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What is R? (http://cran.r-project.org (http://cran.r-project.org))
From Wikipedia:

In computing, R is a programming language and software environment for statistical computing and
graphics. It is an implementation of the S programming language with lexical scoping semantics
inspired by Scheme.

R was created by Ross Ihaka and Robert Gentleman at the University of Auckland, New Zealand,
and is now developed by the R Development Core Team. It is named partly after the first names of
the first two R authors (Robert Gentleman and Ross Ihaka), and partly as a play on the name of S.
The R language has become a de facto standard among statisticians for the development of
statistical software.

R is widely used for statistical software development and data analysis. R is part of the GNU
project, and its source code is freely available under the GNU General Public License, and pre-
compiled binary versions are provided for various operating systems. R uses a command line
interface, though several graphical user interfaces are available.

RStudio (http://www.rstudio.com (http://www.rstudio.com))
From RStudio.org:

RStudio is an integrated development environment (IDE) for R. RStudio combines an intuitive user
interface with powerful coding tools to help you get the most out of R.

RStudio brings together everything you need to be productive with R in a single, customizable
environment. Its intuitive interface and powerful coding tools help you get work done faster.

RStudio is available for all major platforms including Windows, Mac OS X, and Linux. It can even
run alongside R on a server, enabling multiple users to access the RStudio IDE using a web
browser.

Like R, RStudio is available under a free software license that guarantees the freedom to share and
change the software, and to make sure it remains free software for all its users.

http://cran.r-project.org/
http://www.rstudio.com/


The IPython Notebook (http://ipython.org/notebook.html
(http://ipython.org/notebook.html))
From ipython.org:

The IPython Notebook is a web-based interactive computational environment where you can combine code
execution, text, mathematics, plots and rich media into a single document:

The IPython notebook with embedded text, code, math and figures. These notebooks are normal files that
can be shared with colleagues, converted to other formats such as HTML or PDF, etc. You can share any
publicly available notebook by using the IPython Notebook Viewer service which will render it as a static
web page. This makes it easy to give your colleagues a document they can read immediately without having
to install anything.

http://nbviewer.ipython.org/github/dboyliao/cookbook-
code/blob/master/notebooks/chapter07_stats/08_r.ipynb
(http://nbviewer.ipython.org/github/dboyliao/cookbook-
code/blob/master/notebooks/chapter07_stats/08_r.ipynb) has instructions on using R with iPython
notebook.

Set up R environment

In [1]:

%load_ext rpy2.ipython

In [2]:

%%R

download.file(url="http://mfe.baruch.cuny.edu/wp-content/uploads/2015/04/VW1.zip
", destfile="VW1.zip")
unzip(zipfile="VW1.zip")

The Black-Scholes formula
Code from BlackScholes.R:

trying URL 'http://mfe.baruch.cuny.edu/wp-content/uploads/2015/04/VW1.zip'
Content type 'application/zip' length 92874 bytes (90 KB)
opened URL
==================================================
downloaded 90 KB

http://ipython.org/notebook.html
http://nbviewer.ipython.org/github/dboyliao/cookbook-code/blob/master/notebooks/chapter07_stats/08_r.ipynb


In [3]:

%%R

BSFormula <- function(S0, K, T, r, sigma)
{
    x <- log(S0/K)+r*T
    sig <- sigma*sqrt(T)
    d1 <- x/sig+sig/2
    d2 <- d1 - sig
    pv <- exp(-r*T)
    return( S0*pnorm(d1) - pv*K*pnorm(d2))
}

Note that this function can take a vector of strikes and volatilities.

In [4]:

%%R

BSFormula(S0=1, K=c(.9,1.0,1.1), T=1, r=0, sigma=0.2)

In [5]:

%%R

curve(BSFormula(S0=x, K=1.2, T=1, r=0, sigma=0.2),from=0.3,to=1.5,col="red",lwd=
2,xlab="Stock price",ylab="Value of 1 year call")

[1] 0.13589108 0.07965567 0.04292011



Implied volatility
In what follows, we always assume zero rates and dividends.

Denote the market price of an option with log-strike  and expiration  by . Then the implied volatility 
 is the number that solves:

where  denotes the Black-Scholes formula for a call option:

Here is some more code from BlackScholes.R

k t C(k, t)
(k, t)σBS

(k, t, (k, t)) = C(k, t)CBS σBS

(⋅)CBS
(k, t, σ) = F N( ) − K N( ) = F {N( ) − N( )}CBS d+ d− d+ ek d−

with = ± .d±
−k

σ t√
σ t√
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In [6]:

%%R

BSImpliedVolCall <- function(S0, K, T, r, C)
{
    nK <- length(K)
    sigmaL <- rep(1e-10,nK)
    CL <- BSFormula(S0, K, T, r, sigmaL)
    sigmaH <- rep(10,nK)
    CH <- BSFormula(S0, K, T, r, sigmaH)
    while (mean(sigmaH - sigmaL) > 1e-10)
      {
        sigma <- (sigmaL + sigmaH)/2
        CM <- BSFormula(S0, K, T, r, sigma)
        CL <- CL + (CM < C)*(CM-CL)
        sigmaL <- sigmaL + (CM < C)*(sigma-sigmaL)
        CH <- CH + (CM >= C)*(CM-CH)
        sigmaH <- sigmaH + (CM >= C)*(sigma-sigmaH)
      }
    return(sigma)
}

First, we generate some option prices:

In [7]:

%%R

vols <- c(0.23,0.20,0.18)
K <- c(0.9,1.0,1.1)
(optVals <- BSFormula(S0=1,K,T=1,r=0,sigma=vols))

Now get implied volatilities from these option prices:

In [8]:

%%R

(impVols <- BSImpliedVolCall(S0=1, K, T=1, r=0, C=optVals))

[1] 0.14589696 0.07965567 0.03557678

[1] 0.23 0.20 0.18



The volatility surface
In practice, implied volatility depends on strike and expiration.

Fixing one expiration, the volatility smile is the graph of implied volatility as a function of (log-)strike.

Plotting implied volatility by strike and expiration gives the volatility surface.

Smiles as of 15-Sep-2005
We see that the graph of implied volatility vs log-strike looks like a skewed smile. Some people say "smirk".

Figure 1: SPX volatility smiles as of September 15, 2005.



3D plot
Interpolating by time to expiration, we obtain the following picture of the SPX volatility surface as of the
close on September 15, 2005:

Figure 2: Figure 3.2 from The Volatility Surface.  is the log-strike and  is time to expiry.k := log K/F t



Why is the surface not flat?
Suppose

with constant . The solution to this SDE is ( )

 is then lognormally distributed and implied volatility, independent of strike or time to expiration.

If  were constant, the implied volatility surface would be flat.

In the real world, returns are not lognormal nor are they independent, as we will now see.

Financial time series: stylized facts
From Cont (2001) :

the seemingly random variations of asset prices do share some quite non-trivial statistical
properties. Such properties, common across a wide range of instruments, markets and time
periods are called stylized empirical facts.

Cont (2001)  lists the following stylized facts

Absence of autocorrelation: (linear) autocorrelations of asset returns are often insignificant,
except for very small intraday time scales.

Heavy tails: the (unconditional) distribution of returns seems to display a power-law or Pareto-like
tail, with a tail index which is finite, higher than two and less than five for most data sets studied. In
particular this excludes stable laws with infinite variance and the normal distribution.

Gain/loss asymmetry: one observes large drawdowns in stock prices and stock index values but
not equally large upward movements.

Aggregational Gaussianity: as one increases the time scale  over which returns are calculated,
their distribution looks more and more like a normal distribution. In particular, the shape of the
distribution is not the same at different time scales.
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file:///Users/JGatheral/Documents/iPython/VolatilityWorkshop/VW1.html#cite_note-Cont2001
file:///Users/JGatheral/Documents/iPython/VolatilityWorkshop/VW1.html#cite_note-Cont2001


Intermittency: returns display, at any time scale, a high degree of variability. This is quantified by
the presence of irregular bursts in time series of a wide variety of volatility estimators.

Volatility clustering: different measures of volatility display a positive autocorrelation over several
days, which quantifies the fact that high-volatility events tend to cluster in time.

Conditional heavy tails: even after correcting returns for volatility clustering (e.g. via GARCH-type
models), the residual time series still exhibit heavy tails. However, the tails are less heavy than in the
unconditional distribution of returns.

Slow decay of autocorrelation in absolute returns: the autocorrelation function of absolute
returns decays slowly as a function of the time lag, roughly as a power law with an exponent 

. This is sometimes interpreted as a sign of long-range dependence.

Leverage effect: most measures of volatility of an asset are negatively correlated with the returns
of that asset.

Volatility/volume correlation: trading volume is correlated with all measures of volatility.

Asymmetry in time scales: coarse-grained measures of volatility predict fine-scale volatility better
than the other way round.

Power laws in daily SPX returns
Using R and the quantmod package, we analyze log-returns of SPX since 1950.

β ∈ [0.2, 0.4]



In [9]:

%%R

library(quantmod)
library(boot)

options("getSymbols.warning4.0"=FALSE)

getSymbols("^GSPC",from="1927-01-01") #Creates the time series object GSPC

Do the same for VIX and create joint dataset of VIX and SPX

Loading required package: xts
Loading required package: zoo

Attaching package: ‘zoo’

The following objects are masked from ‘package:base’:

    as.Date, as.Date.numeric

Loading required package: TTR
Version 0.4-0 included new data defaults. See ?getSymbols.
[1] "GSPC"



In [10]:

%%R
getSymbols("^VIX",from="1927-01-01") #Creates the time series object VIX

mm <- specifyModel(Cl(GSPC)~Cl(VIX))
spxVixData <-modelData(mm) #quantmod function automatically aligns data from two 
series

vix <- spxVixData[,"Cl.VIX"]
spx <- spxVixData[,"Cl.GSPC"]

print(head(spxVixData))

print(tail(spxVixData))

           Cl.GSPC Cl.VIX
1990-01-02  359.69  17.24
1990-01-03  358.76  18.19
1990-01-04  355.67  19.22
1990-01-05  352.20  20.11
1990-01-08  353.79  20.26
1990-01-09  349.62  22.20
           Cl.GSPC Cl.VIX
2015-05-22 2126.06  12.13
2015-05-26 2104.20  14.06
2015-05-27 2123.48  13.27
2015-05-28 2120.79  13.31
2015-05-29 2107.39  13.84
2015-06-01 2111.73  13.97



In [11]:

%%R

ret.spx <- log(Cl(GSPC)/lag(Cl(GSPC)))
ret.spx <- ret.spx[!is.na(ret.spx)]  # Remove missing values
ret.spx <- ret.spx-mean(ret.spx)
breaks <- seq(-.235,.115,.002)
hist.spx <- hist(ret.spx,breaks=breaks,freq=F)

Figure 3: Histogram of SPX log returns. It doesn't look like a normal distribution!



The Student-t distribution

So the tail-exponent , the degrees of freedom.

Obviously, this distribution has mean zero. Its variance is

With , the density simplifies to

SPX daily log-returns: Student-t fit

In [12]:

%%R

plot(hist.spx,xlim=c(-.05,.05),freq=F,main=NA,xlab="Log return") 
sig <- as.numeric(sd(ret.spx)) 
curve(dt(x*sqrt(3)/sig,df=3)*sqrt(3)/sig,from=-.05,to=.05,col="red", add=T)
curve(dnorm(x,mean=0,sd=sig),from=-.05,to=.05,col="blue", add=T)

p(x) = ∼  as x → ∞
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Figure 4: Student-t with  fits almost perfectly! Normal fit is in blue. The cubic law of returns is
confirmed.

SPX weekly log-returns

ν = 3



In [13]:

%%R

pxw <- Cl(to.weekly(GSPC))  # Built-in quantmod function to get close
retw <- Delt(log(pxw))[-1] 
retw <- retw-mean(retw) 
c(min(retw),max(retw))
breaks <- seq(-.0345,.0345,.001)
spx.histw <- hist(retw,breaks=breaks,freq=F,plot=F) 
sigw <- as.numeric(sd(retw)) 
scale <- function(nu){sqrt(nu/(nu-2))} 

plot(spx.histw,xlim=c(-.035,.035),freq=F,main=NA,xlab="Weekly log return") 
curve(dt(x*scale(4)/sigw,df=4)*scale(4)/sigw,from=-.05,to=.05,col="red", add=T)
curve(dnorm(x,mean=0,sd=sigw),from=-.05,to=.05,col="blue", add=T)

Figure 5: Student-t with  in red. Normal fit is in blue. Aggregational Gaussianity?

SPX monthly log-returns

ν = 4



In [14]:

%%R

pxm <- Cl(to.monthly(GSPC))  # Built-in quantmod function to get close
retm <- Delt(log(pxm))[-1] 
retm <- retm-mean(retm) 
c(min(retm),max(retm))
breaks <- seq(-.046,.038,.004)
spx.histm <- hist(retm,breaks=breaks,freq=F,plot=F) 
sigm <- as.numeric(sd(retm)) 
scale <- function(nu){sqrt(nu/(nu-2))} 

plot(spx.histm,xlim=c(-.045,.045),freq=F,main=NA,xlab="monthly log return") 
curve(dt(x*scale(5)/sigm,df=5)*scale(5)/sigm,from=-.05,to=.05,col="red", add=T)
curve(dnorm(x,mean=0,sd=sigm),from=-.05,to=.05,col="blue", add=T)

Figure 6: Student-t with  in red. Normal fit is in blue. Aggregational Gaussianity again?

SPX log-returns: Volatility clustering

ν = 5



In [15]:

%%R

plot(ret.spx,main=NA)

Figure 7: Daily log-returns of SPX

Autocorrelation of SPX returns



In [16]:

%%R

acf.r <- acf(ret.spx,main=NA)

Figure 8: No significant autocorrelation in returns.

Autocorrelation of SPX absolute returns
It is a stylized fact that the autocorrelation function (ACF) of absolute log-returns decays as a power-law.
However, we will see below that this widespread belief is probably not justified.



In [17]:

%%R
# Autocorrelation of absolute returns
acf.rabs <- acf(abs(ret.spx),main=NA,plot=F)
logacf.rabs <- log(acf.rabs$acf)[-1]  
loglag.rabs <- log(acf.rabs$lag)[-1] 
plot(loglag.rabs,logacf.rabs,xlab="log(lag)",ylab="log(acf)",pch=20,col="blue") 
print(acfrabs.lm <- lm(logacf.rabs[-(1:15)]~loglag.rabs[-(1:15)]) )
abline(acfrabs.lm,col="red",lwd=2)

Figure 9: Slope of fit is around .

It is often concluded from fits like this that the autocorrelation function of volatility decays roughly
as  with .

Call:
lm(formula = logacf.rabs[-(1:15)] ~ loglag.rabs[-(1:15)])

Coefficients:
         (Intercept)  loglag.rabs[-(1:15)]  
             -0.7497               -0.2912  

−0.29

t−α α ≈ 0.3



Absolute and squared log-returns vs realized variance
Absolute daily log-returns are (very) noisy proxies for daily volatilities  and squared daily log-returns are
(very) noisy proxies for daily variances . Gatheral and Oomen  (for example) show how tick data can be
used to obtain more accurate estimates of realized variance .

The Oxford-Man Institute of Quantitative Finance makes historical realized variance estimates for 21 different
stock indices freely available at http://realized.oxford-man.ox.ac.uk (http://realized.oxford-man.ox.ac.uk).
These estimates are updated daily. We may then investigate the time series properties of  empirically.

Decay of the volatility ACF
According to our recent work using such realized variance time series, which I will present in Lecture 3, the
empirical ACF of volatility does not decay as a power-law.

In fact, SPX realized variance has the following amazingly simple scaling property:

where  denotes a sample average.

This simple scaling property holds for all 21 indices in the Oxford-Man dataset. We have also checked that it
holds for crude oil, gold and Bund futures. For SPX over 14 years,  and .

As a consequence it may be shown that the autocorrelation function should take the form:

(1)

Predicted vs empirical autocorrelation function

σt
σ2

t
[6]

σ2
r

σ2
t

m(q, Δ) := ⟨| log − log ⟩ = Aσt+Δ σt |q Δq H

⟨⋅⟩

H ≈ 0.14 A ≈ 0.38

ρ(Δ) ∼ .e− 1
2

ν2 Δ2 H

http://realized.oxford-man.ox.ac.uk/
file:///Users/JGatheral/Documents/iPython/VolatilityWorkshop/VW1.html#cite_note-GO


In [18]:

%%R

h.spx <- 0.14

y <- logacf.rabs
x <- acf.rabs$lag[-1]^(2*h.spx)

fit.lm <- lm(y[-1]~x[-1])
a <- fit.lm$coef[1]
b <- fit.lm$coef[2]

plot(loglag.rabs,logacf.rabs,xlab="log(lag)",ylab="log(acf)",pch=20,col="blue",x
lim=c(0,4.5)) 
abline(acfrabs.lm,col="red",lwd=2) 
curve(a+b*exp(x*2*h.spx),from=0,to=4.5,add=T,col="green4",lwd=2)

Figure 10: The red line is the conventional linear fit; the green line is the rough volatilty prediction (1) .

file:///Users/JGatheral/Documents/iPython/VolatilityWorkshop/VW1.html#eq:ACF


Log returns of VIX
VIX can be thought of as a measure of volatility smoothed over one month. Let's look at the distribution of
VIX log-returns.

In [19]:

%%R

vix <- spxVixData[,"Cl.VIX"]
spx <- spxVixData[,"Cl.GSPC"]

retVIX <- as.numeric(diff(log(vix))[-1])
retSPX <- as.numeric(diff(log(spx))[-1])

sdVIX <- as.numeric(sd(retVIX)) 

hist(retVIX,breaks = 100,freq=F)
scale <- function(nu){sqrt(nu/(nu-2))} 
curve(dt(x*scale(4)/sdVIX,df=4)*scale(4)/sdVIX,from=-.3,to=.3,col="blue",lwd=2, 
add=T)
curve(dnorm(x,mean=0,sd=sdVIX),from=-.3,to=.3,col="red", lwd=2,add=T)



Figure 11: Log-returns of VIX are somewhat less fat-tailed than log-returns of SPX.

VIX vs SPX
We now regress log-returns of VIX against log-returns of SPX.

In [20]:

%%R

fit.spxvix <- lm(retVIX~retSPX)
fit.spxvix2 <- lm(retSPX~retVIX)

# Scatter plot + fit
plot(retSPX,retVIX,xlab="SPX log returns",ylab="VIX log returns");
abline(fit.spxvix,col="red",lwd=2);

print(cor(retVIX,retSPX)) # Gets correlation

[1] -0.7105517



Figure 12: Regression of VIX log-returns vs SPX log-returns.

Note the negative correlation  - similar to the correlation implied from fits of stochastic
volatility models to option prices.

Stochastic volatility
In the stochastic volatility paradigm, the above stylized facts may be qualitatively reproduced by
modeling volatility as a continuous stochastic process.
Formally,

with stochastic .

Variance moves should be negatively autocorrelated and (anti-)correlated with index moves.

Stochastic volatility examples

The Heston model

with . 

The SABR model (with )

with . 

The Heston model is popular because there is a (complicated) closed-form expression for the
characteristic function. It is therefore easy and fast to price European options. It follows that
calibration to the market is fast.

The SABR model is popular because there is a closed-form accurate asymptotic approximation to
implied volatility. Again, calibration is easy.

≈ −0.7
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Variance curve models
Let  denote log-moneyness. If  is instantaneous variance, the forward variance curve
is given by

Forward variances are conditional expectations and thus martingales in .

Forward variance swaps are effectively tradable in practice as variance swap spreads.

Forward variances are thus natural fundamental objects to consider for volatility modeling.

Bergomi and Guyon consider models written in the following variance curve form:

Here, the instantaneous forward variance curve at time  is represented by

and  is a dimensional Brownian motion.

Obviously, .

The Bergomi and Guyon expansion
Using a technique from quantum mechanics, [Bergomi and Guyon]  compute an expansion of the volatility
smile up to second order in volatility of volatility for stochastic volatility models written in variance curve
form.

The Bergomi-Guyon expansion of implied volatility takes the form

(2)
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Here

where  is total variance to expiration .

Bergomi and Guyon correlation functionals

The various correlation functionals appearing in the BG expansion are:

 is an integral of the term structure of covariances between returns and forward variances.
 is an integral of the variance curve autocovariance function.

 is somewhat more complicated. Something like the covariance between the skew and
underlying returns.

In principle, we could compute these terms from the time series of implied volatility surfaces. The BG
expansion gives us a direct correspondence between the implied volatility surface and the joint dynamics of
the underlying and the implied volatilities.
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Example: The Heston model
It is straightforward to compute that

It follows that

Then

With  to simplify computations, we obtain

Term structure of ATM skew in the Heston model
Define the at-the-money (ATM) volatility skew

It follows from (2) (again with ) that to first order in ,

In the Heston model,
 a constant as ,

 as .

Example: The SABR model
 so to first order in the volatility of volatility ,

It follows that, to first order again,

Then

(u) = ( − ) + .ξt vt v̄ e−κ (u−t) v̄

d (u) = η d .ξt e−κ (u−t) vt‾‾√ Wt

𝔼 [d d (u)] = ρ η dt.xt ξt vt e−κ (u−t)

=v0 v̄

Cxξ =

=

ρ η dt duv̄ ∫
T

0 ∫
T

t
e−κ (u−t)

ρ η dt duv̄ ∫
T

0 ∫
T

t
e−κ (u−t)

ψ(T) = (k, T)∂k σBS ∣∣k=0

=v0 v̄ η

ψ(T) = T =

=

w
T
‾‾‾√

1
2 w2

Cx ξ

{1 − } .
ρ η

2 v̄√
1

κ T
1 − e−κ T

κ T

ψ(T) → T → 0
ψ(T) ∼ 1

T T → ∞

𝔼 [ ] =σu ∣∣ t σt α
(u) = .ξt vt

d (u) = 2 d = 2 α d .ξt σt σt σ2
t Wt

𝔼 [d d (u)] = 2 ρ α dt.xt ξt σt
3/2

file:///Users/JGatheral/Documents/iPython/VolatilityWorkshop/VW1.html#eq:BGexpansion


Again to first order in , we obtain

and so

 is independent of  in the SABR model!
There is no mean reversion and so no term structure of ATM skew.

The Bergomi model
The -factor Bergomi variance curve model  reads:

(3)

The Bergomi model generates a term structure of volatility skew  that looks something like

This functional form is related to the term structure of the functional .
Which is in turn driven by the exponential kernel in the exponent in (3).

Hedging European options
To hedge options using the Black-Scholes formula (say), market makers need to hedge two effects:

The explicit spot effect

and

The change in implied volatility conditional on a change in the spot

α

= 2 ρ α dt du = ρ αCxξ σ3/2
0 ∫

T

0 ∫
T

t
σ3/2

0 T 2

ψ(T) = = .T
ρ α
2

ψ(T) T

n [1]

(u) = (u) exp { d +  drift } .ξt ξ0 ∑
i=1

n

ηi ∫
t

0
e− (t−s)κi W (i)

s

ψ(T)

ψ(τ) ∼ {1 − } .∑
i

1
Tκi

1 − e− Tκi

Tκi

Cxξ

δS∂C
∂σ

𝔼 [δσ |δS].∂C
∂σ
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ATM implied volatilities  and stock prices are both observable so market makers can estimate the
second component using a simple regression:

Then .

The skew-stickiness ratio
[Bergomi]  calls

the skew-stickiness ratio or SSR.

In the old days, traders would typically make one of two assumptions:

Sticky strike  where the implied volatility for a fixed strike is independent of stock price

or

Sticky delta  where the ATM volatility is independent of stock price.

Listed options were thought of as sticky strike and OTC options as sticky delta.

Empirically, , independent of .

Regress volatility changes vs spot returns
Let's check the skew-stickiness ratio over the period June 1, 2010 to June 1, 2011, reproducing a figure
from an article in the Encyclopedia of Quantitative Finance .

σ(T)

δσ(T) = α + β(T) + noise.δS
S

β(T) = 𝔼 [δσ(T)|δS/S]

[2]

(T) =
β(T)
ψ(T)

(T) = 0

(T) = 1

(T) ≈ 1.5 T

[7]
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In [21]:

1-month SSR

%%R

library(stinepack)
load("spxAtmVolSkew2010.rData")

# First we need the time series of SPX returns:
spx2010 <- spx["2010-06-01::2011-06-01"]
ret.spx2010 <- diff(log(as.numeric(spx2010)))

n <- length(volSkewList2010)

vol.res <- array(dim=c(n,8))

for (i in 1:n){
    dat <- volSkewList2010[[i]]
    vol.res[i,1:4] <- stinterp(x=dat$texp,y=dat$atmVol,xout=c(1,3,6,12)/12)$y
    vol.res[i,5:8] <- stinterp(x=dat$texp,y=dat$atmSkew,xout=c(1,3,6,12)/12)$y     
}

vol.skew.atm <- as.data.frame(vol.res)
colnames(vol.skew.atm) <- c("vol.1m","vol.3m","vol.6m","vol.12m","skew.1m","skew
.3m","skew.6m","skew.12m")

print(head(vol.skew.atm))

# Finally, create matrix of volatility changes
del.vol <- apply(vol.skew.atm[,1:4],2,function(x){diff(x)})

     vol.1m    vol.3m    vol.6m   vol.12m    skew.1m    skew.3m    skew.6m
1 0.3116781 0.2892093 0.2840357 0.2848998 -0.9775653 -0.6994318 -0.5033279
2 0.2585816 0.2569657 0.2637964 0.2674395 -1.0391103 -0.6308754 -0.5047893
3 0.2593993 0.2532371 0.2590840 0.2633074 -1.0543336 -0.6167919 -0.4882985
4 0.3217950 0.2916457 0.2932080 0.2841629 -0.9936603 -0.6787185 -0.5012572
5 0.3240469 0.2982968 0.2859462 0.2874102 -1.0006733 -0.6137535 -0.4395970
6 0.2963918 0.2821198 0.2833307 0.2822569 -1.1808506 -0.6769495 -0.5147833
    skew.12m
1 -0.3469127
2 -0.3334118
3 -0.3472150
4 -0.3454572
5 -0.3411661
6 -0.3498540



In [22]:

%%R

y <- del.vol[,1]
x <- ret.spx2010*vol.skew.atm[-n,5]
fit.lm1 <- lm(y~x)
print(summary(fit.lm1))

plot(x,y,xlab=expression(psi(tau)*delta*x),ylab=expression(Delta*sigma ),main="1
m SSR",pch=20,col="blue")
abline(fit.lm1,col="red",lwd=2)
text(x=0.025,y=-0.0,"Slope is 1.47")
abline(coef=c(0,1),lty=2,lwd=2,col="green4")

Call:
lm(formula = y ~ x)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.039160 -0.004263  0.000181  0.004642  0.024866 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 0.000265   0.000466   0.569     0.57    
x           1.474092   0.054832  26.884   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.007394 on 251 degrees of freedom
Multiple R-squared:  0.7422, Adjusted R-squared:  0.7412 
F-statistic: 722.7 on 1 and 251 DF,  p-value: < 2.2e-16



Figure 13: The 1-month skew-stickiness ratio (SSR). The "sticky strike" green line with slope 1 clearly
doesn't fit.

3-month SSR

In [23]:

%%R

y <- del.vol[,2]
x <- ret.spx2010*vol.skew.atm[-n,6]
fit.lm3 <- lm(y~x)
print(summary(fit.lm3))

plot(x,y,xlab=expression(psi(tau)*delta*x),ylab=expression(Delta*sigma ),main="3
m SSR",pch=20,col="blue")
abline(fit.lm3,col="red",lwd=2)
text(x=0.015,y=-0.0,"Slope is 1.45")
abline(coef=c(0,1),lty=2,lwd=2,col="green4")



Figure 14: The 3-month skew-stickiness ratio (SSR). The "sticky strike" green line with slope 1 clearly
doesn't fit.

Call:
lm(formula = y ~ x)

Residuals:
       Min         1Q     Median         3Q        Max 
-0.0180521 -0.0023352 -0.0000552  0.0024244  0.0106338 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 0.0001939  0.0002445   0.793    0.428    
x           1.4509581  0.0432965  33.512   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.003876 on 251 degrees of freedom
Multiple R-squared:  0.8173, Adjusted R-squared:  0.8166 
F-statistic:  1123 on 1 and 251 DF,  p-value: < 2.2e-16



6-month SSR

In [24]:

%%R

y <- del.vol[,3]
x <- ret.spx2010*vol.skew.atm[-n,7]
fit.lm6 <- lm(y~x)
print(summary(fit.lm6))

plot(x,y,xlab=expression(psi(tau)*delta*x),ylab=expression(Delta*sigma ),main="6
m SSR",pch=20,col="blue")
abline(fit.lm6,col="red",lwd=2)
text(x=0.01,y=-0.0,"Slope is 1.512")
abline(coef=c(0,1),lty=2,lwd=2,col="green4")

Call:
lm(formula = y ~ x)

Residuals:
       Min         1Q     Median         3Q        Max 
-0.0176677 -0.0017325 -0.0000075  0.0016376  0.0089884 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 8.003e-05  1.894e-04   0.423    0.673    
x           1.512e+00  4.522e-02  33.436   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.003004 on 251 degrees of freedom
Multiple R-squared:  0.8166, Adjusted R-squared:  0.8159 
F-statistic:  1118 on 1 and 251 DF,  p-value: < 2.2e-16



Figure 15: The 6-month skew-stickiness ratio (SSR). The "sticky strike" green line with slope 1 clearly
doesn't fit.

12-month SSR

In [25]:

%%R

y <- del.vol[,4]
x <- ret.spx2010*vol.skew.atm[-n,8]
fit.lm12 <- lm(y~x)
print(summary(fit.lm12))

plot(x,y,xlab=expression(psi(tau)*delta*x),ylab=expression(Delta*sigma ),main="1
2m SSR",pch=20,col="blue")
abline(fit.lm12,col="red",lwd=2)
text(x=0.007,y=0.0,"Slope is 1.601")
abline(coef=c(0,1),lty=2,lwd=2,col="green4")



Figure 16: The 12-month skew-stickiness ratio (SSR). The "sticky strike" green line with slope 1 clearly
doesn't fit.

Call:
lm(formula = y ~ x)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.007310 -0.001219  0.000014  0.001259  0.008139 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 6.517e-05  1.401e-04   0.465    0.642    
x           1.601e+00  4.407e-02  36.343   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.002221 on 251 degrees of freedom
Multiple R-squared:  0.8403, Adjusted R-squared:  0.8397 
F-statistic:  1321 on 1 and 251 DF,  p-value: < 2.2e-16



Computation of the regression coefficient 

We approximate ATM volatility using the variance swap.

By definition this is

Then

Thus

Also,

with  and

 and 

Then, restoring explicit dependence on  and ,

and

β(T) = 𝔼 [δσ(T)|δS/S]

(T) = (u) du.t ∫
T

t
ξt

2 σ(T) δσ(T) T ≈ δ (u) du.∫
T

t
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Assuming time-homogeneity,  would be a function of  only and  and so we further
approximate

Also, from the Bergomi-Guyon expansion, the ATM skew is given by

Thus

For emphasis, to first order in the volatility of volatility, the SSR  is given by the time derivative of the spot-
volatility correlation functional .

SSR examples

The SABR model

In the SABR model,  so .

The Heston model

For ,  and .
For ,  and .

The -factor Bergomi model

Let  be the shortest timescale (largest) mean reversion coefficient and  be the longest timescale
(smallest) mean reversion coefficient.

For ,  and .
For ,  and .

For stochastic volatility models in general,  for  small and  for  large.

Cxξ τ = T − t ≈vt σ2

β(τ) ≈ .1
2 τσ3

∂ (τ)Cx ξ

∂τ

ψ(τ) ≈ (T) ≈ (τ).w
T
‾‾‾√

1
2 w2

Cx ξ
t

1
2 σ3

1
τ2

Cx ξ

(τ) = ≈ τ log (τ).
β(τ)
ψ(τ)

d
dτ

Cxξ


Cxξ

(τ) ∝Cxξ τ2 (τ) ≈ 2

(τ) = ρ η dt duCxξ v̄ ∫
τ

0 ∫
τ

t
e−κ (u−t)

τ ≪ 1/κ (τ) ∼Cxξ τ2 (τ) ≈ 2
τ ≫ 1/κ (τ) ∼ τCxξ (τ) ≈ 1

n

κ1 κn

τ ≪ 1/κ1 (τ) ∼Cxξ τ2 (τ) ≈ 2
τ ≫ 1/κn (τ) ∼ τCxξ (τ) ≈ 1

(τ) ≈ 2 τ (τ) ≈ 1 τ



Implication for the "true" model
Empirically, we see  for all . That is

with . Thus , and so .

An obvious model that would generate  is

In effect, replace all the exponential kernels in the Bergomi model (3) with a power-law kernel.

Such a model would be non-Markovian. The price of an option would depend on the entire history
$\left\{W_s,\,s

To be consistent with , we would need .

In Session 6, we will see that scaling properties of the time series of realized variance also suggest such a
model.

Observed term structure of ATM volatility skew
We study a period of history over which the ATM skew was relatively stable.

(τ) ∼ 3
2 τ

(τ) ≈ τ log (τ) ≈ 2 − γ.d
dτ

Cxξ

γ ≈ 1/2 (τ) ∼Cxξ τ2−γ ρ(t, u) ∼ (u − t)−γ

ρ(t, u) ∼ (u − t)−γ

∝ .d (u)ξt

(u)ξt

dWt

(u − t)γ

(τ) ∼ 3
2 γ ≈ 1

2
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In [26]:

%%R

vsl <- volSkewList2010
n <- length(names(vsl))

mycol <- rainbow(n)

plot(vsl[[1]]$texp,abs(vsl[[1]]$atmSkew),col=mycol[1],pch=20,cex=0.1,xlim=c(0,2.
6),
     xlab=expression(paste("Expiration ",tau)),ylab=expression(psi(tau)))
for (i in 2:n){
    points(vsl[[i]]$texp,abs(vsl[[i]]$atmSkew),col=mycol[i],pch=20,cex=0.1)
}

Figure 17: Decay of ATM skew (red dots) with respect to time to expiration. Data is SPX from 01-Jun-2010 to
01-Jun-2011.

A shorter even more stable period



In [27]:

%%R

vsl <- volSkewList2010[201:250]

n <- length(names(vsl))

plot(vsl[[1]]$texp,abs(vsl[[1]]$atmSkew),col="red",pch=20,cex=0.1,xlim=c(0,2.6),
     xlab=expression(paste("Expiration ",tau)),ylab=expression(psi(tau)))
for (i in 2:n){
    points(vsl[[i]]$texp,abs(vsl[[i]]$atmSkew),col="red",pch=20,cex=0.1)
}

Figure 18: Decay of ATM skew (red dots) with respect to time to expiration. Data is SPX from 16-Mar-2011 to
25-May-2011.

Log-log plot of empirical ATM skew



In [28]:

%%R

lvsl.texp <- log(vsl[[1]]$texp)
lvsl.atmSkew <- log(abs(vsl[[1]]$atmSkew))

for (i in 2:n){
    lvsl.texp <- c(lvsl.texp,log(vsl[[i]]$texp))
    lvsl.atmSkew <- c(lvsl.atmSkew,log(abs(vsl[[i]]$atmSkew)))  
}

plot(lvsl.texp,lvsl.atmSkew,col="red",pch=20,cex=0.5,
     xlab=expression(paste("log ",tau)),ylab=expression(paste("log ", psi(tau)))
)

pick <- (lvsl.texp > -3)

print(fit.lm <- lm(lvsl.atmSkew[pick] ~ lvsl.texp[pick]))
abline(fit.lm,col="blue",lwd=2)

Call:
lm(formula = lvsl.atmSkew[pick] ~ lvsl.texp[pick])

Coefficients:
    (Intercept)  lvsl.texp[pick]  
        -1.1332          -0.3983  



Figure 19: Log-log plot of decay of ATM skew (red dots) with respect to time to expiration.

Plot of ATM skew with power-law fit



In [29]:

%%R

plot(vsl[[1]]$texp,abs(vsl[[1]]$atmSkew),col="red",pch=20,cex=0.1,xlim=c(0,2.6),
     xlab=expression(paste("Expiration ",tau)),ylab=expression(psi(tau)))
for (i in 2:n){
    points(vsl[[i]]$texp,abs(vsl[[i]]$atmSkew),col="red",pch=20,cex=0.1)
}

a <- fit.lm$coef[1]; b <- fit.lm$coef[2]
curve(exp(a+b*log(x)),from=0,to=3,col="blue",add=T,n=1000,lwd=2)

Figure 20: Log-log plot of decay of ATM skew (red dots) with respect to time to expiration. Power-law fit 
 in blue. Data is SPX from 16-Mar-2011 to 25-May-2011.ψ(τ) ∼ τ−.3983



The variance swap curve
Assuming the underlying diffuses, the fair value  of a variance swap with maturity  may be computed
as follows:

where  and  denote the prices of calls and puts with strike  and expiration  respectively.
For details, see for example [The Volatility Surface] . We will visit this again in Session 5.

Thus, with this continuity assumption, we may compute the fair value of a variance swap from an infinite
strip of call and put option prices (the so-called log-strip).

For a given maturity, the variance swap level depends on exactly how we interpolate and
extrapolate option prices.

We use the arbitrage-free SVI parameterization that I will explain in Session 3.

In particular, we will analyze variance swap estimates from June 01, 2010 to June 10, 2011, the
same period as before.

In [30]:

%%R

load("spxVarSwapList2010.rData")

n <- length(names(varSwapList2010))

# Convert list to matrix
tmp <- array(dim=c(n,40))

for (i in 1:n){
    tmp[i,] <- varSwapList2010[[i]]$varSwap
}

varswap.mean <- apply(tmp,2,mean)
varswap.sd <- apply(tmp,2,sd)
tmat <- (1:40)*.05

The average shape of the variance swap curve

(T)t T

(T) = (u) du = min[P(K, T), C(K, T)]t ∫
T

t
ξt ∫

∞

0

dK
K2

C(K, T) P(K, T) K T
[5]
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In [31]:

%%R

plot(tmat,sqrt(varswap.mean),type="b",col="red",xlab=expression(paste("Maturity 
",tau)),ylab="Variance swap quote")

Figure 21: Average shape of the variance swap curve from 01-Jun-2010 to 01-Jun-2011.

The volatility envelope
The envelope is the graph of volatilities of variance swap quotes vs time to maturity. First, we draw a log-log
plot of standard deviation of log-differences of the curves.



In [32]:

%%R

# Compute standard deviation of log-differences
sd.t <- function(x){sd(diff(log(x)))}

varswap.sd.t <- apply(tmp,2,sd.t)

# Log-log plot
x <- log(tmat)
y <- log(varswap.sd.t)
plot(x,y,col="red")
points(x[1:20],y[1:20],col="blue",pch=20)

fit.lm2 <- lm(y[1:20]~x[1:20])
print(summary(fit.lm2))
abline(fit.lm2,col="orange",lwd=2)
a2 <- fit.lm2$coef[1]; b2 <- fit.lm2$coef[2]

Call:
lm(formula = y[1:20] ~ x[1:20])

Residuals:
      Min        1Q    Median        3Q       Max 
-0.046099 -0.015713  0.004174  0.014588  0.048747 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -2.885944   0.008890  -324.6   <2e-16 ***
x[1:20]     -0.365137   0.007513   -48.6   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02662 on 18 degrees of freedom
Multiple R-squared:  0.9924, Adjusted R-squared:  0.992 
F-statistic:  2362 on 1 and 18 DF,  p-value: < 2.2e-16



Figure 22: Log-log plot of volatility envelope with linear fit.

Variance swap envelope with power-law fit



In [33]:

%%R

plot(tmat,varswap.sd.t,col="red",pch=20,xlab=expression(paste("Maturity ",tau)),
ylab="sd(Variance swap quote)",ylim=c(0.04,.2))
curve(exp(a2+b2*log(x)),from=0,to=3,col="blue",add=T,n=1000,lwd=2)

Figure 23: Variance swap envelope from 01-Jun-2010 to 01-Jun-2011. The blue line corresponds to the fit 
.τ−0.365



Hand-waving computation
Consider once again a model of the form

Then

Then

The standard deviation of log-differences computed above should then scale as

the same scaling as that of the ATM volatility skew
a relationship also confirmed in the data.

Moral of the story
Conventional stochastic volatility models are normative.

We write down underlying dynamics as if to say ``suppose the underlying stochastic drivers were to
satisfy the following...''.
Dynamics are invariably Markovian, in contrast to the real world.
The state space is typically very small.

Conventional models of volatility are engineering models, not physics models.

Conventional stochastic volatility models are Markovian approximations to a non-Markovian reality.

Motivating observation
A Bergomi model with dynamics of the form

might be consistent with our empirical observations.
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