling method often used. The NORTA method (“NORmal To Anything”,
see Refs. 6–8) is based on the work of Mardia22 and Li and Hammond.20 The
naive sampling method assumes that the Gaussian copula parameters spec-
ifying the underlying multivariate distribution of the desired margins coin-
cide with the target correlation parameters. The contribution of this chapter
will be two-fold. The simulation study in Ref. 11 will be completed by consid-
ering also the generalized Poisson distribution and the zero-inflated general-
ized Poisson distribution. Since the presence of zero-inflation causes the mar-
gins to be even more discrete we are interested in investigating the influence
of zero-inflation on the sampling results. Second, investigating the results of
the naive approach will quantify the impact of this simplifying assumption.

This chapter is organized as follows: In Section 4.2, we will review some
basic properties of multivariate distributions and copulae and will also
review the concept of partial correlations, which the approach is based on.
We will summarize the naive sampling method in Section 4.3. For general-
ized Poisson data in dimension 8, we will compare the C-vine sampling
approach to the naive sampling method. An extensive simulation study
comparing the two approaches is given in Section 4.4. We conclude with
a summary and discussion in Section 4.5.

4.2 Copulae and Multivariate Distributions

Marginal distributions considered in this chapter will be the Poisson, gener-
alized Poisson (GP), zero-inflated generalized Poisson (ZIGP) and the neg-
ative binomial (NB) distributions. Similar to the NB distribution, the GP
distribution introduced in Ref. 9 can model overdispersion with respect
to the Poisson model. Its advantage over the NB distribution is that the
overdispersion factor in the GP case depends on one additional parameter
ϕ whereas in the NB case it depends on an additional parameter as well
as the mean parameter. A second advantage of the GP distribution is that
for ϕ = 1 it reduces to the Poisson distribution. The ZIGP distribution
is obtained by a mixing between the zero and the GP distribution. The
probability of the mixing variable is an additional zero-inflation parame-
ter ω, i.e., for ω = 0 the distribution simplifies to the GP distribution.
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Table 4.1. Probability mass functions of the Poisson, GP, ZIGP and NB
distributions together with their means and variances.

P (Y = y)

Poisson µ
y!
e−µ

E(Y ) = µ, Var(Y ) = µ

GP µ(µ+(ϕ−1)y)y−1

y!
ϕ−ye−

1
ϕ

(µ+(ϕ−1)y),

where ϕ > max( 1
2
, 1 − µ

m
) and m is the largest natural number

with µ+m(ϕ− 1) > 0, if ϕ < 1.

E(Y ) = µ, Var(Y ) = E(Y )ϕ2

ZIGP 1{y=0} [ω + (1 − ω)e−
µ
ϕ ]

+1{y>0} [(1 − ω)µ(µ+(ϕ−1)y)y−1

y!
ϕ−ye

− 1
ϕ

(µ+(ϕ−1)y)
]

where in the case of ϕ < 1 the same condition as in the GP
case must hold.
E(Y ) = (1 − ω)µ, Var(Y ) = E(Y )

`
ϕ2 + µω

´

NB Γ(y+Ψ)

Γ(Ψ)y!

“
Ψ

µ+Ψ

”Ψ “
µ

µ+Ψ

”y

E(Y ) = µ, Var(Y ) = µ(1 + µ
Ψ

)

Excess zeros can be regarded as a second source of zero-inflation. In order
to allow for a comparison between these two distributions, we choose the
mean parametrization for all of the distributions. Their probability mass
function (pmf) together with means and variances are given in Table 4.1.

We will use copulae to obtain multivariate count distributions with
marginal counts as specified above. An n-dimensional copula Cn is a mul-
tivariate cdf Cn : [0, 1]n → [0, 1] whose univariate margins are uniform on
[0, 1], i.e., Cn(1, . . . , 1, ui, 1, . . . , 1) = ui ∀ i ∈ {1, . . . , n}. For n continu-
ous rv’s Y := (Y1, . . . , Yn)′ with marginal distributions F1, . . . , Fn, the rv
Fi(Yi) is uniform on [0, 1]. Sklar26 shows that while Fi reflects the marginal
distribution of Yi, Cn reflects the dependence, i.e.

FY (y1, . . . , yn) = Cn(F1(y1|θ1), . . . , Fn(yn|θn)|τ ), (4.1)

where τ are the corresponding copula parameters. Hence, for a multivariate
cdf of Y , there always is a copula Cn separating the dependence structure
from the marginal distributions. However, Cn is unique only for continuous
margins. Vice versa, a multivariate cdf can be constructed by virtue of
(4.1) from n marginal distributions using an n-dimensional copula Cn. The
sampling approach by Erhardt and Czado11 is based on Gaussian copulae.
For a more detailed introduction to copulae including the Gaussian copula,
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see for instance Refs. 16, 23 or Ref. 10. Copulae with discrete margins are
discussed, for example, by.27

Definition 4.1 (Gaussian copula). The n-dimensional Gaussian copula
is a function Cn : [0, 1]n → [0, 1] with

Cn(u1, . . . , un|ΣZ) := Φn

(
Φ−1(u1), . . . ,Φ−1(un)|ΣZ

)
, (4.2)

where Φn(·|ΣZ) is the cdf of the n-dimensional normal distribution with
mean µ = 0n and covariance ΣZ and Φ−1(·) is the univariate standard
normal quantile function.

In the special case of n = 2, we write C2(u1, u2|τ12) = Φ2(Φ−1(u1),
Φ−1(u2)|τ12) instead of (4.2). The n-dimensional Gaussian copula density is

cn(u1, . . . , un|ΣZ) = φn
(
Φ−1(u1), . . . ,Φ−1(un)|ΣZ

) n∏

i=1

1
φ(Φ−1(ui))

,

with φn being the n-dimensional normal pdf with mean µ = 0n and covari-
ance ΣZ .

Erhardt and Czado11 stress that for a joint distribution of count margins
defined by a Gaussian copula, there are three levels of correlated random
variables:

(1) Multivariate normal level: (Z1, . . . , Zn) ∼ Nn

(
0,ΣZ

)
, where the

(i, j)th element of ΣZ will be denoted by τij. We refer to τij as the
“association parameter”.

(2) Uniform level: U1, . . . , Un ∼ unif(0, 1), Ui := Φ(Zi), i = 1, . . . , n. The
joint cdf G(u1, . . . , un) = Cn(u1, . . . , un|ΣZ) is defined by the Gaussian
copula cdf with association parameters ΣZ .

(3) Count level: Y := (Y1, . . . , Yn)′ are counts, where Yi := F−1
i (Ui|θi),

i = 1, . . . , n and θi are the parameters of margin i. Further, F−1
i (Ui|θi)

is the pseudo-inverse of Fi at Ui. The joint cdf is F (y1, . . . , yn|θ1,

. . . ,θn) = Cn(F1(y1|θ1), . . . , Fn(yn|θn)|ΣZ). For Y1, . . . , Yn with Yi ∼
Fi, i = 1, . . . , n, corr(Y ) =: ΣY , where ΣY

ij = ρij and ρii = 1.

They argue that the main problem of sampling from such a copula spec-
ification is that corr(Zi, Zj) �= corr(Ui, Uj) �= corr(Yi, Yj).

An important concept for the sampling approach in Ref. 11 is partial
correlations. Here we review an important property of partial correlations
since it will be needed in the simulation study in this chapter. Partial corre-
lation is the correlation between two variables while controlling for a third
variable or more. Let W be a standardized n-dimensional random vec-
tor, where we partition W = (W1,W2,W

′
3)

′, and W 3 = (W3, . . . ,Wn)′
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is an (n − 2)-dimensional random vector. Mean and correlation matrix are
µ = (µ1, µ2,µ

′
3)

′ and

Σ =




σ11 σ12 σ′

13

σ12 σ22 σ′
23

σ13 σ23 Σ33



, Σ−1 =:




σ11 σ12 σ13′

σ12 σ22 σ23′

σ13 σ23 Σ33



.

According to Srivastava and Khatri28 (p. 53), the partial correlation
between W1 and W2 with W 3 denoted by ρ12;3:n is defined as the correla-
tion between W1−σ′

13Σ
−1
33W 3 andW2−σ′

23Σ
−1
33 W 3, which is the correlation

between W1 and W2 after eliminating the best linear effects of W 3 from
both variables. It can be calculated as ρ12;3:n = −σ12√

σ11σ22
. An important

property of partial correlations is a recursive formula (see e.g., Ref. 24): for
I := {1, . . . , n} and for any subset I∗ ⊆ I, which contains at least i, j and k,

ρij;I∗\{i,j} =
ρij;I∗\{i,j,k} − ρik;I∗\{i,j,k} · ρjk;I∗\{i,j,k}√

(1− ρ2
ik;I∗\{i,j,k})(1− ρ2

jk;I∗\{i,j,k})
, (4.3)

i.e., partial correlations of order (n − 2) can be calculated from those of
order (n− 3).

4.3 Naive Sampling with Illustration to GP Count Data

In this section, we will compare our sampling approach to a naive approach
of sampling count random variables. The naive approach is to use our
desired target correlation ΣY and generate for a sample of N subjects n-
dimensional multivariate normal random vectors with covariance ΣY , i.e.
Zk ∼ Nn(0,ΣY ), k = 1, . . . , N. Next, we transform the sample zk =
(zk1, . . . , zkn)′ to the uniform level uk := (Φ(zk1), . . . ,Φ(zkn))′, k = 1, . . . , N
and determine the sample correlation Σ̂

U
of {uk, k = 1, . . . , N}. Then we

generate outcomes according to the generalized Poisson distribution (see
Table 4.1) with cdf Fi by determining the quantiles of the GP distribution
with mean µi and variance µiϕ

2
i at uki, k = 1, . . . , N , i = 1, . . . , n, i.e.,

ynaiveki := F−1
i (uki|µi, ϕi), and ynaivek := (ynaivek1 , . . . , ynaivekn )′. The sample

correlation of {ynaivek , k = 1, . . . , N} will be denoted by Σ̂
Y naive

.
For n = 8 and N = 100000, we use as a target correlation matrix

an exchangeable structure, i.e., ΣY = (ρij) with ρij = 0.6 ∀ i �= j

and ρii = 1. Marginal means of the eight-dimensional GP distribu-
tion were set to µ := (4, 25, 120, 2, 28, 7, 27, 5)′ , dispersion parameters to
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ϕ := (1.5, 3.5, 2, 2.5, 2, 3, 1.5, 2.5)′ . The empirical correlation matrix Σ̂
U

is
determined to be

Σ̂
U

=




1.0000, 0.5814, 0.5836, 0.5799, 0.5812, 0.5815, 0.5821, 0.5807
0.5814, 1.0000, 0.5849, 0.5841, 0.5837, 0.5855, 0.5837, 0.5821
0.5836, 0.5849, 1.0000, 0.5839, 0.5840, 0.5819, 0.5832, 0.5853
0.5799, 0.5841, 0.5839, 1.0000, 0.5809, 0.5829, 0.5842, 0.5831
0.5812, 0.5837, 0.5840, 0.5809, 1.0000, 0.5827, 0.5804, 0.5818
0.5815, 0.5855, 0.5819, 0.5829, 0.5827, 1.0000, 0.5839, 0.5822
0.5821, 0.5837, 0.5832, 0.5842, 0.5804, 0.5839, 1.0000, 0.5848
0.5807, 0.5821, 0.5853, 0.5831, 0.5818, 0.5822, 0.5848, 1.0000




,

where the average absolute deviation of all off-diagonal elements from ΣY

is 0.0172. Naively transforming the obtained uniform variables to the count
level gives us a sample of count variables whose empirical correlation matrix
is calculated to be

Σ̂
Y naive

=




1.0000, 0.5711, 0.5788, 0.5036, 0.5791, 0.5386, 0.5808, 0.5473
0.5711, 1.0000, 0.5717, 0.5062, 0.5777, 0.5497, 0.5727, 0.5491
0.5788, 0.5717, 1.0000, 0.4781, 0.5956, 0.5298, 0.5979, 0.5400
0.5036, 0.5062, 0.4781, 1.0000, 0.4909, 0.5007, 0.4850, 0.5069
0.5791, 0.5777, 0.5956, 0.4909, 1.0000, 0.5402, 0.5919, 0.5452
0.5386, 0.5497, 0.5298, 0.5007, 0.5402, 1.0000, 0.5361, 0.5360
0.5808, 0.5727, 0.5979, 0.4850, 0.5919, 0.5361, 1.0000, 0.5429
0.5473, 0.5491, 0.5400, 0.5069, 0.5452, 0.5360, 0.5429, 1.0000




.

The off-diagonal average absolute deviation is 0.0556. If we, however, use
our approach for sampling correlated GP variables, we get

Σ̂
Y

=




1.0000, 0.5938, 0.5984, 0.6022, 0.5992, 0.5921, 0.5975, 0.5953
0.5938, 1.0000, 0.5977, 0.6019, 0.6030, 0.5989, 0.6012, 0.6072
0.5984, 0.5977, 1.0000, 0.5589, 0.6161, 0.5828, 0.6243, 0.5898
0.6022, 0.6019, 0.5589, 1.0000, 0.5721, 0.6317, 0.5632, 0.6405
0.5992, 0.6030, 0.6161, 0.5721, 1.0000, 0.5948, 0.6249, 0.5985
0.5921, 0.5989, 0.5828, 0.6317, 0.5948, 1.0000, 0.5930, 0.6301
0.5975, 0.6012, 0.6243, 0.5632, 0.6249, 0.5930, 1.0000, 0.6065
0.5953, 0.6072, 0.5898, 0.6405, 0.5985, 0.6301, 0.6065, 1.0000




,

where the off-diagonal absolute deviations have an average value of 0.0130.
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4.4 Simulation Study

In this section, we want to perform a systematic comparison of the small
sample performance of the two sampling approaches for a correlated count
random vector Y = (Y1, . . . , Yn) with target correlation ρij = corr(Yi, Yj),
1 ≤ i < j ≤ n. We consider two methods for measuring the performance of
the approaches. The description of these measures and of the specification
of the simulation settings are given in detail in Section 6 of Erhardt and
Czado.11

Relative bias with respect to target correlation

In R independent replications, we generate an N -dimensional i.i.d. sample
of Y . For yri := (yr1i, . . . , y

r
Ni)

′, i = 1, . . . , n, r = 1, . . . , R, let ρ̂rij be the
empirical correlation coefficient based on yri and yrj . Then the estimated

relative bias is r̂bij := 1
R

∑R
r=1

ρ̂r
ij

ρij
− 1, where ρij is the target correlation.

These estimated biases will be dependent, therefore we will consider the
maximal estimated relative bias MAXRB := max1≤i<j≤n r̂bij as an overall
measure for all 1 ≤ i < j ≤ n.

Average number of acceptance of specified correlation

We would like to test

H0 : ρij = ρ0
ij ∀ 1 ≤ i < j ≤ n versus H1 : not H0, (4.4)

where ρ0
ij is the target correlation. This composite test consists of n(n−1)

2

individual tests, i.e., we reject H0 if for some (i, j)

Hij
0 : ρij �= ρ0

ij versus Hij
1 : ρij = ρ0

ij (4.5)

cannot be rejected. Thus, we are dealing with a multiple testing problem.
The classic way to account for this is to use the Bonferroni correction (see
Ref. 25) where the overall α level test for (4.4) is obtained by performing
n(n−1)

2 individual tests (4.5) based on level αc with αc = α
n(n−1)/2

. Further,
since the distribution of ρ̂rij is unknown, we use the Fisher z-transform to
R by defining ẑrij := tanh−1(ρ̂rij) and z0

ij := tanh−1(ρ0
ij). Then according to

Ref. 12 an asymptotic αc-level test for (4.5) is given by

Reject H ij
0 : ρij �= ρ0

ij ⇔
|ẑrij − z0

ij |
1/
√
N − 3

≤ qαc ,

where qαc is the (1 − αc) quantile of a standard normal distribution. If an
i < j exists such that H ij

0 : ρij �= ρ0
ij is not rejected on level αc, reject
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H0 : ρij = ρ0
ij ∀ 1 ≤ i < j ≤ n at level α. We set ACCα as the percentage of

acceptances of H0 at level α among the R replications.
The number of replications in our simulation study is R = 1000, N

is now chosen to be 500. We consider the four distributions introduced in
Section 4.2. Marginal parameters θi are µi in the Poisson case, (µi, ϕi) in the
GP case, (µi, ϕi, ωi) in the ZIGP case and (µi, ψi) in the NB case. Variances
V ar(Y rki) will be equal in the GP and NB case if we set ϕ2

i = 1 + µi
ψi

or
equivalently ψi = µi

ϕ2
i−1

. According to Table 4.1, a high ψi corresponds to
low overdispersion and vice versa.

(1) First, we investigated the influence of the dimension n and the size
of the correlation in an exchangeable target correlation structure, i.e.
ρij = ρ. The settings were ρ ∈ {0.1, 0.5, 0.9}, n ∈ {2, 5, 10}. Medium-
sized marginal parameters according to Table 4.2 were used. Results are
summarized in Table 4.4.

(2) For the exchangeable target correlation structure, we looked at the influ-
ence of the marginal parameters. Here, ρ = 0.5 and n = 5 were fixed.
For µ, ϕ and ω, sets of small values (S) were compared to sets of larger
(L) values. Again, for ψS := (ψS1 , . . . , ψ

S
n ) and ψL := (ψL1 , . . . , ψ

L
n ), the

Table 4.2. Marginal parameter choices for n = 2, 5 and 10 and
exchangeable correlation structure for different marginal distributions
(marginal variances for GP and NB margins are chosen to be equal).

T Parameters

Poi 2 µ := (10, 15)′

5 µ := (10, 15, 12, 20, 28)′

10 µ := (10, 15, 12, 20, 28, 17, 27, 13, 19, 25)′

GP µ as in Poisson case
2 ϕ := (1.5, 3.5)′

5 ϕ := (1.5, 3.5, 1.5, 2, 2.5)′

10 ϕ := (1.5, 3.5, 1.5, 2, 2.5, 2, 3, 1.5, 1.5, 2.5)′

ZIGP µ and ϕ as in GP case
2 ω := (0.25, 0.15)′

5 ω := (0.25, 0.15, 0.10, 0.3, 0.2)′

10 ω := (0.25, 0.15, 0.10, 0.3, 0.2, 0.17, 0.24, 0.24, 0.2, 0.15)′

NB µ as in Poisson case
2 ψ := (8, 1 1

3
)′

5 ψ := (8, 1 1
3
, 9.6, 6 2

3
, 5 1

3
)′

10 ψ := (8, 1 1
3
, 9.6, 6 2

3
, 5 1

3
, 5 2

3
, 3.375, 10.4, 15.2, 4.762)′
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Table 4.3. Marginal parameter choices for investigating the influence of marginal
parameter sizes (ψS(µ) corresponds to large overdispersion, ψL(µ) to small
overdispersion).

Small Large

µS := (1, 3, 2, 2, 1.5)′ µL := (30, 20, 35, 50, 25)′

ϕS := (1.1, 2.5, 1.5, 3, 2)′ ϕL := (6, 5, 3, 4, 4.5)′

ωS := (0.05, 0.1, 0.05, 0.08, 0.07)′ ωL := (0.25, 0.2, 0.35, 0.15, 0.4)′

ψS(µS) := (4.76, 0.57, 1.6, 0.25, 0.5)′ ψL(µS) := (0.03, 0.13, 0.25, 0.13, 0.08)′

ψS(µL) := (142.9, 3.810, 28, 6.25, 8.33)′ ψL(µL) := (0.86, 0.83, 4.38, 3.33, 1.30)′

entries were calculated according to ψSi (µi) = µi

(ϕS
i )2−1

and ψLi (µi) =
µi

(ϕL
i )2−1

, respectively, where µi could either be µSi or µLi (see Table 4.3).
Results can be found in Table 4.5.

(3) Finally, AR(1) and unstructured target correlations were investigated
(Table 4.6).

AR(1) and unstructured correlation matrices:

For R = 1000 replications, N = 500 and n = 5, we investigated as target
correlation also AR(1) and unstructured correlation matrices, i.e., for the
AR(1) case we used ΣY = (ρij) with ρij = 0.7|i−j| ∀ i �= j and ρii = 1.
In order to obtain unstructured correlation matrices, we generated a sam-
ple of R = 1000 unstructured partial correlations fully specifying a C-vine
decomposition. Then we calculated the corresponding correlation matrix
from them using the recursive expression (4.3). Note that not all correla-
tions can be sampled. For very high and very low target correlations and
especially for low marginal means in i and/or j, τij(ΣY |θ) might not exist.
We did not discard the simulation in these replications but used the result
generated from the closest association parameters obtained in the bisection
step when no further optimization could be achieved. We briefly interpret
the obtained results.

Influence of the choice of ρ:

According to Table 4.4, the higher the target correlation chosen, the smaller
ACC0.05 was and hence the worse the approximations became. The maximal
estimated relative bias, however, shrinks. This is due to the standardization
by the true correlation parameters.
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Table 4.4. Maximal estimated relative bias (MAXRB) and proportion of tests which accepted target correla-
tion (ACC0.05) based on R = 1000 replications of N = 500 samples of size n for exchangeable target correlation
ρ and different count margins and parameters as in Table 4.2 (bold: C-vine sampling, italics: naive sampling).

Poisson GP ZIGP NB

ρ n MAXRB ACC 0.05 MAXRB ACC 0.05 MAXRB ACC 0.05 MAXRB ACC 0.05

0.1 2 0.0018 1.000 0.0036 1.000 0.0011 1.000 0.0004 1.000
0 .0236 0 .938 0 .0859 0 .935 0 .1275 0 .929 0 .0905 0 .944

5 0.0372 1.000 0.0191 1.000 0.0299 1.000 0.0279 1.000
0 .0338 0 .959 0 .1446 0 .933 0 .1511 0 .936 0 .1037 0 .937

10 0.1068 1.000 0.0659 1.000 0.0703 1.000 0.0735 1.000
0 .0350 0 .940 0 .1295 0 .932 0 .1311 0 .937 0 .1091 0 .947

0.5 2 0.0002 1.000 0.0001 1.000 0.0005 1.000 0.0000 1.000
0 .0119 0 .951 0 .0776 0 .770 0 .0939 0 .708 0 .0619 0 .826

5 0.0191 0.995 0.0110 0.992 0.0176 0.998 0.0083 0.996
0 .0114 0 .952 0 .0774 0 .764 0 .1004 0 .709 0 .0589 0 .836

10 0.0309 1.000 0.0119 0.998 0.0231 0.998 0.0091 0.999
0 .0093 0 .955 0 .0748 0 .792 0 .1242 0 .731 0 .0615 0 .850

0.9 2 0.0006 1.000 0.0006 1.000 0.0003 1.000 0.0004 1.000
0 .0077 0 .877 0 .0456 0 .038 0 .0699 0 .000 0 .0323 0 .162

5 0.0093 0.764 0.0191 0.766 0.0326 0.322 0.0124 0.873
0 .0081 0 .923 0 .0476 0 .035 0 .0811 0 .000 0 .0354 0 .170

10 0.0086 0.769 0.0254 0.613 0.0717 0.000 0.0176 0.836
0 .0082 0 .934 0 .0562 0 .011 0 .1250 0 .000 0 .0415 0 .135
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Table 4.5. Maximal estimated relative bias (MAXRB) and propor-
tion of tests which accepted target correlation (ACC0.05) based on
R = 1000 replications of N = 500 samples of size n = 5 for exchange-
able target correlation ρ and different count margins and parameters
as in Table 4.3 (bold: C-vine sampling, italics: naive sampling).

µ ϕ ω MAXRB ACC 0.05 MAXRB ACC 0.05

Poisson S 1 0 0.0335 0.999 0 .1014 0 .672
L 1 0 0.0241 0.995 0 .0052 0 .950

GP S S 0 0.1323 0.516 0 .2456 0 .034
S L 0 0.3822 0.010 0 .5107 0 .000
L S 0 0.0146 0.993 0 .0329 0 .913
L L 0 0.0868 0.914 0 .1423 0 .307

ZIGP S S S 0.1377 0.492 0 .2603 0 .020
S S L 0.1875 0.297 0 .2850 0 .007
S L S 0.3937 0.005 0 .5230 0 .000
S L L 0.4023 0.004 0 .5682 0 .000
L S S 0.0570 0.999 0 .1069 0 .790
L S L 0.0794 0.990 0 .1528 0 .460
L L S 0.0931 0.924 0 .1479 0 .304
L L L 0.0988 0.906 0 .1514 0 .222

NB S S 0 0.1228 0.615 0 .2348 0 .035
S L 0 0.3719 0.012 0 .5146 0 .001
L S 0 0.0150 0.994 0 .0280 0 .928
L L 0 0.0582 0.997 0 .1061 0 .544

Influence of T :

As one would expect, the higher the dimension T , the worse the approxi-
mation gets. The reason is simply error propagation.

Influence of the distribution family:

Overdispersed settings perform worse than equidispersed ones, zero-inflation
additionally increases overdispersion and hence worsens the results.

Influence of the range of parameters µ:

According to MAXRB and ACC0.05 in Table 4.5, small means produce
worse approximations. Small means generate more discrete data with linear
correlations that are harder to optimize.
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Table 4.6. Maximal estimated relative bias (MAXRB)
and proportion of tests which accepted target correlation
(ACC0.05) based on R = 1000 replications of N = 500 samples
of size n = 5 for AR(1) and unstructured correlation struc-
tures and different count margins (bold: C-vine sampling, ital-
ics: naive sampling).

AR(1)

Poisson GP ZIGP NB

MAXRB 0.0220 0.0218 0.0219 0.0219
0 .0736 0 .0741 0 .0740 0 .0738

ACC0.05 0.806 0.807 0.807 0.807
0 .760 0 .760 0 .759 0 .760

unstructured

Poisson GP ZIGP NB

MAXRB 0.0244 0.0244 0.0245 0.0245
0 .0932 0 .0923 0 .0937 0 .0928

ACC0.05 0.862 0.862 0.862 0.861
0 .778 0 .778 0 .777 0 .778

Influence of the range of parameters ϕ and ω:

Small dispersion and zero-inflation parameters result in dramatically better
approximations than large ones. Both large ϕ and ω increase heterogeneity
in the data and therefore also in the empirical correlations calculated.

Also, for the AR(1) and unstructured correlation matrices in Table 4.6,
the results are equally good as in the five-dimensional exchangeable settings.

4.5 Summary and Discussion

Erhardt and Czado11 suggest an iterative method for sampling correlated
count random variables. Positive definiteness of the resulting association
parameters is ensured by the C-vine framework the approach is embedded
in. The price of this is that some of the correlations between margins are
only approximated via partial correlations. The comparison carried out in
this chapter illustrates that the performance of the two approaches strongly
depends on the simulation setting chosen.

Two questions are raised in this chapter. First of all, how wrong can
one be when using the simplified (naive) approach? The simulation study



October 11, 2010 12:18 9.75in x 6.5in b979-ch04

86 V. Erhardt and C. Czado

illustrates that the desired target correlations might be clearly missed espe-
cially when the dimension, the degree of discreteness and overdispersion of
the margins are high. The other question is how much better the suggested
C-vine approach performs. We showed that even if it tends to be less pre-
cise in the same setting where the naive approach fails, there is a substantial
improvement of accuracy.
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An elementary though seemingly underappreciated finding shows that small
global correlations are amplified by aggregation. We observe this behavior in flood
damage claims in the US. We also observe that upper tail dependence seems to
be amplified by aggregation in these data. We seek to understand this behavior.
For sums of exponential variables which are conditionally independent given a
gamma-distributed rate, we derive explicit expressions for upper tail dependence
and prove that it goes to one as the number of summands goes to infinity, and
that the lower tail dependence is zero. We also study sums of events under a
latent variable model, where each event occurs if a uniform variable exceeds a
threshold, and all uniform variables are conditionally independent given a “latent
variable”. We obtain a necessary and sufficient condition for strong asymptotic
upper tail dependence as the number of summands goes to infinity. Curiously,
the normal copula satisfies this condition, although it is not tail dependent via
the usual definition. Thus, sums of events under the normal copula latent vari-
able model have upper tail dependence increasing to 1. We also identify tail
dependent-like behavior in finite sums of events with the latent variable model.
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5.1 Introduction

Micro correlations will amplify the correlation of sums of globally correlated
variables, and under certain circumstances they will also amplify tail depen-
dence. This is of evident concern to risk managers, as it will compromise risk
management based on diversification. The circumstances under which aggre-
gation amplifies tail dependence are not well understood, and this chapter
represents a first foray into the area of tail dependence amplification. We
study latent variable models for sums of events, and L1-symmetric variables.
We obtain a condition that leads to upper tail dependence for two different
sums of events. In the case of L1-symmetric measures with gamma scale
mixtures, we can prove that aggregation amplifies upper tail dependence.

In Section 5.2, we first discuss the issue of micro correlation and present
loss data, drawn, from Kousky and Cooke,8 where micro correlations amplify
under aggregation. Section 5.3 shows results on tail dependence and aggre-
gation, and Section 5.4 concludes with a discussion of further research.

5.2 Micro Correlations

Let X1, . . . ,XN and XN+1, . . . ,X2N be sets of random variables with the
average variance σ2 over the first N and second N random variables and
average covariance γ within and between the two sets. The correlation of
the sum of the first N and second N X’s is:

corr

(
N∑

i=1

Xi,

2N∑

i=N+1

Xi

)
=

N2γ

Nσ2 +N(N − 1)γ
=

Nγ

σ2 + (N − 1)γ
.

Evidently, if γ > 0 and σ < ∞, this goes to 1 as N → ∞. Since σ2 > 0,
σ2

N−1 ≥ −γ which shows that for all N sufficiently large, γ ≥ 0.
We can find micro correlations in many places once we start looking for

them. We illustrate with two data sets: flood insurance claims data from the
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US National Flood Insurance Program (NFIP) and data on crop insurance
indemnities payments from the United States Department of Agriculture’s
Risk Management Agency. Both data sets are aggregated by county and
year for the years 1980 to 2008. The data are in constant year 2000 dollars.
Over this time, there has been substantial growth in exposure to flood risk,
particularly in coastal counties. To remove the effect of growing exposure,
we divide the claims per county per year by personal income per county
per year available from the Bureau of Economic Accounts (BEA). Thus, we
study yearly flood claims per dollar income, per year per county. The crop
loss claims are not exposure-adjusted, as an obvious proxy for exposure is
not at hand, and exposure growth was less of a concern.

Suppose we randomly draw pairs of counties in the US and compute
the correlation of their exposure-adjusted flood losses. Figure 5.1 shows the
histogram of 500 such correlations. The average correlation is 0.04. A few
counties have quite high correlations but the bulk is around zero. Indeed,
based on the sampling distribution for the normal correlation coefficient,
correlations less than 0.37 in absolute value would not be statistically dis-
tinguishable from zero at the 5% significance level. 91% of these correlations
fall into that category.

Instead of looking at the correlations between two randomly chosen coun-
ties, consider summing 100 randomly chosen counties and correlating this
with the sum of 100 distinct randomly chosen counties (i.e., sampling without

−0.21
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3.5
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−0.085 0.035 0.16 0.28 0.4 0.52 0.64 0.76 0.88 1

Figure 5.1. Histogram of 500 correlations of randomly paired US exposure-adjusted flood
loss per county, 1980–2006. The average correlation is 0.04.
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Figure 5.2. Similar to Fig. 5.1, but showing 500 correlations of random sums of 100
and 500.

replacement). If we repeat this 500 times, the centered histogram in Fig. 5.2
results; the average of 500 such correlations-of-100 is 0.23. The histogram at
the upper extreme depicts 500 correlations-of-500; their average value is 0.71.

The flood damage per dollar exposure shows a lower correlation than the
US crop losses in Fig. 5.3. The mean correlation is 0.13, and the mean of
correlations-of-100 is 0.88.

It is interesting to compare the histograms of real loss distributions with
a histogram in which each county is assigned an independent uniform vari-
able. The histogram of 500 correlations of random pairs and correlations of
random aggregations-of-500 are shown in Fig. 5.4.

5.3 Tail Dependence and Aggregation

In this section, we obtain some results on when aggregation amplifies tail
dependence.

The definition of upper tail dependence is given below.

Definition 5.1 (Upper tail dependence). The upper tail dependence
between random variables X and Y is

UTD(X,Y ) = lim
q→1

Pr(X > xq|Y > yq) (5.1)

where xq = F−1
X (q) and yq = F−1

Y (q).
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Figure 5.3. Histogram of 500 random correlations of US crop losses per county,
1980–2008, random pairs and random sums of 100.
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Figure 5.4. Histogram of 500 random correlations of independent uniforms assigned to
each county, 1980–2008, random pairs and random sums of 500.
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Figure 5.5. Percentile scatterplots of random aggregation of Florida county monthly
flood losses. Left: two random aggregations of five counties; right: two random aggregations
of 30 distinct counties.

Lower tail dependence is defined in a similar way in the lower quadrant:
LTD(X,Y ) = limq→0 Pr(X ≤ xq|Y ≤ yq). As is evident from the definition,
tail dependence is a property of the copula. The normal copula has zero tail
dependence for all correlation values in (−1, 1); see McNeil et al.10

A central question is whether tail dependence is also amplified by aggre-
gation. In loss distributions, we can see the amplification of tail dependence
under aggregation. To see tail dependence, the yearly data are not sufficient.
Figure 5.5 plots monthly flood loss data in the state of Florida from 1980
to 2008. We choose Florida because there are numerous counties with many
non-zero losses in several months. There are two percentile scatterplots: that
on the left shows two random aggregation of five counties while the plot
on the right shows two random aggregations of 30 counties. Points on the
axes correspond to months in which there were no losses in the correspond-
ing aggregate variable. The plot suggests that the upper tail dependence
is amplified by aggregation. We seek models to help understand why and
when this happens.

5.3.1 Latent variable models for tail dependence

In simple latent variable models, a latent variable is an unobserved variable
to which all observed variables are correlated, and conditional on which all
observed variables are independent. Recognizing this structure as a C-vine
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with dependence confined to the first tree rooted at the latent variable, it
is evident that this is the simplest of a wide class of models.

We first consider a finite class of events, where each event occurs when a
physical variable exceeds some limit, and each physical variable is connected
to a latent variable. For simplicity, let U1, . . . , U2N be uniform variables and
suppose event Ei occurs if and only if Ui > r. Suppose further that the
Ui are conditionally independent given a latent variable V , which is also
uniform. To study such models, we require a copula joining Ui and V .

Specifically, (Ui, V ) ∼ C(u, v) for all i and C is a bivariate copula. Let
C1|2(u|v) = ∂C(u, v)/∂v be the conditional distribution of Ui given V = v.
We assume C has positive dependence in the sense of stochastic increasing,
that is Pr(U1 > u|V = v) = 1 − C1|2(u|v) is strictly increasing in v ∈ [0, 1]
for all 0 < u < 1. This condition is satisfied by all of the commonly used
one-parameter families of copula when restricted to the region of positive
dependence. For a fixed r in (0, 1), let Yi = I(Ui > r) for the indicator
of the extreme event Ei. Let S1 = S1(N) = Y1 + · · · + YN and let S2 =
S2(N) = YN+1 + · · ·+ Y2N be two aggregate numbers of extreme events in
two sets. We study the (upper) tail dependence of S1, S2 under this simple
latent variable model.

Let
pr(v) = 1− C1|2(r|v), qr(v) = 1− pr(v), 0 ≤ v ≤ 1. (5.2)

For an integer k between 0 and N inclusive, and j = 1 or 2,

Pr(Sj = k) =
∫ 1

0
Pr(Sj = k|V = v) dv

=
∫ 1

0

(
N

k

)
[pr(v)]k[qr(v)]N−k dv,

and
Pr(S1 = k1, S2 = k2)

=
∫ 1

0
Pr(S1 = k1|V = v) Pr(S2 = k2|V = v) dv

=
∫ 1

0

(
N

k1

)
[pr(v)]k1 [qr(v)]N−k1

(
N

k2

)
[pr(v)]k2 [qr(v)]N−k2 dv.

For a fraction 0 < ζ < 1, let λU (r, ζ,N) = Pr(S2 > Nζ|S1 > Nζ). Then

λU (r, ζ, N) =

R 1

0

P
k1≥Nζ,k2≥Nζ

„
N
k1

«
[pr(v)]

k1 [qr(v)]
N−k1

„
N
k2

«
[pr(v)]

k2 [qr(v)]
N−k2 dv

R 1

0

P
k≥Nζ

„
N
k

«
[pr(v)]k[qr(v)]N−k dv

.

(5.3)
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The analysis of (5.3) for large N is given next. Let Z be a standard normal
random variable, with cumulative distribution function Φ. Let

g(v) = g(v; r, ζ) =
pr(v)− ζ√
pr(v)qr(v)

.

By the normal approximation to binomial, for large N , (5.3) can be approx-
imated by
∫ 1
0 {Pr(Z > [Nζ −Npr(v)]/

√
Npr(v)qr(v) )}2 dv

∫ 1
0 Pr(Z > [Nζ −Npr(v)]/

√
Npr(v)qr(v) ) dv

=

∫ 1
0 Φ2[N1/2g(v)] dv
∫ 1
0 Φ[N1/2g(v)] dv

.

(5.4)
From the positive dependence assumption of stochastic increasing, pr(v) in
(5.2) is increasing in v. Let

v0 = v0(r, ζ) = sup{v ∈ (0, 1) : pr(v) ≤ ζ}
= sup{v ∈ (0, 1) : g(v; r, ζ) ≤ 0}.

Then (5.4) becomes
∫ v0
0 Φ2[N1/2g(v)] dv +

∫ 1
v0

Φ2[N1/2g(v)] dv
∫ v0
0 Φ[N1/2g(v)] dv +

∫ 1
v0

Φ[N1/2g(v)] dv
. (5.5)

If 0 ≤ v0 < 1, then

lim
N→∞

∫ v0

0
Φj[N1/2g(v)] dv = 0, and

lim
N→∞

∫ 1

v0

Φj[N1/2g(v)] dv = 1− v0, j = 1, 2.

Therefore, λU(r, ζ,N) in (5.3) goes to 1 as N →∞ if 0 ≤ v0 < 1, and

lim
N→∞

λU (r, ζ,N) = 1 ∀ 0 < r < 1, 0 < ζ < 1

if and only if pr(1) = C1|2(r|1) = 1 for all 0 < r < 1 or C1|2(u|1) = 0 for all
0 < u < 1.

If pr(1) = C1|2(r|1) < 1, then limN→∞ λU (r, ζ,N) = 1 only if ζ is small
enough so that 0 < v0 < 1. If v0 = 1 and pr(1) < ζ, then (5.5) is bounded
above by max0≤v≤1 Φ[N1/2g(v)] and this approaches 0 as N →∞.

For numerical computations, if the limit is 1, λU (r, ζ,N) is practical only
if Pr(S1 > ζN) is not too small and v0(r, ζ) is not too close to 1; this means
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ζ should not be too close to 1. For fixed ζ, Pr(S1 > ζN) tends to get smaller
as the (upper tail) dependence of (Ui, V ) gets weaker.

The condition of C1|2(r|1) = Pr(U > r|V = 1) = 1 for all 0 < r < 1 or

C1|2(u|1) = Pr(U ≤ u|V = 1) = 0 ∀ 0 < u < 1 (5.6)

is an upper tail dependence condition. It is the same as [U |V = v] →
p 1,

as v ↑ 1.
Equation (5.6) holds for all bivariate extreme value copulae, e.g., Gumbel

and Galambos. The condition for (5.6) to hold for an Archimedean copula
Cψ(u, v) = ψ(ψ−1(u) + ψ−1(v)) is ψ′(0) = −∞ and this is the same condi-
tion for the usual tail dependence (Theorem 3.12 in Joe6). Hence, (5.6) fails
to hold for the Frank copula. It also fails to hold for the Plackett copula
but holds for the bivariate normal copula with positive correlation ρ. This
means that (5.6) is not exactly the same as the usual tail dependence con-
dition of limv↑1 C(v, v)/(1 − v) being positive because the bivariate normal
copula does satisfy this. Some proofs of the preceding cases are given in
Appendix A.

Table 5.1 compares the conditional probability λU (r, ζ,N) for the
Gumbel, bivariate normal and Frank copulae when r = 0.9, ζ = 0.7, and
the dependence parameters for the three copulae are chosen to get a rank
correlation of 0.5.

The definition of tail dependence as limiting conditional probabilities
of exceedence is not appropriate for finite sums of events. Nonetheless we
can identify tail dependence-like behavior in finite sums of events. With
Frank’s copula, take the probability of the individual events as 0.1 and the
correlation to the latent variable V as 0.9 (the parameter θ = 12.3) which
induces a correlation 0.36 between any two events. Figure 5.6 illustrates
curious non-monotonic behavior in P{S1 > i|S2 > i}, for N = 100 and
i = 1, . . . , 100. This is caused by the interaction of two opposing “forces”; as
i increases, P{S1 > i} goes down, while on the other hand, conditionalizing
on P{S2 > i} drives the latent V up, which increases P{S1 > i|S2 > i}.
The pattern with N fixed and ζ increasing is quite different from the pattern
when ζ is fixed and N increasing.

5.3.2 Sum of damages over extreme events

Instead of the number of extreme events, consider the sum of losses or dam-
ages. The situation becomes more complex and the results depend strongly
on the copula and the damage distributions. Figure 5.7 shows percentile
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Table 5.1. Conditional probabilities Pr(S2 > Nζ|S1 > Nζ) =
λU (r, ζ,N) with r = 0.9, ζ = 0.7, Spearman ρS = rank correla-
tion = 0.5; leading to parameters θ = 1.54 for the Gumbel,
ρ = 0.518 for the bivariate normal (BVN), θ = 7.90 for
the Frank copulae respectively. Limit behavior depends on the
comparison sign of pr(1) − ζ.

λU (r, ζ, N)

N Gumbel BVN Frank

10 0.604 0.264 0.144
20 0.687 0.411 0.067
30 0.733 0.528 0.034
40 0.763 0.620 0.019
50 0.785 0.695 0.010
60 0.801 0.755 0.006
70 0.815 0.804 0.003
80 0.826 0.845 0.002
90 0.835 0.877 0.001

100 0.843 0.903 0.001

pr(v) = C1|2(r|v)
v Gumbel BVN Frank

1 1.0 1.0 0.546
0.99999 0.994 0.861 0.546

Figure 5.6. Tail dependent-like behavior of sums of events, probability of exceedence as
function of i, for Frank’s copula, θ = 12.3, N = 100.
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Figure 5.7. Tail dependent-like behavior of sums of events times damages. Left: Pareto 2
damages with Gumbel copula; middle: Pareto 2 damages with bivariate normal copula;
right: exponential damages with Gumbel copula.

Rank scatter plot, Exponential
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Rank scatter plot, Exponential
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Figure 5.8. A model for Florida monthly flood damages, exponential damages linked to
a latent variable with the Gumbel copula.

scatterplots of events multiplied by independent damages, and where the
joining copulae are Gumbel and bivariate normal. Figure 5.8 shows exponen-
tially distributed damages linked to a latent variable via the Gumbel copula,
and parameters are chosen to resemble Fig. 5.5. This suggests that simple
latent variable models may describe such loss phenomena satisfactorially.

Without considering sums of events, it is easy to construct simulations
in which this amplification occurs. Figure 5.9 shows percentile plots of two
normal variables X1 and X2 which each have rank correlation 0.1 to a latent
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Figure 5.9. Percentile plots with tail dependence. Left: two normal variables rank-
correlated 0.1 to a latent variable with Gumbel copula; right: distinct sums of 40 such
variables, each similarly rank-correlated to the latent variable.

variable V , and are conditionally independent given the latent variable. The
rank correlation is realized with the Gumbel copula, which has very weak
tail dependence at that correlation value. This induces a very weak tail
dependence between Xi and V . If we form sums of 40 such normal variables
and consider the tail dependence of two such sums, we see in the right-hand
plot of Fig. 5.9 that the tail dependence has become more pronounced.

Although tail dependence is a property of the copula, whether and to
what degree tail dependence is amplified by aggregation depends on the

Figure 5.10. Percentile plots with tail dependence. Left: sums of 40 Pareto variables with
survival function (1/(1 + x)), each rank-correlated 0.1 to a latent variable with Gumbel
copula; right: sums of 120 such variables.
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marginal distributions. Figure 5.10 is similar to Fig. 5.9 except that the
variables are Pareto with survival function S(x) = (1 + x)−1. The amplifi-
cation of tail dependence for 120 Pareto variables is much weaker than that
for 40 normal variables. This Pareto distribution does not have a finite first
moment (or, of course, correlation).

In certain cases, we can prove some results for tail dependence. The
following proposition, whose proof is in Appendix B, gives a lower bound for
tail dependence of variables, which are tail dependent on a latent variable:

Proposition 5.1. Suppose (U1, V ) and (U2, V ) are pairwise upper tail
dependent with, respectively, coefficients λ1 > 0 and λ2 > 0, and (U1, U2)
is conditionally independent given V . Also suppose that U1 and U2 are each
stochastically increasing in V . Then (U1, U2) has an upper tail dependence
coefficient that exceeds λ1λ2.

5.3.3 L1-symmetric measures

Results relating tail dependence to aggregation are difficult to obtain, since
aggregation is not simply a question of the copula, but also of the marginal
distributions. One case where analytic results are possible concerns the
Lp-symmetric variables with 1/p ∈ N.

Recall the Gamma integral:∫ ∞

0
yη−1e−βy dy =

Γ(η)
βη

; β > 0, η > 0.

The Gamma(η, β) density with shape η and rate β is f(y; η, β) =
βηyη−1e−βy/Γ(η), with mean η/β and variance η/β2.

An atomless Lp-symmetric measure on R
n is one whose density at

(x1, . . . , xN ) depends only on the Lp norm (
∑
|xi|p]1/p. Berman2 proved that

Lp-symmetric measures on R can be uniquely represented as conditionally
independent gamma transforms with shape 1/p. For L1 measures, we have
conditionally independent exponentials given the failure rate. (X1, . . . ,XN )
have an L1-symmetric distribution with Gamma(η, β) mixing distribution
if, for any N , the N -dimensional marginal density is given by

fN (x1, . . . , xN ) =
∫ { N∏

i=1

λe−λxi

}
βηλη−1e−βλdλ/Γ(η). (5.7)

Setting N = 1 and integrating over λ, one finds the univariate density
and survivor functions:

f1(x) =
ηβη

(β + x)η+1
; 1− F1(x) =

(
β

β + x

)η
, (5.8)
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which is the Pareto thick-tailed (leptokurtic) distribution with shape param-
eter η and scale parameter β. These multivariate distributions were first
studied by Takahasi11 and Harris.5 Then unconditionally the joint survival
function of X1, . . . ,XN is

Pr(X1 > x1, . . . ,XN > xN ) =
∫ ∞

0

N∏

i=1

e−λxi
λη−1βη

Γ(η)
e−βλdλ

=
βη

[β + x1 + · · · + xN ]η
. (5.9)

This is a special case of the multivariate Burr distribution of Takahasi,11

with type II Pareto as a special case of Burr for the univariate margins. The
multivariate Pareto distribution of Mardia9 has type I Pareto margins rather
than type II Pareto. From this distribution, Cook and Johnson4 obtained
the copula (replacing Pareto survival functions) as

C(u1, . . . , uN ; η) = [u−1/η
1 + · · · + u

−1/η
N − (N − 1)]−η . (5.10)

As an aside, Kimeldorf and Sampson7 did the same thing but only for the
bivariate case; Clayton3 has the bivariate distribution as a gamma frailty
model and through a derivation from a differential equation, but does not
have the multivariate case. In this parametrization, dependence increases as
η decreases. The copula (5.10) has lower tail dependence and the distribution
(5.9) has upper tail dependence.

Consider the sum S = X1 + · · · +XN , where (X1, . . . ,XN ) has density
(5.7). Since S|Λ = λ ∼ Gamma(n, λ),

fS(r;N) =
∫ ∞

0

1
Γ(N)

λNrN−1e−λr · 1
Γ(η)

λη−1βηe−βλdλ

=
rN−1Γ(N + η)βη

Γ(N)Γ(η)(β + r)η+N
.

The sums have the same tail behavior as the one-dimensional margins.
From (5.8), we obtain the mean of X. The variance, covariance and product
moment correlation may be obtained from (5.7) with N = 2, giving:

µ(X) =
β

η − 1
; η > 1

Var(X1) =
β2η

(η − 1)2(η − 2)
; η > 2
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Cov(X1,X2) =
β2

(η − 1)2(η − 2)
; η > 2

corr(X1,X2) = η−1; η > 2

Var(X1 + · · ·+XN ) = Var(X1){N +N(N − 1)η−1}; η > 2.

Note that the mean exists only if η > 1, and the variance, covariance and
correlation require η > 2.

5.3.4 Tail dependence for sums of L1 measures

Computations of tail dependence for sums of L1 measures are tractable, and
the same holds for Lp measures with 1/p ∈ N. If X is independent of Y then
UTD(X,Y ) = 0 but not conversely. Tail dependence is invariant under a
monotone transformation of X and Y . Hence, it is a property of the copula
joining X and Y .

Let (X1, . . . ,X2N ) have density (5.7) with 2N replacing N .
The incomplete Gamma integral with positive integer parameter m is:

1
Γ(m)

∫ ∞

y

λmzm−1e−λz =
m−1∑

k=0

(λy)i

i!
e−λy, y > 0.

Then

Pr

(
N∑

i=1

Xi > r

)
=
∫ ∞

0
Pr

(
N∑

i=1

Xi > r |Λ = λ

)
λη−1βη

Γ(η)
e−βλdλ

=
∫ ∞

0

N−1∑

k=0

(λr)k

k!
e−λr · λ

η−1βη

Γ(η)
e−βλdλ

=
(

β

β + r

)η [N−1∑

k=0

Γ(η + k)
k! Γ(η)

rk

(β + r)k

]
. (5.11)

As r→∞, the bracketed term goes to

[
N−1∑

k=0

Γ(η + k)
k! Γ(η)

]
.
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Similarly,

Pr

(
N∑

i=1

Xi > r
⋂ 2N∑

i=N+1

Xi > r

)

=
∫ ∞

0

e−2λr

[
N−1∑

k=0

(λr)k

k!

]2

· λ
η−1βη

Γ(η)
e−βλdλ

=
(

β

β + 2r

)η N−1∑

k,j=0

Γ(k + j + η)
k!j! Γ(η)

(
r

β + 2r

)k+j
. (5.12)

The tail dependence of sums of N L1 variables is therefore the limiting ratio
as r →∞ of (5.12) over (5.11):

(
1
2

)η ∑N−1
k,j=0 2−k−j Γ(k+j+η)

k!j! Γ(η)
∑N−1

k=0
Γ(η+k)
k! Γ(η)

. (5.13)

Table 5.2 gives some values, comparing the number N of disjunct vari-
ables summed. We see that the tail dependence grows in N and decreases in
the shape factor η. Also (5.13) converges to 1 as N → ∞ for any η > 0 —
a proof is given in Appendix C; the rate of convergence to 1 is slower for
larger η.

Figure 5.11 shows rank scatterplots for sums of L1 measures with shape
η = 3. The first shows two variables, the second shows two sums of 10
variables, and the third shows two sums of 50 variables.

Table 5.2. Upper tail dependence for sums of N L1 variables, the shape of
the Gamma mixing distribution ranges from 1 to 5, 10, 15 and 20.

Shape corr(X1,X2) N = 1 N = 3 N = 5 N = 10 N = 50

1 0.500 0.688 0.754 0.824 0.920
2 0.250 0.453 0.549 0.664 0.842
3 0.3333 0.125 0.289 0.388 0.523 0.767
4 0.2500 0.062 0.180 0.267 0.405 0.694
5 0.2000 0.031 0.109 0.180 0.307 0.624

10 0.1000 0.001 0.007 0.019 0.061 0.338
15 0.0667 3 × 10−5 4 × 10−4 0.002 0.009 0.160
20 0.0500 1 × 10−6 2 × 10−5 1 × 10−4 0.001 0.066



October 11, 2010 12:18 9.75in x 6.5in b979-ch05

Micro Correlations and Tail Dependence 105

Figure 5.11. Percentile scatterplots for sums of L1 variables, with shape of Gamma
mixing distribution = 3. Left: 2 L1 variables, rank correlation = 0.21; center: sums of 10
such variables, rank correlation = 0.77; right: sums of 50 such variables, rank correlation =
0.94.

5.3.5 Lower tail dependence

The multivariate Pareto model (5.9) does not have lower tail dependence,
so it is not surprising that the aggregate losses S1, S2 do not have lower tail
dependence. A derivation is given below, making use of the identity for the
incomplete Gamma function with an integer shape parameter.

For i = 1, 2, let Si = Si(N) denote the ith sum of N L1 variables, as
above. The marginal probability is

Pr(Si ≤ r) =
βη

(r + β)η

∞∑

k=N

rk

(r + β)k
Γ(η + k)
k! Γ(η)

and

Pr(S1 ≤ r, S2 ≤ r)

=
∫ ∞

0

∞∑

k=N

(λr)k

k!
e−λr ·

∞∑

j=N

(λr)j

j!
e−λr · λ

η−1βη

Γ(η)
e−βλdλ

=
βη

(2r + β)η

∞∑

k=N

∞∑

j=N

rk+j

(2r + β)k+j
Γ(η + k + j)
k!j! Γ(η)

.

Putting z = r/β this becomes:

z2N Γ(η + 2N)
N !N ! Γ(η)

+O(z2N+1), r = βz → 0,

and

Pr(S1 ≤ r) =
∞∑

k=N

zk(1 + z)−η−k
Γ(η + k)
k! Γ(η)

= zN
Γ(η +N)
N ! Γ(η)

+O(zN+1), y = βz → 0.
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The limit of the lower tail (for a fixed N) is:

λL = lim
r→0

Pr(S1 ≤ r, S2 ≤ r)
Pr(S1 ≤ r)

= lim
z→0

z2N Γ(η+2N)
N !N ! Γ(η) +O(z2N+1)

zN Γ(η+N)
N ! Γ(η)

+O(zN+1)

= lim
z→0

zN

N !

2N−1∏

k=N

(η + k) = 0.

5.4 Discussion

In this chapter, we have shown how some simple latent variable models lead
to interesting results on tail dependence of aggregate losses. Further research
consists of studying tail dependence on sums under more general dependence
models, such as via vines. For example,

∑N
i=1Xi and

∑2N
i=N+1Xi are con-

jectured to have upper tail dependence of 1 as N →∞, if X1, . . . ,X2N have
Pareto-like upper tails and their joint distribution has upper tail depen-
dence. In analyzing data, tail dependence-like behavior is also of interest,
as this behavior may obtain for more general classes of copulae.

Appendices

A. Proofs for the tail dependence condition involving
C1|2(u|1)

The conditional distributions C1|2 for the common one-parameter copula
families are given on pp. 146–147 of Joe.6

• For the Frank copula with parameter θ > 0,

C1|2(u|v) = [1 + e−θva(u)]−1, a(u) = (1− e−θu)/(e−θu − e−θ),
so that C1|2(u|1) = [1+e−θa(u)]−1 = (eθ−eθu)/(eθ−1) < 1 for 0 < u < 1.

• For the Plackett copula with parameter θ > 0, C1|2(u|1) = θ(1 − u)/
[θ(1− u) + u] < 1 for 0 < u < 1.

• For the bivariate normal copula with parameter ρ > 0, C1|2(u|v) = 1 −
Φ([Φ−1(u)− ρΦ−1(v)]/

√
1− ρ2 ) → 1− Φ(−∞) = 1 as v → 1.

• For the Archimedean copula: with Cψ(u, v) = ψ(ψ−1(u)+ψ−1(v)), where
ψ is a Laplace transform,

C1|2(u|v) =
ψ′(ψ−1(u) + ψ−1(v))

ψ′(ψ−1(v))
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so that

lim
v→1

C1|2(u|v) = lim
s→0

ψ′(ψ−1(u) + s)
ψ′(s)

= lim
s→0

ψ′(ψ−1(u))
ψ′(s)

.

This is 0 if ψ′(0) = −∞ and is in (0, 1) if −ψ′(0) <∞.
• For the Extreme-value copula: Let C(u, v) = e−A(− log u,− log v), where

max{w1, w2} ≤ A(w1, w2) ≤ w1 + w2 and A is homogeneous of order
1. Let A2 = ∂A/∂w2 which is homogeneous of order 0. Then C1|2(u|v) =
C(u, v)A2(−log u,−log v) · v−1 so that C1|2(u|1) = uA2(−log u, 0) = 0,
assuming A(w1, w2) 	≡ w1 + w2 and

A2(w1, 0) = lim
w2→0

∂A(w1, w2)
∂w2

=
∂ limw2→0A(w1, w2)

∂w2
=
∂w1

∂w2
= 0.

It is easily shown directly that A2(w, 0) = 0 for the Gumbel and Galambos
copulae with positive dependence. For the Gumbel copula, A(w1, w2) =
(wθ1 + wθ2)

1/θ (for θ > 1), and for the Galambos copula, A(w1, w2) =
w1 + w2 − (w−θ

1 +w−θ
2 )−1/θ (for θ > 0)

B. Proof of Proposition 5.1 and an example

Proof. Since tail dependence is invariant under monotone increasing
transforms, without loss of generality, we assume that U1, U2, V are uni-
form (0, 1) random variables. We need to show that limu↑1 Pr(U2 > u|U1 >

u) ≥ λ1λ2.
Let CU1U2V (u1, u2, v) be the copula and joint distribution of U1, U2, V

with margins CU1V (u1, v), CU2V (u2, v). Let C12|V , C1|V , C2|V be the partial
derivatives with respect to v, and let C12|V , C1|V , C2|V be the corresponding
survival functions. Note that for 0 < u < 1,

Pr(U2 > u|U1 > u) ≥ Pr(U2 > u, V > u|U1 > u)

=
Pr(U2 > u, V > u,U1 > u)

1− u = (1− u)−1

∫ 1

u
C12|V (u, u|v) dv

= (1− u)−1

∫ 1

u
C1|V (u|v)C2|V (u|v) dv, (5.14)

where the last equality comes from conditional independence. The right-
hand side of (5.14) is the same as

E
[
C1|V (u|Z)C2|V (u|Z)

]
, (5.15)
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where Z is uniform on [u, 1]. With the stochastically increasing assumption,
C1|V (u|v) and C2|V (u|v) are increasing in v ∈ [u, 1). By positive depen-
dence from Fréchet upper bound or co-monotonicity, the covariance of two
increasing functions of a random variable is non-negative (if it exists), and
hence (5.15) exceeds

E[C1|V (u|Z)] · E[C2|V (u|Z)]

= (1− u)−1

∫ 1

u
C1|V (u|v) dv · (1− u)−1

∫ 1

u
C2|V (u|v) dv

= Pr(U1 > u|V > u) · Pr(U2 > u|V > u). (5.16)

Take the limit of (5.14) and (5.16) to get:

lim
u↑1

Pr(U2 > u|U1 > u)

≥ lim
u↑1

Pr(U1 > u|V > u) · lim
u↑1

Pr(U2 > u|V > u) = λ1λ2 > 0. �

Remark 5.1. Note that the stochastic increasing condition can be weak-
ened to “Pr(Ui > u|V = v) is increasing in v ∈ [u, 1) for all u near 1”.
Hence, it is a weak condition that would be expected to hold if there is tail
dependence. The stochastic increasing condition, as given in Proposition 5.1,
usually holds in models with conditional independence given a latent vari-
able, as shown in the example below.

Example 5.1. For the multivariate Pareto distribution (5.9) that derives
from a Gamma mixture of exponentials, let (X1,X2) be such that Xi|Λ = a

are conditional exponential with mean a−1, and Λ ∼ Gamma(η, β). Then
with U1 = X1, U2 = X2, V = Λ−1, U1, U2 are each stochastically increas-
ing in V . From the copula (5.10), the bivariate upper tail dependence
parameter of (X1,X2) is 2−η. We next obtain the common tail dependence
parameter λ1 for (Xi, V ) for i = 1, 2 and show the inequality from the
proposition. Because of scale invariance, we assume β = 1 for the following
calculations. Let G(z; η) = [Γ(η)]−1

∫ z
0 y

η−1e−y dy be the cumulative distri-
bution function of the Gamma(η, 1) random variable Λ. Then

Pr(X1 > x|Λ−1 > v) = Pr(X1 > x,Λ < v−1)/Pr(Λ−1 > v), (5.17)

Pr(X1 > x,Λ < v−1)

= Γ−1(η)
∫ v−1

0
e−axaη−1e−a da = (1 + x)−ηG(v−1(1 + x); η). (5.18)
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X1 has cumulative distribution function F (x) = 1 − (1 + x)−η (x > 0) and
inverse cumulative distribution function F−1(p) = (1− p)−1/η − 1 (0 < p <

1). For z near 0, G(z; η) ≈ zη/Γ(η + 1). For 0 < u < 1 that is close to 1, let
x = F−1(u) = (1 − u)−1/η − 1 and v(u) be the u quantile of Λ−1, so that
[v(u)]−1 is the lower 1− u quantile of Λ or [v(u)]−1 ≈ [(1 − u)Γ(η + 1)]1/η .
Substitute into (5.17) and (5.18) to get:

lim
u↑1

Pr(X1 > F−1(u)|Λ−1 > v(u))

= lim
u↑1

(1− u)G(Γ1/η(η + 1)(1 − u)1/η(1− u)−1/η ; η)
1− u = G(Γ1/η(η + 1); η).

To match Proposition 5.1, λ1 = λ2 = G(Γ1/η(η+ 1); η) and it can be shown
numerically that

lim
u↑1

Pr(X2 > F−1(u)|X1 > F−1(u)) = 2−η ≥ [G(Γ1/η(η + 1); η)]2.

C. Proof that λU,η,N → 1 as N → ∞
Rewrite (5.13) as:

λU,η,N = 2−η
∑N−1

k=0

∑N−1
j=0

Γ(η+k+j)
Γ(η) 2k+jk!j!

∑N−1
k=0

Γ(η+k)
Γ(η) k!

. (5.19)

The numerator on the right-hand side of (5.19) can be written as

2N−2∑

�=0

Γ(η + �)
Γ(η) �!

A�,N , (5.20)

where

A�,N =
∑

0≤k,j≤N−1:k+j=�

�!
2k+jk!j!

.

For 0 ≤ � ≤ N − 1, then A�,N = 1 from a binomial sum, and for N ≤ � ≤
2N − 2,

A�,N =
N−1∑

i=�−N+1

(
�

i

)
2−�.

It is shown in Lemma 5.2 below that A�,N → 1 as N → ∞ for (approxi-
mately) fixed �/N .
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Next, (5.20) can be written as (with k = �−N in second summation):

N−1∑

k=0

Γ(η + k)
Γ(η) k!

+
N−2∑

k=0

Γ(η + k +N)
Γ(η) (k +N)!

Ak+N,N = D+
N−2∑

k=0

Γ(η + k +N)
Γ(η) (k +N)!

Ak+N,N

where D is the denominator in (5.19). The proof is complete by showing
that as N →∞,

D−1
N−2∑

k=0

Γ(η + k +N)
Γ(η) (k +N)!

Ak+N,N → 2η − 1

because then (5.19) goes to 2−η [1 + (2η − 1)] = 1. This follows from the
two lemmas below, together with the Lebesgue Dominated Convergence
Theorem.

Lemma 5.1. Let

dη,k =
Γ(η + k)
Γ(η) k!

, k = 1, 2, . . . .

As N →∞,
∑N−2

k=0
Γ(η+k+N)
Γ(η) (k+N)!

∑N−1
k=0

Γ(η+k)
Γ(η) k!

=
∑N−2

k=0 dη,k+N∑N−1
k=0 dη,k

→ 2η − 1.

Proof. This is split into cases.

• η = 1: dη,i = 1 for all i so the ratio is 1 = 21 − 1.
• η = 2: dη,k = (k + 1), dη,k+N = (k +N + 1). Hence

∑N−2
k=0 dη,k+N∑N−1
k=0 dη,k

=
∑N−2

k=0 (k +N + 1)
∑N−1

k=0 (k + 1)
=

3N(N − 1)/2
N(N + 1)/2

→ 3 = 22 − 1.

• η = 3: dη,k = (k+2)(k+1)/2!, dη,k+N = (k+N +2)(k+N +1)/2!. Hence
for large N ,

∑N−2
k=0 dη,k+N∑N−1
k=0 dη,k

=
∑N−2

k=0 (k +N + 2)(k +N + 1)
∑N−1

k=0 (k + 2)(k + 1)

≈
∫ N
0 (x+N)2 dx
∫N
0 x2 dx

=
(23 − 1)N3/3

N3/3
= 23 − 1.
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• General η > 0: Since Γ(η+ i)/i! behaves like iη−1 for large i (by applying
Stirling’s formula), then for large N ,

∑N−2
k=0 dη,k+N∑N−1
k=0 dη,k

≈
∫ N
0 (x+N)η−1 dx
∫ N
0 xη−1 dx

=
(2η − 1)Nη/η

Nη/η
= 2η − 1. �

Lemma 5.2. A�N ,N → 1 as N →∞ with �N/N → a ∈ [1, 2).

Proof. A�,N = Pr(� −N + 1 ≤ Y ≤ N − 1), where N ≤ � ≤ 2N − 2 and
Y ∼ Binomial(�, 1

2 ). By the normal approximation for large N and �, this is
approximately

Pr

(
�−N + 1

2 −
1
2�

1
2

√
�

≤ Z ≤
N − 1

2 −
1
2�

1
2

√
�

)

= Φ
(

2N − 1− �√
�

)
− Φ

(
�− 2N + 1√

�

)

where Z ∼ N(0, 1) and Φ is the standard normal cumulative distribution
function. Let � = �N = [aN ] where 1 ≤ a < 2. Then, as N →∞,

Φ
(

(2− a)N√
aN

)
− Φ

(
−(2− a)N√

aN

)
→ 1. �
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This chapter surveys the asymptotic theory of estimation of a copula from a fre-
quentistic perspective and presents the problems involved in frequentistic model
selection among several candidate copulae when using the maximum pseudo-
likelihood estimator (MPLE). Frequentistic copula model selection has recently
been addressed through the development of the copula information criterion
(CIC) — a model selection formula which extends the maximum likelihood-based
Akaike information criterion (AIC) to the MPLE. We present the developments
leading to the CIC with a focus on its implications, while deferring proofs of
underlying limit theorems to the original CIC paper.

The CIC is in fact two different formulae, one for misspecified copula mod-
els and another for correctly specified copula models, paralleling the Takeuchi
information criterion and the Akaike information criterion respectively.

These formulae show that there does not exist (in a certain technical sense)
an AIC formula for MPL estimation when the parametric copula has extreme
behavior near the edge of the unit cube. This means that one cannot make first-
order bias-correction terms of a desired part of the attained Kullback–Leibler
divergence between the MPL-estimated copula and the data-generating copula
in a class of copulae which has received much attention in econometrics. This
may be seen as a demarcation of which types of copulae that should be estimated
with the MPLE. Interestingly, the main motivating factor for using the MPLE
is also the reason for the non-existence of a general MPLE-based AIC formula.
A further conclusion is that the CIC provides a counterexample to the often
acclaimed intrinsic connection between the AIC and Occam’s Razor.

113
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6.1 Introduction

Suppose n-dimensional stochastic vectors X1,X2, . . . ,XN are observed,
which are independent of each other, and all coming from the same, unknown
data-generating distribution

F ◦(x) = C◦(F ◦
1 (x1), . . . , F ◦

n(xn)). (6.1)

We assume that F ◦ is continuous and we wish to model the copula C◦

through one or perhaps several parametric classes. In the praxis of para-
metric copula modeling, there are four basic problems which are naturally
met in any investigation. First, if our model is

fθ(x) = cθ(F ◦
1 (x1), . . . , F ◦

n(xn))
n∏

i=1

f ◦i (xi)

where the marginals F ◦
i are completely unknown, how should θ be esti-

mated? Second, how should the parametric form of cθ be chosen? Third, how
should one select among several candidate models on the basis of observed
data? And fourth, is the final model (or models) adequate?

The first problem has various solutions, among which the maximum
pseudo-likelihood estimator (MPLE) discussed in Genest5 is the most pop-
ular. The second problem is implicit in all multivariate model building, and
much of this book is devoted solely to providing flexible solutions to this
problem. The fourth problem is usually dealt with through goodness-of-fit
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tests which are based on the MPLE, and there exist several investigations
in the area (See Genest6).

The development of the CIC started when it was noticed that the third
issue had been ignored or dealt with in an incorrect manner. Several pub-
lished papers, and many practitioners, have used the “AIC formula”

AIC• = 2�N,max − 2 length(θ) (6.2)

as a model selection criterion, with �n,max = �n(θ̂) being the maximum
pseudo-likelihood, from the traditional Akaike information criterion

AIC = 2�#N,max − 2 length(θ),

where �#N,max is the usual maximum likelihood for a fully parametric model.
One computes this AIC• score for each candidate model and in the end
chooses the model with the highest score.

This ignores the fact that the pseudo-likelihood is not a proper likelihood,
and unfortunately it does not lead to a correct formula. Grønneberg7 derived
a proper generalization of the AIC for the MPLE and named it the copula
information criterion (CIC). The formula is given by

CIC = 2�N,max − 2(p̂∗ + q̂∗ + r̂∗) (6.3)

with expressions for p̂∗+ q̂∗+ r̂∗ different from (and more complicated than)
merely length(θ). These quantities even vary non-trivially with the model
parameter — in clear contrast with length(θ) which is invariant to the actual
value of θ.

But the story does not end here, as the CIC formula derived in Ref. 7 does
not exist for a large class of copula families such as copulae with extreme
tail dependence. This lack of existence is, however, not a deficiency of the
arguments used in Ref. 7, but is an inherent limitation of the asymptotic
behavior of the MPLE. This makes model selection with the MPLE a more
complex problem than the fully parametric case, and the CIC formula can
only attack model selection problems concerning copulae which are suffi-
ciently well-behaved along the edges of the unit cube. The implications of
this is discussed in the conclusion of the chapter.

To understand these developments and the difficulties involved in the
model selection problem for copula estimation with the MPLE, one needs
to understand some fundamental issues concerning the MLE, the AIC and
the MPLE. The present chapter is, in addition to the introduction and
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concluding remarks, divided into three parts. The first part is Section 6.2,
which presents the MLE, the AIC and the MPLE from a perspective which
naturally leads to the CIC formula. The second part of our story is Section
6.3, which derives the two CIC formulae. Finally, we include a brief simula-
tion example in Section 6.4. Although we will omit the technical asymptotic
developments needed to make the arguments rigorous, we will discuss the
needed mathematical structures to such a degree that the above-mentioned
exploding bias-correction terms can be presented without simplification.

Let us first introduce some general notation that we use throughout the
chapter. Let F ◦

1 , F
◦
2 , . . . , F

◦
n be the marginal distributions of F ◦, and let

F ◦
⊥(x) := (F ◦

1 (x1), F ◦
2 (x2), . . . , F ◦

n(xn))

be the vector of marginal distributions. We will denote all sizes related to the
true data-generating distribution F ◦ by circle superscripts, and all empirical
estimates through replacing the circle with a hat, so that for example F̂N
can be seen right away to estimate F ◦. The assumed continuity of F ◦ implies
the existence of a unique copula C◦ defined implicitly through

F ◦(x) = C◦(F ◦
⊥(x)) (6.4)

or equivalently through the more explicit

C◦(v) = F ◦(F ◦
⊥
−1v(u)) (6.5)

where

F ◦
⊥
−1v(u) = (F ◦

1
−1v(u1), F ◦

2
−1v(u2), . . . , F ◦

n
−1v(un))

is the vector of inverse marginal distributions.

6.2 The Developments Leading to the CIC

The MPLE and the AIC both generalize the MLE, but in completely differ-
ent ways. The AIC generalizes the MLE to multimodel estimation, while the
MPLE generalizes the MLE to situations where the marginals are unknown.
The CIC generalize both the MPLE and the AIC in that it implements the
AIC-generalization of the MLE to the MPL estimator. In order to present
this generalization, we thus need to present the fundamentals of the MLE,
the AIC and the MPLE.

The MPLE sets out to estimate a copula parameter θ in a parametric
model

fθ(x) = cθ(F ◦
⊥(x))

n∏

i=1

f◦i (xi)
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where the marginal distributions F ◦
⊥ are completely unspecified. Its precise

form is defined through the following two considerations.

(1) It asymptotically minimizes the Kullback–Leibler divergence between
the true data-generating copula c◦ and a parametric copula cθ. This
generalizes the standard MLE.

(2) The estimation of the θ that minimizes the Kullback–Leibler divergence
between c◦ and cθ is invariant to a large class of symmetries. An empir-
ical estimate θ̂ should be invariant to the same symmetries.

Although the motivation for using the ML estimator to estimate a para-
metric model that is correctly specified is well-known, its connection to
the minimization of Kullback–Leibler divergence in the general case is not.
This perspective naturally leads to the model selection strategy of Akaike,
and Sections 6.2.1 and 6.2.2 treat these two themes. The above-mentioned
invariance considerations are even less well-known (it seems not to have been
made explicit in any previous expositions), and we use Section 6.2.3 to dis-
cuss it and to define the MPLE precisely. Finally, Section 6.2.4 discusses the
fact that the MPLE is not semiparametrically efficient, and argues that the
concept of semiparametric efficiency is a very different way of constructing
estimators, and is in natural opposition to symmetry considerations. The
central argument is that the MPLE is not a semiparametric estimator per se,
but focuses on estimating the copula parameter θ◦ which is least false with
respect to the Kullback–Leibler divergence while respecting the related sym-
metry considerations. In doing so, it does provide nonparametric estimates
of the vector of marginal distributions F ◦

⊥, but this infinite-dimensional part
of the MPLE is merely a by-product of symmetry considerations.

6.2.1 The fully parametric MLE

Let us quickly review how the MLE is justified when we refuse to make the
assumption of having the true data-generating distribution f◦ contained in
the parametric model to be fitted. For more details with a model selection
perspective in mind, see Ref. 4. Suppose (for the moment) that we wish to
fit a fully parametric density

fθ,γ(x) = cθ(F1,γ(1)(x1), . . . , Fn,γ(d)(xn))
n∏

i=1

f◦i,γ(i)(xi)

to observed data X1, . . . ,XN ∼ F ◦. The MLE paradigm tries to estimate

(θ◦ML, γ
◦
ML) = argmax

θ,γ

∫
log fθ,γ dF ◦ (6.6)
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from empirical data through replacing the unknown F ◦ with the known
multivariate empirical distribution F̂n defined by

F̂N (x) :=
1
N

N∑

i=1

n∏

j=1

I{Xj,i ≤ xj} =
1
N

N∑

i=1

I{Xi ≤ x}.

Recall that
∫

log fθ,γ dF ◦ is a so-called multivariate Lebesgue–Stieltjes inte-
gral, and is just another way of writing E log fθ,γ(X). We will use this nota-
tion throughout the chapter, as it leads to a very simple and rather general
principle that often gives consistent empirical estimators for many quanti-
ties of interesta through replacing “the circle with a hat” in F ◦ and F̂N . The
Lebesgue–Stieltjes integral has certain continuity properties, so that under
quite general conditions “uniform (strong) consistency” of F̂N , meaning that

lim
N→∞

sup
x∈Rn

|F̂N (x)− F ◦(x)| = 0 almost surely,

implies that for each θ we have

lim
N→∞

∫
log fθ,γ dF̂N =

∫
log fθ,γ dF ◦ almost surely. (6.7)

This is close to showing that the plug-in step of “putting a hat on” F ◦ works
in the sense that (θ̂, γ̂) a.s−−−→

N→∞
(θ◦, γ◦). For F̂N , we have

∫
log fθ,γ dF̂N =

1
N

N∑

i=1

log fθ,γ(Xi),

so Eq. (6.7) is just another way of stating the strong law of large numbers.
But this perspective will give us a simple way of making the consistency
of the MPLE plausible. For the standard MLE, the “plug-in” step takes
us from

(θ◦ML, γ
◦
ML) = argmax

θ,γ

∫
log fθ,γ dF ◦

to the empirical estimate

(θ̂ML, γ̂ML) = argmax
θ,γ

∫
log fθ,γ dF̂N ,

which is also the standard definition of the MLE.

aThis functional perspective comes from the theory of stochastic processes, but simplifies
and clarifies many asymptotic developments for random variables as well. It has many
implications, and leads to a very intuitive and transparent point of view for the asymptotic
properties of almost all common statistical estimators. See Ref. 18 for examples and
mathematical developments.



October 11, 2010 12:18 9.75in x 6.5in b979-ch06

The Copula Information Criterion 119

The ML estimator was originally motivated by assuming that f◦ =
fθ◦ML,γ

◦
ML

and then proceeding to find the estimator which asymptotically
has the least variance for the true parameter. In spite of this motivation,
the MLE can be calculated even when f ◦ is not assumed to be expressible
through fθ,γ and the above consistency result is valid no matter what the
true density f◦ is. Hence, the maximum likelihood estimator will consis-
tently maximize

∫
log fθ,γ dF ◦. We now show that the parameter configu-

ration which maximizes
∫

log fθ,γ dF ◦ is a “least false” parameter in the
following sense.

The relative entropy (“Kullback–Leibler divergence”) between f◦ and
fθ,γ is

KL(f◦, fθ,γ) =
∫
f◦ log

f ◦

fθ,γ
dx =

∫
f◦ log f ◦ dx−

∫
f◦ log fθ,γ dx

where the second term is recognized from Eq. (6.6). As the first term in the
above display does not vary with (θ, γ), we have

argmin
θ,γ

KL(f ◦, fθ,γ) = argmax
θ,γ

∫
log fθ,γ dF ◦ = (θ◦ML, γ

◦
ML),

so that finding the maximum likelihood estimate will asymptotically reach
the parameter (θ◦, γ◦) which minimizes the Kullback–Leibler divergence
between f ◦ and fθ,γ. We call (θ◦, γ◦) the least false parameter (with respect
to the Kullback–Leibler divergence).

The Kullback–Leibler divergence KL(f, g) is zero if and only if f = g

almost surely with respect to the Lebesgue measure, which means that we
can use the Kullback–Leibler divergence to distinguish between two densi-
ties. This property is the absolute minimal assumption needed to provide
motivation to minimize KL(f◦, fθ,γ) with respect to the parameter sets.
There are also deeper motivations for using precisely the Kullback–Leibler
divergence, and not just any other function which is zero if and only if
f = g almost surely, as it is connected with the mathematical concept of
information and entropy. See Ref. 4 for a general discussion.

6.2.2 Kullback–Leibler divergence and model selection

Maximizing the likelihood function asymptotically reaches the parameter
configuration that minimizes the Kullback–Leibler divergence between f◦

and fθ,γ . In the presence of several competing parametric models

f1,α(1), . . . , fK,α(K),
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it is natural to define the best model as the model which minimizes the
Kullback–Leibler divergence to the truth. Let

α(k)◦ = argmin
α(k)

KL(f ◦, fk,α(k))

denote the least false parameter configuration when constrained to the kth
parametric class, so that the parametric model with the index

k◦ = argmin
1≤k≤K

KL(f◦, fk,α(k)◦)

is the best (in the Kullback–Leibler sense) model among the ones we are
presently considering, i.e., the global minimizer of Kullback–Leibler diver-
gence in the space of all parameter configurations possible among all con-
sidered models. As k◦ only depends on the data-generating distribution F ◦

through a multivariate Lebesgue–Stieltjes integral, the plug-in principle lets
us define the empirical estimators of k◦ by using

k̃N = argmax
1≤k≤K

∫
log fα̂(k) dF̂N

where

α̂N (k) = argmax
α(k)

∫
log fk,α(k) dF̂N .

This is the main conceptual step in developing the Akaike information crite-
rion, and the precise AIC formula is simply a refinement of this observation.
Although k̃N is a consistent estimator, it has non-negligible bias for smallb

N . The above definition of k̃N simply defines the estimated best model as
the one with the highest log-likelihood at the maximum likelihood estimate,
and the standard AIC formula derives first-order bias corrections in a rather
specific way. A Taylor expansion together with the well-known asymptotic
likelihood theory show that

∫
log fk,α̂(k) dF̂N −

∫
log fk,α̂(k) dF ◦ = Z̄N +

1
N
pN (k) + op(N−1)

in which EZ̄N = 0 while pN (k) converges in distribution to p(k) with expec-
tation p∗(k). Asymptotic likelihood theory provides the distribution of p∗(k),
and so we can estimate it. This leads to a first-order bias-correction term of∫

log fk,α̂(k) dF̂N ,

bFirst-order bias-correction terms are insignificant for very large N , and so if N is suffi-
ciently large, the estimator k̃N yields a sensible model selection strategy.



October 11, 2010 12:18 9.75in x 6.5in b979-ch06

The Copula Information Criterion 121

in which it is crucial to notice that this expression is defined in terms of
α̂(k), the empirical estimate which is potentially being used, and not α◦(k),
the least false parameter configuration which is unknown. If we work under
the assumption that f ◦ is in the parametric class under consideration, we
get the rather amazing conclusion that p∗(k) = length(α(k)), giving the
famous AIC strategy

k̂AIC
N = argmax

1≤k≤K

[∫
log fk,α̂(k) dF̂N −

1
N

length(α̂(k))
]

requiring no empirical estimation of the bias-correction term. For this strat-
egy to be conceptually and formally consistent, we need to assume nested
models. If this assumption cannot be justified, one can use the Takeuchi
information criterion, which uses plug-in estimators of p∗(k), and hence is
of higher variability. See Ref. 4 for a more detailed discussion. We will define
the development of first-order bias-correction terms as the AIC programme,
and it is this we will carry out to conclude with the copula information cri-
terion. We stress the importance of the op(N−1) term and note that it is the
N−1 which defines to what resolution we need to provide bias corrections if
we are to implement the above “AIC programme”.

Notice that the AIC formula derives bias corrections of
∫

log fk,α(k) dF̂N
instead of k̃N , which is what we are actually going to use. In this con-
nection, we note that more sophisticated non-asymptotic approximations
are developed in Ref. 12 through powerful concentration inequalities. These
developments are much more mathematically complex than the method-
ology of the standard AIC formula and are not generalized to the MPLE
setting. We will be content with working with the above programme.

Another feature of the AIC formula is that we work with the expectation
of p(k), the weak limit of pN (k). This is perhaps first and foremost moti-
vated through mathematical convenience as there is no general expression
for EpN (k). However, a more subtle point is that EpN (k) can be infinite
for even simple models such as the binomial model (Chapter 2 of Ref. 4).
The AIC formula solves this potential explosion (that is, the non-existence
of expectations) through going to the limit, and there everything works out
nicely. For the CIC case, which transfers the above derivations to parameter
estimates based on the MPLE and not the MLE, we get an additional bias-
correction term rn which has the unfortunate feature that going to the limit
does not avoid the possibility of a non-existing expectation. Several common
copulae models have an exploding exploding ErN , leading to non-existing
bias-correction terms with respect to the above defined AIC programme.
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6.2.3 The MPLE, the empirical copula and invariance
considerations

We would like to fit a parametric copula cθ without specifying the marginal
distributions. So we work under the assumption that observed data have a
parametric distribution given by

fθ(x) = cθ(F ◦
1 (x1), . . . , F ◦

n(xn))
n∏

j=1

f◦j (xj).

If the parametric form of the copula includes the correct copula c◦, we wish
to find the true parameter value. Otherwise, we wish to find the θ which
minimizes the Kullback–Leibler divergence between fθ and the true density

f◦(x) = c◦(F ◦
1 (x1), . . . , F ◦

n(xn))
n∏

j=1

f◦k (xj).

That is, the loss function we wish to minimize is d(θ) = KL(f◦, fθ), where
the minimum will be zero if and only if the model is correctly specified.
Notice that we do not focus on estimating the marginals f◦i , but only on
finding the least false copula inside the parametric class under consideration.

In many cases, the nonspecification of the marginals comes from lack of
a priori knowledge of parametric forms for the marginals. If this is the case,
the above estimation problem has important symmetry properties, which
motivates the use of the MPLE from equivariance considerations of classical
point estimation theory, as described, e.g., in Ref. 10. First, the copula of
any stochastic vector is left invariant to any (not necessarily linear) change
in scale for the data. More precisely, assume that a stochastic vector X has
distribution function C◦(F ◦

⊥). The copula C◦ of X is then invariant to the
whole class of functions

S := {H : R
n �→ R

n : H(x1, . . . , xn) = (H1(x1),H2(x2), . . . ,Hn(xn)),

and each Hi is monotonously increasing} (6.8)

in the sense that for an H ∈ S, the random vector H(X) also has the copula
C◦. To see this, notice that the marginal distributions of H(X) are given
by FHi(Xi)(v) = P{Hi(Xi) ≤ v} = P{Xi ≤ H−1

i (v)}, and so FH(X),⊥(x) =
F⊥(H−1(v)). Thus,

FH(X),⊥(x)(H(X)) = F⊥ ◦H−1 ◦H(X) = F⊥(X) ∼ C◦,

which demonstrates the invariance. As the copula C◦ is completely unaf-
fected under S-transformations, this invariance will be shared by any para-
metric copula family cθ. This should also be intuitively clear, as the copula
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represents the dependency structure of X, and each H in S merely changes
the scale of each coordinate. This change in scale does transform the
(intuitive notion of) dependency among the elements of X.

The loss function d(θ) = KL(f◦, fθ) is also invariant to the class S, as it
in fact does not depend on the marginals F ◦

⊥. To see this, notice that

KL(f ◦, fθ) =
∫

log
f◦

fθ
dF ◦

=
∫

log c◦(F ◦
1 (x1), . . . , F ◦

n (xn)) dF ◦ +
n∑

j=1

∫
log f ◦j (xk) dF ◦

−
∫

log cθ(F ◦
1 (x1), . . . , F ◦

n(xn)) dF ◦ −
n∑

j=1

∫
log f ◦j (xj) dF ◦

=
∫

log
c◦(F ◦

1 (x1), . . . , F ◦
n(xn))

cθ(F ◦
1 (x1), . . . , F ◦

n(xn))
dF ◦ (6.9)

=
∫

log
c◦(v1, . . . , vn)
cθ(v1, . . . , vn)

dC◦(v) (6.10)

= KL(c◦, cθ),

where the transition from Eqs. (6.9) to (6.10) applies the change of variables
formula for multivariate Lebesgue–Stieltjes integrals.

This validates the principle of equivariance (see Ref. 10), meaning that
any estimator of θ̂ should be invariant to transformations of S. It is well-
known from the problem of testing independence that multivariate rank
statistics are “maximally invariant” (see Ref. 11 for precise definitions) with
respect to the transformations in S, and so our estimator needs to be a
functional of multivariate rank statistics.

Univariate ranks are equivalently represented through the marginal
empirical distribution function. Analogously, multivariate ranks are equiva-
lently represented through the empirical copula

ĈN (v) =
1
N

N∑

i=1

n∏

j=1

I{F̂N,j(Xi,j) ≤ vj}

=
1

N + 1

N∑

i=1

I{F̂N,⊥(Xi) ≤ v},

so that any functional of the multivariate ranks is a functional of the empir-
ical copula. Here F̂N,⊥ is the vector of marginal empirical distributions mul-
tiplied by N

(N+1)
to keep the observations away from the edge of the unit
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cube. That is,

F̂N,⊥(x) =
(
F̂N,1(x1), F̂N,2(x2), . . . , F̂N,n(xn)

)

where

F̂N,j(xj) =
1

N + 1

∑ n∏

j=1

I{Xij ≤ xj}

When observing that the least false copula parameter θ◦ can be written as

θ◦ = argmin
θ

KL(f ◦, fθ) = argmax
θ

∫
log cθ dC◦,

and when one knows that the empirical copula is a uniformly strongly con-
sistent estimator of the data-generating copula in the sense that

sup
v
|ĈN (v)− C◦(v)| a.s.−−−−→

N→∞
0, (6.11)

a very natural estimator of θ◦ is the MPLE given by

θ̂ = argmax
θ

∫
log cθ dĈN = argmax

θ

1
N

N∑

i=1

log cθ(F̂N,⊥(Xi)).

6.2.4 What about semiparametric efficiency?

It is well-known that the MPLE is not universally semiparametrically effi-
cient in the sense of, e.g., Ref. 1. In the context of model selection of semi-
parametric copula models, lack of semiparametric efficiency is not a serious
deficiency. The semiparametric efficiency concept is defined for models that
include the true data-generating distribution, which is certainly not the case
in any investigation where non-nested model selection is needed.

Although there does exist a semiparametric copula estimation routine
which is universally semiparametrically efficient (given in Ref. 3), it does
not respect the symmetry considerations leading to the MPLE. While the
Chen3 method is well-motivated only when the parametric copula model
includes the data-generating copula, the symmetry considerations motivat-
ing the MPLE are valid no matter which copula is the data-generating one.
Although it would be desirable for the MPLE to be semiparametrically effi-
cient, this is not the problem the MPLE sets out to solve. There should be
no surprise if estimators derived from equivariance considerations, and that
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happen to be interpretable also as semiparametric estimators, are not semi-
parametrically efficient, as these two concepts most often represent opposing
interests.c

6.2.5 Large-sample theory for the MPLE

In Section 6.2.2, we saw that the large-sample theory of the MLE was needed
to derive bias corrections that motivated the AIC formula. This section will
state the large-sample results which form a basis for the CIC. The results are
justified in Refs. 2, 5 and 16, and we state them without further justification.

Recall the definition of F̂N,⊥ and define

�N (θ) =
N∑

i=1

log cθ(F̂N,⊥(Xi))

as the “pseudo-likelihood” function, and let

ÂN (θ) =
1
N
�N (θ) =

∫
log cθ dĈN

be the normalized pseudo-likelihood function so that

θ̂ = argmax
θ

�N (θ) = argmax
θ

ÂN (θ).

And while �N (θ)→∞, we have normalized ÂN so that

ÂN (θ) a.s.−−−−→
N→∞

∫
log cθ dC◦ =: A(θ).

Classical Taylor expansion-based proofs of normality for M -estimators
(estimators which optimize a criterion function) require the asymptotic
distribution of the score function

UN :=
∂ÂN (θ0)

∂θ
.

As UN =
∫
φ(v, θ0) dĈN , where φ(·, θ) = ∂/∂θ log c(·, θ), the score function

is a multivariate rank statistic, whose asymptotic behavior is derived in

cHowever, Ref. 8 gives sufficient conditions for estimators derived through invariance
considerations to be semiparametrically efficient.
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Refs. 14 and 15. We get
√
N UN

W−−−−→
N→∞

U ∼ Np(0,Σ),

where Σ is somewhat inflated compared to the standard maximum likelihood
setting. We have

Σ = I + Cov






n∑

j=1

∫

[0,1]n

∂φ(v, θ0)
∂vj

(I{ξj ≤ vj} − vj) dC◦(v)






in which I is the information matrix, I = Eφ(ξ, θ0)φ(ξ, θ0)t, and ξ =
(ξ1, ξ2, . . . , ξn) is a random vector distributed according to C◦. Note that
the above covariance is taken with respect to ξ.

Regularity conditions then secure
√
N(θ̂ − θ0)

W−−−−→
N→∞

J−1U ∼ Np(0, J−1ΣJ−1), (6.12)

where

J = −A′′(θ0) = −
∫

[0,1]n

∂2 log cθ0(v)
∂θ∂θt

dC◦.

If c◦ = cθ0 , the well-known information matrix equality J = I is valid. This
means that the limit covariance of Eq. (6.12) is simplified to

J−1 + J−1 Cov






n∑

j=1

∫

[0,1]n

∂φ(v, θ0)
∂vj

(I{ξj ≤ vj} − vj) dC◦(v)




 J−1.

6.3 Model Selection with the MPLE

We are now ready to implement the AIC programme for the MPLE paral-
leling the developments of Section 6.2.2. All proofs and technical subtleties
are omitted, for which the reader can refer to Grønneberg.7

Suppose we have K copula models c1,θ(1), . . . , cK,θ(K) and wish to choose
which to use on the basis of empirical data. We assume that the MPLE is to
be used in the estimation of the copula parameters. This means we define the
best parameter configuration for each of the models to be the θ◦(k) which
minimizes the Kullback–Leibler divergence between c◦ and ck,θ(k). From this
perspective, there is only one natural way to extend the AIC principle to
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our current setting, and that is to define the best copula model to be the
one with index

k◦ := argmin
1≤k≤K

KL(c◦, ck,θ◦(k)).

As for the AIC case, we can naively use

k̃N := argmax
1≤k≤K

∫
log cθ̂(k) dĈN , (6.13)

which is consistent but with poor small-sample behavior. We can make
small-sample corrections to the estimate k̃N analogous to the AIC formula.
The definition of k◦ as the best parametric copula model is the decisive step
in the development to the CIC. The remaining steps are entirely analogous
to Section 6.2.2, and although their validity requires some mathematical
sophistication, the conceptual side of the CIC is now fully developed.

As in the development of the AIC formula, we can use a Taylor expansion
together with the limit theorems of Section 6.2.5 to conclude that

ÂN (θ̂)−A(θ̂) = Z̄N +N−1pN + ÂN (θ◦)−A(θ◦) + oP (N−1)
where EZ̄N = 0 and pN is of a known form and converges to a Gaussian
distribution.

But in contrast to the developments of the standard AIC in Section 6.2.2,
this expansion is not sufficient to conclude with a model selection formula.
To see this, notice that in the standard ML case with known marginals,
the ÂN (θ◦)−A(θ◦) would be included in the mean zero variable Z̄N , as we
would have

EÂN (θ◦) = E

∫
log cθ◦(v)C̃N = E

1
N

N∑

i=1

log cθ◦(F ◦
⊥(Xi))

=
∫

log cθ◦(F ◦
⊥(x)) dF ◦ =

∫
log cθ◦(v) dC◦ = A(θ◦) (6.14)

in which C̃N is the empirical distribution based on observations F ◦
⊥(X1),

. . . , F ◦
⊥(XN ). As we are interested in bias-correction terms and accordingly

only focus on the mean value behavior, we could in the classical ML case
ignore both Z̄N and ÂN (θ◦) − A(θ◦). We then only had to investigate the
behavior of pN , and find an estimator p̂∗ for p∗ = Ep where pN

W−−−−→
N→∞

p to

get the classical AIC formula.
In the MPLE case, we encounter the complication that

EÂN (θ◦) = E

∫
log cθ◦(v)C̃N =

1
N

N∑

i=1

E log cθ◦(FN,⊥(Xi)) 	= A(θ◦),

in which we have the stochastic and far from trivial function FN,⊥(Xi)
inside of cθ◦ — in contrast to the F ◦

⊥(Xi) we had in Eq. (6.14). Remember
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that the AIC gives bias corrections up to the oP (N−1) precision level. As
we define this to be the AIC programme, we have to take the behavior
of F̂N,⊥ into consideration to provide a genuine extension of the standard
AIC. A Taylor expansion of log cθ◦(·) around F ◦

⊥(Xi) − F̂N,⊥(Xi) replaces
the problematic F̂N,⊥ with F ◦

⊥ — which we had in the standard ML case —
and also quantifies the magnitude of error we are committing. This error is
of the desired order oP (N−1). We get that

ÂN (θ◦) = N−1
N∑

i=1

[
log c(F ◦

⊥(Xi), θ◦) + ζ ′(F ◦
⊥(Xi), θ◦)t(V̂i − F ◦

⊥(Xi))

+
1
2
(V̂i − F ◦

⊥(Xi))tζ ′′(F ◦
⊥(Xi), θ◦)(V̂i − F ◦

⊥(Xi))
]

+OP (N−1) (6.15)

where

ζ ′(v, θ) =
∂ log c(v, θ)

∂v
and ζ ′′(v, θ) =

∂2 log c(v, θ)
∂v∂vt

are the vector of derivatives and matrix of double derivatives of the log
copula density, respectively.

The first summation term of Eq. (6.15) has expectation A(θ◦), as in the
ML case, but we also end up with two additional terms to deal with.

Through the use of empirical process theory, Grønneberg7 concludes that

ÂN (θ̂)−A(θ̂) = Z̃N +N−1(pN + qN + rN ) + oP (N−1)

in which Z̃N = 0, and pN = OP (1), qN = OP (
√
N) and rN = Op(1).

Further,

q∗N = qN →
∫

[0,1]n
ζ ′(v; θ0)t

(
1− v

)
C◦(v)

r∗N = rN → r∗ = 1tΥ1

where Υ = (Υa,b)1≤a,b≤n is the symmetric matrix with

Υa,a =
∫

[0,1]n
ζ ′′a,a(u; θ0)ua(1− ua)C◦,

Υa,b =
∫

[0,1]n
ζ ′′a,b(u; θ0) [Ca,b(ua, ub)− uavb]C◦

and rN is finite only if Υ is. Here Ca,b is the cumulative copula of (X1,a,X1,b).
Empirical estimates of these correction terms can readily be made. We

deal with correctly specified and misspecified models separately. We con-
struct an “AIC like” CIC, valid under the assumptions of a correctly spec-
ified parametric copula model, and also a “TIC-like” CIC which estimates
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the bias-correction terms consistently even without the assumption of a cor-
rectly specified parametric copula model.

In the “AIC-like” CIC formula, simplifications can be made, and we get
a formula which is visually very similar to the classical AIC. We get

ĈICAIC = 2�N,max − 2(p̂∗ + r̂∗).
The estimator p̂∗ is given by

p̂∗ = length(θ) + (Î [−1]Ŵ ),
where Î−1 and Ŵ is the empirical estimates formed through using cθ̂ as
plug-in estimates of c◦ in the defining formulae of I and W , where Î−1 is a
generalized inverse of Î. The estimator r̂∗ is given by r̂∗ = 1tΥ̂1, defined in
terms of the plug-in estimators

Υ̂a,a =
∫

[0,1]n
c(v; θ̂)ζ ′′a,a(v; θ̂)va(1− va)v,

Υ̂a,b =
∫

[0,1]n
c(v; θ̂)ζ ′′a,b(v; θ̂)

[
Ca,b(va, vb; θ̂)− vavb

]
v

where Ca,b(va, vb; θ) is the cumulative copula of (Ya, Yb) where
(Y1, Y2, . . . , Yd) ∼ Cθ.

The formula for p̂∗ is almost the same as p̂∗ = length(θ) in the AIC for-
mula, but with an extra term

(
Î−1Ŵ

)
which is always positive. However, r̂∗

can be both positive and negative — depending on the estimated dependency
structure of the parametric copula.

One of the main advantages of the original AIC formula compared to the
TIC is that the bias-correction term is only length(θ), which does not have
to be estimated on the basis of observed data. The “AIC-like” CIC does not
have this advantage and we need to estimate high-order cumulants to apply
it. An interpretation of the terms in the “AIC-like” CIC formula is that
Tr(Î [−1]Ŵ ) takes into consideration the inflated (compared to the standard
ML) covariance matrix of the asymptotic limit of the score function, while
r̂∗ stabilizes the effects of using nonparametric marginal estimates F̂N,⊥
instead of the correct F ◦

⊥.
If we do not assume a correctly specified model, we get the more com-

plicated and more general “TIC-like” CIC formula
ĈICTIC = 2�N,max − 2(p̂∗ + q̂∗ + r̂∗),

which is always valid. We use

p̂∗ = (Ĵ−Σ̂), q̂∗ =
∫

[0,1]n
ζ ′(v; θ̂)t(1− v)Ĉ(v),

r̂∗ = 1tΥ̂1
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where now

Υ̂a,a =
∫

[0,1]n
ζ ′′a,a(v; θ̂)va(1− va)CN ,

Υ̂a,b =
∫

[0,1]n
ζ ′′a,b(v; θ̂)

[
ĈN,a,b(va, vb)− vavb

]
CN

where CN,a,b is the empirical copula based on (X1,a,X1,b), (X2,a,X2,b), . . .,
(XN,a,XN,b). We use the standard empirical estimates of Ĵ− and Σ̂ given
in, e.g. Ref. 2, where Ĵ− is a generalized inverse of Ĵ .

6.3.1 Non-existence of bias-correction terms
and implications for the MPLE

Many practitioners of copulae are mainly interested in the copulae which
have extreme tail dependence (see Ref. 9). However, the bias-correction
terms q∗ and r∗ are defined through the differentials of log cθ(v) with respect
to v. These will continuously grow when extreme behavior near the edge
of the unit cube is introduced, until they explode and do not have a finite
expectation. Let us agree to call parametric copula models with non-existent
q∗ and r∗ “edge-extreme”. The implication of these exploding terms is that
empirical estimates of q∗ and r∗ do not exist, as it simply does not make
sense to estimate anything non-existent. Hence, there cannot be any gener-
ally applicable model selection formula in the sense of providing a first-order
bias correction to the model-relevant part of the attained Kullback–Leibler
divergence between the MPL estimated model and c◦. This poses a limi-
tation for the use of the MPLE, which is shared by all two-stage copula
estimators that estimate the marginals non-parametrically, say, with F̃N,⊥,
and the copula through minimizing a pseudo-likelihood

N∑

i=1

log cθ(F̃N,⊥(Xi)).

To see this, notice the following.
The q∗ and r∗ terms can be traced back to Section 6.3 where we observed

that

EÂN (θ◦) 	= A(θ◦). (6.16)
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But this is actually the case for all two-stage estimators,d such as the IFM
discussed in Ref. 9. In the IFM case, we have parametric marginal estimates.
Going through the same procedures as Section 6.3 shows that

ÂN (θ◦) =
1
N

N∑

i=1

log cθ(Fγ̂,⊥(Xi))

where Fγ̂,⊥ is the vector of estimated marginal cumulative distributions
found through standard ML estimates. If F ◦

⊥ = Fγ◦,⊥, so that the parametric
class of marginal models is correctly specified, a Taylor expansion of

log cθ(v)|v=F⊥,γ̂(Xi),

not in the full v, but for γ �→ F⊥,γ around γ̂ − γ◦, yields terms paralleling
q∗ and r∗ of the CIC that always exist under classical regularity conditions
for all copulae. So the problem does not come from Eq. (6.16), but from the
need to perform a Taylor-expansion around v in terms such as

log cθ(v)|v=F̂N,⊥(Xi)
. (6.17)

Unless empirical estimators of F ◦
⊥ can be found such that N sup |F̃N,⊥ −

F ◦
⊥| = OP (1), this cannot be avoided at the precision level we have defined as

the “AIC programme”. And one would even then have to demand regularity
conditions on the C◦ integrability of functions of ζ ′ and ζ ′′. This would still
be confining with respect to the types of parametric copulae that could have
been estimated while still having AIC-like model selection formulae.

Finally, we note that a solution which might seem promising is to utilize
univariate extreme value theory (EVT) to estimate the tails of the marginals.
EVT gives general conditions for when the tails of univariate distributions
can be approximated by generalized Pareto distributions, and there is a
well-developed machinery for finding empirical estimates for the parameters
involved. As this would reduce the estimation of the functional form of the
tails of the distributions to a low-dimensional problem, it would seem that
a possible solution to the above problems is to define F̂N,⊥ coordinate-wise
as the standard univariate empirical distribution functions below thresh-
olds, while using n estimated generalized Pareto distributions above these

dThis seems to be a new observation, whose consequences have not been properly dealt
with. The inequality (6.16) invalidates the AIC formula for all multi-stage estimation
routines, and through following the derivation of the CIC it is not difficult to provide
modifications of (or quantify consequences of using) the standard AIC formula in these
settings.
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thresholds. Such an approach for estimating the univariate distributions is
discussed in Ref. 13, but the plug-in step of using such an F̂N,⊥ seems to be
new. However, there are two problems with such an approach. First, such
EVT-estimates require the specification of a point over the threshold which
is defined either algorithmically or manually. In practice this hinders a math-
ematical theory of estimation based on asymptotics. Second, simulations
show that standard automated routines for specifying the points over the
threshold and estimating the parameters of the generalized Pareto distribu-
tions introduce so much new noise in the estimation process that the result-
ing copula parameter estimates are mostly inferior to the MPL estimates.
These two issues show that such an EVT-based solution is not fruitful.

6.3.2 Philosophical implications of the CIC

This very brief section discusses what implications the CIC formula has for
the interpretation of the standard AIC formula.

The AIC formula is often seen heuristically as expressing a formalization
of Occam’s Razor. This interpretation is often presented as some kind of
general principle, intrinsic to the arguments underlying the AIC formula.

Although the p̂∗ in the CIC formula retains the interpretation of being a
“penalty for complexity”, the full CIC formula has additional terms which
can be both positive and negative, and the “penalization term” can all in all
be negative. Examples of two such cases are found in Section 6.4. Hence the
bias-correction term of the CIC no longer has the straightforward interpreta-
tion of “penalizing for complexity”, and can no longer be directly interpreted
as a formalized Occam’s Razor.

As the CIC is motivated through the same steps as the AIC, we see that
the “penalization for complexity” interpretation of the AIC — although
valid in the AIC case — is not a general principle which always follows from
the underlying ideas of the AIC. The CIC seems to be the first information-
based model selection criterion that provides such a counterexample, hence
the importance of this observation.

6.4 Illustrations

We include a brief illustration of the computational aspects of using the
CIC, while confirming its validity numerically. Consider the Frank and the
Plackett copulae (families B3 and B2 in Ref. 9, respectively) and denote their
cumulative distribution functions by CF,δ and CP,δ. Figures 6.1(a)–6.1(d)
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Figure 6.1. Plots of true CIC values under the assumption of a correctly specified para-
metric model for the Frank and Plackett copulae with varying dependence parameters.

show the CIC values for the two models with varying δ. It is clear that the
r∗ term dominates the CIC value, and that it reflects the degree of positive
or negative dependence in the data, which any sensible set of models should
agree on. The random noise in the approximated p∗ values is due to vari-
ation inherent in Monte Carlo integration. Notice that for large degrees of
negative dependence, both copulae give CIC formulae that are negative.

Assume X ∼ N (0, 1) and Y ∼ N (0, 1) while the copula of (X,Y ) is a
copula mixture of the form λCF,δ + (1 − λ)CP,δ with λ = 80%. We want
to use the known (near) unbiasedness of the AIC in the fully parametric
case to illustrate that the CIC works as it should. We can do this by the
following.

If we restrict attention to parametric models with normal marginals and
either a Frank or a Plackett copula, we have

fi(x, y; δ) = ci(Φ−1(x),Φ−1(y); δ)φ(x)φ(y)
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using the information that both marginals are known to be standard normal
and where i ∈ {F,P}. The true copula is known to be a mixture of the two.
Denote this density by c◦, and let f◦ be the full data-generating mechanism
of (X,Y ). We have

f ◦(x, y) = c◦(Φ−1(x),Φ−1(y))φ(x)φ(y).

This means that the Kullback–Leibler divergence between f◦ and fi,δ is

KL(f◦, fi,δ) = log
f ◦(X,Y )
fi,δ(X,Y )

= log
c◦(Φ−1(X),Φ−1(Y ))
ci(Φ−1(X),Φ−1(Y ); δ)

= KL(c◦, ci,δ),

implying

∆KL(f◦) := KL(f ◦, fF,δF )−KL(f ◦, fP,δP )

= KL(c◦, cF,δF )−KL(c◦, cP,δP ). (6.18)

Consider the following three formulae:

1. The standard AIC formula 2�#N,max − 2 length(δ) where �#N,max is the
observed maximum likelihood of the full likelihood of (X,Y ) under the
assumption that X ∼ N (µ1, σ

2
1) and Y ∼ N (µ2, σ

2
2) and with either

a Frank or a Plackett copula specifying their simultaneous distribution.
Denote the observed AIC scores simply by AICF for the Frank-copula
case and AICP for the Plackett-copula case and let ∆AIC = AICF −
AICP .

2. The AIC-like formula 2�N,max−2 length(θ), where �N,max is the observed
maximum pseudo-likelihood for the copula model. Denote the observed
(but unjustified) AIC scores by AIC•

F and AIC•
P and let ∆AIC• =

AIC•
F −AIC•

P .
3. The CIC formula 2�N,max − 2(p∗ + r∗) calculated under the assumption

of a correctly specified model. Denote the observed CIC scores by CICF

and CICP and let ∆CIC = CICF −CICP .

Equation (6.18) shows that if the AIC• formula is correct, ∆AIC• should
be approximately equal to ∆AIC, but if the CIC formula is correct, ∆CIC
should be approximately equal to ∆AIC. A simulated sample of (X,Y ) with
the mixture copula is illustrated in Figs. 6.2(a)–6.2(d) with N = 2000. It is
not obvious which model is the best, as the fit of the MPLE models seems
to vary in different parts of the sample space. However, assume that we
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Figure 6.2. Plots of simulated data.

want to know which model has the least Kullback–Leibler divergence to the
true model. Notice that we use the AIC-like formulae and not the TIC-
like formulae, which is an approximation typical in model selection practice
as the TIC-like formulae have a much higher variability than the AIC-like
formulae.

We ran 500 simulations as above — each with 2000 sample points —
and for each simulation calculated the AIC, AIC• and CIC values. Table 6.1
shows that the CIC formulae on average agrees with the fully parametric
AIC value, while the mean of the incorrectly motivated AIC• misses the
mean of AIC almost exactly by the average of −2∆(p∗ + r∗), the correction
term which separates AIC• and CIC.
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Table 6.1. Summary statistics for the simulation of 500 data sets each
consisting of 2000 samples.

Min. 1st Qu. Median Mean 3rd Qu. Max.

∆AIC −108.80 −26.73 −6.13 −5.28 16.87 84.95
∆CIC −122.90 −28.80 −4.65 −5.00 18.14 93.15
∆AIC• −120.30 −26.23 −2.07 −2.43 20.72 95.72

∆AIC− ∆CIC −27.52 −7.42 −0.64 −0.28 6.51 39.26
∆AIC− ∆AIC• −30.10 −9.99 −3.22 −2.85 3.94 36.69

MPLE δF 12.80 13.50 13.77 13.77 14.03 15.04
MPLE δP 43.06 47.05 48.74 48.71 50.12 56.13

p∗P + r∗P 2.78 2.83 2.84 2.84 2.85 2.96
p∗F + r∗F 4.00 4.04 4.06 4.06 4.08 4.13
2∆(p∗ + r∗) −2.65 −2.50 −2.44 −2.44 −2.39 −2.23

6.5 Concluding Remarks

Standard semiparametric estimation theory, as summarized in Ref. 1, pos-
tulates that the true data-generating distribution is included in the space of
all models spanned by the semiparametric model. The infinite-dimensional
part of semiparametric models often spans such a large space that it is
realistic to make this assumption. But for most practical uses of semipara-
metric copula models, this is not realistic and motivates the investigation
of semiparametric model selection techniques in the style of the AIC.

Standard semiparametric estimation theory is based on the assumption
that the rationale for using a semiparametric model (in contrast with using a
fully nonparametric model) is that the investigator possesses a priori knowl-
edge of the correct finite-dimensional part of the data-generating distribu-
tion. This is often not the case in copula estimation.

The basis for the CIC investigation of Ref. 7 was to assess the conse-
quences of using the “AIC formula” of Eq. (6.2). The main conclusions were

• The “penalization” for dimensionality of the copula model is only part of
the story, and the correct sum of all bias-correction terms can be negative.

• No proper generalization of the AIC formula exists for “edge extreme”
copulae when parameters are estimated with the MPLE. The class of
edge extreme copulae includes most copula models in common use.

Both of these points have practical implications for copula users. The first
point has an obvious implication: do not use the AIC• formula of Eq. (6.2) —
its rationale is unjustified. The second point has more subtle implications. It
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indicates that the estimation of parametric edge extreme copulae is funda-
mentally more complex without the knowledge of finite-dimensional para-
metric marginals. Edge extreme copulae are often used to provide multi-
variate extreme value estimates such as Value At Risk calculations for the
sum of dependent vectors for high quantiles. If this is the aim of the study
at hand, the MPLE seems not to be the best choice.

A possible solution to the second point is to ignore the bias-correction term
which gets us into trouble, and work directly with k̃N of Eq. (6.13). If N is
sufficiently large, first-order bias corrections are insignificant (see footnote b),
making this a sensible model selection routine in some circumstances. This is
implicitly done in Ref. 2 (although they did not notice that the “AIC formula”
of Eq. (6.2) is unjustified for the MPLE), and they provide statistical tests to
assess the conclusion of the resulting model selection strategy.

Another way to address the second point is to look for alternative estima-
tors of the copula parameter. It seems that the only well-known alternative
to the MPLE is the sieve-based estimator proposed in Ref. 3, motivated
through semiparametric efficiency considerations. But the concept of semi-
parametric efficiency is defined only when the model in question is correctly
specified. This is clearly not the case for any investigation in which the
(non-nested) model selection problem appears.

A third possible approach to the second point is to develop an analog to
the impressive machinery of Ref. 12 for the current situation. This seems
currently out of reach, and would lead to a theory based on fundamentally
different principles than the comparatively simple AIC formula.

If none of the candidate copula models are edge extreme, the CIC for-
mula provides a general model selection strategy, but if at least one copula
under consideration is edge extreme, there are currently no fully satisfactory
solutions to the model selection problem. Finally, we note that model selec-
tion by cross-validation and boot-strap procedures are reasonable methods
also for the MPLE. However, their theoretical properties are not yet well-
understood.
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CHAPTER 7
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It is known that there is one equivalence class of regular vines for n = 3 and two
equivalence classes for n = 4. Through an enumeration, we show that there are
six equivalence classes for n = 5 with boundary classes of C-vines and D-vines, so
that the dimension of n = 5 is manageable in terms of studying the intermediate
regular vines. For vine copulae, which obtain from associating a bivariate copula
with each pair in the vine, we develop an approach that leads to algorithms for
C-vines, D-vines and intermediate vines. Some similarities between different vine
copulae can be seen from how they are simulated. For Gaussian and non-Gaussian
vines, we compare the marginal bivariate dependence of different vine copulae
when the level � bivariate linking copulae are all set at C�, � = 1, . . . , n− 1.
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7.1 Introduction

The aim of this chapter is to compare the similarities and differences
in dependence for different regular vines on n variables, with n ≥ 4.
Understanding how different vines compare can be useful in deciding on

139
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appropriate vine copula models for high-dimensional multivariate data. This
might be important, for example, in adding extra variables to an existing
vine distribution with m variables. There are different ways of linking the
new variables to the existing vine.

The dimension n = 5 is the first interesting case to get intermediate
vines that are between the boundary cases of D-vines and C-vines (canon-
ical vines). See Bedford and Cooke2, 3 and Kurowicka and Cooke13 for the
definitions of vines and different ways of viewing them. To help enumerate
the regular vines on n variables, Section 7.2 gives a definition of an equiv-
alence class of regular vines in terms of the conditioned and conditioning
indices of the variables in the conditional distributions. One new result is
the enumeration of the six equivalence classes for dimension n = 5. For
n > 5 the number of equivalence classes increases exponentially, so n = 5 is
the dimension for which extra insight can be obtained into the intermediate
vines.

In financial and other applications, it is important to be able to sim-
ulate from the copula in order to assess probabilities relative to risks. In
Section 7.3, algorithms for vine copulae are developed in a unified approach
for simulating from D-vines and C-vines in dimension n, and also from any
intermediate vine in dimension n. For the intermediate vines in dimension
5, we show that some similarity results for different vines are most easily
seen from the simulation algorithms.

In Sections 7.4, 7.5 and 7.6, comparisons are made for different vines
based on analytic and simulation results, when the level � bivariate linking
copulae are all set at C�, � = 1, . . . , n− 1. For n = 5, some extra results can
be obtained for Gaussian vines which have a partial correlation α� for the
level � of the vine; the Gaussian vines with this constraint sometimes lead
to generalized Toeplitz matrices.

Section 7.7 concludes with a summary and some discussion of future
research.

7.2 Equivalence Classes of Regular Vines

In this section, we define equivalence classes of regular vines, give examples
to show how different vines are distinguished, and enumerate and discuss
the equivalence classes for n = 5. Keeping track of the order of the nodes
for trees at different levels of the vine is a quick way to differentiate some
of the regular vines.
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To define equivalence classes of (regular) vines and list them for dimen-
sions n = 3, 4, 5, we use shorthand notation for conditional distributions.
For � ≥ 2, the notation {i1, i2} | {j1, . . . , j�−1} refers to the conditional
distribution of variables with indices i1, i2, given the variables with indices
j1, . . . , j�−1. If � = 1, then the above refers to the marginal distribution of
the variables with indices i1, i2.

In the above notation, the two boundary classes of D-vines and C-vines
are written as follows. Some of the braces { and } and commas are omitted
below for brevity.

• D-vine: 12; 23; . . . ;n−1, n; 13|2; 24|3; . . . ;n−2, n|n−1; . . ., 1, n|2 . . . n−1.
That is, {{i1, i2}|{i1 + 1, . . . , i2 − 1} : 1 ≤ i1 < i2 ≤ n} to cover

(n
2

)

pairs.

• C-vine: 12; 13; . . . ; 1, n; 23|1; 24|1; . . . ; 2, n|1; . . ., n− 1, n|1 . . . n− 2.
That is, {{i1, i2}|{1, · · · , i1 − 1} : 1 ≤ i1 < i2 ≤ n} to cover

(n
2

)
pairs.

For a conditional distribution of variables indexed by i1, i2, we refer to
level � if cardinality of conditioning set D(i1, i2, �) = {j1, . . . , j�−1} is � − 1
for � = 1, . . . , n− 1.

Vines in the same equivalence classes can be matched after a per-
mutation of indices. Our notation for a permutation π of {1, . . . , n}, is
π(1 · · · n) = k1 · · · kn or π = ( 1 2 · · · n

k1 k2 · · · kn
) and components of π are sum-

marized as π(i) = ki. Also for a subset D, we use the notation π(D) =
{π(j) : j ∈ D}.

Definition 7.1 (Equivalence classes of vines). Consider a regular vine
written in the form of a set of

(n
2

)
conditional distributions:

{{i1, i2}|D(i1, i2, �) : 1 ≤ i1 < i2 ≤ n, with n− � pairs at level
�, � = 1, . . . , n− 1}. (7.1)

Let π be a permutation. Then the regular vines {{i1, i2} | D(i1, i2, �)}
and {{π(i1), π(i2)} | π(D(i1, i2, �))} are said to be in the same equivalence
class.

Alternatively, two regular vines summarized as {{i1, i2} | D(i1, i2, �)}
and {{i′1, i′2} | D(i′1, i

′
2, �)} are in the same equivalence class if there is

a permutation π such that {{π(i1), π(i2)} | π(D(i1, i2, �))} and {{i′1, i′2} |
D(i′1, i′2, �)} are the same.
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Note that in the set notation, the order within the subset of conditioned
variables or within the subset of conditioning variables does not matter.
Also, the order of the listing of the distributions does not matter.

The above notation means that a pair (i1, i2) with i1 �= i2 appears as the
conditioned variables in exactly one level. There are n − � pairs for which
the number of conditioning variables is � − 1 for � = 1, . . . , n − 1. There
are additional constraints linking the sets D(i1, i2, �) at different levels in
(7.1); see Section 4.4 of Kurowicka and Cooke.13 For example, if {i1, i2} |
D(i1, i2, �) is at level � for � > 1, then there exists j, j′ ∈ D(i1, i2, �) (which
could be the same or different) such that two distributions at level �− 1 are
{i1, j} | D(i1, i2, �)\{j} and {i2, j′} | D(i1, i2, �)\{j′}.

We illustrate the above definition and notation to show that there is one
equivalence class of vines for n = 3 and two equivalence classes of vines for
n = 4.

For n = 3, we can assume that 12 is a pair at level 1, then the second
pair is either 23 (D-vine) or 13 (C-vine). They are listed below.

• D-vine: 12; 23; 13|2 in standard form;
• C-vine: 12; 13; 23|1 in standard form.

For the C-vine, permute π(123) = 213 to get {21; 23; 13|2}, which is the
same as the D-vine. Note that for this vine in the graph representation, the
level 1 tree has one node of order 2 and two nodes of order 1.

For n = 4, for the level 1 tree, two nodes can have order 2 and the
other two have order 1 (like the D-vine), or one node can have order 3
and the other three have order 1 (like the C-vine). The discussions of
level 2 are given below, leading to two equivalence classes: the C-vine and
D-vine.

• D-vine: 12; 23; 34; 13|2; 24|3; 14|23. Note that there is no alternative
conditioning after level 1 since the margins 12 and 34 cannot be paired
to have a common conditioning index.

• C-vine: 12; 13; 14; 23|1; 24|1; 34|12 in standard form;
• An alternative conditioning starting from {12; 13; 14} at level 1 is 12; 13;

14; 23|1; 34|1; 24|13. Permute π(1234) = 1324 to get 13; 12; 14; 32|1; 24|1;
34|12, so this is now a C-vine in standard form.

• A second alternative conditioning starting from {12; 13; 14} at level 1 is
12; 13; 14; 24|1; 34|1; 23|14. Permute π(1234) = 1432 to get 14; 13; 12;
42|1; 32|1; 43|12, and this is also a C-vine in standard form.
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Before enumerating the equivalence classes of regular vines for n = 5, we
indicate a way to construct a five-dimensional regular vine that need not be
a C-vine or D-vine.

12
13
23

14
24
34

15
25
35
45

For the first level or tree of the vine, pick a pair from each column; if two
pairs are chosen from the same column, then the graph representation of the
resulting pairs has a cycle. Choosing always the top pair leads to the C-vine
and choosing always the bottom pair leads to the D-vine. Other choices can
also lead to C-vines or D-vines (in non-standard form), for example 12; 13;
34; 25 at level 1 leads to a D-vine.

An example that does not lead to the C-vine or D-vine after permutation
is given next.

• Start with 12; 23; 24; 35 and form Tree 1. Nodes 12 and 23 have edge
13|2, nodes 12 and 24 have edge 14|2, nodes 12 and 35 lead to ∅ for no
edge, nodes 23 and 24 have edge 34|2, nodes 23 and 35 have edge 25|3,
nodes 24 and 35 lead to ∅.
• For Tree 2, choose three edges and avoid a cycle, say, 13|2; 14|2; 25|3 (with

34|2 not included).
Nodes 13|2 and 14|2 have edge 34|12; nodes 13|2 and 25|3 have edge 15|23;
nodes 14|2 and 25|3 lead to a non-regular case because there are not two
indices in the intersection.

• For Tree 3, choose nodes 34|12 and 15|23 with edge 45|123.

Next, we give a brief derivation to show that there are six equivalence
classes of regular vines for n = 5. The enumeration starts by noting that
there are three possibilities for the level 1 tree: (a) three nodes with order
2 and the other two with order 1 (like the D-vine), or (b) one node with
order 3, one node with order 2 and the other three with order 1, or (c) one
node with order 4 and the other four with order 1 (like the first tree of the
C-vine).

(a) D-vine 12; 23; 34; 45; 13|2; 24|3; 35|4; 14|23; 25|34; 15|234 (first level
order of nodes 1,2,2,2,1, and there are unique trees for levels 2,3,4 like
for n = 4).

(b) 12; 13; 14; 25 (first level order of nodes 3,2,1,1,1). Second level possi-
bilities are 23|1, 24|1, 34|1, 15|2, of which two of the first three can be
chosen (as they form a cycle).
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Variables 3 and 4 are symmetric so there are two distinct cases at level 2:
(i) 23|1; 24|1; 15|2, leading to third level possibilities 34|12, 35|12,
45|12 — two cases for next step:

(i′) 34|12; 35|12; 45|123 or (i′′) 35|12; 45|12; 34|125, or,
(ii) 23|1; 34|1; 15|2, leading to the remainder 24|13; 35|12; 45|123.

(c) 12; 13; 14; 15 (first level order of nodes 4,1,1,1,1). Second level possibili-
ties are 23|1, 24|1, 34|1, 25|1, 35|1, 45|1 — can choose three of six that
do not form cycle.

(i) 23|1; 24|1; 25|1 (C-vine-like) leads to third level possibilities 34|12,
35|12, 45|12, and remaining step is a C-vine for any choices, say
34|12; 35|12; 45|123, or

(ii) 23|1; 24|1; 35|1 (which is D-vine 4-2-3-5), so following are 34|12;
25|13; 45|123.

For the remainder of this chapter, we use labels for the six (equivalence
classes of) vines: D from (a); B1, B2, B3 from (b); C, B0 from (c). The B is
shorthand for “Between” because B0,B1,B2,B3 are between the C-vine and
D-vine. It will turn out below that the B2 vine is halfway between in one
sense.

For ease of dependence comparisons in subsequent sections, we permute
the indices so that 4 and 5 are labels of the conditioned variables for the
final conditional distribution 45|123. The sequences are given in the bottom
part of Table 7.1. Note that B0 and B2 have more symmetry than B1 and
B3; there is symmetry with π(12345) = 13254 in B0, and symmetry with
π(12345) = 12354 in B2. The extra symmetry affects whether there are
generalized Toeplitz matrices associated with the vine; see Section 7.5.

It is informative to write down the matrices with level by order of
nodes (at variable 1,2,3,4,5); see Table 7.1. For level order � ≥ 2, in
{i1, i2}|D(i1, i2, �), there is a count for the order of the node for the con-
ditioned variables i1 and i2 only. Two vines, where the matrix of level by
order of nodes are the same after column permutation, must be in different
equivalence classes. However, (b)(i′) and (b)(i′′) have “isomorphic” matrices
but different equivalence classes.

For n = 6, an enumeration (by hand, similar to the preceding for n = 5)
led to 40 equivalence classes, and this was confirmed using the algorithm in
Chapter 10.

From the enumeration method of regular vines in Morales-Nápoles
et al.,17 a bound is 2(n−2)(n−3)/2; this bound is 8 for n = 5 and 64 for
n = 6.
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Table 7.1. Matrices with level by order of nodes (at variable 1,2,3,4,5).

Case (a): D-vine Case (b)(i′): B1-vine Case (b)(i′′): B2-vine

level variables level variables level variables
12345 12345 12345

1 22211 1 32111 1 32111
2 12111 2 12111 2 12111
3 10111 3 00211 3 00211
4 00011 4 00011 4 00011

Case (b)(ii): B3-vine Case (c)(i): C-vine Case (c)(ii): B0-vine

level variables level variables level variables
12345 12345 12345

1 32111 1 41111 1 41111
2 11211 2 03111 2 02211
3 01111 3 00211 3 01111
4 00011 4 00011 4 00011

D: 15; 12; 23; 34; 25|1; 13|2; 24|3; 35|12; 14|23; 45|123
B1: 12; 13; 14; 25; 23|1; 24|1; 15|2; 34|12; 35|12; 45|123
B2: 12; 15; 14; 23; 25|1; 24|1; 13|2; 35|12; 34|12; 45|123
B3: 12; 13; 14; 25; 23|1; 34|1; 15|2; 24|13; 35|12; 45|123
C: 12; 13; 14; 15; 23|1; 24|1; 25|1; 34|12; 35|12; 45|123

B0: 12; 13; 14; 15; 23|1; 24|1; 35|1; 34|12; 25|13; 45|123

7.3 Simulation from Vine Copulae

The main goal of this section is to provide algorithms for simulation from
vine copulae. We provide pseudo-codes for C-vines and D-vines, in standard
form, of any dimension n. These improve a little on the algorithms in Aas
et al.,1 mainly in the naming of intermediate variables. We also extend
the pseudo-codes to any regular vine, but assume a certain indexing of the
vine. These pseudo-codes have more specific details than the descriptions of
sampling a regular vine given in Section 6.4.2 of Kurowicka and Cooke.13

Besides simulation, the pseudo-codes can be used to show how similar
different vines are. Extra details will be listed for the B0, B1, B2, B3-vines
for n = 5 in order to show their pairwise similarity. The proof that some
of the different pairs of five-dimensional vine copulae can have a common
four-dimensional margin comes from the algorithms.

For an n-dimensional vine copula, there is a bivariate copula fam-
ily associated with each bivariate or conditional bivariate margin of form
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{i1, i2} | D(i1, i2, �) = {j1, . . . , j�−1}. The notation is Ci1,i2|j1,...,j�−1
, and for

� ≥ 2, this is assumed to be independent of the values of the condition-
ing variables, that is, conditional copulae constant over uj1 , . . . , uj�−1

. As
an illustration of the notation, the ten copulae for the six five-dimensional
vines in the previous section are:

C: C12, C13, C14, C15, C23|1, C24|1, C25|1, C34|12, C35|12, C45|123.
B0: C12, C13, C14, C15, C23|1, C24|1, C35|1, C34|12, C25|13, C45|123.
B1: C12, C13, C14, C25, C23|1, C24|1, C15|2, C34|12, C35|12, C45|123.
B2: C12, C15, C14, C23, C25|1, C24|1, C13|2, C34|12, C35|12, C45|123.
B3: C12, C13, C14, C25, C23|1, C34|1, C15|2, C24|13, C35|12, C45|123.
D: C15, C12, C23, C34, C25|1, C13|2, C24|3, C35|12, C14|23, C45|123.

In the simulation algorithms below, we have the following addi-
tional notation. For a bivariate copula Cij , Ci|j = ∂Cij/∂uj and
Cj|i = ∂Cij/∂ui are conditional distributions. For a conditional bivari-
ate copula Ci1,i2|j1,...,j�−1

, the conditional distributions are denoted as:
Ci1|i2:j1,...,j�−1

= ∂Ci1,i2|j1,...,j�−1
/∂ui2 and Ci2|i1:j1,...,j�−1

= ∂Ci1,i2|j1,...,j�−1
/

∂ui1 . For the algorithms, the outputs are n dependent uniform random
deviates U1, . . . , Un. Apply quantile functions F−1

1 (U1), . . . , F−1
n (Un) to get

dependent random deviates with the distributions F1, . . . , Fn.
The algorithm for the C-vine is given in the first part of Table 7.2. It

is simplest in that the “backward” steps are not needed. For the D-vine
in standard form, the algorithm is given in the second part of Table 7.2;
backward steps are needed, and matrices (aij) and (bij) are used rather than
(vij)1≤i≤n,1≤j≤2n in Aas et al.1 The pseudo-code for the D-vine extends to
any regular vine (see the third part of Table 7.2) that has been indexed so
that if one deletes all {i1, i2}|D(i1, i2, �) that include variables m+ 1, . . . , n
(m = 2, 3, . . . , n − 1), then the remainder is a regular vine in variables
1, . . . ,m. All of the five-dimensional vines above are indexed in this way;
that is, all regular vines can have the variables permuted to satisfy this
condition. The condition in the third part of Table 7.2 is similar to and
slightly more general than that given on p. 173 of Kurowicka and Cooke.13

The main idea for the forward steps (aij in Table 7.2) will be shown in a
couple of specific examples, first for the four-dimensional C-vine, and then
a four-dimensional D-vine with permuted indices.

Here, we need to use F for the copula of the constructed vine, in order
to avoid notation confusion with the conditional copulae; F1j = C1j for the
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Table 7.2. Pseudo-codes for the C-vine, D-vine and regular vines in dimension n.

C-vine
Generate w1, . . . , wn to be U(0, 1) random deviates.
u1 ← w1, u2 ← C−1

2|1(w2|w1).

for i = 3, . . . , n:
t← wi, for j = i− 1, i− 2, . . . , 1: t← C−1

i|j:1,...,j−1(t|wj);

ui ← t.

D-vine
Generate w1, . . . , wn to be U(0, 1). Arrays a, b are n× n, but only upper diagonals used.
u1 ← w1, a11 ← w1, b11 ← w1.
for i = 2, . . . , n:

ai1 ← wi, for j = 2, . . . , i: aij ← C−1
i|j−1:j···i−1(ai,j−1|bi−1,j−1);

ui ← aii, bii ← aii;
for j = i− 1, . . . , 1: bij ← Cj|i:j+1···i−1(bi−1,j |ai,j+1).

Regular vine with indexing as follows (this is a necessary but not sufficient condition
for a vine):
12; k313; k323|k31; . . .; ki1i; ki2i|ki1; . . .; ki,i−1i|ki1, . . . , ki,i−2; . . . ;

kn1n; kn2n|kn1; . . .; kn,n−1n|kn1, . . . , kn,n−2,
where (ki1, . . . , ki,i−1) is a permutation of (1, . . . , i− 1) for i = 2, . . . , n.
(For D-vine, kij = i− j; for C-vine kij = j.)

Generate w1, . . . , wn to be U(0, 1). Arrays a, b are n× n, but only upper diagonals used.
u1 ← w1, a11 ← w1, b11 ← w1.
for i = 2, . . . , n:

M ← {ki1, . . . , ki,i−2}, vi,ki,i−1,M = vi,{ki,i−1∪M} ← wi, ai1 ← vi,ki,i−1,M ,

for j = 2, . . . , i:
M ← {ki1 · · · ki,i−j}
vi,M ← C−1

i|ki,i+1−j :M (vi,ki,i+1−j ,M |vki,i+1−j ,M ) = C−1
i|ki,i+1−j :M (ai,j−1|vki,i+1−j ,M )

[vki,i+1−j ,{ki1···ki,i−j} from a previous backward step];

aij ← vi,M

end j loop
ui ← aii, bii ← aii;
for j = i− 1, . . . , 1: (some backward steps)
M ← {ki1 · · · ki,i−1−j};
vki,i−j ,i,M ← Cki,i−j |i:M (vki,i−j ,M |vi,M ) = Cki,i−j |i:M(vki,i−j ,M |ai,j+1)

[vki,i−j ,{ki1···ki,i−1−j} from a previous step];

bij ← vki,i−j ,i,M ;
end j loop

first level of the vine, and then using the notation mentioned in Chapter 1,
the copula for the four-dimensional C-vine is

F1234(u) =
∫ u1

0

∫ u2

0
C34|12(F3|21(u3|v2, v1), F4|21(u4|v2, v1))

f12(v1, v2) dv2dv1,
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where

F12j(u1, u2, uj) =
∫ u1

0

C2j|1(F2|1(u2|v), Fj|1(uj |v))dv, j = 3, 4.

By differentiation,

F3|12(u3|u1, u2) =
∂2F123/∂u1∂u2

∂2F12/∂u1∂u2
= C3|2:1(F3|1(u3|u1)|F2|1(u2|u1)),

which implies for 0 < q < 1 that

F−1
3|12(q|u1, u2) = F−1

3|1 (C−1
3|2:1[q|F2|1(u2|u1)]|u1)

= C−1
3|1(C−1

3|2:1[q|C2|1(u2|u1)]|u1), (7.2)

and there is a similar expression for F−1
4|12(q|u1, u2). Similarly,

F4|123(u4|u1, u2, u3) =
∂3F1234/∂u1∂u2∂u3

∂3F123/∂u1∂u2∂u3

= C4|3:12(F4|12(u4|u1, u2)|F3|12(u3|u1, u2))

and, for 0 < q < 1,

F−1
4|123(q|u1, u2, u3) = F−1

4|12[C
−1
4|3:12(q|F3|12(u3|u1, u2))|u1, u2]

= C−1
4|1(C−1

4|2:1[u43|C2|1(u2|u1)]|u1),

u43 = C−1
4|3:12(q|F3|12(u3|u1, u2)).

So if W1, . . . ,W4 are independent U(0, 1) random variables, then
(U1, . . . , U4) ∼ F1234 if U1 = W1, U2 = C−1

2|1 (W2|W1),

U3 = C−1
3|1(C−1

3|2:1(W3|C2|1(U2|U1))|U1) = C−1
3|1 (C−1

3|2:1(W3|W2)|U1), (7.3)

and

U4 = C−1
4|1 (C−1

4|2:1[U43|C2|1(U2|U1)]|U1) = C−1
4|1 (C−1

4|2:1[U43|W2|W1),

with U43 = C−1
4|3:12(W4|F3|12(U3|U1, U2)) = C−1

4|3:12(W4|W3), via (7.3) and
(7.2), or

U4 = C−1
4|1 (C−1

4|2:1[C
−1
4|3:12(W4|W3)|W2|W1).

This pattern explains the pseudo-code for the C-vine in Table 7.2.
For non C-vines, we introduce the following notation to explain the steps.

With the notation introduced earlier, Ci|j:M is the conditional distribution
of the linking copula Cij|M in the vine, where i, j are integers and M is a
subset (possibly empty). The bottom part of Table 7.2 makes use of the
following:

vi,j,M = vi,{j}∪M = Ci|j:M(vi,M |vj,M),

vi,M = C−1
i|j:M(vi,j,M |vj,M).

(7.4)
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Note that some of these v’s appear in the pseudo-code without identifying
which aij and bij they correspond to; this match can be done generically
only for the C-vine and D-vine.

To understand the more general pseudo-code, let us look at the same
steps for the four-dimensional D-vine summarized as 12; 13; 34; 23|1; 14|3;
24|13. F123 is the same as for the above C-vine, and then with similar steps,

F4|123(u4|u1, u2, u3) = C4|2:1,3(F4|13(u4|u1, u3)|F2|13(u2|u1, u3))

where

F4|13(u4|u1, u3) = C4|1;3(C4|3(u4|u3)|C1|3(u1|u3)),

F2|13(u2|u1, u3) = C2|3;1(C2|1(u2|u1)|C3|1(u3|u1)).

Let U1, U2, U3,W1,W2,W3 be the same as above, and then

U4 = C−1
4|3(C−1

4|1;3[U42|C1|3(U1|U3)]|U3) with

U42 = C−1
4|2:13(W4|F2|13(U2|U1, U3)),

F2|13(U2|U1, U3) = C2|3;1(W2|C3|1(U3|U1)). (7.5)

This is more complicated than for the C-vine because other functions of the
Ui’s or Wi’s are needed. To see the algorithmic approach, the pseudo-code
in the bottom part of Table 7.2, with upper case Ui,Wi, becomes:

• a11, b11: U1 = W1 = v1

• a21: v2,1 = W2

• a22: U2 = v2 = C−1
2|1 (v2,1|v1) = C−1

2|1 (W2|W1)

• b21: v1,2 = C1|2(v1|v2) = C1|2(W1|U2)
• a31: v3,2,1 = W3 = v3,12

• a32: v3,1 = C−1
3|2:1(v3,2,1|v2,1) = C−1

3|2:1(W3|W2)

• a33: U3 = v3 = C−1
3|1 (v3,1|v1) = C−1

3|1 (v3,1|W1)

• b32: v1,3 = C1|3(v1|v3) = C1|3(W1|U3)
• b31: v2,3,1 = v2,13 = C2|3:1(v2,1|v3,1) = C2|3:1(W2|v3,1)
• a41: v4,2,13 = W4 = v4,213

• a42: v4,1,3 = v4,13 = C−1
4|2:13(v4,2,13|v2,13) = C−1

4|2:13(W4|v2,13)
• a43: v4,3 = C−1

4|1:3(v4,1,3|v1,3)
• a44: U4 = v4 = C−1

4|3 (v4,3|v3) = C−1
4|3 (v4,3|U3).

This matches with (7.5) because for step b31,

C3|1(U3|U1) = C3|1(C−1
3|1(v3,1|W1)|U1) = v3,1.
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Table 7.3. Five-dimensional D-vine (standard order) for assigning aij and bij .

Let w1, w2, . . . be a sequence of uniform (0, 1) rvs.
For each step i, do all forward substeps before backward.

i Forward Backward

1 a11: v1 = w1 b11: u1 = v1

2 a21: v2,1 = w2 b22: u2 = v2

a22: v2 = C−1
2|1(v2,1|v1) b21: v1,2 = C1|2(v1|v2)

3 a31: v3,1,2 = w3 b33: u3 = v3

a32: v3,2 = C−1
3|1:2(v3,1,2|v1,2) b32: v2,3 = C2|3(v2|v3)

a33: v3 = C−1
3|2(v3,2|v2) b31: v1,3,2 = v1,23 = C1|3:2(v1,2|v3,2)

4 a41: v4,1,23 = w4 b44: u4 = v4

a42: v4,2,3 = v4,23 = C−1
4|1:23(v4,1,23|v1,23) b43: v3,4 = C3|4(v3|v4)

a43: v4,3 = C−1
4|2:3(v4,2,3|v2,3) b42: v2,4,3 = v2,34 = C2|4:3(v2,3|v4,3)

a44: v4 = C−1
4|3(v4,3|v3) b41: v1,4,23 = v1,234 = C1|4:23(v1,23|v4,23)

5 a51: v5,1,234 = w5 b55: u5 = v5

a52: v5,2,34 = v5,234 b54: v4,5 = C4|5(v4|v5)
= C−1

5|1:234(v5,1,234|v1,234)

a53: v5,3,4 = v5,34 = C−1
5|2:34(v5,2,34|v2,34) b53: v3,5,4 = v3,45 = C3|5:4(v3,4|v5,4)

a54: v5,4 = C−1
5|3:4(v5,3,4|v3,4) b52: v2,5,34 = v2,345 = C2|5:34(v2,34|v5,34)

a55: v5 = C−1
5|4(v5,4|v4) b51: v1,5,234 = v1,2345

= C1|5:234(v1,234|v5,234)

Next, the detailed steps for the five-dimensional D-vine are given in
Table 7.3 before we show some steps for the other vines that make use
of (7.4). Let w1, w2, . . . be a sequence of uniform (0, 1) rvs.

More details for the other five-dimensional vines are summarized into a
few tables. The C-vine, B0-vine and B1-vine have the same first four steps;
see Table 7.4. Table 7.5 has the fifth step for the B0-vine and B1-vine.
Table 7.6 has the third and fifth steps for the B2-vine. Table 7.7 has the
fourth step for the B2-vine. Table 7.8 shows how the D-vine can be simulated
with different permutations of the variables.

For the B-vines in the forms given above, at most only two of the bij ’s
in the reverse direction are needed:

• b21: v1,2 = C1|2(v1|v2) needed for the B1-vine, B2-vine and B3-vine; this
step is coded as C1|2(a11|a22)
• b31: v2,3,1 = v2,13 = C2|3:1(v2,1|v3,1) needed for the B0-vine and B3-vine;

this step is coded as C2|3:1(a21|a32).
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Table 7.4. Step i = 1 to 4 for C-vine,
B0-vine and B1-vine.

i Forward substeps

1 a11: u1 = v1 = w1

2 a21: v2,1 = w2

a22: u2 = v2 = C−1
2|1(v2,1|v1)

3 a31: v3,2,1 = w3 = v3,12

a32: v3,1 = C−1
3|2:1(v3,2,1|v2,1)

a33: u3 = v3 = C−1
3|1(v3,1|v1)

4 a41: v4,3,12 = w4 = v4,123

a42: v4,2,1 = v4,12 = C−1
4|3:12(v4,3,12|v3,12)

a43: v4,1 = C−1
4|2:1(v4,2,1|v2,1)

a44: u4 = v4 = C−1
4|1(v4,1|v1)

Table 7.5. Step i = 5 of B0-vine and B1-vine.

B0: 12; 13; 14; 15; 23|1; 24|1; 35|1; B1: 12; 13; 14; 25; 23|1; 24|1; 15|2;
34|12; 25|13; 45|123 34|12; 35|12; 45|123

B0, b31: v2,3,1 = v2,13 = C2|3:1(v2,1|v3,1) B1, b21: v1,2 = C1|2(v1|v2)

a51 v5,4,123 = w5 v5,4,123 = w5

a52 v5,2,13 = v5,123 = C−1
5|4:123(v5,4,123|v4,123) v5,3,12 = v5,123 = C−1

5|4:123(v5,4,123|v4,123)

a53 v5,3,1 = v5,13 = C−1
5|2:13(v5,2,13|v2,13) [b31] v5,1,2 = v5,12 = C−1

5|3:12(v5,3,12|v3,12)

a54 v5,1 = C−1
5|3:1(v5,3,1|v3,1) v5,2 = C−1

5|1:2(v5,1,2|v1,2) [needs b21]

a55 u5 = v5 = C−1
5|1(v5,1|v1) u5 = v5 = C−1

5|2(v5,2|v2)

The fourth and fifth steps of the B2-vine are the same as for the C-vine.
The third and fifth steps of the B2-vine are given in Table 7.6. The B2-vine
has the same 1245 four-dimensional margins as for the C-vine by noting
that the fourth and fifth steps of the B2-vine do not depend on v3,2 and v3
(these steps have v3,1,2 = v3,12 which is the same for the two vines).

Table 7.7 has the fourth step of the B3-vine. The fifth step is the same
as for the B1-vine, and the first three steps are the same as for the C-vine.

For the simulation comparisons in the next section, it is useful to simulate
the D-vine with orders 51234 and 52134. The D-vine in the order 51234
has the same 1235 margin as the B2-vine; the algorithm is the same as that
for the B2-vine except step 4, which is given in Table 7.6. For the D-vine in
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Table 7.6. Steps i = 3 and i = 5 of B2-vine.

i B2: 12; 15; 14; 23; 25|1; 24|1; 13|2;
35|12; 34|12; 45|123

B2, b21: v1,2 = C1|2(v1|v2)
3 a31: v3,1,2 = v3,12 = w3

a32: v3,2 = C−1
3|1:2(v3,1,2|v1,2) [needs b21]

a33: u3 = v3 = C−1
3|2(v3,2|v2)

5 a51: v5,4,123 = w5

a52: v5,3,12 = v5,123 = C−1
5|4:123(v5,4,123|v4,123)

a53: v5,2,1 = v5,12 = C−1
5|3:12(v5,3,12|v3,12)

a54: v5,1 = C−1
5|2:1(v5,2,1|v2,1) [differs from B1]

a55: u5 = v5 = C−1
5|1(v5,1|v1) [differs from B1]

Table 7.7. Step i = 4 of B3-vine, fifth step same as
B1-vine.

B3: 12; 13; 14; 25; 23|1; 34|1; 15|2;
24|13; 35|12; 45|123

B0, b31: v2,13 = C2|3:1(v2,1|v3,1)

a41: v4,2,13 = w4 = v4,123

a42: v4,3,1 = v4,13 = C−1
4|2:13(v4,2,13|v2,13) [needs b31]

a43: v4,1 = C−1
4|3:1(v4,3,1|v3,1)

a44: u4 = v4 = C−1
4|1(v4,1|v1)

the order 52134, the algorithm is the same as for the B1-vine and B3-vine
except step 4.

All of the above algorithms were implemented in the C programming
language for use in the comparisons in Section 7.6.

We conclude this section with Table 7.9, which shows the similarity
between the different vines in terms of the maximum lower-dimensional
margin that can be matched. This is partly deduced from comparing the
simulation algorithms above. For example, from the list of the sequences of
conditional distributions, it is clear that the C-vine and B1-vine have the
same 1234 four-dimensional margins. The overlapping four variables of the
B2-vine with the C-vine and D-vine (form D1) are mentioned above.

Table 7.9 assumes {i1, i2} | {j1, . . . , j�−1} means the same thing if it
appears in different vines; the notation for the vines are repeated in the
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Table 7.8. Third backward and fourth forward step of D-vine in two different
orders.

Step D1 form: order 51234

3 b33: u3 = v3

b32: v2,3 = C2|3(v2|v3) [or C2|3(a22|a33)];

b31: v1,23 = C1|3:2(v1,2|v3,2) [or C1|3:2(b21|a32)]

4 a41: v4,1,23 = w4 = v4,123 [same as B2-vine]

a42: v4,2,3 = v4,23 = C−1
4|1:23(v4,1,23|v1,23) [needs b31] [not used in step5]

a43: v4,3 = C−1
4|2:3(v4,2,3|v2,3) [needs b32] [not used in step5]

a44: u4 = v4 = C−1
4|3(v4,3|v3) [not used in step5]

Step D2 form: order 52134

3 b33: u3 = v3

b32: v1,3 = C1|3(v1|v3) [or C1|3(a11|a33)]

b31: v2,13 = C2|3:1(v2,1|v3,1) [or C2|3(a21|a32)]

4 a41: v4,2,13 = w4 = v4,123

a42: v4,1,3 = v4,13 = C−1
4|2:13(v4,2,13|v2,13) [needs b31]

a43: v4,3 = C−1
4|1:3(v4,1,3|v1,3) [needs b32]

a44: u4 = v4 = C−1
4|3(v4,3|v3)

Table 7.9. Similarity table of the five-dimensional vines.

— C B0 B1 B2 B3 D

C — 1234 1234 1245 123 123/D2

B0 1234 — 1234 124 123 123/D2

B1 1234 1234 — 124 1235 1235/D2

B2 1245 124 124 — 123/B2′ 1235/D1

B3 123 123 1235 123 — 1235/D2

D 123 123 1235 1235 1235 —

C: 12; 13; 14; 15; 23|1; 24|1; 25|1; 34|12; 35|12; 45|123
B0: 12; 13; 14; 15; 23|1; 24|1; 35|1; 34|12; 25|13; 45|123
B1: 12; 13; 14; 25; 23|1; 24|1; 15|2; 34|12; 35|12; 45|123
B2: 12; 15; 14; 23; 25|1; 24|1; 13|2; 35|12; 34|12; 45|123

B2′ means with 3,5 interchanged above.

B3: 12; 13; 14; 25; 23|1; 34|1; 15|2; 24|13; 35|12; 45|123
D1: 51; 12; 23; 34; 25|1; 13|2; 24|3; 35|12; 14|23; 45|123
D2: 52; 21; 13; 34; 15|2; 23|1; 14|3; 35|12; 24|13; 45|123
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table. The last column shows that the most overlap with the D-vine depends
on the permutation of the D1 or D2 forms. For the B2-vine and B3-vine,
there is more similarity when two variables in B2 are permuted.

7.4 Comparing Dependence of Vine Copulae

The comparisons made in this section and the next two sections are moti-
vated by some numerical results of the range of tail dependence parameters
for four-dimensional vines in Joe et al.11 We want to understand conditions
where one vine can have more marginal bivariate dependence than another
when the set of bivariate copulae used to specify the vine copulae are the
same.

• D-vine: 12; 23; 34; 13|2; 24|3; 14|23: permute π(1234) = 3214 to get 32;
21; 14; 31|2; 24|1; 34|21.
• C-vine: 12; 13; 14; 23|1; 24|1; 34|12 in standard form.

The third level is 34|12 in both cases, and

• for the C-vine, the (3,4) bivariate margin can be the Fréchet upper bound
(co-monotonic). It is co-monotonic if C23 = C24, C13|2 = C14|2 (in which
case C213 = C214) and C34|12 is co-monotonic.

• for the (permuted) D-vine, the (3,4) bivariate margin cannot be co-
monotonic even if C34|12 is co-monotonic.

For the C-vine and permuted D-vine, the stronger marginal dependence
of the (3, 4) bivariate margin occurs in some conditions but not always.

To understand the conditions we look at Gaussian vines where all of
the bivariate copulae are Gaussian. In this case, the distribution is specified
from a sequence of correlations and partial correlations.

Consider the Gaussian C-vine and D-vine with the parameters in
Table 7.10.

From Ref. 12, the determinants of the two resulting correlation matrices
are both (1−ρ2

a)(1−ρ2
b )(1−ρ2

c)(1−α2
d)(1−α2

e)(1−α2
f ). So in one sense, the

Gaussian C-vine and D-vine have the same amount of overall dependence.
However, their correlation ρ34 will be different. From the above specifications
it can be shown that ρ24 is the same for the two distributions and that ρ23

for the C-vine is the same as ρ13 for the D-vine. By applying the rules for
partial correlations, the following are obtained.
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Table 7.10. Parameters for
4-dimensional Gaussian vines.

C-vine D-vine correlation

12 12 ρa

14 14 ρb

13 23 ρc

24|1 24|1 αd

23|1 13|2 αe

34|12 34|12 αf

• Both : ρ24 = αd

√
(1− ρ2

a)(1 − ρ2
b) + ρaρb.

• C − vine : ρ34;1 = αf

√
(1− α2

e)(1 − α2
d) + αeαd

• C − vine : ρ34 = ρ34;1

√
(1− ρ2

c)(1− ρ2
b) + ρcρb

• D − vine : ρ13 = αe
√

(1− ρ2
a)(1− ρ2

c) + ρaρc

• D − vine : ρ23;1 = (ρc − ρaρ13)/
√

(1− ρ2
a)(1− ρ2

13)

• D − vine : ρ34;1 = αf

√
(1− ρ2

23;1)(1 − α2
d) + ρ23;1αd

• D − vine : ρ34 = ρ34;1

√
(1− ρ2

13)(1 − ρ2
b) + ρ13ρb

There are some special cases where ρ34 is larger for the C-vine:

(i) Markov model with partial correlations of zero for levels 2 and above,
and positive correlation for level 1: αd = αe = αf = 0. In this case, ρ34

simplifies to ρbρc for the C-vine and ρaρbρc for the D-vine.
(ii) Constant correlation or partial correlation for each level, so that there

are three parameters: α1 = ρa = ρb = ρc, α2 = αd = αe and α3 = αf .

Case (i) above extends to higher dimensions. For the Gaussian D-vine
in dimension n, with correlations ρ1, . . . , ρn−1 at level 1 and zero partial
correlations at other levels, the marginal correlation for the highest level
tree is ρ1n =

∏n−1
j=1 ρj. For the Gaussian C-vine in dimension n, with corre-

lations ρ1, . . . , ρn−1 at level 1 and zero partial correlations at other levels,
the marginal correlation for the highest level tree is ρn−1,n = ρn−2ρn−1, so
that this is larger if all of the level 1 correlations are positive.

The generalization of case (ii) is studied in the next section. It has been
proved for dimensions n = 3, 4, 5 and it has been shown to hold in numerical
simulations for n > 5.
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7.5 Gaussian Vines and Generalized Toeplitz Matrices

Gaussian vines are important special cases that motivated the development
of vine copulae. Multivariate Gaussian distributions have the property that
conditional copulae do not depend on the values of the conditioning vari-
ables; the conditional means change but not the conditional covariance
matrices. Multivariate t-distributions also have the property that condi-
tional copulae do not depend on the values of the conditioning variables, but
the degree of freedom of the conditional copula increases with the amount of
conditioning, and the conditional variances and means depend on the values
of the conditioning variables.

We compare n-dimensional Gaussian vines, when the partial correlation
is a constant α� for level � of the vine, for � = 1, . . . , n− 1. From Kurowicka
and Cooke12 or Theorem 4.5 in Kurowicka and Cooke,13 these vines all have
the same amount of dependence based on the determinant of the resulting
correlation matrix:

det(R) =
n−1∏

�=1

αn−�� .

Consider correlation matrices based on partial correlation α� at level
�: not all equivalence classes of vines lead to generalized Toeplitz matrices
(with n− 1 distinct correlations). The corresponding correlations ρ� can be
obtained from the mappings of correlations to partial correlations. For any
vine, ρ1 = α1 and ρ2 = ρ2

1 +α2(1−ρ2
1). Let ρ3 and ρ′3 be level 3 correlations

for the C-vine and the D-vine respectively.
The equations for n = 4 are given below. For the C-vine,

ρ34;1 = α2
2 + α3(1− α2

2),

ρ3 = ρ34 = α2
1 + ρ34;1(1− α2

1) = α2
1 + [α2

2 + α3(1− α2
2)](1− α2

1).

For the D-vine,

α3 =
ρ′3 −

ρ1(2ρ2−ρ22−ρ21)

1−ρ21
1− ρ21+ρ22−2ρ21ρ2

1−ρ21

=
ρ′3(1− ρ2

1)− ρ1(2ρ2 − ρ2
2 − ρ2

1)
1− 2ρ2

1 − ρ2
2 + 2ρ2

1ρ2

so that

ρ′3 =
α3(1− 2ρ2

1 − ρ2
2 + 2ρ2

1ρ2) + ρ1(2ρ2 − ρ2
2 − ρ2

1)
1− ρ2

1

.

With algebraic substitutions (using symbolic manipulation software),

ρ3 = [α2
1 + α2

2 − α2
1α

2
2](1 − α3) + α3,

ρ′3 = α3
1(1− α2)2 + α3(1− α2

2)(1− α2
1) + α1(2α2 − α2

2).
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The difference is

ρ3 − ρ′3 = (1− α1)(α1α2 + α2 − α1)2 ≥ 0.

Hence the C-vine has stronger marginal bivariate dependence for the level
3 correlation.

For n = 5 and the six vines mentioned in the preceding sections, the
level 3 correlation is one of ρ3, ρ

′
3, but both can appear in some cases.

For the fourth correlations, we use this notation: ρ4 for C, ρ′4 for D,
ρ4B0, ρ4B1, ρ4B2, ρ4B3 for B0, B1, B2, B3 respectively. The five-dimensional
correlation matrices for the C, B0, B1, B2, B3 and D1 (the 51234 order of
the D-vine) vines are given next.



1 ρ1 ρ1 ρ1 ρ1

ρ1 1 ρ2 ρ2 ρ2

ρ1 ρ2 1 ρ3 ρ3

ρ1 ρ2 ρ3 1 ρ4

ρ1 ρ2 ρ3 ρ4 1







1 ρ1 ρ1 ρ1 ρ1

ρ1 1 ρ2 ρ2 ρ3

ρ1 ρ2 1 ρ3 ρ2

ρ1 ρ2 ρ3 1 ρ4B0

ρ1 ρ3 ρ2 ρ4B0 1







1 ρ1 ρ1 ρ1 ρ2

ρ1 1 ρ2 ρ2 ρ1

ρ1 ρ2 1 ρ3 ρ′3
ρ1 ρ2 ρ3 1 ρ4B1

ρ2 ρ1 ρ′3 ρ4B1 1







1 ρ1 ρ2 ρ1 ρ1

ρ1 1 ρ1 ρ2 ρ2

ρ2 ρ1 1 ρ′3 ρ′3
ρ1 ρ2 ρ′3 1 ρ4

ρ1 ρ2 ρ′3 ρ4 1







1 ρ1 ρ1 ρ1 ρ2

ρ1 1 ρ2 ρ3 ρ1

ρ1 ρ2 1 ρ2 ρ′3
ρ1 ρ3 ρ2 1 ρ4B3

ρ2 ρ1 ρ′3 ρ4B3 1







1 ρ1 ρ2 ρ′3 ρ1

ρ1 1 ρ1 ρ2 ρ2

ρ2 ρ1 1 ρ1 ρ′3
ρ′3 ρ2 ρ1 1 ρ′4
ρ1 ρ2 ρ′3 ρ′4 1




To determine if a third-order correlation is ρ3 or ρ′3, the appropriate four-
dimension sub-vine must be looked at to determine if it is a C-vine or D-vine.
For example, for the B1-vine, (a) by deleting the fifth row and column of the
above correlation matrix (equivalently deleting all conditional distributions
with 5), a C-vine on variables 1,2,3,4 is obtained; (b) by deleting the fourth
row and column of the above correlation matrix (equivalently deleting all
conditional distributions with 4), a D-vine on variables 1,2,3,5 with order
3125 is obtained. For the B1-vine and B3-vine, note that a constant α3 does
not imply that there is a constant third-order correlation.

The equation for the fourth-order correlation is obtained as follows. Let
Σ =

(
Σ11 Σ12
Σ21 Σ22

)
be one of the above matrices, where Σ11 is 3×3 and Σ22 is

2× 2. From the form of the conditional covariance matrix of a multivariate
normal distribution, let y11, y12 be defined from

Σ22 −Σ21Σ−1
11 Σ21 =

(
1 ρ

ρ 1

)
−
(
y11 y12

y12 y11

)
.



October 11, 2010 12:18 9.75in x 6.5in b979-ch07

158 H. Joe

Then

ρ = y12 + α4(1− y11), ρ one of ρ4, ρ4B0ρ4B1, ρ4B2, ρ4B3, ρ
′
4.

With the help of symbolic manipulation software, the following inequal-
ities are obtained.

• ρ4 = [α2
1 + α2

2 + α2
3 − α2

1α
2
2 − α2

1α
2
3 − α2

2α
2
3 + α2

1α
2
2α

2
3](1− α4) + α4,

• ρ4B2 = ρ4,
• ρ4B0 = ρ4 − (1− α2

1)(1− α2)(α2α3 + α3 − α2)2 ≤ ρ4,

• ρ4B1 = ρ4 − (1− α1)(α1α2 + α2 − α1)2 ≤ ρ4,

• ρ′4 = ρ4 − (1− α2
1)(1 − α2)(α2α3 + α3 − α1 + α1α2)2 ≤ ρ4,

• ρ4B3 = ρ4 − (1− α1)ζ ≤ ρ4,

ζ = h0 + h1α2 + h2α
2
2 + h3α

3
2,

h3 = −h1 = (1− α3)(1 + α1)(α1 + α3),

h0 = α2
1 + α2

3 − α1α3 + α1α
2
3 − α2

1α3,

h2 = (1− α3)(1 + α1)(1 + α3 − α1).

Numerically, it has been shown that ζ ≥ 0.

Hence, for these vines on five variables with constant partial correlation
at each level �, (a) the C-vine has stronger marginal bivariate dependence
for level 3 and 4 correlations; (b) the B2-vine has the same level 3 correla-
tion as the four-dimensional D-vine and the same level 4 correlation as the
C-vine (this result generalizes to non-Gaussian vine copulae). In standard
form, the D-vine leads to Toeplitz matrices (with correlations ρij = ρ|i−j|
depending only on distance from main diagonal). For the Gaussian C-vine,
B0-vine and B2-vine, there are generalized Toeplitz matrices with four dis-
tinct correlation values, but the Gaussian B1-vine and B3-vine do not lead
to generalized Toeplitz matrices.

For vines with n ≥ 6 variables, for � ≥ 5, there is no general simplifica-
tion of the expressions for ρ� and ρ′l in the C-vine and D-vine respectively.
However, they can be easily computed with a vector of α = (α1, . . . , αn−1) ∈
(−1, 1)n−1 of partial correlations. Here, αl is the partial correlation for all
conditional (bivariate Gaussian) distributions at level �. In this case, there
are simple algorithms for computing (ρ1, . . . , ρn−1), where ρ� is the (uncon-
ditional) correlation for level �; see Table 7.11. For the D-vine, the algorithm
is based on Durbin’s6 method. From running the algorithms for many (over
106) fixed and random inputs of α for dimensions up to 10, the inequalities
ρ� ≥ ρ′� held for � ≥ 1.
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Table 7.11. Algorithms for generalized Toeplitz
matrices for C-vine and D-vine.

C-vine: generalized Toeplitz

Input α = (α1, . . . , αn−1) ∈ (−1, 1)n−1 with n ≥ 3.

ρ1 ← α1; ρ2 ← α2
1 + α2(1− α2

1);

for i = 3, . . . , n− 1:

T ← α2
i−1 + αi(1− α2

i−1)

for j = i− 2, . . . , 1: T ← α2
j + T (1− α2

j );

ρi ← T .

D-vine: Toeplitz

Input α = (α1, . . . , αn−1) ∈ (−1, 1)n−1 with n ≥ 3.

ρ′1 ← α1; φ1 ← α1;

for i = 2, . . . , n− 1:

Ti ← αi; for j = 1, . . . , i− 1: Tj ← φj − αiφi−j;

for j = 1, . . . , i: φj ← Tj ;

ρ′i ← αi; for j = 1, . . . , i− 1: ρ′i ← ρ′i + φjρ
′
i−j ;

7.6 More Comparisons of Dependence for Different Vines

We consider the five-dimensional vine copulae where there is a fixed bivariate
copula C(�| at level �, � = 1, . . . , n− 1.

We compare bivariate normal (BVN), Plackett,18 Frank,7 MTCJ
(Mardia–Takahasi–Cook–Johnson5, 15, 20), bivariate t2 (bivariate t with ν =
2 degrees of freedom) as linking copulae. The bivariate MTCJ copula is
the reflection asymmetric representative; it has lower tail dependence. The
other families of bivariate copulae are all reflection symmetric.

The parametrization and Kendall tau values for the bivariate copulae are
as follows:

(1) BVN: τ = (2/π) arcsin(ρ).
(2) Plackett: C(u, v; δ) = 1

2η
−1{1+ η(u+ v)− [(1+ η(u+ v))2− 4δηuv]1/2},

0 < δ < ∞, where η = δ − 1. The parameter δ with τ being an integer
multiple of 0.1 is given in Table 5.1 of Joe.10

(3) Frank: C(u, v; δ) = −δ−1 log([η − (1 − e−δu)(1 − e−δv)]/η), 0 ≤ δ < ∞.
The parameter δ with τ being an integer multiple of 0.1 is given in
Table 5.1 of Joe.10

(4) Bivariate version of MTCJ copula: C(u, v; δ) = (u−δ + v−δ − 1)−1/δ ,
where 0 < δ <∞. Kendall’s tau satisfies τ = δ/(δ + 2); this is a special
case of a result on Archimedean copulae, given in Genest and MacKay.8

(5) Bivariate t: τ = (2/π) arcsin(ρ); see Proposition 5.37 in McNeil et al.16
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Dependence measures that we compare for different bivariate margins
are: Kendall’s tau, Spearman’s rho or rank correlation, Blomqvist’s4, 19 beta
and a non-limiting tail dependence parameter. Since the tail dependence
parameter can not be (easily) computed for all bivariate margins, we con-
sider a non-limiting version Cjk(u, u)/u and Cjk(1 − u, 1 − u)/(1 − u) (for
small u near 0 such as 0.1). We use the notation λ

(u)
jk,L, λ

(u)
jk,U for the lower

and upper tails respectively. If u = 1
2 , let ηjk = Pr(Uj ≤ 1

2 , Uk ≤
1
2) =

Cjk(1
2 ,

1
2 ) and let βjk = 4ηjk − 1. This is same as Blomqvist’s beta because

C(1
2 ,

1
2) = C(1

2 ,
1
2) for bivariate copulae C.

In a simulation study, using the algorithms in Section 7.3, we used four
different parameters τ1, τ2, τ3, τ4 for the five-dimensional vines. This means
level 1 linking copulae have a tau value of τ1 whatever copula family is used,
level � conditional linking copulae have a tau value of τ� for � = 2, 3, 4.

We tried several combinations of (τ1, τ2, τ3, τ4). Tables 7.12 and 7.13 sum-
marize some representative results, with τ1 = τ2 = τ3 = τ4 = 0.5 and
τ1 = 0.1, τ2 = 0.3, τ3 = 0.5, τ4 = 0.7 respectively. In Tables 7.12 and 7.13,
the column with a heading of 1 has the dependence measure for level 1, so
it is the transformation of τ1 to another dependence measure for the five
bivariate copula families. The column with a heading of 2 has the marginal
dependence measure for level 2; this is the same for all five-dimensional
vines. The column with a heading of 3 has the marginal dependence mea-
sure for level 3; there are two possible values (B0 has the same value as the
C-vine, B2 has the same value as the D-vine, and the values in columns 3C,
3D can occur for different pairs at level 3 for B1 and B3). The column with
a heading of 4 has the marginal dependence measure for level 4; these are
different for the different vines, except the dependence value for the B2-vine
which is the same as for the C-vine (hence there is no column 4B2). These
results are like those in the preceding section on Gaussian vines.

Smaller differences in dependence measures occur at the third and fourth
levels if τ1 > τ2 ≥ τ3 ≥ τ4, e.g., 0.7, 0.5, 0.3, 0.1 — this case is not included
in the tables. For the bivariate normal copulae, the results are based on
inverting τs to partial correlation and then applying the inversion to corre-
lations ρ (Section 7.5), from which the dependence measures are computed
as a function of ρ. For the Plackett, Frank, MTCJ and bivariate t linking
copulae, the results are based on 108 replications (using the C programming
language).

Tables 7.12 and 7.13 suggest an ordering of non-limiting tail depen-
dence for the three reflection symmetric copula families with no limiting
tail dependence: the Plackett copula has less non-limiting tail dependence
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Table 7.12. Bivariate marginal dependence measures for τ1 = τ2 = τ3 = τ4 = 0.5;
108 replications.

Copula 1 2 3C 3D 4C 4B0 4B1 4B3 4D

τ

BVN 0.500 0.651 0.755 0.651 0.827 0.755 0.699 0.609 0.609
Plackett 0.500 0.628 0.720 0.630 0.788 0.722 0.677 0.630 0.604
Frank 0.500 0.630 0.725 0.625 0.793 0.720 0.671 0.596 0.598
MTCJ 0.500 0.653 0.749 0.634 0.813 0.741 0.673 0.587 0.594
BVT 0.500 0.656 0.764 0.656 0.838 0.764 0.704 0.614 0.613

ρS

BVN 0.690 0.842 0.920 0.842 0.960 0.920 0.881 0.804 0.804
Plackett 0.680 0.809 0.884 0.817 0.929 0.889 0.861 0.796 0.794
Frank 0.696 0.823 0.897 0.822 0.939 0.896 0.863 0.798 0.780
MTCJ 0.683 0.832 0.903 0.815 0.940 0.899 0.848 0.771 0.778
BVT 0.659 0.815 0.900 0.815 0.946 0.899 0.857 0.777 0.773

β

BVN 0.500 0.651 0.755 0.651 0.827 0.755 0.699 0.609 0.609
Plackett 0.543 0.665 0.753 0.659 0.816 0.748 0.699 0.630 0.635
Frank 0.555 0.663 0.754 0.662 0.818 0.745 0.701 0.636 0.636
MTCJ 0.512 0.683 0.785 0.653 0.848 0.770 0.686 0.595 0.612
BVT 0.500 0.658 0.767 0.660 0.841 0.767 0.709 0.619 0.618

λ
(0.1)
L

BVN 0.474 0.624 0.733 0.624 0.811 0.733 0.674 0.581 0.581
Plackett 0.433 0.578 0.681 0.569 0.759 0.677 0.616 0.534 0.539
Frank 0.370 0.548 0.662 0.521 0.746 0.653 0.569 0.474 0.489
MTCJ 0.708 0.824 0.883 0.786 0.919 0.872 0.801 0.752 0.775
BVT 0.564 0.705 0.800 0.700 0.864 0.798 0.741 0.663 0.666

dependence: 4C = 4B2 � 4B0 � 4B1 � {4B3, 4D}
λ: MTCJ � BVT � BVN � Plackett � Frank

than bivariate normal copula and more non-limiting tail dependence than
the Frank copula (see bottom of the tables). The tail behavior follows
from the more general bivariate tail analysis in Ledford and Tawn14 and
Heffernan;9 for the Plackett and Frank copulae, C(u, u; δ) = O(u2) as
u → 0 (for any dependence parameter) and for the bivariate normal cop-
ula, C(u, u; ρ) = O(u2/(1+ρ)(− log u)−ρ/(1+ρ)) as u → 0 for −1 < ρ < 1.
Also the relative strength of marginal bivariate dependence of the different
five-dimensional vines depends on the dependence in the conditional linking
copulae.
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Table 7.13. Bivariate marginal dependence measures for τ1 = 0.1, τ2 = 0.3,
τ3 = 0.5, τ4 = 0.7; 108 replications.

Copula 1 2 3C 3D 4C 4B0 4B1 4B3 4D

τ

BVN 0.100 0.310 0.563 0.458 0.814 0.572 0.639 0.374 0.322
Plackett 0.100 0.309 0.552 0.448 0.791 0.565 0.620 0.377 0.326
Frank 0.100 0.309 0.549 0.448 0.782 0.555 0.617 0.368 0.320
MTCJ 0.100 0.311 0.561 0.435 0.795 0.540 0.596 0.334 0.293
BVT 0.100 0.310 0.566 0.457 0.819 0.579 0.639 0.381 0.324

ρS

BVN 0.150 0.450 0.758 0.641 0.954 0.767 0.831 0.537 0.467
Plackett 0.150 0.446 0.736 0.625 0.929 0.763 0.812 0.543 0.476
Frank 0.150 0.450 0.744 0.633 0.932 0.757 0.814 0.535 0.470
MTCJ 0.150 0.448 0.745 0.607 0.929 0.721 0.783 0.476 0.421
BVT 0.140 0.418 0.714 0.598 0.932 0.731 0.797 0.511 0.438

β

BVN 0.100 0.310 0.563 0.458 0.814 0.572 0.639 0.374 0.322
Plackett 0.112 0.342 0.592 0.467 0.821 0.573 0.619 0.368 0.317
Frank 0.113 0.344 0.591 0.470 0.812 0.558 0.615 0.355 0.306
MTCJ 0.097 0.311 0.585 0.469 0.832 0.552 0.636 0.341 0.294
BVT 0.100 0.310 0.567 0.460 0.821 0.583 0.643 0.386 0.328

λ
(0.1)
L

BVN 0.154 0.304 0.535 0.434 0.797 0.544 0.611 0.359 0.315
Plackett 0.142 0.270 0.492 0.405 0.758 0.508 0.595 0.355 0.311
Frank 0.140 0.249 0.449 0.373 0.723 0.487 0.582 0.338 0.293
MTCJ 0.219 0.494 0.749 0.504 0.908 0.618 0.553 0.331 0.362
BVT 0.276 0.445 0.653 0.551 0.856 0.653 0.688 0.480 0.446

dependence: 4C = 4B2 � {4B1, 4B0} � {4B3, 4D}
λ: MTCJ,BVT � BVN � Plackett � Frank

7.7 Discussion and Further Research

We started an investigation of the intermediate vines between the C-vine and
D-vine in dimensions n ≥ 5. Because there are only four such vines (called
B0, B1, B2, B3) in dimension n = 5, we study them in detail, including sim-
ulation algorithms, Gaussian vines, generalized Toeplitz matrices and non-
Gaussian vines with a common copula for each level of the vine. We obtained
some general results from comparing the marginal dependence of C-vines
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and D-vines when the same set of conditional copulae is used for the two
vines. Some of these results extend to the intermediate vines. Under some
conditions, the bivariate marginal dependence from the C-vine is the highest
of all vines. Some results in Sections 7.5 and 7.6 show that the B2-vine is
halfway between the C-vine and D-vine in dimension 5. Understanding this
type of comparison should be helpful in the use of vine copulae for modeling
multivariate data.

To decide on copula models for multivariate data, a first step in ini-
tial data analysis includes measuring bivariate association and assessing the
strength of bivariate tail dependence. However, more practical experience is
needed for the next step if vine copulae are to be used, that is, the choice
of the appropriate vines and the permutation of the variables to indices. It
would be useful if there were some heuristics so that modeling with vine
copulae can proceed without trying all vines and all permutations. Because
of the dependence properties of vine copulae in achieving a wide range of
dependence, maybe several different vines can provide equally good fits for
multivariate data.

Another further research direction is to figure out in an automated way
which backward steps (in Table 7.2) are needed or not needed in the imple-
mentation of the algorithm for simulating from an arbitrary regular vine.
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CHAPTER 8

Tail Dependence in Vine Copulae

Harry Joe
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Definitions and properties of conditional and multivariate tail dependence func-
tions are given and applied to vine copulae. We show that vine copulae can have
flexible dependence with asymmetry in the joint upper and lower tails, by using
appropriate choices of bivariate linking copulae that are reflection asymmetric
and have upper/lower tail dependence parameters λL, λU that independently
take values in (0, 1).
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8.1 Introduction

The aim of this chapter is to summarize the definitions and properties of
tail dependence functions, and to show how they are applied to vine copulae

165
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and other models that involve specified conditional distributions. We show
that vine copulae can result in models with flexible dependence including
joint upper tail and lower tail asymmetry.

In Aas et al.2 and Aas and Berg,1 it is shown that vine copulae con-
structed from bivariate t-copulae can be better fits to multivariate financial
asset return and other data. In Section 2.1.3 of Jondeau et al.,14 it is men-
tioned that extreme negative returns in financial assets are more frequent
than extreme positive returns, and that correlation or dependence between
asset returns tends to increase in high-volatility periods such as crashes.
This means that we might expect to have stronger tail dependence in the
joint lower tail than upper tail. Vine copulae are a means to empirically
assess whether this property holds. More generally, vine copulae are a way
to obtain copula models with reflection asymmetry. Although multivariate
normal and t-copulae have flexible dependence, they have the property of
reflection symmetry.

In Section 8.2, we compare the tail dependence properties of several
parametric families of multivariate copulae and point out that vine copula
families have much more flexibility for types of tail dependence. In order to
investigate tail dependence of vine copulae, we introduce multivariate and
conditional tail dependence functions in Section 8.3. The relevant defini-
tions and properties are summarized from Joe et al.13 The main theorem is
given in Section 8.4, with examples of negative tail dependence to show its
application. In Section 8.5, we prove some results on reflection symmetry of
vine copulae, and give the motivation for the reflection asymmetric bivariate
copulae in Section 8.6. Section 8.7 discusses the findings.

To avoid technicalities, limits and derivatives where written are assumed
to exist. Generally some conditions involving regular variation are needed
to guarantee the existence of the limits used in this chapter.

8.2 Tail Dependence in Different Multivariate Copula
Families

In this section, we compare parametric families of multivariate copulae for
range of flexible tail dependence and other desirable properties.

(1) Multivariate normal: general dependence but no tail dependence, no
closed-form cumulative distribution function (cdf).
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(2) Multivariate t: general dependence, no closed-form cdf; flexible tail
dependence,17 but has lower and upper tail dependence parameters
λjk,L = λjk,U for all j �= k because of reflection symmetry.

(3) Mixture of max-infinite divisible (max-id): as proposed in Joe and Hu,11

this copula family is built from a Laplace transform together with n(n−
1)/2 bivariate copulae that are each max-id; flexible dependence but
not as wide a range as multivariate normal; closed-form cdf; using the
Laplace transform family LTI (Joe,12 p. 376), one can get a multivariate
copula with flexible upper and constant lower tail dependence; to get
flexible lower tail dependence, one could average with the copula of the
reflection, that is, (C + Ĉ)/2, where Ĉ is given in (8.1) in the next
section.

(4) Vine copula: built from n(n − 1)/2 bivariate copulae; the multivari-
ate copula has closed-form density (Bedford and Cooke,3 Aas et al.2)
but not cdf; general dependence; flexible upper and lower tail depen-
dence if each copula at level 1 of the vine has arbitrarily different
upper and lower tail dependence (Joe et al.13 and Section 8.4 of this
chapter).

Having copula families with flexible tail dependence is important for
making inferences on joint tail probabilities (which might be represent-
ing joint risks). The multivariate normal distribution/copula does not have
tail dependence, so using it for modeling will lead to underestimates of
joint risks. The multivariate tν-copula has tail dependence and reflection
symmetry — hence it is not a good choice if one wants a model where the
upper and lower tails behave differently for each bivariate margin. Vine cop-
ulae have more flexibility, and we think of them mainly as approximations
to arbitrary copulae. This is possible because they can achieve a wide range
of dependence of different types. Additional details of vines as models based
on a set of conditional distributions are given in Bedford and Cooke3, 4 and
Kurowicka and Cooke.15

8.3 Tail Dependence Parameters and Functions

In this section, we start with definitions of bivariate tail dependence param-
eters and then go to tail dependence functions. Tail dependence func-
tions are useful as a way to get expressions for bivariate tail dependence
parameters for vine copulae or other copula families built from conditional
distributions.
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8.3.1 Bivariate tail dependence

If a bivariate copula C is such that

lim
u→0

C(u, u)/u = λL

exists, C has lower tail dependence if λL ∈ (0, 1] and no lower tail dependence
if λL = 0. Similarly, if

lim
u→1

C(u, u)/(1 − u) = λU

exists, then C has upper tail dependence if λU ∈ (0, 1] and no upper tail
dependence if λU = 0.

For two continuous random variables X1,X2 with respective cdfs F1, F2,

λL = lim
u→0

Pr(X2 ≤ F−1
2 (u) | X1 ≤ F−1

1 (u))

= lim
u→0

Pr(X1 ≤ F−1
1 (u) | X2 ≤ F−1

2 (u))

and

λU = lim
u→1

Pr(X2 > F−1
2 (u)|X1 > F−1

1 (u))

= lim
u→1

Pr(X1 > F−1
1 (u)|X2 > F−1

2 (u)).

With n > 2 variables and
(
n
2

)
lower and upper bivariate tail dependence

values, extra subscripts on λL, λU will be used, for example, λjk,L, λjk,U .
In Aas et al.,2 some plots of bond returns versus stock market index

returns show negative tail dependence (extremes in opposite directions).
This is the motivation for the following additional definitions.

We will use the notation λNW , λNE = λU , λSE , λSW = λL so that λNW
and λSE can be used for bivariate negative tail dependence. For a bivariate
copula C with (U1, U2) ∼ C, if

lim
u→0

Pr(1− U2 ≤ u | U1 ≤ u) = lim
u→0

[u− C(u, 1− u)]/u = λNW

exists and is positive, then there is negative lower-upper tail dependence;
and if

lim
u→0

Pr(U2 ≤ u | 1− U1 ≤ u) = lim
u→0

[u− C(1− u, u)]/u = λSE

exists and is positive, then there is negative upper-lower tail dependence.
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The bivariate tν-copula, with parameters ν > 0 and −1 < ρ < 1, is
interesting in that all four tail dependence coefficients are non-zero:

λNE = λSW = 2Tν+1

(
−

√
(ν + 1)(1 − ρ)

(1 + ρ)

)
,

λNW = λSE = 2Tν+1

(
−

√
(ν + 1)(1 + ρ)

(1− ρ)

)
,

where Tη denotes the t-cdf with η degrees of freedom. The usual tail depen-
dence parameter for the t-copula was derived in Embrechts et al.,8 and the
negative tail dependence follows from the following property of the bivariate
tν-distribution: (X1,X2) bivariate tν with correlation parameter ρ implies
that (X1,−X2) bivariate tν with correlation parameter −ρ.

In order to convert results on positive upper tail dependence to positive
lower tail dependence or negative tail dependence, we give some results on
the copulae of a vine after reflections of one or more variables on the U(0, 1)
random variable space. Some notation is needed to represent these results.

We indicate what happens to a vine copula when some uniform random
variables are reflected: variable j is reflected if Uj → 1− Uj or Xj → X∗

j =
gj(Xj)) where Xj ∼ Fj with Fj continuous and gj is a continuous strictly
decreasing real-valued function. In this case, let F ∗

j be the distribution ofX∗
j .

For (U1, . . . , Un) with copula C, we use the notation Ĉ for the copula of
(1− U1, . . . , 1− Un). For n = 2,

Ĉ(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2),

and for n > 2,

Ĉ(u1, . . . , un) = 1−
n∑

j=1

(1− uj)

+
∑

S:S⊂{1,...,n},|S|≥2

(−1)|S|CS(1− uj : j ∈ S). (8.1)

For n = 2, let Ć be the copula of (1 − U1, U2) and C̀ be the copula of
(U1, 1− U2). The copulae are

Ć(u1, u2) = u2 − C(1− u1, u2), C̀(u1, u2) = u1 − C(u1, 1− u2) (8.2)

If bivariate negative tail dependence exist, a parametric family

u1 − C(u1, 1− u2;θ) or u2 − C(1− u1, u2;θ)

with negative dependence can be considered by converting a family C(·;θ)
with positive dependence.
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Example 8.1. We next show what happens to the vine representation when
some of the variables are reflected. Consider a C-vine on three variables
summarized through the distributions {F1, F2, F3, C12, C13, C23|1}.

(a) For the mapping (U1, U2, U3) → (1 − U1, U2, U3) with X1 → X∗
1 ∼ F ∗

1 ,
the C-vine becomes {F ∗

1 , F2, F3, Ć12, Ć13, C23|1}. If (U1, U2) and (U1, U3)
have lower-upper tail dependence, and (U2, U3) has upper tail depen-
dence, then the new vine has bivariate upper tail dependence for all
pairs.

(b) For the mapping (U1, U2, U3) → (U1, 1 − U2, U3) with X2 → X∗
2 ∼ F ∗

2 ,
the C-vine becomes {F1, F

∗
2 , F3, C̀12, C13, Ć23|1}. If (U1, U2) and (U3, U2)

have upper-lower tail dependence, and (U1, U3) has upper tail depen-
dence, then the new vine has bivariate upper tail dependence for all
pairs.

(c) For the mapping (U1, U2, U3)→ (1−U1, 1−U2, 1−U3) with Xj → X∗
j ∼

F ∗
j , the C-vine becomes {F ∗

1 , F
∗
2 , F

∗
3 , Ĉ12, Ĉ13, Ĉ23|1}. If the original vine

has bivariate upper tail dependence for all pairs, then the new vine has
bivariate lower tail dependence for all pairs.

We next introduce some conditional tail dependence functions and show
how tail dependence parameters can be obtained from them. Extensions of
these functions are given in the subsequent subsections.

Let {C1|2(·|u2)} and {C2|1(·|u1)} be the set of conditional distributions of
the differentiable bivariate copula C. Let (j1, j2) be equal to (1, 2) or (2, 1).
If C has lower tail dependence, then (assuming the limits exist)

tj1|j2(wj1 |wj2) = lim
u→0

Cj1|j2(uwj1 |uwj2), for w1 > 0, w2 > 0

is not the zero function. If C has upper tail dependence, then

t∗j1|j2(wj1|wj2) = lim
u→0

Cj1|j2(1− uwj1|1− uwj2), for w1 > 0, w2 > 0,

is not the zero function. Note that tj1|j2(1|w) = tj1|j2(w
−1|1) is decreasing

in w and t∗j1|j2(1|w) = t∗j1|j2(w
−1|1) is decreasing in w.

For the lower tail, with a substitution of v = uw in the integral,

C(u, u)
u

= u−1

∫ u

0
C1|2(u|v) dv =

∫ 1

0
C1|2(u|uw) dw =

∫ 1

0
C2|1(u|uw) dw

→
∫ 1

0
t1|2(1|w) dw =

∫ 1

0
t2|1(1|w) dw, as u→ 0.
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Similarly for the upper tail,

C(1− u, 1− u)
u

= u−1

∫ u

0
C1|2(1− u|1− v) dv =

∫ 1

0
C1|2(1− u|1− uw) dw

→
∫ 1

0
t∗1|2(1|w) dw =

∫ 1

0
t∗2|1(1|w) dw, as u→ 0.

To conclude this subsection, we show how the above conditional tail
dependence functions can be used to obtain the bivariate tail dependence
parameters of an n-variate copula constructed from n different bivariate
copulae through conditioning. The result of this construction is called a
one-factor copula.

Consider

C(u1, . . . , un) =
∫ 1

0

n∏

j=1

Cj|0(uj |v) dv, (8.3)

where Cj0(uj , v) are bivariate copulae and Cj|0(uj |v) = ∂Cj0(uj , v)/∂v
are conditional distributions. This is the same as a C-vine on variables
X0,X1, . . . ,Xn, with edges 0j (j = 1, . . . , n) for the first tree, conditional
independence at levels 2 and higher, and X0 unobserved. A bivariate margin
has the form

Cjk(uj , uk) =
∫ 1

0
Cj|0(uj|v)Ck|0(uk|v) dv, j �= k.

Suppose Cj0 has lower tail dependence with conditional tail dependence
function tj|0, for j = 1, . . . , n. Then, as u→ 0,

Cjk(u, u) =
∫ 1

0
Cj|0(u|v)Ck|0(u|v) dv = u

∫ 1/u

0
Cj|0(u|uw0)Ck|0(u|uw0) dw0

∼ u
∫ 1/w0

0

tj|0(1|w0) tk|0(1|w0) dw0.

Hence, by Fatou’s lemma,

lim
u→0

Cjk(u, u)
u

≥
∫ ∞

0

tj|0(1|w0) tk|0(1|w0) dw0,

and an inequality for the (j, k) bivariate lower tail dependence parameter is

λjk,L ≥
∫ ∞

0
tj|0(1|w0) tk|0(1|w0) dw0. (8.4)



October 11, 2010 12:19 9.75in x 6.5in b979-ch08

172 H. Joe

Similarly if Cj0 has upper conditional tail dependence function t∗j|0 for j =

1, . . . , n, then Cjk(uj, uk) =
∫ 1
0 Cj|0(uj |v)Ck|0(uk|v) dv, and as u→ 0,

Cjk(1− u, 1− u) =
∫ 1

0
Cj|0(1− u|1− v)Ck|0(1− u|1− v) dv

= u

∫ 1/u

0
Cj|0(1− u|1− uw0)Ck|0(1− u|1− uw0) dw0

∼ u
∫ 1/u

0
t∗j|0(1|w0) t∗k|0(1|w0) dw0.

Therefore by Fatou’s lemma, an inequality for the (j, k) bivariate upper tail
dependence parameter is

λjk,U ≥
∫ ∞

0
t∗j|0(1|w0) t∗k|0(1|w0) dw0. (8.5)

These results show that there is upper (lower) tail dependence for all
bivariate pairs only if there is upper (lower) tail dependence for all Cj0
(j = 1, . . . , n).

The above example can be used to show some technicalities that come
up in studying tail dependence of vine copulae. The inequalities in (8.4)
and (8.5) are equalities in the case where the tail dependence func-
tions tj|0 and t∗j|0 are distribution functions, and strict inequalities when
tj|0(·|w0) and t∗j|0(·|w0) are subdistribution functions. Note that tj|0(w|1) =
limu→0Cj|0(uw|u) is a limit of distribution functions but can be a subdistri-
bution function (or defective distribution function) if limw→∞ tj|0(w|1) < 1.

An intuitive explanation of the inequality is as follows. Instead of condi-
tional independence in (8.3), let us use the conditional Fréchet upper bound.
If Cj0 = Ck0 and hence Cj|0 = Ck|0, then

Cjk(uj , uk) =
∫ 1

0
min{Cj|0(uj |v), Ck|0(uk|v)}dv

=
∫ 1

0
Cj|0(uj ∧ uk|v) dv = uj ∧ uk

is an unconditional Fréchet upper bound copula, and hence has a (lower)
tail dependence parameter equal to 1. Suppose Cj0 has tail dependence and
conditional lower tail dependence function tj|0. Then

Cjk(u, u)
u

= u−1

∫ 1

0

Cj|0(u|v) dv =
∫ 1/u

0

Cj|0(u|uw) dw → 1,
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and Cj|0(u|uw) ≈ tj|0(1|w). But
∫ ∞

0

tj|0(1|w) dw = t0|j(∞|1); (8.6)

this is 1 only if t0|j(·|1) is a distribution function. If Cj0 is exchangeable,
then tj|0 = t0|j. The proof of the identity in (8.6) is given in the Appendix.

8.3.2 Multivariate tail dependence functions

For tail dependence analysis of vine copulae, we introduce multivariate tail
dependence functions. This makes the derivation and analysis of tail depen-
dence easier than in Joe,10 which had some extreme-value results for D-vines.

Let

b(w) = lim
u→0

C(uw)/u, w ∈ R
n
+. (8.7)

We say that a copula C has multivariate lower tail dependence if b is non-
zero, and that it has no lower tail dependence if b ≡ 0.

Assuming some regular variation conditions on the lower tail of C, then
b has the same order of derivatives as C. Assuming that the limit operation
and differentiation are commutative, and that C is differentiable to the nth
order, then as u→ 0, → u→ 0, with ui = uwi,

∂C

∂u1
(uw) =

∂

∂w1
C(uw) · ∂w1

∂u1
∼ u∂b(w)

∂w1
· u−1 =

∂b(w)
∂w1

,

∂2C

∂u1∂u2
(uw) =

∂2

∂w1∂w2
C(uw) · ∂w1

∂u1

∂w2

∂u2
∼ u ∂

2b(w)
∂w1∂w2

· u−2

= u−1 ∂
2b(w)

∂w1∂w2
,

...
∂nC

∂u1 · · · ∂un
(uw) ∼ u−(n−1) ∂nb(w)

∂w1 · · · ∂wn
. (8.8)

Using the reflection (8.1), we can get analogous functions for the upper
tail. Let

b∗(w) = lim
u→0

Ĉ(uw)/u, w ∈ R
n
+. (8.9)

We say that C has multivariate upper tail dependence if b∗ is non-zero, and
that it has no upper tail dependence if b∗ ≡ 0. Relations like the above for
the derivatives of b∗ hold if the upper tail of C satisfies regular variation
properties.
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Example 8.2. We will illustrate the various tail dependence functions using
the trivariate MTCJ7, 16, 22 copula. The copula is C(u1, u2, u3; δ) = (u−δ1 +
u−δ2 + u−δ3 − 2)−1/δ for δ > 0. It is straightforward to show that as u → 0,
→ u→ 0, with ui = uwi,

C(uw1, uw2, uw3) ∼ ub(w1, w2, w3), b(w1, w2, w3)

= (w−δ
1 + w−δ

2 + w−δ
3 )−1/δ.

Some partial derivatives are:
∂C

∂u1
= (u−δ1 + u−δ2 + u−δ3 − 2)−1/δ−1u−δ−1

1 ,

∂2C

∂u1∂u2
= (1 + δ)(u−δ1 + u−δ2 + u−δ3 − 2)−1/δ−2u−δ−1

1 u−δ−1
2 ,

∂3C

∂u1∂u2∂u3
= (1 + δ)(1 + 2δ)(u−δ1 + u−δ2 + u−δ3 − 2)−1/δ−3

×u−δ−1
1 u−δ−1

2 u−δ−1
3 .

With w = (w1, w2, w3), it is easy to check that as u→ 0,
∂C(uw)
∂u1

∼ (w−δ
1 + w−δ

2 + w−δ
3 )−1/δ−1w−δ−1

1 =
∂b

∂w1
,

∂2C(uw)
∂u1∂u2

∼ u−1(1 + δ)(w−δ
1 + w−δ

2 + w−δ
3 )−1/δ−2(w1w2)−δ−1

∼ u−1 ∂2b

∂w1∂w2
,

∂3C(uw)
∂u1∂u2∂u3

∼ u−2(1 + δ)(1 + 2δ)(w−δ
1 + w−δ

2 + w−δ
3 )−1/δ−3(w1w2w3)−δ−1

∼ u−2 ∂3b

∂w1∂w2∂w3
.

Some properties on multivariate tail dependence function b in (8.7) are
summarized below; see Joe et al.13 for details. The same properties hold for
the function b∗ in (8.9) because b∗ is the lower tail dependence function of
the copula based on the reflection of all variables.

(i) b is increasing.
(ii) b(w) is homogeneous of order 1: b(tw) = tb(w) for t > 0,
(iii) ∂b(w)/∂wj is homogeneous of order 0.
(iv) ∂2b(w)/∂wj∂wk is homogeneous of order −1, etc.
(v) If b(1, . . . , 1) > 0, then b(w) > 0 for all w (since b is increasing and

homogeneous of order 1).
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Next, we state some results on lower-dimensional margins. Let S ⊂
{1, . . . , n}, with marginal CS . If S = ∅, then C∅ = 1 by definition. If C
has lower tail dependence, there are non-negative increasing functions bS
such that

CS(uwi, i ∈ S) ∼ u bS(wi, i ∈ S), u→ 0.

Under some conditions (see Proposition 2.4 in Joe et al.13), bS is obtained
from b by letting wk →∞ for k �∈ S. Similarly, b∗S can be defined from ĈS .
From these limits on margins, if a copula C has multivariate lower (upper)
tail dependence, then all bivariate and lower-dimensional margins have lower
(upper) tail dependence.

We next state the result which links the tail dependence functions {bS}
to extreme value limits. The lower extreme value (EV) limit of C comes
from the upper EV value limit of the copula of V = (V1, . . . , Vn), where
Vj = 1− Uj and U = (U1, . . . , Un) ∼ C. The copula of V is given in (8.1).
Hence, as u→ 0, with ui = uwi,

Ĉ(1− uw) =
∑

S⊂{1,...,n}
(−1)|S|CS(uwi, i ∈ S)

≈ 1 +
∑

S⊂{1,...,n},S �=∅
(−1)|S|u bS(wi, i ∈ S).

Let a(w) be defined as

a(w) =
∑

S⊂{1,...,n},S �=∅
(−1)|S|−1bS(wi, i ∈ S)

so that

Ĉ(1− uw) = C(uw) ≈ 1− ua(w), u→ 0.

The EV limit is limn→∞ Ĉn(u1/n
1 , . . . , u

1/n
n ). For large n, u1/n

j = exp{n−1

log uj} ≈ 1 + n−1 log uj , so that with ũj = − log uj ,

Ĉn(u1/n
1 , . . . , u1/n

n ) ≈ [1− n−1a(ũ1, . . . , ũn)]n → exp{−a(ũ1, . . . , ũn)}.

8.3.3 Conditional tail dependence functions

In this subsection, we define more general versions of conditional tail depen-
dence functions. They appear in the theorem in the next section on tail
dependence of regular vines.

Let S = {k1, k2, . . . , km} be a subset of {1, . . . , n} with cardinalitym of at
least 2, and let CS be the corresponding margin of the n-dimensional copula
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C. Let (wk1 , . . . , wkm) ∈ R
m
+ . If CS has multivariate lower tail dependence,

then

tk1|k2···km
(wk1 |wk2 , . . . , km) = lim

u→0
Ck1|k2···km

(uwk1 |uwk2 , . . . , uwkm)

is not the zero function. If CS has multivariate upper tail dependence, then

t∗k1|k2···km
(wk1 |wk2 , . . . , km)

= lim
u→0

Ck1|k2···km
(1 − uwk1 |1− uwk2 , . . . , 1− uwkm)

is not the zero function.
It is shown in Joe et al.13 that the conditional tail dependence functions

t and t∗ can be obtained from the derivatives of margins of the multivariate
tail dependence functions b and b∗. If b{k1,k2,...,km} and b{k2,...,km} are lower
tail dependence functions, then

tk1|k2···km
(wk1 |wk2 , . . . , wkm) =

∂m−1b{k1,k2,...,km}
∂wk2 · · · ∂wkm

/
∂m−1b{k2,...,km}
∂wk2 · · · ∂wkm

.

For m = 2, this simplifies to

tk1|k2(wk1 |wk2) =
∂b{k1,k2}
∂wk2

,

since b{k2}(w) = w.

Example 8.3. We continue with Example 8.2 to illustrate conditional tail
dependence functions. A direct calculation yields

C3|12(u3|u1, u2; δ) =
(u−δ1 + u−δ2 + u−δ3 − 2)−1/δ−2

(u−δ1 + u−δ2 − 1)−1/δ−2
.

Therefore,

t3|12(w3|w1, w2) = lim
u→0

C3|12(uw3|uw1, uw2; δ)

=
(w−δ

1 + w−δ
2 + w−δ

3 )−1/δ−2

(w−δ
1 + w−δ

2 )−1/δ−2
=

(
1 +

w−δ
3

w−δ
1 + w−δ

2

)−1/δ−2

.

Note that t3|12 is homogeneous of order 0.

8.4 Main Theorem on Tail Dependence for Vine Copulae

The following is a rewriting of Theorem 4.2 in Joe et al.13 into notation that
is valid for any regular vine. The statement of the theorem in this cited paper
was given for the D-vine because the proof is less notationally cumbersome



October 11, 2010 12:19 9.75in x 6.5in b979-ch08

Tail Dependence in Vine Copulae 177

for this special case. The theorem shows how the tail dependence of a regular
vine depends on its bivariate baseline linking copulae.

The notation used is: a conditional distribution of variables indexed by
i1, i2, is in level � of the vine if cardinality of conditioning set D(i1, i2, �) =
{j1, . . . , j�−1} is �− 1 for � = 1, . . . , n − 1.

Theorem 8.1. Consider a regular vine copula C constructed from the link-
ing copulae {Ci1,i2|D(i1,i2,�) : 1 ≤ i1 < i2 ≤ n, with n− � pairs at level �, � =
1, . . . , n − 1}. If all the bivariate linking copulae have continuous second-
order partial derivatives, then the lower and upper tail dependence functions
are given respectively by the recursions. For � > 1, with v = (vj1 , . . . , vj�−1

)
and D(i1, i2, �) = {j1, . . . , j�−1} as the conditioning set for {i1, i2},

b{i1,i2,j1,...,j�−1}(wi1 , wi2 , wj1 , . . . , wj�−1
)

=
∫ wj1

0
· · ·
∫ wj�−1

0
Ci1,i2|j1,...,j�−1

(ti1|j1,...,j�−1
(wi1 |v), ti2|j1,...,j�−1

(wi2 |v))

×
∂l−1b{j1,...,j�−1}(v)
∂vj1 · · · ∂vj�−1

dv.

Similar expressions can be obtained for the upper tail with the upper tail
functions b∗, t∗ replacing the lower tail b, t functions.

If the supports of the bivariate linking copulae are the entire (0, 1)2 and
the baseline copulae {Ci1,i2 : (i1, i2) in level 1 tree} are all lower (upper) tail
dependent, then C is lower (upper) tail dependent.

For n = 3 and 4, special cases of the theorem for the C-vine are given as
follows together with an outline of the derivations.

For n = 3, with copulae C12, C13, C23|1 and conditional tail dependence
functions t2|1, t3|1,

C123(uw1, uw2, uw3) =
∫ uw1

0
C23|1(C2|1(uw2|v1), C3|1(uw3|v1)) dv1

= u

∫ w1

0

C23|1(C2|1(uw1|uv), C3|1(uw3|uv)) dv

∼ u
∫ w1

0

C23|1(t2|1(w2|v), t3|1(w3|v)) dv

so that

b123(w1, w2, w3) =
∫ w1

0
C23|1(t2|1(w2|v), t3|1(w3|v)) dv.
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C123 has trivariate lower tail dependence if b12, b13, t2|1, t3|1 are posi-
tive and C23|1 is positive in (0, 1)2. With these conditions, t3|12 is also
positive.

For n = 4, with additional copulae C14, C24|1, C34|12, the above construc-
tion means that b124 is positive if b14, t4|1 are also positive and C24|1 is
positive in (0, 1)2. With these conditions, t4|12 is also positive. If C3|12 is
a conditional distribution of C123 and C4|12 is a conditional distribution of
C124, then

C1234(uw1, . . . , uw4)

=
∫ uw1

0

∫ uw2

0
C34|12(C3|12(uw3|z1, z2), C4|12(uw4|z1, z2))

× c12(z1, z2)dz1dz2

= u2

∫ w1

0

∫ w2

0
C34|12(C3|12(uw3|uv1, uv2), C4|12(uw4|uv1, uv2))

× c12(uv1, uv2)dv1dv2

∼ u1

∫ w1

0

∫ w2

0

C34|12(t3|12(w3|v1, v2), t4|12(w4|v1, v2))

× ∂
2b12(v1, v2)
∂v1∂v2

dv1dv2.

The last approximation follows from (8.8). C1234 has multivariate lower tail
dependence if b123, b124, t1|23, t4|23 are positive (and hence b12 is positive),
and C34|12 is positive in (0, 1)2.

Example 8.4. This is a continuation of Example 8.1 to show an application
of Theorem 8.1. Suppose we start with variables X1,X2,X3 having a joint
distribution summarized by the C-vine {F1, F2, F3, C12, C13, C23|1}.

(a) Let X∗
1 = g1(X1) be a continuous strictly decreasing transform.

Suppose C12 and C13 have lower-upper tail dependence, so that the
copulae Ć12 and Ć13 from (8.2) have upper tail dependence. Also sup-
pose C23|1 has support on (0, 1)2. By Theorem 8.1, (X∗

1 ,X2,X3) has
upper tail dependence, and hence marginally (X2,X3) has upper tail
dependence.

(b) Let X∗
2 = g2(X1) be a continuous strictly decreasing transform.

Suppose C12 has upper-lower tail dependence and C13 has upper
tail dependence, so that the copulae C̀12 from (8.2) has upper tail
dependence. Also suppose C23|1 and Ć23|1 have support on (0, 1)2.
By Theorem 8.1, (X1,X

∗
2 ,X3) has upper tail dependence, and hence

marginally (X2,X3) has lower-upper tail dependence.
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8.5 Reflection Asymmetry of Vine Copulae

The multivariate uniform vector U = (U1, . . . , Um) is reflection or comple-
ment symmetric if

(U1, . . . , Um) d= (1− U1, . . . , 1− Um).

IfU is reflection symmetric, then any subvector ofU is reflection symmetric.
If the copula density is c = c1···m, then reflection symmetry implies

c(u1, . . . , um) = c(1 − u1, . . . , 1− um).

We next prove some results showing that if the copulae {Ci1,i2|j1,...,j�−1
:

i1, i2|j1, . . . , j�−1 in level � tree; 1 ≤ i1 < i2 ≤ d; d − � pairs at level �} in a
vine are all reflection symmetric, then the vine copula is reflection symmet-
ric. The next section mentions choices of bivariate copulae that can be used
in vines to get asymmetry of the upper and lower tails.

Proposition 8.1. If C is an m-dimensional reflection symmetric copula
with a density, then

Cm|1...m−1(1− um | 1− u1, . . . , 1− um−1)

= 1− Cm|1...m−1(um | u1, . . . , um−1).

Similar identities hold for other conditional distributions of one variable on
the other m− 1 variables.

Proof. The result is immediate from geometry. A calculus-based
proof is:

Cm|1...m−1(1− um | 1− u1, . . . , 1− um−1)

=

∫ 1−um

0 c1...m(1− u1, . . . , 1− um−1, v) dv
c1...m−1(1− u1, . . . , 1− um−1)

=

∫ 1−um

0 c1...m(u1, . . . , um−1, 1− v) dv
c1...m−1(u1, . . . , um−1)

=

∫ 1
um

c1...m−1(u1, . . . , um−1, v
′) dv′

c1...m−1(u1, . . . , um−1)

= 1− Cm|1...m−1(um | u1, . . . , um−1). �

Proposition 8.2. Let 2 ≤ � < n be an integer for level � of the vine.
Suppose Ci1,j1,...j�−1

and Ci2,j1···j�−1
are reflection symmetric copulae with
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densities and Ci1i2|j1,...,j�−1
is a reflection symmetric bivariate copula with

density ci1i2|j1,...,j�−1
, then the function

ci1i2|j1,...,j�−1
(Ci1|j1,...j�−1

(ui1 | uj1 , . . . , uj�−1
),

Ci2|j1,...j�−1
(ui2 | uj1 , . . . , uj�−1

)) (8.10)

is reflection symmetric.

Proof. This follows from Proposition 8.1.

ci1i2|j1,...,j�−1
(Ci1|j1...j�−1

(1− ui1 | 1− uj1 , . . . , 1− uj�−1
),

Ci2|j1...j�−1
(1− ui2 | 1− uj1 , . . . , 1− uj−1))

= ci1i2|j1,...,j�−1
(1− Ci1|j1...j�−1

(ui1 | uj2 , . . . , uj�−1
),

1− Ci2|j1...j�−1
(ui2 | uj1 , . . . , uj�−1

))

= ci1i2|j1,...,j�−1
(Ci1|j1...j�−1

(ui1 | uj1 , . . . , uj�−1
),

Ci2|j1...j�−1
(ui2 | uj1 , . . . , uj−1)). �

Proposition 8.3. Let {Ci1,i2|D(i1,i2,�) : 1 ≤ i1 < i2 ≤ n} be the bivariate
linking copulae of a regular vine. If all of the bivariate copulae are reflection
symmetric with densities, then the resulting n-dimensional copula c1···d is
reflection symmetric.

Proof. Let {ci1 ,i2|D(i1,i2,�)} be the set of bivariate copula densities. With
D(i1, i2, �) written generically as {j1 . . . j�−1}, then from Bedford and Cooke3

and Aas et al.,2 the copula density c1···n is the product of densities in the
vine:

ci1i2|j1...j�−1
(Ci1|j1...j�−1

(ui1 | uj1 , . . . , uj�−1
),

Ci2|j1...j�−1
(ui2 | uj1, . . . , uj�−1

))

of the form (8.10), together with the densities at level 1. From Proposition
8.2, c1···d is reflection symmetric. �

8.6 Choice of Tail Asymmetric Bivariate Linking Copulae

If reflection symmetric bivariate copulae (e.g., tν) are used throughout the
construction of the vine, then from results in the preceding two sections,
upper and lower bivariate tail dependence occurs for the (j, k) bivariate
margin, but λjk,L = λjk,U for any j < k. To get a multivariate copula with
different upper and lower tail dependence for each bivariate margin, the
linking copulae can be chosen to be reflection asymmetric.
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To get both upper and lower tail dependence for each bivariate margin
of C(u1, . . . , un), we want the n−1 bivariate copulae at level 1 to have both
upper and lower dependence, and the remaining bivariate copulae should
have support on (0, 1)2. In the remainder of this section, we discuss possible
choices.

Consider bivariate families of the form

C(u, v) = ψθ(−logK(e−ψ
−1
θ (u), e−ψ

−1
θ (v)); δ), (8.11)

where K is a max-infinitely divisible (max-id) copula (meaning all posi-
tive powers of K are cdfs) and ψθ is a Laplace transform (LT) family.
Based on the results in Joe and Hu11 (or Examples 4.1–4.3, combined with
Theorems 4.13 and 4.16 in Joe12), the most interesting cases for upper and
lower tail dependence are (a) the Gamma LT ψθ(s) = (1 + s)−1/θ (θ > 0)
and K having upper tail dependence; (b) the Sibuya6, 21 LT, (labeled as
LTC in Joe12) ψθ(s) = 1 − (1 − e−s)1/θ (θ ≥ 1) and K having lower tail
dependence.

In (8.11), if K is increasing in concordance as δ increases, then clearly
C increases in concordance as δ increases with θ fixed. The concordance
ordering for δ fixed and θ varying is harder to check. If K has the form
of an Archimedean copula, then C also has the form of an Archimedean
copula. That is, if K(x, y; δ) = φδ(φ−1

δ (x)+φ−1
δ (y)) for a LT family φδ, then

C(u, v; θ, δ) = ψθ(−log φδ[φ−1
δ (e−ψ

−1
θ (u)) + φ−1

δ (e−ψ
−1
θ (v))])

= ηθ,δ(η−1
θ,δ (u) + η−1

θ,δ (v)), where ηθ,δ(s) = ψθ(−log φδ(s)).

The three examples listed below use the classification in Chapter 5 of
Joe.12 Some additional properties of these copula families are mentioned
as a guide to their comparisons. The cited bivariate copula families are in
Section 5.1 and the cited LT families can be found in Appendix A.1 of Joe.12

Family BB1. (Example 5.1 in Joe and Hu11). In (8.11), let K be the
bivariate Gumbel copula and let ψ be the Gamma LT. The resulting two-
parameter copula is

C(u, v; θ, δ) = {1 + [(u−θ − 1)δ + (v−θ − 1)δ ]1/δ}−1/θ

= η(η−1(u) + η−1(v)), θ > 0, δ ≥ 1, (8.12)

where η(s) = ηθ,δ(s) = (1 + s1/δ)−1/θ is the Mittag-Leffler LT family with a
convolution parameter (see Pillai19).
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Some properties of (8.12) are:

(a) The MTCJ copula is a subfamily when δ = 1, and the Gumbel copula
is obtained as θ → 0. The independence copula CI obtains as θ → 0
and δ → 1 and the Fréchet upper bound copula CU obtains as θ → ∞
or δ →∞.

(b) The lower tail dependence parameter is λL = 2−1/(δθ), while the upper
tail dependence parameter is λU = 2 − 21/δ , independent of θ. λU lies
in the interval (0, 1). For fixed δ, the lower tail dependence parameter
λL lies in the entire interval (0, 1) as θ increases from 0 to ∞.

(c) Concordance increases as θ increases because ω(s)/s is increasing, where
ω(s) = η−1

θ2,δ
(ηθ1,δ(s)) = [(1 + s1/δ)ζ − 1]δ, θ1 < θ2, and ζ = θ2/θ1 > 1.

Family BB4. (Example 5.3 in Joe and Hu11). In (8.11), let K be the
bivariate Galambos copula and let ψ be the Gamma LT. The resulting two-
parameter copula is

C(u, v; θ, δ) = (u−θ + v−θ − 1− [(u−θ − 1)−δ

+ (v−θ − 1)−δ ]−1/δ)−1/θ, θ ≥ 0, δ > 0. (8.13)

Some properties of the family of copulae (8.13) are:

(a) The MTCJ copula is obtained when δ → 0, and the Galambos family
obtains as θ → 0. The Fréchet upper bound CU obtains as θ → ∞ or
δ →∞.

(b) The lower tail dependence parameter is λL = (2 − 2−1/δ)−1/θ, while
the upper tail dependence parameter is λU = 2−1/δ , independent of
θ. λU = 2−1/δ lies in the interval (0, 1). For fixed δ, the lower tail
dependence parameter λL lies in the entire interval (0, 1) as θ increases
from 0 to ∞.

(c) Concordance increases as θ increase if and only if [x+y−1−((x−1)−δ+
(y−1)−δ)−1/δ ] log[x+y−1−((x−1)−δ+(y−1)−δ)−1/δ]−x log x−y log y+
[(x− 1)−δ + (y − 1)−δ ]−1/δ−1[(x− 1)−δx log x+ (y− 1)−δy log y] ≥ 0 for
all x, y > 1 and δ > 0. This condition holds for numerical checks but
has not been confirmed analytically.

(d) It can be shown that Blomqvist’s5, 20 beta or medial correlation coef-
ficient, which for copulae becomes 4C(1

2 ,
1
2 ; θ, δ) − 1, is increasing in θ

with δ fixed. This requires showing that

(2 · 2θ − 1− 2−1/δ(2θ − 1))−1/θ = ((2− 2−1/δ)(2θ − 1) + 1)−1/θ
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is increasing in θ with δ fixed, or α = 2 − 2−1/δ ∈ (1, 2) fixed.
Let ζ = 2θ > 1. We need to show that the derivative of −θ−1

log[1 + α(2θ − 1)] is

θ−2 log[1 + α(2θ − 1)]− θ−1 α2θ log 2
1 + α(2θ − 1)

≥ 0

⇐⇒ h(ζ) = [1 + α(ζ − 1)] log[1 + α(ζ − 1)] − αζ log ζ ≥ 0, ∀ ζ.

Note that h(1) = 0 and h(ζ) ∼ αζ logα as ζ →∞. Also

h′(ζ) = α log[1 + α(ζ − 1)] + α− α log ζ − α
= α[log[1 + α(ζ − 1)]− log ζ] ≥ 0

since 1+α(ζ−1) ≥ ζ is the same as α ≥ 1. Hence h(ζ) ≥ 0 for all ζ ≥ 1
for any fixed α ≥ 1.

Family BB7. (This family was in the first draft of Joe and Hu11 but did not
appear in the published version.) In (8.11), let K be the bivariate MTCJ
family and let ψ be the Sibuya LT family. The resulting two-parameter
family is

C(u, v; θ, δ) = 1− (1− [(1− uθ)−δ + (1− vθ)−δ − 1]−1/δ)1/θ

= η(η−1(u) + η−1(v)), θ ≥ 1, δ > 0, u = 1− u, v = 1− v,
(8.14)

where η(s) = ηθ,δ(s) = 1− [1− (1 + s)−1/δ]1/θ (family LTI in the Appendix
of Joe12).

Some properties of the family of copulae (8.14) are:

(a) The MTCJ family is obtained when θ = 1, and the B5 family (Joe9, 12)
is obtained as δ → 0. The Fréchet upper bound CU obtains as θ → ∞
or δ →∞.

(b) The lower tail dependence parameter is 2−1/δ , independent of θ, and the
upper tail dependence parameter is 2 − 21/θ, independent of δ. These
can vary independently in the entire interval (0, 1).

(c) Concordance increases as θ increases when δ ≤ 1.
(d) The concordance ordering has been shown NOT to hold as θ increases

for fixed δ ≥ 1.5. The numerical counterexamples are most easily found
from

∂C(u, v; θ, δ)
∂θ

∣∣∣
θ=1

< 0 (8.15)

for some choices of (u, v).
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(e) In fact, (8.15) is negative for u = v = 1
2 for δ ≥ 2.23, so that even

Blomqvist’s beta, 4C(1
2 ,

1
2 ; θ, δ) − 1, is not increasing in θ for some

fixed δ.

All three families BB1, BB4 and BB7 have flexible upper and lower tail
dependence. Because of the known concordance ordering only for BB1, the
BB1 family might be preferable over BB4 and BB7 for getting asymmetric
tail dependence with vine copulae.

8.7 Discussion

The theorem in Section 8.4 implies that vine copulae with flexible upper and
lower tail dependence can be obtained with appropriate choices of bivariate
linking copulae that are reflection asymmetric and have upper and lower
tail dependence parameters λL, λU that independently take values in (0, 1).
Section 8.6 lists some choices of bivariate copula families with this property.

To decide on copula models for multivariate data, a first step in ini-
tial data analysis includes measuring bivariate association and assessing the
strength of bivariate tail dependence. Models with flexible upper and lower
tail dependence should be useful for multivariate financial asset return and
other data where there can be strong dependence in extremes. For model-
ing multivariate data, by adding extra parameters, one could consider vine
copulae for which the conditional linking copulae at levels 2, . . . , n − 1 are
not constant over the values of the conditioned variables.

The comparison of reflection asymmetric copulae versus t-copulae in
vines for financial asset return data is made in Nikoloulopoulos et al.18

Some initial assessment for such data suggest that the assumption of con-
stant conditional copulae is acceptable. But more experience is needed to
go from the initial bivariate analysis to decide on the vine and the indexing
of the variables to the vine.

Other directions of research include the study of (a) additional families
based on the construction (8.11) and (b) other construction methods for
bivariate copulae with reflection asymmetry.
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Appendix

Proposition 8.4. Let C(u1, u2) be a bivariate copula with lower tail
dependence. Let b(w1, w2) be its lower tail dependence function, and let
t1|2(w1|w2) = ∂b(w1,w2)

∂w2
, t2|1(w2|w1) = ∂b(w1,w2)

∂w1
be the lower conditional tail

dependence functions. Then∫ ∞

0

t1|2(1|w) dw = t2|1(∞|1) ≤ 1.

Proof. Since t1|2(1|w) = limu→0C1|2(u|uw) for w > 0 and
∫ 1/u
0 C1|2

(u|uw) dw = 1, then by Fatou’s lemma,
∫∞
0 t1|2(1|w) dw ≤ 1. Because of the

integrability of t1|2(1·), t1|2(1|w) = o(w−1) as w →∞ or w t1|2(1|w)→ 0 as
w →∞.

To complete the proof, we use homogeneity properties of b (see Ref. 13).
Since t1|2 is a partial derivative of b,∫ ∞

0

t1|2(1|w) dw = b(1,∞) − b(1, 0) = b(1,∞).

From homogeneity and Euler’s formula on homogeneous functions,
b(w1, w2) = w1t2|1(w2|w1) +w2t1|2(w1|w2)

so that
b(1,∞) = t2|1(∞|1) + lim

w→∞w t1|2(1|w) = t2|1(∞|1).
The upper bound of 1 follows from t2|1(w|1) = limu→0C2|1(uw|u). �

To illustrate the proposition, we obtain the conditional tail dependence
functions for (a) the bivariate tν-copula and (b) the mixture of the indepen-
dence copula and an Archimedean copula with lower tail dependence. Then
we show that they are subdistribution functions.

Example 8.5.

(a) By the bivariate tν-copula C(u1, u2; ν, ρ) with ν > 0 and −1 < ρ < 1, it
follows from results in Nikoloulopoulos et al.17 that

t2|1(w|1) = t1|2(w|1) = Tν+1

( √
ν + 1√
1− ρ2

(ρ− w−1/ν)

)
,

and limw→∞ t2|1(w|1) = Tν+1(
√
ν + 1 ρ/

√
1− ρ2 ) < 1. Here, Tη is the

t cdf with η degrees of freedom.
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(b) Let C12(u1, u2; δ, β) = (1− β)u1u2 + β(u−δ1 + u−δ2 − 1)−1/δ , where δ > 0
and 0 < β ≤ 1. Then it is straightforward to obtain

b(w1, w2) = β(w−δ
1 + w−δ

2 )−1/δ

and

t2|1(w2|w1) =
∂b(w1, w2)

∂w1
= β

[
1 +

(
w1

w2

)δ]−1−1/δ

,

and t2|1(w|1) = β[1 + w−δ]−1−1/δ is a sub-distribution function
t2|1(∞|1) = β so the mass is (1− β) at ∞.
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In this chapter, three algorithms for producing and enumerating regular vines
are presented. The first one produces all possible vines on n nodes and regular
vines are found by inspection. The second one uses the concept of line graphs
to produce only regular vines. The third algorithm produces regular vines by
extending a regular vine on three nodes to a regular vine on n nodes. The first and
second algorithms presented have been used for the construction of a catalogue
of labeled regular vines on at most nine nodes and tree-equivalent regular vines
on at most seven. This catalogue is presented as an appendix to the chapter.
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9.1 Introduction

Regular vines have found application in probability theory and uncertainty
analysis. More recently they are becoming popular in statistical analysis of
data.1, 2, 6, 13, 16 These last references are concerned with choosing an optimal
vine to represent multivariate data sets. Algorithms for enumerating all pos-

sible n!
2 × 2

(n−2
2 )

regular vines on n nodes19 will be needed for this purpose.
The problem of counting graphs has been undertaken in the past.11 Trees

are the immediate ancestors of vines and were first successfully counted by
Cayley.5 Trees were used in Ref. 9 and Ref. 26 as special cases of graphical
models; however, undirected graphs with cycles were also used. Trees were
also used in Ref. 7 to infer discrete distributionsa from data.

After introducing some definitions required in the rest of this chapter
(Section 9.2), previous results about the enumeration of trees will be dis-
cussed. Algorithms for producing and enumerating regular vines are pre-
sented. The first one produces all possible vines on n nodes and regular
vines are found by inspection (Section 9.3). The second one uses the con-
cept of line graphs to generate only regular vines (Section 9.4). The third
algorithm generates regular vines by extending a regular vine on three nodes
up to a regular vine on n nodes (Section 9.5). The first and second algo-
rithms have been used for the construction of a catalogue of labeled regular
vines on at most nine nodes and tree-equivalent regular vines on at most
seven. This catalogue is presented as an appendix to this chapter. Proofs
for the results presented in this chapter have been discussed previously in
Ref. 19 and hence are omitted here.

9.2 Basic Definitions

A tree is an undirected acyclic graph. The graph isomorphism problem con-
sists of deciding whether there exists a mapping from the nodes of one graph
to the nodes of a second graph such that the edge adjacencies are preserved.

Two labeled graphs Gi = (Ei, Ni) and Gj = (Ej , Nj) are isomorphic if
there is a bijection ϕ : Ni → Nj such that for all pairs (a, b) ∈ Ei ⇐⇒
(ϕ(a), ϕ(b)) ∈ Ej . If two graphs are isomorphic they are the same unlabeled
graph.

Graph isomorphism is important in selecting the regular vine that best
fits a given data set. For example, the algorithm proposed on p. 189 of

aActually the method presented in Ref. 7 characterized trees as directed graphs and has
a close relationship with BBNs (Chapter 14).
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Aas et al.2 suggests that operations to assign the “best” vine to a data set
should begin by selecting the first tree and iteratively for selecting subse-
quent trees of the regular vine. Once the first tree of a regular vine has been
selected, only a fixed number of regular vines may be tested in the next
steps. Knowing exactly how many regular vines are still possible in the next
steps and how to construct them might be of advantage for analysis.

The line graph LG(G) of a graph G has as its nodes the edges of G, with
two nodes being adjacent in LG if the corresponding edges are adjacent inG.

A connected graph T = (N,E) is called a labeled tree with nodes N =
{1, 2, . . . , n} and edges E, where E is a subset of pairs of N with no cycle.
Every sequence of numbers R(T ) = (A1, A2, . . . , An−2) where each Ai is an
integer not greater than n is a Prüfer Code for some labeled tree T on n

nodes.
A spanning graph SS of a graph G is a graph with the same set of nodes

as G. If SS is a tree, it is called a spanning tree of G.
Trees have been used to represent high-dimensional probability distribu-

tions8 and they are often called dependence or Markov-dependence trees.
For an account of dependence trees, see Ref. 14. In dependence trees, nodes
are associated with random variables with invertible distribution function
and arcs are associated with rank correlations realized by bivariate copulae.
Figures 9.1 and 9.2 show two different labeled trees with rank correlations
attached to their edges. By setting nodes 5 = 2, 2 = 3, 4 = 5 and 3 = 4
in T2, it would be transformed into T1 and hence considered the same unla-
beled tree.

Figure 9.1. T1, a tree on five nodes with R(T1) = (2, 5, 2).

Figure 9.2. T2, a tree on five nodes with R(T2) = (5, 4, 5).
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A vine8 is a set of nested trees. Just like labeled trees, vines have been
used to represent high-dimensional probability distributions3, 14 with appli-
cations in uncertainty analysis. Vines use sequences of conditional distri-
butions to build a multivariate distribution where conditional bivariate
constraints are satisfied. The definitions of vine and regular vine have been
provided in Chapter 3 and hence are not repeated here.

As in dependence trees, the nodes of T1 in a regular vine represent ran-
dom variables with an invertible distribution function. Edges are associated
with rank and conditional rank correlations. Figure 9.3 presents the sequence
of trees for a regular vine V1(5) on five nodes. The conditioned set is sepa-
rated from the conditioning set by a vertical line “|” in the conditional rank
correlations from Fig. 9.3.

Nodes reachable from a given edge in a regular vine are called the con-
straint set of that edge. When two edges are joined by an edge in tree Ti,
the intersection of the respective constraint sets form the conditioning set.
The symmetric difference of the constraint sets is the conditioned set.

If node e is an element of node f in a regular vine, we say that e is an
m-child of f ; similarly, if e is reachable from f via the membership relation:
e ∈ e1 ∈ · · · ∈ f , we say that e is an m-descendant of f .

Figure 9.3. V1(5) (Regular vine on five nodes).
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If a bijection may be found for each Ti ∈ Vk(n) and Ti ∈ Vj(n), then
we speak of the same tree-equivalent vine and accordingly the same tree-
equivalent regular vine when the proximity condition holds. For example,
setting nodes 5 = 2, 2 = 3, 4 = 5 and 3 = 4 in T2 would generate different
labeled regular vines but the same tree-equivalent regular vine. Observe that
it is easy to find non-regular vines that are tree-equivalent with regular vines.

If element a occurs with element b as conditioned variables in tree k,
then a and b are termed k-partners. Nodes A and B are siblings if they are
m-children of a common parent.

A natural order of the elements of a regular vine on n elements is a
sequence of numbers NO(V (n)) = (An, An−1, . . . , A1) where each Ai is an
integer not greater than n obtained as follows: Take one conditioned element
of the last tree of a regular vine (a tree with a single node and no edges) and
assign it position n; assign the other conditioned element of the top node
position (n− 1). Element An−1 occurs in one m-child of the top node with
an (n− 1)-partner in the conditioned set. Give this (n− 1)-partner position
(n − 2) and iterate this process until all elements have been assigned a
position.

Observe that there are two natural orders for every regular vine. Without
loss of generality, we will always assign position n to the smallest element
of the conditioned set of the last tree of a regular vine. Hence, the natural
order of the regular vine in Fig. 9.3 is NO(V1(5)) = (1, 2, 3, 4, 5).

A regular vine array TA(V (n)) = {Ai,j} for i, j = 1, . . . , n and j ≥ i is
a lower triangular matrix with elements in {1, . . . , n} indexed in “reverse
order” (see Eq. (9.1)), where Aj,j equals the element in position j in
NO(V (n)) and Aj−1,j equals the element in position j − 1 in the same
natural order. The echelon of element Ai,j is i and element Ai,j codes the
node (Aj,j, Ai,j |Ai−1,j , . . . , A1,j). The regular vine array TA(V1(5)) of the
regular vine in Fig. 9.3 is presented in Eq. (9.1).

TA(V1(5)) =




A5,5

A4,5 A4,4

A3,5 A3,4 A3,3

A2,5 A2,4 A2,3 A2,2

A1,5 A1,4 A1,3 A1,2 A1,1




=




1
2 2
3 3 3
4 5 4 4
5 4 5 5 5




(9.1)

The reader may check for example that A2,4 = (5, 2|4) and A2,3 =
(4, 3|5) in (9.1) are children of A3,4 = (3, 2|5, 4). A3,4 = (3, 2|5, 4) and
A3,5 = (3, 1|4, 5) are siblings because they are children of the common parent
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A4,5 = (2, 1|3, 4, 5). Similarly, A2,3 = (4, 3|5) and A2,5 = (4, 1|5) are chil-
dren of A3,5 = (3, 1|4, 5) and hence siblings. Other elements may also be
checked by the reader. In Ref. 19 it is shown that regular vine arrays rep-
resent regular vines. Next, algorithms for producing vines and regular vines
are proposed.

9.3 Regular Vines and Prüfer Codes

The first proof about the number of labeled trees on n nodes is due to
Cayley.5 Since then, several proofs have been presented.18

Theorem 9.1. The number of labeled trees on n nodes is nn−2.

One of various proofs of this theorem due to Ref. 21 provides a very useful
result for representing labeled trees. The argument is to notice that there is
a one-to-one correspondence between the set of trees with n labeled nodes
and the set of Prüfer codes.

In his paper, Prüfer obtains the correspondence by the following proce-
dure: For a given tree, remove the endpointb with the smallest label (other
than the rootc) and let A1 be the label of the unique node which is adjacent
to it. Remove the endpoint and the edge adjacent to it and a tree on n− 1
nodes is obtained. Repeat the operation with the new tree on n − 1 nodes
to obtain A2 and so on. The process is terminated when a tree on two nodes
has been found. The reader may check that the trees from Figs. 9.1 and 9.2
have Prüfer codes R(T1) = (2, 5, 2) and R(T2) = (5, 5, 2) respectively. The
procedure described above may be easily reversed, that is, suppose you start
with a sequence of (n−2)-tuples R(Tk) = (A1, A2, . . . , An−2), then to obtain
the only tree corresponding to the sequence, one applies Algorithm 9.1:

Algorithm 9.1. Decoding a Prüfer code.

(1) Take a sequence R(Tk) = (A1, A2, . . . , An−2) for k = 1, 2, . . . , nn−2

where each Ai, i = 1, 2, . . . , n− 2 is an integer not greater than n.
(2) Write the root in the rightmost position of R(Tk). Notice that R(Tk)

has now length n− 1 which is |E|.

bThe endpoints are nodes with degree 1 in the tree; they are sometimes referred to as
leafs.
cWithout loss of generality we will choose node n as the root of all labeled trees on n
nodes. Choosing any other node as the root makes no difference except that the algorithm
and the procedure to find the Prüfer code for a given tree must be modified.
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(3) Write another row of integers at the bottom of R(Tk) from left to right.
Each entry Bi in this new row is the smallest integer that has not been
already written in this new row (the row of B′

is) nor in the first row
(the row of A′

is) in the position exactly above it or every other position
to the right.

(4) The resulting code S(Tk) is the extended Prüfer code. Each column in
the extended Prüfer code represents an arc in the unique labeled tree
corresponding to it.

S(Tk) =

(
A1 A2 A3 · · · n

B1 B2 B3 · · · Bn−1

)

Take the two Prüfer codes R(T1) = (2, 5, 2) and R(T2) = (5, 4, 5). Apply
Algorithm 9.1 to decode each sequence into the extended Prüfer code. The
reader may check in Eq. (9.2) that S(T1) corresponds to Fig. 9.1 and S(T2)
to Fig. 9.2.

S(T1) =
(

2 5 2 5
1 3 4 2

)
, S(T2) =

(
5 4 5 5
1 2 3 2

)
(9.2)

Prüfer then gives an induction argument to show that for each (n − 2)-
tuple there is some tree which determines the given sequence by the above
procedure. From the code, one can see that a node with degree m would
occur exactly m− 1 times in the code.

Since every labeled tree can be represented by a Prüfer code, then every
tree in a vine may also be represented by a Prüfer code and in this way
the vine may be generated. A way to write all possible vines on n nodes is
presented in Algorithm 9.2.

Algorithm 9.2. Constructing all possible vines on n nodes.

(1) Set i = 1.
(2) Construct all Prüfer codes possible for Ti.
(3) The edges of each one of the nn−(i+1) trees in step 2 become nodes in

Ti+1. Hence, for each tree in step (2):

(a) Label the n− i edges of each tree, giving label 1 to the edge appear-
ing in the first column in its extended Prüfer code, 2 to the edge in
the second column and so on until all edges have been labeled.d

dThis labeling is not unique and any other labeling would work equally well as long as all
nn−2 trees are labeled in the same way.
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(b) Construct all Prüfer codes possible for Ti+1 and connect the new
labeled edges (from Ti) as nodes according to these new Prüfer
codes.

(4) Set i := i + 1 and go to step (3) until two edges must be connected in
the last tree. At this point there is only one way to connect them and
no Prüfer code is required.

From Algorithm 9.2, it may be observed that to write any vine on n nodes,
all that is required are n − 2 Prüfer codes. The first one of length n − 2,
the second one of length n − 3 and so on until the last one of length 1. A
vine on n nodes may be represented by an upper triangular array of size
(n−2)×(n−2) whose first row represents the Prüfer code of the first tree in
the vine, the second row the second tree of the vine and so on. For example,
V1(5) represents the vine from Fig. 9.3:

V1(5) =




5 4 5

4 4

3


 (9.3)

Representing a vine as an upper triangular array of size (n− 2)× (n− 2)
provides a convenient way of storing vines. The representation from Eq. (9.3)
provides some idea of the unlabeled tree used at each level in the vine. For
example, in the first tree node 5 will have degree 3, in the second tree node 4
will also have degree 3 and in the last tree there will be a single node with
degree 2 (obviously) which is node 3. A disadvantage is, however, that the
array in Eq. (9.3) does not tell us right away which node is node 4 in T2

while Fig. 9.3 shows that it is node (5,4). Similarly, it is not immediately
evident that node 3 in T3 of Eq. (9.3) corresponds to (3, 4|5) in Fig. 9.3.
Observe that although a regular vine array requires more space for storing,
it is clearer regarding the conditioned and conditioning variables used at
each level in the vine. Corollary 9.1 follows immediately from the definition
of vines and Theorem 9.3.

Corollary 9.1. The number of vines on n nodes is
∏n

i=1 i
i−2.

Regular vines are most interesting in uncertainty analysis. Implementing
Algorithm 9.2 on a computer is very easy and it provides a simple way
of constructing all possible regular vines on n nodes by simply discarding
those that are not regular. However, this method incurs the excessive bur-
den of searching all vines. According to Corollary 9.1 the number of vines
grows extremely fast with n and it could be very restrictive in time to find
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all regular vines using Algorithm 9.2 even for a modest number of nodes
(eight or nine). Another possibility of constructing only regular vines will
be discussed in the next section.

9.4 Regular Vines and Line Graphs

The idea is to use the line graphe of each tree in the vine. Harary10 notes
that the concept of the line graph of a given graph is so natural that it has
been rediscovered independently by many authors.

If the edges of the first tree of Fig. 9.3 are labeled according to the second
step in Algorithm 9.2, then the line graph of this tree can be found. This
line graph corresponds to Fig. 9.4. If in the same way we label the edges of
the second tree in the vine in Fig. 9.3 accordingly, then the line graph in
Fig. 9.5 may be obtained.

It is clear that in order to find all regular vines on n nodes, all the
spanning trees of the line graphs of all subtrees in the vine must be found.
This result is summarized in Algorithm 9.3.

Algorithm 9.3. Constructing all possible regular vines on n nodes based
on line graphs.

(1) Set i = 1.
(2) Construct all Prüfer codes possible for Ti.

Figure 9.4. Line graph of the first tree in Fig. 9.3.

Figure 9.5. Line graph of the second tree of the vine from Fig. 9.3.

eLine graphs are also known as derived graphs, interchange graphs, adjoint and
edge-to-vertex dual.4
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(3) The edges of each one of the nn−(i+1) trees in step (2) become nodes in
Ti+1. Hence, for each tree in step (2):

(a) Label the edges of each tree, giving the label 1 to the edge appearing
in the first column in its extended Prüfer code, 2 to the edge in the
second column and so on until all edges have been labeled.f

(4) Construct the line graph of each one of the trees from step (2).
(5) For each line graph from step (3) find all possible spanning trees.

Connect the edges of each tree in step (1) according to all spanning
trees from its line graph. This will give all possible Ti+1 for each Ti.

(6) Set i := i + 1 and go to step (2) until two edges must be connected in
the last tree. At this point there is only one way to connect them and
no Prüfer code is required.

Notice that the vines generated by this procedure may still be stored
as an (n − 2) × (n − 2) upper triangular array as in Eq. (9.3) once a way
of labeling the edges from each tree in the vine is specified. Algorithm 9.3
does not produce any irregular vine as opposed to Algorithm 9.2. However,
it involves a greater programming effort and more operations as all possible
spanning trees of the line graphs in all trees in the vine must be found.
Several algorithms for finding all spanning trees of a given graph have been
proposed and examined.15, 17, 22, 24, 25 In general, finding all possible spanning
trees of a given graph other than a complete graphg is demanding in terms of
time and space.25 Another algorithm for constructing regular vines without
duplication will be presented in the next section.

9.5 Regular Vines and Regular Vine Arrays

One disadvantage of using a triangular array such as the one in Section 14.1
is that the information regarding the label of variables in the first tree of a
regular vine is lost when assigning new labels to its edges as they become
nodes of the next tree. The same happens as more trees are added to a
regular vine. This means that conditioned and conditioning sets are not
immediately visible anymore. However, a regular vine array preserves the

fAs before, this labeling is not unique and any other labeling would work equally well as
long as all nn−i+1 are uniquely labeled.
gFor a complete graph, all possible spanning trees are the nn−2 Prüfer codes.
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information concerning the labels of the first tree as lower trees in the vine
are added.

The regular vine array defined in Section 9.2 was used in Ref. 19 to show

that the number of regular vines possible with n nodes is n!
2 ×2

(n−2
2 ). Example

9.5.1 shows how to construct all possible regular vines on five nodes with the
natural order NO(V (5)) = (1, 2, 3, 4, 5). This example is useful in showing
how to arrive at a general result about the number of labeled regular vines
on n nodes.

Example 9.5.1. Constructing regular vines with natural order
NO(V (5)) = (1, 2, 3, 4, 5).

Observe that the diagonal and off-diagonal elements of the regular vine array
are fixed from the natural order and the definition of regular vine array.
Element A1,3 will also always be fixed by the choices of A3,3 and A2,3. This
means that we start with a regular vine on three nodes. The objective is to
extend this regular vine on three nodes to a regular vine on five nodes in
all possible ways that preserve regularity within our natural order. Hence,
the regular vine array with the natural order NO(V (5)) = (1, 2, 3, 4, 5) will
look as in Eq. (9.4) in the beginning.

TA(V (5)) =




A5,5

A4,5 A4,4

A3,5 A3,4 A3,3

A2,5 A2,4 A2,3 A2,2

A1,5 A1,4 A1,3 A1,2 A1,1




=




1
2 2
A3,5 3 3
A2,5 A2,4 4 4
A1,5 A1,4 5 5 5




(9.4)

We will start filling in TA(V (5)) from top to bottom and from right to
left. Hence A2,4 will be the next element to be filled in TA(V (5)). Observe
that element A1,4 will be fixed by the choice of A2,4. Since we are filling
in column 4 of TA(V (5)), from the definition of regular vine array, A2,4 ∈
{A3,3, A2,2, A1,1}. However, also from the definition of regular vine array,
A3,3 = A3,4 and hence A2,4 ∈ {A3,3, A2,2, A1,1}\A3,3 = {A2,2, A1,1}. In order
to preserve regularity, node A3,4 = (3, 2|4, 5) must have two children in the
lower tree of the vine. These siblings must also have a common child in
one tree lower in the vine. By the definition of a regular vine array, the
first child of node A3,4 = (3, 2|4, 5) must be node A2,4 and its sibling must
be in some column h < 4 and some row k ≤ 2, that is, in the known
part of the regular vine array. In this case nodes A2,4 and A2,3 = (3, 4|5)
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must be siblings and must have common child A1,2 = (5, 4). Observe that
if element A2,4 = 4, then nodes A2,4 = (4, 2|5) and A2,3 = (3, 4|5) will be
siblings and have common child A1,2 = (5, 4). If element A2,4 = 5, then
nodes A2,4 = (5, 2|4) and A2,3 = (3, 4|5) will be siblings and have common
child A1,2 = (5, 4). Hence, either A2,4 = A2,2 or A2,4 = A1,1 preserves
regularity and immediately fixes element A1,4. Then both regular vine arrays
in Eq. (9.5) are possible.

TAa(V (5)) =




1
2 2
A3,5 3 3
A2,5 5 4 4
A1,5 4 5 5 5




TAb(V (5)) =




1
2 2
A3,5 3 3
A2,5 4 4 4
A1,5 5 5 5 5




(9.5)

Next, element A3,5 must be found for both TAa(V (5)) and TAb(V (5))
in Eq. (9.5). From a similar argument as before, A3,5 ∈ {A3,3, A2,2, A1,1}
for TAa(V (5)) and TAb(V (5)). Consider first TAa(V (5)). Nodes A3,5 and
A3,4 = (3, 2|4, 5) have common parent A2,5 = (2, 1|3, 4, 5) and hence are
siblings. Nodes A3,5 and A3,4 must have a common child in the lower tree
in order to keep regularity. Possible candidates are nodes A2,4 = (5, 2|4)
or A2,3 = (4, 3|5). However, element A4,4 is not an element of node A3,5,
hence A2,3 = (4, 3|5) must be the sibling of node A2,5. And they must have
a common child in the lower tree. The three possible choices for A3,5 are
listed next.

(1) A3,5 = A3,3 = 3, then either A2,5 = (1, 4|5) or A2,5 = (1, 5|4). A2,5 =
(4, 5|1) is not a valid choice because element A5,5 = 1 and it must be in
the conditioned set of every node in column 5. Nodes A2,3 = (4, 3|5) and
A2,5 must have a common child in the lower tree. This must be either
A1,3 = (5, 3) or A1,2 = (5, 4). Element A3,3 = 3 is not an element of
node A2,5 from the definition of a regular vine array and the assumption
that A3,5 = A3,3 = 3. Hence, node A1,2 = (5, 4) must be the common
child. If node A2,5 = (1, 4|5), then nodes A1,5 = (5, 1) and A1,2 = (5, 4)
are its children and regularity is preserved. On the other hand, if node
A2,5 = (1, 5|4), then nodes A1,5 = (4, 1) and A1,2 = (5, 4) are its children
and regularity is again preserved. Hence, element A3,3 = 3 is a valid
choice for A3,5 and both matrices in Eq. (9.6) are possible. Observe also
that given element A3,5 = 3, there are two possible choices for element



October 11, 2010 12:19 9.75in x 6.5in b979-ch09

Counting Vines 201

A2,5. That is, either A2,5 = 4 or A2,5 = 5 and either choice maintains
regularity. A1,5 is fixed by our previous choices.

TA1(V (5)) =




1

2 2

3 3 3

4 5 4 4

5 4 5 5 5




TA2(V (5)) =




1

2 2

3 3 3

5 5 4 4

4 4 5 5 5




(9.6)

(2) A3,5 = A2,2 = 4, then either A2,5 = (1, 5|3) or A2,5 = (1, 3|5). A2,5 =
(3, 5|1) is not a valid choice because element A5,5 = 1 and it must be in
the conditioning set of every node in column 5. Nodes A2,3 = (4, 3|5) and
A2,5 must have a common child in the lower tree. This must be either
A1,3 = (5, 3) or A1,2 = (5, 4). Element A2,2 = 4 is not an element of
node A2,5 from the definition of a regular vine array and the assumption
that A3,5 = A3,3 = 4. Hence, node A1,3 = (5, 3) must be the common
child. If node A2,5 = (1, 5|3), then nodes A1,5 = (3, 1) and A1,3 = (5, 3)
are its children and regularity is preserved. On the other hand, if node
A2,5 = (1, 3|5), then nodes A1,5 = (5, 1) and A1,3 = (5, 3) are its children
and regularity is again preserved. Hence, element A2,2 = 4 is a valid
choice for A3,5 and both matrices in Eq. (9.7) are possible. Observe also
that given element A3,5 = 4, there are two possible choices for element
A2,5. That is, either A2,5 = 3 or A2,5 = 5 and either choice maintains
regularity. A1,5 is fixed by our previous choices.

TA3(V (5)) =




1

2 2

4 3 3

5 5 4 4

3 4 5 5 5




TA4(V (5)) =




1

2 2

4 3 3

3 5 4 4

5 4 5 5 5




(9.7)

(3) A3,5 = A1,1 = 5, then there are two possibilities, either A2,5 = (3, 1|4)
or A2,5 = (4, 1|3). Nodes A2,3 = (4, 3|5) and A2,5 must have a common
child in the lower tree. This must be either A1,3 = (5, 3) or A1,2 = (5, 4);
however, element A1,3 = A1,2 = 5 is not an element of node A2,5 from
the definition of a regular vine array and the assumption that A3,5 =
A1,1 = 5. Hence, element A1,1 = 5 is not a valid choice for A3,5.
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By a similar procedure as described earlier, the reader may check that
TAb(V (5)) in Eq. (9.5) may be extended to the four regular vines in
Eqs. (9.8) and (9.9).

TA5(V (5)) =




1

2 2

3 3 3

4 4 4 4

5 5 5 5 5




TA6(V (5)) =




1

2 2

3 3 3

5 4 4 4

4 5 5 5 5




(9.8)

TA7(V (5)) =




1

2 2

4 3 3

5 4 4 4

3 5 5 5 5




TA8(V (5)) =




1

2 2

4 3 3

3 4 4 4

5 5 5 5 5




(9.9)

To summarize, we may see that for every one of the two choices for A2,4

that keep regularity, there are two choices for A3,5 that will keep regularity.
Again, for each of the two choices of A3,5, there will also be two possible
choices for A2,5 that will keep regularity. In other words, there are 2× 2×
2 = 23 = 8 regular vines possible with the natural order NO(V (5)) =
(1, 2, 3, 4, 5).

In Ref. 19, an argument similar to the one presented in Example 9.5.1
(using induction on n) is used to show that the number of regular vines
possible with a fixed natural order NO(V (n)) = An,n, An−1,n−1, . . . , A1,1

is:
∏n−3

j=1 2j = 2
(n−2

2 )
. It is easy to see that there are

(n
2

)
ways of choosing

the pair An,n, An−1,n−1 in a natural order and (n − 2)! ways of permuting

elements An−2,n−2, . . . , A1,1. Hence, there are n!
2 × 2

(n−2
2 )

labeled regular
vines on n nodes.

The procedure to find regular vines from regular vine arrays presented
in Example 9.5.1 also provides another algorithm for constructing regular
vines without duplication. The algorithm is presented next. The basic idea
is first to construct all possible natural orders on n nodes and then use them
to build all regular vines arrays possible.

Algorithm 9.4. Constructing all possible regular vine arrays on n nodes.

(1) For n ≤ 3, constructing regular vines is trivial, hence consider n ≥ 4.
(2) Create the

(
n
2

)
× (n− 2)! = n!

2 natural orders possible on n nodes.
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(3) For each of the natural orders in step (1):

(a) Generate the regular vine on three nodes that corresponds to the
natural order as in Eq. (9.1).

(b) Set c := 4 r := 2
(c) Find the two possibilities of selecting each one of Ac−2,r, . . . , A2,c

that would preserve regularity, given the previous choices. Each
choice should be in {Ac−2,c−2, . . . , A1,1} in the natural order.

(d) If c = n, stop; else, set c := c+ 1 and r := r + 1 and go to (b)

(e) The
∏n−3

j=1 2j = 2
(n−2

2 )
possibilities of building a regular vine array

given the natural order have been found.

Algorithm 9.4 does not require the additional operations that
Algorithm 9.3 requires for building line graphs and finding spanning trees
for each tree in each level of the regular vine. However, it still requires a
search in Ac−2,c−2, . . . , A1,1 in the natural order for selecting choices for each
Ac−2,c, . . . , A2,c in the regular vine array. Additionally, the construction of
the regular vine array provides a natural way of enumerating regular vines.
Next, the classification of regular vines is discussed.

9.6 Classifying Regular Vines

Organizing regular vines in a systematic way may be of advantage. One
natural way to start classifying regular vines is according to their equiva-
lence class as shown in Chapter 7 by Joe. Another natural way to classify
them is according to the unlabeled trees used in their construction. The
appendix is presented as a first step towards a better organization of regu-
lar vines. This appendix presents a catalogue of labeled regular vines on at
most nine nodes, organized according to the unlabeled tree used in the first
tree of the regular vine. It also presents tree-equivalent regular vines on at
most seven nodes. In principle, any one of the three algorithms for generat-
ing regular vines presented in this chapter may be used to classify regular
vines. Algorithms 9.2 and 9.3 were used for the construction of the catalogue
presented here.

The names of trees from Table A.1 used in each level of each regular
vine in Tables A.4 and A.5 will be displayed in order after the + sign.
There is one tree-equivalent regular vine on three nodes: V3 = T3 + T2
+ T1. Every regular vine on n nodes for n > 3 must necessarily use
V3 in its construction. For this reason, T3 + T2 + T1 will be omitted
when indicating the sequence of trees used in the construction of different
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Table 9.1. Apportioning regular vines from
Example 9.5.1 to tree-equivalence classes.

Vines from Example 9.5.1
Tree sequence within given tree sequence

T6+T4 TA3

T7+T4 TA4, TA7

T7+T5 TA1, TA2, TA6

T8+T4 TA8

T8+T5 TA5

tree-equivalent regular vines. For example, the D-vine on four nodes will be
V4 = T4 + V3 = T4.

The eight regular vines generated in Example 9.5.1 may be classi-
fied according to their equivalence and tree-equivalence classes. According
to Table A.4 in the appendix, there are five possible tree sequences for
regular vines on five nodes. These five sequences are shown in the first
column of Table 9.1. The second column apportions the regular vines
from Example 9.5.1 to these five tree sequences. The names of trees from
Table A.1 used in each level of each regular vine in Example 9.5.1 are dis-
played as explained before.

The reader may check that TA3 corresponds to a D-vine and TA5 to a C-
vine. TA8 has one node with maximal degree in its first tree and a D-vine on
four nodes is attached to this first tree. It is evident that these three vines,
besides corresponding to different tree-equivalence classes, correspond to
different equivalence classes.

Besides being tree-equivalent TA4 and TA7, are in the same equivalence
class. The reader may check this by permuting nodes 4 � 3 and 2 � 1 in
either TA4 or TA7 to obtain the same vine.

TA1, TA2 and TA6 are tree-equivalent. By making node 2 = 1, 5 = 4,
3 = 2 and 1 = 3 in TA6, it becomes TA2 and hence these two are in the
same equivalence class. However, TA1 cannot be transformed into either TA2

or TA6 by a permutation of nodes in the first tree. Hence, TA1 falls in a
different equivalence class than TA2 and TA6 despite the fact that the three
are tree-equivalent. Observe that the six equivalence classes for regular vines
on five nodes mentioned in Chapter 7 are represented in Example 9.5.1.

According to the results from the previous section, there are 5!
2 = 60

other possible natural orders than the one used in Example 9.5.1. Hence,
there must be 60 × 1 D-vines and C-vines. Also, 60 × 2 regular vines in
the class of TA4 and TA7 must be observed. Finally, there must be 60 × 3
regular vines with tree-sequence T7 + T5. This result may also be observed
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in V6-V10 in Table A.4 in the appendix. Observe that after the classification
of the regular vine arrays from Example 9.5.1, from the 180 regular vines
with tree-sequence T7+T5, 60 must be in the same equivalence class as
TA1. The appendix was elaborated without the implementation of regular
vine arrays. This verifies that it is possible to arrive at the same conclusions
with the three different methods proposed in this chapter. Finally, observe
that it is sufficient to investigate one natural order to classify regular vines
within equivalence and tree-equivalence classes.

9.7 Conclusions and Final Comments

A way to efficiently code and store vines on n nodes based on the Prüfer
code is proposed. This consists of an upper triangular matrix of size (n−2)×
(n − 2). An algorithm for building vines and two others for building regu-
lar vines on n nodes have been presented. Algorithm 9.2 is easy to imple-
ment and efficient if regular vines on less than six nodes are required.
Algorithms 9.3 and 9.4 would produce only regular vines at the cost of
greater programming effort and a larger number of arithmetic operations.
Tables A.1 to A.3 present the number of labeled trees, regular vines per
labeled tree and tree-equivalent regular vines according to unlabeled trees
on at most nine nodes. Table A.1 presents the 25 trees on seven nodes or less.
These trees will be used to present pictures of tree-equivalent regular vines
on at most six nodes in Table A.4. Finally, Table A.5 present tree-equivalent
regular vines on seven nodes.

We have made a first step towards organizing vines and regular vines in
a more systematic way. We believe that this task is necessary in order to
progress more rapidly the space of applications to vines and make them more
accessible to people interested in the subject. Hence, our recommendation
is to enhance efforts for a more systematic organization of vines, including
algorithms for generating and storing them.

Appendix
A Catalogue of Labeled Regular Vines on at Most Nine
Nodes and Tree-Equivalent Regular Vines on at Most
Seven Nodes

The purpose of this catalogue is to classify regular vines according to their
graphical structure. We hope that this catalogue will help researchers inter-
ested in regular vines with their investigations. Like the authors of Ref. 23,



October 11, 2010 12:19 9.75in x 6.5in b979-ch09

206 O. Morales-Nápoles

this author has “tried that the data are free of errors, but accept[s] no
responsibility for any loss of time, money, patience or temper occurring as a
result of any mistakes that may have crept into the pages of this [catalogue].
Furthermore, [the author] wishes it to be understood that any mistakes are
entirely the fault of the other author”.

Tables A.1–A.3 present the 95 trees on seven nodes or less. Catalogues of
trees on at most 12 nodes have been presented before. In Ref. 18, pictures of
trees on at most five nodes are presented. In Ref. 12, a catalogue of trees on
at most eight nodes may be found.h Harary10 presents trees on at most ten
nodes.i The 987 trees on at most 12 vertices (together with about 10,000
other graphs and many tables of interest for graph theorists) may be found
in Ref. 23. None of the above catalogues present results concerning vines.

Vines will be presented in pictures in the next section and the names of
the trees from Table A.1 used in each level of each regular vine in Tables A.4
and A.5 will be displayed in order after the + sign. There is one tree-
equivalent regular vine on three nodes V3 = T3 + T2 + T1. Every regular
vine on n nodes for n > 3 must necessarily use V3 in its construction. For
this reason, T3 + T2 + T1 will be omitted when indicating the sequence of
trees used in the construction of different tree-equivalent regular vines. For
example, the D-vine on four nodes will be V4 = T4 + V3 = T4. Next, the
catalogue is presented.

Table A.1. Trees with at most seven nodes.

Prüfer code 1 12 11 123
example

T1 T2 T3 T4 T5 T6

# Labeled trees 1 1 3 12 4 60

# Regular vines 1 1 1 1 3 1
per labeled tree

# Tree-equivalent 1 1 1 1 1 1
reg. vines / tree

hThis catalogue repeats a tree on eight nodes, neglecting, another one. In the same ref-
erence, tables with the number of non-isomorphic trees on less than 26 nodes may be
found.
iHarary refers to Ref. 20 for diagrams of trees on at most 12 nodes. However this reference
is not available to the author at the time of the publication of this catalogue.
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Table A.1. (Continued)

Prüfer code 112 111 1234 1123 1213 2244
example

T7 T8 T9 T10 T11 T12

# Labeled trees 60 5 360 360 360 90

# Regular vines 5 24 1 7 11 48
per labeled tree

# Tree-equivalent 2 2 1 3 3 5
reg. vines / tree

Prüfer code 1112 1111 12345 12344 12234 12324
example

T13 T14 T15 T16 T17 T18

# Labeled trees 120 6 2,520 2,520 5,040 840

# Regular vines 75 480 1 9 19 33
per labeled tree

# Tree-equivalent 5 5 1 4 7 3
reg. vines / tree
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Table A.1. (Continued)

Prüfer code 11233 11223 11123 12223
example

T19 T20 T21 T22

# Labeled trees 630 2,520 840 1,260

# Regular vines 80 168 168 342
per labeled tree

# Tree-equivalent 9 17 12 17
reg. vines / tree

Prüfer code 11122 11112 11111
example

T23 T24 T25

# Labeled trees 420 210 7

# Regular vines 1,452 2,928 23,040
per labeled tree

# Tree-equivalent 22 22 22
reg. vines / tree
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Table A.2. Trees with at most eight nodes.

Prüfer code 123456 123455 122345 123345 123435 112324
example

T26 T27 T28 T29 T30 T31

# Labeled trees 20,160 20,160 40,320 20,160 20,160 10,080

# Regular vines 1 11 29 39 71 820
per labeled tree

# Tree-equivalent 1 5 12 8 10 44
reg. vines / tree

Prüfer code 112344 122344 122334 123344 112233 122324
example

T32 T33 T34 T35 T36 T37

# Labeled trees 5,040 20,160 20,160 20,160 5,040 6,720

# Regular vines 120 315 815 423 4,520 2,181
per labeled tree

# Tree-equivalent 14 38 55 41 72 44
reg. vines / tree
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Table A.2. (Continued)

Prüfer code 244466 123444 123334 112333 122333 111222
example

T38 T39 T40 T41 T42 T43

# Labeled trees 10,080 6,720 20,160 3,360 6,720 560

# Regular vines 11,246 315 1,046 3,384 8,667 89,712
per labeled tree

# Tree-equivalent 114 24 61 72 111 133
reg. vines / tree

Prüfer code 122223 123333 112222 122222 222222
example

T44 T45 T46 T47 T48

# Labeled trees 3,360 1,680 840 336 8

# Regular vines 27,222 11,160 117,072 279,000 2,580,480
per labeled tree

# Tree-equivalent 114 83 136 136 136
reg. vines / tree
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Table A.3. Trees with nine nodes.

Prüfer code 2345678 2345578 2345668 2345677 2345658 2345478
example

T49 T50 T51 T52 T53 T54

# Labeled trees 181,440 362,880 362,880 181,440 181,440 181,440

# Regular vines 1 69 41 13 129 181
on each tree

# Tree-equivalent 1 21 18 6 22 18
reg. vines / tree

Prüfer code 2345477 2335658 2343677 2335668 2344668 2245677
example

T55 T56 T57 T58 T59 T60

# Labeled trees 181,440 181,440 90,720 181,440 362,880 45,360

# Regular vines 2,651 5,390 1,708 1,646 2,708 168
on each tree

# Tree-equivalent 164 203 104 125 221 20
reg. vines / tree

Prüfer code 2335677 2344677 2345577 2344478 2345558 2345666
example

T61 T62 T63 T64 T65 T66

# Labeled trees 181,440 181,440 181,440 90,720 181,440 60,480

# Regular vines 528 887 887 4,202 2,567 528
on each tree

# Tree-equivalent 70 105 91 147 162 42
reg. vines / tree
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Table A.3. (Continued)

Prüfer code 2345448 2343638 2245577 2335577 2245477 2344438
example

T67 T68 T69 T70 T71 T72

# Labeled trees 181,440 15,120 90,720 181,440 45,360 30,240

# Regular vines 8,738 18,504 11,296 34,417 36,892 72,546
on each tree

# Tree-equivalent 275 99 287 628 350 428
reg. vines / tree

Prüfer code 2343377 2225668 2333668 2344666 2225677 2333677
example

T73 T74 T75 T76 T77 T78

# Labeled trees 90,720 60,480 181,440 60,480 30,240 90,720

# Regular vines 120,444 20,904 99,028 34,143 6,756 32,812
on each tree

# Tree-equivalent 724 332 840 439 166 516
reg. vines / tree

Prüfer code 2344477 2345555 2344448 2333637 2244666 2244477
example

T79 T80 T81 T82 T83 T84

# Labeled trees 90,720 15,120 60,480 30,240 30,240 22,680

# Regular vines 54,004 32,688 149,901 360,084 428,388 680,576
on each tree

# Tree-equivalent 607 245 765 724 980 1,034
reg. vines / tree
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Table A.3. (Continued)

Prüfer code 2225666 2333666 2245555 2333377
example

T85 T86 T87 T88

# Labeled trees 5,040 30,240 7,560 30,240

# Regular vines 262,080 1,232,820 414,432 1,919,610
on each tree

# Tree-equivalent 465 1,328 735 1,328
reg. vines / tree

Prüfer code 2335555 2344444 2333338 2225555
example

T89 T90 T91 T92

# Labeled trees 15,120 3,024 7,560 2,520

# Regular vines 1,232,340 1,869,120 5,255,904 14,889,744
on each tree

# Tree-equivalent 1,195 901 1,328 1,464
reg. vines / tree

Prüfer code 2244444 2333333 1111111
example

T93 T94 T95

# Labeled trees 1,512 504 9

# Regular vines 23,334,480 62,523,360 660,602,880
on each tree

# Tree-equivalent 1,464 1,464 1,464
reg. vines / tree
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Table A.4. Tree-equivalent regular vines with at most six nodes.
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Table A.4. (Continued)
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Table A.5. Tree-equivalent regular vines with seven nodes.

Tree sequence & Tree sequence &
# Tree-equivalent labeled # Tree-equivalent labeled

regular vines regular vines

V33 = T15+T9+T6+T4 2,520 V73 = T20+T13+T8+T5 30,240
V34 = T16+T9+T6+T4 5,040 V74 = T21+T9+T6+T4 5,040
V35 = T16+T10+T6+T4 5,040 V75 = T21+T10+T6+T4 5,040
V36 = T16+T10+T7+T4 5,040 V76 = T21+T10+T7+T4 5,040
V37 = T16+T10+T7+T5 7,560 V77 = T21+T10+T7+T5 7,560
V38 = T17+T9+T6+T4 5,040 V78 = T21+T11+T6+T4 5,040
V39 = T17+T10+T6+T4 10,080 V79 = T21+T11+T7+T4 20,160
V40 = T17+T10+T7+T4 10,080 V80 = T21+T11+T7+T5 30,240
V41 = T17+T10+T7+T5 15,120 V81 = T21+T13+T6+T4 5,040
V42 = T17+T11+T6+T4 5,040 V82 = T21+T13+T7+T4 15,120
V43 = T17+T11+T7+T4 20,160 V83 = T21+T13+T7+T5 22,680
V44 = T17+T11+T7+T5 30,240 V84 = T21+T13+T8+T4 10,080
V45 = T18+T11+T6+T4 2,520 V85 = T21+T13+T8+T5 10,080
V46 = T18+T11+T7+T4 10,080 V86 = T22+T9+T6+T4 2,520
V47 = T18+T11+T7+T5 15,120 V87 = T22+T10+T6+T4 10,080
V48 = T19+T9+T6+T4 2,520 V88 = T22+T10+T7+T4 10,080
V49 = T19+T10+T6+T4 5,040 V89 = T22+T10+T7+T5 15,120
V50 = T19+T10+T7+T4 5,040 V90 = T22+T11+T6+T4 7,560
V51 = T19+T10+T7+T5 7,560 V91 = T22+T11+T7+T4 30,240
V52 = T19+T12+T6+T4 2,520 V92 = T22+T11+T7+T5 45,360
V53 = T19+T12+T7+T4 5,040 V93 = T22+T12+T6+T4 10,080
V54 = T19+T12+T7+T5 7,560 V94 = T22+T12+T7+T4 20,160
V55 = T19+T12+T8+T4 7,560 V95 = T22+T12+T7+T5 30,240
V56 = T19+T12+T8+T5 7,560 V96 = T22+T12+T8+T4 30,240
V57 = T20+T9+T6+T4 5,040 V97 = T22+T12+T8+T5 30,240
V58 = T20+T10+T6+T4 15,120 V98 = T22+T13+T6+T4 15,120
V59 = T20+T10+T7+T4 15,120 V99 = T22+T13+T7+T4 45,360
V60 = T20+T10+T7+T5 22,680 V100 = T22+T13+T7+T5 68,040
V61 = T20+T11+T6+T4 5,040 V101 = T22+T13+T8+T4 30,240
V62 = T20+T11+T7+T4 20,160 V102 = T22+T13+T8+T5 30,240
V63 = T20+T11+T7+T5 30,240 V103 = T23+T9+T6+T4 5,040
V64 = T20+T12+T6+T4 10,080 V104 = T23+T10+T6+T4 10,080
V65 = T20+T12+T7+T4 20,160 V105 = T23+T10+T7+T4 10,080
V66 = T20+T12+T7+T5 30,240 V106 = T23+T10+T7+T5 15,120
V67 = T20+T12+T8+T4 30,240 V107 = T23+T11+T6+T4 5,040
V68 = T20+T12+T8+T5 30,240 V108 = T23+T11+T7+T4 20,160
V69 = T20+T13+T6+T4 15,120 V109 = T23+T11+T7+T5 30,240
V70 = T20+T13+T7+T4 45,360 V110 = T23+T12+T6+T4 5,040
V71 = T20+T13+T7+T5 68,040 V111 = T23+T12+T7+T4 10,080
V72 = T20+T13+T8+T4 30,240 V112 = T23+T12+T7+T5 15,120
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Table A.5. (Continued)

Tree sequence & Tree sequence &
# Tree-equivalent labeled # Tree-equivalent labeled

regular vines regular vines

V113 = T23+T12+T8+T4 15,120 V141 = T24+T13+T8+T5 40,320

V114 = T23+T12+T8+T5 15,120 V142 = T24+T14+T6+T4 12,600

V115 = T23+T13+T6+T4 20,160 V143 = T24+T14+T7+T4 25,200

V116 = T23+T13+T7+T4 60,480 V144 = T24+T14+T7+T5 37,800

V117 = T23+T13+T7+T5 90,720 V145 = T24+T14+T8+T4 12,600

V118 = T23+T13+T8+T4 40,320 V146 = T24+T14+T8+T5 12,600

V119 = T23+T13+T8+T5 40,320 V147 = T25+T9+T6+T4 2,520

V120 = T23+T14+T6+T4 25,200 V148 = T25+T10+T6+T4 5,040

V121 = T23+T14+T7+T4 50,400 V149 = T25+T10+T7+T4 5,040

V122 = T23+T14+T7+T5 75,600 V150 = T25+T10+T7+T5 7,560

V123 = T23+T14+T8+T4 25,200 V151 = T25+T11+T6+T4 2,520

V124 = T23+T14+T8+T5 25,200 V152 = T25+T11+T7+T4 10,080

V125 = T24+T9+T6+T4 5,040 V153 = T25+T11+T7+T5 15,120

V126 = T24+T10+T6+T4 15,120 V154 = T25+T12+T6+T4 2,520

V127 = T24+T10+T7+T4 15,120 V155 = T25+T12+T7+T4 5,040

V128 = T24+T10+T7+T5 22,680 V156 = T25+T12+T7+T5 7,560

V129 = T24+T11+T6+T4 7,560 V157 = T25+T12+T8+T4 7,560

V130 = T24+T11+T7+T4 30,240 V158 = T25+T12+T8+T5 7,560

V131 = T24+T11+T7+T5 45,360 V159 = T25+T13+T6+T4 5,040

V132 = T24+T12+T6+T4 10,080 V160 = T25+T13+T7+T4 15,120

V133 = T24+T12+T7+T4 20,160 V161 = T25+T13+T7+T5 22,680

V134 = T24+T12+T7+T5 30,240 V162 = T25+T13+T8+T4 10,080

V135 = T24+T12+T8+T4 30,240 V163 = T25+T13+T8+T5 10,080

V136 = T24+T12+T8+T5 30,240 V164 = T25+T14+T6+T4 2,520

V137 = T24+T13+T6+T4 20,160 V165 = T25+T14+T7+T4 5,040

V138 = T24+T13+T7+T4 60,480 V166 = T25+T14+T7+T5 7,560

V139 = T24+T13+T7+T5 90,720 V167 = T25+T14+T8+T4 2,520

V140 = T24+T13+T8+T4 40,320 V168 = T25+T14+T8+T5 2,520
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Regular Vines: Generation Algorithm
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A natural order for a regular vine on n variables is an assignment of indices to
the variables such that variables indexed with j and j + 1 occur as conditioned
variables in a node of tree j, j = 1, . . . , n−1. Regular vines V and U on n variables
are equivalent if there is a permutation π ∈ n! such that π(V ) = U . U and V are
equivalent if and only if the regular vines in natural order corresponding to U and
V are equivalent. The number of equivalence classes for regular vines is obtained
by counting the number of equivalence classes for regular vines in natural order.

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
10.2 Naming Convention for Vines . . . . . . . . . . . . . . . . . 221
10.3 Number of Equivalence Classes . . . . . . . . . . . . . . . . 222
10.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
10.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

10.1 Introduction

Morales-Nápoles et al.1 introduced the notion of a natural order for regular
vines. Roughly, this is a method for assigning indices to the variables of
a regular vine on n variables, such that a conditioned variable in the top
node (the single node in tree n − 1) gets index n, and its partner in this
conditioned set gets index n − 1. Further, if indices n, . . . , j + 1 have been
assigned, index j is assigned to the conditioned-set partner of the variable
index j + 1 in the node of tree j which is an m-child of the node with
conditioned set (j + 1, j + 2). Hence, a natural ordering for a regular vine

219



October 11, 2010 12:19 9.75in x 6.5in b979-ch10

220 H. Joe, R. M. Cooke and D. Kurowicka

is a permutation of the indices defined with respect to that vine. For any
regular vine, there are two natural orderings, according to the variable in the
top node which is assigned index n. There are two regular vines in natural
order corresponding to the original vine, and in some cases these two vines
actually coincide. The two natural orderings for a C-vine and D-vine always
yield the same regular vine.a Let NO(n) denote the set of regular vines on
n variables in a natural order. Morales-Nápoles et al.1 show that there are
2n−3 ways of extending a regular vine on n − 1 variables in natural order,
to a regular vine in natural order on n elements; and that the set NO(n) of
regular vines in natural order has cardinality Nn = 2(n−2)(n−3)/2.

A useful tool in deriving this result is the representation of a regular
vine as a triangular array, or vine array. An n× n upper triangular matrix
A is a vine array if (i) Aii = i for i = 1, . . . , n, (ii) Ai−1,i = i − 1 for
i = 2, . . . , n, (iii) A1,i, . . . , Ai−2,i is a permutation of {1, . . . , i− 2} and (iv)
another condition based on binary vectors is satisfied and it restricts the
number of possible permutations to 2i−3 in columns i = 4, . . . , n.

Regular vines V and U on n variables are equivalent if there is a permu-
tation π ∈ n! such that π(V ) = U . This means that {i, j|k · · ·m} is a node
of V if and only if {π(i), π(j)|π(k) · · · π(m)} is a node of U . U and V are
equivalent if and only if the regular vines in natural order corresponding to
U and V are equivalent (or indeed identical). The purpose of this chapter
is to count the number of equivalence classes for regular vines by counting
the number of equivalence classes for regular vines in natural order.

Based on the theory in Morales-Nápoles et al.,1 an algorithm for gener-
ating all vine arrays A ∈ NO(n), n ≥ 4, is the following.

1. Input b4, . . . , bn where bi = bi(·) is a binary vector of length i or a
mapping from (1, . . . , i) to {0, 1}i. Assume bi(1) = bi(i− 1) = bi(i) = 1
for i = 4, . . . , n. [b1, b2, b3, with these properties, can also be added but
they would be fixed over all A ∈ NO(n).]

2. For an n × n matrix, set Ai,i = i for i = 1, . . . , n, Ai−1,i = i − 1 for
i = 2, . . . , n, A1,3 = 1.

3. For columns d = 4, . . . , n,

• ac = active column ← d− 2;
• For j from d− 2 to 1

aThe B1-vine in Chapter 7 is an example in which the two natural orderings yield different
regular vines.



October 11, 2010 12:19 9.75in x 6.5in b979-ch10

Regular Vines 221

• If bd(j) = 1, then Aj,d = Aac,ac and the new ac is the largest value
among 1, . . . , d− 2 not yet assigned in column j;
• Else if bd(j) = 0, then Aj,d = Aj−1,ac.

4. Return A.

Next is an example to illustrate the algorithm and the bi notation for
a regular vine A in natural order. In (10.1) below, b4(2) = 1, b5(3) = 1,
b5(2) = 0, b6(4) = 0, b6(3) = 1, b6(2) = 0 are set and applied sequentially
in the algorithm to get respectively A2,4 = 2, A3,5 = 3, A2,5 = 1, A4,6 = 3,
A3,6 = 4, A2,6 = 1:




b1 b2 b3 b4 b5 b6
1 1 1 1 1 1

1 1 1 0 0
1 1 1 1

1 1 0
1 1

1




, A =




1 1 1 1 2 2
2 2 2 1 1

3 3 3 4
4 4 3

5 5
6




(10.1)

With nodes in the dth column being:

A1,dAd,d, A2,dAd,d|A1,d, . . . , Ai,dAd,d|A1,d · · ·Ai−1,d, . . .

the nodes of this vine are



12 13 14 25 26
23|1 24|1 15|2 16|2

34|12 35|12 46|12
45|123 36|124

56|1234



.

Note that this vine is invariant to transpositions of 3,4 and 5,6 (at the same
time).

10.2 Naming Convention for Vines

In this section, we use a notation for vines of dimenions n ≥ 5 based on the
binary vectors b4, . . . , bn. If b4(2) = 1, we start the vine with the letter “C”,
and if b4(2) = 0, we start the vine with the letter “D”. Then for columns
j ∈ 5, . . . , n, we consider bj(2) · · · bj(j − 2) as a binary number and convert
it to decimal. The decimal form of the columns are separated by dots. That
is, the notation of the vine has the form D.i5. · · · .in or C.i5. · · · .in, where
id is an integer between 0 and 2d−3 − 1 inclusive for d = 5, . . . , n.
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Specifically, for n = 5, the eight arrays in NO(5) are denoted as D.0, D.1,
D.2, D.3, C.0, C.1, C.2, C.3. For n = 6, the 64 arrays in NO(6) are denoted
as D.0.0, . . ., D.0.7, . . ., D.3.7, C.0.0, . . ., C.0.7, . . ., C.3.7. For n = 7, the
1024 arrays in NO(7) are denoted as D.0.0.0, . . ., D.0.0.15, . . ., D.3.7.15,
C.0.0.0, . . ., C.0.0.15, . . ., C.3.7.15. In this notation, D.0, D.0.0, D.0.0.0,
etc. are the D-vines and C.3, C.3.7, C.3.7.15, etc. are the C-vines, and
everything else is in-between. That is, for the D-vines, bd(2), . . . , bd(d − 2)
are 0s for d = 4, . . . , n, and for the C-vines, bd(2), . . . , bd(d − 2) are 1s for
d = 4, . . . , n. This notation also shows that the D-vines and C-vines are the
boundary cases of regular vines.

This compact notation of the binary vectors in columns 5 to n in terms
of decimal equivalents is convenient for the generation of the vine arrays in
NO(n).

10.3 Number of Equivalence Classes

We assume n ≥ 5 below. For dimension n, we consider permutations of
{1, . . . , n} in a vine such that the new vine array A∗ can be put into the
natural order. This will enable us to count the number of equivalence classes
of regular vines in dimension n. The number of such permutations will be
shown to be [n/2], that is, n/2 for n even and (n− 1)/2 for n odd.

Note that in NO(n), the conditional distributions or nodes
23|1; 34|12; . . . ;n− 1, n|1, . . . , n− 2 must exist. The first observation is that
it is only necessary to check the subgroup of permutations generated from
the transpositions:

(a) (1 2), (3 4), . . . , (n− 1 n) if n is even,
(b) (2 3), (4 5), . . . , (n− 1 n) if n is odd.

For n = 5, in order that a permutation of 1, 2, 3, 4, 5 leaves the node 45|123
invariant, it can transpose 4, 5 and permute 1, 2, 3; then to leave 23|1 invari-
ant, permutations of 1, 2, 3 can only transpose 2, 3. For n = 6, in order
that a permutation of 1, 2, 3, 4, 5, 6 leaves the node 56|1234 invariant, it can
transpose 5, 6 and permute 1, 2, 3, 4; then to leave 34|12 invariant, permu-
tations of 1, 2, 3, 4 can only transpose 3, 4 and 1, 2. Generalizing these two
cases leads to the above.

But there are more restrictions. For n = 5, with nodes 34|12, j35|j1j2
and 45|123, if only 4, 5 are transposed we get nodes 35|12, j34|j1j2 and
45|123. Therefore j3 = 3 and {j1, j2} = {1, 2}. Hence 35|12 is a node
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of A in order that the (4 5) transposition can be considered. This cor-
responds to b5(3) = 1 in generating the vine array. For n > 5, with nodes
n−2, n−1|1 · · · n−3, jn−2n|j1 · · · jn−3 and n−1, n|1 · · · n−2, if only n−1, n
are transposed we get nodes n − 2, n|1 · · · n − 3, jn−2, n − 1|j1 · · · jn−3 and
n−1, n|1 · · · n−2. Therefore jn−2 = n−2 and {j1, . . . , jn−3} = {1, . . . , n−3}.
Hence n− 2, n|1 · · · n− 3 is a node of A in order that the (n − 1 n) trans-
position can be considered. This corresponds to bn(n− 2) = 1 in generating
the vine array.

Next, consider n = 5 and transposing 2, 3. With the permutation
denoted as π, this means the nodes 12, 13, 23|1, j35|j1j2, 34|12 map to 13,
12, 32|1, π(j3)π(5)|π(j1)π(j2), 24|13. In order that the permutation includes
34|12, it is necessary that 5 be permuted and the above implies that it is
transposed with 4. Hence if 2, 3 are transposed, it is necessary that 4, 5 be
transposed. For n = 6, if 3, 4 are transposed, then it is necessary that 5, 6
be transposed; if 1, 2 are transposed, then it is necessary that pairs 3, 4 and
5, 6 be transposed.

The generalization is that the only permutations to considered for equiv-
alent classes are:

(a) (n− 1 n), (n− 3 n− 4)(n − 1 n), . . . , (1 2) · · · (n − 1 n) if n is even,
(b) (n− 1 n), (n− 3 n− 4)(n − 1 n), . . . , (2 3) · · · (n − 1 n) if n is odd.

For dimension n, denote Pn as the set of these [(n − 1)/2] permutations.
Let us next look more carefully at vectors b4, . . . , bn, which defineNO(n),

that are consistent with each of the permutations in Pn, in the sense that
the vine with permuted indices is still in NO(n). The above shows that the
transposition (n − 1 n) corresponds to bn(n − 2) = 1 and this covers Nn/2
members of NO(n).

The next permutation (n−3 n−2)(n−1 n) corresponds to bn−2(n−4) = 1
and bn(n − 2) = 0, and this covers Nn/4 members of NO(n) if n ≥ 6 and
Nn/2 members if n = 5. We show the idea of the proof of this with n = 5. If
2, 3 are transposed and 4, 5 are transposed, then 34|12 is converted to 25|13,
and there must be 25|13 in the vine V to convert to 34|12. This means that
A35 = 2 and b5(3) = bn(n−2) = 0. For n = 5, bn−2(n−4) = b3(1) = 1 always.
For n > 5, the argument leading to bn(n − 2) = 1 for the transposition
(n− 1 n) means that bn−2(n− 4) = 1 for (n− 3 n− 2)(n − 1 n).

The pattern extends to other permutations in Pn. For (n − 2j − 1 n −
2j) · · · (n − 1 n) [a permutation that involves j + 1 transpositions] with
1 ≤ j < [n/2] − 1, the constraints are bn(n − 2) = · · · = bn−2j+2(n − 2j) =
0 and bn−2j(n − 2j − 2) = 1. This corresponds to Nn/2j+1 members of
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NO(n). If n is even, then (1 2) · · · (n − 1 n) corresponds to constraints
bn(n− 2) = · · · = b4(2) = 0 and Nn/2n/2−1 members of NO(n). If n is odd,
then (2 3) · · · (n−1 n) corresponds to constraints bn(n−2) = · · · = b5(3) = 0
(and b3(1) = 1 by definition) and Nn/2(n−1)/2−1 members of NO(n).

Consider a permutation π ∈ Pn applied to a regular vine V with array
A ∈ NO(n). It can lead to a vine V ∗ with array A∗ satisfying one of the
following: (i) A∗ �∈ NO(n), (ii) A∗ = A and (iii) A∗ ∈ NO(n) but A∗ �= A.
From the above properties of the binary vectors b4, . . . , bn, for any vine array
A ∈ NO(n) and corresponding regular vine V , there is exactly one of the
permutations π ∈ Pn leading to either (ii) or (iii). Then for case (ii), the
vine/array V,A is in an equivalence class with one member of NO(n), and
for case (iii), the vine/array V,A is in an equivalence class with two members
of NO(n). It is not possible for an equivalence class to contain more than
two members of NO(n).

Now we explain the remaining combinatorial arguments, with ideas illus-
trated with n = 5 or n = 6. For n = 5, suppose the transposition (4 5) does
not change the vine with i14, i24|i1, j15, j25|j1, 35|12. Then it is necessary
and sufficient that ii = j1 and i2 = j2 (and {i1, i2} = {1, 2}). This means
that after b4 is set, there is no degree of freedom in choosing b5(2); the
condition in terms of the b’s is: b5(k) = b4(k) for k = 2. With the similar
argument, for n > 5, if the transposition (n−1 n) does not change the vine,
then after bn−1 is set, there is no degree of freedom in choosing bn(k) for
k = 2, . . . , n− 3; the condition is: bn(k) = bn−1(k) for k = 2, . . . , n− 3.

Next, for n = 6, consider the permutation (3 4)(5 6). If this leaves the
vine unchanged, then there is no freedom for b4(2) and b6(k), k = 2, 3 after
b3, b5 are set; the additional conditions are that b4(k) = b3(k) for k = 2 (but
note that b3(2) = 1 by definition) and b6(k) = b5(k), k = 2, 3. For n > 6, if
the permutation (n−3 n−2)(n−1 n) leaves the vine unchanged, then there
is no freedom for bn−2(k), k = 2, . . . , n − 5 and bn(k) for k = 2, . . . , n − 3
after bn−3, bn−1 are set; the additional conditions are that bn−3(k) = bn−2(k)
for k = 2, . . . , n− 5 and bn(k) = bn−1(k) for k = 2, . . . , n− 3.

This pattern in terms of freedom to set the bi vectors extends to all
other permutations in Pn. But the conditions that relate consecutive bi
vectors are more complicated than above. For n even, if the permutation
(1 2) · · · (n − 1 n) leaves the vine unchanged, b4(2) = 0, b6(4) = · · · =
bn(n−2) = 0 and there is no freedom in other elements of b6, b8, . . . , bn after
b5, b7, . . . , bn−1 are set. For n ≥ 7 odd, if the permutation (2 3) · · · (n− 1 n)
leaves the vine unchanged, b5(3) = 0, b7(5) = · · · = bn(n− 2) = 0 and there
is no freedom in other elements of b5, b7, . . . , bn after b4, b6, . . . , bn−1 are set.
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But the conditions that relate consecutive bi vectors are more complicated
than above.

This leads to the following tables; Table 10.1 has equivalence classes by
π ∈ Pn for n = 5, 6, 7, 8 and Table 10.2 is for general n to show how to get
the count of equivalence classes.

Table 10.1. Counts of equivalence classes inNO(n) (those with one member,
those with two members, all) by permutation π in Pn. The column “num-
ber” indicates the number of A ∈ NO(n) such that the permuted vine has
A∗ ∈ NO(n) with the given π; the column “ec1” is the number such that
A = A∗; the column “ec2” is half the number such that A �= A∗; and the
column “ec” is the sum of “ec1” and “ec2”.

n = 5

permutation π number ec1 ec2 ec

(45) 4 2 1 3
(23)(45) 4 2 1 3

total 8 4 2 6

n = 6

permutation π number ec1 ec2 ec

(56) 32 8 12 20
(34)(56) 16 4 6 10

(12)(34)(56) 16 4 6 10

total 64 16 24 40

n = 7

permutation π number ec1 ec2 ec

(67) 512 64 224 288
(45)(67) 256 16 120 136

(23)(45)(67) 256 16 120 136

total 1024 96 464 560

n = 8

permutation π number ec1 ec2 ec

(78) 16384 1024 7680 8704
(56)(78) 8192 128 4032 4160

(34)(56)(78) 4096 64 2016 2080
(12)(34)(56)(78) 4096 64 2016 2080

total 32768 1280 15744 17024
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Table 10.2. Annotated version of Table 10.1.

n = 5

π ok ec1 ec2

(45) 4 [b5(3) = 1] 2 [C.3,D.1, b4(2) = b5(2)] 1 [C.0 ≡ D.2]
(23)(45) 4 [b5(3) = 0] 2 [D.0,C.2, b4(2) = b5(2)] 1 [C.1 ≡ D.3]

total 8 4 2

n = 6

π number ec1 ec2

(56) 32 [b6(4) = 1] 8 [b5(k) = b6(k), k = 2, 3] 12
C.i5.(2i5 + 1), D.i5.(2i5 + 1), i5 = 0, 1, 2, 3

(34)(56) 16 [b6(4) = 0, b4(2) = 1] 4 [b5(k) = b6(k), k = 2, 3] 6
C.i5.(2i5), i5 = 0, 1, 2, 3

(12)(34)(56) 16 [b6(4) = 0, b4(2) = 0] 4 [b5(k) = b6(k), k = 2, 3] 6
D.0.0, D.1.6, D2.4, D3.2

total 64 16 24

n = 7

π number ec1 ec2

(67) 512 [b7(5) = 1] 64 [b6(k) = b7(k), k = 2, 3, 4] 224
C.i5, i6.(2i6 + 1), D.i5.i6.(2i6 + 1), i6 = 0, . . . , 7

(45)(67) 256 [b7(5) = 0, b5(3) = 1] 16 [b6(k) = b7(k), k = 2, 3, 4; b4(2) = b5(2)] 120
C.3.i6.(2i6), D.1.i6.(2i6)

(23)(45)(67) 256 [b7(5) = 0, b5(3) = 0] 16 120
[C.2, D.0].[0.0, 1.6, 2.4, 3.2, 4.8, 5.14, 6.12, 7.10]

total 1024 96 464

n = 8

π number ec1 ec2

(78) 16384 [b8(6) = 1] 1024 [b7(k) = b8(k), k = 2, . . . , 5] 7680
C.i5.i6.i7.(2i7 + 1), D.i5.i6.i7.(2i7 + 1)

(56)(78) 8192 [b8(6) = 0, b6(4) = 1] 128 [b7(k) = b8(k), k = 2, . . . , 5; b5(k) = b6(k), k = 2, 3] 4032
C.i5.(2i5 + 1).i6.(2i6), D.i5.(2i5 + 1).i6.(2i6)

(34)(56)(78) 4096 [b8(6) = 0, b6(4) = 0, b4(2) = 1] 64 2016
C.i5.(2i5).(2i).(4i), i = 0, . . . , 7,

C.i5.(2i5).[1.6, 3.2, 5.14, 7.10, 9.22, 11.18, 13.30, 15.26]

(12)(34)(56)(78) 4096 [b8(6) = 0, b6(4) = 0, b4(2) = 0] 64 2016
D.[0.0, 1.6, 2.4, 3.2].[1.6, 3.2, 5.30, 7.26, 9.22, 11.18, 13.14, 15.10],

D.[0.0, 2.4].[0.0, 2.4, 4.8, 6.28, 8.16, 10.20, 12.24, 14.12],
D.[1.6, 3.2].[0.0, 2.4, 4.24, 6.28, 8.16, 10.20, 12.8, 14.12]

total 32768 1280 15744
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The cases satisfying invariance (column “ec1”) in Table 10.2 are based
on the summaries from running the algorithm for generating all A arrays in
NO(n) based on binary vectors b4, . . . , bn.

Table 10.2 suggests that for a permutation π with three or more transpo-
sitions, it may not be easy to characterize b4, . . . , bn for the A’s counted in
column “ec1”. However the A matrix has simple form for pairs of columns
n−2j−1, n−2j, . . ., n−1, n with j ≥ 2. IfAk,n−2i−1 = d, then Ak,n−2i = π(d)
for 0 ≤ i ≤ j and 1 ≤ k ≤ n − 2i − 3. In Table 10.2, we use the nota-
tion for vines based on the binary vectors b4, . . . , bn that is introduced in
Section 10.2.

In Table 10.3, we show the pattern of Table 10.2 for general n and indicate
the two-way classification of number of equivalence classes by permutation
π and the number of members of the equivalence class.

Summing the cases in Table 10.3 leads to the following formula for the
number of equivalence classes of regular vines in dimension n:

En = (Nn + E1n)/2,

where

E1n =
[n/2]−1∑

k=1

Nn�k · 2−k · 2−
Pk−1

i=0 (n−4−2i), Nn = 2(n−2)(n−3)/2,

and �k = 1 for all k except �[n/2]−1 = 2.
Table 10.4 has the counts of equivalence classes for n = 4 to 11. The

numbers have been confirmed numerically up to n = 10 based on the enu-
meration of all members of NO(n).

We next mention some comments on equivalence classes. If the equiva-
lence class is based on (n − 1 n) [n ≥ 6] or (n − 3 n − 2)(n − 1 n) [n ≥ 7],
then there is a simple form for bn−3, bn−2, bn−1, bn.

For (n− 1 n), if A,A∗ are in the same equivalence class and have binary
vectors bi, b∗i , then bn−1(k) = b∗n(k) and bn(k) = b∗n−1(k) for k = 2, . . . , n−3,
bn(n − 2) = b∗n(n − 2) = 1 and bi = b∗i for i = 4, . . . , n − 2. The equivalence
class has just one member if the transposition of bn−1, bn does not lead to
something different.

For (n − 3 n − 2)(n − 1 n), if A,A∗ are in same equivalence class and
have binary vectors bi, b∗i , then bn−3(k) = b∗n−2(k) and bn−2(k) = b∗n−3(k)
for k = 2, . . . , n−5, bn−2(n−4) = b∗n−2(n−4) = 1, bn(n−2) = b∗n(n−2) = 0
and bi = b∗i for i = 4, . . . , n− 4. The equivalence class has just one member
if the transpositions of bn−1, bn and bn−3, bn−2 do not lead to something
different.
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Table 10.3. Summary of counts of equivalence classes in NO(n) (those with one member, those with
two members, all) by permutation in Pn; separated by n even/odd. The number of equivalence classes
in NO(n) is equal to En = (Nn +E1n)/2 = E1n + E2n.

n even

π number ec1 ec2

(n− 1 n) mn = Nn/2 e1,n = mn/2
n−4 (mn − e1,n)/2

(n− 3 n− 2)(n− 1 n) mn−2 = Nn/4 e1,n−2 = mn−2/2
(n−4)+(n−6) (mn−2 − e1,n−2)/2

— — — —

(3 4) · · · (n− 1 n) m4 = Nn/2
n/2−1 e1,4 = m4/2

(n−4)+(n−6)+···+2 (m4 − e1,4)/2

(1 2) · · · (n− 1 n) m2 = Nn/2
n/2−1 e1,2 = m2/2

(n−4)+(n−6)+···+2 (m2 − e1,2)/2

total Nn = 2(n−2)(n−3)/2 E1n E2n = (Nn − E1n)/2

n odd

perm number ec1 ec2

(n− 1 n) mn = Nn/2 e1,n = mn/2
n−4 (mn − e1,n)/2

(n− 3 n− 2)(n− 1 n) mn−2 = Nn/4 e1,n−2 = mn−2/2
(n−4)+(n−6) (mn−2 − e1,n−2)/2

— — — —

(4 5) · · · (n− 1 n) m5 = Nn/2
(n−1)/2−1 e1,5 = m5/2

(n−4)+(n−6)+···+1 (m5 − e1,5)/2

(2 3) · · · (n− 1 n) m3 = Nn/2
(n−1)/2−1 e1,3 = m3/2

(n−4)+(n−6)+···+1 (m3 − e1,3)/2

total Nn = 2(n−2)(n−3)/2 E1n E2n = (Nn − E1n)/2
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Table 10.4. Number of
equivalence classes of reg-
ular vines in dimension n.

n En

4 2
5 6
6 40
7 560
8 17024
9 1066496
10 135307264
11 34496249856

However, the form of an equivalence class is much more complex when
it is based on permutations with three or more transpositions (see Table
10.2 for the form of equivalence classes with one member). This is because
transpositions in bn−5, bn−4 can have bigger effects on columns bn−1, bn.

The above theory and Table 10.2 show how to easily find the permutation
π for an A ∈ NO(n) based on its b4, . . . , bn. If this π has three or more
transpositions, the other member of the equivalence class can be found as
follows. Transpose appropriate elements in the A matrix based on π and
obtain the A∗ matrix as a member of NO(n). Then A∗ can be inverted to
obtain b∗4, . . . , b

∗
n.

Below is the algorithm for the inversion — it also includes a check of
whether an n× n matrix A∗ is a member of NO(n).

1. Input A∗: assume A∗
i,i = i for i = 1, . . . , n, A∗

i−1,i = i−1 for i = 2, . . . , n,
A1,3 = 1 and (A∗

1,j , . . . , A
∗
j−2,j) is a permutation of (1, . . . , j − 2) for

j = 4, . . . , n. Otherwise, return −1 to indicate that A∗ �∈ NO(n).
2. For column 4: b∗4(2) = 1 if A∗

2,4 = 2 and b∗4(2) = 0 if A∗
2,4 = 1.

3. For columns d = 5, . . . , n,

• b∗d(1) = b∗d(d− 1) = b∗d(d) = 1.
• ac = active column ← d− 2;
• For j from d− 2 to 1
• If A∗

j,d = A∗
ac,ac, then b∗d(j) = 1 and the new ac is the largest value

among A∗
1,d, . . . , A

∗
j−1,d;

• Else if A∗
j,d = A∗

j−1,ac, then b∗d(j) = 0;
• Else A∗ is not in NO(n) and return −1.

4. Return b∗4, . . . , b∗n.
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10.4 Examples

In this section, we comment on the example in (10.1) and show another
example to illustrate an equivalence class of two members for NO(6).

Note that (10.1) satisfies b4(2) = 1 and b6(4) = 0, and so from Table 10.2,
this means that the relevant permutation is (3 4)(5 6). Because the vine is
invariant under this permutation, in NO(6), it is in an equivalence class of
size 1. In the notation of Section 10.2, the vine in (10.1) is called C.1.2.

For another example, we start with an array A constructed from b4, b5, b6
with b4(2) = 0 and b6(4) = 0. From Table 10.2, this means that the relevant
permutation is (1 2)(3 4)(5 6).




b1 b2 b3 b4 b5 b6
1 1 1 1 1 1

1 1 0 0 1
1 1 1 0

1 1 0
1 1

1




, A =




1 1 1 2 2 2
2 2 1 1 4

3 3 3 1
4 4 3

5 5
6




(10.2)

The nodes of the vine are




12 13 24 25 26
23|1 14|2 15|2 46|2

34|12 35|12 16|24
45|123 36|124

56|1234



.

In the notation used previously, the vine in (10.2) is called D.1.4. From the
first level nodes of the vine, one can see that it is not invariant with respect
to (1 2)(3 4)(5 6). After this permutation, the vine and its representation
in NO(6) are:




12 24 13 16 15
14|2 23|1 26|1 35|1

34|12 46|12 25|13
36|124 45|123

56|1234



,




12 13 24 15 16
23|1 14|2 35|1 26|1

34|12 25|13 46|12
45|123 36|124

56|1234



.
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The array A∗ for the other member of the equivalence class is given below
and its corresponding b vectors can be obtained with the inverse algorithm.

A∗ =




1 1 1 2 1 1
2 2 1 3 2

3 3 2 4
4 4 3

5 5
6




,




b1 b2 b3 b4 b5 b6
1 1 1 1 1 1

1 1 0 1 1
1 1 0 1

1 1 0
1 1

1




. (10.3)

In the notation of Section 10.2, the vine in (10.3) is called D.2.6. That is,
D.1.2 and D.2.6 are in an equivalence class with two members.

10.5 Discussion

For all of these results on equivalence classes, a key component is the
algorithm for generating all members of NO(n). The patterns seen for
n = 5, 6, 7, 8 point to the direction of proof for the formula for the number
of equivalence classes in NO(n).

Reference
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The vine copulae representation is a very flexible model of n-dimensional ran-
dom vectors. However when n becomes too large, some simplifying assumptions
have to be made as fitting this model becomes too cumbersome. In this chap-
ter truncations of vines are discussed. We could reduce a vine to a Markov tree
structure but Markov trees allow n−1 copulae to be specified out of

`
n
2

´
possible

for vines. Hence trees may be too restrictive for a given set of data. Another
possibility would be to model subsets of variables with vines and connect these
smaller vines in a tree structure. We suggest one more strategy of choosing the
“most suitable” vine for the correlation matrix. The “best vine” is the one whose
nodes of top trees (tree with the most conditioning) correspond to the smallest
absolute values of partial correlations. To search for the “best vine” we developed
a new algorithm of generating a regular vine. We start building the vine from
the top node (node in tree n-1) and progress to the lower trees, ensuring that the
regularity condition is satisfied and that the partial correlations corresponding
to these nodes are the smallest. If we assume that we can assign the independent
copula to nodes of the vine with small absolute values of partial correlations, then
this algorithm can be used to find an optimal truncation of a vine structure. We
advocate using it as a preprocessing step of fitting a vine to the data.
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11.1 Introduction

The vine copula representation is a very flexible model of a joint
n-dimensional distribution. It allows not only information in marginal dis-
tributions to be separated from information about dependencies in the joint
distribution; it also gives a way of specifying

(
n
2

)
different bivariate copulae

as “building blocks” of the joint distribution. These bivariate building blocks
can control correlation structure as well as other features of joint distribu-
tion, e.g., tail dependence.7 Choosing copulae with different tail dependence
parameters and different correlations gives us a very rich set of models.

Vine distributions can be quantified with data.2 When their performance
was compared with other existing models,1, 2 it was shown that they out-
perform other models significantly. If data are not available, vines can be
quantified with structured expert judgment.12

In Aas et al.2 only two types of regular vines, namely C-vines and D-vines
(see Figs. 11.1 and 11.2), were used. Up to the fourth dimension, all pos-
sible vines are of these two types. For higher dimensions, other different
types of vines are available (see Chapters 7 and 10). In many cases it can be
more advantageous to fit different types of regular vines to data.9 Fitting
all possible vines is not feasible as the number of vines grows rapidly with

1
12

2
23

3
34

4
45

5

13 2 24 3 35 4

14 23 25 34

15 234

Figure 11.1. A D-vine on five elements showing conditioned and conditioning sets.
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1

2

3

4

5
15

14

13

12

23 1

24 1

25 1

34 12
35 12

45 123

Figure 11.2. A C-vine on five elements showing conditioned and conditioning sets.

dimension.11 There are three vines on three variables, 24 vines on four vari-
ables, 480 on five variables and more than 23,000 on six variables.

In high-dimensional cases where we are unable to fit all possible vines,
simplified dependence structures must be considered. We could reduce the
model to a Markov tree structure which is a special case of a vine. But as
Markov trees allow n − 1 out of n(n − 1)/2 copulae to be specified, trees
may be too restrictive for a given data. Another possibility would be to
model subsets of variables with vines and connect these smaller vines in a
tree structure.

In this chapter we suggest a different strategy for choosing the “most suit-
able” vine for the correlation matrix. The “best vine” is the one whose nodes
of top trees (tree with the most conditioning) correspond to the smallest
absolute values of partial correlations. To search for the “best vine” we
developed a new algorithm of generating a regular vine. We start building
the vine from the top node (node in tree n − 1) and progress to the lower
trees, ensuring that the regularity condition is satisfied and that the partial
correlations corresponding to these nodes are the smallest. If we assume that
we can assign the independent copula to nodes of the vine with small abso-
lute values of partial correlations, then this algorithm will be useful in finding
an optimal truncation of a vine structure. In Ref. 10 it is shown that such
truncations of vines allow us to build distributions for which the dependence
structure corresponds to a chordal graph. We advocate finding an appropri-
ate vine truncation as a preprocessing step of fitting a vine to the data.

This chapter is organized as follows: We first summarize some known
facts of regular vines and extend this exposition with a few new properties.
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Next, known truncations of vines, namely Markov trees and vines in trees,
are discussed. In Section 11.4 a new algorithm for generating a regular vine
is presented, which is later used in a heuristic search for “the best” regular
vine for the correlation matrix. Finally some results and conclusions are
presented.

11.2 Vines

A vine on n elements V = (T1, . . . , Tn−1) is a nested set of trees where the
edges of tree j are nodes of tree j+1 and each tree has the maximum number
of edges. A regular vine on n elements is one in which two edges in tree j
are joined by an edge in tree j+1 only if these edges share a common node.
Two edges a, b joined by an edge c in the next tree are called m-children
of c and c is the m-parent of a and b. a and b are called siblings. Hence, a
regularity property can be formulated: all siblings have a common child.

For each edge of a vine we define constraint, conditioned and conditioning
sets of this edge as follows: The nodes of the first tree reachable from a given
edge via the membership relation are called the constraint set of that edge.
When two edges are joined by an edge in the next tree, the intersection of
the respective constraint sets form the conditioning set, and the symmetric
difference of the constraint sets is the conditioned set of this edge. Formal
definitions can be found in any of the references above and in Chapter 3. We
adopt the following notation: for each edge e of V, let Ce and De denote con-
ditioned and conditioning sets of e. Moreover we will exchangeably denote
the constraint set of e as {Ce|De} to indicate conditioned and condition-
ing sets or simply show variables that this set contains as Ce ∪ De. If
Ce = {x, y}, then we will call x and y partners and we will denote that
y is a partner of x as y = pt(x).

In Figs. 11.1 and 11.2, two special types of the regular vines, the C-vine
and the D-vine, on five elements with conditioned sets and conditioning sets
assigned to their edges are shown.

For vines in Figs. 11.1 and 11.2 we can easily check some general prop-
erties of regular vines (for proofs and rigorous formulation see Ref. 8 and
Chapter 3).

Properties:

(1) There are n− 1 trees and
(
n
2

)
edges in a regular vine on n elements;

(2) Conditioned sets are doubletons;
(3) Each pair appears once as a conditioned set of an edge;
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(4) There are i − 1 and i + 1 elements in the conditioning and constraint
sets of an edge of the ith tree, respectively;

(5) If two nodes have the same constraint sets, they are the same node;
(6) If element i is a member of the conditioned set of an edge e of a regular

vine, then i is a member of the conditioned set of exactly one of the
m-children of e and the conditioning set of an m-child is a subset of De.

The following two lemmas can be added to vine properties.

Lemma 11.1. Let A ⊂ {1, . . . , n} and x1, x2 �∈ A, x1 �= x2 and y1, y2 ∈ A.
Let N1 = {x1, y1|A \ {y1}} and N2 = {x2, y2|A \ {y2}} be nodes of tree Ti

of regular vine on n variables; then N1 and N2 have a common m-child.
Moreover if y1 �= y2, then this common m-child is: {y1, y2|A \ {y1, y2}}.

Proof. Node N1 has two m-children with constraint sets {x1, A \ {y1}}
and A and N2 has two m-children whose constraint sets are {x2, A \ {y2}}
and A. From property [5], N1 and N2 have a common m-child.

If y1 �= y2, then from property [6], y1 and y2 have to be in the conditioned
set of the m-child. �

Lemma 11.2. Let A ⊂ {1, . . . , n}, x1, x2, . . . , xk �∈ A, xj �= xr, for j �= r

and y1, y2, . . . , yk ∈ A. Let N1 = {x1, y1|A \ {y1}}, N2 = {x2, y2|A \ {y2}},
. . . , Nk = {xk, yk|A\{yk}} be nodes of tree Ti of regular vine on n variables,
then

yj = s or yj = t, s, t ∈ {y1, . . . , yk}.

Proof. Each Nj has two m-children. One of them has the constraint set
A. Hence all Nj’s have a common m-child. By Lemma 11.1 if yj �= yr,
then they both have to belong to the conditioned set which concludes the
proof. �

11.3 Vine Distributions

In Bedford and Cooke3 the following representation theorem for joint density
in terms of product of (conditional) copulae assigned to the edges of a vine
and the marginal densities is proven.

Theorem 11.1. Let (F,V, B) be a copula vine specification where: F =
(F1, . . . , Fn) and each Fi has density fi, i = 1, . . . , n, V is a regular vine
on n elements and B = {Cjk | e(j, k) where e(j, k) is the unique edge
with conditioned set {j, k}, and Cjk is a copula for {Xj ,Xk} conditional
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1 2 3 4 5

0

0 0

0

Figure 11.3. A D-vine on five variables with four conditional independent copulae
assigned to top nodes.

on De(j,k) with density cjk|De
}. Then the vine-dependent distribution for

(F,V, B) is uniquely determined and has a density given by

f1···n = f1 · · · fn

n−1∏

i=1

∏

e(j,k)∈Ei

cjk|De
(Fj|De

, Fk|De
). (11.1)

Assigning independent copula to an edge e of the vine ensures that vari-
ables in the conditioned set of e are conditionally independent given vari-
ables in De. When the independent conditional copulae are assigned to top
nodes (with the most conditioning) of the vine, then the density (11.1)
simplifies significantly. For the D-vine in Fig. 11.3 with four independent
conditional copulae (shown as “0”), the density is of the form:

f1···5 = f1 · · · f5c12(F1, F2)c23(F2, F3)c34(F3, F4)c45(F4, F5)

c13|2(F1|2, F3|2)c35|4(F3|4, F5|4).
Independent conditional copulae assigned to top edges of the vine make

the dependence structure much simpler. This process can be seen as a “trun-
cation” of the vine to a more constrained model. Below, some special cases
of vines are briefly discussed.

11.3.1 Markov trees

If all conditional copulae are assumed to be the independent copula, then
the vine reduces to a Markov tree. The first trees of the D-vine and the
C-vine in Figs. 11.1 and 11.2 are shown in Fig. 11.4. For both models, only
four out of ten copulae can be specified: c12, c23, c34, c45 for the D-vine and
c12, c13, c14, c15 for the C-vine.

To choose the best tree for the data we can use one of the minimum
spanning tree algorithms (see, e.g., Ref. 6). Weights assigned to edges of the
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Figure 11.4. First trees of the D-vine (left) and the C-vine (right).

saturated graph might be chosen equal to correlations, tail indices, combi-
nations of those or other features of the joint data.

11.3.2 Vines in trees

Markov trees allow n − 1 out of n(n − 1)/2 copulae to be specified. Hence
trees may be too restrictive for a given set of data. Another possibility is to
model subsets of variables with vines and connect these smaller vines in a
tree structure. A simple example is presented in Fig. 11.5.

If the structure in Fig. 11.5 is such that variable 3 from the first subvine is
connected with variable 4 from the second one, then this structure represents
a truncation of the D-vine on six variables in which only the first tree and two
conditional copulae in the second tree can be different from the independent
copula.

If we understand the edge between two vines as connecting distributions
of variables {1, 2, 3} and {4, 5, 6}, then the structure in Fig. 11.5 will cor-
respond to a chain graph with two chain components {1, 2, 3} and {4, 5, 6}
(see, e.g., Ref. 5). Distributions represented as chain graphs, however, are
not so flexible as vines in terms of sampling and quantification.

1 2 3 4 5 6

Figure 11.5. Vines in a tree.
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11.4 Optimal Truncation

In this section a strategy for choosing the “most suitable” truncation of the
vine for the correlation matrix is described. For this purpose we propose a
new way of generating a regular vine.

11.4.1 Generating regular vines

A regular vine on n variables can be generated in different ways. One way
is to follow its definition: choose the first tree; for j = 2, . . . , n− 1, build Tj

by connecting two edges in Tj−1 if they share a common node.
A different algorithm is presented in Morales-Nápoles et al.11 and

Chapters 9 and 10, based on extending a vine on j − 1 variables by adding
the variable j. Choices for these extensions have to satisfy a certain condi-
tion which assures the regularity. It is shown that there are 2j−3 possible
choices for the extension.

Our algorithm will start building a vine from the top tree, Tn−1, that has
only one edge. We can choose any pair of variables to be in the conditioned
set of the top edge. If we have chosen n and n − 1, then the constraint set
of this edge is {n, n − 1|1, . . . , n − 2}. Constraint sets of its two m-children
are of the form {n, 1, . . . , n− 2} and {n− 1, 1, . . . , n − 2}. We must choose
partners of n and n− 1 in Tn−2 such that regularity will be satisfied. Hence
we first develop conditions that by Lemma 11.1 and 11.2 are necessary for
regularity and then show that when applied recursively in all trees they will
insure regularity.

Consider all sets of the form Bx = {x} ∪Ax where x ∈ Ce and Ax = De for
some edge e of tree Tj , j = 2, . . . , n− 2.

Condition 1.

Suppose Bx = By and x �= y, then there exists an edge f of Tj−1 such that
Cf = {x, y} and Df = Ax\{y}.

Condition 2.

For all Bi1 , . . . , Bik such that |Bip �Biu | = 2,

Bip = {ip, s|Aip\{s}} or Bip = {ip, t|Aip\{t}}, s, t ∈ Aip .

where U � V denotes the symmetric difference of sets U and V .
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The algorithm that builds a regular vine can now be stated as follows:

Algorithm A

Step 1. Choose two variables, say x, y ∈ {1, . . . , n} = I, to be in the
conditioned set of the top edge; constraint sets of its m-children are
Bx = {x} ∪ {I\{x, y}} and By = {y} ∪ {I\{x, y}}; choose partners
of x and y in Tn−2 from the set I\{x, y}. Then there are two edges
in Tn−2:

En−2 = {{x, pt(x)|I\{x, y, pt(x)}}, {y, pt(y)|I\{x, y, pt(y)}}} .

For all j = n− 2, . . . , 1
Step 2. Set Bx = {x} ∪Ax such that x ∈ Ce and Ax = De for each edge e

of tree Tj ;
Step 3. Remove all sets for which xi = xk, for i �= k;
Step 4. Apply Condition 1;
Step 5. Choose partners of variables x such that Condition 2 is satisfied;

Edge set of Tj−1 is the set containing elements of the form {x, pt(x)|Ax\
{pt(x)}}.

We prove that the above algorithm always produces a regular vine.

Theorem 11.2. Algorithm A produces a regular vine.

Proof. We prove that the recursive application of Algorithm A to the
jth level produces the jth tree of a regular vine. It is enough to show
that the procedure insures that all siblings in tree Tj have a common
m-child in tree Tj−1. Obviously the statement is true for initiating Step
1 as Condition 1 insures that two siblings in Tn−2 have a common m-child
in Tn−3. Suppose for all trees j = n − 1, . . . , k + 1 that all siblings in Tj

have a common child in Tj−1. Step 2 of the algorithm creates 2(n− k) con-
straint sets of m-children of edges of Tk. These sets are indexed by variables
that were in conditioned sets of edges of Tk. Multiple instances of these
sets are removed in Step 3. At this point some sets can be equal but they
are indexed by different variables. We combine them in Step 4 to satisfy
Condition 1 as by Property [5] they are constraint sets of the same edge.
Since both indexing variables were in the conditioning set of an edge in Tk,
then by Lemma 11.1 they have to be in the conditioned set of their com-
mon m-child. We get now that all constraint sets of m-children of edges in
Tk are different. The symmetric difference of constraint sets of siblings in
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Tk has two elements and the symmetric difference of constraint sets of their
m-children has also two elements. Condition 2 applied to all sets B such that
|Bv � Bu| = 2, insures by Lemma 2 that all siblings in Tk have a common
m-child in Tk−1. �

Remark 11.1. Notice that the edges of T1 are already obtained after Step 3
of Algorithm A.

We will use the algorithm described in this section in finding the “best
vine” for the correlation matrix.

11.4.2 Best vine

Quantifying a vine with data is performed sequentially by first fitting cop-
ulae on the first tree, then transforming data through the fitted copulae to
find copula parameters on the second tree, etc.2 In fitting high-dimensional
vine distributions it would be of interest to first find a vine structure with the
maximum number of independent copulae in the top nodes that offers the
best approximation of the data. We propose to base this choice on a partial
correlation vine corresponding to the correlation matrix obtained from data.
Partial correlations13 are calculated from the correlation matrix as follows:

ρij;I\{i,j} =
Ci,j

det(I)

where det(I) denotes the determinant of the correlation matrix of variables
in I and Ci,j, its (i, j)th cofactor. Partial correlations are assigned to the
edges of a vine such that conditioning variables are equal to the conditioning
set and the conditioned variables are equal to the conditioned set.

For elliptically contoured distributions, partial correlations are equal to
conditional correlations. For the normal distribution, zero partial corre-
lation corresponds to conditional independence. In general, however, zero
partial correlation does not have to indicate conditional independence.
Nevertheless, in our algorithm for finding the best vine, we will choose part-
ners of variables x in Algorithm A such that Condition 2 is satisfied and
such that the absolute values of partial correlations ρx,pt(x);Ax\pt(x) are the
smallest.

11.5 Optimal Truncation: Results

We start this section with a simple example to show how the algorithm
works and then test its performance. We conclude with an application of
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the algorithm to the data matrix analyzed in Ref. 9. A comparison of the
performance of our algorithm and the algorithm based on the majorization
principle proposed in Ref. 9 is performed.

11.5.1 Example

Consider the following correlation matrix:

M =




1 0.2 0.4 0.5 0.7
0.2 1 0.3 0.6 0.7
0.4 0.3 1 0.8 0.5
0.5 0.6 0.8 1 0.8
0.7 0.7 0.5 0.8 1



.

The normalized inverse matrix of M is:



1 0.5309 −0.2034 0.2246 −0.7437
0.5309 1 0.0914 −0.0827 −0.6021
−0.2034 0.0914 1 −0.7930 0.3236

0.2246 −0.0827 −0.7930 1 −0.5613
−0.7437 −0.6021 0.3236 −0.5613 1



.

We choose the smallest absolute partial correlation which is 0.0827. This
is the partial correlation ρ24;13. Then we follow Algorithm A and obtain that
the best vine, with the smallest partial correlations in the top nodes, is:

V =




Ce De ρCe;De

2 4 | 1 3 5 = 0.0827
2 3 | 1 5 = 0.0425
4 1 | 3 5 = 0.3179
3 1 | 5 = 0.0808
2 1 | 5 = 0.5686
4 3 | 5 = 0.7698
3 5 = 0.5
2 5 = 0.7
1 5 = 0.7
4 5 = 0.8




.

The vine obtained is neither a D-vine nor a C-vine (see Fig. 11.6). If we
assume that we can assign the independent copula to nodes of the vine
with small absolute partial correlations, then we see that only seven out of
ten copulae c15, c25, c35, c45 and c43|5, c12|5, c41|35 have to be fitted. Moreover,
because of the sequential fitting of copula in vines, the estimates for copulae



October 11, 2010 12:19 9.75in x 6.5in b979-ch11

244 D. Kurowicka

2 5 3

1

4

Figure 11.6. Vine corresponding to matrix M .

with more conditioned variables are not so accurate. Removing them may
be of benefit.

If we decided to search for a vine with the highest correlations in lower
trees, then we would end up with the following vine:

V ∗ =




Ce De ρCe;De

2 3 | 1 4 5 = −0.0914
2 4 | 1 5 = 0.0169
1 3 | 4 5 = 0.2985
3 5 | 4 = −0.3889
2 1 | 5 = −0.5686
4 1 | 5 = −0.1400
3 4 = 0.8
2 5 = 0.7
1 5 = 0.7
4 5 = 0.8




.

We see that in this case the top node is also associated with small partial
correlation but in general it does not have to be the case.

Table 11.1 presents sums and average partial correlations in trees of
V and V ∗. We see that the partial correlation of the top edge of V is
slightly smaller than the partial correlation of the top edge of V ∗. The choice
of slightly smaller correlations in T4 leads to significantly higher average
correlations in T3.

11.5.2 Comparison

We consider an example treated in Ref. 4. We have eight variables corre-
sponding to weather monitoring stations in Europe. The original data has
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Table 11.1. Sum and average absolute values of
partial correlations in trees of V and V ∗.

T4 T3 T2 T1

sum V 0.0827 0.3604 1.4192 2.7
average V 0.0827 0.1802 0.4731 0.675
sum V ∗ 0.0914 0.3154 1.0975 3
average V ∗ 0.0914 0.1577 0.3658 0.75

a sample correlation matrix:



1 .35 .50 .49 .68 .38 .50 .59
1 .79 .69 .12 .64 .62 .49

1 .72 .18 .61 .58 .43
1 .05 .46 .47 .43

1 .33 .51 .71
1 .97 .77

1 .90
1




.

In Kurowicka et al.9 a heuristic search of a vine was adopted for which
the logarithm of one minus squared partial correlations assigned to its edges
majorizes all others based on minimizing the entropy function.

The heuristic works as follows:

(1) Choose an ordering of the variables.
(2) Start with subvine consisting of variables 1 and 2 in the ordering. For

j = 3, . . . , n, find the subvine extending the current subvine by adjoining
variable j+1, so as to minimize entropy function of log(1−ρ2

Ce;De
). Store

the vine obtained for j = n.
(3) Go to 1.
(4) Choose the optimal partial correlation vine minimizing entropy among

all those stored.

In general it is not feasible to search all permutations; heuristic search
methods or Monte Carlo sampling must be used. The optimal vine V ∗

obtained with this procedure is shown below. We can see that there are
many small partial correlations in this vine but they are not necessarily in
the top trees. The vine V was obtained with Algorithm A. We can see that
there are many more small correlation values in trees with higher indices.
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Table 11.2. Sum and average absolute values of partial correlations in trees
of V and V ∗.

T7 T6 T5 T4 T3 T2 T1

sum V 0.0109 0.2382 1.1841 1.3341 2.3696 1.5308 4.3384
average V 0.0109 0.1191 0.3947 0.3335 0.4739 0.2551 0.6198
sum V ∗ 0.8883 1.4657 0.2035 1.3987 1.9273 1.5745 3.6045
average V ∗ 0.8883 0.7328 0.0678 0.3497 0.3855 0.2624 0.5149

V =




Ce De ρCe;De

2 5 | 134678 0.0109
2 8 | 13467 0.0823
5 7 | 13468 0.1559
8 7 | 1346 0.9499
2 6 | 1347 0.0377
5 3 | 1468 0.1965
7 6 | 134 0.9666
8 3 | 146 −0.3310
2 1 | 347 0.2756
5 6 | 148 0.4229
6 3 | 14 0.4250
7 1 | 34 0.2854
8 6 | 14 0.7166
2 4 | 37 0.2802
5 4 | 18 0.6624
3 1 | 4 0.2495
7 4 | 3 0.0936
8 4 | 1 0.1944
6 1 | 4 0.2037
2 7 | 3 0.3236
5 1 | 8 0.4660
7 3 0.5822
6 4 0.4602
2 3 0.7888
5 8 0.7140
3 4 0.7155
1 4 0.4890
8 1 0.5886




V ∗ =




Ce De ρCe;De

7 8 | 123456 0.8883
6 7 | 12345 0.9783
4 8 | 12356 0.4874
4 6 | 1235 0.0171
4 7 | 1235 0.1086
1 8 | 2356 0.0778
1 7 | 235 −0.0591
1 6 | 235 −0.0961
1 4 | 235 0.4632
5 8 | 236 0.7803
2 4 | 35 0.2928
1 5 | 23 0.6998
5 6 | 23 0.3068
5 7 | 23 0.5450
3 8 | 26 −0.0829
1 3 | 2 0.3935
3 4 | 5 0.7190
2 5 | 3 −0.0309
3 6 | 2 0.2208
3 7 | 2 0.1918
2 8 | 6 −0.0185
1 2 0.3491
2 3 0.7888
3 5 0.1762
4 5 0.0487
2 6 0.6424
2 7 0.6210
6 8 0.9783
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11.6 Conclusions

The new algorithm for generating a regular vine presented in this chapter
allows us to build a vine starting from the edge in tree n − 1, progressing
to lower trees, making sure that the regularity condition is satisfied. We
proposed applying this algorithm in a heuristic search for a vine with small
absolute values of partial correlations assigned to its top edges that corre-
sponds to a given correlation matrix. It was observed that the choice of a
small partial correlation in tree Tj may severely constrain the choices that
we have in tree Tj−1. We could improve the heuristic by basing our choices
on more than one tree at a time.
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In the last two decades the advent of fast computers has made Bayesian inference,
based on Markov chain Monte Carlo (MCMC) methods, very popular in many
fields of science. These Bayesian methods, are good alternatives to traditional
maximum likelihood (ML) methods since they can often estimate complicated
statistical models for which an ML approach fails. In this chapter we review
available MCMC estimation and model selection algorithms as well as their pos-
sible extensions for D-vine pair-copula constructions (PCC) based on bivariate
t-copulae. However the discussed methods can easily be extended for an arbi-
trary regular vine PCC based on any bivariate copulae. A Bayesian inference for
Australian electricity loads demonstrates the addressed algorithms at work.
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12.1 Introduction

Pair-copula constructions (PCC) for multivariate copulae have been suc-
cessful in extending the class of available multivariate copulae (see Refs. 8
and 1). Estimation of the corresponding copula parameters has been done
so far using maximum likelihood (ML). However, the number of parame-
ters of a PCC model to be estimated can be considerable. So far it has
been facilitated by numerical optimization of the log-likelihood to obtain
ML estimates.

For inference purposes, one needs to have reliable standard error esti-
mates for the estimated parameters. The standard approach for this is to
impose regularity conditions such that asymptotic normality of the param-
eter estimates holds and to approximate the estimated standard errors by
evaluating numerically the Hessian matrix. However, for large parameter
vectors this evaluation is time-consuming and its reliability is uncertain. In
addition, numerical estimates of the Hessian matrix might result in non-
positive definite matrices yielding negative variance estimates. For these
reasons Min and Czado19 started to investigate Bayesian inference for PCC
models based on Markov chain Monte Carlo (MCMC) methods (see Refs. 18
and 13). Bayesian inference has the advantage of providing natural interval
estimates based on the posterior distribution and does not rely on asymp-
totic normality. Besides, the Bayesian approach is able to incorporate prior
information which might be available from the data context or previous data
analyses.

Min and Czado19 developed and implemented Bayesian MCMC algo-
rithms for D-vines based on pair t-copulae. While this solved the problem
of obtaining reliable interval estimates for parameters needed for inference
purposes, the problem of model selection needed to be approached. The gain
of flexibility by using PCC is huge, however, the problem of which PCC
model to choose becomes important. In particular Morale-Nápoles et al.21

have shown that the number of PCC models, even in small dimensions,
can be enormous, so it is impossible to fit all models and compare them.
Therefore efficient model selection strategies are needed. While Heinen and
Valdesogo14 approached this problem by using truncated PCC construc-
tions, Min and Czado20 approached the problem of reducing a chosen PCC
by using reversible jump (RJ) MCMC methods suggested by Green12 and
successfully applied to search large model spaces as is needed in PCCs. The
purpose of this chapter is to give an overview of these Bayesian estimation
and model selection procedures and illustrate their usefulness in a data set
involving Australian electricity loads from Chapter 13.
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The proposed methodology is developed for data transformed to the cop-
ula level, i.e., for data living on the multivariate unit cube. We will use a
parametric and nonparametric approach to create the copula data used for
illustration. We have chosen the above data set to facilitate comparison
of two-step estimation procedures to the joint estimation procedure from
Chapter 13 and in Ref. 9. For this data set, it turns out that two-step
estimation procedures are nearly as efficient as the joint estimation pro-
cedure, thus making the extra effort required for the joint estimation less
necessary.

The chapter is organized as follows. In Section 12.2 we briefly consider
a general D-vine decomposition for a multivariate density. Section 12.3
presents the likelihood of D-vine PCCs based on t-copulae. In Section 12.4
we survey MCMC estimation and model selection algorithms, as well as their
possible extensions for a D-vine PCC based on t-copulae. Sections 12.5 and
12.6 illustrate the discussed MCMC methods in the Bayesian analysis of
Australian electricity loads from Chapter 13. In Section 12.7 we summarize
our findings and discuss further open problems as well as future research
directions.

12.2 D-Vine

Using Sklar’s theorem in n dimensions, multivariate distributions on R
n with

given margins can be easily constructed. However, this general approach
does not provide a solution for the construction of flexible multivariate dis-
tributions. In this section we give such a construction proposed first by
Joe,15 organized by Bedford and Cooke3 and applied to Gaussian copulae
only. Later, Aas et al.2 used bivariate Gaussian, t, Gumbel and Clayton
copulae as building blocks to increase model flexibility.

Let f(x1, . . . , xn) be an n-dimensional density function and c(u1, . . . , un)
be the corresponding copula density function. For a pair of integers r and
s (1 ≤ r ≤ s ≤ n), a set r : s denotes all integers between r and s,
namely r : s := {r, . . . , s}. If r > s, then r : s = ∅. Further, let Xr:s

denote the set of variables {Xr, . . . ,Xs}, ui|r:s denote the conditional cumu-
lative distribution function (cdf) Fi|r:s(xi|xr:s) and ui denote the uncon-
ditional cdf Fi(xi). It is well-known that the density f(x1, . . . , xn) can be
factorized as

f(x1, . . . , xn) = fn(xn) · fn−1|n(xn−1|xn) · fn−2|(n−1)n(xn−2|xn−1, xn) . . .

·f1|2···n(x1|x2, . . . , xn). (12.1)
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The above factorization is a simple consequence from the definition of con-
ditional densities and is invariant under permutation of the variables.

The second factor fn−1|n(xn−1|xn) on the right-hand side of (12.1) can
be represented as a product of a copula density and the marginal density
fn−1(xn−1) in the following way. Consider the bivariate density function
f(n−1)n(xn−1, xn) with marginal densities fn−1(xn−1) and fn(xn), respec-
tively. Using Sklar’s theorem for n = 2, we have that the conditional density
fn−1|n(xn−1|xn) is given by

fn−1|n(xn−1|xn) =
f(n−1)n(xn−1, xn)

fn(xn)
= c(n−1)n(un−1, un) · fn−1(xn−1). (12.2)

Similarly, the conditional density fn−2|(n−1)n(xn−2|xn−1, xn) is given by

fn−2|(n−1)n(xn−2|xn−1, xn)

=
f(n−2)n|n−1(xn−2, xn|xn−1)

fn|n−1(xn|xn−1)

= c(n−2)n|n−1(un−2|n−1, un|n−1) · fn−2|n−1(xn−2|xn−1)

= c(n−2)n|n−1(un−2|n−1, un|n−1)

× c(n−2)(n−1)(un−2, un−1) · fn−2(xn−2). (12.3)

The copula density c(n−2)n|n−1(·, ·) is the conditional copula density corre-
sponding to the conditional distribution F(n−2)n|n−1(xn−2, xn|xn−1) and, in
general, it depends on the given conditioning value xn−1. By induction, the
(j + 1)th factor (j = 3, . . . , n− 1) in (12.1) is given by

fn−j|(n−j+1):n(xn−j |x(n−j+1):n)

= cn−j,n|(n−j+1):(n−1)(un−j|(n−j+1):(n−1), un|(n−j+1):(n−1))

× fn−j|(n−j+1):(n−1)(xn−j |x(n−j+1):(n−1))

=
j−1∏

t=1

cn−j,n−t+1|(n−j+1):(n−t)(un−j|(n−j+1):(n−t), un−t+1|(n−j+1):(n−t))

× cn−j,n−j+1(un−j , un−j+1) · fn−j(xn−j). (12.4)

Thus we can represent each term on the right-hand side of (12.1) as the
product of the corresponding marginal density and copula density terms.
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Combining (12.2)–(12.4), expression (12.1) can be rewritten as

f(x1, . . . , xn) =
n∏

t=1

f(xt)×
n−1∏

j=1

cn−j,n−j+1(un−j, un−j+1)

×
n−1∏

j=2

j−1∏

t=1

cn−j,n−t+1|i(j,t)(un−j|i(j,t), un−t+1|i(j,t)), (12.5)

where i(j, t) := (n − j + 1) : (n − t). The density f(x1, . . . , xn) is the prod-
uct of n marginal densities and n(n − 1)/2 pair-copula density terms. The
pair-copula density terms are unconditional copulae evaluated at marginal
distribution function values or conditional copulae evaluated at univariate
conditional distribution function values. The above construction was defined
in Ref. 2 and was called the D-vine pair-copula construction (PCC) for mul-
tivariate distributions.

12.3 D-Vine PCC Based on t-Copulae

From now on, we use as the building pair-copulae of the PCC model (12.5)
bivariate t-copulae. However, the estimation and model selection method-
ology is generic and applies much more widely. Further we assume that the
margins of X are uniform. This is motivated by the standard two-step semi-
parametric copula estimation procedure suggested by Ref. 10, where approx-
imate uniform margins are obtained by applying the empirical probability
integral transformation to standardized fitted residuals based on specified
marginal models.

The bivariate t-copula (see, e.g., Ref. 7) has two parameters: the asso-
ciation parameter ρ ∈ (−1, 1) and the degrees of freedom (df) parameter
ν ∈ (0,∞). Its density is given by

c(u1, u2|ν, ρ) =
Γ
(
ν+2

2

)
Γ
(
ν
2

)
√

1− ρ2
[
Γ
(
ν+1

2

)]2 ·

([
1 + x2

1
ν

] [
1 + x2

2
ν

]) ν+1
2

(
1 + x2

1+x
2
2−2ρx1x2

ν(1−ρ2)

) ν+2
2

,

where xi := t−1
ν (ui) for i = 1, 2 and t−1

ν (·) is a quantile function of a t-
distribution with ν degrees of freedom. Specifying the pair-copulae and
assuming uniform margins, the conditional distribution function for a bivari-
ate t-copula is needed. It is called the h-function for the t-copula with
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parameters ρ and ν, and Ref. 2 derives it as

h(u1|u2, ρ, ν) = tν+1



 t−1
ν (u1)− ρ t−1

ν (u2)√
(ν+(t−1

ν (u2))2)(1−ρ2)
ν+1



. (12.6)

The D-vine PCC (12.5) with building bivariate t-copulae depends now
on an n(n− 1) dimensional parameter vector θ given by

θ = (ρ12, ν12, ρ23, ν23, . . . , ρ1n|2:(n−1), ν1n|2:(n−1))
t,

where ρtj|(t+1):(j−1) and νtj|(t+1):(j−1) are the parameters of the t-copula den-
sity ctj|(t+1):(j−1)(·, ·) for j = 2, . . . , n and t = 1, . . . , j − 1. As already noted
in Ref. 19, the likelihood c(u|θ) of the D-vine copula for N n-dimensional
realizations u := (u1, . . . ,uN ) of U := (U1, . . . , Un)t can be calculated as

c(u|θ) =
N∏

k=1



n−1∏

i=1

c(ui,k, ui+1,k|ρi(i+1), νi(i+1))
n−1∏

j=2

n−j∏

i=1

× c(vj−1,2i−1,k, vj−1,2i,k|ρi(i+j)|(i+1):(i+j−1), νi(i+j)|(i+1):(i+j−1))

]
,

(12.7)
where for k = 1, . . . , N

v1,1,k := h(u1,k|u2,k, ρ12, ν12)

v1,2i,k := h(ui+2,k |ui+1,k, ρ(i+1)(i+2), ν(i+1)(i+2)), i = 1, . . . , n − 3,

v1,2i+1,k := h(ui+1,k |ui+2,k, ρ(i+1)(i+2), ν(i+1)(i+2)), i = 1, . . . , n − 3,

v1,2n−4,k := h(un,k|un−1,k, ρ(n−1)n, ν(n−1)n),

vj,1,k := h(vj−1,1,k|vj−1,2,k, ρ1(1+j)|2:j , ν1(1+j)|2:j), j = 2, . . . , n− 2,

vj,2i,k := h(vj−1,2i+2,k|vj−1,2i+1,k, ρi(i+j)|(i+1):(i+j−1),

νi(i+j)|(i+1):(i+j−1)) for n > 4, j = 2, . . . , n− 3 and

i = 1, . . . , n− j − 2

vj,2i+1,k := h(vj−1,2i+1,k|vj−1,2i+2,k, ρi(i+j)|(i+1):(i+j−1),

νi(i+j)|(i+1):(i+j−1)) for n > 4, j = 2, . . . , n− 3 and

i = 1, . . . , n− j − 2

vj,2n−2j−2,k := h(vj−1,2n−2j,k|vj−1,2n−2j−1,k, ρ(n−j)n|(n−j+1):(n−1),

ν(n−j)n|(n−j+1):(n−1)) for j = 2, . . . , n− 2.
Note that vj,2i,k and vj,2i+1,k in (12.7) are jth-fold superpositions of the
h-function (12.6).



October 11, 2010 12:19 9.75in x 6.5in b979-ch12

Bayesian Inference for D-Vines 255

12.4 Bayesian Inference for D-Vine PCC Based
on t-Copulae

Estimation of D-vine PCCs in an MCMC framework is straightforward and
similar to estimation of any multivariate distribution with many parameters.
The nature of parameters defined by the specific choice of the copula family
should be taken into account. In contrast to multivariate density functions,
the arguments in a conditional D-vine density term is a complicated function
of arguments and the parameters of earlier pair D-vine densities. This makes
the evaluation of the log-likelihood time-consuming. Further, the parame-
ter update of PCCs is usually performed by a Metropolis–Hastings (MH)
algorithm (see Refs. 18 and 13).

Min and Czado19 develop and implement one such MCMC algorithm for
the estimation of parameters of PCCs. They use noninformative priors for
ρ’s and ν’s. Since estimation of df ν is unstable for large true ν’s, its support
should be restricted to some finite interval (1, U). A noninformative prior for
each ρ results in a uniform distribution on (−1, 1). There are several other
possibilities for the choice of priors for ν. Thus we use a Cauchy distribu-
tion in Chapter 13 while Valle6 utilizes a truncated Poisson distribution.
Joe16 developed a uniform prior on the space of positive definite correlation
matrices, which imply different beta priors for corresponding partial corre-
lations arising from a D-vine. This alternative prior choice has been used in
Chapter 13.

There are also several choices of the proposal distributions needed for
the MH algorithm. Min and Czado19 use a modification of a random nor-
mal walk proposal, which is a normal distribution truncated to the support
of parameters. Variances of normal distributions are tuned to achieve accep-
tance rates between 20% and 80% as suggested by Besag et al.4 Another
choice is an independence proposal distribution which is independent of the
current value of the sampled parameter. A common independence proposal
is a normal distribution with the same mode and inverse curvature at the
mode as the target distribution described for example in Ref. 11. This has
been used in Chapter 13 for the joint MCMC estimation of marginal AR(1)
and D-vine copula parameters. Generalizations of the normal independence
proposal using t-distribution with low degrees of freedom ν, say ν = 3 or
ν = 5, are also often used.

The number of pair-copulae nc = n(n−1)/2 in (12.7) increases quadrat-
ically with dimension n of the data. However, if independence or condi-
tional independence is present in the data, then the number of factors in
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(12.7), respectively, may reduce drastically. This (conditional) independence
is characterized by a unit pair-copula density. Therefore the first task on
model selection for D-vine PCCs is to determine its non-unit pair-copula
terms. Min and Czado20 derive and implement a reversible jump (RJ)
MCMC by Green.12 The algorithm by Green12 allows a huge number of
models to be explored since only visited models will be fitted. Therefore it is
well-accepted by the Bayesian community though its derivation and imple-
mentation for a particular problem are not simple tasks. Another model
selection approach by Congdon5 is discussed and utilized in Ref. 19. The
recent approach of Congdon’s5 is easy to implement but it compares only
among prespecified models.

The key points of the RJ MCMC algorithm of Min and Czado20 are
the introduction of a model indicator vector of dimension nc and the RJ
mechanism for a model change. They associate models with subdecomposi-
tions of (12.7) consisting of k (1 ≤ k ≤ nc) pair-copula terms. To specify the
model indicator, pair-copulae in full decomposition (12.7) has to be ordered.
Otherwise an identifiability problem occurs since PCCs are invariant with
respect to the permutation of factors. According to the labeling in Ref. 20,
for n = 4 the full decomposition of a multivariate copula density is given as
follows.

c(u1, u2, u3, u4) = c12c23c34c13|2c24|3c14|23,
where we omit arguments and parameters of pair-copulae for brevity. The
model indicator mf is given by a six-dimensional vector (1, 1, 1, 1, 1, 1),
where 1 indicates the presence of the corresponding pair-copula term. If
now some pair-copula terms are not present in the decomposition, then the
corresponding ones are replaced by zeros. For example, a model indicator
m = (1, 1, 1, 1, 1, 0) corresponds to the subdecomposition c(u1, u2, u3, u4) =
c12c23c34c13|2c24|3 without the last pair-copula c14|23.

Any RJ MCMC algorithm consists of so-called birth and death moves.
For birth moves the dimension of the model parameter increases while for
death moves the dimension decreases. Min and Czado20 derive acceptance
probabilities for both moves in detail. As a proposal distribution for the
parameters of the sth pair-copula, they use a bivariate normal distribution
N2(θ̂

MLE

s ,Σs) truncated to (−1, 1)×(1, U). Here θ̂
MLE

s = (ρMLE
s , νMLE

s )′ denotes
the corresponding two-dimensional sub-vector of the maximum likelihood
estimate (MLE) θ̂

MLE

mf
in the full model mf . Note that there are nc covariance

matrices Σs’s, which govern the reversible jump mechanism. They are taken
of the form Σs = diag(σ2

s,ρ, σ
2
s,ν), where diag(a, b) denotes a diagonal matrix

with a and b on the main diagonal.
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12.5 Application: Australian Electricity Loads

In this section we illustrate the above discussed estimation algorithms for
the Australian electricity loads from Chapter 13. We are solely interested
in estimating the dependence structure and therefore marginal AR(1)s are
first fitted to extract independent i.i.d. residuals. Now copula data for the
Australian electricity loads can be obtained using probability integral trans-
formations (PITs). One choice for the PIT is the empirical PIT while the
other is the standard normal PIT given by U = Φ(Z), where Z is a nor-
mal N(0, 1) random variable and Φ(·) is the standard normal cdf. Here
we consider both choices for producing copula data. The copula data pro-
duced by the empirical PIT we call nonparametric copula data, while the
one produced by normal PIT we call parametric copula data. To facilitate
comparison to the models considered in Chapter 13, we now investigate the
following PCC here and in the sequel:

c(uQ, uN , uV , uS) = cQN · cNV · cV S · cQV |N · cNS|V · cQS|NV , (12.8)

where the parameter dependence of each bivariate t-copula and their argu-
ments are dropped to keep the expression short. The subindexes Q,N, V
and S correspond to Queensland, New South Wales, Victoria and South
Australia, respectively.

For both copula data we run the MH algorithm specified in Ref. 19 for
10000 iterations using Cauchy priors truncated to (1, 100) for the df param-
eter of each pair as in Ref. 9, namely π(ν) ∝ 1/[1 + (v − 1)2/4]. The first
500 iterations are considered the burn-in. Proposal variances were deter-
mined in pilot runs and resulted in acceptance rates between 23%–77% for
all parameters after 10000 iterations. Autocorrelations among the MCMC
iterates suggested sub-sampling to reduce these correlations and every 10th
iteration was recorded. Table 12.1 summarizes the estimated posterior dis-
tributions for all parameters based on the recorded iterations for both copula
data. For comparison we also include the corresponding maximum likelihood
estimates (MLE) in the last column of Table 12.1. For the convenience of
the reader, results of the joint estimation of AR(1) margins and the D-vine
PCC model (12.8) for copula parameters from Chapter 13 are displayed in
Table 12.2. There, the joint MCMC estimation uses a slightly different prior
for the ρ parameter.

For both copula data, the Bayesian estimates of ρQV |N , ρNS|V and ρQS|NV
are not credible at the 5% level since the corresponding credible intervals con-
tain 0. They are also not credible at the 10% level except for ρQV |N when the
parametric copula data are used. Posterior mode estimates of ν’s are larger
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Table 12.1. Estimated posterior mean, mode and quantiles of MCMC as well as MLE
of copula parameters for the copula data obtained from the preprocessed Australian load
data using Cauchy prior for degrees of freedom ν’s truncated to (1, 100).

Copula 2.5% 5% 50% 95% 97.5% mean mode MLE

Nonparametric copula data

νQN 3.27 3.39 4.46 6.18 6.75 4.59 4.30 4.46
νNV 2.61 2.68 3.31 4.32 4.58 3.37 3.27 3.26
νV S 4.27 4.53 6.04 8.65 9.34 6.24 5.79 6.24
νQV |N 10.29 11.50 28.38 79.72 88.49 34.31 22.33 51.80
νNS|V 4.96 5.27 7.56 12.63 14.64 8.13 6.92 7.73
νQS|NV 8.74 10.01 21.62 73.13 83.50 28.41 17.61 32.18

ρQN 0.24 0.25 0.30 0.35 0.36 0.30 0.31 0.31
ρNV 0.28 0.29 0.35 0.40 0.41 0.35 0.35 0.35
ρV S 0.53 0.53 0.57 0.60 0.61 0.57 0.57 0.57
ρQV |N −0.02 −0.01 0.03 0.08 0.09 0.03 0.03 0.03
ρNS|V −0.04 −0.03 0.03 0.08 0.09 0.03 0.03 0.03
ρQS|NV −0.03 −0.02 0.03 0.08 0.08 0.03 0.03 0.03

Parametric copula data

νQN 5.04 5.31 7.24 10.48 11.43 7.48 6.92 7.32
νNV 4.08 4.24 5.50 7.62 7.96 5.66 5.33 5.52
νV S 6.79 7.16 10.72 18.03 20.22 11.43 9.99 11.17
νQV |N 13.71 15.25 31.13 78.32 86.09 36.77 26.50 38.55
νNS|V 5.73 6.15 8.41 13.34 15.55 8.97 7.92 8.34
νQS|NV 12.49 14.07 30.11 79.18 87.96 35.91 24.58 58.07

ρQN 0.27 0.28 0.33 0.38 0.38 0.33 0.33 0.33
ρNV 0.32 0.33 0.38 0.43 0.44 0.38 0.38 0.39
ρV S 0.53 0.54 0.57 0.60 0.61 0.57 0.57 0.57
ρQV |N −0.00 0.01 0.06 0.12 0.13 0.06 0.07 0.06
ρNS|V −0.03 −0.02 0.03 0.09 0.10 0.03 0.03 0.04
ρQS|NV −0.03 −0.02 0.03 0.08 0.09 0.03 0.03 0.03

than 10 only for ρQV |N and ρQS|NV while it is smaller than 10 for νNS|V . At
95% credibility we conclude for both copula data that conditional indepen-
dence between loads of Queensland and Victoria, given loads of New South
Wales, as well as between loads of New South Wales and South Australia,
given loads of Victoria, are present. Therefore the decomposition (12.8) can
be reduced by pair-copulae cQV |N and cQS|NV . However, it is difficult to decide
from the above results whether loads of New South Wales and South Australia
are conditionally independent given loads of Victoria. More sophisticated
Bayesian model selection procedures discussed in the next section address this
problem. For the parametric copula data, posterior mode estimates for df’s
are usually higher than the corresponding one for the nonparametric copula
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Table 12.2. Estimated posterior mean, mode and quantiles of joint MCMC
estimation for copula parameters using Cauchy prior for degrees of freedom
ν’s truncated to (1, 100).

Copula 2.5% 5% 50% 95% 97.5% Mean Mode

Joint estimation of marginal and copula parameters

νQN 5.17 5.45 7.37 11.72 12.71 7.80 6.92
νNV 4.11 4.26 5.57 7.65 8.60 5.76 5.36
νV S 7.08 7.69 11.45 24.29 29.68 12.89 10.23
νQV |N 15.01 16.28 36.89 84.56 91.77 41.44 29.80
νNS|V 4.20 4.73 14.25 78.22 93.44 22.84 11.60
νQS|NV 12.32 14.58 34.43 78.22 86.81 38.94 29.00

ρQN 0.27 0.28 0.34 0.38 0.39 0.34 0.34
ρNV 0.33 0.35 0.40 0.45 0.45 0.40 0.40
ρV S 0.54 0.55 0.59 0.62 0.63 0.59 0.59
ρQV |N −0.01 −0.00 0.05 0.10 0.11 0.05 0.05
ρNS|V −0.01 0.00 0.05 0.11 0.12 0.06 0.05
ρQS|NV −0.04 −0.03 0.02 0.07 0.08 0.02 0.03

data. Difference in estimates of ρ’s is negligible here. Further, we observe that
the joint estimation of AR(1) margins and copula parameters gives results
similar to ones for the parametric copula data.

We now compare the two-step estimation procedures (estimate margins
first, then form standardized residuals and transform to copula data, either
using nonparametric or parametric transformations) to the one-step estima-
tion procedure using joint MCMC. For this comparison we see that the cred-
ible intervals are similar for the two-step parametric and joint estimation
procedure except for νNS|V . For the nonparametric two-step estimation pro-
cedure, the posterior means and modes for the df parameters are lower than for
the parametric and joint estimation procedure, thus indicating more heavy-
tailedness in the data than what is present. Here we consider the joint estima-
tion method as the most appropriate estimation method, since the marginal
residuals do not violate the marginal AR(1) model assumption. Overall we
see that the loss in efficiency is not huge if one uses a two-step estimation
procedure compared to a joint estimation procedure for this data set.

12.6 Bayesian Model Selection for Australian Electricity
Loads

Based on simulation studies, Min and Czado20 have advocated using U =
20 as the upper limit of the prior distribution for ν’s. Then the model
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selection performance of RJ MCMC for PCCs based on t-copulae signifi-
cantly increases. Here, we follow their approach.

We run the MH algorithm presented in Ref. 19 to tune proposal variances
for the full PCC in (12.8). These tuned variances are used in the stay move to
update the corresponding new parameter values. For the birth move we pro-
pose new values for θms , s = 1, . . . , 6 according to the normal N2(θ̂

MLE

ms
,Σ)

distribution truncated to (−1, 1) × (1, U), where θ̂
MLE

m
(new)
s

= (ρMLE
s , νMLE

s )′

denotes the corresponding two-dimensional sub-vector of the ML estimate
θ̂

MLE

mf
in the full model mf . The MLE θ̂

MLE

mf
is determined under the con-

straints −1 < ρ < 1 for ρ’s and 1 < ν < 20 for ν’s. We consider two
birth proposal covariance matrices Σ’s, namely Σ1 = diag(102, 1002) and
Σ2 = diag(0.12, 32), to investigate robustness of the procedure. Further, we
use θ̂

MLE

mf
and mf as initial values for θ and m, respectively.

Note that there are six copula terms in (12.8) which can be present or
not in the model. Disregarding the model of complete independence, this
gives that there are 63 = 26 − 1 models to be explored by the RJ MCMC
algorithm. We enumerate models in binary. Thus the full decomposition
m = (1, 1, 1, 1, 1, 1) in (12.8) corresponds to 63. If the pair-copulae cQV |N
and cQS|NV are set equal to 1, then the corresponding model vector is given
by m = (1, 1, 1, 0, 1, 0). This binary representation corresponds to 58.

Table 12.3 displays estimated posterior probabilities for all possible 63
PCC models and for both copula data obtained from the preprocessed
Australian electricity loads based on 100000 iterations with a burn-in of
10,000. For comparison, the last column of Table 12.3 gives approximations
to posterior probabilities for the seven models based on the approach by
Congdon.5 The implementation of Congdon’s algorithm is similar to that
presented in Chapter 13. Thus our RJ MCMC algorithm with U = 20
shows that the PCC model without pairs cMB|T and cST |M has the high-
est estimated posterior probability for both choices of Σ independent of
the transformation used to obtain copula data. Congdon’s approach also
supports the above model though with less confidence. However, Robert
and Marin23 note that there might be considerable bias in Congdon’s
method.

12.7 Summary and Discussion

This chapter reviews methods on Bayesian inference for D-vine PCCs and
illustrates their use for a specific data set. The methodology can easily
be extended to cover any regular vine PCC model. Since the classical ML
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Table 12.3. Estimated posterior model probabilities P̂k = bP (Mk|data) of all 63 models
for the nonparametric copula data obtained from the preprocessed Australian load data
using an empirical cdfs. The model probabilities in the third and fourth columns, and in
the last fifth column are obtained using RJ MCMC and Congdon’s approach, respectively.
The corresponding model probability estimates for the parametric copula data obtained
from the preprocessed Australian load data are given in parentheses. Further, U = 20,
Σ1 = diag(102, 1002) and Σ2 = diag(0.12, 32).

P̂k

Model Formula Σ1 Σ2 Cong.

M63: cQNcNV cV ScQV |N 0.001 0.000 0.002
m = (1, 1, 1, 1, 1, 1) ×cNS|V cQS|NV (0.000) (0.000) (0.009)

M62: cQNcNV cV ScQV |N 0.013 0.014 0.062
m = (1, 1, 1, 1, 1, 0) ×cNS|V (0.054) (0.065) (0.185)

M60: cQNcNV cV ScQV |N 0.001 0.001 0.004
m = (1, 1, 1, 1, 0, 0) (0) (0.000) (0.001)

M59: cQNcNV cV S 0.022 0.025 0.090
m = (1, 1, 1, 0, 1, 1) ×cNS|V cQS|NV (0.012) (0.011) (0.070)

M58: cQNcNV cV S 0.923 0.933 0.710
m = (1, 1, 1, 0, 1, 0) ×cNS|V (0.933) (0.923) ( 0.726)

M57: cQNcNV cV ScQS|NV 0.001 0.000 0.003
m = (1, 1, 1, 0, 0, 1) (0) (0.000) (0.000)

M56: cQNcNV cV S 0.039 0.026 0.129
m = (1, 1, 1, 0, 0, 0) (0.000) (0.001) (0.009)

Mi: 0 0 –
for i �= 63, 62, 60, . . . , 56 (0) (0) (–)

approach to PCCs will give only reliable point estimates but not reliable
standard error estimates, a Bayesian approach is followed here.

To assess the influence of prior distributions, we have run the original
MH algorithm specified in Min and Czado19 for the Australian load data
for 10000 iterations using uniform priors on (1, 100) for each df parameter.
This means a median value of 50.5 for each df parameter while the truncated
Cauchy prior in Chapter 13 has its median at 3. This results, as expected, in
a considerable increase of posterior means for ν’s which are >20, while the
ρ parameters are not affected. We observe differences in Bayesian estimates
only for df’s if the corresponding MLE or posterior mode estimates are
larger than 20. For small estimated ν’s, the influence of the prior for ν is
negligible. In contrast, Bayesian estimates for ρ’s are robust with respect to
prior distributions for ρ.
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Min and Czado19 report that numerically evaluated Hessian matrix and
bootstrap methods are good alternatives for getting reliable standard errors
if the dimension of data is n < 4. The estimated Hessian matrix can often
fail to give reliable standard estimates since negative variance estimates
might occur. Further, for high-dimensional data of n > 4 with thousands
of multivariate observations, the bootstrap and Hessian approaches become
much more time-consuming in contrast to MCMC methods as Min and
Czado19 find. In a simulation study, Min and Czado20 show that for model
selection purposes, the upper limit of ν should be set to 20. Then the model
performance of their RJ MCMC algorithm is significantly improved. The
results of the RJ MCMC analysis for the Australian load data are robust
with regard to the choice of proposal distribution for the birth move as Min
and Czado20 notice. In the next step, we plan to derive and implement a
RJ MCMC algorithm where the copula family of pair-copulae is not fixed
anymore and it can vary within a catalogue of bivariate copulae, including
the independence copula.

In some problems, joint estimation of marginal and copula parameters
has recently been found to be important. Thus it is shown in Ref. 17 that
a separate estimation of the marginal parameters may have an essential
influence on the parameter estimation of multivariate copulae. Therefore
inference based on joint estimates might lead to quite different results com-
pared to the inference ignoring estimation errors in the marginal parame-
ters. In financial applications, marginal time series usually follow ARMA or
GARCH models. Here, our future research will concentrate on joint estima-
tion of marginal (ARMA) GARCH and PCC parameters. Finally, this can
all be generalized to PCC models with time-varying parameters since finan-
cial data usually shows that the dependence structure changes over time
(see, for example, Ref. 22).
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Sklar’s theorem allows the construction of models for dependent components
using a multivariate copula together with marginal distributions. For estimation
of the copula and marginal parameters, a two-step procedure is often used to
avoid high-dimensional optimization. Here, marginal parameters are estimated
first, then used to transform to uniform margins and in a second step, the copula
parameters are estimated. This procedure is not efficient. Therefore, we follow a
joint estimation approach in a Bayesian framework using Markov chain Monte
Carlo (MCMC) methods. This allows also for the assessment of parameter uncer-
tainty using credible intervals. D-vine copulae are utilized and as marginal models
we allow for autoregressive models of first order. Finally, we apply these meth-
ods to Australian electricity loads, demonstrating the usefulness of this approach.
Bayesian model selection is also discussed and applied using a method suggested
by Congdon.12
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13.1 Introduction

The celebrated result of Sklar25 shows that dependence among random vari-
ables can be separated from the marginal distributions. This forms the basis
for the construction of many multivariate models in statistics and finance
(see, for example, Refs. 16, 23 and 10). While there are many bivariate
copulae available for modeling bivariate dependence, the catalogue of mul-
tivariate copulae is less rich. Joe16 used a decomposition into pair-copulae
to construct multivariate distributions. Bedford and Cooke7 systemized
these constructions using a graphical tree representation and Kurowicka
and Cooke19 give an overview.

Aas et al.1 derived statistical inference methods based on these pair-
copula constructions (PCC) using bivariate t-copulae. While the maximum
likelihood estimation is feasible in small dimensions, the number of cop-
ula pairs increases quadratically with the number of dimensions. Therefore,
assessing the variability of the estimates is difficult, requiring the numerical
inversion of large dimensional Hessian matrices. Hence, we prefer to use a
Bayesian approach for estimation and inference. Min and Czado22 develop
such a Bayesian approach using Markov chain Monte Carlo (MCMC) meth-
ods to estimate the posterior distribution for PCCs with bivariate t-copulae
as building blocks for multivariate copula data, i.e., for an i.i.d. multivariate
sample with uniform margins.

For financial applications, one usually starts with multivariate time series
and, in the first step, one estimates for each marginal time series its struc-
ture as an ARMA or GARCH structure. In the second step, one deter-
mines standardized residuals, which are assumed to form an i.i.d marginal
sample. Depending on whether the distribution of the residuals are known
or unknown, one uses a parametric or empirical probability transform to
transform to data with approximate uniform margins. This separates the
marginal distribution from the dependence structure. In the final step, this
dependency is modeled using a multivariate copula and copula parame-
ters are estimated. The statistical properties of such two-step estimation
procedures are investigated by Joe17 for a known standardized residual
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distribution and by Chen9 for unknown standardized residual distribution,
respectively. It is known that such two-step procedures are not efficient. The
loss in efficiency depends on the specific data structure and model.

The main contribution of this chapter is to provide a Bayesian analysis
which jointly estimates the marginal and copula parameters. For this, we
start with a simple marginal time series structure such as the first-order
autoregressive structure. In Section 13.2, we introduce the model and in
Section 13.3, we derive an MCMC algorithm which will be used to facilitate
the Bayesian analysis. In Section 13.4, we apply our methods to Australian
electricity load data. Here, we remove the trend and seasonal effects. In
Section 13.5, we consider Bayesian model selection when one wants to choose
among a small number of alternative model specifications based on the
approach suggested by Congdon.12 Section 13.6 closes this chapter with
conclusions and a discussion on future research.

13.2 Multivariate Time Series with D-Vine Dependency
and Marginal Autoregressive Structure

First we describe the marginal time series structure. For this, let Y t :=
(Y1t, . . . , Ynt) for t = 1, . . . , N denote n-dimensional time series with
marginal AR(1) time series structure and normal errors, i.e.,

Yit = γi · Yi(t−1) + εit t = 1, . . . , N, and

εit ∼ N (0, σ2
i ) i.i.d., i = 1, . . . , n

Yi0 ∼ N
(

0,
σ2
i

1− γ2
i

)
and

∣∣γi
∣∣ < 1.

From this, it follows that Yi := (Yi1, . . . , YiN )′ ∼ NN (0,Σi) with the (r, s)th
element of Σi given by Σi,r,s = σ2

i

1−γ2
i
γ
|r−s|
i for i = 1, . . . , n. We first transform

each marginal time series Yi to achieve i.i.d. margins by defining

Zi := Σ−1/2
i Yi ∼ NN(0, IN ), (13.1)

where IN is the identity matrix of size N . Wise28 shows that Σ−1
i is a

tridiagonal matrix and it is easy to determine the Cholesky factorization
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Σ−1/2
i as

Σ−1/2
i = σ−1

i




1 0 . . . . . . 0

−γi 1 0
...

0 −γi 1
. . .

...
...

. . . . . . . . . 0

0 . . . 0 −γi
√

1− γ2
i




and

det Σ−1/2
i = σ−Ni

√
1− γ2

i .

For the dependency structure between the nmarginal time series, we now
impose an n-dimensional D-vine (see Refs. 6 and 19) structure on the i.i.d.
random vectors Zt := (Z1t, . . . , Znt) for t = 1, . . . , N . In particular, each
random vector Zt has a D-vine density f(z1, . . . , zn) (see, e.g., Chapter 12)
given by

n∏

k=1

f(zk)
n−1∏

j=1

n−j∏

i=1

ci,i+j|i+1,...,i+j−1

× {F (zi|zi+1, . . . , zi+j−1), F (zi+j |zi+1, . . . , zi+j−1)}, (13.2)

where ci,i+j|i+1,...,i+j−1(·, ·) are arbitrary bivariate copula densities depend-
ing on parameters θi,i+j|i+1,...,i+j−1. Here, F (·|·) denotes a conditional cdf.
Utilizing (13.1), we can take (13.2) together with the density transformation
theorem to construct a multivariate density for Y t for t = 1, . . . , N . In the
application, we will consider the case n = 4, where the D-vine density is
given by

f(x1, x2, x3, x4) =f1(x1) · f2(x2) · f3(x3) · f4(x4)

· c12(F1(x1), F2(x2)) · c23(F2(x2), F3(x3))

· c34(F3(x3), F4(x4))

· c13|2(F (x1|x2), F (x3|x2)) · c24|3(F (x2|x3), F (x4|x3))

· c14|23(F (x1|x2, x3), F (x4|x2, x3)). (13.3)

For details and exact density expressions for Y t in the case n = 4, see
Chapter 5 of Ref. 14. In our application, we use bivariate t-copulae c(u, v) =
c(u, v|θ) with θ = (ν, ρ), where ν is the degree of freedom (df) parameter
and ρ the correlation parameter. Correlation refers to the corresponding
t-distribution and not to the copula.
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13.3 Bayesian Analysis of Multivariate Time Series with
D-Vine Dependency and Marginal Autoregressive
Structure

The multivariate time series models introduced in the previous section have
many parameters to estimate, for example, the model when n = 4 and
bivariate t-copulae are used requires 20 parameters. We could follow a two-
step approach by first estimating marginal parameters using the R function
arima within the stats package. In a second step, we transform to the Z-
level using these estimated parameters and apply the D-vine R package
of Daniel Berg (private communication) to determine maximum likelihood
estimates of the D-vine parameters. However, at the moment, there is no
efficient estimation of the standard errors of such estimates, reflecting the
uncertainty in the marginal parameters. Therefore, we follow a Bayesian
approach where credible intervals can be determined naturally to assess the
significance of the parameter.

First, we have to specify prior distributions to complete the model spec-
ification. In particular, we would like to use a uniform prior for the correla-
tion matrix in the D-vine based on bivariate t-copulae. Using the results in
Ref. 21 and the calculations of Joe,18 we assume a Beta((4−k)/2, (4−k)/2)
distribution on (−1, 1) for ρij|i1,...,ik , where k is the cardinality of the set of
conditioning variables. This choice of conditional correlations results in an
unconditional correlation matrix which is uniformly distributed over the
space of correlation matrices. For the degree of freedom parameter, we
choose a half Cauchy distribution as the prior, i.e., π(ν) ∝ [1+(ν−1

2 )2]−1, ν ∈
(1,∞), and for the marginal error variances σ2

i an inverse Gamma prior,
given by π(u) = 0.001

Γ(1) u
−2 exp

(
−0.001

u

)
as suggested on p. 15 of Congdon.11

Finally, for the autoregressive parameters γi, we choose an N(0, 10) prior
on the transformed scale ai := 1

2 log 1+γi

1−γi
. In addition, we assume prior inde-

pendence among all parameters.
The posterior distribution is however not analytically tractable, there-

fore we use Markov chain Monte Carlo (MCMC) methods (see, for example,
Ref. 13). In particular, we utilize the Metropolis–Hastings (MH) algorithm
with the independence proposal introduced by Ref. 26. As the proposal dis-
tribution, we take a normal distribution centered around the mode with
a covariance matrix a multiple of the inverse Hessian matrix evaluated at
the mode as suggested on p. 83 of Gamerman and Lopes.13 For determin-
ing the mode and Hessian on the transformed scale of the parameters, the
delta method is applied. To reduce computing time, we update the proposal
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distribution only every 20th iteration. The corresponding acceptance prob-
abilities for the MH algorithm were developed in Chapter 4 of Ref. 14. In
particular, each parameter is updated individually.

13.4 Modeling Australian Electricity Loads

Initially, the Australian electricity supply was organized as a vertically
integrated monopoly with almost no trade or connection between different
states. The liberalization started with the opening of the National Electricity
Market (NEM) in December 1998. The first members were Victoria,
Queensland, New South Wales and the Australian Capital Territory; South
Australia and Tasmania joined in 2005. It is a wholesale electricity market
that supplies retailers and end-users.

The connection between the electricity producers and electricity con-
sumers is facilitated by the establishment of the National Electricity Market
Management Company (NEMMCO). This company manages a pool where
the output of all generators is aggregated and scheduled to meet the fore-
casted demand.

Wholesale trading is done as a real-time market where supply and
demand are instantaneously matched through a centrally dispatched pro-
cess. As the offers are submitted by the generators every five minutes,
NEMMCO determines the necessary plants and they are dispatched into
production. So the market clearing price is determined every five minutes
and is averaged for each trading interval (30 minutes).

Since the Australian electricity market is an energy-only market, there
are a lot of price spikes. But experience shows that these price spikes
are incentive enough for the electricity companies to build new generation
plants, for example, as seen in South Australia in the period 1998–2003 when
generation capacities increased substantially after a series of price spikes to
meet these peak demands. For more details on the Australian electricity
market, see Ref. 27.

The load data used consist of four time series of daily observations dating
from May 16, 2005, to June 30, 2008, in total 1142 data points per time
series. It describes the average daily load demand in gigawatt (GW) for
the regions Queensland, New South Wales, Victoria and South Australia,
calculated by averaging the half-hourly observed data for one day. These
data are available at www.nemmco.com.au.

Electricity demand clearly shows seasonal fluctuations, mostly due to
changing climate conditions like temperature or the number of daylight
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hours. We follow the classical technique of seasonal decomposition by think-
ing of a trend component Tt, a seasonal component St and the remaining
stochastic component Yt, i.e., we can represent the observed daily load data
{x1, . . . , xN} as

xt = Tt + St + yt; t = 1, . . . , N.

Using techniques presented in Refs. 27 and 8, we investigate the original
time series to identify the trend and seasonal component. In a preprocessing
step, these components will be removed before we analyze the marginal
dependency and that across time series.

Looking at the original data in Fig. 13.1, we see that the trend compo-
nent is negligible. Based on estimated (partial) autocorrelations and peri-
odograms, we see evidence of a weekly and yearly cycle. Weron27 uses a
rolling volatility technique to remove the annual seasonality. We apply this
to our data. In a second step, we remove the weekly cycle by fitting a moving
average MA(7) model where only the seventh moving average coefficient is
not equal to zero, i.e.,

Xt = εt + θ7εt−7, θ7 �= 0, εt ∼WN(0, σ2).

Queensland

Time

Lo
ad

 in
 G

W

0 200 400 600 800 1000

5.
0

5.
5

6.
0

6.
5

7.
0

New South Wales

Time

Lo
ad

 in
 G

W

0 200 400 600 800 1000

7
8

9
10

11

Victoria

Time

Lo
ad

 in
 G

W

0 200 400 600 800 1000

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

South Australia

Time

Lo
ad

 in
 G

W

0 200 400 600 800 1000

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

Figure 13.1. Time series plots of the observed data in the four different states.
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Table 13.1. Tests for stationarity and unit root for the preprocessed time series.

KPSS ADF PP

stat. p-value stat. p-value stat. p-value

0.0671 >0.1 −12.74 <0.01 −334.31 <0.01
QLD

accept K0 reject H0 reject H0

0.126 >0.1 −13.70 <0.01 −347.94 <0.01
NSW

accept K0 reject H0 reject H0

0.099 >0.1 −15.11 <0.01 −413.37 <0.01
VIC

accept K0 reject H0 reject H0

0.065 >0.1 −15.04 <0.01 −421.71 <0.01
SA

accept K0 reject H0 reject H0

After the preprocessing, we want to test if these data is stationary or if
there is a unit root. We use the augmented Dickey–Fuller test (ADF) with
lag order 1, a Phillips–Perron test (PP) (both testing for a unit root) and the
KPSS test for stationarity (for details, cf. Refs. 4 and 20). The KPSS test has
the null hypothesis “K0: The time series is stationary” versus the alternative
“K1: The time series is not stationary” and the ADF and PP tests have the
null hypothesis “H0: The time series has a unit root, i.e., the autoregressive
coefficient has an absolute value of 1” against the alternative “H1: The abso-
lute value of the autoregressive coefficient is smaller than 1”. The test results
are given in Table 13.1. For each of the preprocessed time series, we can-
not reject the KPSS test for stationarity. In addition, we have to reject the
ADF and PP tests for unit roots. So, we assume stationarity for all four time
series. Therefore, we will model them marginally with an AR(1) process. The
preprocessed time series are given in Fig. 13.2. For more details on the pre-
processing methods and alternative preprocessing, see Chapter 3 of Ref. 14.

Now, we are ready to investigate the dependencies among the pre-
processed time series. For this, we have the preprocessed time series for
Queensland, New South Wales, Victoria and South Australia, each consist-
ing of 1134 available observations. We chose this order for geographical rea-
sons. These states are adjacent and connected with all its infrastructure in
this way along the Eastern Coast of Australia, beginning with Queensland
in the North, then New South Wales, then Victoria and South Australia
following in the South West.
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Figure 13.2. Time series plots of the preprocessed data in the four different states.

Applying the joint MCMC (JMCMC) approach developed in
Section 13.2, we ran 10000 MCMC iterations. Using trace plots and esti-
mated autocorrelation (see Section 5.3 in Ref. 14), we determined an appro-
priate burn-in and thinning parameters. A burn-in of 1000 iterations for all
but one parameter and a thinning to every 20th iterations were sufficient.

For comparison, we also determined the two-step MLE estimates, i.e.,
first marginal parameters are estimated (marg. MLE) and used to trans-
form to the Z-level. For the copula parameters, the Z-level time series are
further transformed using the standard normal cdf to a time series with
uniform margins. Finally, these data are used to determine the MLEs of the
copula parameters (C-MLE). The resulting kernel density estimates of the
posterior distribution for each parameter are given in Figs. 13.3 and 13.4,
while summary statistics are presented in Table 13.2.

The MLEs of the marginal autoregressive parameters are higher than
the corresponding JMCMC estimates, indicating the effect of ignoring the
joint dependency. Some of these differences are credible since the marginal
MLE values for the parameters γ2, γ3 and γ4 lie outside of the estimated
posterior 95% credibility interval. There is however good agreement for the
remaining parameters. Some of the df parameters are quite high, especially
those corresponding to conditional copula pairs. This leads to the question of
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Figure 13.3. Plots of the estimated kernel density of ν and ρ of the observed real data
based on the thinned out MCMC chain.

whether one can reduce the copula dependency model to Gaussian bivariate
copulae for those conditional copula pairs. We will investigate this question
in the following section.

13.5 Bayesian Model Selection

As we have seen in the previous section, we might want to compare sev-
eral model specifications in a Bayesian setup. For this we want to compare
posterior model probabilities for models of interest. Assume that we have
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Figure 13.4. Plots of the estimated kernel density of σ2 and γ of the observed real data
based on the thinned out MCMC chain.

fitted models M1, . . . ,MK with an MCMC method where model Mk has
parameters θk and we want to estimate

P (Model Mk|data), k = 1, . . . ,K.

Congdon12 gives the following estimation procedure under the assumption
that the distribution of the data under Model Mk is independent of {θj �=k}
and that there is independence among all θk given Model M . Then he
shows that the posterior distributions are independent and can be sampled
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Table 13.2. Estimated posterior mean, mode and quantiles of JMCMC as well as
marginal MLE, starting values and C-MLE for the preprocessed Australian load data.

Copula 2.5% 5% 50% 95% 97.5% mean mode C-MLE

ν12 5.17 5.45 7.37 11.72 12.71 7.80 6.92 7.32
ν23 4.11 4.26 5.57 7.65 8.60 5.76 5.36 5.52
ν34 7.08 7.69 11.45 24.29 29.68 12.89 10.23 11.17
ν13|2 15.01 16.28 36.89 84.56 91.77 41.44 29.80 38.55
ν24|3 4.20 4.73 14.25 78.22 93.44 22.84 11.60 8.34
ν14|23 12.32 14.58 34.43 78.22 86.81 38.94 29.00 58.07

ρ12 0.27 0.28 0.34 0.38 0.39 0.34 0.34 0.33
ρ23 0.33 0.35 0.40 0.45 0.45 0.40 0.40 0.39
ρ34 0.54 0.55 0.59 0.62 0.63 0.59 0.59 0.57
ρ13|2 −0.01 −0.00 0.05 0.10 0.11 0.05 0.05 0.06
ρ24|3 −0.01 0.00 0.05 0.11 0.12 0.06 0.05 0.04
ρ14|23 −0.04 −0.03 0.02 0.07 0.08 0.02 0.03 0.03

Marginal 2.5% 5% 50% 95% 97.5% mean mode marg. MLE

σ2
1 0.41 0.41 0.44 0.48 0.48 0.45 0.44 0.44
γ1 0.67 0.67 0.70 0.74 0.74 0.70 0.70 0.71
σ2

2 0.47 0.48 0.51 0.55 0.56 0.51 0.51 0.52
γ2 0.62 0.62 0.66 0.69 0.69 0.66 0.66 0.70
σ2

3 0.45 0.46 0.49 0.52 0.53 0.49 0.49 0.49
γ3 0.53 0.54 0.57 0.60 0.61 0.57 0.57 0.63
σ2

4 0.47 0.47 0.51 0.54 0.55 0.51 0.51 0.50
γ4 0.50 0.51 0.54 0.57 0.58 0.54 0.54 0.63

individually. He uses the relationship

P (M = Mk|data,θ)∝P (data|θ,M = Mk)

P (θ|M = Mk)P (M = Mk). (13.4)

We assume now that the K independent MCMC runs result in

M1 : θ(t)
1 , r = 1, . . . R p(θ1|data)

... which approximate
...

MK : θ(t)
K , r = 1, . . . R p(θK |data).

We use {θ(r) := (θ(r)
1 , . . . ,θ

(r)
K ), r = 1, . . . R} and hence, we can approximate

P (M |data) =
∫
P (M |θ,data)p(θ|data)dθ
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by

P̂ (M |data) :=
1
R

R∑

r=1

P (M |θ(r),data).

Using Eq. (13.4), we can estimate P (M = Mk|data,θ(r)) by

w
(r)
k :=

G
(r)
k∑K

j=1G
(r)
j

,

where

G
(r)
k := exp(L(r)

k − L
(r)
max)

L
(r)
k := log(P (data|θ(r),M = Mk)P (θ(r)|M = Mk)P (M = Mk))

L(r)
max := max

k=1,...,K
L

(r)
k .

Therefore, we get

T̂k :=
1
R

R∑

r=1

w
(r)
k

as an estimator for P (M = Mk|data).
We investigated six models for the Australian load data which are

described in Table 13.3 together with their estimated posterior model prob-
ability. These results indicate clearly that the model with a marginal AR(1)
structure and a four-dimensional t-copula where the conditional correlation
parameters are fixed to 0 gives the best fit to the observed data.

Finally, we present the parameter estimates for Model M6 in Table 13.4.
This shows that there are strong marginal autocorrelations present in the
four time series. The strongest is observed in Queensland, while the low-
est is in South Australia. The dependence between the time series on the Z
variable level has a first-order Markov structure determined by the uncondi-
tional bivariate t-copulae. Since conditional and partial correlations are the
same for elliptical distributions (see Ref. 3) and there exists a one-to-one
relationship between partial correlations and unconditional correlations, the
remaining unconditional correlations in M6 can be determined. In partic-
ular, the posterior mode for ρ13, ρ24 and ρ14 are estimated to be 0.13, 0.23
and 0.075 respectively. This shows that the strongest dependence is between
Victoria and South Australia, followed by New South Wales and Victoria.
This is reasonable since South Australia and New South Wales are adjacent
to Victoria which is the most populated region among the four regions.
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Table 13.3. Estimated posterior model probabilities for six models for the Australian
load data.

Model Model T̂k

M1 Joint Bayesian estimation with marginal AR(1) and
D-vine of pair t-copulae

4.2689 · 10−06

M2 Joint Bayesian estimation of reduced model M1:
marginal AR(1), unconditional pair-copulae as
t-copulae, conditional pair-copulae as t-copulae with
correlation 0 and df = 100

0.0351

M3 Joint Bayesian estimation with marginal AR(1) and
D-vine of normal pair-copulae (approximated by a
t-copula with df = 100)

4.5999 · 10−13

M4 Joint Bayesian estimation of reduced model M4:
marginal AR(1), unconditional pair-copulae as Gauss
copulae (approximated by a t-copula with df = 100),
conditional pair-copulae as pair t-copulae with
correlation 0

3.2536 · 10−14

M5 Marginal AR(1) and four-dimensional t-copula with
common df

0.3245

M6 Marginal AR(1) and four-dimensional t-copula with
common df and the conditional correlation parameters
fixed to 0

0.6404

Table 13.4. Estimated posterior mean, mode and quantiles of the joint MCMC as well
as marginal MLE and C-MLE for marginal AR(1) and four-dimensional t-copula with the
conditional correlation parameters fixed to 0.

2.5% 5% 50% 95% 97.5% mean mode C-MLE

ν 5.80 6.08 7.44 9.30 9.79 7.54 7.32 9.59

ρ12 0.27 0.28 0.33 0.38 0.39 0.33 0.33 0.30
ρ23 0.34 0.35 0.40 0.45 0.46 0.40 0.40 0.34
ρ34 0.54 0.55 0.59 0.62 0.63 0.59 0.59 0.58

2.5% 5% 50% 95% 97.5% mean mode marg. MLE

σ2
1 0.40 0.41 0.44 0.48 0.48 0.44 0.44 0.44
γ1 0.67 0.67 0.71 0.74 0.74 0.71 0.71 0.71
σ2

2 0.46 0.47 0.50 0.54 0.54 0.50 0.50 0.52
γ2 0.62 0.63 0.66 0.69 0.70 0.66 0.66 0.70
σ2

3 0.45 0.46 0.49 0.52 0.53 0.49 0.49 0.49
γ3 0.52 0.53 0.56 0.59 0.60 0.56 0.56 0.63
σ2

4 0.47 0.48 0.51 0.55 0.56 0.51 0.51 0.50
γ4 0.50 0.50 0.54 0.57 0.57 0.54 0.54 0.63
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13.6 Summary and Discussion

This chapter developed a joint Bayesian analysis of a multivariate copula
model with AR(1) time series margins. This avoids the efficiency loss intro-
duced by the usual two-step estimation procedure. Model selection was facil-
itated by applying the approach by Congdon.12 This approach has however
been criticized by Robert and Marin24 in general. Alternatively, one can
use reversible jump MCMC (RJMCMC) developed by Green.15 However,
it is our experience that Congdon’s method is a close approximation to
RJMCMC for copula models based on vines.

Several extensions are of interest, for example, using higher order autore-
gressive models and especially using GARCH margins for financial applica-
tions. For Bayesian approaches to univariate GARCH models, see Refs. 5
and 2. The joint Bayesian estimation of such marginal models together with
copula models based on vines is a subject of current research.

Acknowledgments

Claudia Czado acknowledges the support of the Deutsche Forschungsge-
meinschaft (Cz 86/1-3).

References

1. Aas K., Czado C., Frigessi A. and Bakken H. (2009). Pair-copula constructions of
multiple dependence. Insurance: Mathematics and Economics, 44(2):182–198.

2. Ardia D. (2008). Financial Risk Management with Bayesian Estimation of GARCH
Models. Springer-Verlag, New York.

3. Baba K. and Sibuya M. (2005). Equivalence of partial and conditional correlation
coefficients. Journal of Japanese Statistical Society, 35:1–19.

4. Banerjee A., Dolado J.J., Galbraith J.W. and Hendry D.F. (1993). Cointegration,
Error Correction and the Econometric Analysis of Non-Stationary Data. Oxford
University Press, Oxford.

5. Bauwens L. and Lubrano M. (1998). Bayesian inference on GARCH models using the
Gibbs sampler. Econometrics Journal, 1(1):23–46.

6. Bedford T.J. and Cooke R.M. (2001). Probability density decomposition for condi-
tionally dependent random variables modeled by vines. Annals of Mathematics and
Artificial Intelligence, 32:245–268.

7. Bedford T.J. and Cooke R.M. (2002). Vines: A new graphical model for dependent
random variables, Annals of Statistics, 30(4):1031–1068.

8. Brockwell P.J. and Davis R.A. (1991). Time Series: Theory and Methods, 2nd ed.,
Springer Series in Statistics. Springer, New York.

9. Chen X. and Fan Y. (2006). Estimation and model selection of semiparametric
copula-based multivariate dynamic models under copula misspecification. Journal of
Econometrics, 135:125–154.



October 11, 2010 12:19 9.75in x 6.5in b979-ch13

280 C. Czado, F. Gärtner and A. Min
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This chapter reviews aspects of non-parametric Bayesian belief nets (NPBBN).
The theory behind NPBBNs is closely related to that of regular vines and it
has benefited from developments in the latter. It also offers an alternative to
undirected graphical models in general, and to regular vines in particular. The
differences and similarities in modeling using directed versus undirected graphs
are discussed in this chapter from the perspective of NPBBNs and vines. Until
recently, Bayesian belief nets (BBNs) were either discrete or discrete-normal.
Despite their popularity, both suffer from severe limitations. Discrete BBNs are
limited by size and complexity, discrete-normal BBNs are limited by the assump-
tion of joint normality. NPBBNs were introduced to overcome these limitations.
Algorithms for specifying, sampling and analyzing high-dimensional distributions
using NPBBNs have been developed and successfully applied in decision support
systems.
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14.1 Introduction or: How to Represent Information
Burdened by Uncertainty

Understanding and representing multivariate distributions along with their
dependence structure is a highly active area of research. A large body of sci-
entific work treating multivariate models is available. This chapter in partic-
ular, and this book in general, advocates using graphical models to represent
high-dimensional distributions with complex dependence structures.

Graphical models proved to be a flexible probabilistic framework and
their use has increased substantially, hence the theory behind them has
been constantly developed and extended.

There are two main types of graphical models: directed, based on directed
acyclic graphs (DAGs), and undirected, generally referred to as Markov
networks. The regular vines are a generalization of Markov trees, hence
they fall into the former category, whereas the Bayesian belief nets (BBNs)
belong to the latter. Why or when to use one graphical model or another
is not a question with a straightforward answer. This chapter will provide
some insights into the differences and similarities between the two types of
models, and hopefully these will serve as guidelines for modelers.

Both directed and undirected models consist of a qualitative and a quan-
titative part. The qualitative part is represented by the graph itself together
with the (in)dependence relationships entailed. Perhaps the most important
difference between directed and undirected graphs, in general, is that they
make different statements of conditional independence. We will first focus
on the differences arising from the graphical structures, rather than the
quantification of a joint multivariate distribution.

The absence of a link between two nodes means that any dependence
between these two variables is mediated via some other variables, hence they
encode conditional (in)dependence statements between variables. Given the
nested tree structure of a regular vine, one can consider them as fully con-
nected graphs. In this sense, in regular vines, the concept of conditional
independence is weakened to allow for various forms of conditional depen-
dence. Is this an advantage or a disadvantage of vines? The answer depends
on many factors, which may lead to the conclusion that the question is
ill-posed.

A number of examples will shed some light on the matter. Consider
three random variables X1, X2 and X3 represented as nodes in a graphical
structure. The node that corresponds to variable Xi is denoted by i. Let
node 3 have converging links. This is a configuration that yields conditional
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Figure 14.1. Nodes with converging links. (a) Node with converging arrows in a BBN.
(b) Node with converging edges in a Markov network.

independence in Markov networks and conditional dependence in BBNs.
The structure in Fig. 14.1(a) entails the conditional dependence of X1 and
X2, given X3,a whereas Fig. 14.1(b) entails the conditional independence of
X1 and X2, given X3.

The possibility of representing the combination of statements in
Fig. 14.1(a) may be regarded as an advantage of BBNs over undirected
structures, since it permits the display of induced and non-transitive depen-
dencies. This configuration also represents the main difference between
the separation properties in the directed and undirected graphs. In
directed graphs, the direction-dependent criterion of connectivity called the
d-separation criterion consists of the above rule for converging arrows, plus
the usual cutset criterion of Markov networks, whenever the arrows are
diverging or cascaded.16 If two nodes of a BBN are d-separated by a set
of nodes, then the corresponding variables are conditionally independent,
given that set.

Remark 14.1. If two nodes are not d-separated it does not necessarily
mean that the corresponding variables are not conditionally independent.
In other words, whenever an arc or an unblocked pathb exists between two
nodes, it is not necessarily the case that the corresponding variables are
dependent.

Regular vines, however, may also be used to represent the independence
of X1 and X2, and the conditional dependence of X1 and X2, given X3.
Nevertheless, the graphical structure alone will not suffice in completing the
task and this might be viewed as a disadvantage of regular vines. Given the

aThe independence of X1 and X2.
bIntuitively, an unblocked path may carry information, or dependence between end nodes.
For exact definitions we refer to Ref. 16.
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Figure 14.2. D-vines “representing” induced and non-transitive dependencies. (a) D-vine
representing the independence of X1 and X2. (b) D-vine representing the conditional
dependence of X1 and X2, given X3.

full connectivity of vines, (conditional) dependencies and/or independencies
can only be represented through quantification. Edges of a regular vine can
be associated with (conditional) rank correlations. If these rank correlations
are realized by copulae with the zero independence property, representing
the independence of X1 and X2 reduces to associating the edge between
them with a zero rank correlation. This is shown in Fig. 14.2(a). Yet, the
conditional dependence of X1 and X2, given X3, is not obvious. A few
calculations are needed in order to verify that, and a different graph is
needed to actually visualize it. Figure 14.2(b) shows a non-zero conditional
rank correlation between X1 and X2, given X3, but fails to represent the
independence of X1 and X2.

It is worth remembering that the present discussion solely regards
the representation of certain (conditional) (in)dependencies using differ-
ent graphical structures, and not the full representation/quantification of
joint distributions. The specification of (conditional) rank correlations on
the edges of a regular vine serves here this purpose only.

Another feature of BBNs that can be regarded as an advantage over
regular vines is that conditional independencies are represented by miss-
ing arcs, therefore certain conditional independencies become visible in the
graph by deleting arcs. Consider the D-vine on four variables in Fig. 14.3.
In this example and further in this chapter, the copulae used to realize the
(conditional) rank correlations associated with the edges of a regular vine
will possess the zero independence property.

Variables X1 and X3 are independent, given X2. Independence is denoted
by ⊥, e.g. X1 ⊥ X3|X2. The notation X2 �⊥ X4|X3 means that X2 and X4

are not conditionally independent, given X3. If a (conditional) rank correla-
tion from the D-vine is not replaced by zero, the corresponding variables are
considered to be (conditionally) dependent. The information represented by
the D-vine in Fig. 14.3 can be represented using a saturated BBN, from
which the arc between X1 and X3 is deleted. In this way, the dependence
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32 41
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Figure 14.3. A D-vine on four variables representing the following: X1 ⊥ X3|X2; X2 �⊥
X4|X3; X1 �⊥ X4| (X2, X3); X1 �⊥ X2, X2 �⊥ X3, X3 �⊥ X4.

Figure 14.4. (a) A BBN with four nodes and five arcs representing X1 ⊥ X3|X2. (b) A
BBN with four nodes and four arcs representing X1 ⊥ X3|X2. (c) The same BBN as
in (b).

between the two variables is mediated only via X2 (see Fig. 14.4(a)). Further,
X2 and X4 are conditionally dependent, given X3. Since the presence of arcs
does not guarantee dependence between variables (see Remark 14.1), this
statement cannot be represented with a BBN. The best one could do is to
avoid representing the opposite (i.e., X2 ⊥ X4|X3). The dependence between
X2 and X4 is not mediated only through X3, therefore the arc between them
can be deleted (see Fig. 14.4(b)). This of course will introduce a new con-
ditional independence statement, i.e., X2 ⊥ X4|(X1,X3), but it will not
necessarily violate the requirements imposed by the D-vine. The resultant
structure is presented in Fig. 14.4(c).

Only four arcs are necessary in order to represent the same conditional
independence statements as in the D-vine. The reduction in the number
of arcs constitutes a major advantage since it results in a sparser, more
readable structure. Another example of a set of conditional independence
statements represented on a D-vine with 15 edges versus a BBN with six
arcs is presented in Figs. 14.5 and 14.6.

Following the same strategy as before, i.e., starting with the saturated
BBN and removing the arcs corresponding to the independence statements,
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Figure 14.5. A D-vine on six variables representing four conditional independence
statements.

Figure 14.6. (a) BBN with six nodes and 11 arcs representing the same conditional
independence statements as the D-vine in Fig. 14.5. (b) BBN with six nodes and six arcs
representing the same conditional independence statements as the D-vine in Fig. 14.5.

results in the BBN in Fig. 14.6(a). As expected, the number of arcs is
reduced to 11. Nevertheless, if one only wants to preserve the conditional
independence statements shown in the regular vine and not violate the
conditional dependencies, the structure can be reduced even further, e.g.,
Fig. 14.6(b).

In larger structures, with many conditional independence statements
present, the reduction might be even more dramatic. Nevertheless, there are
configurations in which deleting arcs from a saturated BBN (corresponding
to a regular vine) does not result in a better “picture”. Consider the D-vine
in Fig. 14.7.

Starting with the saturated BBN and deleting the arcs between X1, X3

and X2, X4 will result in the BBN in Fig. 14.4(c). But in this structure
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Figure 14.7. A D-vine on four variables representing the following: X1 ⊥ X3|X2; X2 ⊥
X4|X3; X1 �⊥ X4| (X2, X3); X1 �⊥ X2, X2 �⊥ X3, X3 �⊥ X4.

X2 and X4 are not d-separated by X3. This does not imply that they are
not conditional independent, given X3. They might be, but this conditional
independence is not visible anymore, and the BBNs’ advantage of being
more visually intuitive vanishes. Any reorientation of the arcs will fail to
represent — via d-separation — both conditional independence statements.

On the other hand, starting with the BBN structure in Fig. 14.4(c)
(rearranged as in Fig. 14.8(a)) and trying to represent its conditional
independencies with a vine might prove difficult. Figure 14.8(a) encodes
X4 ⊥ X2|X1,X3 and X1 ⊥ X3|X2. To represent the first statement on
a D-vine, variable X1 has to be before variable X2 in the first tree (see
Fig. 14.8(b)), whereas to represent the second statement the order of these
variables has to change (see Fig. 14.8(c)).

The choice between representing a multivariate distribution using a
regular vine or using a BBN depends on many factors. A few of them,
related exclusively to the graphical representation of (in)dependence state-
ments were discussed above. Other factors will be explored throughout this
chapter.

The rest of the chapter is organized as follows. We first introduce
non-parametric Bayesian belief nets (NPBBNs) and their connection with

1

3

42

13 24
r43

r41|3

r31 r12

r32|1

0

23 14
r43

r42|3

r32 r12

0

r41|23

Figure 14.8. (a) A BBN representing X4 ⊥ X2|X1, X3 and X1 ⊥ X3|X2. (b) A D-vine
representing X4 ⊥ X2|X1, X3. (c) A D-vine representing X1 ⊥ X3|X2.
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regular vines. Differences in sampling and performing inference using an
NPBBN versus using a regular vine are further discussed. The issues of
model learning and validation are addressed and some applications of
the NPBBNs methodology are finally presented. The last section gathers
conclusions.

14.2 Non-Parametric Bayesian Belief Nets: Sampling and
Conditionalizing

This chapter concentrates on BBNs. As already mentioned, BBNs are DAGs,
whose nodes represent univariate random variables and whose arcs represent
direct influences.c

The origin of BBNs can be traced back to the early decades of the 20th
century when Sewell Wright,19 in his pioneering work, developed path anal-
ysis to help the study of genetic inheritance.

In their most popular form, BBNs were introduced in the 1980s as
a knowledge representation formalism to encode and use the information
acquired from human experts in automated reasoning systems to perform
diagnostic and prediction.16

BBNs provide a compact representation of high-dimensional distribu-
tions of a set of variables and encode their joint density/mass function by
specifying a set of conditional independence statements and a set of prob-
ability functions. The graph itself and the (conditional) independence rela-
tions entailed form the qualitative part of a BBN model. The quantitative
part of the model consists of the conditional probability functions associated
with the variables. In Section 14.1 we concentrated on the qualitative part
of BBNs. Subsequently we will mainly discuss their quantitative aspects and
the techniques for building high-dimensional distributions.

Until recently, BBNs were discrete, normal or discrete-normal. In dis-
crete BBNs, nodes represent discrete random variables. These models specify
marginal distributions for source nodes, and conditional probability tables
for child nodes. If the nodes of a BBN correspond to variables that follow a
joint normal distribution, we talk of Gaussian BBNs (or normal BBNs).16, 18

Continuous BBNs developed for joint normal variables interpret the influ-
ence of the parents on a child as partial regression coefficients when the

cBBNs can also contain functional nodes, i.e., nodes which are functions of other nodes.
The ensuing discussion refers to probabilistic nodes.
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child is regressed on the parents. They require means, conditional variances
and partial regression coefficients which can be specified in an algebraically
independent manner.18

Despite their popularity, they suffer from severe limitations. Discrete
BBNs are limited by size and complexity; normal and discrete-normal BBNs
are limited by the assumption of joint normality.d

Uncertainty distributions may not be assumed to conform to any para-
metric form. Algorithms for specifying, sampling and analyzing high-
dimensional distributions should therefore be non-parametric. Regular vines
allow us to move beyond discrete BBNs without defaulting to the joint nor-
mal distribution. When no marginal distribution assumption is made, we
talk of non-parametric BBNs, abbreviated NPBBNs. NPBBNs and their
relationship with regular vines were introduced in Ref. 11 and extended
in Ref. 5. The focus of this section is on quantifying and building a joint
distribution using an NPBBN.

An NPBBN is a DAG, together with a set of (conditional) rank corre-
lations, a copula class with the zero independence property, parameterized
by rank correlation, and a set of marginal distributions. In NPBBNs nodes
are associated with arbitrary distributions and arcs with (conditional) rank
correlations that are realized by the chosen copula. In continuous NPBBNs
nodes are associated with continuous invertible distribution functions. The
nodes of an NPBBN will be assumed continuous unless otherwise specified.
Further in this chapter, whenever we speak of NPBBNs, we mean the DAG
together with the specification of rank correlations, copula and margins.

The DAG of an NPBBN induces a (non-unique) ordering and stipulates
that each variable is conditionally independent of all predecessors in the
ordering, given its direct predecessors. The direct predecessors of a node i,
corresponding to variable Xi, are called parents and the set of all i’s parents
is denoted Pa(i).

Each variable is associated with a conditional probability function of that
variable, given its parents in the graph, fi|Pa(i), i = 1, . . . , n. The conditional
independence statements encoded in the graph allow us to writee:

f1,2,...,n =
n∏

i=1

fi|Pa(i). (14.1)

dFor a detailed discussion of the disadvantages of discrete and normal BBNs, we refer to
Chapter 1 of Hanea.4
eThis factorization is of course valid for BBNs in general and not only for NPBBNs.
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Figure 14.9. Node i of an NPBBN and the set of parent nodes for i.

For each variable i with parents i1 . . . ip(i), we associate the arc ip(i)−k → i

with the conditional rank correlation:{
ri,ip(i)

, k = 0
ri,ip(i)−k|ip(i),...,ip(i)−k+1

, 1 ≤ k ≤ p(i)− 1.
(14.2)

The assignment is vacuous if {i1 . . . ip(i)} = ∅ (see Fig. 14.9).
Therefore, every arc in the NPBBN is assigned a (conditional) rank cor-

relation between parent and child. These assignments are made according
to a protocol presented in Ref. 11. The conditional rank correlations need
not be constant, although they are taken to be constant in the following
example.f We will illustrate the protocol for assigning (conditional) rank
correlations to the arcs of an NPBBN with an example.

Example 14.1. Let us consider the undirected cycle on four variables in
Fig. 14.10. This structure is similar to the structure presented in Fig. 14.8(a).

The DAG of this NPBBN induces two orderingsg of the variables: 1, 2,
3, 4, or 1, 3, 2, 4. Let us choose 1, 2, 3, 4. The factorization of the joint
distribution is:

P (1)P (2|1)P (3|12)P (4|231). (14.3)

Figure 14.10. BBN with four nodes and four arcs.

fThe conditional rank correlations must be constant when the normal copula is used.
gSuch an ordering of the variables is referred to as sampling order or topological order.
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Figure 14.11. D2,D3,D4 for Example 14.1.

The underscored nodes in each conditioning set are the non-parents of the
conditioned variable. Thus, they are not necessary in sampling the condi-
tioned variable. This uses some of the conditional independence relations
in the NPBBN. The correlation between the child and its first parenth will
be an unconditional rank correlation, and the correlations between the child
and its next parents (in the ordering) will be conditioned on the values of the
previous parents. Hence, one set of (conditional) rank correlations that can
be assigned to the edges of the NPBBN in Fig. 14.10 is: {r21, r31, r42, r43|2}.
For each term i (i = 1, . . . , 4) of the factorization (14.3), a D-vine on i vari-
ables is built. This D-vine is denoted by Di and it contains: the variable
i, the non-underscored variables, and the underscored ones, in this order.
Figure 14.11 shows the D-vines built for variables 2, 3, 4.

Building the D-vines is not a necessary step in specifying the rank cor-
relations,i but it is essential in proving a result that not only establishes the
connection between NPBBNs and vines, but is also crucial for the develop-
ment of NPBBNs. The result will be further formulated; for its proof we
refer to Ref. 5:

Given a continuous NPBBN on n variables, the joint distribution of the
variables is uniquely determined. This joint distribution satisfies the charac-
teristic factorization (14.1) and the conditional rank correlations in (14.2)
are algebraically independent.

The (conditional) rank correlations and the marginal distributions
needed in order to specify the joint distributions represented by the NPBBN
can be retrieved from data if available, or elicited from experts.14

14.2.1 Sampling an NPBBN

Since no analytical/parametric form of the joint distributions is available,
the only way to stipulate it is by sampling it. In order to sample an NPBBN,

hThe parents of each variable can be ordered in a non-unique way.
iThese are assigned directly to the arcs of the BBN. Each arc is associated with a (con-
ditional) parent–child rank correlation as in Fig. 14.9.
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we will use the procedures for regular vines presented in Chapter 3. Variable
Xi is sampled using the procedure for the vine Di. When using regular vines
to sample a continuous NPBBN, it is not in general possible to keep the same
order of variables in successive vines. In other words, we will have to re-order
the variables before constructingDi+1 and sampling Xi+1, which will involve
calculating some conditional distributions. If the order of variables does not
change from one vine to another, the sampling procedure for the NPBBN
coincides with the sampling procedure for the regular vine built for the last
variable in the ordering (for details and examples, see Ref. 13). In Fig. 14.11,
one can notice that the D-vine for the third variable is D3 = D(3, 1, 2), and
the order of the variables from D4 must be D(4, 3, 2, 1). Hence, this NPBBN
cannot be represented as just one D-vine. This particularity of an undirected
cycle was already noticed in Fig. 14.8 from Section 14.1. In order to sample
X4, we use the sampling procedure described in Chapter 3 of this book:

x4 = F−1
r42;x2

(F−1
r43|2;Fr32;x2 (x3)

(F−1
r41|32;Fr21|3;Fr32;x3(x2)(Fr31;x3 (x1))

(u4))),

which, using the conditional independencies from the graph, reduces to:

x4 = F−1
r42;x2

(F−1
r43|2;Fr32;x2(x3)

(u4)).

The conditional distribution Fr32;x2(x3) is not given explicitly but it can be
calculated as follows:

F3|2(x3) =
∫ x3

0

∫ 1

0
c21(x2, x1)c31(v, x1)dx1dv,

where ci1 is the density of the chosen copula with correlation ri1, i ∈ {2, 3}.
For each sample, one needs to calculate the numerical value of the dou-

ble integral. In this particular case, when only one double integral needs to
be evaluated, it can be easily done without excessive computational bur-
den. If the NPBBN contains an undirected cycle of five variables, and the
same sampling procedure is applied, a triple integral will have to be calcu-
lated. The bigger the undirected cycle is, the larger the number of multiple
integrals to be numerically evaluated.

If the multivariate distribution can be represented and assessed using one
single regular vine, no extra calculations are needed in order to obtain sam-
ples from the joint distribution, hence the computational time is drastically
reduced.
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Nevertheless, the disadvantage mentioned above vanishes when the nor-
mal copula is used. A different sampling protocol based on the normal copula
uses the properties of normal vines to realize the dependence structure spec-
ified via (conditional) rank correlations on the NPBBN. This sampling pro-
tocol is presented in Chapter 3. The main advantage of this method is that
everything is calculated on the joint normal vine, hence we can reorder the
variables (if necessary) and recompute all partial correlations needed. This
results in a dramatic decrease in the computational time. For examples and
comparisons, see Ref. 5.

It is worth mentioning that the approach to continuous NPBBNs using
vines is extended to include ordinal discrete random variables. The depen-
dence structure in the NPBBN is defined via (conditional) rank correlations,
hence with respect to the underlying uniform variables. The rank correla-
tion of two discrete variables and the rank correlation of their underlying
uniforms are not equal. The relationship between them is established in
Ref. 6. This relationship is based on a generalization of the population ver-
sion of Spearman’s rank correlation coefficient for the case of ordinal discrete
random variables.

Since the sampling procedure for NPBBNs is based on the one for regular
vines, we cannot talk about the advantages of the former compared to the
latter.

14.2.2 Conditionalizing an NPBBN

Maybe one of the most important features of probabilistic graphical models
is that they can be used for inference. One can calculate the distributions
of unobserved nodes, given the values of the observed ones, i.e., conditional
distributions.

For regular vines, if values of some variables are observed, the results of
sampling the model — conditional on these values — can be obtained either
by sampling again the structure (the cumulative approach) or by using the
density approach, both of which are presented in Chapter 3. The new con-
ditional distribution, although calculated, cannot be easily visualized and
compared with the unconditional one. Even if this is merely an implemen-
tation issue for graphical software, NPBBNs still hold the advantage that
conditionalization can be visualized and interpreted in terms of the direc-
tionality of arcs. In other words, if the reasoning is done “bottom-up” (in
terms of the directionality), the NPBBN is used for diagnosis, whereas if it is
done “top-down”, the NPBBN serves for prediction. Following the principle
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that a picture is worth a thousand words, we will continue with an example.
It is loosely based on an ongoing project undertaken by the European Union
that uses the NPBBNs’ methodology. The name of the project is Beneris
(short for “Benefit and Risk”) and it focuses on the analysis of health bene-
fits and risks associated with food consumption.j The model introduced here
is a highly simplified version of the NPBBN model used in the project.10 The
goal is to estimate the beneficial and harmful health effects in a specified
population, as a result of exposure to various contaminants and nutrients
through ingestion of fish.

Example 14.2. Figure 14.12(a) resembles the version of the model that we
are considering for purely illustrative purposes.

The variables of interest for this model are the health endpoints resulting
from exposure to fish constituents, namely cancer and cardiovascular risk.
These risks are defined in terms of remaining lifetime risks. The three fish
constituents considered are: dioxins/furans, polychlorinated biphenyls and
fish oil. The first two are persistent and bio-accumulative toxins which cause
cancer in humans. Fish oil is derived from the tissues of oily fish and has
high levels of omega-3 fatty acids which regulate cholesterol and reduce
inflammation throughout the human body. Personal factors such as smoking,

Figure 14.12. (a) Simplified fish consumption NPBBN. (b) Simplified fish consumption
NPBBN with histograms.

jhttp://www.beneris.eu/
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socioeconomic status and age may also influence cancer and cardiovascular
risk. Smoking is measured as the yearly intake of nicotine during smoking
and passive smoking, while socioeconomic status is measured by income
and represented by a discrete variable with four income classes (from top to
bottom in Fig. 14.12(b) unemployed, blue collar, white collar, and farmer
and entrepreneur). Age is take as a discrete variable with two states, 15 to
34 years and 35 to 59 years.

The distributions of the variables are presented in Fig. 14.12(b) together
with their means and standard deviations. They are chosen by the author for
illustrative purposes only. So are the (conditional) rank correlations assigned
to the arcs of the NPBBN.

We are interested in what-if? scenarios, in diagnosis and/or prediction,
and moreover in visualizations and comparisons with the default situation.
Examine the situation in which there is a very high risk of cancer. To do
that, we conditionalize on the 0.9 value of cancer risk and study in what
way the other variables in the graph are affected by this information. In this
case, the NPBBN is used for diagnosis.

Figures 14.12 and 14.13 are obtained with UniNet, a software applica-
tion where the approach to mixed non-parametric continuous and discrete

Figure 14.13. Diagnostic & predictive reasoning using the NPBBN. (a) Conditionalised
NPBBN for cancer risk = 0.9. (b) Conditionalised NPBBN for dioxins furans = 0.022,
smoking = 0.1, socio econ status = 4.
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BBNs has been implemented.k In Fig. 14.13, the grey distributions in the
background are the unconditional marginal distributions, provided for com-
parison. The conditional means and standard deviations are displayed under
the histograms. In Fig. 14.13(a), we examine the situation of a very high
cancer risk. We are interested in what can we infer about the factors influ-
encing the cancer risk, when this risk is known to be 0.9. From the shift of
the distributions, one can see that a person with this risk level is neither
very young, nor very wealthy, smokes much and ingests a large amount of
dioxins/furans and polychlorinated biphenyls. Because some of these factors
also influence cardiovascular risk, the shift in their distributions causes an
increase in cardiovascular risk as well.

The conditionalization in an NPBBN can also be used for prediction. For
example, one can be interested in the cancer risk of a person that inhales a
very small amount of nicotine, has a high socioeconomic status and ingests
very little dioxins/furans. Figure 14.13(b) presents the flow of this informa-
tion through the graph. The expected value of the cancer risk decreases from
0.4 to 0.23. A substantial decrease can also be seen in the cardiovascular
risk. Because socioeconomic status and age are positively correlated, a high
socioeconomic status results in a reduction of the population to the segment
older than 35 years.

All the results and computations performed in this section are also possi-
ble if the model used is a regular vine rather than an NPBBN. Nevertheless
the visualization of such results is not yet available and the interpretations,
in terms of the flow of influences, might be somewhat cumbersome when
using regular vines.

One might wonder how we actually calculated the conditional distribu-
tions presented in Fig. 14.13. There are several ways to perform condition-
alization in NPBBNs.

Since sampling an NPBBN is based on the sampling procedure for reg-
ular vines, the cumulative or density approach for vines, mentioned in the
beginning of this section, can be used to perform inference in NPBBNs.
Whichever of the two methods is preferred, if the DAG contains undirected
cycles, multiple integrals need to be evaluated for each sample, and for any
new conditionalization. This might be a very time-consuming operation.
Nevertheless, the problem owner might not be prepared to wait days or

kThe software is available on http://dutiosc.twi.tudelft.nl/∼risk/, together with support-
ing scientific documentation.
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even hours for the results of new scenarios and policies. In these cases, the
advantages of fast updating algorithms for discrete BBNs3, 16 are decisive.
The reduced assessment burden and modeling flexibility of the NPBBNs are
combined with the fast updating algorithms of discrete BBNs in the hybrid
method presented in Ref. 5. Sampling a large NPBBN structure once and
then discretizing it so as to enable fast updating provides an elegant solu-
tion to the above problem. This method is not applicable when working
with regular vines, since no fast algorithms for vines on discrete variables
are available.

The last and fastest way of conditionalizing in an NPBBN is in the partic-
ular case in which the normal copula is used to realize the rank correlations.
Since all the calculations are performed on a joint normal vine, any condi-
tional distribution will also be normal, so in this case conditioning can be
performed analytically. This last method is implemented in UniNet, hence
it was used to produce Fig. 14.13.

The advantages of the normal copula are also used in the next section
where the model learning problem is discussed.

14.3 Data Mining with NPBBNs

In situations where data does not exist or is very limited, expert judg-
ment must be used to define the graphical structure and assess the required
parameters. However, if the data are available, we would like to extract a
fitting model from the data. In the process of learning a model from data,
two aspects are of interest: learning the parameters of the model, given the
structure, and learning the structure itself. Both learning the parameters of
a regular vine, given the structure, and learning the vine structure together
with its parameters are discussed in Chapter 3. The ensuing discussion con-
centrates on learning the DAG of an NPBBN together with its parameters
from an ordinal data set.

The idea behind model inference for NPBBNs coincides with the one for
regular vines, and it is based on the factorization of the determinant of the
correlation matrix on the arcs of the NPBBN. This factorization is similar
to the one for regular vines and the proof of this is available in Ref. 7. Once
again, the directed nature of an NPBBN and the possibility of excluding
arcs that correspond to zero rank correlations make learning an NPBBN a
more intuitive task than learning a regular vine.

An NPBBN induced from data can be used to investigate distant rela-
tionships between variables, as well as making predictions, by computing
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the conditional probability distribution of one variable given the values of
some others (see the previous section).

The distinctive feature of learning an NPBBN from a data set is that the
one-dimensional marginal distributions are taken directly from data, and
the model assumes only that the joint distribution has a normal copula.
That is to say, the variables’ rank dependence structure is that of a joint
normal distribution. The NPBBN methodology is based on representing
(conditional) dependencies on the arcs of a DAG, hence our strategy for
inferring an NPBBN from data searches conditional dependencies in the
data and associates arcs with them. A detailed discussion is found in Ref. 7;
here we only sketch the ideas.

The concepts of learning and validation are closely connected, as indeed
the goal is to learn an NPBBN that is valid. Validation involves two
steps: validating that the joint normal copula adequately represents the
multivariate data, and validating that the NPBBN is an adequate model of
the saturated graph. Validation requires an overall measure of multivariate
dependence on which statistical tests can be based. A suitable measure in
this case is the determinant of the rank correlation matrix.7 The determi-
nant is 1 if all variables are independent, and 0 if there is linear depen-
dence between the normal versions of the variables. We distinguish three
determinants: DER is the determinant of the empirical rank correlation
matrix. DNR is the determinant of the rank correlation matrix obtained by
transforming the marginals to standard normals, and then transforming the
product moment correlations to rank correlations using Pearson’s transfor-
mation.l Finally, DBBN is the determinant of the rank correlation matrix of
an NPBBN using the normal copula. DNR will generally differ from DER
because DNR assumes the normal copula, which may differ from the empiri-
cal copula. A statistical test for the suitability of DNR for representing DER
is to obtain the sampling distribution of DNR and check whether DER is
within the 90% central confidence band of DNR. If DNR is not rejected on
the basis of this test, we shall attempt to build an NPBBN which represents
the DNR parsimoniously. The saturated NPBBN will induce a joint distri-
bution whose rank determinant is equal to DNR, since the NPBBN uses the
normal copula. However, many of the influences only reflect sample jitter
and we will eliminate them from the model. Moreover, for a large number
of variables, the saturated graph is dense and unintuitive.

lPearson’s transformation17 is characteristic of the normal distribution. The normal copula
assumption implies that the variables are assumed to have the distribution of transforms
of a joint normal vector.
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Once the normal copula is validated, we will build the NPBBN by adding
arcs between variables only if the rank correlation between those two vari-
ables is among the largest. The second validation step is similar to the first.
The general procedure can then be represented thus:

(1) Verify that DER is not outside the plausible central confidence band for
DNR. If so, the normal copula hypothesis is not rejected;

(2) Construct a skeletal NPBBN by adding arcs to capture known causal
or temporal relations;

(3) If DNR is within the 90% central confidence band of the determinant of
the skeletal NPBBN, then stop, else continue with the following steps;

(4) Find the pair of variables such that the arc between them is not in the
DAG and their rank correlation is greater than the rank correlation of
any other pair not in the DAG. Add an arc between them and recompute
DBBN together with its 90% central confidence band;

(5) If DNR is within the 90% central confidence band of DBBN, then stop,
else repeat step 4.

The procedure for building an NPBBN to represent a given data set is
not fully automated, as it is impossible to infer directionality of influence
from multivariate data. Insight into the causal processes generating the data
should be used, whenever possible, in constructing an NPBBN. Because
of this fact, there are different NPBBN structures that are wholly equiva-
lent, and many non-equivalent NPBBNs may provide statistically acceptable
models of a given multivariate ordinal data set.

This approach is already used in several studies that try to link PM2.5

concentrations to stationary source emissions.7, 8, 15 Other applications of
the NPBBN methodology are briefly mentioned in the next section.

14.4 Applications of NPBBNs

In Example 14.2.2, we have already mentioned one of the ongoing appli-
cations that uses NPBBNs, namely Beneris, a project undertaken by the
European Union. The name of the project is short for “Benefit and Risk”
and it focuses on the analysis of health benefits and risks associated with
food consumption.10

Another project that uses NPBBNs is CATS, which stands for “Causal
Model for Air Transport Safety”. It is a large-scale application on risks
in the aviation industry, and is currently under development. The project
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is commissioned by the Netherlands Ministry of Transport and Water
Management.1, 2

It is worth mentioning that both Beneris and CATS models use NPBBNs
with hundreds of nodes and arcs. Models involving hundreds of variables
benefit greatly from the advantages of the directed structure of an NPBBN.
The use of regular vines in such situations would be somewhat cumbersome
if not impossible.

A third application employs NPBBNs as a tool to estimate the extent of
a fire in a building, given any combination of possible conditions and any
unexpected course of events during an emergency.9

The latest attempt to use an NPBBN-based approach is in the field of
reservoir engineering, namely in the estimation of surface characteristics (see
www.data-assimilation.com/ssda).

All of the above projects use UniNet, the software application men-
tioned in Section 14.2.2. UniNet was initially developed to support the
CATS project, and it is under constant development. The main program
features are presented in the Appendix of Ref. 4.

14.5 Conclusions

In this book, graphical models have been chosen to represent multivariate
distributions with complex dependence structures. More specifically, regular
vines were advocated for this purpose. This chapter proposes NPBBNs as
an alternative to regular vines and discusses the differences and similarities
between the two.

The most important difference between NPBBNs and regular vines
turned out to be the different statements of conditional (in)dependence that
they make through their undirected and directed nature, respectively. In
the DAG of an NPBBN, the absence of an arc encodes (conditional) inde-
pendence statements. Regular vines, on the other hand, can be viewed as
fully connected graphs that represent (conditional) dependence statements.
Accordingly, the absence of edges in a regular vine is only possible for very
special structures.m Nevertheless, the presence of arcs in NPBBNs does not
guarantee dependence between variables (see Remark 14.1). Consequently,
if one graph fails to represent dependencies, the other fails to represent
independencies.

mIf all conditional rank correlations in the higher-order trees of a vine are zero, then the
edges of these trees can be removed.12
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The possibility of excluding arcs from an NPBBN, whenever a (con-
ditional) independence statement is known, produces a more perspicuous
graphical structure. In order to visualize (conditional) independence state-
ments on a regular vine, one has to assign zero (conditional) rank correla-
tions to the edges; the edges cannot be removed. In this way, similar inde-
pendence statements can be represented using both structures, and compar-
isons can be made. After such an analysis, no definite conclusion emerged.
Some combinations of statements are better represented using a regular vine,
whereas others benefit from the representation in a DAG form. This is only
true for small structures. When hundreds of variables are involved, the sat-
urated nature of regular vines constitutes a disadvantage in modelling and
visualizing. Moreover the directed structure of NPBBNs holds the advan-
tage of a more intuitive representation in terms of the flow of influences
between variables.

When it comes to the quantitative part of the models, both NPBBNs and
regular vines require marginal distributions and (conditional) rank correla-
tions. Once these are obtained, the joint distribution is stipulated through
a sampling procedure. The sampling procedure for NPBBNs uses the one
for regular vines, hence we cannot talk about the advantages of the former
compared to the latter. Moreover, in DAG structures that contain large
undirected cycles, sampling an NPBBN involves extra numerical calcula-
tions that might be time consuming. These calculations are not necessary if
the multivariate distribution can be represented and assessed using a regu-
lar vine. However, this disadvantage of NPBBNs vanishes when the normal
copula is used.

Possessing a joint distribution allows us to perform inference. We can cal-
culate the conditional distributions of unobserved variables, given the values
of the observed ones. To achieve this, similar calculations are performed in
both graphical models. Numerical complications that might arise for DAGs
containing undirected cycles are circumvented by using a hybrid method
that combines the flexibility of NPBBNs with the fast updating algorithms
of discrete BBNs. When regular vines are used, the new conditional distri-
butions, although calculated, cannot be easily visualized and compared with
the unconditional one. This is purely an implementation issue for graphical
software, hence it might be viewed as a recommendation for future devel-
opment. Nonetheless, NPBBNs hold the advantage that conditionalization
can be interpreted in terms of the directionality of arcs. In other words, if
the reasoning is done “bottom-up” (in terms of the directionality), then the
NPBBN is used for diagnosis, whereas if it is done “top-down”, the NPBBN
serves for prediction.
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When data are available we are interested in learning a fitting model
from data. In this process we could either learn the parameters of the model,
given the structure, or learn the structure itself. The subject of learning the
parameters of an NPBBN, given the structure, has not yet been addressed.
Future research could investigate the methodology presented in Chapter 3
and its applicability to NPBBNs.

The idea behind learning the DAG of an NPBBN together with its
parameters from an ordinal data set coincides with the one for learning
regular vines. Still, the directed nature of an NPBBN and the possibility of
including only arcs that correspond to the highest rank correlations make
learning an NPBBN a more intuitive task than learning a regular vine.
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5. Hanea A., Kurowicka D. and Cooke R. (2006). Hybrid method for quantifying and
analyzing Bayesian belief nets. Quality and Reliability Engineering International,
22(6):613–729.

6. Hanea A., Kurowicka D. and Cooke R. (2007). The population version of Spearman’s
rank correlation coefficient in the case of ordinal discrete random variables.
Proceedings of the Third Brazilian Conference on Statistical Modelling in Insurance
and Finance.

7. Hanea A.M., Kurowicka D., Cooke R.M. and Ababei D.A. (2010). Mining and visu-
alising ordinal data with non-parametric continuous BBNs. Computational Statistics
and Data Analysis, 54:668–687.

8. Hanea A.M. and Harrington W. (2009). Ordinal PM2.5 data mining with non-
parametric continuous Bayesian belief nets.

9. Hanea D. and Ale B. (2009). Risk of human fatality in building fires: A decision using
Bayesian networks. Fire Safety Journal, doi:10.1016/j.firesaf.2009.01.006.

10. Jesionek P. and Cooke R. (2007). Generalized method for modeling dose-response
relations-application to BENERIS project. Technical Report, European Union
project.

11. Kurowicka D. and Cooke R. (2004). Distribution-free continuous Bayesian belief
nets. Proceedings of the Fourth International Conference on Mathematical Methods
in Reliability Methodology and Practice, Santa Fe, New Mexico.



October 11, 2010 12:19 9.75in x 6.5in b979-ch14

Non-Parametric BBNs vs.Vines 303

12. Kurowicka D. and Cooke R. (2006). Completion problem with partial correlation
vines. Linear Algebra and Its Applications, 418(1):188–200.

13. Kurowicka D. and Cooke R. (2006). Uncertainty Analysis with High Dimensional
Dependence Modelling. Wiley, Chichester.
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In this chapter, we compare three constructions for modeling higher-dimensional
dependence: the Student copula, the partially nested Archimedean construction
(PNAC) and the pair-copula construction. For the latter two, a multivariate
data set is modeled using a cascade of lower-dimensional copulae. They differ,
however, in their construction of the dependence structure. The PNAC is more
restrictive than the PCC in two respects. There are strong limitations on the
degree of dependence in each level of the PNAC, and all the bivariate copulae in
this construction has to be Archimedean. The PCC, on the other hand, can be
built using copulae from any class and there are no constraints on the parameters.
We show through two applications that the PCC provides a better fit to financial
data than the two other structures.
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15.1 Introduction

A copula is a multivariate distribution function with standard uniform
marginal distributions. While the literature on copulae is substantial, most
of the research is still limited to the bivariate case. Building higher-
dimensional copulae is a natural next step. However, this is not an easy
task. Apart from the multivariate Gaussian and Student copulae, the selec-
tion of higher-dimensional parametric copulae is still rather limited.12

Recent developments in this area tend toward hierarchical, copula-based
structures. Perhaps the most promising of these is the pair-copula con-
struction (PCC). Originally proposed in Ref. 18, it has been further dis-
cussed and explored by Refs. 3, 4, 22 (simulation) and 1 (inference). Lately,
some publications on applications of PCCs have appeared in the literature,
especially in finance. However, the Student copula, in particular, and an
alternative structure for building higher-dimensional copulae — the nested
Archimedean construction (NAC)19 — are still more commonly used.

In this chapter, we compare the PCC to the Student copula and the NAC.
The rest of the chapter is organized as follows. In Sections 15.2 and 15.3,
we give short reviews of the three constructions to be compared and how to
estimate their parameters, respectively. In Section 15.4, we fit the PCC and
the NAC to a four-dimensional equity portfolio, while the PCC is compared
to the Student copula in the context of a four-dimensional portfolio com-
prised of Norwegian and international stock and bond indices in Section 15.5.
Finally, Section 15.6 provides some summarizing comments and conclusions.
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15.2 Constructions of Higher-Dimensional Dependence

In this section, we give a short review of the three constructions to be
compared.

15.2.1 Student copula

The n-dimensional Student copula has been used repeatedly for modeling
multivariate financial return data. A number of papers, such as Ref. 23,
have shown that the fit of this copula is generally superior to that of
other n-dimensional copulae for such data. The density of the n-dimensional
Student copula is given by Ref. 8:

c(u) =
Γ(ν+n2 ) Γ(ν2 )n−1

(
1 + x

′
R−1 x
ν

)− (ν+n)
2

|R|1/2 Γ(ν+1
2 )n

∏n
j=1(1 +

x2
j

ν )−
ν+1
2

, (15.1)

where x = (t−1
ν (u1), . . . , t−1

ν (un)) and R and ν are the copula parameters.
The Student copula has only one parameter, i.e. ν, for modeling tail

dependence, independent of dimension. Hence, if the tail dependence of
different pairs of risk factors in a portfolio are very different, it might not
be flexible enough.

15.2.2 Partially nested Archimedean construction (PNAC )

The Archimedean copula family (see, e.g., Ref. 19, for a review) is a class
that has attracted particular interest due to numerous properties which
make them simple to analyze. The most common way of defining a multivari-
ate Archimedean copula is the exchangeable Archimedean copula (EAC),
defined as

C(u1, u2, . . . , un) = ϕ−1{ϕ(u1) + · · ·+ ϕ(un)}, (15.2)

where the function ϕ is a decreasing function known as the generator of
the copula and ϕ−1 denotes its inverse (see, e.g., Ref. 27). Note that some
authors define ϕ and ϕ−1 oppositely to what we have done here.

For C(u1, u2, . . . , un) to be a valid n-dimensional Archimedean copula,
ϕ−1 should be defined in the range of zero to one, be monotonically decreas-
ing and ϕ(1) = 0. Furthermore, if ϕ(0) =∞ the generator is said to be strict.
Archimedean copulae arise naturally in the context of Laplace transforms of
distribution functions.19 If ϕ, in addition, equals the inverse of the Laplace
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transform of a distribution function G on R+ satisfying G(0) = 0,a the
copula in (15.2) is guaranteed to be a proper distribution.

The EAC is extremely restrictive, allowing the specification of only one
generator, regardless of dimension. Hence, all k-dimensional marginal dis-
tributions (k < d) are identical. For several applications, one would like to
have multivariate copulae which allow for more flexibility. There have been
some attempts at constructing more flexible multivariate Archimedean cop-
ula extensions (see, e.g., Refs. 10, 17, 19, 26, 27 and 31). In this chapter,
we use one class of such extensions, the partially nested Archimedean con-
struction (PNAC). It was originally proposed in Ref. 19 and is also discussed
in Refs. 17, 24, 25 where it is denoted partially exchangeable and 36. The
lowest dimension for which there is a distinct construction of this class is
four, when we have the following copula:

C(u1, u2, u3, u4) = C21(C11(u1, u2), C21(u3, u4))

= ϕ−1
21 {ϕ21(ϕ−1

11 {ϕ11(u1) + ϕ11(u2)})
+ϕ21(ϕ−1

12 {ϕ12(u3) + ϕ12(u4)})}. (15.3)

The construction, which is shown in Fig. 15.1 for the four-dimensional case,
is quite simple but notationally cumbersome. We first couple the two pairs
(u1, u2) and (u3, u4) with copulae C11 and C12, having generator functions

Figure 15.1. Partially nested Archimedean construction.

aThe Laplace transform of a distribution function G on R+, satisfying G(0) = 0, is

Ĝ(t) =

Z ∞

0

e−txdG(x), t ≥ 0.
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ϕ11 and ϕ12, respectively. We then couple these two copulae using a third
copula C21. Hence, in Fig. 15.1, the four pairs (u1, u3), (u1, u4) (u2, u3)
and (u2, u4) will all have copula C21, with dependence parameter θ21. This
means that in the PNAC, d − 1 copulae and corresponding distributional
parameters are freely specified, while the remaining copulae and parameters
are implicitly given through the construction.

The PNAC is a construction of partial exchangeability and there are
some technical conditions that need to be satisfied for (15.3) to be a
proper n-dimensional copula. First, all the generators have to be strict
with completely monotone inverses. Second, ϕ2,1 ◦ ϕ−1

1,1 and ϕ2,1 ◦ ϕ−1
1,2

must have completely monotone derivatives (see, e.g., Refs. 24 and 17).
These conditions put restrictions on the parameters of the copulae involved.
For instance, if all the generators are of the same type, e.g., Clayton,
Ali-Mikhail-Haq, Gumbel, Frank or Joe type, the degree of dependence,
as expressed by the copula parameter, must decrease with the level of nest-
ing in order for the resulting n-dimensional distribution to be a proper
copula. If generators belonging to different families are involved in a nested
Archimedean construction, the parameter restrictions are even stronger. For
example, if ϕ2,1 and ϕ1,1 are the generators for the Clayton and Gumbel
copulae, respectively, ϕ2,1 ◦ ϕ−1

1,1 does not have a completely monotonic
derivative for any parameter choice. For more information on this, see
Refs. 24 and 17.

15.2.3 Pair-copula construction (PCC )

While the PNAC constitutes a large improvement compared to the EAC, it
still only allows for the specification of up to n − 1 copulae. An even more
flexible construction, the PCC, allows for the free specification of n(n−1)/2
copulae. This construction was orginally proposed in Ref. 18, and it has been
discussed in detail by Refs. 3, 4, 22 (simulation) and 1 (inference). Similar to
the NAC, the PCC is hierarchical in nature. The modeling scheme is based
on a decomposition of a multivariate density into n(n−1)/2 bivariate copula
densities, of which the first n−1 are dependency structures of unconditional
bivariate distributions, and the rest are dependency structures of conditional
bivariate distributions.

While the PNAC is defined through its distribution functions, the PCC
is usually represented in terms of the density. Two main types of PCCs
have been proposed in the literature; canonical vines and D-vines.21 Here,
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we concentrate on the D-vine representation, for which the density is1:

f(x1, . . . xn) =
n∏

k=1

f(xk)
n−1∏

j=1

n−j∏

i=1

c{F (xi|xi+1, . . . , xi+j−1),

F (xi+j |xi+1, . . . , xi+j−1)}. (15.4)

In (15.4), c(·, ·) is a bivariate copula density and the conditional distribution
functions are computed using18

F (x|v) =
∂ Cx,vj |v−j

{F (x|v−j), F (vj |v−j)}
∂F (vj |v−j)

. (15.5)

In (15.5), Cx,vj |v−j
is the dependency structure of the bivariate conditional

distribution of x and vj conditioned on v−j, where the vector v−j is the
vector v excluding the component vj .

To use the D-vine construction to represent a dependency structure
through copulae, we assume that the univariate margins are uniform in
[0,1]. One four-dimensional case of (15.4) is then

c(u1, u2, u3, u4) = c11(u1, u2) · c12(u2, u3) · c13(u3, u4)

· c21(F (u1|u2), F (u3|u2)) · c22(F (u2|u3), F (u4|u3))

· c31(F (u1|u2, u3), F (u4|u2, u3)),

where

F (u1|u2) = ∂ C11(u1, u2)/∂u2,

F (u3|u2) = ∂ C12(u2, u3)/∂u2,

F (u2|u3) = ∂ C12(u2, u3)/∂u3,

F (u4|u3) = ∂ C13(u3, u4)/∂u3,

F (u1|u2, u3) = ∂ C21(F (u1|u2), F (u3|u2))/∂F (u3|u2),

F (u4|u2, u3) = ∂ C22(F (u4|u3), F (u2|u3))/∂F (u2|u3).

Hence, the conditional distributions involved at one level of the construction
are always computed as partial derivatives of the bivariate copulae at the
previous level. Since only bivariate copulae are involved, the partial deriva-
tives may be obtained relatively easily for most parametric copula families.
Figure 15.2 illustrates this construction.

The copulae involved in (15.4) do not have to belong to the same family.
In contrast to the PNAC, they do not even have to belong to the same
class. The resulting multivariate distribution will be valid even if we choose,
for each pair of variables, the parametric copula that best fits the data.
As seen from (15.4), the PCC consists of n(n − 1)/2 bivariate copulae of



October 11, 2010 12:19 9.75in x 6.5in b979-ch15

Modeling Dependence Between Financial Returns Using PCC 311

Figure 15.2. Pair-copula construction.

known parametric families, of which n − 1 are copulae of pairs of the orig-
inal variables, while the remaining (n − 1)(n − 2)/2 are copulae of pairs of
variables constructed using (15.5) recursively. This means that in contrast
to the NAC, the unspecified bivariate margins will not belong to a known
parametric family in general.

15.3 Parameter Estimation

15.3.1 Student copula

To estimate the parameters of the Student copula, we use the two-step
maximum likelihood method described in broad terms by Ref. 28 and later
formalized and studied in Refs. 13 and 32. The estimation of the Student
copula parameters requires numerical optimization of the log-likelihood
function; see, for instance, Refs. 23 or 9.

15.3.2 PNAC

Full estimation of a PNAC should in principle consider the following three
steps:

(1) the selection of a specific factorization
(2) the choice of pair-copula types,
(3) the estimation of the copula parameters.
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Hence, before estimating the parameters of the construction, one has to
choose which variables to join at each level of the PNAC as well as the
parametric shapes of all pair-copulae involved. Due to the restrictions on the
dependency parameters of the involved copulae described in Section 15.2.2,
it is usually appropriate to join the variables that have the strongest
tail dependence first. Recently, there has been an attempt at formaliz-
ing the procedure of determining the optimal structure of an NAC (see
Ref. 29). Concerning the parametric shapes of the copulae, one may use a
goodness-of-fit test, e.g., the one described in Section 15.4.2.1, for deter-
mining the copula family that most appropriately fits the data. A prob-
lem with the PNAC, however, is that many pairs have the same copula
by construction. Hence, the choice of copula family for these pairs is not
obvious.

Having determined the appropriate parametric shapes for each copula,
all the parameters of the PNAC may be estimated by maximum likelihood.
However, it is not straightforward to derive the density. Due to the complex
structure of this construction, one has to use a recursive approach. One dif-
ferentiates the n-dimensional top level copula with respect to its arguments
using the chain rule. Hence, the number of computational steps needed to
evaluate the density increases rapidly with the complexity of the copula, and
parameter estimation becomes very time-consuming in high dimensions. See
Ref. 31 for more details.

15.3.3 PCC

Full inference for a pair-copula construction should in principle consider the
same three steps as described for the PNAC in Section 15.3.2. First, one
has to choose which variables to join at the first level of the PCC. We then
usually join the variables that have the strongest tail dependence. Having
chosen the order of the variables at the first level, one has also determined
which factorization to use.

Given the data and the chosen factorization, one must then specify the
parametric shape of each pair-copula involved. The parametric shapes may,
for instance, be determined using the following procedure:

(1) Determine which copula families to use at level 1 by plotting the
observations, and/or applying a goodness-of-fit (GoF) test (see, e.g.,
Section 15.4 for a powerful GoF test).

(2) Estimate the parameters of the selected copulae.
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(3) Determine the observations required for level 2 as the partial derivatives
of the copulae from level 1.

(4) Determine which copula families to use at level 2 in the same way as at
level 1.

(5) Repeat (1)–(3) for all levels of the construction.

This selection mechanism does not guarantee a globally optimal fit. Having
determined the appropriate parametric shapes for each copulae, all param-
eters of the PCC are estimated by numerical optimization of the full like-
lihood. In contrast to the PNAC, the density is explicitly given. However,
also for this construction, a recursive approach is used (see Algorithm 4
in Ref. 1). Hence, the number of computational steps to evaluate the den-
sity increases with the complexity of the copula, and parameter estimation
becomes time-consuming in high dimensions.

15.4 Portfolio 1

In this section, the PCC is compared to the NAC in the context of a four-
dimensional equity portfolio. We first describe the data set in Section 15.4.1.
In Section 15.4.2, we show the results of fitting the PCC and NAC to this
data set. Finally, in Section 15.4.3, the PCC is validated out-of-sample with
respect to one-day Value-at-Risk.

15.4.1 Data set

The equity portfolio studied in this example is comprised of four time series
of daily log-return data from the period August 14, 2003, to December 29,
2006 (N = 852 observations for each firm). The data set was downloaded
from http://finance.yahoo.com. The firms are British Petroleum (BP),
Exxon Mobil Corp (XOM), Deutsche Telekom AG (DT) and France Telecom
(FTE). Financial log-returns are usually not independent over time. Hence,
the original vectors of log-returns are processed by a GARCH filter before
further modeling. We use the GARCH(1,1)-model6 :

rt = c+ εt

E[εt] = 0 and Var[εt] = σ2
t (15.6)

σ2
t = a0 + a ε2t−1 + b σ2

t−1.

It has been known for a long time that GARCH models, coupled with the
assumption of conditionally normally distributed errors, are unable to fully
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account for the tails of the distributions of daily returns.7 In a study per-
formed in Ref. 35, the NIG distribution outperforms a skewed Student’s
t-distribution and a non-parametric kernel approximation as the conditional
distribution of a one-dimensional GARCH process. Hence, we follow Ref. 34
and use the normal inverse Gaussian (NIG) distribution2 as the conditional
distribution. After filtering the original returns with the GARCH model
(15.6), the standardized residual vectors are converted to uniform pseudo-
observations. Figures 15.3 and 15.4 show the filtered daily log-returns and
pseudo-observations for each pair of assets, respectively.
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Figure 15.3. GARCH-filtered daily log-returns for our four stocks for the period from
August 14, 2003 to December 29, 2006.
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Figure 15.4. Pseudo-observations corresponding to Fig. 15.3.

Based on visual inspection and preliminary goodness-of-fit tests for
bivariate pairs (the copulae taken into consideration were the Student,
Clayton, survival Clayton, Gumbel and Frank copulae), we decided to exam-
ine a Frank NAC and Frank and Student PCCs.

15.4.2 Results

15.4.2.1 PNAC

We use the following PNAC:

C(u1, u2, u3, u4) = C21(C11(u1, u2), C21(u3, u4)).

The most appropriate ordering of the variates in the construction is found
by comparing Kendall’s tau values for all bivariate pairs. The Kendall’s tau
values are shown in Table 15.1. As expected, stocks within one industrial
sector are more dependent than stocks from different sectors. Hence, we
choose C11 as the copula of BP and XOM , C12 as the copula of DT and
FTE, and C21 as the copula of the remaining pairs. The leftmost column
of Table 15.2 shows the estimated parameter values, resulting log-likelihood
and p-values for the Frank PNAC. We use the Cramér–von-Mises statistic,



October 11, 2010 12:19 9.75in x 6.5in b979-ch15

316 K. Aas and D. Berg

Table 15.1. Estimated Kendall’s
tau for pairs of variables for our
four stocks.

Firm XOM DT FTE

BP 0.45 0.19 0.20
XOM 0.23 0.17
DT 0.48

Table 15.2. Estimated parameters, log-likelihood
and p-values for the Student copula, the NAC and
the PCCs fitted to the filtered equity data.

NAC PCC

Parameter Frank Frank Student

θ11\ν11 5.57 5.56 0.70\13.8
θ12\ν12 6.34 1.89 0.32\134.5
θ13\ν13 — 6.32 0.73\6.4
θ21\ν21 1.78 0.91 0.14\12.0
θ22\ν22 — 0.30 0.06\20.6
θ31\ν31 — 0.33 0.07\17.8
Log-likelihood 616.45 618.63 668.49

p-value of Sn 0.006 0.008 0.410

defined by:

SN = N

∫

[0,1]n
{CN (u)− CθN

(u)}2dCN (u)

=
N∑

j=1

{CN (Uj)− CθN
(Uj)}2 (15.7)

for testing the goodness-of-fit. It is been verified that this test has the nec-
essary asymptotic properties.14, 30 Further, Refs. 15 and 5 have shown, by
bootstrapping p-values, that it is a very powerful procedure in most cases.
Large values of SN mean a poor fit, and lead to the rejection of the null
hypothesis copula. In practice, the limiting distribution of SN depends on θ.
Hence, approximate p-values for the test must be obtained through a para-
metric bootstrap procedure. We adopt the procedure given in Appendix A
of Ref. 15, setting the bootstrap parameters m and N to 5000 and 1000,
respectively. The low p-value for the Frank NAC indicates that the fit is not
very good.
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15.4.2.2 PCC

We use the following PCC:

c(u1, u2, u3, u4) = c11(u1, u2) · c12(u2, u3) · c13(u3, u4)

· c21(F (u1|u2), F (u3|u2)) · c22(F (u2|u3), F (u4|u3))

· c31(F (u1|u2, u3), F (u4|u2, u3)).

Like for the PNAC, the most appropriate ordering of the variates in the
construction is determined by the size of the Kendall’s tau values. Hence,
we choose c11 as the copula density of BP and XOM , c12 as the copula
density of XOM and DT , and c13 as the copula density of DT and FTE.
The parameters of the PCC are estimated by the procedure described in
Section 15.3.3. The two rightmost columns of Table 15.2 show the esti-
mated parameter values, resulting log-likelihood and p-values for the Frank
and Student PCCs. We see that the Frank PCC, like the Frank PNAC, is
rejected. The Student PCC, however, provides a very good fit.

15.4.3 Validation

With the increasing complexity of models, there is always the risk of overfit-
ting the data. To examine whether this is the case for the PCC, we validate it
out-of-sample. More specifically, we use the fitted PCC from Section 15.4.2.2
to determine the risk of the return distribution for an equally weighted
portfolio of BP, XOM, DT and FTE over a one-day horizon. The equally
weighted portfolio is only meant as an example. In practice, the weights will
fluctuate unless the portfolio is rebalanced every day.

The model estimated from the period August 14, 2003, to December 29,
2006, is used to forecast one-day VaR at different significance levels for each
day in the period from December 30, 2006, to June 11, 2007 (110 days). The
test procedure is as follows. For each day t in the test set:

(1) For each variable j = 1, . . . , 4, compute the one-step ahead forecast of
σj,t, given information up to time t.

(2) For each simulation k = 1, . . .

• Generate a sample u1, . . . , u4 from the estimated Student PCC.b

bThe simulation algorithm for a D-vine is straightforward and simple to implement (see
Algorithm 2 in Aas et al.1).
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• Convert u1, . . . , u4 to NIG(0,1)-distributed samples z1, . . . , z4 using
the inverses of the corresponding NIG distribution functions.

• For each variable j = 1, . . . , 4, determine the log-return rj,t = cj,t +
σj,t zj . (Here cj,t is computed as the mean of the last 100 observed
log-returns.)

• Compute the return of the portfolio as rp,t =
∑4

j=1
1
4rj,t.

(3) For significance levels q ∈ {0.005, 0.01, 0.05}
• Compute the one-day VaRq

t as the qth quantile of the distribution of
rp,t.

• If VaRq
t is greater than the observed value of rp,t this day, a violation

is said to occur.

Figure 15.5 shows the actual log-returns for the portfolio in the period
December 30, 2006, to June 11, 2007, and the corresponding VaR levels
obtained from the procedure described above. Further, the two upper rows
of Table 15.3 gives the number of violations, x, of VaR for each significance
level and with the expected values, respectively. To test the significance
of the differences between the observed and the expected values, we use
the likelihood ratio statistic by Ref. 20. The null hypothesis is that the
expected proportion of violations is equal to α. Under the null hypothesis,
the likelihood ratio statistic given by

2ln
(( x

N

)x (
1− x

N

)N−x)
− 2ln(αx(1− α)N−x),

Figure 15.5. Log-returns for the equity portfolio for the period December 30, 2006
to June 11, 2007, along with 0.5%, 1%, 5% VaR simulated from the estimated
GARCH–NIG–Student PCC.
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Table 15.3. Number of violations of
VaR, expected number of violations
and p-values for the Kupiec test.

Significance level 0.005 0.01 0.05

Observed 1 2 9
Expected 0.55 1.1 5.5
p-value 0.13 0.44 0.16

where N is the length of the sample, is asymptotically distributed as χ2(1).
We have computed p-values of the null hypothesis for each quantile. The
results are shown in the lower row of Table 15.3. If we use a 5% level for the
Kupiec LR statistic, the null hypothesis is not rejected for any of the three
quantiles. Hence, the GARCH–NIG–Student PCC seems to work very well
out-of-sample.

15.5 Portfolio 2

In this section, we compare a four-dimensional PCC with Student copulae
for all pairs with the four-dimensional Student copula. The n-dimensional
Student copula has been used repeatedly for modeling multivariate financial
return data. However, the Student copula has only one parameter for model-
ing tail dependence, independent of dimension. Hence, if the tail dependence
of different pairs of risk factors in a portfolio are very different, we believe
that a better description of the dependence structure can be achieved with
the pair-copula decomposition with Student copulae for each pair.

The rest of this section is organized as follows. We first describe the data
set in Section 15.5.1. In Section 15.5.2 we show the results of fitting the PCC
and the Student copula to this data set, while Section 15.5.3 discusses the
difference in tail dependence properties between the two structures. Finally,
in Section 15.5.4, we investigate whether we would get an even better fit
for our data set if we allowed the pair-copulae in the PCC to come from
different parametric families.

15.5.1 Data set

The portfolio studied in this example is comprised of four time series of daily
data: the Norwegian stock index (TOTX), the MSCI world stock index, the
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Figure 15.6. Log-returns for pairs of assets during the period from January 4, 1999 to
July 8, 2003.

Norwegian bond index (BRIX) and the SSBWG hedged bond index, for
the period from January 4, 1999 to July 8, 2003. Figure 15.6 shows the
log-returns of each pair of assets. The four variables are denoted T , M , B
and S.

As stated in Section 15.4, the observations of each variable must be
independent over time. Hence, also for this data set, the original vectors of
log-returns are processed by a GARCH(1,1)-filter before further modeling.
Since we are mainly interested in estimating the dependence structure of
the risk factors, the standardized residual vectors are converted to uniform
variables using the empirical distribution functions before further modeling.

15.5.2 Results

15.5.2.1 PCC

The first step is to choose the most appropriate ordering of the risk factors.
This is done as follows. First, we fit a bivariate Student copula to each pair
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Table 15.4. Estimated num-
bers of degrees of freedom for
bivariate Student copula for
pairs of variables.

Between M T B

S 4.21 34.16 14.47
M 8.03 15.48
T 12.60

of risk factors, obtaining estimated degrees of freedom for each pair. For this,
we use the procedure described in Section 15.3.1. Having fitted a bivariate
Student copula to each pair, the risk factors are ordered such that the three
copulae to be fitted at level 1 of the PCC are those corresponding to the three
smallest numbers of degrees of freedom. A low number of degrees of freedom
indicates strong dependence. The numbers of degrees of freedom for the
different pairs are shown in Table 15.4. The dependence is strongest between
international bonds and stocks (S and M), international and Norwegian
stocks (M and T), and Norwegian stocks and bonds (T and B). Hence, we
want to fit the copulae CS,M , CM,T and CT,B at level 1 of the PCC. Using a
D-vine specification with the nodes S, M , T and B in the listed order gives
the three above-mentioned copulae at level 1. See Fig. 15.7 for the whole
D-vine structure.

The parameters of the D-vine are estimated using the approach described
in Section 15.3.3. Table 15.5 shows the starting values obtained using the
sequential estimation procedure (left column) and the final parameter values

S M T B
SM MT TB

SM MT TB
ST|M MB|T

ST|M MB|T
SB|MT

Figure 15.7. Selected D-vine structure for the data set in Section 15.5.1.
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Table 15.5. Estimated param-
eters for four-dimensional pair–
copula decomposition.

Param Start Final

ρSM −0.25 −0.25
ρMT 0.47 0.47
ρTB −0.17 −0.17
ρST |M −0.11 −0.11
ρMB|T 0.02 0.03
ρSB|MT 0.29 0.28
νSM 4.21 4.34
νMT 16.65 16.26
νTB 12.60 13.17
νST |M 300.00 300.00
νMB|T 130.33 45.59
νSB|MT 15.58 15.04

log.likelih. 267.86 268.17

(right column), together with the corresponding log-likelihood values. In the
numerical search for the degrees of freedom parameter, we have used 300 as
the maximum value. As can be seen from the table, the likelihood slightly
increases when estimating all parameters simultaneously. The Akaike’s infor-
mation criterion (AIC) for the final model is −512.33.

15.5.2.2 Four-dimensional Student copula

In this section, we compare the results obtained with the PCC from
Section 15.5.2.1 with those obtained with a four-dimensional Student cop-
ula. The parameters of the Student copula are shown in Table 15.6. The
AIC for this model is −487.42, i.e., higher than that for the pair-copulae
decomposition. All conditional distributions of a multivariate Student distri-
bution are Student distributions. Hence, the n-dimensional Student copula
is a special case of an n-dimensional D-vine with the needed pairwise cop-
ulae in the D-vine structure set to the corresponding conditional bivariate
distributions of the multivariate Student distribution. Therefore, the four-
dimensional Student copula is nested within the considered D-vine struc-
ture and the likelihood ratio test statistic is 2 (268.17 − 250.71) = 34.92
with 12 − 7 = 5 degrees of freedom. This yields a p-value of 1.56e-006 and
shows that the four-dimensional Student copula can be rejected in favor of
the PCC.
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Table 15.6. Estimated param-
eters for four-dimensional Student
copula.

Param Value

ρSM −0.25
ρST −0.20
ρSB 0.30
ρMT 0.47
ρMB −0.06
ρTB −0.17
νSTMB 14.56

log.likelih. 250.71

15.5.3 Tail dependence

Tail dependence properties are particularly important in many applications
that rely on non-normal multivariate families.18 This is especially the case
for financial applications. Tail dependence in a bivariate distribution can be
represented by the probability that the first variable exceeds its q-quantile,
given that the other exceeds its own q-quantile. The limiting probability,
as q goes to infinity, is called the upper tail dependence coefficient,33 and a
copula is said to be upper tail dependent if this limit is not zero. The lower
tail dependence coefficient is analogously defined.

To illustrate the difference between the four-dimensional Student cop-
ula and the four-dimensional pair-copula decomposition, we computed the
upper and lower tail dependence coefficients for the three bivariate margins
SM , MT and TB for both structures. For the Student copula, the two
coefficients are equal and given by Ref. 11:

λl(X,Y ) = λu(X,Y ) = 2 tν+1

(
−
√
ν + 1

√
1− ρ
1 + ρ

)
,

where tν+1 denotes the distribution function of a univariate Student’s
t-distribution with ν+1 degrees of freedom. Table 15.7 shows the tail depen-
dency coefficients for the three margins and both structures. For the bivari-
ate margin SM , the value for the pair-copula distribution is 279 times higher
than the corresponding one for the Student copula. For a trader holding a
portfolio of international stocks and bonds, the practical implication of this
difference in tail dependence is that the probability of observing a large port-
folio loss is much higher for the four-dimensional pair-copula decomposition
than it is for the four-dimensional Student copula.
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Table 15.7. Tail dependence coefficients.

Margin Pair-copula decomp. Student copula

SM 0.0279 0.0001
MT 0.0229 0.0317
TB 0.0005 0.0003

15.5.4 Pair-copula decomposition with copulae from different
families

In this section, we investigate whether we would get an even better fit for
our data set if we allowed the pair-copulae in the decomposition defined
by Fig. 15.7 to come from different families. Figure 15.8 shows the data
sets used to estimate the six pair-copulae in the decomposition described in
Section 15.5.2.1. The three scatter plots in the upper row correspond to the
three bivariate margins SM , MT and TB. The data clustering in the two
opposite corners of these plots is a strong indication of both upper and lower
tail dependence, meaning that the Student copula is an appropriate choice.
In the two leftmost scatter plots in the lower row, the data seem to have no
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Figure 15.8. The data sets used to estimate the six pair-copulae in the decomposition
described in Section 15.5.2.1.
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tail dependence and the two margins also appear to be uncorrelated. This
is in accordance with the parameters estimated for these data sets, ρST |M ,
ρMB|T , νST |M , νMB|T , shown in Table 15.5. The correlation parameters are
close to 0 and the degrees of freedom parameters are very large, meaning
that the two variables constituting each pair are close to being independent.
If so, cST |M (·) and cMB|T (·) are both 1, which means that the pair-copula
construction defined by Fig. 15.7 may be simplified to

cSM (xS , xM ) cMT (xM , xT ) cTB(xT , xB) cSB|MT{F (xS |xM ), F (xB |xT )}.

If we estimate this model instead, the parameters of copula cSB|MT (·, ·) are
slightly altered to ρSB|MT = 0.28 and νSB|MT = 15.22. The log-likelihood
for this reduced structure is 261.6 compared to 268.17 for the full one. The
corresponding AIC values are −507.20 and −512.33, meaning that the full
model is slightly better than the reduced one. This is also verified by the
likelihood ratio statistic, which is 2 (261.6−268.17) = 13.14. With 12−8 = 4
degrees of freedom this gives a p-value of 0.01 and shows that the reduced
structure is rejected in favor of the full one.

Turning to the pair-copula cSB|MT (·), there seems to be data clustering
in the lower left corner of the scatter plot to the bottom right of Fig. 15.8,
but not in the upper right. This indicates that the Clayton copula might be
a better choice than the Student copula, since it has lower tail dependence
but not upper. Hence, we have fitted the Clayton copula to this data set. The
parameter was estimated to δ = 0.34. The likelihood of the Clayton copula
is lower than that of the Student copula (39.72 vs. 47.81). However, since
the two copulae are non-nested, we cannot really compare the likelihoods.
Instead we have used the procedure suggested by Ref. 16 for identifying the
appropriate copula. According to this procedure, we examine the degree of
closeness of the function λ(z), given by

λ(z) = z −K(z).

Here K(z) is the copula distribution function K(z), defined by

K(z) = P (C(u1, u2) ≤ z).

For Archimedean copulae, K(z) is given by an explicit expression, while
for the Student copula it has to be numerically derived. In Fig. 15.9, the
empirical lambda function and its confidence bands, computed as described
in Ref. 16, are presented together with the fitted lambda functions for the
Clayton copula and the Student copula. As can be seen from this figure, the
Student copula fits the empirical data remarkably well.
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Figure 15.9. The empirical lambda function (solid line) and its confidence bands (dotted
lines) are presented together with the fitted lambda functions for the Clayton copula
(dashed line) and the Student copula (dotted line which can hardly be distinguished from
the solid line).

15.6 Summary and Conclusions

In this chapter, we have compared three constructions for modeling
higher-dimensional dependence: the Student copula, the partially nested
Archimedean construction (PNAC) and the pair-copula construction
(PCC). For the latter two constructions, a multivariate data set is mod-
eled using a cascade of lower-dimensional copulae. The PNAC and PCC
differ, however, in their construction of the dependence structure, the PCC
being more flexible in that it allows for the free specification of n(n− 1)/2
copulae, while the PNAC only allows for n− 1. In addition, the PNAC has
two important limitations. First, there are strong restrictions on the param-
eters of the construction. Second, the NAC is restricted to the Archimedean
class, and there are even restrictions on which Archimedean copulae can be
mixed. The PCC, on the other hand, can be built using copulae from any
class and there are no constraints on the parameters of the construction.

We have shown through two examples that the PCC provides a better
fit to financial data than the two other constructions. Moreover, through
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VaR calculations we have shown that the PCC has not been overfitted to
the training data, but also works very well out-of-sample.
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We model the dependence structure of multivariate financial returns with a
time-varying D-vine copula. Vine copulae are flexible multivariate copulae that
are obtained by a hierarchical construction, with bivariate copulae as building
blocks. We focus on D-vines, which are a subclass of vine copulae. In order
to take into account the fact that the dependence structure between financial
returns is not constant over time, we allow each of the possible bivariate copulae
to be time-varying. We use two different data sets, six exchange rates and five
Asian equity indices. We find that most of the time variation is found in the first
tree of the D-vine. Moreover, while currencies can be adequately modeled with
symmetric copulae, Asian equity indices require asymmetric copulae.

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
16.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

16.2.1 Copulae . . . . . . . . . . . . . . . . . . . . . . . . . 332
16.2.2 D-vine copula . . . . . . . . . . . . . . . . . . . . . 335
16.2.3 Dynamic D-vine model . . . . . . . . . . . . . . . . 337

16.3 Components of the Model . . . . . . . . . . . . . . . . . . . 338
16.3.1 Marginal model . . . . . . . . . . . . . . . . . . . . 338
16.3.2 Bivariate copulae . . . . . . . . . . . . . . . . . . . 339

16.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . 341
16.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . 341

329



October 11, 2010 13:25 9.75in x 6.5in b979-ch16

330 A. Heinen and A. Valdesogo

16.4.2 Marginal models . . . . . . . . . . . . . . . . . . . . 341
16.4.3 Copula structure . . . . . . . . . . . . . . . . . . . . 345

16.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

16.1 Introduction

Financial returns are characterized by time-varying means and volatilities,
as well as asymmetry and excess kurtosis. Traditionally, the financial litera-
ture uses correlation as a measure of dependence. Unfortunately, correlation
is a good measure of dependence only in the elliptical world, for instance,
when returns are multivariate Gaussian or Student t. In that case, returns
are dependent whenever linear relations exist between them. In other sit-
uations, for instance, when there exist non-linear relations between vari-
ables, correlation can be misleading, as has been widely documented (see,
for instance, Ref. 7). Given the stylized facts about financial returns, it is
clear that elliptical distributions can be viewed only as a very crude approx-
imation, and the same holds for correlation.

Copulae are a statistical tool that captures the dependence structure of
a joint distribution independently from the features of the marginal distri-
butions (see Refs. 16 and 11). The great advantage of copulae is that they
permit flexible modeling of the dependence structure. There exists a large
collection of bivariate copulae with different features that can match stylized
facts of dependence. One such feature is asymmetric dependence, the fact
that negative returns tend to be more dependent than positive ones. Another
one is tail dependence, the fact that the dependence between returns does
not vanish when the returns become extreme. This has important conse-
quences, for instance, when calculating the risk of a portfolio. It is often of
interest in finance to consider jointly a multivariate set of returns.

While there is a very large catalogue of bivariate copulae, the choice
is much more restricted in the multivariate case. There exist some multi-
variate copulae, like multivariate Archimedean copulae, that impose strong
restrictions like equal dependence on all pairs of variables. This is not gen-
eral enough for most purposes. This explains why in applied work the two
most widely used multivariate copulae that allow dependence to be modeled
with a non-restricted dependence matrix are the Gaussian and the Student
t. However, these copulae have some limitations in that they do not allow
asymmetric dependence, one of the desirable features of a copula, and they
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are restrictive in the tail behavior, since the Gaussian does not allow tail
dependence, while the Student t implies that the upper and lower tail depen-
dence are equal, in contradiction with the stylized facts.

Recently, Bedford and Cooke3 have introduced vine copulae, multivariate
copulae based on graphical methods. These very flexible multivariate copu-
lae are obtained by a hierarchical construction. The main idea is that a mul-
tivariate copula can be decomposed into a cascade of iteratively conditioned
bivariate copulae. Vine copulae were introduced in the financial literature
by Ref. 1, who also provided an estimation method. The great advantage of
vine copulae is that they make the large choice of bivariate copulae avail-
able in the multivariate situation, therefore providing an incredible amount
of flexibility.

A recent literature in empirical finance initiated by Ref. 14 has shown
that correlations between financial returns are not constant over time and
some models have been proposed to take this into account. The type of
model that has achieved the highest level of popularity in this literature
is certainly the DCC model of Engle8 and the model of Tse and Tsui.21

In the copula context, some models have been proposed by, e.g., Refs. 17
and 19. However, these models are limited to the bivariate case and they
introduce dynamics by specifying a law of motion directly for the copula
parameter. This makes comparison across models difficult since different
copulae have different parameters with different support and interpretations.
For instance, the Clayton copula parameter is defined on [−1,∞]\{0}, the
Gumbel is defined on [1,∞], while the correlation coefficients of the Gaussian
and Student t-copula are defined on [−1, 1]. Jondeau and Rokinger12 use
a time-varying multivariate copula model based on the Gaussian and the
Student t. We follow the method suggested in Ref. 10, who propose a
dynamic model for multivariate copulae, where the dynamics are compa-
rable across copulae. They use a canonical vine decomposition where each
of the possible bivariate copulae is allowed to be time varying. In this chapter
we use a different vine structure, the D-vine, and allow each of the possible
bivariate copulae to be time-varying as in Ref. 10.

We apply the dynamic D-vine to two different data sets. This allows us
to answer two questions that are of empirical relevance: are the multivariate
joint distributions of financial returns symmetric? Is the dependence con-
stant over time? First we look at daily returns of six exchange rates, while
the second data set consists of weekly returns on five Asian equity indices. In
order to take into account possible dynamics in the conditional mean and
volatility, we model the margins with an ARMA(p, q)-GARCH(1,1). The
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innovations are assumed to be skewed Student t-distributed. We use this dis-
tribution to take into account any possible asymmetry in the margins. With
the marginals appropriately modeled, we specify the dependence structure.
In both data sets, time-varying copulae are mainly found in the first tree of
the D-vine structure. However, there is one marked difference between the
bivariate copulae that compose the D-vine in the two data sets: exchange
rates seem to be well described by symmetric copulae, whereas asymmetric
copulae do a better job for the returns on the Asian stock exchanges.

The remainder of this chapter is organized as follows. In Section 16.2
we present the model: we briefly discuss copulae, copula-based dependence
measures, D-vine copulae as well as the way in which we make the copulae
time-varying. In Section 16.3 we discuss the components of the model, both
in terms of the marginals, as well as the bivariate copulae that we use as
building blocks of the D-vine. Section 16.4 presents the data and the results,
and Section 16.5 concludes.

16.2 The Model

16.2.1 Copulae

Modeling the dependence between different risk factors is one of the key
issues in most applications in finance such as Value-at-Risk and portfo-
lio selection. Even though the notion of dependence has been traditionally
linked to Pearson’s correlation, it has some limitations. Consider, for exam-
ple, two variables X and Y , where X ∼ N (0, 1) and Y = X2. In this
setup, Cov(X,Y ) = Cov(X,X2) = Skewness(X). Therefore X and Y are
uncorrelated, since their covariance is equal to the skewness of X, which is
0, by normality of X. Yet, clearly these variables are perfectly dependent.
This simple example shows that correlation is not a good measure of depen-
dence in all cases.a Pearson’s correlation is only a good measure of depen-
dence in the elliptical distributions, e.g., multivariate Gaussian or Student
t-distributions. Given the stylized facts of financial returns, it is clear that
elliptical distributions can be viewed only as a very crude approximation,
and the same holds for correlation. In order to create more appropriate
multivariate models, one can use the notion of copula.b

aFor further examples, see Ref. 7.
bFor related work on copulae as a modeling tool for returns, see Refs. 6 and 5.
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Copula theory goes back to the work of Ref. 20, who showed that a
joint distribution can be decomposed into its n marginal distributions and
a copula, which fully characterizes dependence between the variables. This
theorem provides an easy way to form valid multivariate distributions from
known marginals that need not be of the same class. For example, it is pos-
sible to use a normal, Student or any other marginal, combine them with a
copula and get a suitable joint distribution, which reflects the kind of depen-
dence present in the series.c Specifically, let H(y1, . . . , yn) be a continuous
n-variate cumulative distribution function with univariate margins Fi(yi),
i = 1, . . . , n, where Fi(yi) = H(∞, . . . , yi, . . . ,∞). According to Ref. 20,
there exists a function C, called a copula, mapping [0, 1]n into [0, 1], such
that:

H(y1, . . . , yn) = C(F1(y1), . . . , FK(yn)). (16.1)

The joint density function is given by the product of the marginals and the
copula density:

∂H(y1, . . . , yn)
∂y1 · · · ∂yn

=
n∏

i=1

fi(yi)
∂C(F1(y1), . . . , Fn(yn))
∂F1(y1) · · · ∂Fn(yn)

. (16.2)

This allows us to define the copula as a multivariate distribution with uni-
form [0, 1] margins:

C(z1, . . . , zn) = H(F−1
1 (z1), . . . , F−1

n (zn)), (16.3)

where zi = Fi(yi), i = 1, . . . , n are the probability integral transformations
(PIT) of the marginal models.

Evidently, with the use of copulae, we can map the univariate marginal
distributions of n random variables, each supported in the [0, 1] interval,
to their n-variate distribution, supported on [0, 1]n. This method applies,
regardless of the type and degree of dependence among the variables.

16.2.1.1 Copula-based dependence measures

In order to describe the dependence that exists amongst variables that are
not in the class of elliptical distributions, there exist several measures based
on ranks of the variables. These measures are invariant with respect to any
strictly increasing transformation of the data. Rank correlations are popular
distribution-free measures of the association between variables. Unlike the

cA more detailed account of copulae can be found in Refs. 11 and 16 and in Ref. 4 who
provide a more finance-oriented presentation.
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traditional Pearson correlation, they work outside the range of the spher-
ical and elliptical distributions and can detect certain types of non-linear
dependence. The two most commonly used coefficients of rank correlation
are Kendall’s tau and Spearman’s ρ. Both rely on the notion of concordance.
Intuitively, a pair of random variables is concordant whenever large values of
one variable are associated with large values of the other variable. More for-
mally, if (yi, xi) and (yj, xj) are two observations of random variables (Y,X),
we say that the pairs are concordant whenever (yi − yj)(xi − xj) > 0, and
discordant whenever (yi − yj)(xi − xj) < 0.

Kendall’s tau is defined as the difference between the probability of con-
cordance and the probability of discordance. In general, it can be shown
that the Kendall’s tau between variables X and Y can be obtained as
τX,Y = nc−nd

nc+nd
, where nc is the number of concordant pairs and nd is the

number of discordant pairs. By definition, we then have that the total num-
ber of pairs is equal to the number of possible pairs with a sample of N
bivariate observations nc+nd = N !

(N−2)!2! . Kendall’s tau can also be expressed
as a function of the copula:

τ = 4
∫

[0,1]2
C(u, v)dC(u, v) − 1. (16.4)

16.2.1.2 Asymmetric dependence, exceedance correlation and tail
dependence

An important feature of financial data is asymmetric dependence. There
exist several measures that quantify this feature. In finance, it is of interest
to measure both the usual sort of dependence between returns in the center
of the distribution, and dependence amongst extreme events. The normal
distribution captures the former, but risk theory deals mostly with the lat-
ter, as it is the negative extreme values in the distribution of asset returns
that are crucial. There is a fairly large recent literature that studies this sort
of extremal dependence. For example, Refs. 2, 15 and 18, among others, use
exceedance correlation, which is defined as the correlation between two vari-
ables y1 and y2, conditional on both variables being above or below certain
thresholds θ1 and θ2, respectively. Formally, lower exceedance correlation is
defined as:

Corr(y1, y2|y1 ≤ θ1, y2 ≤ θ2).
The main findings of these studies is that financial returns tend to exhibit

excess correlation in bear markets, but not in bull markets. A Gaussian dis-
tribution cannot reproduce this feature. Therefore, while a Gaussian copula
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with Gaussian margins is unable to generate any exceedance correlation, an
asymmetric copula with the same Gaussian marginals can produce this phe-
nomenon. A weakness of this measure is that, like the Pearson correlation,
it is not independent of the marginal distributions. Moreover, it is computed
only from those observations that are below (above) the threshold, which
means that as we move further out into the tails, the exceedance correlation
is measured less and less precisely.

Quantile dependence is a somewhat different measure of the dependence
in the tails of the distribution. If X and Y are random variables with dis-
tribution functions FX and FY , then there is quantile dependence in the
lower tail at threshold α, whenever P [Y < F−1

Y (α)|X < F−1
X (α)] is different

from zero. Finally, tail dependence obtains as the limit of this probability,
as we go arbitrarily far out into the tails. The coefficient of the lower tail
dependence of X and Y is:

lim
α→0+

P [Y < F−1
Y (α)|X < F−1

X (α)] = λL,

provided a limit λL ∈ [0, 1] exists. If λL ∈ (0, 1], X and Y are said to be
asymptotically dependent in the lower tail; if λL = 0, they are asymptoti-
cally independent. If the marginal distributions of random variables X and
Y are continuous, then the tail dependence of these random variables is a
function only of their copula, and hence the amount of tail dependence is
invariant under strictly increasing transformations. If a bivariate copula C
is such that the limit

lim
u→0+

C(u, u)/u = λL

exists, then C has lower tail dependence if λL ∈ (0, 1] and no lower tail
dependence if λL = 0. Similarly, if a bivariate copula C is such that

lim
u→1−

C̄(u, u)/(1 − u) = λU

exists, then C has upper tail dependence if λU ∈ (0, 1] and no upper tail
dependence if λU = 0. C̄(u, v) = 1 − u − v + C(1 − u, 1 − v) denotes the
survivor function of copula C.

16.2.2 D-vine copula

Until recently, an important limitation to the widespread use of copulae
was the difficulty of constructing flexible families of multivariate copulae.
In most applied work that dealt with a truly multivariate setting (more
than two variables), researchers used either the Gaussian or the Student
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t-copula. A recent advance in the statistics literature has provided such
a construction. Vine copulae were introduced by Refs. 3 and 1. They are
very flexible multivariate copulae, obtained by a hierarchical method. The
main idea is that a multivariate copula can be decomposed into a cascade
of iteratively conditioned bivariate copulae. Vine decompositions are very
flexible (see Ref. 13). Two special cases are canonical vines and D-vines.
Canonical vines can be viewed as factor models with one variable playing
the role of the pivot (factor) in every tree of the dependence structure.
In this chapter we limit our attention to the D-vine structure, as there is
no economic reason to think that a factor structure should be relevant in
our data. Formally, an n-dimensional D-vine consists of n − 1 trees. Each
tree j, for j = 1, . . . , n − 1, has n + 1 − j nodes and n − j edges. Each
edge corresponds to a bivariate copula density. Figure 16.1 represents the
dependence structure of a five-dimensional D-vine copula graphically.

The D-vine copula density corresponding to f(y1, . . . , yn) may be
written as

n−1∏

j=1

n−j∏

i=1

ci,i+j|i+1,...,i+j−1(F (yi|yi+1, . . . , yi+j−1),

F (yi+j|yi+1, . . . , yi+j−1)),

where index j identifies the trees, while i indicates the edges in each tree.

Figure 16.1. Dependence structure of a D-vine. This figure shows the structure of a
D-vine copula with five variables. When there are five variables, there are ten bivariate
copulae.
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16.2.3 Dynamic D-vine model

In the previous section we defined the D-vine copula used in this chapter.
With such a copula we can depart from linear dependence and capture asym-
metric dependence and tail dependence in a multivariate setting. However,
this model assumes that the dependence structure is constant over time.
This goes against the stylized facts uncovered in the financial literature, for
example, by Ref. 14, who show that correlations amongst returns are typi-
cally time-varying. Therefore we propose to introduce some dynamics into
the dependence model. Recently, Ref. 10 introduced a dynamic canonical
vine model in which each bivariate copula can be time-varying. In order to
make the D-vine copula dynamic, we use the same methodology which we
now briefly present.

The method consists of using the D-vine structure to construct multi-
variate copulae where the building blocks, the bivariate copulae, are allowed
to be time-varying. The dynamics of the bivariate copula parameters are an
extension of the DCC equations. As the inputs for the dynamic correlation
in the DCC model are standardized residuals, we first apply the inverse CDF
of the normal to the uniform random variables, the inputs of the copula, in
order to transform them to standard normalsd:

εi,t = Φ−1(ui,t).

εt = [ε1,t, ε2,t].

We then use the dynamic equations of the DCC model:

Qt = Ω(1− αC − βC) + αCεt−1ε
′
t−1 + βCQt−1,

Rt = {diag(Qt)}−1/2Qt{diag(Qt)}−1/2,

where Ω is a symmetric 2 × 2 matrix, with ones on the diagonal, and the
off-diagonal element equal to ωC , while αC and βC are the autoregressive
parameters. We define the dynamic Kendall’s tau as:

τt = 2arcsin(ρt)/π. (16.5)

ρt is the time-varying off-diagonal element of the matrixRt and it is responsi-
ble for making Kendall’s tau also time-varying, through Eq. (16.5). We know
from Eq. (16.4) that there is a one-to-one relationship between Kendall’s

dWith the exception of the Student t-copula, where we apply the inverse CDF of the
Student t-distribution with the corresponding degrees of freedom.
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tau and the parameter of each copula. So for each period t, we can trans-
form the corresponding Kendall’s tau, τt, into the coefficient θt of each one
of the copulae that we estimate. The model specification implies that ρt
is the parameter of the Gaussian copula that would prevail, if the copula
were indeed Gaussian. For those copulae that only allow positive depen-
dence, we replace qt, the off-diagonal element of Qt, with max(qt, 0), which
ensures a well-defined model. Moreover, when there is negative dependence
for prolonged periods, we usually do not end up selecting copulae that
restrict the dependence to be positive, since they imply lower values of the
likelihood.

16.3 Components of the Model

Although the components of the model are not nested, we use the BIC
criterion to choose between them. We first describe the marginal model for
each index or exchange rate. Second, we list the bivariate copulae that we
use as candidates for the building blocks of the D-vine, along with their
densities, as well as their tail dependence and Kendall’s tau. Each copula
is estimated in a constant and time-varying version and, again, we use the
BIC to choose the better alternative.

16.3.1 Marginal model

In order to take into account the possible dynamics in the conditional mean
and conditional variance, we model the marginal distributions of each one
of our returns using an ARMA(p, q)-GARCH(1,1). After estimating up to
two lags in each model, we select the best model by BIC criterion. The
type of innovations that we use in the GARCH specification is a skewed
Student t. This model can be viewed as the univariate skewed Student t
GARCH model of Ref. 9, for the demeaned returns. Specifically, our system
is expressed as

yi,t = µi + ηi,t +
p∑

j=1

φi,jyi,t−j +
q∑

k=1

ψi,jηi,t−k,

ηi,t =
√
hi,t · εi,t,

hi,t = ωi + αiη
2
i,t−1 + βihi,t−1,

εi,t ∼ skewed Student t(νi, λi),
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where the skewed Student t-density is given by

g(z|ν, λ) =





bc

(
1 +

1
ν − 2

(
bz + a

1− λ

)2
)−(ν+1)/2

z < −a/b

bc

(
1 +

1
ν − 2

(
bz + a

1 + λ

)2
)−(ν+1)/2

z ≥ −a/b

The constants a, b and c are defined as:

a = 4λc
(
ν − 2
ν − 1

)
, b2 = 1 + 3λ2 − a2, c =

Γ
(
ν+1
2

)
√
π(ν − 2)Γ

(
ν
2

) .

A negative (positive) λ corresponds to a left(right)-skewed density, which
means that there is more probability of observing large negative (positive)
than large positive (negative) returns. This is what we expect to observe
when we work with equity returns, since it captures the large negative
returns associated with market crashes that are the cause of the skewness.

16.3.2 Bivariate copulae

We present the bivariate copulae that we use as components of the D-vine.
For each of these copulae we estimate both a static and a dynamic version
and, again, for each pair of returns, we use the BIC to choose the best of
all static and dynamic copulae.

16.3.2.1 Gaussian copula

The Gaussian copula is related to the Gaussian distribution. The bivariate
density is:

cN (u1, u2; ρ) =
1√

1− ρ2
exp
[
−(q21 + q22 − 2q1q2)

2(1− ρ2)
+
q21 + q22

2

]
,

where qi = Φ−1(ui), Φ−1 denotes the inverse cumulative density of the
standard normal and ρ is a correlation coefficient that lies between −1 and
1. The Gaussian copula has zero upper and lower tail dependence, λU =
λL = 0, except in the case of perfect correlation, ρ = 1. The relation between
the Kendall’s tau and the parameter of the Gaussian copula is given by:

ρ = sin(τπ/2),

where ρ is the parameter of the Gaussian copula and τ is the Kendall’s tau.
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16.3.2.2 Student t-copula

The Student t-copula can be obtained from the Student t-distribution. The
bivariate density is:

cT (u1, u2; ρ, ν) =
Γ
(
ν+2
2

)

Γ(ν2 )νπ
√

1− ρ2

·

(
1 + T−1

ν (u1)2+T−1
ν (u2)2−2ρT−1

ν (u1)T−1
ν (u2)

ν(1−ρ2)

)−(ν+2
2 )

fν(T−1
ν (u1))fν(T−1

ν (u2))
,

where T−1
ν (v) is the inverse of the cumulative distribution function of

the univariate Student t with ν degrees of freedom, fν(.) is the density
of the Student t-distribution with ν degrees of freedom and ρ ∈ (−1, 1)
is the correlation parameter. The relation between the Kendall’s tau and
the parameter of the Student t-copula does not depend on the degrees of
freedom and is the same as the Gaussian copula. The Student t-copula
has the same lower and upper tail dependence for every pair of variables:
λU = λL = 2Tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

)
.

16.3.2.3 Frank copula

The Frank copula has the following density:

cF (u1, u2; θ) =
θ(1− e−θ)e−θ(u1+u2)

(1− e−θ)− (1− e−θu1)(1− e−θu2)
,

where θ ∈ (−∞,∞)\0. The Frank copula has zero upper and lower tail
dependence, λU = λL = 0, except in the limit when θ → ∞. Mapping
the Kendall’s tau to the parameter of the Frank copula should be done
numerically.

16.3.2.4 Gumbel and rotated Gumbel copula

Unlike the previous copulae, the Gumbel copula is not symmetric. It has
the following density:

cG(u1, u2, θ) =
CG(u1, u2, θ)(log u1. log u2)θ−1

u1u2((− log u1)θ + (− log u2)θ)2−1/θ

· (((− log u1)θ + (− log u2)θ)1/θ + θ − 1),

where θ ∈ [1,∞). The Gumbel copula has only upper tail dependence,
λU = 2 − 21/θ and the connection with the Kendall’s tau is θ = 1/(1 − τ).
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We use also the rotated version of the Gumbel defined as cRG(u1, u2, θ) =
cG(1 − u1, 1 − u2, θ). The rotated Gumbel has only lower tail dependence,
λL = 2 − 21/θ , and the relation with Kendall’s tau is the same as for the
Gumbel copula.

16.3.2.5 Clayton copula

Like the Gumbel, the Clayton copula is asymmetric. Its density is

cC(u1, u2; θ) = (1 + θ)(u1v1)−θ−1(u−θ1 + u−θ2 − 1)−2−1/θ,

where θ ∈ [−1,∞)\0.
The Clayton copula has lower but not upper tail dependence: λL = 2−1/θ.

The relation between the Kendall’s tau and the parameter of the Clayton
copula is given by θ = 2τ/(1 − τ).

16.4 Empirical Results

16.4.1 Data

We use two data sets of returns. The first sample comprises six exchange
rates downloaded from Datastream (all against the euro): Australian dollar
(AUD), Canadian dollar (CAD), Japanese yen (JPY), US dollar (USD),
Swiss franc (CHF) and British pound (GBP). We use daily data from
January 1, 1999, to December 31, 2007, which gives us 2, 346 returns. The
second data set consists of returns on five Asian equity indices: Hong Kong
(HK), Korea (KR), Singapore (SG), Taiwan (TW) and Thailand (TH). The
Asian equity indices are weekly MSCI price series from October 10, 1989, to
May 30, 2006, where all prices are in US dollars. This gives us a sample of
868 weekly returns. We analyze the log-differences of each series multiplied
by 100 in both data sets.

16.4.2 Marginal models

Table 16.1 presents summary statistics of the two data sets. For the cur-
rencies, the annualized average returns range from 2.336% for the US dollar
to −2.378% for the Canadian dollar, while for Asian indexes the annual-
ized average returns range from 8.193% for Hong Kong to −3.003% for
Taiwan. The annualized standard deviations are quite different for both
data sets. They are around 9% for the currencies, ranging from 10.743% for
the Japanese yen to only 3.362% for the Swiss franc, which follows the euro
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Table 16.1. Summary statistics. This table contains descriptive statistics for the returns
of the six daily currencies and the weekly indices for the five Asian countries. The first
data set spans the period from January 1, 1999, to December 31, 2007, with 2, 346 daily
returns, while for the Asian equity indices, the sample ranges from October 10, 1989,
to May 30, 2006, with 868 weekly returns. The means and the standard deviations are
annualized. All returns are log-difference of prices multiplied by 100.

Mean Stand. Deviation Skewness Kurtosis Min Max

AUD −1.487 10.015 0.593 6.260 −2.623 4.599
CAD −2.378 9.711 0.257 4.414 −2.262 3.601
JPY 2.233 10.743 −0.106 5.447 −3.116 4.480
USD 2.336 9.183 0.190 4.125 −2.266 3.321
CHF 0.276 3.362 −0.583 10.185 −2.145 1.342
GBP 0.424 6.689 0.191 4.440 −1.840 2.167

HK 8.193 27.402 −0.568 9.339 −29.439 18.465
KR 2.674 38.487 −0.470 10.089 −44.118 24.264
SG 4.218 27.235 −0.273 7.171 −18.776 18.303
TW −3.003 32.970 −0.494 5.077 −23.710 17.966
TH −1.230 40.235 0.839 10.839 −21.129 45.035

closely. The annualized standard deviation of the five Asian equity indices is
around three times higher than the standard deviation of the currencies, and
they range from 40.235% for Taiwan to 27.402% for Hong Kong. All series
present clear signs of non-normality. This can be seen from their skewness
and kurtosis. For the currencies, the skewness is positive in four cases and
negative in only two cases. It ranges from 0.593 for the Canadian dollar to
−0.583 for the Swiss franc. When we consider the Asian equity indices, the
skewness is negative in all cases except for Thailand and ranges from 0.839
for Thailand to −0.568 for Hong Kong. All returns of currencies and Asian
equity indices have kurtosis above 3. In general the kurtosis of the Asian
equity indices is higher than the one observed in the currencies.

In order to take into account any possible dynamics in the conditional
mean, we determine the appropriate ARMA(p,q) model. We use the BIC
criterion in order to select the most parsimonious model, and we consider
all possible models with p, q ≤ 2. We reject the constant mean in only two
cases. For the Australian dollar, we select an AR(1) with an autoregressive
parameter of 0.066 and for the Swiss franc we select an MA(2), with moving
average parameters of 0.055 and −0.054. None of the Asian equity indices
present any dynamics in the conditional mean. The results of each of the
univariate skewed Student t GARCH are presented in columns two to five
of Table 16.2. The coefficients of the lagged conditional variance, β, are
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Table 16.2. GARCH estimates, goodness-of-fit statistics. Columns two to six are parameter estimates of univariate skewed Student
t GARCH(1,1) models of Ref. 9. Standard deviations of the parameters are in brackets. Columns seven to eleven report p-values of
goodness-of-fit (GoF) statistics of the Probability Integral Transformation (PIT) of the marginal models. We present the p-values
for the following tests. The Kolmogorov–Smirnov (KS) test evaluates the null hypothesis that the population cdf is uniform [0, 1].
KS+ tests the null against the alternative hypothesis that the population cdf is above a uniform [0, 1], while KS− tests the null
against the alternative hypothesis that the population cdf is below a uniform [0, 1]. AD refers to the Anderson–Darling test for
uniformity, while K stands for the Kuiper test for uniformity, which puts more weight on the tails of the distribution than the
other tests.

ω α β ν λ KS KS+ KS− AD K

AUD 0.002 0.023 0.973 5.769 0.106 0.831 0.611 0.459 0.994 0.654
(0.001) (0.006) (0.007) (0.666) (0.027)

CAD 0.003 0.020 0.973 7.986 0.042 0.665 0.685 0.347 0.994 0.590
(0.002) (0.006) (0.009) (1.297) (0.027)

JPY 0.002 0.025 0.971 8.106 −0.109 0.879 0.639 0.500 0.993 0.740
(0.001) (0.006) (0.007) (1.255) (0.028)

USD 0.001 0.020 0.978 10.497 0.045 0.319 0.388 0.160 0.996 0.087
(0.001) (0.005) (0.005) (2.233) (0.027)

CHF 0.001 0.073 0.899 6.166 −0.055 0.941 0.609 0.570 0.994 0.785
(0.000) (0.014) (0.019) (0.753) (0.026)

GBP 0.001 0.025 0.972 10.163 0.099 0.220 0.110 0.404 0.997 0.057
(0.000) (0.006) (0.007) (2.022) (0.027)

HK 0.181 0.087 0.901 9.288 −0.156 0.979 0.639 0.754 0.993 0.957
(0.108) (0.024) (0.028) (2.665) (0.049)

KR 0.351 0.078 0.908 11.268 −0.008 0.896 0.516 0.788 0.994 0.905
(0.180) (0.023) (0.026) (3.580) (0.033)

SG 0.207 0.098 0.890 8.119 −0.075 0.985 0.764 0.658 0.993 0.968
(0.124) (0.029) (0.032) (1.879) (0.050)

TW 0.945 0.130 0.825 13.686 −0.168 0.968 0.745 0.615 0.993 0.939
(0.376) (0.032) (0.041) (5.577) (0.047)

TH 0.318 0.079 0.910 6.834 0.075 0.588 0.912 0.302 0.995 0.836
(0.178) (0.021) (0.023) (1.492) (0.044)
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around 0.97 for nearly all currencies with the exception of the Swiss franc,
while for the Asian equity indices this coefficient is lower and in most cases
around 0.90. This difference implies that the dynamics of the conditional
variance are more persistent for the currencies than for the Asian equity
indices.e The sign of the estimated asymmetry coefficient of the conditional
distribution, λ, is in agreement with the descriptive statistics of the uncon-
ditional distributions of our series of returns. The mostly negative skewness
we find captures the fact that the tails of some of the marginal distributions
are typically longer on the left side. The degrees of freedom parameters for
the currencies range from 5.769 for the Canadian dollar to 10.497 for the
US dollar. For the case of the five Asian countries, the degrees of freedom
are in general slightly larger, ranging from 6.834 for Thailand to 13.686 for
Taiwan.

We check that the marginal models are well-specified and subject
them to a series of goodness-of-fit tests. We include three versions of the
Kolmogorov–Smirnov test, as well as the Anderson–Darling and Kuiper
tests of uniformity of the Probability Integral Transformation (PIT) of
the marginal models. The p-values of the tests are reported in columns
seven to twelve of Table 16.2. The models passed all the tests. It is very
important that the marginal models be well-specified, since otherwise, the
copula estimation that is conditional on the marginal models would be
affected.

Figure 16.2 plots the time series of the conditional volatility for the
five Asian countries.f This shows the dramatic increase in volatility due to
the Asian crisis, which started at the beginning of July 1999 in Thailand
when the Thai baht collapsed. The Asian crisis produced devaluations in
the currencies and subsequent crashes in the stock markets of the region.
Among the countries under study, South Korea and Thailand were the most
affected, followed by Hong Kong, Singapore and Taiwan.

eThis difference is due partly to the fact that we use a daily frequency for the currencies,
while the stock indices have a weekly frequency.
fThe time series of the conditional volatility of the six currencies are available upon
request. We did not find any important economic event that produces a dramatic change
in the conditional volatility. However, generally speaking, it seems that the conditional
volatility increases whenever the euro is depreciating.
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Figure 16.2. Time series of the conditional volatility for the five Asian equity indices.

16.4.3 Copula structure

We select the structure of the D-vine with the empirical Spearman rank
correlations of the PIT of the marginal models shown in Table 16.3 for the
exchange rates and Table 16.4 for the Asian equity indices. The idea is to
rank pairs of series from the highest to the lowest Spearman rank correlation.
Once a series has been selected twice, it cannot be used to form new pairs.

First of all, we focus on the case of the six currencies, whose correlations
appear in Table 16.3. The highest Spearman rank correlation is between
CAD and USD, with a value of 0.636. The second largest is between USD
and JPY, with 0.508. This implies that we cannot use the USD to form
a new pair. The next largest Spearman rank correlation is between AUD
and CAD, with 0.466. Again, in that case the CAD series cannot be used
anymore. If we continue with this method, the next pair is AUD–GBP and
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Table 16.3. Spearman rank correlation matrix for the six exchange
rates. This table contains the Spearman rank correlation matrix of
the Probability Integral Transformation of the marginal models of
the six exchange rates.

AUD CAD JPY USD CHF GBP

AUD 1.000
CAD 0.466 1.000
JPY 0.283 0.356 1.000
USD 0.369 0.636 0.508 1.000
CHF −0.104 −0.070 0.151 −0.061 1.000
GBP 0.343 0.374 0.320 0.499 0.067 1.000

Table 16.4. Spearman rank correlation matrix for the five
Asian equity indices. This table contains the Spearman rank
correlation matrix of the Probability Integral Transformation
of the marginal models of the five Asian equity indices.

HK KR SG TW TH

HK 1.000
KR 0.375 1.000
SG 0.531 0.382 1.000
TW 0.358 0.351 0.347 1.000
TH 0.447 0.337 0.486 0.301 1.000

the last one is JPY–CHF. The D-vine structure for the exchange rates for
the first level is the following:

GBP− AUD− CAD− USD− JPY−CHF.

Following the same methodology with the Asian index returns, we obtain
the following order:

TH− SG− HK−KR− TW.

We do not think that there is any economic reason to assume a factor
structure for the data. However, in order to have an idea of the amount of
dependence that is captured in the first tree of the vine, we compute the sum
of the Spearman rank correlations of the pairs of the first tree. We do this
for the D-vine structure we select, as well as for all possible canonical vine
structures (see Table 16.5). For the exchange rates, the level of dependence
captured in the first tree is higher for the D-vine than for any canonical vine.
For the Asian equity indices, the sum of the Spearman rank correlations for
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Table 16.5. Sum of the Spearman rank correlations for the first tree. This
table shows the sum of the Spearman rank correlations for the first tree
of the different canonical vine structures and the selected D-vine decom-
position. The name of the columns indicates the pivot of the canonical
vine. The sum of the Spearman rank correlations indicates the amount of
dependence captured in the first tree by the different decompositions.

Exchange Rates

AUD CAD JPY USD CHF GBP

Canonical vine 1.356 1.763 1.618 1.951 −0.017 1.602
D-vine 2.105

Asian Equity

HK KR SG TW TH

Canonical vine 1.711 1.445 1.746 1.357 1.571
D-vine 1.743

the canonical vine with Singapore as the pivot is 1.746, which is slightly
higher than for the D-vine, 1.743. Moreover, when Hong Kong is the pivot,
the sum of the Spearman rank correlations of the pairs of the first tree is
also close to the one where Singapore is the pivot. This is an indication that
the data does not lend itself to an obvious factor decomposition.

Tables 16.6 and 16.7 show estimates of the bivariate copulae that were
selected according to the BIC criterion for the exchange rates and the Asian
equity indices, respectively. The estimates have been calculated using a
sequential estimation procedure.g With this procedure the parameters are
consistent but not fully efficient. Fully efficient estimates of the marginals
and D-vine copula parameters could be obtained by performing one step
of the Newton–Raphson algorithm. For the currencies, we only select sym-
metric copulae, mainly Student t with degrees of freedom between 6.783
and 15.707. This suggests that a multivariate Student t-copula would not
be a good approximation, since it implies that the degrees of freedom are
the same for all copulae in the same tree, and get incremented by one with
each tree. Time-varying copulae are selected mainly in the first tree. The
dependence between Asian equity indices is quite different, as they reveal
important asymmetries, which are reflected in the selection of asymmetric

gAt each step, estimation is carried out conditionally on the parameters estimated in
earlier steps, starting with the marginals and then the trees of the vine copula.
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Table 16.6. Structure and estimation results of the D-vine copula for the six exchange
rates. This table shows the estimates of the D-vine copula for the six exchange rates,
obtained from a sequential estimation procedure. Standard deviations of the parameters
are in brackets. The second column indicates the copula that has been selected according
to the BIC criterion. When the name of the copula is followed by “tv”, it means that the
copula has a time-varying parameter. The column labeled with θ shows the parameters
of the constant copula. When the copula parameter is time-varying we use ωC , αC and
βC that appear in Qt = Ω(1 − αC − βC) + αCεt−1ε

′
t−1 + βCQt−1, where Ω is a 2 × 2

matrix with ones on the diagonal and ωC off-diagonal. Finally ν is the degrees of freedom
parameter of the Student t-copula.

Model θ ωC αC βC ν

Tree 1

GBP–AUD Normal 0.362
(0.017)

AUD–CAD Student t tv 0.580 0.013 0.983 11.673
(0.078) (0.003) (0.003) (3.067)

CAD–USD Student t tv 0.759 0.025 0.972 15.707
(0.053) (0.004) (0.004) (5.086)

USD–JPY Student t tv 0.538 0.011 0.981 6.783
(0.043) (0.004) (0.006) (1.077)

JPY–CHF Student t tv 0.139 0.027 0.964 15.045
(0.089) (0.007) (0.010) (5.012)

Tree 2

GBP–CAD|AUD Independent

AUD–USD|CAD Student t 0.069 10.005
(0.022) (2.281)

CAD–JPY|USD Independent

USD–CHF|JPY Student t tv −0.162 0.025 0.968 10.723
(0.094) (0.007) (0.011) (2.595)

Tree 3

GBP–USD|AUD,CAD Independent

AUD–JPY|CAD,USD Student t tv 0.153 0.022 0.968 10.608
(0.074) (0.006) (0.011) (2.549)

CAD–CHF|USD,JPY Frank −0.443
(0.125)

Tree 4

GBP–JPY|AUD,CAD,USD Independent

AUD–CHF|CAD,USD,JPY Student t −0.088 13.948
(0.022) (4.095)

Tree 5

GBP–CHF|AUD,CAD,USD,JPY Independent

copulae like the Gumbel and rotated Gumbel. Like before, time-varying
copulae are only selected in the first tree.

Figure 16.3 shows the time series of the Kendall’s tau for the first level
of the D-vine structure when time-varying copulae are selected for the
exchange rates. Given the estimate of a specific time-varying copula and
using the equations in Section 16.2.3, we can compute the Kendall’s tau at
each period. Figure 16.3 shows that the dependence between the Australian
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Table 16.7. Structure and estimation results of the D-vine copula for the five Asian
equity indices. This table shows the estimates of the D-vine copula for the five Asian
equity indices, obtained from a sequential estimation procedure. Standard deviations of
the parameters are in brackets. The second column indicates the copula that has been
selected according to the BIC criterion. When the name of the copula is followed by “tv”,
it means that the copula has a time-varying parameter. The column labeled with θ shows
the parameters of the constant copula. When the copula parameter is time-varying we
use ωC , αC and βC that appear in Qt = Ω(1−αC −βC)+αCεt−1ε

′
t−1 +βCQt−1, where Ω

is a 2 × 2 matrix with ones on the diagonal and ωC off-diagonal. Finally ν is the degrees
of freedom parameter of the Student t-copula.

Model θ ωC αC βC ν

Tree 1

TH–SG Student t tv 0.527 0.036 0.930 7.802
(0.056) (0.011) (0.020) (2.145)

SG–HK Rgumbel tv 0.581 0.059 0.882
(0.039) (0.020) (0.052)

HK–KR Normal tv 0.173 0.014 0.986
(0.347) (0.004) (0.004)

KR–TW Rgumbel tv 0.240 0.015 0.985
(0.186) (0.004) (0.005)

Tree 2

TH–HK|SG Gumbel 1.151
(0.028)

SG–KR|HK Gumbel 1.172
(0.028)

HK–TW|KR Normal 0.257
(0.031)

Tree 3

TH–KR|SG,HK Gumbel 1.105
(0.025)

SIF–TW|HK,KR Frank 0.814
(0.205)

Tree 4

TH–TW|SG,HK,KR Independent

and Canadian dollar experiences a steady decline over the sample period,
from around 0.45 to 0.2. The dependence between the Canadian and US
dollar drops from 0.6 to nearly zero. The dramatic drop in the dependence
at the end of the sample is due to the depreciation of the US dollar against
most currencies after June 2006. The dependence between the US dollar
and the Japanese yen fluctuates around 0.37, with a maximum at a little
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Figure 16.3. Time series of the Kendall’s tau for the exchange rates. This figure shows
the implied dynamics of the Kendall’s tau for the first level of the D-vine structure, when
we have selected a time-varying copula.

above 0.6 and a minimum of 0.2. The Kendall’s tau of the Japanese yen and
Swiss franc against the euro is around 0.1 most of the time but it increases
significantly at the end of the sample to a value slightly above 0.4, due to
the strengthening of the euro against all currencies during the course of
2007. Figure 16.4 shows the results for the Asian countries, with basically
two types of evolution of Kendall’s tau. For Thailand and Singapore, the
dependence fluctuates around 0.3, with some periods of high dependence up
to 0.5 and some periods of near independence. A similar pattern emerges
for Singapore and Hong Kong, where the dependence fluctuates around
0.35. The two other pairs of exchange rates experience very clear increasing
trends. The dependence between Hong Kong and Korea and between Korea
and Taiwan increase significantly over the sample period from values around
0.1 to values around 0.4.
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Figure 16.4. Time series of the Kendall’s tau for the Asian equity indices. This figure
shows the implied dynamics of the Kendall’s tau for the first level of the D-vine structure,
when we have selected a time-varying copula.

16.5 Conclusion

In this chapter we develop a new dynamic model of dependence for mul-
tivariate densities. The approach is based on introducing time variation
in a D-vine copula, which is a very flexible multivariate copula, specified
by a series of iteratively conditioned bivariate copulae. The advantage of
such a model is that it can capture departures from symmetry and time vari-
ation in the dependence structure of a multivariate set of financial returns.
We apply this model to two different data sets. The first sample comprises
daily returns of six exchange rates (all against the euro), whereas the sec-
ond data set consists of weekly returns on five Asian equity indices. We
ask two questions: Is the dependence structure constant over time? Is the
dependence symmetric? Our findings are that in both data sets, the D-vine
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structure is composed of some time-varying bivariate copulae. This cor-
roborates previous findings in the financial literature that the dependence
structure is not constant over time, e.g., Ref. 14. Moreover the time-varying
copulae are mainly found in the first tree. Regarding the second question,
we find that the dependence structure is symmetric for the exchange rates,
whereas for the Asian equity indices the dependence structure presents clear
signs of asymmetry.
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17.1 Summary

This book promotes vine copulae as a model of joint associations. The focus
is on multivariate dependence modeling, as the transition from the well-
developed theory for bivariate associations to multivariate dependence is
a challenging step. Bivariate copulae have become a very popular way of
specifying distributions of two random variables. Different bivariate copulae,
capable of modeling various features of a joint distribution (correlation, tail
dependence in the upper and lower corner), are available. They cover a wide
range of bivariate dependence, are easy to sample and their parameters can
be inferred from data. The rich theory of bivariate copulae will surely expand
and develop as new features of bivariate distributions capture researchers’
attention. Moving from the bivariate to the multivariate case is challenging
for several reasons:

(1) Different types of unconditional bivariate copulae are often observed
in multivariate data sets. Models that allow various types of bivariate
copulae to be combined into a multivariate copula are of great interest.
Graphical or hierarchical models are best suited to this setting.

355
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(2) Combining unconditional copulae into one multivariate model cannot
be done in an unconstrained way. For this reason, methods based
on connecting unconditional copulae are quite limited (for example,
n-dimensional model Markov trees allow the specification of only n − 1
unconditional bivariate copulae while hierarchical Archimedean con-
struction allows the stipulation of only n − 1 different generators).

(3) For high-dimensional copulae, the possibility of partial specification is
essential. Models that can handle full as well as partial specification
would be preferred.

The vine-copula method allows a joint distribution to be built from bivari-
ate and conditional bivariate copulae arranged together according to the
graphical structure of a regular vine. This avoids problems of compatibility
and leverages bivariate copulae to enable extensions to arbitrary dimensions.
For n-dimensional models, we can independently specify n(n − 1)/2 copu-
lae, of which n − 1 are unconditional. Vines can be sampled and inferred
from data. The minimal information completion of any partially specified
regular vine is trivially found by making the unspecified conditional copulae
conditionally independent.

In this book, we study properties of regular vines and show that vine
copulae realize a wide range of dependence structures with flexible asym-
metry in the joint upper and lower tails. This flexibility can be achieved
by the appropriate choice of bivariate copulae. We also showed that vines
often perform better than other competing models in realizing dependence
structures of multivariate data. Vines do require a bit of getting used to,
but offer ample rewards in terms of flexibility, elegance and simplicity to
those who persevere.

17.2 Future Research Directions

Vines are still young and there is much still to be learned. We conclude this
book with a few research topics of interest. Further research on vines will
be both application- as well as theory-driven.

The most interesting theoretical questions include:

(1) Search for the “best” regular vine. First of all, the question of what the
“best” vine means is still open. So far, our experience extends only to
D- and C-vines. As shown in this book, other vines provide interest-
ing symmetries and properties. How can we utilize these properties in
finding the “best” vine structure?
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(2) Model simplification. Vine models with specified conditional indepen-
dence statements will be of interest. Which conditional independence
statements can be incorporated into a given vine? How to choose a
regular vine which has all the specified conditional independence state-
ments? For a given vine, conditional copulae at specified levels can be set
to independent copulae and only the remaining copulae would have to
be fitted to data. One line of research could go into efficient conditional
independence tests that would allow us to find conditional copulae on
a vine that could be set to independence. This probably would not be
possible for high-dimensional vines; the fall-back position would be to
use some heuristic search (e.g., as shown in this book based on finding
small partial correlations) for the “best” vine structure.

(3) Vines versus other graphical models. In this book the relationship
between vines and Bayesian belief nets was investigated. It would be
interesting to compare vines to other graphical models, e.g., chain
graphs.

(4) Vine models with time-varying copula parameters. Models with time-
varying parameters are of great interest especially in the area of finance.
Vines could offer their flexibility to modeling dependence in time. Some
ideas in this direction have been presented in this book.

Vines so far have been applied mostly in the area of finance. We believe
that many other applications will appear in the future. Clear expositions
of the method, for a variety of users, is required as well as fast computer
implementations. We hope that this book will standardize notation and pro-
vide a baseline for further theoretical work. More effort should be directed
to developing professional vine software. This software must include:

(1) Graphics. Good graphical representation of vines is essential. A software
package that will guide a user in representing and explaining a structure
of a model is needed. Such software should also offer the possibility of
performing calculations such as: inference, sampling, conditionalization.

(2) Inference algorithms. In Chapter 3 we showed inference algorithms
for D- and C-vines. There is, however, a need for a general inference
algorithm for regular vines.

(3) Searching for the best vine structure. “Greedy” algorithms to search for
the “best” vine structure will have to be developed, implemented and
thoroughly tested.

The rapid growth of the vine community in the last few years bodes well
for the pursuit of this research agenda.
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Akaike information criterion (AIC), 115
algorithms

construction of regular vines, 197, 202
construction of vines, 195, 197, 206
enumeration of vine arrays, 220
generalized Toeplitz via partial

correlations, 159
generation of regular vine, 240
inversion from vine array to binary

vectors, 229
likelihood for C-vine, 60
likelihood for D-vine, 61
optimal truncation of vine, 240, 242
Prufer codes, 194
simulation for 5-dimension vines, 150,

153
simulation for regular vines, 147

application
electricity load, 257, 270
financial, 323, 332
multivariate data analysis, 67
risk analysis, 299
weather data, 244

Bayesian belief net, 68, 282, 287
Blomqvist’s beta, 160, 182

Cayley’s theorem, 194
comonotonicity and countermonoticity,

53, 154
copula families

1-factor, 171
Archimedean, 27, 106, 330
BB1, 181
BB4, 182
BB7, 183

Clayton/MTCJ, 341

elliptical, 22

extreme value, 107

Frank, 10, 106, 159, 340

Galambos, 107

Gaussian, 22, 331

GT, 23

Gumbel, 107, 340

hierarchical or nested Archimedean, 24,
25, 308

Koehler–Symanowski, 31

mixture of max-id, 181

MTCJ, 102, 159

normal, 46

Plackett, 106, 159

student-t, 23, 307, 330

t, 169

copula information criterion (CIC), 115

determinant of correlation matrix, 48, 156

directed acyclic graphs (DAG), 282

Fréchet class, 50, 52

generalized Toeplitz matrices, 156

glossary and notation, 14, 15

Kendall’s tau, 159, 334

Laplace transform family

Mittag-Leffler, 181

Sibuya, 181

line graphs, 197

majorization, 66

Markov tree, 239
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maximum pseudo-likelihood estimation,
118

microcorrelation, 90
model selection, 126, 250
mutual information or Kullback–Leibler

divergence, 65, 119

Pareto distribution, 101, 102
partial correlation, 47
Prufer code, 194

random correlation matrices, 49
rank correlation, 49, 290
reflection symmetry, 179
relative correlation, 64

skewed t, 339
Sklar’s theorem, 51
stochastic increasing positive dependence,

95

tail dependence, 92, 97, 168
tail dependence functions, 173

upper-lower tail dependence, 168

value-at-risk VaR, 332
vine

array, 9, 196, 220
B0–B3 5-dimensional vines, 144, 145,

150

Bayesian inference, 255, 266
C-vine or canonical vine, 39, 42
C.i5.i6. . . notation, 221
classification, 203
conditioned set, 40
conditioning set, 40
constraint set, 39
cumulative distribution function, 44,

45, 51
D-vine, 39, 42
D.i5.i6. . . notation, 221
definition, 39
density, 9, 44, 45, 238
dynamic, 337
enumeration of vine array, 193, 220
equivalence classes, 141, 222, 227
Gaussian or normal, 46, 156
graphs, 7, 9, 40, 41, 43
likelihood estimation, 59, 318
m-child, 41
m-descendant, 41
natural order, 199, 202, 220
number of regular vines, 42, 203
pair-copula construction PCC, 43, 253
partial correlation, 47
properties, 41, 46, 237
sampling algorithm, 55, 56, 147
truncated vine, 238

vines
regular, 44
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