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A canonical analysis of multiple time series

BY G. E. P. BOX AND G. C. TIAO

Department of Statistics, University of Wisconsin, Madison

SUMMARY

This paper proposes a canonical transformation of a ^-dimensional stationary autoregressive
process. The components of the transformed process are ordered from least to most predictable.
The least predictable components are often nearly white noise which can reflect stable con-
temporaneous relationships among the original variables. The most predictable can be nearly
nonstationary representing the dynamic growth characteristic of the series. The method is
illustrated with a series with five variables.

Some key words: Autoregressive process; Canonical variable; Eigenvalue; Eigenvector; Multiple time
series; Variance component.

1. INTBODTTCTION

Data frequently occur in the form of k related time series simultaneously observed at some
constant interval. In particular, economic, industrial and ecological data are often of this kind.
Much work has been done on the problem of detecting, estimating and describing relationships
of various kinds among such series; see, for example, Quenouille (1957), Hannan (1970),
Box & Jenkins (1970), and Brillinger (1975). In this paper we shall consider a particular
method for characterizing structure.

Consider a i x l vector process {£?t} and let zt = 3^t—/i, where fi is a convenient k x 1 vector
of origin which is the mean if the process is stationary. Suppose ztfollows the^th order multiple
autoregressive model

where

V i ( ! ) = ^ k - i , Va. •••) = S

is the expectation of zt conditional on past history up to time t— 1, the 7r, are k x k matrices,
{O(} is a sequence of independently and normally distributed kx 1 vector random shocks with
mean zero and covariance matrix S, and o tis independent of %_i(l). The model (1-1) can be
written

(i-S

where / is the identity matrix and B is the backsbiffc operator such that Bzt = zt_x. The process
{zt} is stationary if the determinantal polynomial in B, det (I—'S,7TlB

l), has all its zeros lying
outside the unit circle, and otherwise the process will be called nonstationary.

Now suppose k = 1. Then, if the process is stationary,

that is

We can define a quantity A measuring the predictability of a stationary series from its past
as A = a%or-2 = l-crlo--*.
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356 G. E. P. Box AND G. C. TIAO

Suppose that we are considering k different stock market indicators such as the Dow Jones
Average, the Standard and Poors index, etc., all of which exhibit dynamic growth. It is
natural to conjecture that each might be represented as some aggregate of one or more
common inputs which may be nearly nonstationary, together with other stationary or
white noise components. This leads one to contemplate linear aggregates of the form ut = m'zt,
where m is a k x 1 vector. The aggregates which depend most heavily on the past, namely
having large A, may serve as useful composite indicators of the overall growth of the stock
market. By contrast, the aggregates with A nearly zero may reflect stable contemporaneous
relationships among the original indicators. The analysis given in this paper yields k' canonical'
components from least to most predictable. The most predictable components will often
approach nonstationarity and the least predictable will be stationary or independent. Thus
we may usefully decompose the fc-dimensional space of the observation z^ into independent,
stationary and nonstationary subspaces. Variables in the nonstationary space represent
dynamic growth while those in the stationary and independent spaces can reflect relationships
which remain stable over time.

2. CHOICE OF THE CANONICAL VARIABLES

2-1. Oeneral considerations

Suppose that zt is stationary. Let Fy(z) = E(zt_j zj) be the lag j autocovariance matrix of zt.
I t follows from (1-1) that

ro(2) = £ nt r,(z)+s = ro(«)+s, (2-i)
ii

say, where Fo(2) is the covariance matrix of 2t_1(l). Until further notice, we shall assume that
2 , and therefore ro(z), are positive-definite.

Now, consider the linear combination « t=m'2t. We have that 1^= fit_1(l) + t)t, where
fi(_1(l) = m'2t_1(l) and vt = rn'o^ The predictability of «tfrom its past is therefore measured by

A = o j <tf» = {«iT0(2) m}/{mT0(z) m}. (2-2)

I t follows that for maximum predictability, A must be the largest eigenvalue of F^1(z) Fo(2)
and m the corresponding eigenvector. Similarly, the eigenvector corresponds to the smallest
eigenvalue will yield the least predictable combination of zt.

2-2. The canonical transformation

Let Ax At be the k real eigenvalues of the matrix F5"1(z) Fo(2). Suppose that the Ay are
ordered with Ax the smallest, and that the k corresponding linearly independent eigenvectors,
itCy m'k, form the k rows of a matrix M. Then, we can oonstruct a transformed process
{yt}, where

y»=ft-i(l) + 6t, (2-3)
with

yt = Mzt, bt = Mat, &-i(

Corresponding to (2-1), we now have

(2-4)

where T0(y) = 3fF0(z) M', Fo(0) = MT0@)M' and 2 =
Note that: (i)

M'^^ Fo(2) M' = A, M'-^ToH*) SJf' = 7 - A, (2-5)
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A canonical analysis of multiple time series 357

where A is the kx k diagonal matrix with elements (\lt ...,Afc); (ii) 0 ^ Â  < 1 (j = 1, ...,k);
and (iii) for t 4= j , m< Smy = m^ Fo(2) ray = 0. In other words, MJ.M', MY<0)M' and, therefore,
MT0(z)M' are all diagonal. Thus, the transformation (2-3) produces k components series
{*/«> • • • i Vkt} which (i) are ordered from least predictable to most predictable, (ii) are contem-
poraneously independent, (iii) have predictable components {y"i(t_i)(l), • ••>y"t(t-i)(l)} which
are contemporaneously independent, and (iv) have unpredictable components {bw...,6W}
which are contemporaneously and temporally independent.

2-3. Zero roots

Special interest may attach to situations where certain of the Â  approach zero. When the Â
roots, A1(.... Afci, are zero, the matrix ro(y) in (2-4) then can be written

where D is an kt x jfcg diagonal matrix. With

where ylt and bu are t j x l vectors, it readily follows that, with probability one, ylt = 6lt. For
I = 1, ...,p, partitioning the k x k matrix 1tt into

(2>8)

where it^l is a Jfcj x i j matrix, we have the transformed series {yj expressed as

;
Thus, the canonical transformation decomposes the original kxl vector process {zj} into two
parts: (i) a part {yu} which follows a jfcj-dimensional white noise process, and (ii) a part {y^} which
is stationary but whose predictable part depends on both y^^o and y2tt-S f° r ' = *> •••>P-

The practical importance of (2*9) is that it implies that there are i^ relationships between
the original variables of the 'static' form

mn3ru+ ...+mik3rkt= ijt + bjt (J = 1 kj),

where the bjt are contemporaneously and temporally independent. We shall later illustrate
this situation with an example.

3. THE FTBST-OBDEB ATJTOBBGKBSSIVB PROCESS

3-1. The canonical model

In this section we discuss some properties of the canonical transformation when {Zf} follows
an fc-dimensional autoregressive process of order one. Thus withp = 1 and vx = <f>, (1-1) yields

zt = %_l(l) + at=<f>zt_1+at. (3-1)

Since Y'^z) = <f>T0{z) it follows from (2-1) that T0(z) = 0ro(z)0' + S and the required roots
Â  and vectors m^ are the k eigenvalues and eigenvectors of the matrix

Q = T^{z)<f>Y0{z)<j>'. (3-2)

If $ •= M<j>M~x the transformed process can now be written

Vt = ht-i + bf (3-3)
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358 G. E. P. Box AND G. C. TIAO

3-2. Nonstationary series and unit roots

In the above we have assumed that zt is stationary. In practice, many time series exhibit
nonstationary behaviour. A useful class of models to represent nonstationary series may be
obtained by allowing the zeros of the det(J —S^i?) of (1-2) to lie on the unit circle. For the
model (3-1), let ax, ...,ak be the eigenvalues of the matrix 0. Then

i-i

so that the zeros of det (7 — <j>B) are simply of1,..., a^1. If one of more of the â  are on the unit
circle, then F0(z) does not exist and the canonical transformation method will break down.
However, it is of interest to study the limiting situation when k2 of the â  approach values on
the unit circle. Letting

where y1 and blt are i ^ x l vectors and ^ n is a k^ x k^ matrix with k^ = k — k2, we show in the
Appendix that:

(i) if, and only if, k2 of the eigenvalues a^ of <j> approach values on the unit circle, then k2

of the eigenvalues Â  of Q in (3-2) approach unity;
(ii) the transformed model for yt is, in the limit,

21
(3-4)

The canonical transformation therefore decomposes Zj into two parts:
(i) a part ylt which follows a stationary first-order autoregressive process, and
(ii) a part ya which is approaching nonstationarity and also depends on yn^.

The practical significance of this result is that the components y^ can serve as useful
composite indicators of the overall dynamic growth of the original series.

3-3. Zero and unit roots

For the model (3-1), suppose that ^ of the Â  are zero, k^ of them approach unity and the
remaining kt = k — l^ — Jc^ are intermediate in size. Then, from the results in (2-9) and (3-4),
and upon partitioning yt, bt and ^ into

(3-5)

are, respec-

11 V12

31 $32

where ylt and 6 l t are k^ x 1 vectors, j/jt a n ( i ŵ a^6 &2 x 1 vectors, and ^ u and <
tively, Ax x Aj and kt x ifc,, matrices, the transformed process {yt} takes the form

B
'Vul
y*\ (3-6)

0 0

L$81 $32 $33J

Thus there are: (i) a A^-dimensional white noise process {ylt}, (ii) a fc2-dimensional stationary
process {y^} such that the prediotable part of yn depend only on y^D and j/2(t-i)> ^d. (iii)
a tg-dimensional near nonstationary process {1/̂ } such that the predictable part of y3t depends
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A canonical analysis of multiple time series 359

3-4. Variance components for the first-order process

Whatever the scaling of the transformed process {T/J in (3-3), since the jfth element yit is
yit = Sf $H y^t-i) + bit, where ($5n,..., $ik) is the j th row of ̂ , and since y1(t_D,..., y^^ and bjt

are independent, it follows that a\ = S i ^ cr^ + cr^. The contributions of y^-j), ••-, JAtft-i) a n ( i
6 t̂ to the variance of yjt are, therefore, ffix cr\x,..., ^%^lt and cr|,, respectively. It is convenient
to consider these variance components in terms of their proportional contribution to o~\,
that is to consider {<j>it o\^\o%, and o^/o-J, = 1 — Â . This can be done conveniently by arranging
the canonical variables with scaling such that the variances of t^tare all unity.

For the general process (1-1), to arrange for this scaling the matrix M must be chosen such
that MT0(z) M' = I. Corresponding to (2-3), let the transformed series in this scaling be
written as

xt=*t-iW+dt. (3-7)

Then, ro(x) = ro(£) + S, where T0{x) = I, T0(x) = A, S = I —A. and A is the diagonal matrix
in (2-5). For the process (3-1), £t_i(l) = '^xt_-1, and hence

?? ' = A. (3-8)

In this scaling, then, the rows of ̂  are orthogonal and the sum of squares of thejth row is
The preceding canonical analysis will now be illustrated by an example.

4. AN EXAMPLE

4-1. U.S. hog, corn and mage series

Quenouille (1957, pp. 88-101) studied a time series with 5 variates and containing 82 yearly
observations from 1867-1948. He made adjustments where necessary, logarithmically trans-
formed each variate and then linearly coded the logs, so as to produce numbers of comparable
magnitude in the different series. His resulting five series denoted by Jf?lt,..., Jffst are plotted
in Fig. 1 (a) and are identified in Table 4-1.

4-2. The first-order autoregressive model

Quenouille fitted the data to a first-order autoregressive process but was doubtful as to the
adequacy of the model. We found, however, that the fit can be improved by appropriately
shifting series 2 and 5 backward by one period as indicated in Table 4-1.

With the model z t= ^Zf^ + Ofin (3-1), where z t= &t—/i, the sample means p, of 2tt and
sample cross-covariance matrices C, needed in our analysis are as follows:

10-3/2' = (0-6989, 0-8949, 0-7714, 1-3281, 0-9956),

0-6831

0-5864
1-2038
0-4616
1-0108
1-3993

1-2523
61939

1-3670
5-2334
3-5820
1-8972
5-1586

0-6535
3-7845
3-6877

0-7513
3-1639
2-7173
0-8338
3-2153

0-9533
2-0209
0-2633
2-1407

0-8632
1-8849
0-5605
1-6260
1-9817

1-5224
5-5708
3-4746
2-1925
5-7206

1-5151
5-0392

3-0633
2-2508
5-3246
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a) Original scries

G. E. P. Box AND G. C. TIAO

(A) Transformed series

- 4 0

fef

1876 1896 1916 1936 1876 1896 1916 1936

Fig. 1. U.S. hog data, (a) Original series, (6) transformed series.

Table 4-1. Notation for Quenouille's U.S. hog series

j

1
2
3
4
5

0
0
0
0
0

Variate
Hog supply
Hog price
Corn price
Corn supply
Farm wages

Table 4-2..

Ay

•0232 (1
•1421 (0
•6061 (0
•6901 (-0
•8868 (0

Symbol

B.
B,
R»
R.

w

As logged and
linearly coded
by Quenouille

Jtrlt

• * «

•^"s«

Jft,

Used in our analysis
& — *
*is j j — *tt

2Ttt = A

V

x>
o
X)

Estimated eigenvalues and eigenvectors for the hog data

B.

•0000
•2080
•8925
•9358
•6687

B,
0-3876
1-0000

-0-6433
-0-2410
- 0 1 2 0 6

R, R.
-0-2524 -0-5896
-0-8614 -0-3382
-0-8277 -0-4784
-0-4391 -0-5614
- 0 0 1 3 4 00396

w
-0-2665)
-0-3655)

1-0000)
1-0000)
1-0000)

x 0-
x 0-
x 0-
x 0-
x 0-

0284
0111
0074
0129
0039
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A canonical analysis of multiple time series 361

Table 4-2 gives the estimated eigenvalues and eigenvectors of Q in (3-2). The latter are scaled
according to (3-7) so that all the components of the transformed process {xj have unit estimated
variances. The transformed process is xt = ^xt_1+dt with the estimated ^ given by

0-1213 -0-0778 00465 -00110 00113
0-2215 0-2766 -01241 -00309 00119

-00321 0-3167 0-6334 00444 -00404
00885 -00025 -00492 0-8235 00416

-00801 00378 00396 -00363 0-9360

and the resulting series 3Ct = M3?t are shown in Fig. 1 (6).
The estimated proportional contributions of £i(t-D> •••j^t-u a n d ^ t *° the variance of xjt

are given in Table 4-3.

Table 4-3. Component variances of the transformed series

Xl(t—1) XHt—1) -̂ 8(1—1) XUt-D XUt— 1) **ji

xlt 0015 0-006 0002 0000 0-000 0-977
*„ 0-049 0-077 0-015 0-001 0-000 0-858
xtt 0001 0-100 0-401 0-002 0-002 0-494
xlt 0008 0-000 0-002 0-678 0002 0-310
x.t 0006 0-001 0002 0-001 0-876 0-113

We see from the above calculations that there is very little contribution to
history. These two transformed series are essentially white noise. The remarkable feature of
X&, a;4tand a;6tis their heavy dependence on their own past, and this is especially so for the latter
two components. It is almost true that xu and x6t can be expressed as two independent
univariate first-order autoregressive processes

xit = 0- 82z4tt_1) + dit, x&t = 0- 94zs(t_D + du. (4-1)

4-3. Interpretation

In terms of the original observations 3?t, the model for the most predictable component
3Cht is approximately,

&u- 0-945"et_1 = 0-35 + d6t. (4-2)

The autoregressive parameter is close to unity, indicating that the series is nearly nonstationary
Also, it is readily seen that the estimated standard deviation of the mean of i 2 " w — O ^ ^ ^
is 0-04 so that the term 0-35 on the right-hand side of (4-2) is real. Thus, what we have is nearly
a random walk with a fixed increment of 0-35 per year. Now x6t = m'6ztand from the estimated
eigenvector m6, a;6tis essentially a linear combination of the farm wages, W, and hog supply, Hs,

xst^ 0-0039(z6t+ 0-67^). (4-3)

This is then the linear combination which serves as an indioator of the overall dynamio growth
pattern in the original series.

The nearly random components x1 and x2, omitting the subscript t, associated with small
values of A are also of considerable interest. Their existence implies that any linear combination
of the component series in the hyperplane

varies nearly independently about fixed means. In choosing the component it is natural to
seek combinations which are scientifically meaningful.
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362 G. E. P. Box AND G. C. TIAO

Now tbe dollar value of tbe hogs sold is proportional to H^ Ht and the dollar value of the
corn needed to feed them is Rp Bt. If then a Z exists involving these dollar values it will be
such that approximately c^ = c2 and c3 = c4. By least squares or otherwise it is easy to find
the linear combination for which this is nearly true. Specifically, by setting a = 30-01 and
f} = 59-51 we obtain the relationship

Z = 2^22-0-7823-0-7324-0-4835. (4-5)

That is to say Z in (4-5) is approximately independently distributed about a fixed mean.
Nowthe average estimated variance of (zlt,..., zu) is 3-69 x 104. For comparison, we normalize

the linear combination (4-5) by letting u = I'z, where I = (1-84)-1 [1,1, - 0-78, - 0-73, - 0-48],
so that I'l = 1. Since xx and z2 have unit variance and are independent, the variance of u is
0-1326 x 104. Compared with the average variability of the original series, we have thus
obtained a remarkably stable contemporaneous relationship among the 5 original variables.

Taking antilogs of (4-5) this implies that
TJ TT

7 l = {ftpRs)™W*M ( 4 ' 6 )

is approximately constant. The numerator is obviously a measure of return to the farmer
and the denominator a measure of his expenditure. The analysis points to the near constancy
of this relation reminding us of the ' economic law' that a viable business must operate so as to
balance expenditure and income.

Suppose we choose a. = 46-51 and fi = — 137-80, we then obtain

Z = 1-002! - l-0222 + 0-98zg - 0-2624 + 0-21z6. (4-7)

Again, if we normalized the combination by expressing u = I'z with u = (1-76)~1Z such that
I'l = 1, the variance of u would be 0-68 x 104.

Upon taking antilogs, this implies that, very approximately,

I2 = HsRpIHp (4-8)

is constant, indicating that a stable relationship existed between hog supply and the price
ratio (Wallace & Bressman, 1937, p. 342-50).

In addition, we note that the percentage coefficients of variation of Ix and I2, given approxi-
mately by 100 log {10cr(Z)} are 16 % and 18 %, respectively. Thus, both indices are remarkably
stable when it is remembered that over the time period studied, the individual elements in
the indices underwent massive changes. For example, hog prices increased tenfold.

4-4. Differencing of the data

For the hog data, since each of tbe original series exhibit a growth pattern, questions might
be raised as to whether one should difference the data first and then perform a canonical
analysis of the differenced series. Indeed, if one were to analyze these series individually, one
would be led to consider differencing z1, z2, z4 and z6. However, in analyzing multiple time series
of this kind, it is useful to entertain the possibility that the dynamic pattern in the data may
be due to a small subset of nearly nonstationary components and that there may exist stable
contemporaneous linear relationships among the variables. If this is so, then differencing all
the original series could lead to comph'cations in the analysis. To illustrate, suppose we have
the bivariate model
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A canonical analysis of multiple time series 363

so that each series individually will be nonstationary. If we considered the two differenced
series, wlt = (1 — -B) % a n ( i wa = (1—-B) za , we would have

WU = Ou, U ^ = fi^ + OJJ - Ojjft.!). (4-10)

It is readily shown that while (4-9) can be expressed in the form of a bivariate first-order
autoregressive process, the differenced series cannot be put into the autoregressive form (1-1)
making the analysis more complicated.

5. FURTHER CONSIDERATIONS

5-1. Singularity of the matrix E

So far it has been assumed that the covariance matrix of at, E, in (2-1) is positive-definite.
Situations occur when T0(z) is positive-definite but E is singular. Specifically, suppose that the
rank of £ is Â  < k. This means that the k x 1 vector process {zj is in fact driven by a k^-
dimensional non singular random shock process. Then, it is readily seen that the k2 roots
A t i+1,..., Afc of r^"1(z) ro(3) are exactly equal to one, and the transformed covariance S matrix
of bt in (2-3) takes the form

2 - I ? oj. (5>1)

where Dx is an Aj x Jfcj diagonal matrix with positive elements. Partitioning t/t, 6t and ftt as
given in (2-7) and (2-8), we see that ba = 0 with probability one. Thus the transformed model is

(5-2)

In other words, the &2-dimensional vector y^ is completely predictable from the past values

In practice, situations may occur where E is nearly singular. From the results here and those
discussed earlier in § 3-2, we see that for the first-order autoregressive process, certain of the
roots Â  will be nearly equal to one either when some of the eigenvalues of <j) approach values
on the unit circle or when £ is nearly singular. The problem of bow to distinguish between
these two cases is currently being investigated.

5-2. Singularity of the matrix T0(z)

Examples can also occur when F0(z) is singular. I t is not unusual to find exact and quite
complex linear relationships imposed by the method in which the data is put together so that
F0(z) will necessarily be singular (Box et cd., 1973). Two situations can occur depending on
whether or not the nature of any exact linear relationships existing in the data is already
known. If known, then the problem may be avoided by eliminating, in advance of the analysis,
any dependencies and applying the analysis to a linearly independent subset of r of the k
series. When the nature of exact relationships in the data which might exist are not known,
a principle component analysis of the estimate C0(z) of F0(z) should be first conducted. The
existence of k — r roots which are nearly zero indicates the existence of k — r linearly independent
exact relationships which define a hyperplane in the k space given by the k — r corresponding
eigenvectors. The canonical analysis of this paper may now be carried out on any subset of r
linearly independent series which lie in the nonsingular space.

The work was supported by U.S. Army Research Office and the Wisconsin Alumni Research
Foundation.
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APPENDIX

Eigenvalues of first-order autoregressive process
We here sketch the proof of the results given in § 3-1 concerning the situation where &a of

the eigenvalues of (f> approach values on the unit circle.

THEOBBM. Suppose that ztfollows the stationary model in (3-1), where the covariance matrix
2 ofat is positive-definite. A sufficient and necessary condition for k2 of the eigenvalues of

ro(z)-vro(z)<p'
to tend to unity is that k2 of the eigenvalues of<f> approach values on the unit circle.

Proof. Let k = Â  + ifcg and the eigenvalues of <j> be divided into two sets of = (a^,..., ak )
and a j = (afc +1,..., afc) with no common element and such that <Xj and its complex conjugate
belong to the same set. The characteristic polynomial of <f> can be written as the product

l A , ( a ) . (A 1)
where

fki(a) = a** - 7i a**-1 - ... - yki, /*,(<*) = ah - sx a**-1 - . . . - skt

are real polynomials of degrees Â  and k2 with roots of and a£, respectively. Now there exists
a k x k real nonsingular matrix 0 such that C^C-1 is of the block diagonal form

-[o l\ <A 2»
where B and S are, respectively, Â  x k^ and k2 x k2 matrices such that

R = \U—1 1 S = \°J J. 1
lYkj, yfcl-i • • • 7i J' k , ! **,-! •••«!.]•

Letting V = CT0(z) C and W = (JLC and partitioning V and W correspondingly, so that,
for example, Vu and Wn are k^ x Â  matrices, we obtain

Va = S7VLR'-^Wa, V12 = RV12S' + W12, FM = SV^S' + W^, (A3)

where we use the relation TQ(z) = <f>T0(z) <f>' + 2. By writing V22 = AA', it is readily seen from
(3-2) that the Â  are the roots of the determinantal polynomial

To prove sufl&ciency, we need to show that if the kt eigenvalues

a,->«*»» (J=ki + !.•••. *). (A 5)
then (A 4) will tend to

(1-A)t«det{(l-A)F11-TF11} = O. (A 6)

I t suffices to prove that (A 5) implies that

A-x^0, A-W^O. (A 7)
From (A 3)

1 8 ' { S'i F 1 S W y i (A 8)
so that detS2 = detil + S'^V^S^W^)-1. When (A 5) holds, dot^S3) = fi^^l. Since S is
nonsingular and W^ is positive-definite, it follows that F^1 -*• 0 and hence A-1 -> 0.

To show jd-^Fi,-*•<), we have, from (A 3),

/ = PP' +A-1W21A'-\ (A 9)

A-Wu = PA-W12R+A-1W'12t (A 10)
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where P = A^SA. Thus, when (A 5) holds, in (A 9), P^-Po where Po is an orthogonal matrix,
and hence (A 10) becomes

P>
OA-WU = A-1V'UB. (All)

Since by supposition, S and B have no common eigenvalues, it follows (Gantmacher, 1959,
p. 220) that A-iVyi-^O. This completes the proof of the sufficiency.

Next to show necessity, recall that \at\ < 1 and 0 ^ Â  < 1, for j = 1,..., k. Thus, if k% of
the Xj tends to one, then exactly &a of the <xf must approach values on the unit cirole. For, if
otherwise, and suppose k' #= kt of the at approach values on the unit cirole, then from the
sufficiency part of the theorem which we have just proved, k' of the Â  must approach one,
which contradicts the supposition. The theorem thus follows.

To study the eigenvectors and the transformed matrix <f>, it is easy to see that the systems
of equations (Q — A/) m = 0 is equivalent to

(A 12)

where C'h = m. When (A 5) holds, by using (A 7) it is straightforward to verify that the
matrix of eigenvectors M' must be of the form

(A 13)

where the columns of H'n are the eigenvectors of V^ W1X.
It follows from (A 13) that the transformed matrix ^ takes the form

*-***•*-[% U- (A14)

where $ u = Hn BH£, ^ = So, ^ n = (So W'lt W£ - W^B) H£ and So is the limiting matrix
of 8 when all its roots approach values on the unit oirole.
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