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Abstract

The regime switching rough Heston model has two important fea-

tures on different time scales. The regime switching is motivated by

changes in the long term behaviour. The parameter of the model

might change over time due to macro-economic reasons. Therefore we

introduce a Markov chain to model the switches in the long term mean

of the volatility. The rough behaviour is a more local property and

is motivated by the stylized fact that volatility is less regular than a

standard Brownian motion. Therefore the driving noise in the model

is a fractional Brownian motion. We derive and implement pricing

formulae for call and put option and then add some insights into the

effects of the rough behaviour and the regime switches to these prices.

The techniques are much more involved than for the standard Heston

model, since the rough processes do neither have the Markov property

nor the semi-martingale property. The regime switches introduce as

an additional complexity time inhomegeneity.
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1 Introduction

The most celebrated and widely used stochastic volatility model is the model

by Heston (1993). In that model the asset price S follows a geometric Brow-

nian motion and the stochastic volatility follows a square-root-process, also

known as CIR-process which was pioneered by Cox et al. (1985). The dy-

namics of Heston model under the risk-neutral probability measure Q is given

by:

dSt = rStdt+ St
√
VtdBt

dVt = κ(θ − Vt)dt+ σ
√
VtdWt, (1)

with two possible correlated Brownian motions B and W . One important

advantage of this stochastic volatility model is its analytic tractability. It

enables the modeller to infer the parameters of the process from the market

quoted option prices fairly easily.

However, in a recent paper by Gatheral et al. (2014), it is shown that time

series of realized volatility are rough with a Hurst parameter H less than one-

half, in particular near zero or of 0.1. In addition in Jaisson and Rosenbaum

(2016) and Euch and Rosenbaum (2017) a micro-structure market model

is based on self-exciting Poisson process, so called Hawkes processes, which

converge to rough Brownian motions.

In the rough Heston model, the Brownian motion W driving the volatil-

ity (in a sense of classical approach) is now replaced by a rough (fractional-)

Brownian motion WH , H ∈ (0, 0.5). Equation (1) can be re-written (infor-

mally) in a fractional stochastic volatility framework as introduced by Comte

and Renault (1998) as follows:

2



dSt = rStdt+ St
√
VtdBt

dVt = κ(θ − Vt)dt+ σ
√
VtdW

H
t . (2)

Another stream of research, as described in Elliott et al. (2005) and Elliott

et al. (2016) argues that asset prices or the associated volatility process should

exhibit changing regime. They referred to example on the statistical analysis

by Maghrebi et al. (2014), that the model should have at least two regimes

under the risk neutral measure. Also several papers (Hamilton and Susmel,

1994; Moore and Wang, 2007; So et al., 1998) showed that index volatilities

are subjected to regime switches under the physical measure.

The economic consideration is one important motivation to use regime

switches using Markov chains instead of jump-diffusion in order to incorpo-

rate sudden changes in volatility. Also a combination of rough Brownian

motion and jump processes seems not to be considered in the literature as

of yet. We restrict ourselves to changes in the mean-reversion parameter

since that model maintains the analytic tractability. As a consequence many

option pricing formulae can be obtained at least in a semi-analytic form.

Another argument for regime switching models are that those are used for

pricing in many other cases, like Overbeck and Weckend (2017), Yuen and

Yang (2010), Alexander and Kaeck (2008), and Ang and Bekaert (2002). Cal-

ibration of the regime switching models have been analysed in Mitra (2009)

and He and Zhu (2017). In the case of rough Heston model calibration is

still a major open problem, since even employing semi-analytic solutions is

a computationally expensive exercise. For early exploration of calibration of

rough Heston model see a technical report by Alfeus et al. (2017).

Since stochastic volatility models are usually not complete, there are

several equivalent martingale measure. It is widely accepted that as long

as volatility is not traded, the so-called minimal martingale measure will
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not change the volatility process and therefore regime-switching will be also

passed on to the pricing measure.

Our paper will now introduce a new Heston type model which covers two

important generalization of the classical model, namely the rough volatility

model and regime switching volatility. The so-called rough regime switch-

ing Heston model will inherit the analytic tractability of the rough Heston

model, which was derived in Euch and Rosenbaum (2016, 2017) and the

tractability of the regime switching extension as in Elliott et al. (2016). Two

important stylized features of volatility, namely the rough behaviour in its

local behaviour, and the regime switching property consistent with more long

term economic consideration can be accommodated in one consistent model

approach.

In the classical Heston model the Laplace-transform of the log asset price

is a solution to a Riccati-equation. Although this result require the semi-

martingale and Markov-property of the asset and volatility process, a totally

analogous result can be proved for the rough Heston model, where the volatil-

ity is neither a semi-martingale nor a Markov process. The Riccati equation,

which is an ordinary differential equation is now replace by a rough integral

equation, see Euch and Rosenbaum (2016). Moreover this results is extended

to a time dependent long term mean reversion level θs, s ∈ [0, T ]. Exactly

in this formula time dependent θ is required in order to extend the resolvent

equation as in Elliott et al. (2005) and Elliott et al. (2016) to our case. How-

ever, in our setting the resolvent equation, which is an equation associated

with the Markovian regime switching process for θs, depends also on the fi-

nal time T . This dependency increases considerably the mathematical and

numerical complexity. From the computational point of view, the model is

computationally challenging as firstly we have to compute the matrix ODE

(as proposed by Elliott and Nishide (2014)) using Runge–Kutta method and

secondly we have to compute the fractional differential Riccati equation us-

ing predictor–corrector schemes in lines of Adam’s method (see for instance
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Diethelm et al. (2002)). Generally, merging the two modeling frameworks

is slower mainly due to the time consuming resolvent equation in the ma-

trix ODE and the predictor–collector schemes. A fast method to compute

fractional differential Riccati equation is not yet known.

In the paper we are able to extend the arguments from Euch and Rosen-

baum (2016) as well as from Elliott et al. (2016) to finally derive an ana-

lytic representation of the Laplace-functional of the asset price. By Fourier-

inversion technique analytic pricing formulae for put and calls are given.

We benchmark these semi-analytic prices against two types of Monte-

Carlo-simulations. One is a full Monte-Carlo simulation, in which the three

dimensional stochastic processes (B,W, θ) is simulated and the option pay-

out can be obtained (in the risk neutral world) in each simulation.

The second, a novel method in this context, is the partial Monte-Carlo-

Simulation. Here we simulate the path of θs(ω), s ∈ [0, T ] and then solve

the corresponding rough Riccati equation. Here we are able to avoid the

resolvent equation which was shown to be very time consuming. This com-

putation method is an innovation compared to the approaches presented in

the literature and is shown to be the most effective one.

Despite the different computation time, the results of the three methods

are very close. This is in contrast to the results of Elliott et al. (2016), in

which however only the two classical computation methods were considered.

For reason not explained they only considered maturities upto year 1 and

it is apparent that the difference between MC and analytic increases with

maturity. This we can not observe. As a test we run the Monte-Carlo

simulation without changing the regime, i.e. do not simulate the Markov

chain of regime switches. Then our results are closer to the Monte-Carlo

based figures reported by Elliott et al. (2016) in their numerical results (see

Table 4).

In the section numerical results, we present the three different calculation

methods. In addition we show that the call option price as a function of the
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Hurst parameter can exhibit different shapes. We see in our example that for

shorter maturities call prices are increasing with increasing Hurst parameter,

i.e. rough prices based on rough volatility are cheaper than those based

Brownian motion prices and prices based on long memory volatility are even

more expensive than Brownian motion. This changes if maturity increases.

At a certain level Brownian volatility prices are the most expensive one and

both rough and long term volatility based prices are lower (see Figure 1).

We also analyse the sensitivity with respect to average number of regime

until maturity, with respect to initial volatility and the correlation between

WH and B.

The paper is structured as follows. Section 2 introduces the model and

pricing methodologies. Section 3 presents numerical results and call price

sensitivity with respect to Hurst parameter. Section 4 concludes.

2 Basic Model Description

We directly work under the pricing measure for the underlying (already dis-

counted) asset S. From Equation (2) the log prices X = logS then become

dXt = (r − Vt/2)dt+
√
VtdBt

Vt = V0 +
κ

Γ(α)

∫ t

0

(t− s)α−1(θ − Vs)dt+
σ

Γ(α)

∫ t

0

(t− s)α−1
√
VsdWs.(3)

We now incorporate a regime switching into the mean reversion level θ as

in Elliott et al. (2016) and choose the rough volatility model by Euch and

Rosenbaum (2016). This leads to the following stochastic integral equation

for V

Vt − V0 =
κ

Γ(α)

∫ t

0

(t− s)α−1(θs − Vs)dt+
σ

Γ(α)

∫ t

0

(t− s)α−1
√
VsdWs,(4)
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where W is now a standard Brownian motion having correlation ρ with

B and (θs)0≤t<∞ is a finite state time homogeneous Markov process with

generator matrix Q independent of S and W .

2.1 Fixed function s→ θs

We need the following result from Euch and Rosenbaum (2017) that for a

fixed function s→ θs the characteristic function of Xt = logSt equals

E[ezXt ] = exp

(∫ t

0

h(z, t− s)
(
κθs +

V0s
−α

Γ(1− α)

)
ds

)
, z ∈ C, (5)

where h is the unique solution of the following fractional Riccati equation:

Dαh =
1

2
(z2 − z) + (zρσ − κ)h(z, s) +

σ2

2
h2(z, s), s < t, z ∈ C,(6)

I1−αh(z, 0) = 0.

Here the fractional differentiation and integral are defined by

Dαh(z, s) =
1

Γ(1− α)

∫ t

0

(t− s)−αh(z, s)ds (7)

Iαh(z, s) =
1

Γ(α)

∫ t

0

(t− s)α−1h(z, s)ds (8)

2.2 Regime switching θs

As in Elliott et al. (2016) we define θs(ω) =
∑k

i=1 ϑiZ
(i)
s (ω) = 〈ϑ, Zs〉 where

Z is a Markov chain, independent from (S, V ) with state space the set of unit

vectors in Rk, i.e.Zs ∈ {ei = (0, .., 1, 0..)T , i = 1, .., k} and ϑ is the vector of

k-different mean reversion levels. The infinitesimal generator of the process

Z is also denoted by Q i.e. qij is the intensity of switching from state ei to

ej, i.e. for θ itself the intensity of switching from ϑi to ϑj.

The following proposition is the main new mathematical results of the
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paper and lays the foundation of the numerical calculation of the option

prices as presented below.

Proposition 2.1. The conditional characteristic function of the random

variable X with fixed T is given by:

E[ezXT ] = E

[
exp

(
κ

∫ T

0

h(z, T − s)〈ϑ, Zs〉ds
)]

e
∫ T
0 h(z,T−s) V0s

−α
Γ(1−α)

ds. (9)

Proof. Fix the final time T and consider now the processes

gt = exp

(
κ

∫ t

0

h(z, T − s)〈ϑ, Zs〉ds
)

(10)

Gt = gtZt (11)

We have that

dGt = gtdZt + Ztdgt (12)

= gt(Q
′Ztdt+ dMZ

t ) + Ztgth(z, T − t)〈ϑ, Zt〉dt

and can proceed exactly as in Elliott et al. (2016). Therefore

dGt = (Q′ + κh(z, t)〈ϑ, Zt〉) gtZtdt+ gtdM
Z
t (13)

= (Q′ + κh(z, T − t)Θ) gtZtdt+ gtdM
Z
t

Once this is done we will finally end up with a matrix ODE as in Elliott

et al. (2016), i.e.

dΦ(u, t)

dt
= (Q′ + κh(z, T − t)Θ) Φ(u, t), u < t, with Φ(u, u) = I.(14)
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We now get that

E [Gt] = Φ(0, t)Z0, (15)

and because ∀t, 〈Zt,1〉 = 1, we have

E

[
exp

(
κ

∫ T

0

h(z, s)〈ϑ, Zs〉ds
)]

= 〈Φ(0, T )Z0,1〉. (16)

In summary, combining Equations (8), (9), and (16) the regime switching

rough Heston model has the characteristic representation given by:

ϕX(z) = E[ezXT ] = exp
(
V0I

1−αh(z, T − ·)
)
〈Φ(0, T )Z0,1〉, (17)

where

I1−αh(z, T − ·) =

∫ T

0

h(z, T − s) s−α

Γ(1− α)
ds. (18)

This characteristic function in Equation 9 is used in the semi-analytic

pricing method below.

2.3 Monte-Carlo Simulation

As benchmark for the semi-analytic pricing method via the characteristic

function which involves the rough Riccati equation and the matrix equation,

we develop Monte-Carlo simulation based approaches, i.e., we carry out two

types of Monte-Carlo simulation. In the first one only the regime switch-

ing process is simulated and for each path of θ the corresponding Laplace-

functional is calculated. In that way the performance of the ordinary matrix

differential equation is tested against Monte-Carlo simulation. The second

one is a straightforward simulation of the three dimensional process (θ, V, S).
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2.3.1 Partial Monte-Carlo

We simulate the paths of θs and then evaluate for each realization θs(ω), the

formula (5). A path θ(ω) has the form

θs(ω) =
∞∑
i=1

1[Si−1(ω),Si(ω)[(s)Xi(ω), (19)

where S0 = 0, Si(ω) = Si−1(ω) + Ti(ω), where Ti, Xi are successively drawn

from an exponential distribution with parameter −qXi−1(ω)Xi−1(ω) and X from

the jump distribtuion of Q i.e.

Ti ∼ exp(−qXi−1(ω)Xi−1(ω)) (20)

P [Xi = θk|Xi−1] =
qXi−1(ω)k

−qXi−1(ω)Xi−1.(ω)

(21)

Let us generate N of those paths θ(ωl), l = 1, .., N and evaluate for each θ(ωl)

the expression

E[ezXt ](ωl) := exp

(∫ t

0

h(z, t− s)
(
κθs((ωl)) +

V0s
−α

Γ(1− α)

)
ds

)
, (22)

then

E[ezXt ] ∼ 1

N

N∑
l=1

E[ezXt ](ωl) (23)

2.3.2 Full Monte-Carlo

Here we want to calculate the option price directly be Monte-Carlo simu-

lation. We first simulate the 3-dimensional process (B,WH , θ). From the

θs(ω) simulated as above, we build the values of the regimes at each of the

discrete time steps ti, at which we also want to generate the values of the

volatility Vti , which depends on θti and the asset price Sti .

The Heston model itself is then defined via an Euler scheme according
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to (2), and option prices are obtained by evaluating the payoff at each path

and taking the average over all Monte Carlo paths.

2.4 Analytic pricing based on Fourier transformation

To price options, we use the well-known Fourier-inversion formula of Gil-

Pelaez (1951) (for convergence analysis see Wendel (1961)) which leads to a

semi-analytic closed-form solution given by:

C0 = e−rTE
[
(eX −K)+

]
= E[eX ]Π1 − e−rTKΠ2, (24)

where the probability quantities Π1 and Π2 are given by:

Π1 = E[eXI{eX>K}]/E[eX ] =
1

2
+

1

π

∫ ∞
0

Re

[
e−iz log(K)ϕX(z − i)

izϕX(−i)
dz

]
(25)

Π2 = P{eX > K} =
1

2
+

1

π

∫ ∞
0

Re

[
e−iz log(K)ϕX(z)

iz
dz

]
.

3 Numerical results

Most of the model parameters are adopted from Elliott et al. (2016), see

Table 1. For the roughness case, we chose the Hurst parameter H = 0.1, as

indicated by Gatheral et al. (2014) (see also Alfeus et al. (2017) for Hurst

parameter estimation from realized variance and the calibration of rough

Heston model).

Our first analysis begins with the test of the observation in Elliott et al.

(2016) that with longer time to maturity Monte-Carlo prices diverge consid-

erable from analytic prices. This we can not confirm. In percentage of price

the Monte-Carlo error only increases slightly. These results are displayed in

Table 2–3. However if we do not simulate the regime switches in the Monte

Carlo simulation we observe the same increase as reported in Elliott et al.

(2016), see Table 4 and Table 6. In our implementation we could neither ob-

11



serve the problems with maturity larger than 1 year nor the problems with

the discontinouities in the complex plane as reported in Elliott et al. (2016).

However, we can only observe that semi-analytic pricing suffers for the out

of the money options.

In the second analysis we show how the Hurst parameter impacts the

option price. Surprisingly this depends on the maturity of the option. We

show the result without regime switching in the Figure 1. We get increasing,

hump and then decreasing shapes for time to expiry bigger than 1.85 years.

Thirdly, we report on call prices under rough volatility (with H = 0.1)

with different volatility and correlation assumptions, see Tables 5–7. Here

we also exhibit the partial Monte-Carlo results. The prices are close to full

Monte-Carlo, but it is faster, and sometimes even closer to semi-analytic.

Approximately 1 000 000 simulations of the regime switches consume the

same computation time as the semi-analytic calculations. Different to the

QE-matrix used by Elliott et al. (2016) which roughly allows for one change

per year, we also consider the case with multiple switches per year. The

differences to the non-regime switching becomes larger, e.g. for K = 100, T =

1, we have 8.28 without regime switching, 9.4 with few and 10.14 with more

regime switches, see Tables 5, 7 and Table 10.. Also the impact of the

correlation assumption is dominant, and the starting value of the volatility

has large influence. These numerical results are given in Tables 8–9.

Our last figure shows the implied volatility surface for different Hurst

parameter, but with two different starting volatility but the same regime

switching parameters and maturity T = 1. The lowest and steepest is the

most rough one in the lowest regime, see Figure 2. This is naturally since op-

tion prices are cheaper under those parameters. The last Table 11 compares

the speed across different computational methods.
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Table 1: Model parameters

Parameters value

S(0) 100

r 0.05

σ 0.4

ρ -0.5

κ 3

θ0 = [θ1 θ2] [0.025 0.075]

α 1 (∼ H = 0.5)

QE

[
−1 1

0.5 −0.5

]
No. of Simulations 1 000 000

Time Steps 250
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Table 2: Call prices, v0 = 0.02 < θ1 < θ2

(a) Starting in a low state: θ0 = θ1

K/T 0.25 0.5 0.75

Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic

Price std Error Fourier Price std Error Fourier Price std Error Fourier

90 11.57148 0.00745 11.48849 13.27125 0.01006 13.25924 15.49823 0.01392 15.01218

95 7.38753 0.00648 7.17254 9.59107 0.00929 9.27515 10.73807 0.01015 11.24349

100 3.97505 0.00504 3.62547 6.68191 0.00842 5.88019 7.39669 0.00878 7.95919

105 1.69219 0.00338 1.33534 3.66323 0.00604 3.29490 4.71588 0.00721 5.28047

110 0.55198 0.00192 0.35727 1.83362 0.00427 1.62772 2.73756 0.00558 3.27974

115 0.14608 0.00098 0.08044 0.63928 0.00244 0.73575 1.71990 0.00460 1.92863

120 0.03219 0.00045 0.01697 0.35077 0.00187 0.31933 1.76078 0.00526 1.09545

(b) Starting in a high state: θ0 = θ2

K/T 0.25 0.5 0.75

Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic

Price std Error Fourier Price std Error Fourier Price std Error Fourier

90 11.57717 0.00729 11.73234 13.71997 0.01122 13.87580 15.72714 0.01448 15.84949

95 7.36691 0.00633 7.63948 9.94275 0.00999 10.17181 12.48412 0.01384 12.34856

100 3.90727 0.00489 4.31660 6.73111 0.00851 7.02647 9.49103 0.01238 9.29809

105 1.60708 0.00323 2.02691 4.20529 0.00688 4.53709 6.93522 0.01078 6.74947

110 0.49681 0.00179 0.77241 2.74969 0.00587 2.72878 4.87362 0.00915 4.71991

115 0.12359 0.00089 0.24232 1.06738 0.00340 1.53220 3.22032 0.00740 3.18403

120 0.02729 0.00041 0.06548 0.60658 0.00264 0.80856 2.16359 0.00611 2.07808
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Table 3: Call prices, v0 = 0.02 < θ1 < θ2, with longer maturities

(a) Starting in a low state: θ0 = θ1

K/T 1 3 5

Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic

Price std Error Fourier Price std Error Fourier Price std Error Fourier

90 17.75749 0.01779 16.70273 29.72727 0.03784 27.80856 36.31831 0.04548 35.97219

95 12.00087 0.01112 13.09527 26.98125 0.03669 24.85439 33.51644 0.04393 33.34277

100 8.64760 0.00979 9.90182 22.91025 0.03127 22.10464 30.63824 0.04147 30.85462

105 6.92472 0.01005 7.19639 15.80680 0.01917 19.56451 27.16105 0.03704 28.50740

110 5.29075 0.00943 5.02534 13.21306 0.01786 17.23587 27.83889 0.04427 26.29963

(b) Starting in a high state: θ0 = θ2

K/T 1 3 5

Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic

Price std Error Fourier Price std Error Fourier Price std Error Fourier

90 18.04682 0.01869 17.64130 27.29340 0.03006 28.54621 35.22786 0.04123 36.00426

95 14.73782 0.01734 14.27432 24.46840 0.02925 25.69094 32.42804 0.03981 33.37863

100 11.84495 0.01585 11.29129 24.57055 0.03566 23.03282 33.21863 0.05016 30.89413

105 9.30708 0.01429 8.72376 21.82207 0.03334 20.57358 31.56898 0.05076 28.55036

110 7.19260 0.01271 6.58292 19.96980 0.03286 18.31214 27.14623 0.04221 26.34577
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Table 4: Call prices, v0 = 0.02 < θ1 < θ2, without simulation of regime
switches in Monte Carlo

(a) Starting in a low state: θ0 = θ1

K/T 0.25 0.5 1

Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic

Price std Error Fourier Price std Error Fourier Price std Error Fourier

90 11.31855 0.00036 11.47998 12.78403 0.00080 13.26191 15.54240 0.00135 16.70267

95 6.91745 0.00049 7.17261 8.68745 0.00097 9.27230 11.74966 0.00158 13.09533

100 3.45268 0.00044 3.63632 5.34249 0.00100 5.88245 8.50439 0.00174 9.90178

105 1.40765 0.00048 1.31659 2.99190 0.00103 3.29437 5.91387 0.00183 7.19640

110 0.51416 0.00051 0.37300 1.57963 0.00104 1.62594 3.97996 0.00183 5.02538

115 0.17973 0.00037 0.08148 0.81441 0.00097 0.73872 2.62430 0.00177 3.38626

120 0.06229 0.00021 0.03019 0.42068 0.00080 0.31788 1.70823 0.00164 2.22082

(b) Starting in a high state: θ0 = θ2

K/T 0.25 0.5 1

Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic

Price std Error Fourier Price std Error Fourier Price std Error Fourier

90 11.60323 0.00033 11.73305 13.75855 0.00061 13.87595 17.77453 0.00096 17.64129

95 7.53515 0.00034 7.63789 10.16683 0.00062 10.17166 14.58900 0.00102 14.27432

100 4.35194 0.00031 4.31886 7.20199 0.00063 7.02656 11.81142 0.00106 11.29129

105 2.23511 0.00033 2.02486 4.90186 0.00064 4.53710 9.44866 0.00110 8.72376

110 1.04208 0.00037 0.77292 3.22584 0.00067 2.72865 7.47633 0.00112 6.58292

115 0.45445 0.00035 0.24399 2.06709 0.00069 1.53236 5.86090 0.00112 4.85611

120 0.19003 0.00027 0.06291 1.29924 0.00068 0.80852 4.56132 0.00113 3.50796
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Figure 1: The impact of Hurst parameter on option values with changing
expiry time

Under the rough case, we consider a case when H = 0.1 as empirically

proven by Gatheral et al. (2014). At moment we are considering the generator

matrix QE given above.
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Table 5: Call prices under rough volatility, v0 = 0.02 < θ1 < θ2 and QE

generator

(a) Starting in a low state: θ0 = θ1

K/T 0.25 0.5 1

Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic

Full std Error Partial Fourier Full std Error Partial Fourier Full std Error Partial Fourier

80 21.21834 0.08142 21.04928 20.99613 22.70236 0.10612 22.39585 21.92995 24.95195 0.14809 24.43662 24.54135

85 16.53185 0.07505 16.79874 16.89825 18.25055 0.10175 18.15340 17.71934 20.87358 0.14293 20.32966 20.28785

90 11.98653 0.06997 12.31647 11.94876 13.60705 0.09478 13.86663 13.37147 16.74382 0.13051 16.48881 16.32680

95 7.73380 0.06096 7.62077 6.67428 9.73972 0.08340 9.91929 8.89896 12.74631 0.11821 12.76987 12.64163

100 3.81818 0.04910 3.78302 2.46191 6.02765 0.07292 6.42048 4.93519 9.40263 0.11208 9.42984 9.30234

105 1.44438 0.03752 1.51491 0.24732 2.96650 0.05546 3.80160 2.15772 6.43873 0.09919 6.60637 6.46152

110 0.42772 0.02180 0.39556 0.12512 1.40261 0.04262 2.06220 0.75938 3.86032 0.08174 4.35670 4.24546

(b) Starting in a high state: θ0 = θ2

K/T 0.25 0.5 1

Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic

Full std Error Partial Fourier Full std Error Partial Fourier Full std Error Partial Fourier

80 21.22925 0.07501 20.98623 20.96890 22.79630 0.11497 22.15238 22.14655 25.74824 0.05678 25.50586 24.97705

85 16.52081 0.07119 16.69764 16.75793 18.18483 0.10556 17.86022 17.80336 21.70714 0.05376 21.55210 20.86047

90 11.96638 0.06593 12.11152 12.04218 13.99007 0.09802 13.93820 13.62524 17.96501 0.05086 17.89002 17.03892

95 7.50552 0.05791 7.50617 7.16747 9.84658 0.08937 10.07705 9.61300 14.15027 0.04681 14.58459 13.55432

100 3.63218 0.04688 3.79966 3.17796 6.30056 0.07959 6.45585 6.06377 11.00267 0.04286 11.63212 10.45512

105 1.19131 0.03641 1.33402 0.84507 3.44352 0.06389 3.79153 3.35864 8.10423 0.03822 9.08070 7.79629

110 0.38912 0.02242 0.51241 0.12238 1.70127 0.05041 2.05766 1.65555 5.76181 0.03393 6.93307 5.61828
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Table 6: Call prices, v0 = 0.02 < θ1 < θ2, without simulation of regime
switches in Monte Carlo; rough case

(a) Starting in a low state: θ0 = θ1

K/T 0.25 0.5 1

Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic

Price std Error Fourier Price std Error Fourier Price std Error Fourier

80 21.19948 0.06566 20.99613 22.47280 0.08855 21.92995 24.87668 0.12432 24.54135

85 16.50078 0.06101 16.89825 17.72256 0.08502 17.71934 20.64484 0.11906 20.28785

90 11.68174 0.05562 11.94876 13.28680 0.07711 13.37147 15.91675 0.10802 16.32680

95 7.14933 0.04882 6.67428 8.90970 0.06915 8.89896 12.01290 0.10022 12.64163

100 3.10499 0.04128 2.46191 5.02244 0.05764 4.93519 8.28652 0.08782 9.30234

105 0.77033 0.02745 0.24732 2.24329 0.04713 2.15772 5.03983 0.07613 6.46152

110 0.26740 0.01873 0.12512 0.83912 0.03299 0.75938 2.88119 0.06492 4.24546

(b) Starting in a high state: θ0 = θ2

K/T 0.25 0.5 1

Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic

Price std Error Fourier Price std Error Fourier Price std Error Fourier

80 21.55874 0.09134 20.96890 23.03974 0.12825 22.14655 26.12745 0.18946 24.97705

85 16.61640 0.08343 16.75793 18.68628 0.12284 17.80336 22.12496 0.18115 20.86047

90 12.20763 0.07790 12.04218 14.49531 0.11147 13.62524 17.86913 0.16392 17.03892

95 7.84079 0.06585 7.16747 10.37963 0.10010 9.61300 14.37190 0.15299 13.55432

100 4.31448 0.05577 3.17796 6.90396 0.08765 6.06377 11.37817 0.13983 10.45512

105 1.82449 0.04377 0.84507 4.19076 0.07165 3.35864 8.53524 0.12659 7.79629

110 0.66541 0.02951 0.12238 2.37847 0.05910 1.65555 6.24291 0.11296 5.61828

In what follows, we consider a generator of the Markov chain

Q =

[
−5 5

4 −4

]
.

Meaning, we are considering 5 jump rate per year from state 1 to state 2 and

4 jump rate from state 2 to state 1.
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Table 7: Call prices under rough volatility and v0 = 0.02 < θ1 < θ2

(a) Starting in a low state: θ0 = θ1

K/T 0.25 0.5 1

Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic

Full std Error Partial Fourier Full std Error Partial Fourier Full std Error Partial Fourier

80 21.47068 0.07908 21.00175 20.98273 22.63093 0.10858 22.28225 22.01076 25.42472 0.15965 25.79463 24.70909

85 16.66761 0.07313 16.70332 16.84830 17.97404 0.10169 18.06484 17.72671 21.14268 0.14998 20.03459 20.48775

90 11.80479 0.06609 12.27504 11.98113 13.90196 0.09522 13.89394 13.45825 17.08855 0.14001 16.49172 16.56613

95 7.59101 0.05911 7.61382 6.84312 9.68327 0.08705 9.99224 9.19971 13.44172 0.13147 13.35790 12.97795

100 3.77509 0.04935 3.78298 2.70477 6.05559 0.07620 6.41210 5.42301 10.14287 0.12180 10.23271 9.77358

105 1.24446 0.03634 1.39731 0.44667 3.19847 0.06080 3.79761 2.66488 6.97217 0.10751 7.34930 7.03425

110 0.46183 0.02466 0.50095 0.04683 1.50331 0.04772 2.08867 1.11439 4.69907 0.08864 5.18584 4.82989

(b) Stating in a high state: θ0 = θ2

K/T 0.25 0.5 1

Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic

Full std Error Partial Fourier Full std Error Partial Fourier Full std Error Partial Fourier

80 21.27567 0.07903 21.07213 20.97415 22.70422 0.11488 22.25050 22.04900 25.71770 0.16603 24.45007 24.74451

85 16.51986 0.07355 16.78900 16.79487 18.38982 0.10809 17.98040 17.73785 21.25906 0.15787 21.93313 20.53618

90 12.02166 0.06611 12.01867 12.00798 13.84454 0.09795 13.84289 13.49585 17.24327 0.14703 17.88039 16.62739

95 7.57394 0.05978 7.72731 7.01520 9.88294 0.08755 9.86080 9.31996 13.34188 0.13406 13.78744 13.05632

100 3.69629 0.04933 3.79923 2.96032 6.05455 0.07464 6.43077 5.62394 10.13329 0.12298 10.44554 9.87387

105 1.31239 0.03849 1.47665 0.66300 3.50841 0.06450 3.87000 2.88394 7.42620 0.10936 7.83990 7.15294

110 0.53143 0.02878 0.42124 0.04452 1.72727 0.04967 2.07582 1.28172 5.01555 0.09459 5.83673 4.95390
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Table 8: Call prices under regime-changing and rough volatility

(a) Starting in a low state: θ0 = θ1

K/T 0.5 2 3

Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic

Full Partial Fourier Full Partial Fourier Full Partial Fourier

90 14.09136 13.92905 13.44292 24.45672 24.12847 24.31182 28.52202 28.32875 29.85547

95 10.61207 10.30952 9.54470 21.35730 21.18952 21.35874 25.79067 25.59277 27.15286

100 7.28423 7.20730 6.34529 18.09945 18.46754 18.65030 22.84229 23.00171 24.63365

rho = 0, v0 = 0.05 ρ = −0.5, v0 = 0.1 ρ = −0.5, v0 = 0.1

(b) Starting in a high state: θ0 = θ2

K/T 0.5 2 3

Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic

Full Partial Fourier Full Partial Fourier Full Partial Fourier

90 14.06407 13.91363 13.50851 24.41388 24.05615 24.35216 29.00286 29.18680 29.88640

95 10.24581 10.25548 9.66329 21.79879 20.96414 21.40435 26.28235 26.37107 27.18698

100 7.39412 7.21322 6.50357 19.11952 18.82747 18.70001 23.64200 23.60276 24.67067

ρ = 0, v0 = 0.05 ρ = −0.5, v0 = 0.1 ρ = −0.5, v0 = 0.1
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Table 9: Call prices under regime-changing and rough volatility

(a) Starting in a low state: θ0 = θ1

K/T 1 2 5

Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic

Full Partial Fourier Full Partial Fourier Full Partial Fourier

90 17.42360 16.98568 17.12488 23.39505 23.50787 23.43841 36.50005 36.75730 39.42251

95 13.78313 13.97298 13.66086 19.78577 20.39672 20.37560 33.44811 34.37670 37.10921

100 10.88857 11.07770 10.58581 17.24397 17.47267 17.57232 31.72467 31.98527 34.91732

ρ = −0.5, v0 = 0.05 ρ = −0.5, v0 = 0.05 ρ = −0.5, v0 = 0.1

(b) Starting in a high state: θ0 = θ2

K/T 1 2 5

Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic

Full Partial Fourier Full Partial Fourier Full Partial Fourier

90 18.07010 18.41721 17.18695 23.39505 23.02899 23.48063 37.63668 36.75730 39.44308

95 13.89200 14.44758 13.73703 19.78577 19.78565 20.42420 34.18855 34.37670 37.13149

100 10.89707 11.24528 10.67650 17.24397 17.83789 17.62695 32.68452 31.98527 34.94115

ρ = −0.5, v0 = 0.05 ρ = −0.5, v0 = 0.05 ρ = −0.5, v0 = 0.1
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Table 10: Call prices under Heston model modifications, maturity fixed at
T = 1

(a) Starting in a low state: θ0 = θ1

Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic

Price std Error Fourier Price std Error Fourier Price std Error Fourier

24.18566 0.00023 24.40145 24.87668 0.12432 24.41194 24.95195 0.14809 24.54135

19.73528 0.00033 20.01877 20.64484 0.11906 20.03026 20.87358 0.14293 20.28785

15.54209 0.00042 15.86069 15.91675 0.10802 15.87262 16.74382 0.13051 16.32680

11.74930 0.00050 12.02694 12.01290 0.10022 12.03865 12.74631 0.11821 12.64163

8.50614 0.00055 8.63622 8.28652 0.08782 8.64671 9.40263 0.11208 9.30234

5.91152 0.00058 5.80791 5.03983 0.07613 5.81549 6.43873 0.09919 6.46152

3.97837 0.00058 3.62625 2.88119 0.06492 3.62874 3.86032 0.08174 4.24546

Classical Heston Rough Heston Regime Switching Rough Heston

(b) Starting in a high state: θ0 = θ2

Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic Monte Carlo Semi-Analytic

Price std Error Fourier Price std Error Fourier Price std Error Fourier

25.24961 0.00025 25.56759 26.12745 0.18946 25.64066 25.74824 0.05678 24.97705

21.34310 0.00028 21.66156 22.12496 0.18115 21.74460 21.70714 0.05376 20.86047

17.77426 0.00030 18.04638 17.86913 0.16392 18.13614 17.96501 0.05086 17.03892

14.58986 0.00032 14.76582 14.37190 0.15299 14.85821 14.15027 0.04681 13.55432

11.81316 0.00034 11.85344 11.37817 0.13983 11.94405 11.00267 0.04286 10.45512

9.44701 0.00035 9.32861 8.53524 0.12659 9.41330 8.10423 0.03822 7.79629

7.47475 0.00035 7.19422 6.24291 0.11296 7.26965 5.76181 0.03393 5.61828

Classical Heston Rough Heston Regime Switching Rough Heston
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Figure 2: Implied volatility surface for changing Hurst parameter H under
different initial volatility regime

Finally, we proceed to show the computational speed across the model-

ing frameworks and numerical methods adopted. All codes were written in

MATLAB R2017b and run on a Dell Intel(R) Core(TM) i5 - 3.30GHz and

with 16 GB memory. Table 11 summarizes the results.
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Table 11: Computational speed comparison, 10 option prices, time in sec-
onds.

Pricing Method

Model Semi-Analytic Full Monte Carlo Partial Monte Carlo

Classical Heston 0.534319 8.385977 -

Regime Switching Heston 5.065121 30.461079 -

Rough Heston 4.041738 837.789867 -

Regime Switching Rough Heston 19.56441 823.823312 14.701957

4 Conclusion

In this paper we studied the regime switching rough Heston models. It com-

bines the recently developed theory of rough volatility using rough Riccati-

equations as in Euch and Rosenbaum (2016) and the regime switching ex-

tension of the Heston model as in Elliott et al. (2016). The main goal is

to develop a tractable model that accounts for the two important stylized

features of volatility simultaneously, namely the rough behaviour in its local

behaviour, and the regime switching property consistent with more long term

economic consideration.

Since there isn’t yet any model combining rough Brownian motion with

jumps and because of the analytic tractability we opted for the regime switch-

ing using hidden Markov chain instead of jumps. This enables us to incor-

porate sudden changes even in the rough volatility case.

The call option price is still given in a semi-analytic formula. We de-

veloped a pricing engine and fully implemented this analytic approach to

the rough switching Heston model.Two simulation based methods has been

developed. The first is the full Monte-Carlo-Simulation of the underlying

stochastic process and the second one is just the simulation of the regime

switching Markov process, then applying the Riccati equation and the Fourier

methods for the call option. The latter is shown to be even faster than the
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semi-analytic formula as it avoids having to compute the resolvent matrix

with is time consuming.

Our results show that the deviation between the approaches are small

and consistent for any given time to expiry. We also analyse sensitivity to

several input parameters. In particular, we show the sensitivity with respect

to roughness, the Hurst parameter H. Actually this sensitivity depends on

the time to expiry of the option. Concerning the regime switches we analyse

Q-matrices, one with only one change per year as carried out in Elliott et al.

(2016) and one with fast changes, approximately 5 per year. There is only a

slight impact on call prices, see also Tables 5, 7 and Table 10.
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