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Abstract

We combine singular perturbation techniques with a price adjustment
argument to analyze the impact of the smile dynamics i.e. the price difference
between Local Stochastic Volatility (LSV) and Local Volatility (LV) on exotic
products. We obtain an elegant formula that is exact on vanilla options and
propose a set of well-chosen scenario, to compute the impact efficiently. We
perform massive tests on Autocalls. 1

1 Introduction

The main driver when selecting a model for pricing and risk management derivatives
products is its capacity to explain the PnL evolution [18], [16] and [1]. Choosing
the right model to successfully price and hedge financial instruments is based on
a careful study of the financial structure to be considered and in which market it
evolves. The quantitative finance literature has initially promoted the local volatility
(LV) and then the pure stochastic volatility (SV) models as means of explaining the
observed market smile. However, when we consider the dynamic hedging of ex-
otic products such as autocalls, we rapidly conclude that matching the smile is not
enough, one needs to also control the way the latter evolves when the spot moves.
None of the (LV) or (SV) model can describe the smile and its evolution properly.
However, a well fine-tuned mix between the two gives the flexibility to both fit the
vanilla options and the way they evolves when the spot moves. This mix in known
in the literature as Local Stochastic Volatility models (we say LSV). The literature
on this topic is vast and covers a diversity of approaches in the definition of the
models or the way to calibrate them. We can cite [3] and [4] for a universal diffusion
model presentation with applications to the FX derivatives. In [5], Lipton et al make
a survey of (LSV) models applied to a variety of first-generation exotics. Lots of
papers also in the literature cover the calibration approach as it represents one of
the most important building blocks of the computation. In particular, Monte Carlo
based approaches for calibration Henry-Labordere [9], van der Stoep et al. [10],
Guyon and Henry-Labordere [11], calibration based on McKean’s particle method
Guyon and Henry-Labordere [11, 12], hyperbolic-local model Jackel and Kahl [13].

1We would like to warmly thank anonymous referees for their insightful comments. We also
would like to thank Pierre Henry-Labordere and Jean-Pierre Fouque for useful discussions.
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Due to the numerical difficulties on this calibration some papers propose to rely on
a parametric approach with a forward process for the construction of the leverage
function Murex [14], adding local volatility component to an unspanned volatility
term structure, model Halperin and Itkin [15]. In [6], Papanicolaou et al. perform a
perturbative approach on SV models with one or two factors. However, the calibra-
tion of the vanilla is not considered. In [17], Reghai et al. introduce a mixing weight
to control the correlation and the volatility of volatility of the process. The (LSV)
impact is computed for exotics. However, this method does not span all possible
stochastic volatility parameters and only works for mild parameters. In [8], Hagan
et al. perform a singular perturbation analysis on term structure SABR model with
fast varying parameters. However, this is done on a pure stochastic volatility model.

The objective of this paper is to apply singular perturbation approach in the case
of the (LSV) model. For that purpose, we use a singular perturbation approach
without focusing on the vanilla calibration as described in [6]. We then recover
the vanilla fit using a price adjustment as described in the [7]. The obtained for-
mulae are then computed effectively using well- chosen scenario as is done in the
computation of the exotic theta in [1].

This is the main motivation of this work. We indeed propose an extremely
fast algorithm that prices the (LSV) impact at a much lower computational cost
than traditional (LSV) implementations. It is based on (LV) prices calculated on
well- chosen volatility scenario. This is not only a game changer for real time risk
management but also a powerful way to imply the stochastic volatility parameters
in the presence of exotic prices. One last property of the proposed technique is
that it reprices vanilla options perfectly removing all the known burden of (LSV)
calibration. In the end, this formula offers a rapid, robust and easy implementation
of an essential model in real time management. Also, we suggest that this technique
is quite general and opens doors for other industrial applications which will make it
possible to enhance all the existing perturbation formulas developed over the years
and which did not find industrial applications due to lack of their equivalent in the
presence of the smile.

The rest of the paper is organised as follows. In the next section, we clearly
expose the obtained result and how a dimensional analysis could have predicted its
form. In the section 2, we remind the Profit and Loss (PnL) explain equation and
observe the fact the stochastic volatility parameters in equity are highly varying.
This situation is convenient for applying singular perturbation approach. In section
3, we present the price adjustment technique as a general first order approach which
improves the quality of prices based on a first order expansion in the direction of
the calibration. In section 4, we perform the singular expansion combined with the
adjustment. In section 5, we show how to design well-chosen scenario in order to
compute the exotic greeks that appear in the perturbation expansion. In section 6,
we perform massive tests on autocalls comparing the full Monte Carlo LSV impact
calculation with the one obtained with the perturbation formula.
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Problem formulation and main result

In order to ease the reading of the paper we propose to summarize the problem
formulation in this section and give the main result of the paper.

Assume that the dynamic of the stock is given by the following LSV process:

dSt
St

=
σD (t, St)

fε(t, St)
h(Y εt )dWt (1.1)

where, h(x) = ex and Yt satisfies an Orstein-Uhlenbeck process:

dY εt = −κ
ε
Y εt dt+

ν√
ε
dBt (1.2)

with < dBt, dWt >= ρdt
f is an adjustment of the Dupire local volatility σD (t, St) in order to preserve

the vanilla calibration. It satisfies the equation [9]:

f2ε (t, S) = E(h2(Y εt )|St = S) (1.3)

The particular choice of representation of κ the mean reversion and ν the volatil-
ity of volatility of the dynamic as −κε and ν√

ε
expresses the fact that these param-

eters are large in practice, in order to fit the anticipated breakevens. At this stage
we can note that κ2 is homogeneous to ν. This choice is dictated by the fact that
κ has a dimension inverse of time whereas ν is the inverse of square root of time.

The main contributions of the paper is first to provide a methodology that
combines perturbation techniques with calibration and second to propose a com-
putation strategy based on exotic greeks that is performing both theoretically and
numerically.

The paper shows a detailed application to the stochastic volatility model as it
derives a formula to compute efficiently the LSV impact πLSV − πLV . It is given
by:

πLSV ≈ πLV +
1

2
σ2
y

∂2Eπ
β
LV

∂β2
|β=0 +

ρν

κ

∂2EπLV
∂ lnS0∂σ

(1.4)

where:

• πLSV is the price under the LSV :

dSt
St

= σD (t, St)
eY

ε
t√

E(e2Y
ε
t |St)

dBt, dY
ε
t = −κ

ε
Y εt dt+

ν√
ε
dBt (1.5)

• σ2
y = ν2

2κ represents the variance of the invariant distribution of Y εt when
ε −→ 0,
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• Let πβLV := Local volatility pricing which depends on initial conditions β:

dSβt

Sβt
= σD

(
t, Sβt

)
eβ−σ

2
ydWt (1.6)

• ∂E means Exotic greek, We remind that any exotic greek ∂Exotic of a payoff
π is formed from the standard greek ∂ adjusted from the vanilla contribution.
More precisely, if we define

qK,T =
∂σ(K,T )π

∂σ(K,T )CK,T
. (1.7)

qK,T represents the quantity of vanilla CK,T to be detained in order to hedge
volatility surface movement.

∂Exotic(π) = ∂(π)−
∫ T

0

∫ ∞
0

qK,T∂(CK,T )dTdK

We also show how to compute the exotic greek through well-chosen scenario
at a very low computational cost. We end up by showing numerical results on the
mostly traded instruments in equity derivatives i.e. Autocalls.

2 PnL explain

The most important feature of a model is its ability to explain the PnL evolution
on a daily basis. For this exercise, it is based on 3 pillars:

• Option, P , which gives the exposure,

• Market, (dSS )2, dΣdS, which gives the Break even of the stock volatility,

• and Model, σD, α, κ, ν... which gives the intrinsic property of the model.

A delta hedged position under Black & Scholes model gives the following PnL
explanation formula:

δPL = 1
2S

2 d2P
dS2 [( δS

2

S2 )rlzd − σ2δt] Gamma

The fair price is obtained by putting the model parameter σ to its corresponding

realized value or at least its anticipated level ( δS
2

S2 )rlzd.
Likewise, if we use an advanced model such as (LV)or (LSV) model and perform

uniquely a delta hedge strategy, we obtain the following PnL explanation formula is
given by:

δPL = dP
dσKT

[(δσKT )rlzd − (δσKT )model] Vega

+ 1
2S

2 d2P
dS2 [( δS

2

S2 )rlzd − σ2δt] Gamma

+ SσKT
d2P

dSdσKT
[( δSδσKTSσKT

)rlzd − ( δSδσKTSσKT
)model] Vanna

+ 1
2σ

2
KT

d2P
dσ2
KT

[(
δσ2
KT

σ2
KT

)rlzd − (
δσ2
KT

σ2
KT

)model] Volga
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Before tackling the fair value pricing through matching the Break Even, one
needs to cancel the Vega risk which is a first order magnitude and is in practice 20
times more important that second order terms. By doing so, the PnL explanation
formula modifies with the first order term that disappears but also with exposures
that are now adjusted by the vega hedging. The new exposures are called exotic
exposures as they are nil for vanilla options or any product that is replicable with
vanillas.

More precisely, to cancel Vega Risk, the trader needs to sell qKT vanilla options
CKT (1.7).

Her new PnL equation is given by:

• PH = P − qKTCKT

δPLH = 1
2S

2 d2PH

dS2 [( δS
2

S2 )rlzd − σ2δt] Exotic Gamma

+ SσKT
d2PH

dSdσKT
[( δSδσKTSσKT

)rlzd − ( δSδσKTSσKT
)model] Exotic Vanna

+ 1
2σ

2
KT

d2PH

dσ2
KT

[(
δσ2
KT

σ2
KT

)rlzd − (
δσ2
KT

σ2
KT

)model] Exotic Volga

As an illustration, we can compute the exotic greeks of an Autocall product.
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Autocall greeks.

The exotic volga is obviously different from the classic one but presents com-
pensations between the downside and the upside. The Exotic vanna for the autocall
product (long position) remains positive regardless to the scenarii of the spot.

This has a strong consequence on the hedging with (LV) model for which the
model Break Even is exactly -1 and therefore generates a negative carry for the
seller of the Autocall.

At this stage, we can conclude that hedging with (LV) model an Autocall will
generate systematic loss on the exotic vanna term. A way to compensate and have a
fair pricing is to move to a Local Stochastic Volatility 1 Factor (LSV1F) model that
fits the correlation break even. This is done through levels of stochastic volatility
parameters that are extreme κ, ν >> 1 and ρ close to -1.

3 Price Adjustment technique

We start with the following Newton modified lemma.

Lemma 1. Modified Newton: Suppose you have a function f of a variable x.
Suppose that x? is set such that g(x?) = 0 i.e. g satisfies a given constraint. The
value of f on x? is given by the following formula:

f(x?) = f(x)− ∂xf(x)

∂xg(x)
g(x) +O(x? − x)2

Typically, g(x) := πModel(x)− πMarket is a way to encode a calibration.
In multi dimensions, the adjustment takes the following form

f(π,
−→
β?) = f(π,

−→
β )−∇−→

β
fnx1.[∂igj ]

−1
nxn.[gi(

−→
β )]nx1 +O(||

−→
β? −

−→
β ||2) (3.1)

The proof of this lemma goes like this. First we follow the lines of Newton’s
approach by searching for x? as a perturbation of x, namely, x? = x + ε. As
g(x?) = 0 we can expand as follows:

g(x+ ε) = g(x) + ε∂xg(x) = 0

Then, ε = − g(x)
∂xg(x)

Now, We expand f(x?) to obtain the final result. QED

This result is the basis of price adjustment in order to fit a given set of con-
straints. Fitting is another word for calibration. Indeed, the constraint g(x) = 0 is
usually written in finance as follows:

g(x) := πModel(x)− πMarket

where x plays the role of model parameters.
In more classical financial notations, we can adjust our (LV) model price in order

to match exactly vanilla prices using the following vectorial formula:
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Figure 1: Market BE versus LSV1F BE
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πLV ←− πLV −
∫ T

0

∫ ∞
0

qK,T (CK,TLV − C
K,T
Market)dTdK

where qK,T is defined in (1.7).
The objective of this paper is to combine this idea and interpret the adjustment

as an exotic greek as well as the design of a well-chosen scenario which will permit
the precise computation of the LSV impact at a very low computational cost.

4 Singular Exotic Perturbation

In this section, we present the recipe behind the singular exotic perturbation. The
objective is to solve the pricing dynamic as a function of ε and see how if converges
when ε −→ 0 for equation (1.1).

f is the conditional expectation in such a way that we fit the vanilla. It satisfies
the equation (1.3).

Making the expansion in the presence of fε is hard. Instead, we use the following
recipe that we name the singular exotic perturbation:

• We perform the singular perturbation without calibrating the vanilla, i.e.
limε→0 f

2
ε (t, S) = E(h2(Y ε→0

t )) . The zero order gives back the Dupire
local volatility model. We identify the higher orders as volga and vanna con-
tributions.

• We apply the modified Newton lemma in order to adjust the expansion and
recover an exact calibration,

• We explicitly compute zero, first and second order order adjustment due to
the singular perturbation and correct them in order to maintain the vanilla
fit.

• We finally design well chosen scenari in order to ease the previous computa-
tions.

4.1 Singular perturbation on the non calibrated process

The non calibrated dynamic has the following form :

dSt
St

= σD (t, St)e
Y εt −σ

2
ydWt

Let u(t, x, y) be the price of the derivative. It satisfies the PDE:

ut +
1

2
σ2
D(t, x)x2e2(y−σ

2
y)uxx +

1

ε
Lyu+

1√
ε
ρxσD(t, x)ey−σ

2
yνuxy = 0

Ly = −κuy + 1
2ν

2uyy We search for u as follows: u = u0 +
√
εu1 + εu2
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We then apply Poisson in u2 (centring condition):

(∂t +
1

2
σ2
D(t, x)x2 < e2(y−σ

2
y) > ∂xx)u0 = 0

Where < . > is the integration over the invariant distribution of Y .
which becomes:

LDu0 = 0

where LD is the Dupire operator:

LD = (∂t +
1

2
σ2
D(t, x)x2∂xx)

We apply Poisson condition on u3

LDu1 + ρνxσD(t, x) < ey−σ
2
y∂xyu2 >= 0

But Lyu2 = − 1
2x

2σ2
D(t, x)(e2y−σ

2
y− < e2(y−σ

2
y ) >)∂xxu0, with Lyφ = e2(y−σ

2
y)

This implies u2 = − 1
2x

2σ2
D(t, x)φ(y)∂xxu0 + C(t, x, �y).

LDu1 + ρνxσD(t, x)∂x(− 1
2x

2σD(t, x)∂xxu0) = 0 with u1(T, x) = 0. with

V3 =< e(y−σy)φ
′
(y) > (− 1

2
ρν
κ ). (cf [6])

Therefore, applying Feynman-Kac to the previous formula the order 1 can be
computed using only the local volatility model and its derivatives:

u1 = V3E
∫ T

0

StσD(t, St)∂x(S2
t σ

2
D(t, St)∂xxu0)dt

= −2V3E
∫ T

0

StσD(t, St)∂x(∂σD(t,x)u0)dt

= −2V3E
∫ T

0

∫ T

0

∫ ∞
0

Stσ(t, St)∂x(∂σK,T u0∂σD(t,x)σ(K,T ))dKdTdt

= −2V3E
∫ T

0

∫ T

0

∫ ∞
0

StσD(t, St)∂σD(t,x)σ(K,T )∂x∂σK,T u0dKdTdt

− 2V3E
∫ T

0

∫ T

0

∫ ∞
0

StσD(t, St)∂σK,T u0∂x(∂σD(t,x)σ(K,T ))dKdTdt

In the last equality, the first term (I) shows the full vanna of the product summing
up all contribution for a co movement of StσD(t, St). The second term (II) has
a contribution coming only from vanilla options weighted by the vega KT of the
product. Therefore, when the product is vega KT hedged two consequences follow,
the first term which is a vanna becomes an exotic vanna and the second term which
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is a combination of european contribution just vanishes. More precisely, 2,

(I) = E
∫ T

0

∫ T

0

∫ ∞
0

σD(t, St)∂σD(t,x)σ(K,T )∂ln x∂σK,T u0dKdTdt

=

∫ T

0

∫ ∞
0

∂ln x∂σK,T u0dKdT

= ∂2ln x,σu0

(II) = E
∫ T

0

∫ T

0

∫ ∞
0

σD(t, St)∂σK,T u0∂ln x(∂σD(t,x)σ(K,T ))dKdTdt

=

∫ T

0

∫ ∞
0

qK,T∂σK,TCK,T∂ln xσ(K,T )dKdT

4.2 Probabilistic interpretation

In the computation of the order 2 impact, the stochastic volatility is important.
We start as if there is no recalibration.

dSt
St

= σD (t, St)e
Y−σ2

ydWt

where, Y is the invariant distribution of the previous process. Let πyLV as in equation

(4.1). Note that π
σ2
y

LV = πLV . 3

u0 + u2 ≈ π
σ2
y

LV +
1

2
V ar(Y )

π
+β+σ2

y

LV + π
−β+σ2

y

LV − 2π
+σ2

y

LV

β2

= u0 +
1

2
σ2
y

∂2πβLV
∂β2

|β=+σ2
y

4.3 Adjusting the prices to recover the vanilla fit

At this stage, we can apply the modified Newton lemma in order to compensate for
the non calibration. Let us note PNC the price obtained using u0 +u2 which is non
calibrated. Let us note P the calibrated price to the vanilla. We see that this pricing

does not match vanilla options due to the extra term u2 = 1
2σ

2
y
∂2πβLV
∂β2 |β=+σ2

y
. We

can build the adjusted price P by compensating at first order.

2We use the following equation E
∫ T
0 σD(t, St)∂σD(t,x)σ(K,T )dt = 1.0

3E(f(Y )) ≈ f(E(Y )) + 1
2
V ar(Y )f ′′(E(Y ))
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P = PNC −
∫ T

0

∫ ∞
0

qK,T (PNC(CK,T )− CK,TMarket)dTdK

= πLV +
1

2
σ2
y

∂2πβLV
∂β2

−
∫ T

0

∫ ∞
0

qK,T (CK,TLV +
1

2
σ2
y

∂2Cβ,K,TLV

∂β2
− CK,TMarket)dTdK

= πLV +
1

2
σ2
y(
∂2πβLV
∂β2

−
∫ T

0

∫ ∞
0

qK,T
∂2Cβ,K,TLV

∂β2
dTdK)

Where we have used, CK,TLV = πK,TMarket.
We introduce the exotic volga greek:

∂2EπLV
∂β2

= (
∂2πβLV
∂β2

−
∫ T

0

∫ ∞
0

qK,T
∂2Cβ,K,TLV

∂β2
dTdK)

The exotic volga appears naturally for perturbation greeks once we adjust for
the calibration of vanilla.

Similarly, we adjust the term I by introducing the effect of the calibration to
the vanilla options and calculate IC .

IC = I −
∫ T

0

∫ ∞
0

qK,T∂
2
ln x,σK,TCK,T dKdT

=
∂2EπLV
∂ lnS0∂σ

We end up with the final result described in (1.4).
We have obtained the desired result. In particular we have identified the func-

tions that intervene in the expansion and their exotic nature gives an important
property of the formula: it makes that the vanilla impact of the LSV is exactly
zero. This formula is very interesting in order to understand the effect of stochas-
tic volatility on top of the local volatility. However, a brute force implementation
will need to provide all the qKT . We can for example use an offline computation
as proposed in [7]. We can also use the AAD technology (Algorithmic Automatic
differentiation) to compute all the qK,T at a cost that does not exceed 4 price
computations. We shall instead propose the design of particular scenarii in order to
compute these exotic greeks based on two building blocks: implied Black & Scholes
calculator and local volatility pricer. We approach the problem as the computation
of the exotic theta as presented in [1].

5 Designing Exotic scenarii

In order to compute an exotic version of a sensitivity we proceed as follows:

• Compute the sensitivity using a classical scenarii approach,
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• Adjust the scenarii in such a way that the effect on vanilla options disappear.

We use the perturbed local volatility 4.1.
We therefore obtain the exact definition of the asymmetric bump that makes

the volga vanilla disappear:

σK,T + xK,T = C−1K,T {C
K,T
LV + (CK,TLV − C

−β,K,T
LV )} (5.1)

The exotic volga greek is then computed as follows: 4

∂2EπLV
∂β2

β→0
=

πLV (σ + x)− 2πLV + π−βLV
β2

This greek is the result of 3 local volatility prices. One of them is already
computed as it is the central price with no deformation of the volatility surface. The
two others are computed by firstly generating a scenario of volatility deformation
using a bump with a value of β and secondly creating an implied volatility bump
x(K,T ) constructed point by point by implying the volatility from equation (5.1).
This construction guarantees that the exotic term is mechanically zero on vanilla
options. This property gives it its name : exotic.

It is only non zero if and only if the product is a non vanilla option, i.e. non
replicable using vanilla option.

At this stage we have shown an analytic formula for the (LSV) impact and
precised a low complexity that permit the computation of the exotic in order to
implement the formula.
In the next section we shall apply the previous formula on autocalls and show how
precise it is for these types of products.

6 Numerical examples

28 different structures are exchanged at Totem:

• 7 Barrier levels: 80%, 90%, 95%, 100%, 105%, 110%, 120%,

• 4 maturities : T1 = 1y, T2 = 3y, T3 = 5y, T4 = 8y,

• Quarterly coupon equal to 1.25%.

Totem provides the running cost of these 28 = 4 x 7 structures:

πTotem(B, T ) =
πLSV (B, T )− πLV (B, T )

T
4Note that π−β,K,TLV is the price of vanilla options obtained with the local vol process. This is

done using a forward PDE sweep.
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We compute the exotic greeks for different payoffs and then simulate hundreds of
random stochastic volatility model parameters (ρ, ν, κ). We compare the full LSV
impact computed using a full implementation with the formula for the different
strikes. We show the results in the following graphs.

Exotic Volga 8y for the different Barriers
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Exotic Vanna 8y for the different Barriers

These exotic greeks depend only on the products and the volatility surface. They
do not depend on the stochastic volatility parameters.

We then use our formula for randomly simulated stochastic volatility parameters
and compare the full LSV with the proxy formula. Needless to say that the formula
is instantaneous whereas the full LSV takes a non negligible time to run.
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7 Conclusion

In this paper, we introduced a new methodology, singular exotic perturbation. It
gives an efficient approach to compute the impact of smile dynamic without running
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a costly (LSV) model. Instead, it builds on well chosen scenario priced all under a
simpler model, local volatility model (LV). The proposed formula ensures zero impact
on vanilla and performs very well on more complex products such as Autocalls. The
methodology proposed can be used in different contexts as it is the combination
of three building blocks, singular perturbation, first order price adjustment and
computability through the introduction of exotic greeks. We suggest to use this
methodology in other cases such stochastic rates or multi asset case or correlation
skew. Further work is needed to detail these practical applications.
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