
Quadratic volatility models are the only stationary, driftless models for
which the combination of a non-linear transformation of the form (3) and
a change of numeraire reduces the problem to a Wiener process xt as the
one in (4). Carr, Lipton & Madan (2000) consider whether it is possible
to relax the condition of stationarity and find more general processes
with drift and volatility both dependent on calendar time and F that still
reduce to the Wiener process. They find that the general solution admits
as many as 11 time-dependent functions.

A related line of reasoning leading to extensions of the Black-Scholes
formula starts from the observation that the CEV models with state-de-
pendent volatility specified as follows:

(5)

with constants θ and F
_
, reduces to the Bessel process:

(6)

by means of a non-linear transformation combined with a measure change.
Lipton (2000) derives general reducibility conditions to the more general
processes:

(7)

which are solvable for β = 0, 1, 1/2. The case β = 1 is the lognormal
(or affine) model leading to the Black-Scholes formula. The two cases β
= 0, 1/2 correspond to well-known solvable short-rate models, namely
the Vasicek and the Cox-Ingersoll-Ross (CIR, 1985) models. Albanese &
Campolieti (2001a, 2001b) find a general solution to the reducibility con-
ditions of Carr, Lipton & Madan (2000) for stationary, driftless processes.
In this article, we summarise our findings by presenting the general solu-
tion formula, and illustrate its use in a few particular cases. Since the orig-
inal derivation is somewhat lengthy, we refer to our other papers for a
constructive derivation.

General pricing formula
We present a general pricing formula for the models, which are solvable
by the reduction method. Assume that the state variable x has a drift λ(x)
for which one can find the pricing kernel for the process:

(8)

The pricing kernel is the function u(x, t; x0, t0), which solves the forward
Kolmogorov equation in the first pair of arguments and the backward Kol-
mogorov (ie, Black-Scholes) equation in the second pair. The latter equa-
tion can be written as follows:
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+θ
σ = σ −

It has been known since the 1970s that Black-Scholes (1973) pricing for-
mulas are a special case of more general families of pricing formulas
with more than just the volatility as an adjustable parameter. The list of

the classical extensions includes affine, quadratic and constant elasticity of
variance (CEV) models. These models admit up to three adjustable para-
meters and have been used to solve pricing problems for equity, foreign
exchange, interest rate and credit derivatives. In a series of working pa-
pers, the authors have recently developed new mathematical techniques
that allow much further extensions. Several new families of pricing for-
mulas, with up to seven adjustable parameters in the stationary driftless
case, are obtained while attaining additional flexibility in the general time
dependent case. The formulas extend to barrier options and have a simi-
lar structure to the Black-Scholes formulas, the most notable difference
being that error functions (or cumulative normal distributions) are replaced
by (confluent) hypergeometric functions, ie, the special transcendental
functions of applied mathematics and mathematical physics.

Let F denote a generic financial observable that we know is driftless.
Examples are the forward price of a stock or foreign currency under the
forward measure, a Libor forward rate or a swap rate with appropriate
choice of numeraire asset. Black or Black-Scholes formulas are obtained
by postulating that the time evolution of F obeys a stochastic differential
equation of the form:

(1)

where σ(F) = σ1F is linear and Wt is a standard Brownian or Wiener
process. In this case, pricing formulas of calls and puts for both plain vanil-
la and barrier options can be written in exact analytical form in terms of
the error function. Interestingly, quadratic volatility models with:

(2)

also allow for pricing formulas that reduce to the evaluation of an error
function. This is because quadratic volatility models can be reduced to a
Wiener process by means of a simple measure change and variable trans-
formation of the form:

(3)

where the underlying xt follows:

(4)

The transformation (3) applies under a pricing measure where assets are
valued in terms of a suitably defined numeraire g t = g(x, t). For a review
of change in numeraire methods in pricing theory, we refer to Geman, El
Karoui & Rochet (1995), Schroder (1999) and Borodin & Salminen (1996).
Both functions F(x) and g(x, t) can be derived explicitly for any choice of
parameters σ0, σ1, σ2.

t tdx dW=

( )t tF F x=

( ) 2
0 1 2F F Fσ = σ + σ + σ

( )t t tdF F dW= σ
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Black-Scholes goes
hypergeometric
Claudio Albanese, Giuseppe Campolieti, Peter Carr and Alexander Lipton introduce a general
pricing formula that extends Black-Scholes and contains as particular cases most analytically
solvable models in the literature, including the quadratic and the constant elasticity of
variance models for European-style and barrier options. In addition, large families of new
solutions are found, containing as many as seven free parameters



for t ≥ t0, with final time condition at terminal time t0 = t given by u(x, t;
x0, t) = δ(x – x0) (a Dirac delta function). The processes in (7) are exam-
ples of analytically solvable models for which one can calculate the pric-
ing kernel.

Solvable pricing models can be constructed starting from a solution v(x,
t) of the Black-Scholes equation in (9) with an arbitrary final time condi-
tion at t = 0. The Laplace transform of such a function:

(10)

is usually referred to as the ‘time-independent Green’s function’ and satis-
fies a second-order ordinary differential equation with Dirac delta function
source term δ(x – x0). Let us consider the homogeneous part of this equa-
tion as given by:

(11)

We find that functions v̂ (x, ρ) solving this equation can be taken as the el-
ementary building blocks to construct solvable pricing models for the F
space processes. We therefore call v̂ (x, ρ) the ‘generating function’.

Armed with a solution v̂ (x, ρ), we define a volatility function σ(F) and
an invertible monotonic transformation F = F(x) and its inverse x = X(F)
such that:

(12)

with arbitrary constant σ0 and where:

(13)

The two signs correspond to either monotonic increasing or monotonic
decreasing transformations. The freedom in choosing the sign gives rise to
two families of solutions that are different in the general case. As is veri-
fied in the appendix, the process:

(14)

can be regarded as a forward price process and, under the measure with
g as a numeraire, the state variable xt drifts at rate λ(x). Hence, the pricing
kernel U(F, t; F0, 0) for the overlying forward price F at time t can be eval-
uated in closed form as the expected reward from a limit butterfly spread
contract with delta function payout:
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conditional on the price having value F0 at initial time t = 0. Here, the ex-
pectation is calculated assuming that gt is the numeraire and that the state
variable x drifts at rate λ(x). The final formula for the pricing kernel in F
space is related to the kernel in the underlying x space as follows:

(16)

Ignoring discounting, a European-style call option written on the for-
ward price F0 at current time t = 0, struck at K and maturing at time t =
T can be priced in this model by calculating the following integral:

(17)

Barrier and lookback options can be handled by modifying the underly-
ing kernel in x-space to account for the appropriate boundary conditions.
This is accomplished by means of either integral representations or eigen-
function expansion methods, ie, Green’s function methods that are stan-
dard in the theory of Sturm-Liouville equations. See Davydov & Linetsky
(1999) for a discussion in an option pricing context.

Four families of solvable models
The case β = 1 is the usual lognormal (or affine) model. Of interest here
are the other families with β = 0, 1/2 in equation (7). This provides four
examples of our methodology to generate exactly solvable models.

If β = 0 and λ1 = 0, we recover the Wiener process with constant drift,
which is readily transformed into a driftless Wiener process and thus sup-
ports only quadratic volatility functions in F space, including the lognor-
mal Black-Scholes model as a special subcase. If β = 0 and λ1 ≠ 0, then
the kernel for x ∈ [–λ0/λ1, ∞) can be written in terms of hyperbolic trigono-
metric functions and the generating function solves Hermite's equation.

If β = 1/2 and λ1 = 0, then the pricing kernel for the state variable is
expressed in terms of modified Bessel functions as follows:

(18)

The generating function is:

(19)

with arbitrary constants q1, q2. Here Iν(z) is the modified Bessel function
of order ν and K ν(z) is the associated McDonalds function. In this case,
we obtain two families (one for each choice of sign in (13)) of exact so-
lutions with six adjustable parameters.

The case β = 1/2 and λ1 < 0 gives the pricing kernel for the state vari-
able x corresponding to that of the short rate CIR model, and can still be
expressed in terms of modified Bessel functions as follows:

(20)

where ct ≡ 2λ1/(ν2
0(e

λ1t – 1)). For a derivation, see Giorno et al (1986) and
Kent (1978). The general solution of equation (11) reduces to Whittaker’s
equation and generating functions have the general form:

(21)

for arbitrary constants q1, q2. Here Wk, m(·) and Mk, m(·) are Whittaker func-
tions that can also be expressed in terms of confluent hypergeometric func-
tions or in terms of Kummer functions (Abramowitz & Stegun, 1972). This
construction gives rise to a dual family with seven free parameters (ie, ρ,
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1. Examples of local volatility functions σσ(F)/F
for the quadratic model



� Quadratic volatility models. Pricing kernels for quadratic volatility
models are readily obtained as a subset of the above general family with
the special choice of parameter λ = 3. After making the substitution F →
2F

_
– F and setting a = (F

_
– F

=
)/π the transformation function F(x) becomes:

(26)

where σ0 > 0. Here, we assume that F
_

> F
=

. The inverse transformation
X(F) is given by:

(27)

and the volatility function σ(F) is obtained by insertion into equation (24)
while using the Bessel function of order 1/2:

(28)

Inserting the expression (27) into (25), one obtains the pricing kernel:

(29)

where φ(F) ≡ log((F – F
=

)/(F – F
_
)). In the special case of a volatility function

with a double root, ie:

(30)

the pricing kernel is calculated by taking the limit as F
=

→ F
_
, and one finds:

(31)

� Lognormal models. The pricing kernel for the lognormal Black-Sc-
holes model with σ(F) = σ0F is a particular case of the above formula
for the quadratic model. The derivative with respect to F of the qua-
dratic volatility function in (28), evaluated at F = F

_
, is σ0. Taking the

limit F
=

→ –∞ (or F
=

<< F
_
), while holding the other parameters fixed,
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λ0, λ1, ν0, q1, q2 and an additional constant of integration for the map-
ping from x space to forward price space), where:

(22)

The seven-parameter family that reduces to the CIR model has a local
volatility function defined on either a finite interval or on a half line, and
behaves asymptotically as the CEV volatility on one side and as a quadrat-
ic model on the other. This hybrid shape allows for a great deal of flexi-
bility in reproducing observed volatility skews. There is a way of gaining a
visual understanding of the geometric meaning of the seven parameters that
perhaps oversimplifies the picture, but is intriguing. The allowed shapes,
when confined to a finite interval, can be regarded as hybrids between the
quadratic and the CEV model. The support of the volatility function can be
either a finite or an infinite interval. On one side of the interval, the volatil-
ity behaves asymptotically as that of a CEV model. On the other side of the
interval, the volatility behaves as in a quadratic model. Hunchback shapes
with a local minimum and a local maximum are possible. The seven para-
meters single out the interval endpoints, the blow up or decay rate at one
end and the location of the local minimum and the local maximum. This
representation is an oversimplification, as the minimum and maximum dis-
appear in certain parameter ranges while only inflection points persist. The
inflection points also disappear in other parameter ranges. Hence, our seven-
parameter model supports a varied zoology of skews, smiles, frowns and
smirks. It also supports both cases with, and without, absorption.

Additional extensions are possible. For instance, one can apply a de-
terministic time change and still retain solvability. We refer to forthcoming
articles for a discussion of this and other related topics.

Rediscovering exact solutions in the literature
We show that the known exact solutions in the literature, namely quadratic
and CEV models, can all be rediscovered as particular cases of our general
formula for the Bessel family where we make use of the above solutions to
the underlying x space process with β = 1/2, λ1 = 0 and λ ≡ λ0. Without
loss of generality, we can fix ν0 = 2. We specialise further to the case where:

(23)

which leads to a process for the forward price F with volatility:

(24)

where x = X(F) is the inverse of the function in equation (23). In this fami-
ly, a and ρ are positive, F

_
is arbitrary and λ > 2. The function F(x) maps

the half line x ∈ [0, ∞) into F ∈ (–∞, F
_
], where F(x) is a strictly monotoni-

cally increasing function with dF(x)/dx = σ(F(x))/ν(x). This solution region
can be inverted so that F ∈ [F

_
, ∞). This is accomplished by either replacing

a by –a in equation (23) or by applying a linear change of variables that
maps F into 2F

_
– F. In this special case, we make use of the generating func-

tion in equation (19), with the choice q2 = 0, and formula (16) reduces to:

(25)

We note that this density integrates exactly to unity in F space (ie, no ab-
sorption).
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2. Examples of local volatility functions σσ(F)/F
for the CEV model (θθ = 3)



one obtains σ(F) = σ0(F – F
_
). The pricing kernel in (29) gives the ker-

nel for the lognormal model in the limit F
=

→ –∞, ie:

(32)

� CEV model. The CEV model is recovered in the limiting case as ρ → 0.
Assume λ > 2 and let θ > 0 be defined so that λ = θ–1 + 2. The trans-
formation F = F(x):

(33)

has inverse x = X(F) given by:

(34)

for any constant F
_
. The volatility function for this model is:

(35)

In the limit ρ → 0, the Laplace transform v̂ (X(F), 0) = 1, which implies
that the numeraire change is trivial in this case. The pricing kernel can be
evaluated by substitution into the general formula (16) and, after collect-
ing terms, it turns out to be:

(36)

This formula was derived in the case θ > 0, for which the limiting value F
= F

_
is not attained and the density is easily shown to integrate to unity (ie,

no absorption occurs and the density also vanishes at the endpoint F = F
_
).

We note that the same formula solves the forward pricing equation for θ <
0, leading to the same Bessel equation of order ±(2θ)–1. In the range θ <
0, however, the properties of the above pricing kernel are generally more
subtle. In particular, one can show that the density integrates to unity for all
values θ < –1/2, hence no absorption occurs for θ ∈ (–∞, –1/2). The bound-
ary conditions for the density can be shown to be vanishing at F = F

_
(ie,

paths do not attain the lower endpoint) for all θ < –1. In contrast, for θ ∈
(–1, –1/2) the density becomes singular at the lower endpoint F = F

_
(hence

this corresponds to the case that the density has an integrable singularity for
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which paths can also attain the lower endpoint, but are not absorbed). For
the special case of θ = –1/2, the formula gives rise to absorption. (Note that
for the range θ ∈ (–1/2, 0) the above pricing kernel is not useful since it
gives rise to a density that has a non-integrable singularity at F = F

_
. In this

case, however, another solution that is integrable is obtained by only replacing
the order (2θ)–1 by –(2θ)–1 in the Bessel function. The latter solution for the
density does not integrate to unity and hence gives rise to absorption, which
can be useful to price options in a credit setting.) The special case of θ = –1
gives a non-zero constant value at the lower endpoint, and recovers the
Wiener process with reflection and no absorption on the interval [F

_
, ∞) with:

(37)

Barrier options
The original motivation of two of us, Claudio Albanese and Giuseppe Cam-
polieti, as we engaged in this project, was to streamline the derivation of
pricing formulas for barrier options for our class of financial engineering
master students. The general expression for the pricing kernel gives in fact
a simple derivation of pricing formulas for barrier options, by allowing a
reduction to standard Brownian motion in x space.

Consider, as an example, a down-and-out option with barrier at F = H
within the Black-Scholes model with σ(F) = σ0F. This reduces to the drift-
less Wiener process with volatility ν(x) = √2, by means of the transforma-
tion where:

(38)

with inverse F = F(x) = eσ0x/√2. Specialising equation (16) gives:

(39)

The region x ∈ (–∞, ∞) maps into F ∈ (0, ∞). A barrier located at F = H cor-
responds to H = F(xH) = eσ0xH /√2, so xH = X(H) = (√2/σ0) log H. The upper
region F ∈ [H, ∞) maps into x ∈ [xH, ∞). The x-space kernel with absorbing
boundary condition at x = xH is obtained by the method of images, as:

(40)

Inserting this kernel into the general pricing formula in (39) immediately
gives the pricing kernel in F space:

(41)

where U(F, t; F0, 0) is the barrier-free pricing kernel:

(42)

Ignoring discounting, a down-and-out call maturing at time T and struck
at K > H has the price at time t = 0 given by the integral:

(43)

where F0 is the current forward price of maturity T. This integral can be
evaluated in terms of cumulative normal distribution functions as follows:

(44)

where:

(45)

and d2(x) = d1(x) – σ0√T. Note that, since the risk-neutral drift is absent,
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3. Examples of local volatility functions σσ(F)/F
for the CIR family of solvable models
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Here we verify the main formula, equation (16). Consider a generic
pricing measure where the process for xt obeys the equation:

(46)

for some drift µ(x). Then, by Itô’s lemma, the process gt defined in
(14) satisfies the equation:

(47)

where:

(48)

is defined as the lognormal volatility of g. Substituting equation (11):

(49)

into the above stochastic differential equation, we find:

(50)

To demonstrate that g defines a forward price process, consider
this equation in the original forward measure where the forward price
F follows a martingale process. Then, using Itô’s lemma on the map-
ping xt = X(Ft) and equation (1) we arrive at equation (46) with drift:

(51)

Expressing all functions in terms of x, we then have:

(52)

where σ ≡ σ(F(x)) is the volatility function for the forward price F.
Hence, by substitution the drift of g in the forward measure is:

(53)

Equation (12) gives:

(54)

Substituting into (53), we find that the drift of g under the forward
measure vanishes. Next, consider the measure having g as
numeraire. Under this pricing measure the price of risk qg = σg.
Indeed, by Itô’s lemma, it is known that if one changes from a mea-
sure in which any asset At has a drift rt (ie, the risk-free rate in the
risk-neutral measure or zero in the forward measure) into a new
measure with gt as numeraire, then the drift of At in this new mea-
sure is µA = r +qgσA, where qg = σg is the price of risk and σA the
lognormal volatility of A. Hence, in changing from the forward mea-
sure into the measure having gt as numeraire µA = σgσA. The
choice At = gt gives µg = (σg)2 and:

(55)

Comparison with equation (50) shows that the drift µ of the process
xt is λ, as stated. This implies that the representation (16) for the pric-
ing kernel is correct.

We refer the reader interested in gaining further insight into our
main formula to our article (Albanese & Campolieti, 2001b). There
we provide a direct partial differential equation proof, which is more
elaborate and fully constructive, and is not based on the above sto-
chastic analysis argument. ■
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pricing formulas are more compact when written on forward prices instead
of stock prices.

In the more general case of the other solvable models, one can also ob-
tain analytic closed-form solutions for various exotic payouts, including bar-
rier options. Based on our general results, the derivation of pricing formulas
is straightforward and will be presented elsewhere. ■
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