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Abstract

In this paper we examine the predictability of implied volatility surface dynamics of equity options. In particular,

we are focused on studying the predictive performances of models that include implied volatility surface dynamics

of S&P500 index options and historical VIX Term Structure information. We find that models incorporating these

variables in the form of exogenous autoregressive elements are outperformed in terms of prediction error and forecast

accuracy measures by more parsimonious models—such as random walk.
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1 Introduction

Volatility has always played a central part in financial markets, from the perspectives of traders and risk managers to

regulators. Correct specifications and predictions of volatility are likely to improve returns and accurately quantify

downside risks(1). Especially when it comes to option pricing (models), volatility is of fundamental value. Nonetheless,

volatility is not observable and needs to be estimated. Various measures for volatility exist, one of which is implied

volatility. Whereas most measures of volatility are based on historic data, implied volatility is forward-looking. Implied

volatilities are typically obtained by solving the Black-Scholes model for the unknown volatility parameter, given the

quoted option price in the market, underlying asset price and other known variables. However, contrary to Black and

Scholes’ (1973) option pricing model, volatilities implied from market prices are not constant across strike prices (re-

ferred to as the volatility smile) and time-to-maturity (referred to as the term-structure), together forming the implied

volatility surface (IVS). The volatility smile is the famous phenomenon of excessive Black-Scholes implied volatilities

for options on a given expiration whose strike prices differ substantially from the current underlying price. Canina and

Figlewski (1989) and Rubinstein (1994) provide examples of volatility smiles by plotting implied volatilities against

moneyness. Campa and Chang (1995) show that implied volatilities are also related to the time-to-maturity space.

This is called the term-structure of implied volatility and refers to the different slope and curvature in shape across

maturity given a strike price.

Shortly after the Black-Scholes model was published, Black (1976) already noted that implied volatility might be a

function of the underlying price, questioning the constant volatility assumption. Yet, before the market crash of 1987

(Black Monday), equity options trading on American markets did not show a volatility smile. This empirical change

is often ascribed to an increase in the probability assessment of extreme (downward) returns by market participants.

Whereas the original Black-Scholes-Merton model assumes that stock prices follow a geometric Brownian motion with

constant drift and volatility, subsequent historic events have repeatedly led to growing, contradicting evidence (Russian

Financial Crisis/LTCM collapse, Dotcom-Bubble, 2007-2009 Global Financial Crisis, October 27 mini-crash and 2010

Flash Crash) of ‘extremes beyond the bell curve’. Although some events are characterized by a high degree of—as

Nassim Nicholas Taleb would describe in The Black Swan—retrospective predictability (Dotcom-Bubble, 2008 Global

Financial Crisis), others have a less self-evident origin. In a paper published in 1996, Jens Carsten and Mark Rubin-

stein calculate that Black Monday was a 27-standard-deviation event; extremely unlikely to occur in a randomized,

Brownian motion world. Such evidence indicates negatively skewed, excessive kurtosis return distributions. While one

part of the existing literature focuses on finding the correct distributional assumption, another part of the literature

is focused on modeling the IVS (dynamics) of individual equity or index options.

Unlike estimates based on historical data, in an efficient market, IVS predictions do not depend on historical prices

or volatilities, as they adapt instantaneously to new stock price realizations, which reflect all (publicly) known infor-

mation (Sun and Ji, 2015). “Hence, acknowledging the limitations of the Black-Scholes model, traders keep having

to change the volatility assumption in order to match market prices” (Bloch, 2012). Therefore, IV surfaces repre-

sent current market beliefs of risk (Bakshi et al., 2000) and contain (forward-looking) information on the asset price

process and its dynamics. There exists a clear relevance for market participants to produce reliable IVS predictions,

(1)It’s a wrong perception to believe that you can eliminate risk just because you can measure it. - Professor Robert C. Merton, Nobel

Laureate in Economic Sciences, 1997
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as “it provides an up-to-date indication of where the market stands with reference to each specific underlying assets”

(Bernales and Guidolin, 2014), which evidently can be beneficial for trading strategies. This gives rise to financial

engineers trying to exploit IVS predictability. Dumas et al. (1998), Heston and Nandi (2000) and Goncalves and

Guidolin (2006) find that IV surfaces can be successfully modeled.

It is a well known supposition that strong links exist between the volatility of individual equity returns and market

returns (think of the Capital Asset Pricing Model, in which the β-coefficient reflects asset riskiness as a function of

volatility). However, a similar relationship regarding implied volatilities has received far less attention. Previous litera-

ture has mainly focused on the predictability of index option IV surfaces. Goncalves and Guidolin (2006) and Bernales

and Guidolin (2014) are one of the first with a focus on the potential existence of a dynamic relationship between equity

and index IV surfaces. Despite alternative ways (Burke, 1988; Heston’s SV model, 1993; and Borovkova and Permana,

2009), Bernales and Guidolin (2014) use the framework of Dumas et al. (1998) to model implied volatilities—as a

function of the time-to-maturity and (a transformation of) strike price. According to Goncalves and Guidolin (2006),

the best fit is achieved by this deterministic model described by Dumas et al. (1998). Goncalves and Guidolin (2006)

and Bernales and Guidolin (2014) proceed by modeling the dynamic relation between equity and index IVS parameter

time series with the use of vector autoregression (VAR) models. They find evidence of strong cross-sectional linkages

between the dynamics of the IV surface of equity and S&P500 index options. However, despite a good fit, profits

vanish when transaction costs are taken into account. The latter has been pointed out by Figlewski (1989) as well.

Another approach is recently investigated by Christoffersen et al. (2016), who apply principal component analysis to

model the cross-sectional variation in the Dow Jones Index.

In this paper we investigate the joint dynamics of equity and index IV surfaces. In particular we try to find

evidence for any gain from including information on S&P500 index option (symbol: SPX) IVS dynamics in modeling

equity option IVS dynamics. Intuitively, the modest trading frequency in a large number of equity option contracts

might cause slower incorporation of information into prices (and thus IVS ). Therefore, due to the highly liquid market

in index options, there might arise an information asymmetry between equity and SPX IVS. If equity and index IV

surfaces are dynamically related, one might exploit the SPX IVS to predict equity IVS.

Bernales and Guidolin (2014) use a deterministic model to fit the index and equity IVS separately. They sub-

sequently model the dynamics of individual equity IV surfaces using a dynamic, exogenous VAR (VARX) model,

which includes lags of the equity IVS parameters and lags of the SPX IVS parameters. We use a similar approach.

Additionally, we extend the existing literature by proposing a different method of incorporating information from

the dynamics of the S&P500 index option IVS in the IV surface of equity options. As opposed to Goncalves and

Guidolin (2006) and Bernales and Guidolin (2014), this method does not require the estimation of a deterministic

IVS model for SPX. Instead, it includes information on the expectations of market volatility at key points along the

SPX implied volatility term structure directly, using the VXST (9-day), VIX (30-day), VXV (3-month) and VXMT

(6-month) volatility indexes of the Chicago Board Options Exchange (CBOE). To the best of our knowledge, there

is no existing literature on this topic yet. The main reason for this might be the fact that most of these indexes are

relatively new (especially VXST) and therefore the sets of historical observations are (but becoming less) scarce. The

VIX dates from 1990, but the VXV, VXMT and VXST only date from 2007, 2008 and 2011, respectively.
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The performance of the VARX model including VIX Term Structure data is in this research proven to be fairly

equal (if not better) to the dynamic equity-SPX IVS model of Bernales and Guidolin (2014). However, we find that the

models incorporating exogenous autoregressive dynamics (such as SPX IVS dynamics or VIX Term Structure data)

are outperformed in terms of prediction error and forecast accuracy measures by more parsimonious, static models

(such as a Random Walk model).

This paper has the following setup. The first part of the paper focuses on the data preparation process. Next, we

elaborate on the econometric methods used and present estimation results and in-sample fit. In the subsequent section

we explain the forecasting procedure and analyze forecasting performance (in terms of implied volatilities and option

prices) compared to benchmark models according to basic economic criteria—such as root mean squared prediction

error, mean absolute prediction error and, most interestingly, mean correct prediction of direction of change.
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2 Data

This research makes use of an extensive amount of data, spanning the pre-financial crisis time period from January 4,

1996 to December 29, 2006 (2768 trading days), for S&P500 index options (symbol: SPX) as well as the options on

a total of 100 stocks. The choice of stocks is determined as follows. From the set of all historic S&P500 constituents

(813), we remove all stocks that were not continuously part of the index throughout the sample period. Similar to

Bernales and Guidolin (2014), we extract from the remaining set of stocks (262) the 150 stocks with highest average

daily trading volume. From this set we randomly select 100 stocks to include in our research. A list of the relevant

stocks can be found in Appendix B. Information on the S&P500 constituents is available from Compustat, through the

Wharton Research Data Services (WRDS). The option data consists of a Pricing Date, Expiration Date, Strike Price,

Daily best closing bid and ask price, Daily traded Volume and Implied Volatility for all (put and call) options (on the

S&P500 index and the selection of stocks) traded on all US option trading venues. This data is downloaded from the

OptionMetrics database, to which WRDS provides access as well. In terms of maturity, between 3 to 6 different index

contracts and between 1 to 4 different equity contracts are traded each day. Given some maturity, contracts with

different strike prices are available. SPX options and equity options have different exercise styles; American-style (ex-

ercisable at any time until expiration) and European-style (only exercisable at expiration), respectively. Additionally,

we collect the daily closing prices and declared dividends (announcement date, amount, ex-dividend date, payment

date) on the underlying stocks (source: Compustat). Furthermore, we extract the daily US Treasury spot rates (1

month, 3 months, 6 months, 1 year, 2 years, 3 years, 5 years, 7 years, 10 years, 20 years, 30 years)(2) using Quandl ’s

API for Python.

The cleaning process of the option data is largely based on the criteria applied by Bakshi et al. (1997). First

of all, equity contracts with a (mid) price less than $0.30 and index contracts with a (mid) price less than $6/16

are removed. The mid price is defined as the midpoint of (highest) bid and (lowest) ask quote. Prices quoted lower

than the specified limits are considered to be in (too) close proximity to the minimum tick size of $0.05 and $1/16

for equity and index options, respectively. Guidolin and Goncalves (2006) and Bernales and Guidolin (2014) use this

similar criterion in order to reduce the influence of price discreteness. Second, to mitigate liquidity-related biases, we

remove contracts with fewer than 6 or more than 366 calendar days to expiration. Third, following the procedures of

Dumas et al. (1998) and Heston and Nandi (2000), we exclude all contracts with a moneyness outside the [0.9, 1.1]

interval. We define the moneyness of a contract with strike price K and underlying closing price S as K/S. We do not

remove contracts with zero traded volume, because the quotes still provide useful information and represent trading

opportunities, neither do we want to further reduce the already parsimonious set of daily equity contract observations.

Finally, contracts that fall outside the following basic no-arbitrage conditions are excluded as well (Sun and Ji, 2015):

American exercise

Call max(0, Sjt −Ki) ≤ C(j,Ki, τit) ≤ Sjt
Put max(0,Ki − Sjt ) ≤ P (j,Ki, τit) ≤ Kit

European exercise

call max(0, Sjt − PV (Ki)) ≤ c(j,Ki, τit) ≤ Sjt
put max(0, PV (Ki)− Sjt ) ≤ p(j,Ki, τit) ≤ PV (Kit)

(2)One-month spot rates are missing in the beginning of the sample period and are in that case set equal to the 3-month spot rates.
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Dividends are not taken into account in the above basic lower and upper no-arbitrage bounds to save computation

time. C/c(P/p)(j,Ki, τit) is the current value of an American/European call (put) option characterized by strike price

i, underlying j and time-to-maturity τ at t. Sjt is the closing price at t of underlying asset j. The present value (PV) of

a contract’s strike price (K), PV(K), is calculated by multiplying K by the contract’s discount factor (see Methodology

section). We use the conventional notation of denoting American-style options with capital letters and European-style

options with lowercase letters.

To provide some insight in the option data that remains after cleaning, we present some summary statistics in

Table 1. The data is partitioned in 15 subcategories across moneyness (rows) and maturity (columns), and equity and

index option data is analyzed separately.

Table 1. Summary statistics for cleaned data from January 4, 1996 to December 29, 2006

Short-term Medium-term Long-term
(6 < calendar days ≤ 120) (120 < calendar days ≤ 240) (240 < calendar days ≤ 366)
freq. mean IV std. IV freq. mean IV std. IV freq. mean IV std. IV

Equity Options
M < 0.94 73.12 32.80 9.05 57.78 30.24 7.46 53.54 29.03 6.77
0.94 < M ≤ 0.98 83.73 30.84 8.76 62.91 29.65 7.43 56.51 28.59 6.81
0.98 < M ≤ 1.02 89.02 29.70 8.79 68.68 29.16 7.52 59.80 28.18 6.87
1.02 < M ≤ 1.06 87.64 29.44 8.66 72.15 28.74 7.52 62.08 27.73 6.88
1.06 < M 76.64 30.52 8.68 71.89 28.49 7.61 62.80 27.61 6.93

S&P500 Index Options
M < 0.94 100 24.71 6.82 94.66 22.29 5.01 70.52 22.31 4.89
0.94 < M ≤ 0.98 100 20.61 5.99 97.21 20.38 4.90 78.15 20.72 4.83
0.98 < M ≤ 1.02 100 17.75 5.82 98.94 19.12 4.85 88.76 19.70 4.77
1.02 < M ≤ 1.06 100 16.67 5.82 94.17 18.11 4.70 74.20 18.99 4.63
1.06 < M 99.13 18.38 6.64 89.80 17.38 4.63 69.93 18.20 4.63

Table 1: Summary of statistics for the data categorized across moneyness (5 subgroups, rows) and maturity (3 subgroups, columns). All values

are in terms of percentages. All values are calculated on the data remaining after applying the filtering procedures. The freq. column denotes the

average trading frequency within the corresponding category (row, column). The trading frequency of (the options on) a particular underlying is

defined as the percentage of days on which at least one of all quoted options on that underlying has non-zero traded volume. Note that all values in

the Equity Options section of the table are averages across all 100 underlying assets and across all days in the sample. The values in the S&P500

Index Options section are averages across all days in the sample.

The table clearly reveals some patterns. For example, in case of equity options, average implied volatility consis-

tently decreases across all moneyness subcategories as maturity increases. This is most likely caused because options

tend to become less liquid (bigger bid-ask spread, lower trading volume) as maturity increases. This trend is visible by

looking at the trading frequency columns in the table, and is true for equity options as well as S&P500 index options.

At the same time, the difference in (average) trading frequency between equity and index options is remarkable, but

not unexpected—the market in S&P500 options is considered the most liquid option market in the US. Bernales and

Guidolin (2014) point out that this difference in trading frequency might imply that the speed at which changes in

the shape of the IV surfaces are incorporated into prices is higher for S&P500 options than for equity options. If

true, and if the IVS of S&P500 and equity options is related, then the IVS of the S&P500 options could be used to

form beliefs about the future shape of equity IV surfaces. To provide illustrative evidence for a potential relationship

between the dynamics of index and equity IV surfaces, a few fitted surfaces are shown in Figure 1.
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Figure 1: Each figure corresponds to a particular date and underlying (stock or index). All observed, tradeable options (remaining after data

cleaning) are plotted as circle markers in the implied volatility space corresponding to their moneyness and maturity coordinates (only in the

case of equity options: denoted by triangle markers on the grid). The color-mapped surface illustrates the fitted deterministic IVS model (see

Methodology Section) and should be a proxy for the market implied volatility across the moneyness and maturity grid (0.9 to 1.1 moneyness, 7/366

to 366/366 maturity in years). The legend at the top right displays the number of observed option contracts on the corresponding underlying and

date (after data cleaning). The z-axis (IV ) denotes the implied volatility (%) in decimal notation. Company names corresponding to tickers can

be looked up in Appendix B.
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From Figure 1, note the immense difference in the daily number of tradeable options (within our filtering criteria)

between the index (SPX) and individual equities (MO, ORCL and MSFT). The shape of the fitted surface is, espe-

cially in the case of a scarce set of contracts, highly sensitive to changes in contract parameters and the observations

included/excluded. This is explained because in practice only a few market prices (and thus Black-Scholes implied

volatilities) are observed for options, at certain strikes and maturities (circle markers in Figure 1). Therefore, the

market is incomplete and numerous IV surfaces may be fitted through the available data. This may lead to seem-

ingly large changes in IVS shapes from one day to another (see ORCL). It should be emphasized though, that every

surface represents the Ordinary Least Squares (OLS) solution through all observed contracts. Areas of the surface

with no (near) observations are indubitably less reliable as a proxy for market implied volatility. Despite this fact,

the sub-figures do appear to show a relationship to one another cross-sectionally. In case of MO, the IVS on October

3, 2005 displays similar characteristics as the IVS of SPX on the same day. Also, the IVS of MO and SPX seems

to have evolved in sync towards the end of the consecutive day (October 4, 2010). In case of ORCL and MSFT

such a relationship is not easily visible. Evidence for a dynamic relationship (between lagged SPX and current eq-

uity IV surfaces) is not self-evident from looking at the figure. This will be the focus of the following parts of this paper.
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3 Methodology

The first step in investigating the cross-sectional dynamics of the IV surface of equity options is by recursively fitting

a deterministic IVS model to options data on the same underlying asset, at daily frequency. This yields 101 (1 index

plus 100 stocks) time series of daily (estimated) coefficients. The fitted IV surfaces in Figure 1 are constructed using

these coefficients. We then model the time series of coefficients associated with each individual underlying, by fitting

an exogenous VAR (VARX) model. The VARX model expresses the deterministic IVS coefficients at time t as a

function of its lag(s) and lag(s) of the deterministic IVS coefficients associated with the index.

3.1 Implied Volatility Surface

Similar to Goncalves and Guidolin (2006) and Bernales and Guidolin (2014), we use the following deterministic model

to extract the IVS :

lnσjit = β0,it + β1,itMjit + β2,itM
2
jit + β3,itτjit + β4,it(Mjitτjit) + εjit (1)

where i is the i-th underlying in our sample, i = 1, ..., 101 (100 equities and the S&P500), j is the j-th tradeable option

contract, j = 1, ..., J on trading day t (calculated as the number of calendar days to expiration divided by 366), with

t ∈[01/04/1996 (1), 12/29/2006 (2768)]. The implied volatility of contract j on underlying i on day t is given by σjit.

Likewise, τjit denotes time to maturity of contract j on underlying i on day t and Mjit denotes the time-adjusted

moneyness of contract j on underlying i on day t (Eq. (2)). The advantage of modeling the log of implied volatility

is that it can not produce negative values. Another advantage of the above model is the fact that all variables are

observable. Model (1) is estimated for each individual underlying, on each day, using all observed option contracts on

the corresponding underlying, on the corresponding day. This yields a time series with daily estimated coefficients (of

size 2768 by 5) for each unique underlying (101 in total).

In the existing literature there exists a broad range of ways to specify (time-adjusted) moneyness. For exam-

ple, Tompkins (2001) and Tompkins and D’Ecclesia (2006) express the strike price in terms of standard deviation.

Goncalves and Guidolin (2006) use a slightly simplified version—without dividends. A few years later Bernales and

Guidolin (2014) add dividends to the specification proposed by Goncalves and Guidolin (2006). We follow their

definition:

Mjit =

log

(
Kjit

exp(1/d
T=τjit
jit − 1)Si − FV Djit

)
√
τjit

(2)

where for some trading day t and some option j with underlying asset i, Kjit is the corresponding strike price, dT=τjit

the discount factor at day t with T discounting days (Eq.(3)), Si the corresponding underlying closing price, τjit the

corresponding time to maturity (in fraction of years) and FV Djit the future value of all announced, forthcoming

dividends (Eq.(4)). Out-of-the-money call and in-the-money put options will have a positive Mjit and in-the-money

call and out-of-the-money puts will have a negative Mjit.

Assuming that spot rates are semi-annually compounded (they are calculated with the yields of government bonds),

we define the discount factor by:

djit =
1

(1 + rjit/2)2∗T (3)
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where rjit is the proxy for the risk-free rate associated with each particular option and T is the time span to be

discounted (expressed in days). The risk-free rate associated with each option is calculated as follows.

We fit a third-degree polynomial spot curve to the daily US Treasury spot rates (see Data Section). In this way,

we obtain a unique spot curve for each day in our sample. The daily curve is then used as a daily proxy for the

risk-free rate associated with each option contract, given its particular expiration date. See Figure 3 (Appendix) for

an illustration.

The future value of all announced forthcoming dividends (FVD) is determined by compounding all dividends that

have been declared before today’s close and that go ex-dividend between tomorrow and expiration. This means that

we have to compute the FVD for each option individually. We use the following equation to do so:

FV Djit =

∞∑
m=1

exp(1/d
T=τjit−ρm
jit − 1)Di,m (4)

where Di,m is the m-th dividend and ρm is the time until the payment of the m-th dividend (in days).

Calculating Eq.(4) for the S&P500 and transforming it (to index units) such that it can be subtracted from the

price (as is necessary in Eq.(2)) would be a computational burden. Fortunately, in case of European options (i.e.

SPX), the put-call parity holds exactly and allows us to apply a shortcut for calculating the time-adjusted moneyness.

The Forward price (F ) of a dividend-paying underlying is given by:

F = exp(1/d
T=τjit
jit − 1)Si − FV Djit (5)

The denominator in the lag term of Eq.(2) (right side of Eq.(5)) can now be substituted by F (left side of Eq.(5)). F ,

in its turn, is obtained by rewriting and solving the put-call parity:

c− p = dT=τ (F −K) (6)

where c is the current value of the call, p the current value of the put and all other terms have their formerly defined

meaning. Note that the put-call parity relationship only holds exactly for European options, so for the equity options

we still have to calculate the time-adjusted moneyness according to Eq.(2).

Different from Hentschel (2003) and Bernales and Guidolin (2014)(3), we use OLS to estimate the deterministic

IVS model. To prevent misleading cross-sectional regression results, we only re-estimate the deterministic IVS coef-

ficients on days with more than six option contracts(4). In other words, for days with six or less option contracts the

coefficients are set equal to the coefficients estimated on the preceding trading day. Table 2 shows summary statistics

for the (average) estimated coefficients from Eq.(1).

(3)Hentschel (2003) recommends the use of Generalized Least Squares (GLS). However, Bernales and Guidolin (2014) use GLS as well,

but report largely similar results when applying OLS.
(4)Following the general convention that one requires at least N + 1 observations to estimate a model with N parameters.
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Table 2. Estimated coefficients of the deterministic IVS model

Coefficient mean std. dev. skew exc. kurt. min. max. t-Test F-test

Equity Options
β0 −1.25 0.28 0.14 −0.64 −2.95 0.00 −116.70 (99.78%)
β1 −0.04 0.05 −0.02 136.45 −8.85 3.15 −4.37 (58.24%)
β2 −0.01 0.07 −3.41 65.50 −4.12 2.13 −0.14 (37.94%)
β3 −0.01 0.04 −1.84 41.74 −3.83 1.95 −1.09 (42.49%)
β4 −0.01 0.05 −0.21 203.69 −7.62 11.56 −0.64 (19.64%)

34.46 (77.36%)
R2 0.72 0.05 −0.98 3.81 0.49 0.83

S&P500 Index Options
β0 −1.67 0.28 −0.08 −0.73 −2.28 −0.89 −345.97 (100%)
β1 −0.14 0.05 −0.65 0.50 −0.35 0.09 −26.62 (99.49%)
β2 0.02 0.03 1.38 1.82 −0.03 0.15 5.42 (75.76%)
β3 0.03 0.05 −0.52 0.33 −0.17 0.16 5.46 (86.92%)
β4 −0.03 0.03 −1.13 1.26 −0.19 0.05 −2.99 (61.09%)

462.01 (100%)
R2 0.83 0.15 −1.58 2.71 0.16 0.99

Table 2: Summary statistics of the (average) estimated deterministic IVS model coefficients. In parenthesis are the percentages of significant test

results, using α = 5%. Note that all values in the Equity Options section are averages across all 100 underlying assets and across all days in the

sample. The values in the S&P500 Index Options section are averages across all days in the sample.

The intercept β0 denotes the common log-volatility in a world where Black and Scholes’ (1973) assumption of

constant volatility holds. In such a world, the average volatility common in option contracts across all 100 underlying

assets and over the time period from 1996 to 2006 would be equal to exp(−1.25) = 28.65%. For S&P500 options this

value is quite a bit lower; exp(−1.67) = 18.82%. Of course, it is a very explicable observation that S&P500 (implied)

volatility is significantly lower than the average (implied) volatility of 100 of its constituents; after all, the S&P500 is

a weighted collection of those 100 (and 400 other) assets. In this way, the S&P500 diversifies the risks (i.e. volatility)

associated with the individual constituents—resulting in a lower (implied) volatility. β1 and β3 describe the moneyness

and maturity slope respectively. β2 defines the smile curvature in the moneyness dimension. Any moneyness and time-

to-maturity interplay is captured by β4. As Table 2 shows, the parameters of Eq.(1) are extremely often significant

in case of index options. Regarding equity options, the significance percentages are lower; although β0 is significant

at nearly all times, the β2, β3 and β4 coefficients are significant in only less than half of the time. An indication for

in-sample fit of Eq./model (1) is given by R2. The range of minimum and maximum values for R2 (49%-83% for

equities and 16%-99% in case of the index) imply that there is a vast variation in the explanatory power of our model.

The F-test indicates a well-specified model in 77.36% of all daily regressions for all equity options (not averaged),

and in 100% of all daily regressions regarding index options. Figure 2 shows a time series plot of the (average) daily

deterministic IVS parameters.
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Figure 2: Time series plot of (in gray) the estimated daily coefficients of Eq.(1) for SPX and (in black) the average estimated daily coefficients for

equity options (across all 100 underlyings). Data spans the time period from January 4, 1996 to December 29, 2006.

Figure 2 shows a clear correlation between the average intercept coefficient (β0) time series for equity options and

the intercept coefficient time series for index options. Correlation between β1, β2 and β4 coefficients seems less evident.

β3 clearly moves in a more synchronous way (particularly noticeable during 1999-2000 and 2002-2003 time period),

although movement in the average equity β3 time series is often smaller of magnitude. In order to further investigate

the joint dynamics of equity and SPX textitIVS parameters, we run 100 separate correlation analyses between the

time series IVS coefficients (Eq.(1)) of the index and each set of equity options for an individual underlying asset.

More knowledge of this correlation structure is desirable in order to propose appropriate models. Table 3 shows that,

statistically, we observe a significant relationship in 69%, 89% and 57% of all trading days, for β1, β2 and β4 respectively.
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Table 3. Correlation analysis

βEq0 βEq1 βEq2 βEq3 βEq4 βSPX0 βSPX1 βSPX2 βSPX3 βSPX4

βEq0
1

(100%)

βEq1
0.189
(93%)

1
(100%)

βEq2
-0.287
(100%)

-0.047
(87%)

1
(100%)

βEq3
-0.447
(99%)

-0.026
(82%)

0.451
(100%)

1
(100%)

βEq4
0.032
(73%)

0.116
(86%)

0.193
(96%)

0.127
(80%)

1
(100%)

βSPX0
0.719

(100%)
0.347
(87%)

-0.286
(74%)

-0.379
(100%)

0.102
(71%)

1
(100%)

βSPX1
0.139
(97%)

0.072
(69%)

-0.118
(57%)

-0.005
(91%)

0.075
(54%)

0.386
(100%)

1
(100%)

βSPX2
-0.079
(99%)

-0.044
(87%)

0.095
(89%)

-0.013
(87%)

-0.063
(67%)

-0.436
(100%)

0.322
(100%)

1
(100%)

βSPX3
-0.277
(98%)

-0.138
(63%)

0.084
(52%)

0.277
(98%)

-0.027
(47%)

-0.595
(100%)

-0.443
(100%)

0.055
(100%)

1
(100%)

βSPX4
0.059
(96%)

0.042
(75%)

-0.058
(75%)

-0.028
(40%)

0.047
(57%)

0.194
(100%)

-0.409
(100%)

-0.860
(100%)

-0.002
(100%)

1
(100%)

Table 3: The table shows average values of separate correlation analyses between the time series IVS coefficients (Eq.(1)) of index options (one

time series) and each individual set of equity options on a particular underlying asset (100 time series). So, we performed 100 individual correlation

analyses to produce the results presented here. The parentheses show the percentage of significant correlations at a 5% significance level.

Correlations between all deterministic IVS coefficients are presented in Table 3. On average, many significant

correlations between IVS parameters of equity and index options exist: for example, βEq0 − βSPX0 and βEq3 − βSPX0

are significantly serially correlated for every equity (100%). Another five coefficient-combinations report significant

correlation for more than 90 out of 100 equities. Additionally, correlations between equity coefficients and their lags

(known as autocorrelations) are statistically strong, as reported in Figure 4.

3.2 Joint cross-sectional dynamics of equity-SPX IVS

The focus of the research is on the joint dynamics of individual equity IV surfaces and the SPX IVS. Bernales and

Guidolin (2014) report significant evidence for (serial) correlation on the same data that is used in this research. We

find similar proof based on the results in Figure 2, Table 3 and Figure 4 (Appendix). All together, this legitimizes

the choice for a VAR-type model. Table 3 also justifies the additional inclusion of exogenous lags, due to the strong

correlations. Based on the preceding findings, we follow the paper of Bernales and Guidolin (2014) and apply a

dynamic equity-SPX IVS model (abbreviation: VARX-SPX ):

β̂Eqt = γ +

p∑
j=1

Φj β̂
Eq
t−j +

q∑
k=1

Ψkβ̂
SPX
t−k + ut (7)

where ut
iid∼ N(0,Ω) and β̂Eqt = [β̂Eq0,t , β̂

Eq
1,t , β̂

Eq
2,t , β̂

Eq
3,t , β̂

Eq
4,t ] is the time series of estimated parameters from the deter-

ministic IVS model at t for underlying equity (Eq). β̂SPXt represents the time series of estimated parameters from the

deterministic IVS model at t for the index options. The intercept γ is of size 5× 1 and Φj and Ψk are of size 5× 5.

In this way, the maximum number of potential parameters is 155(5). The number of lags p and q are determined by

minimization of the Bayes-Schwarz criterion (BIC) on the integer interval p, q ∈ [1, 3].

(5)[1× (5× 1) + p× (5× 5) + q × (5× 5)] with p, q ∈ [1, 3]
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3.3 Benchmark models

For comparative reasons, we also evaluate three other models. The first of these benchmark models is partly equal to

the VARX(p,q) model, except that we force q = 0, resulting in:

β̂Eqt = δ +

p∑
j=1

Θj β̂
Eq
t−j + υt (8)

where υt
iid∼ N(0,Ξ) and β̂Eqt = [β̂Eq0,t , β̂

Eq
1,t , β̂

Eq
2,t , β̂

Eq
3,t , β̂

Eq
4,t ] is the time series of estimated parameters from the deter-

ministic IVS model at t for underlying equity (Eq). This model does not consider past information on the S&P500

index IVS, and is essentially just a simple VAR(p) model. The intercept δ is of size 5 × 1 and Θj is of size 5 × 5.

In this way, the maximum number of potential parameters is 80(6). Again, the number of lags p are determined by

minimization of the Bayes-Schwarz criterion (BIC) on the integer interval p ∈ [1, 3].

Secondly, we evaluate an ad-hoc Strawman model. It has been tested by Dumas et al. (1998) and used as a

benchmark by Christoffersen and Jacobs (2004) and Goncalves and Guidolin (2006, 2014). The model fits a random

walk to the IVS coefficients in the deterministic model. The best prediction for tomorrow is given by the random

walk law of motion:

β̂Eqt = β̂Eqt−1 (9)

The third benchmark model also applies a random walk, but instead on implied volatilities directly. It is described

by Harvey and Whaley (1992) and has been applied by, among others, Konstantinidi et al. (2008). Tomorrow’s best

prediction is given by:

σ̂t = σt−1 (10)

We will refer to this model as the Random Walk IV model.

3.4 Volatility Indexes

We extend the existing literature by proposing an alternative method of incorporating information from the market

IVS in the volatility surface of equity options. Instead of adding estimated deterministic SPX IVS parameters (Eq.(1))

to create a dynamic equity-SPX IVS model (Eq.(7)), we add a time series of the Volatility Index Term Structure (VIX

Term Structure) data. VIX Term Structure is the term used by the Chicago Board Options Exchange (CBOE) for a

set of implied/expected volatilities in the S&P500 over different maturities. We create and use a VIX term structure

consisting of daily close prices of four different Volatility Indexes (VI); the VXST, VIX(7), VXV and VXMT. These

volatility indexes are estimates of implied/expected volatility in the S&P500 over a 9-day, 30-day/1-month, 3-month

and 6-month time horizon, respectively, and are calculated every 15 seconds throughout the trading day. The values

for the indexes are computed by the CBOE using the midpoint of real-time SPX bid/ask quotes for options within

a predetermined range of strikes and maturities (for more information about the computation aspect, we refer to

the Volatility Indexes documentation on the official CBOE website). The historical data on the Volatility Indexes is

downloaded from Yahoo Finance.

(6)[1× (5× 1) + p× (5× 5)] with p ∈ [1, 3]
(7)Note that the VIX index is only one value measuring implied volatility over 1-month ahead, whilst VIX Term Structure is a set of

several implied volatility values over different time horizons, including the 1-month time horizon. VIX should not be confused with the

VIX Term Structure
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Contrary to the dynamic equity-SPX IVS model of Goncalves and Guidolin (2006) and Bernales and Guidolin

(2014), this proposed model does not require the estimation of a deterministic IVS model for SPX. Instead, we

construct a dynamic equity IVS - Volatility Indexes model (abbreviation; VARX(p,q)-VI ):

β̂Eqt = ϕ+

p∑
j=1

∆j β̂
Eq
t−j +

r∑
k=1

ΥkV It−k + νt (11)

where νt
iid∼ N(0,Σ), β̂Eqt = [β̂Eq0,t , β̂

Eq
1,t , β̂

Eq
2,t , β̂

Eq
3,t , β̂

Eq
4,t ] is the 5 × 1 vector time series of estimated parameters from

the deterministic IVS model at t for some underlying equity (Eq) and V It = [V XSTt, V IXt, V XVt, V XMTt] is the

4× 1 vector time series of daily close prices for CBOE’s SPX related volatility indexes (together forming a VIX Term

Structure) on day t. Because βEqt are obtained from a log implied volatility model, we also take the log of the VIX

Term Structure variables before we include them in the model (Eq.(eq:extensionVARX)). The intercept ϕ is of size

5× 1, ∆j is of size 5× 5 and Υj is of size 5× 4. In this way, the maximum number of potential parameters is 140(8).

Again, the number of lags (p, q) are determined by minimization of the Bayes-Schwarz criterion (BIC) on the integer

interval p, q ∈ [1, 3].

To the best of our knowledge, there is no existing, published literature on this topic. The main reason for this might

be the fact that most of these indexes are relatively new and therefore the sets of historical observations have been

scarce. The VIX dates from 1990, but the VXV, VXMT and VXST only date from 2007, 2008 and 2011, respectively.

Due to this fact, we back-test our proposed extension model on the post-financial crisis time period from January 3,

2011 to December 31, 2015 (1258 trading days). Although the focus of this paper is the time period from January

4, 1996 to December 29, 2006, in order to compare the extension model fairly, the other models in this paper have

also additionally been estimated and forecasted on the latter time period (2011-2015). For this purpose, all collected

data as described in the Data section, is also downloaded for the 2011-2015 time period. The selection of stocks for

the 2011-2015 time period comprises of 90 (see bold tickers in Appendix B), as for some of the 100 originally selected

companies we were unable to retrieve information from WRDS.

(8)[1× (5× 1) + p× (5× 5) + q × (5× 4)] with p, q ∈ [1, 3]

17



4 Results

We have two separate estimation samples:

• January 4, 1996 to December 29, 2006 (2768 trading days). Estimated models: VARX-SPX, VAR, ad-hoc

Strawman, Random Walk IV

• January 3, 2011 to December 31, 2015 (1258). Estimated models: VARX-VI, VARX-SPX, VAR, ad-hoc Straw-

man, Random Walk IV

4.1 Implied Volatility

First, we recursively estimate the parameters of the VARX(p,q)-VI model (ϕ̂, ∆̂ and Υ̂), dynamic VARX(p,q)-SPX

model (γ̂, Φ̂ and Ψ̂) and VAR(p) model (δ̂ and Θ̂) at daily frequency, by using a rolling window of 126 days (assuming

there are 252 trading days in a year). The forecast section therefore covers the following time periods:

• July 8, 1996 to December 29, 2006 (2640 trading days)

• July 6, 2011 to December 31, 2015 (1131 trading days)

By plugging in the relevant lags (p, q) of the deterministic IVS coefficients in Eq.(11), (7), (8) and (9), we obtain one-

day-ahead forecasts for the deterministic IVS parameters in Eq.(1) of the VARX(p,q)-VI, VARX(p,q)-SPX, VAR(p)

and Strawman model, respectively.

Now that we have several one-day-ahead forecasts for the deterministic IVS model using (11) the VARX(p,q)-

VI model, (7) dynamic VARX(p,q) model, (8) VAR(p) model and (9) Strawman model, we plug them back into

the deterministic IVS model (Eq.(1)). Then, for each option in our sample today, the one-day-ahead forecast of

implied volatility for the identical option tomorrow is then given by inputting todays time-adjusted moneyness and

time-to-maturity in the deterministic IVS model and taking the exponent (since it models log implied volatility):

σ̂Eqt+1 = exp
(
β̂Eq0,t+1 + β̂Eq1,t+1Mt + β̂Eq2,t+1M

2
t + β̂Eq3,t+1τt + β̂Eq4,t+1(Mtτt)

)
(12)

The benchmark model described by Harvey and Whaley (1992), is extremely easy in implementation. The predicted

implied volatility of an option is simply given by its implied volatility today: σ̂Eqt+1 = σt.

Ultimately, we have 5 (not by definition different) predictions for the implied volatility tomorrow of each option

today.

4.2 Option Prices

Using the forecasted implied volatilities obtained from the VARX and benchmark models, we can calculate the corre-

sponding forecasted option prices. For this purpose, we use the binomial tree method of Cox et al. (1979) for American

option valuation. Inputs in this model are the number of binomial steps (which we set equal to 15), underlying asset

price, strike price, risk-free rate, volatility (forecasted) and time-to-maturity. Since we do not have forecasts for the

underlying closing price and (proxy for the) risk-free rate, we follow Bernales and Guidolin (2014) and take the values

at t. For each tradeable option today, we obtain 5 different one-day-ahead forecasts for the mid price.
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4.3 Statistical measures of forecasting performance

Out-of-sample forecasting performance for all models (Eq.(11), (7), (8), (9) and (10)) is assessed using a number of

conventional criteria, namely: the root mean squared prediction error (RMSE), mean absolute prediction error (MAE)

and the mean correct prediction of direction of change (MCPDC) statistic. The implied volatility prediction error is

the difference between forecasted implied volatility and true Black-Scholes implied volatility. In case of option prices,

prediction errors are defined to be the difference between forecasted (closing) mid price and the middle of the true best

closing bid and ask price. MCPDC is the average frequency for which the directional change of the forecast relative

to the value at t is of the same sign as the true observed directional change. MCPDC is particularly interesting, since

it is directly related to trading strategy profitability. Also, it gives an idea of the performance compared to a pure

guessing strategy (in which case a MCPDC of around 50% would be expected). Table 4 shows the average performance

measures in terms of implied volatility (-IV).

Table 4. Out-of-sample measures of predictability in terms of implied volatilities

Implied Volatilities

January 4, 1996 - December 29, 2006 January 3, 2011 - December 31, 2015

RMSE-IV MAE-IV MCPDC-IV RMSE-IV MAE-IV MCPDC-IV

VARX(p,q)-VI NA NA NA 0.0253 0.0137 56.00%

VARX(p,q)-SPX 0.0322 0.0139 57.61% 0.0254 0.0138 55.65%

VAR(p) 0.0304 0.0133 57.76% 0.0250 0.0134 55.76%

Strawman 0.0251 0.0122 57.80% 0.0235 0.0130 55.42%

Random Walk IV 0.0188 0.0093 NA 0.0220 0.0104 NA

Table 4: Average out-of-sample statistical measures of predictability in the implied volatility dimension for the dynamic equity IVS - VI model

(Eq.(11)), dynamic equity-SPX IVS model (Eq.(7)), VAR benchmark model (Eq.(8)), ad-hoc Strawman benchmark model (Eq.(9)) and Random

Walk IV (Harvey and Whaley, 1992) benchmark model (Eq.(10)). MCPDC for the Random Walk IV model can not be calculated, since the model

predicts a no-change implied volatility. Values for dynamic equity IVS - VI model can not be calculated for the period January 4, 1996 - December

29, 2006 because not all required data is available during this period.

The out-of-sample RMSE-IV for the VARX-SPX model are the worst, with values of 3.22% (1996-2006 time pe-

riod) and 2.54% (2011-2015 time period). Closely following are the VARX-VI model (2011-2015: 2.53%), VAR model

(1996-2006: 3.04%, 2011-2015: 2.50%) and ad-hoc Strawman model (1996-2006: 2.51%, 2011-2015: 2.35%). Interest-

ingly, the random walk IV model described by Harvey and Whaley (1992), predicting a no-change in implied volatility,

outperforms all other models, with considerably lower RMSE of just 1.88% (1996-2006) and 2.20% (2011-2015). Based

on MAE and MCPDC, we observe a largely similar ranking. We think this is rather surprising, actually. Since implied

volatilities possess high persistence (observable in the autocorrelation plot in Figure 4), we would have expected a

better performance of more sophisticated models (such as VARX-VI, VARX-SPX or VAR) that are better able to

capture this persistence than a static random walk model. Anyway, it is interesting to see that the MCPDC of all

models exceeds 50%—whereas in an unpredictable environment, results close to 50% would be expected. So although

the equity IVS - VI model and dynamic equity-SPX IVS model obviously do not perform the best in our back-test,

they still seem capable of outperforming a solely guessing market participant (with an expected MCPDC of around

50%). However, the equivalent conclusion holds for the more parsimonious VAR and Strawman model.

Exactly the same conclusions can be drawn from the performance measures in terms of option price (-P) perspective

(see Table 5). The out-of-sample RMSE for the VARX-SPX model is the worst, with a value of $0.8793 (1996-2006

time period) and $0.4524 (2011-2015 time period). Closely following are the VARX-VI model (2011-2015: $0.4512),
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Table 5. Out-of-sample measures of predictability in terms of option prices

Option Prices

January 4, 1996 - December 29, 2006 January 3, 2011 - December 31, 2015

RMSE-P MAE-P MCPDC-P RMSE-P MAE-P MCPDC-P

VARX(p,q)-VI NA NA NA 0.4512 0.2953 74.46%

VARX(p,q)-SPX 0.8793 0.2244 78.94% 0.4524 0.2961 74.44%

VAR(p) 0.8759 0.2212 79.12% 0.4508 0.2947 74.46%

Strawman 0.8691 0.2162 79.45% 0.4500 0.2935 74.73%

Random Walk IV 0.8570 0.2121 NA 0.4215 0.2707 NA

Table 5: Average out-of-sample statistical measures of predictability in the option price dimension for the dynamic equity IVS - VI model (Eq.(11)),

dynamic equity-SPX IVS model (Eq.(7)), VAR benchmark model (Eq.(8)), ad-hoc Strawman benchmark model (Eq.(9)) and Random Walk IV

(Harvey and Whaley, 1992) benchmark model (Eq.(10)). MCPDC for the Random Walk IV model can not be calculated, since the model predicts

a no-change in implied volatility. Values for dynamic equity-VI IVS model can not be calculated for the period January 4, 1996 - December 29,

2006 because not all required data is available during this period.

VAR model (1996-2006: $0.8759, 2011-2015: $0.4508) and ad-hoc Strawman model (1996-2006: $0.8691, 2011-2015:

$0.4500). Again, the most parsimonious model, predicting a no-change in implied volatilities (and thus in option

prices), outperforms all other models. This holds in terms of MAE as well. With regards to the MCPDC, Strawman

outperforms a VAR model and the VAR and VARX-VI models outperform the VARX-SPX model. Again, note that

all MCPDC-P values are far greater than 50%, indicating directional predictability to at least some extent. Under

these circumstances, one might exploit the directional change predictions to generate profits from purely directional

triggered trading strategies. But even simple models appear to be sufficient for this purpose.

One particular interesting observation from Table 5 is the fact that RMSE’s of the 2011-2015 sample are nearly half

of the RMSE’s of the 1996-2006 sample, while MAE and MCPDC remain more or less in the same order of magnitude.

The reason for this probably is related to the difference in stocks selection (1996-2006 all stocks in Appendix B, 2011-

2015 only bold tickers in Appendix B) and different time period. Another striking difference, between Table 4 and 5, is

the height of MCPDC values. In terms of option prices average MCPDC is 56.57%, whilst in terms of implied volatil-

ities average MCPDC equals 76.51%. This means that there is a percentage of times when our directional estimate

in terms of implied volatility is opposite from the true, observed directional change in implied volatility, but at the

same time our directional option price forecast (directly following from our volatility forecast and the Black-Scholes

formula) is equal to the true, observed directional price change. Given the difference in MCPDC between implied

volatilities and option prices, it must be that the direction of our option price forecasts is more often equal to the

true directional change than this is the case regarding our implied volatility forecasts. However, everything else equal,

the Black-Scholes formula assigns higher (lower) prices when implied volatilities are higher (lower). This implies that

the direction of our forecasts is always equal to the direction of our option price forecasts. Henceforth, the fact that

we are more often correct regarding price forecasts can only be attributed to the fact that the other inputs in the

Black-Scholes model (such as underlying price at t + 1) more often than not have shifted the directional change in

option price in favor of our forecast. Most of the times this will probably happen when forecasted volatilities for t+ 1

are close to observed volatilities at t.

We also want to determine which model produces the most accurate forecasts. The Diebold-Mariano (1995) test is

ideal for this purpose. The test has a null-hypothesis of equal forecast accuracy given some loss function. There is no

reason to assume that symmetry between positive and negative forecast errors is inappropriate, so we use a symmetric
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loss function defined as the differences between squared prediction errors.

Table 6. Equal predictive accuracy (Diebold-Mariano) test of NA model against the others:

January 4, 1996 - December 29, 2006 January 3, 2011 - December 31, 2015

Implied Volatilities Option Prices Implied Volatilities Option Prices

value sign. value sign. value sign. value sign.

VARX(p,q)-VI NA NA NA NA NA NA NA NA

VARX(p,q)-SPX NA NA NA NA -1.42 49% -2.82 64%

VAR(p) 3.44 72% 5.66 83% 4.24 67% 1.12 44%

Strawman 6.82 72% 7.47 83% 6.13 67% 2.31 44%

Random Walk IV 10.99 89% 9.71 87% 7.76 93% 28.98 100%

Table 6: Average values for the Diebold-Mariano test statistic across all individual underlying assets and over time and the percentage of statistically

significant test results (at 5% significance level, where DM ∼ N(0, 1)). In case of a significant result, the null hypothesis of equal forecast accuracy

is rejected. For the period January 4, 1996 - December 29, 2006, we compare all models to the VARX-SPX model. It can not be

compared to itself, so in that case table entries are not available (NA). Additionally, it can not be compared to the VARX-VI model, because it

is not possible to estimate the VARX-VI model during this time period due to a lack of information (NA). For the period January 3, 2011 -

December 31, 2015, we compare all models to the VARX-VI model. It can not be compared to itself, so in that case table entries are not

available (NA).

For positive DM-values the null hypothesis is rejected in favor of the corresponding benchmark model (1996-2006:

VAR, Strawman and Random Walk IV, 2011-2015: VARX-SPX, VAR, Strawman and Random Walk IV ). In case of

negative values, the hypothesis is rejected in favor of the dynamic equity-SPX IVS (1996-2006) or VARX-VI model

(2011-2015). Both in terms of implied volatility and option price forecasts, the DM tests most frequently rejects the

null hypothesis of equal predictive accuracy in favor of the more parsimonious models. For the time period 1996-2006

it is clear that the VARX-SPX model has a lower forecast accuracy than the VAR, Strawman and Random Walk IV

model. Regarding the 2011-2015 time period, it becomes clear that the hypothesis of equal forecast accuracy between

the VARX-VI and VAR, Strawman and Random Walk IV model is rejected in an overwhelmingly percentage of times

(89%, 87%, 93% and 100%). However, average values for the DM statistic are more conservative for the VARX-VI

versus VARX-SPX model (-1.42 and -2.82 in implied volatility and option price dimension, respectively). Also the

significance percentages (49% and 64%) show that the VARX-VI and VARX-SPX models perform rather similar in

terms of forecast accuracy.

Based on all above findings, we do not find significant evidence that, on average, a VARX-SPX or VARX-VI model

is superior to any of the benchmark models (VAR, Strawman, Random Walk IV. Instead, it is proved that the more

parsimonious a model is the lower its values for RMSE and MAE and the higher its value for MCPDC are. The

MCPDC-P values indicate directional predictability to at least some extent. However, this is not necessarily reserved

for more complex models; even the more parsimonious models (i.e. VAR, Strawman) are sufficient to generate fore-

casts that well exceed a 50% correct directional change frequency. Therefore, it makes no sense and is not worth the

additional effort to use the more complex models. An explanation for the relatively well performance of the Random

Walk IV and Strawman models would be that the data generating process underlying the implied volatilities has a

tendency to follow a randomized path (on an inter-day basis). This supposition is supported by the relatively weak

performance of models incorporating vector (exogenous) autoregressive terms (VARX-VI, VARX-SPX, VAR). Further

research is required to prove whether this also holds for intra-day/higher frequency data.

It should be stated that our findings are at odds with the results of Bernales and Guidolin (2014). Although the
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approach in our paper is largely similar, we introduced the following simplifications. (1) Instead of 150 stocks, we

included 100 stocks. However, the inclusion of 50 randomly excluded stocks is unlikely to alter the average model

performances as presented in this paper drastically. (2) We used GLS instead of OLS. Nevertheless, Bernales and

Guidolin (2014) themselves already note only a small difference between OLS and GLS results. And (3) we did not

account for dividends in the no-arbitrage bounds calculation. But although Bernales and Guidolin (2014) do not

specify the definition of the bounds they apply, a potential small alteration in specification, i.e. inclusion of dividends,

would certainly not significantly influence the main results in this paper, as dividends are sparse considering datasets

spanning several years in trading days. Another difference might be in the calculation of the discount rate, yet we can

not know for sure because Bernales and Guidolin (2014) do not mention how they calculate it. Probably the biggest

potential cause of the contradicting results is in the handling of days with too few observations (see Methodology

Section); but again the approach of Bernales and Guidolin regarding this subject is not clearly stated. Considering

all the above, the true cause of the discrepancy in main results remains largely unclear.
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5 Conclusion and discussion

This paper has focused on forecasting the dynamics of equity IV surfaces at daily frequency. Bernales and Guidolin

(2014) suggest that the difference in trading frequency may indicate that changes in IVS are more rapidly integrated

into prices for SPX than for equity options—and thus, they reason, SPX IVS dynamics may be exploited to predict

equity IVS dynamics. In order to investigate these joint dynamics, a VARX model has been adopted. However, despite

the suggestions and concluding results of Bernales and Guidolin (2014), this paper has found contradicting evidence—

models incorporating exogenous autoregressive dynamics are outperformed in terms of prediction error and forecast

accuracy measures by more parsimonious, static models (Strawman, Random Walk IV ). Nonetheless, the presence of

many significant correlations between equity and SPX IVS parameters is proven, indicating that the IV surfaces of

equity and SPX options are in fact dynamically related to some extent. Yet, correlation does not imply causality—

demonstrated by the fact that this research fails to prove significant added value in modeling equity IVS dynamics

by incorporating (historical) information on SPX IVS dynamics. Besides the empirical evidence, we also question the

reasoning behind the motive of Bernales and Guidolin (2014). Even with the existence of discrepancies in trading

frequencies, this should not at all necessarily lead to out-dated IV surfaces for equity options; also in the absence of

trading volume, bid/ask quotes may be continuously updated and might be priced ‘correctly’ (no information bias with

regards to SPX option quotes). Additionally, this paper studied the explanatory value of CBOE’s volatility indexes

for equity IVS dynamics. Again, the proposed model did not provide significant evidence of out-performing more

parsimonious, static models (Strawman, Random Walk IV ). However, its performance has proven fairly equal to (at

least not worse than) the dynamic equity-SPX IVS model of Bernales and Guidolin (2014), but does not require the

estimation of the deterministic IVS model for SPX. We would not rule out the existence of information asymmetry in

equity and SPX option quotes due to liquidity biases completely, however. But at least, such a bias may more likely

be expected to be present in higher frequency data (intra-day instead of inter-day). It would be interesting for further

research to focus on higher frequency dynamics.
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A Appendix: figures
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Figure 3: US Treasury spot rates and the fitted third-degree polynomial spot curve on 2001-08-15. The proxy for the risk-free rate associated with

an option contract on this date is given by the y-coordinate of the curve at the days-to-maturity (corresponding to the option) x-coordinate. The

spot curve is unique for each date.
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Figure 4: Correlation plot of (lags of) average deterministic equity IVS coefficients. Gray bounds denote the 95%-significance interval of (H0:)

no-correlation (rejected outside this bound).
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B Appendix: list of equities

Ticker Company Name

MMM 3M CO

ALL ALLTEL CORP

MO ALTRIA GROUP INC

AXP AMERICAN EXPRESS CO

AIG AMERICAN INTERNATIONAL GROUP

AMGN AMGEN INC

AAPL APPLE INC

ASH ASHLAND GLOBAL HOLDINGS INC

ADP AUTOMATIC DATA PROCESSING

BHI BAKER HUGHES INC

BLL BALL CORP

BAC BANK OF AMERICA CORP

BCR BARD (C.R.) INC

BDK BLACK & DECKER CORP

HRB BLOCK H & R INC

BSX BOSTON SCIENTIFIC CORP

BMY BRISTOL-MYERS SQUIBB CO

CVX CHEVRON CORP

CI CIGNA CORP

C CITIGROUP INC

KO COCA-COLA CO

CL COLGATE-PALMOLIVE CO

CMA COMERICA INC

CAG CONAGRA BRANDS INC

COP CONOCOPHILLIPS

COST COSTCO WHOLESALE CORP

CMI CUMMINS INC

CVS CVS HEALTH CORP

DE DEERE & CO

DIS DISNEY (WALT) CO

D DOMINION RESOURCES INC

DJ DOW JONES & CO INC

DD DU PONT (E I) DE NEMOURS

ETN EATON CORP PLC

EMR EMERSON ELECTRIC CO

XOM EXXON MOBIL CORP

FMCC FEDERAL HOME LOAN MORTG CORP

FDX FEDEX CORP

GD GENERAL DYNAMICS CORP

GE GENERAL ELECTRIC CO

HAL HALLIBURTON CO

HSY HERSHEY CO

HES HESS CORP

HPQ HP INC

ITW ILLINOIS TOOL WORKS

IR INGERSOLL-RAND PLC

INTC INTEL CORP

IBM INTL BUSINESS MACHINES CORP

JNJ JOHNSON & JOHNSON

KMB KIMBERLY-CLARK CORP

Ticker Company Name

LB L BRANDS INC

LLY LILLY (ELI) & CO

LNC LINCOLN NATIONAL CORP

LMT LOCKHEED MARTIN CORP

L LOEWS CORP

MRO MARATHON OIL CORP

MCD MCDONALD’S CORP

MDT MEDTRONIC PLC

MRK MERCK & CO

MSFT MICROSOFT CORP

TAP MOLSON COORS BREWING CO

MS MORGAN STANLEY

NEM NEWMONT MINING CORP

NEE NEXTERA ENERGY INC

NKE NIKE INC

NSC NORFOLK SOUTHERN CORP

NOC NORTHROP GRUMMAN CORP

PCAR PACCAR INC

PH PARKER-HANNIFIN CORP

PEP PEPSICO INC

PFE PFIZER INC

PD PHELPS DODGE CORP

PBI PITNEY BOWES INC

PNC PNC FINANCIAL SVCS GROUP INC

PPG PPG INDUSTRIES INC

PX PRAXAIR INC

PG PROCTER & GAMBLE CO

RTN RAYTHEON CO

SGP SCHERING-PLOUGH

SLB SCHLUMBERGER LTD

SHW SHERWIN-WILLIAMS CO

STI SUNTRUST BANKS INC

SYY SYSCO CORP

TGNA TEGNA INC

TIN TEMPLE-INLAND INC

THC TENET HEALTHCARE CORP

TXN TEXAS INSTRUMENTS INC

TXT TEXTRON INC

HD THE HOME DEPOT INC

TJX TJX COMPANIES INC

TYC TYCO INTERNATIONAL PLC

X UNITED STATES STEEL CORP

UTX UNITED TECHNOLOGIES CORP

UNH UNITEDHEALTH GROUP INC

VZ VERIZON COMMUNICATIONS INC

WMT WAL-MART STORES INC

WY WEYERHAEUSER CO

WHR WHIRLPOOL CORP

WWY WRIGLEY (WM) JR CO

WYE WYETH
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C Appendix: list of abbreviations

API Application Programming Interface
BIC Bayes-Schwarz criterion (lag selection)
CBOE Chicago Board Options Exchange
DM Diebold-Mariano (test statistic)
GLS generalized least squares (regression method)
IV implied volatility
IVS implied volatility surface
MAE mean absolute prediction error
MCPDC mean correct prediction of direction of change
OLS ordinary least squares (regression method)
RMSE root mean squared prediction error
SPX symbol for option contracts on the S&P500 index
VAR vector autoregression model
VARX exogenous vector autoregression model
VI Volatility Index
WRDS Wharton Research Data Services
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