
ORNL/TM-12204

OAK RIDGE
NATIONAL

LABORATORY Predicting Structure in
Nonsymmetric Sparse
Matrix Factorizations

John R. Gilbert

Esmond G. Ng
_f

MANAGEDBY ' i _- _._.....!".." "
MARTINMARIETTAENERGYSYSTEMS,INC. ' ........... '
FORTHEUNITEDSTATES
DEPARTMENTOFENERGY



This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Techni-

cal Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615)
576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, =,285 Port Royal Rd., Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency of
the United States Government.Neither the UnitedStates Governmentnor any "
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liabilityor responsibility for the accuracy, com-
pleteness, or usefulnessof any information, apparatus, product, or process dis-
closed, or represents that its use would not infringeprivately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name,trademark, manufacturer,or otherwise,does not necessarilyconsti-

tute or imply its endorsement,recommendation,or favoringby the United States
Government or any agency thereof. The views and opinions of authors
expressed hereindo not necessarilystate or reflect those of the United States
Governmentor any agency thereof.



OICKgTM---12204

DE93 003365

" Engineering Physics and Mathematics Division

Mathematical Sciences Section
w

PREDICTING STRUCTURE IN

NONSYMMETRIC SPARSE MATRIX FACTORIZATIONS

John R. Gilbert t

Esmond G. Ng :_

t Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304-1314

:1:Mathematical Sciences Section

Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

J,

" Date Published: October 1992

Research was supported by the Applied Mathematical Sci-
ences Research Program of the Office of Energy Research,

U.S. Department of Energy, by the Institute for Mathemat-
ics and Its Applications with funds provided by the National
Science Foundation, and by the Christian Michelsen Insti-

tute, Bergen, Norway.

Prepared by the

Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
. managed by

Martin Marietta Energy Systems, Inc.
for the

° U.S.DEPARTMENT OF ENERGY
under Contract N0. DE-AC05-84OR21400

MASTER



Contents

1 Introduction ....................................... 1

2 Preliminaries ...................................... 1

2.1 Symbolic and exact structure prediction .................... 2

2.2 Graphs of matrices: Definitions 4

2.3 Bipartite matching: Definitions ......................... 6
2.4 Hall and strong Hall bipartite graphs ...................... 7

2.5 Gaussian elimination without pivoting ..................... 11
2.6 Lemmas on exact structure in Gaussian elimination .............. 13

3 Orthogonal factorization ................................ 14
3.1 Nonzero structure of A during annihilation .................. 14
3.2 Upper bounds on nonzero structure of R .................... 18
3.3 Lower bounds on nonzero structure of R .................... 19

3.4 Remarks on orthogonal factorization ...................... 22
4 LU factorization with partial pivoting ......................... 22

4.1 Nonzero structure of A during elimination ................... 24

4.2 Upper bounds on L and U with partial pivoting ................ 25
4.3 Lower bounds on L and U with partial pivoting ................ 26

" 4.4 Remarks on LU factorization with pivoting .................. 32
5 Remarks ......................................... 33

- 6 References ........................................ 34

o°,

- Ul -

' " 1li



PREDICTING STRUCTURE IN

NONSYMMETRIC SPARSE MATRIX FACTORIZATIONS

John R. Gilbert

Esmond G. Ng

Abstract

Many computations on sparse matrices have a phase that predicts the nonzero

structure of the output, followed by a phase that actually performs the numerical

computation. We study structure prediction for computations that involve nonsym-

metric row and column permutations and nonsymmetric or non-square matrices. Our

tools are bipartite graphs, matchings, and alternating paths.

Our main new result concerns LU factorization with partial pivoting. We show

that if a square matrix A has the strong Hall property (i.e., is fully indecomposable)

then an upper bound due to George and Ng on the nonzero structure of L + U is

as tight as possible. To show this, we prove a crucial result about alternating paths

in strong Hall graphs. The alternating-paths theorem seems to be of independent

interest: it can also be used to prove related results about structure prediction for QR

factorization that are due to Coleman, Edenbrandt, Gilbert, Hare, Johnson, Olesky,
Pothen, and van den Driessche.

Keywords: Gaussian elimination, partial pivoting, orthogonal factorization, match-

ings in bipartite graphs, strong Hall property, structure prediction, sparse matrix
factorization.

AMS(MOS) subject classifications: 05C50, 05C70, 15A23, 65F05, 65F50.
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1. Introduction

Many sparse matrix algorithms predict the nonzero structure of the output of a computa-

tion before performing the computation itself. Knowledge of the output structure can be

" used to allocate memory, set up data structures, schedule parallel tasks, .a.nd save time by

avoiding operations on zeros. Usually the output structure is predicted by doing some sort

of symbolic computation on the nonzero structure of the input; the actual input values

are ignored until the numerical computation begins.

This paper discusses structure prediction for orthogonal factorization and for Gaussian

elimination with partial pivoting. These algorithms permute the rows and columns of an

input matrix nonsymmetrically: starting with a linear system (or least-squares system)

of the form Ax - b, they instead solve a system (prApc)((Pc)Tx) = (Prb). Here pr

and pc are permutation matrices; pr reorders the rows of A (the equations), often for

numerical stability or for efficiency, and pc reorders the columns of A (the variables),

often for sparsity. We are most interested in the case where pc has already been chosen

on grounds of sparsity.

Our main tools are bipartite graphs, matchings, and alternating paths. A matching

corresponds to a choice of nonzero diagonal elements. Paths in graphs are important in

many sparse matrix settings; the notion of alternating paths links matchings, connectivity,

and irreducibility. In this paper we highlight a particular sort of irreducibility called the

• strong Hall property: this generalizes the notion of strong connectivity (or irreducibility

under symmetric permutations) to nonsymmetric permutations and nonsquare matrices.

It turns out that accurate structure prediction is easier for strong Hall matrices than for

general matrices. Fortunately, a non-strong-Hall linear system is often most efficiently

solved by decomposing it into a sequence of strong Hall systems.

The next section gives definitions and background results, beginning with a definition

of exactly what we mean by structure prediction. Section 3 discusses QR factorization.

Most of this section reviews earlier work, placing it in a framework that can be used to

study LU factorization as well. Section 3 also contains a new tight symbolic result on

columnwise orthogonal factorization. Section 4 applies the framework from Section 3 to

LU factorization. It contains the main results of the paper, which are tight upper and

lower bounds on where fill can occur during LU factorization with partial pivoting. Both

Sections 3 and 4 conclude with remarks and open problems; Section 5 makes some final
remarks.

2. Preliminaries

We begin this section by defining various kinds of structure prediction. We then discuss

several graph-theoretic models of sparse matrix structure. We define so-called "strong Hall

- bipartite graphs," which model a useful class of fundamental matrices. We prove a crucial

result (Theorem 4) about matchings and alternating paths in strong Hall graphs, which
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is the basis for the main results in the rest of the paper. Finally, we briefly review work

on structure prediction for symmetric and nonsymmetric Gaussian elimination without
pivoting.

m

2.1. Symbolic and exact structure prediction

Suppose f is a function from matrices to matrices, and jr is an algorithm that computes

f(A) by applying elementary transformations (or elementary matrices) to A. The trans-

formations of interest to us are Gauss transforms (elimination steps), Givens rotations,

Householder reflections, and row and column swaps. (See Golub and Van Loan [18] for
detailed descriptions of various elementary matrix transformations.) We will discuss two
kinds of structure prediction, which we call symbolic and exact.

Symbolic structure prediction models the effect of algorithm _" by modeling the effect

of each elementary transformation on the nonzero structure of a matrix. Each elementary
transformation is defined to produce zeros in certain positions: a Gauss transform or

a Householder reflection annihilates part of a column, a Givens rotation annihilates a

single element, and a swap interchanges the zeros in two rows or columns. In symbolic

structure prediction we assume that no zeros are ever produced outside those well-defined

positions, whether because of numerical coincidence or structural singularity. This "no-

cancellation" assumption generally guarantees that we compute an upper bound on the

possible nonzero structure of f(A). (At least, it does so if algorithm _" never makes choices
based on numerical comparison to zero.)

Symbolic structure prediction can sometimes produce too generous an answer for rea-

sons that have nothing to do with numerical values. For example, consider an algo-

rithm that solves a nonsymmetric linear system Ax = b by forming the normal equations
ATAx = ATb and factoring the matrix ATA. If A has the structure

× '

×

then the symbolic approach will predict (correctly) that ATA is full, and then (incorrectly)
that the factor of this full matrix is a full triangular matrix.

Even though the no-cancellation assumption may not be strictly correct, there are

situations in which symbolic structure prediction is the most useful kind. For example, an

algorithm may produce intermediate fill, or elements that are nonzero at some point in the

computation but zero in the final result. (Using the normal equations on the triangular

matrix above is an example.) A symbolic prediction can be used to identify all possible

intermediate fill locations, and thus to set up a static data structure in which to carry
out the entire algorithm. Also, even if an element can be proved to be zero in exact

arithmetic, it may not be computed as zero in floating-point arithmetic; we may wish to
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use symbolic structure prediction to avoid having to decide when such an element should

really be considered to be zero.
!

Exact structure prediction, on the other hand, predicts the nonzero structure of f(A)

from that of A without rega,'d to the algorithm that computes f(A). For each input

" structure S, it yields the set of output positions that are nonzero for some choice of input

A having structure S. Thus the output of an exact structure prediction is

U{structure(f(A)) " structure(A) = S}.

In all the interesting cases that we know, this is equal to

[,_J{structure(f(A)) : structure(A)C_ S}.

An exact structure prediction for the normal equations algorithm on the triangular input

above is that the output has the same structure as the input.

If T is the exactly predicted structure of f on input structure S, then for each nonzero

position (i,j)ofT there is some A (depending on i,j, and S)for which [f(A)]ij is nonzero.

(We use [f(A)]ij to denote the (i,j) element of f(A).) This is what we call a one-at-a-time

result: it promises that every position in the predicted structure can be made nonzero,

but not necessarily all for the same input A. A stronger result is an aU-at-once result,

saying that there is some single A depending only on S for which f(A) has the structure

" T. Some functions f admit all-at-once exact structure predictions and some do not. For

example, we will see that if f(A) is the upper triangular factor in QR factorization of a

strong Hall matrix, then there is an all-at-once exact prediction; but if f(A) is the upper

triangular factor in LU factorization with partial pivoting of a strong Hall matrix, then

the tightest possible exact prediction is only one-at-a-time.

Exact structure prediction depends only on the input structure, so numerical coinci-

dence can still produce unexpected zeros. For example, the exact structure prediction of

the upper triangular factor of

(l i)(00)(11)1 2 = 1 1 0 0 1 0

1 1 1 0 1 0 0 1

is that it is full, though in fact its (2,3) element is zero (for the particular choice of

numerical values).
A symbolic upper bound on structure is an exact upper bound, but not vice versa. In

each of Sections 3 and 4, we prove that an exact lower bound is equal to a symbolic upper

• bound; it follJws that the bound is tight both symbolically and exactly.
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2.2. Graphs of matrices: Definitions

We assume the reader is familiar with basic graph-theoretic terminology; Harary [20] is a

good gez,eral reference. We write G1 C_G2 to mean that graph G1 is a subgraph of graph
G2.

Suppose A is a matrix with m rows and n columns. We write [A]rc for the element in

the (r, c) position of A.

We will use three graphs to describe the nonzero structure of A. The bipartite graph

of A, which we write H(A), has m "row vertices" and n "column vertices." The row and

column vertices are drawn from two different copies of the positive integers, which we

distinguish by using primes on row vertex names. Thus the row vertices are 1', 2I, ...,

m _, and the column vertices are 1, 2, ..., n. When a variable names a vertex, we will use

a prime for a row vertex; thus for example i is a column vertex, and i_is the row vertex

with the same number. The graph H(A) has an edge (r',c> for each nonzero element [A]rc

of A. Figure 1 is an example.

I' I

2' 2

f× ×

X 3' $
X X X

X X 4' 4
X X

X X s' s

6'

Figure 1: A matrix A and its bipartite graph H(A).

If m = n then A is square, and we also say that H(A) is square. In this case the

directed graph of A is the directed graph G(A) whose n vertices are the integers 1, ..., n,

and whose edges are {(r, c):r _ c and [A]rc _ 0}. This graph does not include self-loops,

so we cannot tell from G(A) whether or not the diagonal elements of A are zero. Figure 2

is an example.

If m = n and in addition A is symmetric, then the edges of G(A) occur in symmetric

pairs. An undirected graph with n vertices and one undirected edge for each symmetric

pair of off-diagonal nonzeros is often used to represent the structure of a symmetric matrix.

We will write this undirected graph as G(A), and we will not distinguish between it and

the directed graph of A. Figure 3 is an example.

The column intersection graph of an arbitrary m x n matrix A is the undirected

graph Gn(A) whose vertices are the integers 1, ..., n, and whose edges are {(i,j) :

3r with [A]ri # 0 and lA]tj # 0}. Thus the vertices of Gn(A) are the columns of A,

, !
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• X X / I_.., I

X X

X X

X X X 1 4

Figure 2: A nonsymmetric matrix A and its directed graph G(A).

/xx /
X X X X

X X X

X X X

X X X 1 4

Figure 3: A symmetric matrix A and its undirected graph G(A).

and an edge joins two vertices whose coh_mns share a nonzero row in A. Unless there is

numerical cancellation, Gn(A) is equal to G(ATA); in all cases Gn(A) __G(ATA). Figure 4

is an example.

X,x '
X X X _ 4 i 4

xxX X

× ×
2 5 2 S

Figure 4: A matrix A, its column intersection graph Gn(A), and its filled column inter-
section graph G*n(A).

T:_ble 1 summarizes this notation, as well as some that is defined in later sections.

We allow both graphs and matrices as arguments to Gn and so on; thus for example if

H - H(A) then Gn(H) means the same as Gn(A).

If z is a vertex of graph G (bipartite, directed, or undirected), we write Adja(x) for

. the set of vertices y such that (z, y) is an edge of G. A walk is a sequence of edges T' =

((Xo, xl), (xi,x2),..., (xp_l,xp)). We can also describe this walk by listing its vertices,

(x0, xi,..., xp). The length of *.he walk is p. We count the empty sequence as a walk of

length 0. A path is a walk in which all the vertices are distinct. We use P[xi :xi] to denote
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Table 1: Graphs associated with the matrix A.

H(A) bipartite graph of arbitrary matrix
G(A) directed graph of square matrix
G(A) undirected graph of square symmetric matrix

Gn(A) column intersection graph of arbitrary matrix
G+(A) filled graph (directed or undirected) of square matrix
G+(A) filled graph of column intersection graph of arbitrary matrix
HX(A) row merge graph (bipartite) of arbitrary matrix
G x(A) row merge graph (directed) of square matrix

the portion of path 7_ from xi to xi.1 If P is a path from x to y, and Q is a path from y

to z, and y is the only vertex on both T_and Q, then "PC is a path from z to z.

The intermediate vertices of a path P are all its vertices except its endpoints."If x is

a vertex of G and S is a set of vertices of G, we write Reacha(x, S) to denote the set of

vertices y such that G contains a path from x to y with intermediate vertices from S. In

this case we also say that y is reachable from x through S. For a bipartite graph H, we

write ReachColH(x,S) to mean the column vertices in ReachH(x,S).

The following trivial lemma relates paths in a bipartite graph and in its column inter-

section graph.

Lemma 1. Let H be a bipartite graph, and let Gn(H) be its column intersection graph.

For any subset C of the columns of H, and for any two column vertices x and y of H,

there is a path in H from x to y whose intermediate column vertices ali lie in C if and

only if y E Reachan(H)(z, C).

Proot: Immediate. []

2.3. Biparii*.e matching: Definitions

We briefly summarize some terminology on matchings in bipartite graphs. Lovasz and

Plummer [24] is a good general reference on matching; some of our terminology is from

Coleman, Edenbrandt, and Gilbert [5]. Brualdi and Ryser [3, Chapter 4] is a good reference
on decompositions of bipartite graphs.

Let H be a bipartite graph with ra rows and n columns. A matching on H is a set .M

of edges, no two of which have a common endpoint. A vertex is covered or matched by M

if it is an endpoint of an edge of.M. Clearly, no matching can have more than min(ra, n)

edges. A matching is called column-complete if it has n edges, and row-complete if it has

m edges; if m = n a matching with n edges is also called perfect. Not every bipartite

graph has a column-complete or row-complete matching.

lWhen the graph G is bipartite or undirected, "P[z,: z3] = ((z,,z,+l),...,(xj__,z_))if/ < j, and
7_[x,: xj] = ((x,,x,-l),..., (x,+l,xj)) if i _>j.
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If Ad is a matching on H, an alternating path (with respect to M)is a path on which

. every second edge is an element of M; an alternating ",alk is a walk on which ever.,,,second

edge is an element of M. Alternating paths and walks come in two flavors: an r.alternating

path is one that follows matching edges from columns to rows and non-matching edges

from rows to columns; a c-alternating path is one that follows matching edges from rows

to columns. The reverse of an r-alternating path or walk is a c-alternating path or walk.

Suppose the last vertex of one alternating walk is the first vertex of another. If the

alternating walks are of the same flavor, their concatenation is an alternating walk of that

flavor; if the walks are of opposite flavors, their concatenation is not an alternating walk.

Suppose that P is an alternating path (of either flavor) from an unmatched vertex v to

a different vertex w. If the last vertex w on 7) is unmatched, or the last edge on T' belongs

to M, then the set of edges M = M (_ T' = (M U T') - (M D T') is another matching;

we say that M is obtained from .£4 by alternating along path 7'. If w is matched in M,

then v is matched and w is unmatched in _, and ]_] = [M I. If w is unmatched in M,

then both v and w are matched in _, and I_] = ],Ml + 1. In the latter case we also call

P an augmenting path (with respect to M). A classical result of matching theory is that

a maximum-size matching can be constructed by greedily finding augmenting paths and
alternating along them.

A perfect matching in the bipartite graph H = H(A) of a square matrix can be thought

of as a way to find a row permutation P for A so that the permuted matrix PA has nonzero

- diagonal. Then alternating paths in H correspond to directed paths in G(PA).

Lemma 2. Suppose A has a nonzero diagonal. The directed graph G( A ) has a path from

vertex r to vertex c if and only if the bipartite graph H(A) has a path from row r' to

column c that is r-alternating with respect to the matching of diagonal edges (i _,i).

Proof: Immediate. D

2.4. Hall and strong Hall bipartite graphs

A bipartite graph with m rows and n columns has the Hall property if every set of k column

vertices is adjacent to at least k row vertices, for all 0 < k _<n. Clearly a Hall graph must

have m _>n. If a graph is not Hall, it cannot have a column-complete matching, because

a set of columns that is adjacent only to a smaller set of rows cannot all be matched. The

converse is a classical fact about bipartite matching.

Theorem 1 (Hall's Theorem). A bipartite graph has a column-complete matching if

and only if it has the Hall property. []

Corollary 1. Ira matrix A has full column rank, then H (A ) is Hal,!. Conversely, if H is

. Hall then almost ali matrices A with H = H(A) have full column rank.

Proof: If tt(A) is not Hall, then it has a set of columns with nonzeros in a smaller

number of rows; those columns must be linearly dependent. For the converse, let .M be
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a column-complete matching on II and let R be the set of rows that are matched by .hd.

Consider any matrix A with II(A) - H. The submatrix of A consisting of rows R and all

columns is square. Its determinant is a polynomial in the nonzero values of A. We claim

that this polynomial is not identically zero: if the entries corresponding to edges of .A4have

the value one and ali other entries are zero, the submatrix is a permuted identity matrix

and the determinant is 4-1. The set of zeros of a k-variable polynomial has measure zero

in R k, unless the polynomial is identically zero. Thus the set of ways to fill in the values

of A to make this submatri:, singular has measure zero. If the submatrix is nonsingular,

then all the columns of A are ilnearly independent and A has full column rank. []

A bipartite graph with m rows and n columns has the strong Hall property if every

set of k column vertices is adjacent to at least k + 1 row vertices, for all 1 < k < n. 2 It is

easy to see that the strong Hall property implies the Hall property.

If the Hall property is a linear independence condition, the stro:,g Hall property is

an irreducibility condition: any matrix that is not strong Hall can be permuted to a

block upper triangular form called the Dulmage-Mendelsohn decomposition [3,24,29], in

which each diagonal block is strong Hall. 3 Linear equation systems and least-squares

problems whose matrices are not strong Hall can be solved by performing first a Dulmage-

Mendelsohn decomposition, and then a block backsubstitution that solves a system with

each strong Hall diagonal block. Strong Hall matrices are therefore of particular interest

in sparse Gaussian elimination and least squares problems.

Brualdi and Shader [4] and Coleman, Edenbrandt, and Gilbert [5] discuss properties

of strong Hall matrices. In the following result, an independent set is a set of vertices no

two of which are adjacent; an independent set in a bipartite graph corresponds to the rows
and columns of a zero submatrix.

Theorem 2 (Brualdi and Shader [4]). A bipartite graph having m rows and n < m

columns is Hall if and only if it has no independent set of more than m vertices, and strong

Hall if and only if it has no independent set of at least m vertices that includes at least

one vertex from each part. 0

A square strong Hall matrix is often called fully indecomposable, meaning that there

is no way to permute its rows and columns into a block triangular form with more than

one block [3]. This gives the following (standard) result.

Theorem 3. Let II = It(A) be a square strong Hall graph. Then for ali row and column

permutations pr and pc, the directed graph G(PrAP c) is strongly connected. [3

2This definition is from Coleman et al. [5]. Another definition that is sometimes used replaces the
bounds on k by 1 < k < rn; the only difference is that an m by n matrix with m > n and rn - n zero rows
that is strong Hall by our definition is not strong Hall by the other definition. Ali the results in Section 3
and Section 4 hold no matter which definition is used.

_LThis assumes m _> n. More generally, for any m and n, an m x n matrix can be permuted to a block
upper triangular form in which each diagonal block is strong Hall or has a strong Hall transpose.

"tplt_' '"" I,It"_1"'rl'l ,,ii ...... _'_",rtll "rlM't,_Sllllll. '",Is rill_,',,,,",1r'.'r_,.... ,"' tp_"l_qllllI ..... til"_ll_ltlitplllM''" sq'S_lll_'''l'llllPIItl'1,11,m,, i,qql,



_

We conclude this subsection by proving a theorem (Theorem 4) about strong HaLl

matrices that is useful in several structure prediction results. The theorem first appeared

in a technical report by Gilbert [15]; other proofs have been given by Hare, Johnson,

Olesky, and van den Driessche [21] and Brualdi and Shader [4]. First we need two technical
lemmas.

Lemma 3. Let II be a strong Hall graph and let (r _,c) be an edge of H. Then there is

a column-complete matching that includes (r', c), and unless (r', c) is the only edge of H

there is a column-complete matching that excludes (r', c).

Proof: First, let H be H without vertices r' and c and their incident edges. We show

that//is Hall. Every nonempty set C of columns of H is a nonempty proper subset ,_f

columns of H, and hence is adjacent to at least ICI + 1 rows of H. This includes at 1__,_,

lC I rows of H. Therefore H is Hall and has a column-complete matching. That matchcig

plus edge (r_,c) is a column-complete matching on H.

Now assume that H has more than one edge, and let H be H without the single

edge (r _,c). We show that J_ is Hall. Any nonempty proper subset C of columns is

adjacent to at least ICI Zr 1 rows in H, hence to at least ICI rows in H. The same

argument works if C is the set c_t_all columns and H has at least ICI + 1 nonzero rows.

If C is the set of all columns and H has exactly ICI nonzero rows R, _c _rgue as

follows: If r _ were adjacent only to c in H, then C - c would be adjacent in H only to

• the lC - c I rows R - r_,4 contradicting the fact that H is strong Hall. Thus C must be

adjacent in/t to ali ICI rows.

Whether or not H is square, then, we conclude that H is Hall. Thus H has a column-

complete matching, which is a column-complete matching on H that excludes (r _,c). [::!

Lemma 4. If H is strong Hall and has more nonzero rows than columns, and ft4 is any

column.complete matching on H, then from every row or column vertex w of H there is

a c-alternating path to some unmatched row vertex r _ (which depends on w and .A4).

Proof." This is a standard result on Dulmage-Mendelsohn decomposition; we include

a proof here only to be self-contained. If w is an unmatched row there is nothing to

prove. Otherwise, let C be the set of columns reachable by c-alternating paths from w.

Then C is nonempty. Let R be the set of row vertices adjacent to vertices of C. Since

H is strong Hall and has more nonzero rows than columns, IRI is larger than ICl. Thus

there is some vertex r _in R that is not matched to a vertex in C. Suppose r _ is adjacent

to c E C. The c-alternating path from w to c can be extended by edge (c, r') to r'. Now if

r _were matched, it would be matched to a vertex v not in C; but then there would be a

• c-alternating path from w to v, contrary to the definition of C. Therefore r _is the desired
unmatched row vertex. D

• Finally we prove the main result about alternating paths in strong HaLl graphs.

4If C is a set of verticesand c in a vertex, we use C - c to denote the set C - {c}.
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Theorem 4 (Alternating-Paths Theorem). Let H be a strong Hall graph with at

least two rows, let v be a column vertex of H, and let w be any row or column vertex of H

such that a path exists from v to w. Then tt has a column-complete matching relative

to which thele exists a c-alternating path from v to w (or, equivalently, an r-alternating

path from w to v).

Proof: Since some of the vertices in this proof can be either row or column vertices, we

will not use primed variables; an unprimed variable may denote either a row or a column
vertex.

If H is square, or if H has only as many nonzero rows as columns, then the theorem
follows from Theorem 3 and Lemma 2.

Suppose that t/ has more nonzero rows than columns. If v = w there is nothing to

prove. Otherwise, by hypothesis there is at least one path from v to w. By Lemma 3 there

is a column-complete matching that omits the first edge on that path. (Note that this
edge is not the on]Lyedge of H since H has more nonzeros than columns.) If 7:)is a path

from v to w and .hd is a column-complete matching that omits the first edge on 7_, let u

(dependent on P and .h4) be the last vertex on P such that P[v'u] is alternating. Then

P[v:u] is c-alternating. Among all such paths and column-complete matchings, choose "P

and .A4 such that the length of P[u" w] is minimum.

If u = w the theorem holds. We shall assume u _ w and derive a contradiction. Let t

be the next vertex after u on 7_. Both the last edge of P[v'u] and the first edge of :P[u: w]

(which is (u,t)) must De non-.h4 edges, or else "P[v"t] would be alternating.

Because P[v : u] is c-alternating and begins and ends with non-matching edges, u is a

row vertex and hence t is a column vertex. Let s be the vertex matched to t in jt4, which

may or may not be on P.

Lemma 4 implies that there is an unmatched row vertex r and a c-alternating path T_

from u to r (possibly u = r). Now t is on path 7_ if and only if s is. There are two cases.

oo_-- oo.o_oNoo

__
' H i' i i i i

• • • •

Figure 5: Case I of Theorem 4. The dashed edgesare the matching .M. P is the horizontal
path from v to w. The light dotted line shows path _ from u to r. Path P[v" u]_[u : z]
is c-alternating with respect to .Ad.

Case I. Both t and s are on -_. In this case P[v" u]_[u " t] is a c-alternating walk

from v to t. Therefore there is a c-alternating path _ from v to t. Let z be the last vertex

on P that is also on _ (so z is on P[t' w]). Then P = 7_[v "z]P[z: w] is a path from v

, ,.... , ,,
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to w. But this is a contradiction: _ is c-alternating from v at least to x, and _[x :w] is

shorter than P[u:w]. This contradicts the choice of P. Figure 5 illustrates this case.

Figure 6: Case 2 of Theorem 4. The most complicated version is shown. The dashed

edges are the matching .hd. 7_ is the horizontal path from v to w. The light dotted line
shows path R from s to r. Path 7)[v: z]T_[x : y] is c-alternating with respect to M @T_. A

simpler version, not shown, is if T_ does not intersect P after u. Then x = u, y = t, and
7_[v:u](u, t) is c-alternating with respect to _ _ T_.

Case 2. Neither t nor s is on _. In this case T_ = (s,t)(t,u) _ is a c-alternating

path from s to r. Since r is an unmatched row and s is matched to t, M = ¢t4 _ T_ is a

column-complete matching. Path T_ is c-alternating with respect to M.
,a

Let x be the first vertex on :P that is also on 7_ (so x is on "Ply ' u]), and let y be the

last vertex on 7) that is also on U (so y is on P[t • w]). Then "_ = 7a[v "x]7"t[x "y]'P[y'w]

" is a path from v to w. The path P[v" x] is c-alternating with respect to both .AI and M,

because Mhdand _ agree on T_[v:x]. Depending on whether x precedes or follows y on T_,

the path T_[x 'y] is c-alternating either with respect to _ or with respect to M, because

and _" disagree on T_. Therefore _[v'y] = P[v'x]T_[x'y] is c-alternating either with

respect to Mhdor to ¢t4. Figure 6 illustrates this case.

But this is a contradiction: With respect to one of the column-complete matchings

and j_4, we have shown that _ is a path from v to w that is c-alternating from v

at least as far as y, and P[y : w] is shorter than P[u'w]. This contradicts the choice of

P and .M, and finishes the proof of Theorem 4. [::]

2.5. Gaussian elimination without pivoting

Here we briefly review a graph-theoretic model of LU factorization without row or column

interchanges. The undirected version of this model is due to Parter [27] and was developed

extensively by Rose [30]; the directed version was developed by Rose and Tarjan [31].

George and Liu [11] is a good source for the undirected model. Gilbert [14] surveys these
. and related results.

If G = G(A) is a directed or undirected graph, we define the deficiency of a vertex v
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of G as the set of edges

{(r,c) : v e Adja(r),c • Adja(v), and c _ Adja(r)}.

The deficiency of v corresponds to the fill that occurs in A when the (v, v) element is used

as a pivot in Gaussian elimination. Therefore we can define a sequence of elimination

graphs Ga, G1, ..., Gn, where Go = G(A) and Gi is obtained from Gi-1 by adding the

deficiency of vertex i (in Gi-1) and deleting vertex i and its incident edges. Then Gi is

the graph of the (n- i) × (n- i) Schur complement that remains after eliminating the

first i vertices of A. This is in the symbolic sense--that is, it ignores possible numeric

cancellation. We define the filled graph of A, which we write G+(A), as the n-vertex graph

conta;ning all the edges of all the Gi's. Thus we have the following result.

Theorem 5. Suppose the square matrix A can be factored as A = LU without row or

column interchanges. Then G(L + U) C_G+(A) with equality unless there is cancellation

in the factorization. In other words, the filled graph contains edges for ali the nonzeros of
L and U. rn

If A is symmetric and G(A) is the undirected graph, then G+(A) is undirected. (Re-

member that we do not distinguish between an undirected graph and a directed graph with

symmetric pairs of edges.) Historically, filled graphs were studied first in the undirected J,

case, specifically for the Cholesky factorization of symmetric positive definite matrices.

The theory of undirected filled graphs, which are the same as chordal graphs, is quite

rich [19,30].

We can characterize the structure of G+(A) in terms of paths in the graph of A, without

actually computing all the elimination graphs. In the following theorem, the paths can be

interpreted as directed paths for nonsymmetric matrices and either directed or undirected

paths for symmetric matrices.

Lemma 5 (Rose, Tarjan, and Lueker [31,32]). Let G be a directed or undirected

graph whose vertices are the integers 1 through n, and let G+ be its filled graph. Then

(x, y) is an edge of G + if and only if there is a path in G from x to y whose intermediate

vertices are ali smaller than rain(x, y). []

Paths from x to y whose intermediate vertices are all smaller than min(z, y) are some-

times referred to as fill paths.

A graph that is often useful in nonsymmetric structure prediction is the filled column

intersection graph of an arbitrary m x n matrix A. This graph, which we write G+(A), is

just G+(Gn(A)); it is the n-vertex undirected 'filled graph of the column intersection graph

of A. Figure 4 is an example. The graph G+(A) is related to the normal equations; its

structure is the symbolic result of forming ATA and then computing the Cholesky factor

of that matrix. Section 3 discusses the conditions under which this symbolic structure

prediction is exact.
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2.6. Lemmas on exact structure in Gaussian elimination

" In this final subsection we prove some easy lemmas that take into account the values of the

nonzeros in the matrix. These results will be the building blocks for the exact structure

predictions in the rest of the paper.

Lemma 6. Suppose A is square and nonsingular, and has a triangular factorization A =

LU without pivoting. Let r be a row index and c a column index of A, and let K be the

submatrix of A consisting of rows 1 through min(r, c) - 1 and r, and columns 1 through

rain(r, c)- 1 and c. Then [L d- U]_c is zero if and only if K is singular.

Proof: Let s = min(r,c). Factor K = LKUK. Then [Ug]s._ = [U]_c if r _< c, and

[UK]as - [L]rc[U]cc if r > c, so [U/x']ss is zero if and only if [L -t- U]rc is zero. The

determinant of Uh- is the same as that of K, and the first s - 1 diagonal elements of UK

are the same as those of U, so [Uh'],s = 0 ii and only if K is singular. []

Lemma 7. Suppose A is square and nonsingular, and has a triangular factorization A =

LU without pivoting. Suppose also that ali the diagonal elements of A except possibly

the last one are nonzero, and that every square Hall submatrix of A is nonsingular. Then

G(L-t- U) = G+(A); that is, every nonzero predicted by the filled graph of A is actually
nonzero in the factorization.

. Proof: Suppose (r,c) is an edge of G+(A). Then there is a fill path 7_ from r to c whose

intermediate vertices are less than s = min(r, c).

. Let K be the submatrix of A mentioned in Lemma 6, consisting of rows 1 through s-

1 and r, and columns 1 through s- 1 and c. For convenience, call the last row and column

in K number r and c respectively instead of number s. Then path 7:' corresponds to a

path in H(K) from row vertex r' to column vertex c, which is r-alternating with respect

to the matching .M of edges (i', i).

Now .M is one edge short of being a perfect matching on K, because column c and row

r_are not matched. However 7_ is an augmenting path with respect to .AI/, and therefore

ft4 _ P is a perfect matching on K. Since K has a perfect matching, it is Hall; thus its

determinant is nonzero by hypothesis, and [L + U]rc is nonzero by Lemma 6. []

The hypothesis that A has nonzero diagonal in Lemma 7 is crucial. Brayton, Gus-

tavson, and Willoughby [2] gave the following counterexample in the case when this hy-

pothesis is not included. Let

_ A --- •

× × ×

× ×

Then the (4,3) entry in G.(A) is nonzero, but [L]4,3 = 0 regardless of the nonzero values
of A.
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Lemma 8. Suppose bipartite graph H has a perfect matching .M. Let A be a matrix

with H(A)= H, such that [A]rc > n for (r',c) E A4 and 0 < [Alto < 1 for (r',c) _ h4. If

A is factored by Gaussian elimination with partial pivoting, then the edges of.M will be

the pivots.

Proof: When the rows of matrix A are permuted so that the edges of A4 are the diagonal

elements, the values chosen make the permuted matrix strongly diagonally dominant. []

3. Orthogonal factorization

Let A be a matrix with m rows and n <_ m columns, with full column rank n. In this

section we consider the orthogonal factorization A = QR, where Q is an m × m orthogona!

matrix (that is, QTQ = I), and R is an m × n upper triangular matrix with nonnegative

diagonal entries. (All the nonzeros of R are in the n x n upper triangle, so we will think

of R as being n x n.) This factorization is unique. It arises in least squares and other

optimization problems [18,22].

To compute the QR factorization, A is transformed into R by multiplying it on the

left by a sequence of orthogonal transformations that annihilate nonzeros below the main

diagonal. In most applications, Q is not computed explicitly: either the orthogonal trans-

formations are applied to a right-hand side at the same time as to A, or else a description

of the sequence is _aved to be applied later.

At least two structure prediction problems are of interest here. First, what is the

nonzero structure of A at each step of annihilation? Second, what is the nonzero structure

of R? The answer to the first question depends on the algorithm we use to compute the

factorization; the answer to the second does not.

In Section 3.1 below, we review work of George, Liu, and Ng on intermediate fill

during column QR factorization. We then give a new tight symbolic result on column QR

factorization. In Section 3.2, we survey several authors' work on predicting the structure

of R; in Section 3.3, we re-prove a result of Coleman, Edenbrandt, and Gilbert in a

framework that relates it to the new results on LU factorization in Section 4. Finally, in

Section 3.4, we briefly survey some related work.

3.1. Nonzero structure of A during annihilation

In this section we develop a symbolic model of the column Givens and Householder algo-

rithms for reducing A to upper triangular form. Our goal is a tight symbolic result, that

is, an accurate description of the nonzero structure of A during the algorithm, under the

assumption that no cancellation occurs.

The standard algorithms to compute R from A multiply A on the left by a sequence

either of Householder reflections or of Givens rotations [18]. Multiplication by a House-

holder reflection reflects a vector with respect to a specified hyperplane; a ttouseholder

reflection can be chosen to annihilate all but one of the entries of the vector. Multiplica-
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tion by a Givens rotation rotates a vector through a specified angle in the plane of two

specified coordinate axes; a Givens rotation can be chosen to annihilate an), single entry

of the vector. We consider three algorithms to compute R from A in the sparse setting:

row Givens, column Givens, and column Householder.

The sparse row Givens algorithm is due to George and Heath [8]. They first predict

the nonzero structure of R, and set up a static data structure to hold R. Then they

annihilate nonzeros from one row of A at a time, processing each row until either it becomes

completely zero, or its structure fits into an empty row of the static data structure. This

approach is attractive because only the data structure for R and the storage for the rows

of A are needed in the annihilation process. Thus the only structure prediction necessary

is for R, as described in Sections 3.2 and 3.3.

The column Givens and column Householder algorithms both annihilate the subdiag-

onal elements of one column of A at a time. We will analyze them from the symbolic

point of view, that is, assuming that zeros are produced only by intentional annihilation

and not by numerical cancellation or coincidence. Define the sequence Ao, Al,..., An,

where Ao = A and Ai is the (m - i) × (n - i) submatrix remaining to be processed at the

end of step i of the annihilation. For convenience, the columns of the (m - i) × (n - i)

matrix Ai are labeled from i to n, and the rows of Ai are labeled from i to vn. The ma-

trix Ai is obtained from Ai-1 by annihilating the nonzeros below the diagonal in column i

of Ai-l. The Givens algorithm uses one rotation for each subdiagonal nonzero in column i

• of Ai-l; the Householder algorithm uses one reflection to annihilate the entire column.

The structural effects are closely related, so we combine their descriptions.

. Consider Givens rotations first. Suppose [Ai-1]ki is nonzero, k > i, and assume that

any nonzero [Ai_l]ii, i < j < k, has been annihilated. Then [Ai-1]ki will be annihilated
by a Givens rotation, which is constructed using [Ai-1]ii and [Ai-1]ki. This rotation

replaces rows k and i by linear combinations of their old values; symbolically, except for

the (k, i) element, it replaces both their nonzero structures with the union of their nonzero

structures. Thus the structure of row k of Ai is the union of the structures of those rows j

of Ai-1 for which i < j _<k and [Ai-1]ji _ O. Moreover, at the end of step i, the structure
of row i of Ai is the union of the structures of those rows j of Ai-1 for which i < j < ra

and [Ai-1]ji _ O.

Now consider (the row-oriented version of) Householder reflections. The Householder

reflection that annihilates the subdiagonal nonzeros of column i of Ai-1 replaces all the

rows containing those nonzeros with linear combinations of their old values. Symbolically,

every row with a nonzero in column i of Ai-1 has the same structure in Ai, namely the

union of their original structures in Ai-1.

In terms of structures, the fundamental difference between Givens rotations and House-

holder reflections is the number of rows participating in one reduction operation. In one

Householder reduction, all rows that have a nonzero in column i of Ai-1 participate in a

" reduction step, whereas in a Givens reduction, only a subset of those rows are involved.

We now describe a bipartite graph model that George, Liu, and Ng [12] developed to
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analyze the reduction process using Givens rotations. Their model associates a bipartite

graph Hi with the matrix Ai. We number the m - i row vertices of Hi from i + 1 to m,

and the n - i column vertices from i + 1 to n. The changes in the structure of Ai due to

the reduction process are described in terms of transformations on the graph Hi. Because

of the similarity between Givens reductions and Householder reflections, this model can

be extended to cover both cases. We summarize these results below; proofs can be found

in the paper [12]. All these results are symbolic; they assume that zeros are introduced

only by explicit annihilation, not by cancellation.

The following results contain a parameter p, which we introduce to cover both of the

column algorithms. We define p = r for Givens rotations, and p = m for Householder
reflections.

We begin by formalizing the symbolic effect of annihilating one column, that is, the

relationship between Hi-1 and Hi. The four statements in the lemma below are easily

seen to be equivalent.

Lemma 9. * For r > i, AdjH.(r I) =

AdjH,_,(r'), if i _ AdjH,__(r'),(.J{AdjH,_,(s')'i <_s' < p, ie mdjH,_l(s')}-{i}, otherwise.

• Forr > i, AdjH,(r t) = ReachCoIH,__(r', {i,i',(i + 1)',...,p'}).

• For r > i, c E AdjH,(r')//'and only if there exists a path of length 1 or 3 from r' to

c through.{i,i',(i + 1)',...,p'} in Hi-1.

• For r > i and c > i, c E AdjH,(r') if and only if either c E Adjno(r') or for some

k < i, there is a path (r', k, s', c) in Hk-1 with k < s < p.
[3

We wish to characterize fill in terms of the structure of the original matrix. George,

Liu and Ng [12] provided upper and lower bounds on the structure of Hi, but neither

bound is tight. Their upper bound is as follows.

Theorem 6. For r > i, AdjH_(r') C ReachColHo(r', {1,...,i, 1',...,p'}). []

Note that Theorem 6 provides only a necessary condition for a fill element to occur during

the annihilation process. Figure 7 (from [12]) is an example showing that Theorem 6 is

not tight. There is a path (4', 2, 1', 3) in the graph H0, but it is easy to verify that no zero

element in A becomes nonzero in reducing A to upper triangular form by Givens rotations
or Householder reflections.

The George, Liu, and Ng lower bound is as follows.

' c) whose inter-Theorem 7. Suppose that Ho contains a path (v',cl,r_,c2, r'2,...,ct, rt,

mediate vertices are ali in {1,...,i, 1',...,p'}. If ck < r'k for k < t and Ck+l < r'k for

k < t, then c E AdjHi(r'). n
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/ Jx 2
x 3"

x 3
41

Figure 7: The converse of Theorem 6 is not true.

Again Theorem 7 is a partial characterization of fill; it provides only a sufficient condition.

Figure 8 (also from [12]) shows that the condition in Theorem 7 is not necessary. Consider

the path (5', 2, 1', 1,4', 3) in H0. It does not satisfy the condition in Theorem 7 and it is

the only path from 5' to 3 in H0. However it is straightforward to verify that 3 E AdjH_(5')
when either Givens rotations or Householder reflections are used.

11

1
X X 21

x 2
x 3_

x x x 4' 3X
4

51

Figure 8: The converse of Theorem 7 is not true.

We now provide a necessary and sufficient condition, in terms of paths in H0, for fill

to occur in the symbolic orthogonal factorizations. As in the case of sparse Gaussian

elimination without pivoting, we define a class of f, ll paths in H0 for sparse orthogonal

factorizations: a path

= (rl, cl,r I i ' c)1,c2,1"2,'" ,ct, rr,

in Ho is a fill path for sparse Givens rotation or sparse Householder transformation if

either t = 0 or the following conditions are satisfied.

1. ck < min(rl, c) and r_ < p, for all k.
,w

I<p,2. Let cp be the largest ck. Then there is some q with p < q _<t such that cp < rq _

and the three paths P[r': cp], 79[% "r;], and P[r; • c], are also fill paths in H0.
b

By this definition, all edges in H0 are also fill paths. The main new result of this section

is the following, which generalizes the Inst statement of Lemma 9. It gives a necessary
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and sufficient condition for a zero element of A to become nonzero at some stage of the

annihilation process, in the symbolic sense. The proof of the result is an easy induction,
and is omitted.

Theorem 8. For r',c > i, c E AdjH,(r') if and only if there is a fill path joining r' and c
in Ho. ra

Consider the path (4', 2, 1', 3) in H0 in Figure 7. Since it does not satisfy condition (2),

the (4, 3) element of A will remain zero throughout the computation, which is indeed the

case for either Givens or Householder. Also consider the example in Figure 8. Although

the path (5', 2,1',1, #, 3) does not satisfy the condition in Theorem 7, it does satisfy

condition (2) above. Hence,.the (5,3) element of A will become nonzero at some point

during the computation, assuming exact numerical cancellation does not occur.

Unfortunately, unlike the case of sparse Gaussian elimination without pivoting, there

does not appear to be a simple and non-recursive way to express the fill property.

Finally, we define a graph whose structure captures all of the Hi for the case of House-

holder reflections. The (bipartite) row merge graph of a matrix A whose diagonal is
nonzero, which we write tI"(A), is the union of Hi (by the Householder interpretation)

for 1 _<i _<n. Thus ttx(A) has ra row vertices and n column vertices, and is constructed

by the following process. Begin with the bipartite graph H(A), which includes M1edges

of the form (i', i) because A has nonzero diagonal. For each k from 1 to n, add an edge

from each row r' >_ k adjacent to column k to each column c _>k adjacent to any such

row. (In other words, take those rows at or below row k with nonzeros in column k, and

merge the parts of their nonzero structures at or to the right of column k.)

We also define a directed version of the row merge graph. The bipartite row merge

graph H"(A) is a bipartite graph with ra rows, n _<ra columns, and a column-complete

matching of edges (i',i). The (directed) row merge graph, which we write Gx(A), is the

n-vertex directed graph whose adjacency matrix has the structure of the first n rows of

Theorems 6, 7, and 8 can be translated into statements about HX(A). We wiU need
one of these later.

Corollary 2. If A is an ra x n matrix with nonzero diagonal, ra > n, and (r', e) is an

edge of the row merge graph HX(A), then there is a path in H(A) from row vertex r' to

column vertex c whose intermediate column vertices are ali numbered less than min(r', c).

Proof: Immediate from Theorem 6 or Theorem 8. 13

3.2. Upper bounds on nonzero structure of R

If A has full column rank and factorization A = QR, it follows from the column House-

holder algorithm (and the uniqueness of the factorization) that G(R) C_Gx(A). In this

section we state and prove a bound on the structure of R that seems weaker than this
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one; then we show that if A is strong Hall then the weaker bound is tight, and hence in
that case the two bounds are the same.

¢

Mathematically, since A has full column rank, if A = QR then ATA = RTQTQR =

RTR. Thus (the upper triangular part of) R is equal to the Cholesky factor of the

" normal-equations matrix ATA (which is symmetric and positive definite). George and

Heath [8] used this fact in their implementation of sparse orthogonal factorization by

Givens rotations. They predict the structure of ATA to be the column intersection graph

Gn(A), which has a nonzero in position (i,j) whenever columns i and j of A have a

common nonzero row; then they predict the structure of R to be G_(A), the symbolic

Cholesky factor of that structure.

We will derive this prediction as a corollary of a relationship between row merge graphs

and column intersection graphs. We prove thi.¢ relationship for all of G×(A) even though

the structure of R concerns only the "upper triangle" of G×(A); we will need the more

general version in Section 4. A similar result for square matrices can be found in George

and Ng [9].

Theorem 9. If A is an m × n matrix with m >_n and nonzero diagonal elements, then

GX(A) C_GA(A).

Proof: Suppose (r,c / is an edge of G×(A). Then (r',c)is an edge of HX(A) with

r' _< n. Let i = min(r, c)- 1. Then by Corollary 2 there is a path from r' to c in H(A)

. whose column vertices are all numbered at most i. Since A has nonzero diagonal, lr', r)

is an edge of H(A). Thus H(A) contains a path between column vertices r and c, whose

intermediate column vertices are all smaller than min(r,c). Therefore (by Lemma 1),

the column intersection graph Gn(A) contains a path between vertices r and c, whose

intermediate vertices are all smaller than min(r,c). Thus (by Lemma 5), (r,c) is an edge

of G+n(A ). []

Corollary 3 (George, Heath, Liu, and Ng [8,10,13]). If A = QR is the orthogonal

factorization of a matrix with full column rank and nonzero diagonal, then G( R) C_G+( A).
E]

Corollary 3 says that the structure G+n(A) of the Cholesky factor of ATA is an upper

bound on the structure of R. This upper bound may be an overestimate for reasons that

have nothing to do with the numerical values of the nonzeros of A. An example is the

upper triangular matrix in Section 2.1.

3.3. Lower bounds on nonzero structure of R

Coleman, Edenbrandt, and Gilbert [5] showed that G+(A) does not overpredict G(R)if

the matrix A is strong Hall. We give a proof that is related to theirs, but (unlike them)

we use the alternating-paths theorem explicitly, to highlight the similarity between this
result and Theorem 13 on LU factorization.
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The hypotheses of Theorem 10 do not include a nonzero diagonal. This is because

both G(R) and G+n(H) are independent of the row ordering of H, and since H is strong ,

Hail its rows can be permuted to make the diagonal nonzero.

Theorem 10 (Coleman, Edenbrandt, and Gilbert [5]). Let H be a bipartite graph

with the strong Hall property. Then there is a matrix A with full column rank and with

II(A) = H, such that the orthogonal factorization A = QR satisfies G(R) = G+n(H).

Proof: First we show that any single edge of G+n(H) can be made nonzero by an

appropriate choice of A; then we show that there is one choice of A that makes all those

positions nonzero at once. We shall think of the entries of A that correspond to edges of H

variables; a "choice of values for A" means an assignment to those variables. Figure 9

illustrates the proof.

! _ 1

2' _ 1 2 3 4 5

11 [1 1 1 2 5
3' 3 ,, • _t

4' 41 2 1 2 1
3 1

51 1 1 .
s, -- s., 61 1

Figure 9: Example for Theorem 10. Graph//is shown in Figure 1. Its column intersection

graph and filled column intersection graph are shown in Figure 4. This figure shows the

construction that makes entry [R]3s nonzero. At left, graph H is the subgraph of H
induced by column vertices 1 through r = 3 and c = 5, and all the row vertices. The
dashed edges are a column-complete matching A4 with respect to which there is a c-

alternating path Q = (5,5',2,1 _,1,3',3) from c to r. At center, A is chosen to have ones
in positions A4 and Q and zeros elsewhere. At right, K is the submatrix of ATA consisting

of rows and columns 1 through r - 1 = 2, as well as row r = 3 and column c = 5. Matrix
K is a permutation of a triangular matrix with nonzero diagonal and hence cannot be

singular.

Choose r and c with r < c _<n. Take an arbitrary m x n matrix A with factorization

QR, such that the first r columns of A are linearly independent. Now let K be the

submatrix of ATA consisting of columns 1 through r - 1 and c, and rows 1 through r.

Lemma 6 applies to ATA (because ATA is positive definite), and says that K is singular

if and only if lR]rc, the entry in the (r, c) position of R, is zero. Thus [R]_c is zero if and

only if a certain polynomial Prc in the nonzero entries of A (namely the determinant of

K) is zero.
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We now show that if A is a matrix with H(A) = H and (r,c) is a_j edge of G+n(H),
• then the polynomial Prc is not identically zero. (Note that prc has a " riable for each

edge of H.) Let H be the subgraph of H induced by all the row vertices and the column

vertices 1, 2, ..., r, and c. Lemma 5 says that there is a path _ from c to r in the

undirected graph Ga(H) whose intermediate vertices are all smaller than r. Thus 7) is

also a path in Ga(H). By Lemma 1, there is a path in H from column vertex c to column
vertex r.

Now H is strong Hall because H is. Therefore the alternating-paths theorem (Theo-

rem 4) applies, and says that there is a column-complete matching .£4 for H and a path Q

from c to r that is c-alternating with respect to M.

Choose the values of those nonzeros of A corresponding to edges of M tAQ to be 1, and
choose the values of the other "nonzeros" to be 0. Let us examine the r × r submatrix K

of ATA defined above. (For simplicity, we will call the last column of K number c rather

than number r; the last row of K is number r.) We claim that the bipartite graph H(K)

has exactly one perfect matching (or, equivalently, that K can be permuted to a triangular

matrix with nonzero diagonal). To prove this, we match rows of K greedily .to columns

of K. Take a column j of K. If j is a vertex that is not on path Q, then the only nonzero

in column j of K is [K]jj, and we match column j to row f. If j is on Q, i_is the vertex

following j on Q, and k is the vertex following i_on Q, then [K]kj is nonzero and we match

column j to row k _. (The last vertex on Q is column r, which is not a column of K.) This

• is a perfect matching on H(K). Its uniqueness follows by induction on the length of Q,

the induction step being the fact that column c of K has only one nonzero (because row d

, is not a row of K).

This proves the claim that H(K) has exactly one perfect matching. Thus the deter-

minant of K is just the product of the nonzero values corresponding to elements of that

matching, and is itself nonzero. This shows that the polynomial Pre is nonzero for at least

one point, that is, for at least one choice of values for A.

Now the set of zeros of a k-variable polynomial has measure zero in R k, unless the

polynomial is identically zero. Thus not only do values for the nonzero entries of A exist

that make pre and hence lR]rc nonzero, but almost all choices of values (in the measure-

theoretic sense) work. Therefore, almost all choices of values for A make every [R]rc
nonzero simultaneously. Furthermore, almost all of those choices include no zero values;

that is, for almost all such choices, H(A) = H as desired. Finally, we observe that we can
choose A to have full rank n: for some n x n submatrix of A there is a choice of values that

gives nonzero determinant (namely, ones for the elements of a column-complete matching

of H and zeros elsewhere), and hence almost all choices of values make that submatrix

. nonsingular. []

Corollary 4. If H is strong Hall and has nonzero diagonal, then the upper triangularr

parts of GX(H) and G_(H) are equal.

Proof: By Theorem 9 and its corollary we have G(R) C_ G×(H) C_ G_(H) for any
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A = QR with H(A) = H. If we choose A as in Theorem 10, the first and third graphs are

equal, and hence the second and third are also equal. D

Corollary 5. lf H is strong Hall and has nonzero diagonal, then there is a matrix A with

full column rank and with H( A ) = H, such that the orthogonal factorization A = QR

satisfies G( R ) = G_ ( tt ). Q

3.4. Remarks on orthogonal factorization

Theorem 10 gives a tight prediction of the structure of R in QR factorization, in the

exact sense, provided that A is strong Hall. Recently, Hare, Johnson, Olesky, and van den

Driessche [21] extended this result significantly by giving a tight exact characterization

of the structures of both Q and R, under the weaker assumption that A is Hall--that

is, that A is structurally of full column rank. The Hare et al. characterization uses a

notion called "Hall sets," which concerns strong Hall submatrices of A and is related to

the Dulmage-Mendelsohn decomposition of H(A). Hare et al. proved that their structure

prediction was one-at-a-time exact; Pothen [28] then showed that in fact it is all-at-once

exact. Both Hare et al. and Pothen used versions of the alternating-paths theorem in their
work.

Theorem 8 gives a tight prediction of the structure of A at each step of column QR

factorization, in the symbolic sense. This prediction is not tight in the exact sense; see •

Coleman et al. [5] for an example. It is an open problem to give a tight exact structure

prediction for each Ai in column factorization. The techniques of Hare et al. [21] are
probably relevant here.

Recently, Ng and Peyton [26] investigated the structure of the so-called matrix of

Householder vectors. This is a representation of Q in which the vector that generates the

i-th Householder reflection is stored in place of the i-th column of Q. Ng and Peyton gave

a tight exact prediction of the structure of this matrix in the case that A is either strong

Hall or has its columns permuted according to a Dulmage-Mendelsohn decomposition.

Givens rotations can be used to introduce zeros in other orders than row by row or

column by column; examples are reductions of symmetric sparse matrices to tridiagonal

form [33] and the Jacobi algorithm for finding eigenvalues [18]. Little work exists on

structure prediction for such problems. For example, it would be interesting to prove

upper and lower bounds on the work required to tridiagonalize a symmetric matrix A by

Givens rotations, in terms of the structure G(A).

4. LU factorization with partial pivoting

Let A be a nonsingular n x n matrix. The triangular factorization A = LU does not always

exist, and is nok always numerically stable when it does exist [18, Chapter 3]. Thus some

form of row or column interchanges are needed in Gaussian elimination; at each step, a

n_onzero must be brought into the pivotal position before elimination.
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In the dense setting, the pivot is usually chosen as the element of largest magnitude

. in the current column (partial pivoting) or in the entire uneliminated matrix (complete

pivoting). In the sparse setting, there are several strategies for choosing pivots to combine

stability and sparsity. Some variations of complete pivoting choose a pivot at each stepd
to minimize operation count from among candidates that are not too far from maximum

magnitude [6]. Another approach is to preorder the matrix columns purely to preserve

sparsity, and then use partial pivoting to reorder the rows for stability [13,] 6].

This section parallels Section 3 in outline. In Section 4.1, we review a graph model

of Gaussian elimination with row and column interchanges, and we prove some results

on the structure of the matrix during elimination. These results are symbolic; that is,

they assume that zeros are introduced only by explicit elimination, not by cancellation.

In Section 4.2 we give upper bounds on the structure of the factors L and U obtained by

Gaussian elimination with row interchanges. Irl Section 4.3, we give an exact lower bound

on L and U. This result is tight--that is, best possible--and is the main new result of

this paper. We conclude the section with remarks and open problems.

We write LU factorization with row an'd column interchanges as follows.

Ao = A,

P[ AoP_ = L1A1,

P_AIP_ "-" L2A2,

P_-IAn-2 P_,,-1 -- Lh-lA,-1 = Lh-iU.

Here pr is an n x n elementary permutation matrix corresponding to the row interchange

at step i, P_ is an n × n elementary permutation matrix corresponding to the column

interchange at step i, Li is an n × n elementary lower triangular matrix whose Lth column

contains the multipliers at step i, and U is an n × n upper triangular matrix. Since

each elementary permutation matrix (PI or P_) is its own inverse, we can write the final
factorization as

A = P_L1P_L2...P_ _ •n_I Ln-I UP__I " P_ P_. (1)

We define L as the n × n matrix whose i-th column is the i-th column of Li, so that

L-I = __,i(Li-I). Note a subtle point about L: we can also think of Gaussian elimination

as computing a factorization P"AP c = L°U, but this L ° is not the same as L. The two

matrices are both unit lower triangular, and they contain the same nonzero values, but

in different positions; L ° has its rows in the order described by the entire row pivoting

permutation, while L has the rows of its i-th column in the order described by only the

first i interchanges. The matrix L is essentially a data structure for storing L°; either can

be used in solving systems of equations. The structure prediction results in Sections 4.2

and 4.3 below will be about L, not L °.

Note also that our notation is slightly different than in the previous section" now Ai
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is always n x n, not (n- i) x (n- i).

4.1. Nonzero structure of A during elimination

In this subsection we develop a symbolic model of Gaussian elimination with row and/or

column interchanges. The model is based on that of Golumbic [19] and Gilbert [17].
Theorem 11 is new.

Let H0 = H(A) be the bipartite graph of A = Ao. Assume [A0]_c is nonzero and is

chosen as pivot at step 1. Define the deficiency of the edge (r', c) of H0 to be the set of

edges

{(i',j):ce AdjHo(i'),j • Adjno(r'), and j _ Adjno(i')}.

We obtain the bipartite graph H1 of the (n -1) x (n - 1) submatrix that remains after

eliminating (r _,c) as follows: delete from H0 vertices r' and c and ali edges incident on

them, then add the edges in the deficiency of (r', c). The edges in the deficiency of (r',c)

correspond to the zero elements of Ao that become nonzero when [Ao]_,c is eliminated.
(Note that the labelling of the vertices of H1 refers to the labelling in the original matrix

Ao.) Thus, given a sequence of pivot elements (r_,cl) (r_,c2), ', "" ", (rn_l,Cn_l) (some of

which may be fill edges), we can follow the recipe above to construct a sequence of bipartite

graphs H0, H1,'.., Ha, where Hi describes the structure of the (n - i) x (n - i) Schur

complement remaining after step i.

lt is possible to prove bipartite versions of several of the results from Section 2.5. We

will use the following lemma in the exact lower bound proof later in this section.

Lemma 10. Let A be a square matrix, and let .Al!be a perfect matching on H(A). Let Ho,

• .., lth be the sequence of bipartite elimination graphs described above, when elimination

is carded out by pivoting on the edges of .M. If (r', c) is a non-matching edge of Hi, then

there is a path from r' to c in H(A) that is r-alternating with respect to Jt4, and whose

intermediate vertices are ali endpoints of edges of ./t4 eliminated at or before step i.

Proof: We induce on the smallest i such that (r', c) is an edge of Hi. If i = 0 then (r', c)

itself is the path. Otherwise, (r',c) is in the deficiency of the matching edge (r_,ci) in

Hi-l, so edges (d, ci) and (r_,c) are non-matching edges of Hi-_. Applying the induction
I

hypothesis to those edges, we get r-alternating paths 7) from r' to ci and Q from ri to c in

H(A). Then P(ci, r_)Q is an r-alternating walk from r' to c in H(A) whose intermediate

vertices are ali eliminated at or before step i. Thus there exists an r-alternating path with

the same property. 1:3

One interesting fact about symbolic bipartite elimination, which is new and is stated

below as a theorem, is that it preserves the Hall and strong Hall properties. -

Theorem 11. Let 1to be a bipartite graph and let (r_,c) be an edge of Ho. Let H1 be the

bipartite graph resulting from the elimination of edge (r', c). If Ho has the Hall propert);

then 111 also has the Hall property. If Ho has the strong Hall property, then H1 also has

the strong Hall property.
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Proofi Recall Theorem 2, which says that an m × n bipartite graph is Hall if and only

. if it has no independent set of more than m vertices, and strong Hall if and only if it has

no independent set of exactly m vertices that includes at least one vertex from each part.

Let R1 and Cl be the row and column vertices in a largest independent set in Hl.

It is not possible that both r' E AdjHo(C1) and c E AdjHo(Rl), for that would imply an

edge between R1 and C1 in Hl. Therefore either R1 U C2 U {r'} or R1 U C1 U {c} is an

independent set in H0. If H0 is Hall, that set has size at most m, and hence R1 U C1 has

size at most m - 1, so H1 is also Hall. The strong Hall case follows the same argument,

considering only independent sets that include both rows and columns. []

4.2. Upper bounds on L and U with partial pivoting

For the remainder of this section, we restrict our attention to the case in which only row

interchanges are performed during Gaussian elimination, so the column ordering is fixed

initially. This subsection proves symbolic upper bounds on the structures of L and U,

making no assumptions on the row pivoting strategy. For tile case where A is strong Hall

and rows are ordered by partial pivoting, the next subsection proves matching exact lower

bounds. Therefore the symbolic upper bound is in fact a tight exact bound in this case.

As we will see, the tight exact bound is a one-at-a-time result; there is no tight all-at-once

bound on L and U in general.

- In the rest of this section we require A to have a nonzero diagonal. The rows of any

nonsingular square matrix can be permuted to put nonzeros on the diagonal (by Theorem 1

. and Corollary 1). In fact, only the bounds on L below depend on a nonzero diagonal; the

bounds on U hold for arbitrary nonsingular A.

Since the row interchanges PI depend on the numerical values, it is in general impos-

sible to determine where fill will occur in L and U from the structure of A. George and

Ng [13] suggested a way to get an upper bound on possible fill locations. At step i of

Gaussian elimination with row interchanges, call the rows that have nonzeros in column i

below the diagonal candidate pivot rows. George and Ng observed that fill can only occur

in candidate pivot rows, and only in columns that are nonzero in some candidate pivot

row. Thus the structure that results from the elimination step is bounded by replacing

each candidate pivot row by the union of all the candidate pivot rows (to the right of

column i). We need the fact that the diagonal of A is nonzero to argue that this models

the effect of row interchanges correctly: row i is itself a candidate pivot row at step i,

and therefore interchanging row i with another candidate pivot row does not affect the
structure of the bound.

This procedure for bounding the structures of L and U is precisely the construction

of the row merge graph from Section 3. Therefore we have the following theorem. (Note

that G x(A) = H x(A) since A is square.)
D

Theorem 12 (George and Ng [13]). Let A be a nonzingular square matrix with non-
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zero diagonal. Suppose A is factored by Gaussian elimination with row interchanges as

A = PII,1P2L2""Pn-ILn-IU,

and L is the union of the L i as described above. Then

C(L + V) C CX(A),

that is, the structures of L and U are subsets of the lower and upper triangles of the row
merge graph of A. C]

Corollary 6. Let A be a nonsingular square matrix with nonzero diagonal, factored by

Gaussian elimination with row interchanges as in Theorem 12. Then

G(L + U) c_ G+o(A),

that is, the structures of L and U are subsets of the lower and upper triangles of the
(symmetric) filled column intersection graph of A.

George, Liu, and Ng [10,13] gave an algorithm for Gaussian elimination with partial
pivoting that uses Gx(A) to build a data structure to hold the factors of A as elimination

progresses. The structure may be overgenerous in the sense that it stores some zeros, but

it has the advantage that it is static; the structure does not change as pivoting choices

are made. George, Liu, and Ng's numerical experiments indicated that (with a judicious

choice of a column reordering for sparsity) the total storage and execution time required

to compute the LU decomposition using the static data structure were quite competitive
with other approaches.

4.3. Lower bounds on L and U with partial pivoting

In this section we show that Theorem 12 is tight in the exact sense for strong Hall A.
In other words, if a given input structure is strong Hall, then for every edge of the row

merge graph there is a way to flu in the values so that the corresponding position of L or

U is nonzero. This implies that George and Ng's static data structure [13] is the tightest

possible for Gaussian elimination with partial pivoting. This is a one-at-a-time result; as

we will see, no aU-at-once result is possible.

The case r < c of Theorem 13 (that is, the proof for U) first appeared in a technical

report by Gilbert [15]; the case r > c (for L) has not appeared before. (Gilbert actually

related U to G_(A) rather than G"(A), but the U parts of those graphs are the same for

strong Hall A by Corollary 4.)

Theorem 13. Let H be the structure of a square strong Hall matrix with nonzero diag-

onal. Let (r,c) be an edge of the row merge graph GX(H). There exists a nonsingular
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1 2 3 4 5 6 1 2 3 4 5 6

1_ f x x I' x x x x
° 2t X X 2_ X x x x X

3_ X X X 3_ x X x X X x
4_ x x x 4' x x x x
5t x x 5_ x x x x x
6_ X X X 6_ x X x

Figure 10: Example for Theorem 13. On the left is a matrix A. On the right is the bound

on the structures of L and U. In the case r < c, Figure 11 shows how to make [U]a5
nonzero. In the case r > c, Figure 12 shows how to make [L]54 nonzero.

matrix A (depending on r and c) with H(A) = H, such that if A is factored by Gaus-

sian elimination with partial pivoting into L and U as described in Theorem 12, then

[L+U],.c#O.

Proof: The cases r < c (that is, U) and r > c (that is, L) are similar. Row interchanges

. make the L case a little more complicated; thus we prove the two cases separately.

Case r < c (structure of U). Figures 10 and 11 illustrate this case. According

to Corollary 2, there is a path P in H from row vertex r' to column vertex c whose
intermediate column vertices are all at most r.

Let H be the subgraph of H induced by ali the row vertices and the column vertices

1 through r and c. Now H is strong Hall because H is. Therefore the alternating-paths

theorem (Theorem 4) applies, and says that there is a column-complete matching M for

H and a path Q from c to r that is c-alternating with respect to A,I.

Choose the values of those nonzeros of A corresponding to edges of M to be larger

than n, and the values of the other nonzeros of A to be between 0 and 1. Further, choose

the values so as to make every square submatrix of A that is Hall, including A itself,

nonsingular. (Such a choice is possible by an argument like that in Theorem 10: the

determinant of a Hall submatrix is a polynomial in its nonzero values, not identically zero

because the Hall property implies a perfect matching. Therefore the set of values that

make any Hall submatrix singular has measure zero, and can be avoided.)

Now we prove that this choice of values makes [U],.c nonzero. In the first r steps

of elimination of A, the pivot elements are nonzeros corresponding to edges of M. Let

" P be the permutation matrix that describes the first r row interchanges (that is, P =

PrPr-1 ""Pl in Theorem 12). Let Ar be the (r + 1) x (r + 1) principal submatrix of PA

- that includes the first r columns and column c, and the corresponding rows. Thus the

columns of Ar are those numbered 1 through r and c in H; the first r rows of Ar are
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,' , 1 2 3 4 5 6

1' 9 z

3' 3 -, 2' X X

3' z 9 x

" 4' x x x

5' 9 x

s, s., 6' x 9 x

6'

1 2 3 5 , A :___,

I

5_ 9 x .

3' x 9 *
?, ? ? ? ? 3 5

w

Figure 11: Example for Case 1 of Theorem 13, showing the construction that makes [U]3s
nonzero in the structure from Figure 10. At top left, the graph H is the subgraph of H
induced by column vertices 1 through r = 3 and c = 5, and all the row vertices. The dashed

edges are a column-complete matching ./t4 with respect to which there is a c-alternating
path Q = (5, 5', 2, 1', 1,3 _,3) from c to r. At top right, A is chosen to have large values in
positions _ and small values elsewhere. At bottom left, AT is the submatrix of PA with

columns 1 through r and c and the rows in the corresponding positions after 3 pivot steps.

The element [U]35 is in position, of the factor of AT. At bottom right, the directed graph

G(Ar) has a path (3,1,2,5); therefore (3,5) fills in. In the original A, the first pivot step
does no row swap and fills position (3', 2); the second pivot step swaps rows 2' and 5' and

fills position (3', 5).

e.

,, rl ,, i ,
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I' 1

v _.,t 1 2 3 4 5 6

1' x 9
3' 3 2 / X X

3 / 9 x x
" '+"' 41 9 x x

5' x z

e.e.s, 6' 9 x x

6*

1 2 3 4 5

1' x 9 s
4' 9 x

6_ 9 x 3 +
5 t Z * X

Figure 12: Example for Case 2 of Theorem 13, showing the construction that makes [L]54
nonzero in the structure from Figure 10. At top left, the graph H is the subgraph of H
induced by column vertices 1 through c = 4, and all the row vertices. Then d = 2 is the
first column vertex on some path from r' to c. The dashed edges are a column-complete
matching ,A4 with respect to which there is a c-alternating path Q = (4,4',3,3', 1, 1',2)

from c to d. At top right, A is chosen to have large values in positions jt4 and small values
elsewhere. At bottom left, Ac is the submatrix of PA with columns 1 through c and r

and the rows in the corresponding positions after 4 pivot steps. The element [L]54 is in

position • of the factor of Ac. The fifth and last row of Ac is 5_, the fifth row of A, because
5_ was not involved in a pivoting swap during the first 4 steps; therefore s' = r' = 5_

and the argument about an alternating path from r' to s_ is not needed in this example.

At bottom right, the directed graph G(Ac) has a path (5,2, 1,4); therefore (5,4) fills in.

In the original A, the first pivot step fills position (1/,4), and the second pivot step fills
position (5', 4).
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those matched to columns 1 through r of H by AI; and it does not matter which row of

H the last row of Ar is. We will con_ider the rows and columns of the bipartite graph

H(Ar) to have the same numbers that the3' did in H; thus the column vertex numbers are

1 through r and c, and the row numbers may be anything. In the directed graph G(Ar),

we will also number the vertices 1 through r and c, but bear in mind that the row of Ar

corresponding to a vertex v was not necessarily row v_ in H.

Now the first r diagonal elements of Ar are nonzero, and dominant. Let Lr and Ur

be the triangular factors of Ar without pivoting, Ar = Lr Ur. Then the element [U]_c

mentioned in the statement of the theorem is in fact [Ur]rc, the element in the last column

and next-to-last row of Ur. We proceed to show that [Ur]_c _ 0.

Ali square Hall submatrices of Ar are nonsingular; thus, by Lemma 7, G+(Ar) is

exactly the structure of [Lr -4-Ur]. Therefore [U]rc is nonzero if and only if G(Ar) contains

a directed path from vertex r to vertex c, through vertices numbered less than r.

Recall the path Q, which is a path in H from c to r that is c-alternating with respect

to AI. The matching .hd consists of exactly the edges on the diagonal of Ar (except for

the one in the last column, which cannot be an edge of Q because O is c-alternating).

Therefore Q corresponds to a directed path from r to c in G(Ar). Every vertex of G(Ar)

except r and c is numbered less than r, so this is the desired directed fill path and the

proof of this case is complete.

Note that the proof never explicitly identified the row of H that ended up in position

(r, c) of U; it is the row matched to column r by AI, and is the second last vertex on the

path Q.

Case r > c (structure of L). Figures 10 and 12 illustrate this case. The proof for "

this case is much like that for U, but it needs to do some extra work to identify the row of

H that ends up in position (r, c) of L, because that row has not yet been matched (pivoted

on) when L_c is computed.

Again by Corollary 2, there is a path 7) in H from row vertex r' to column vertex c
whose intermediate column vertices are all at most c. Let d be the first column vertex on

P (this is the vertex after r' on "P; possibly d = c).

Let H be the subgraph of H i_duced by all the row vertices and the column vertices

1 through c. (This has one less column than in the proof for U.) Then 7_[d.c] is a

path (possibly of length 0) in H from column vertex d to column vertex c in H. Again,

therefore, there is a column-complete matching AI for H- and a path O from c to d that

is c-alternating with respect to AI.

Again we choose A so that edges of AI have values larger than n, other edges have

values between 0 and 1, and every square Hall submatrix of A is nonsingular.

The first c steps of elimination of A pivot on nonzeros corresponding to edges of ,_.

Let P be the permutation matrix that describes the first c row interchanges (that is,

P = PcPc-I ""1)1 in Theorem 12). Let Ac be the (c + 1) × (c + ") principal submatrix

of PA that includes the first c columns and column r, and the rows in corresponding

positions of PA. Thus the columns of Ac are those numbered 1 through c and r in H; the
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first c rows of Ac are those matched to columns 1 through c of H by A4. The last row of

.. Ac is some row number s' in H that is not matched by A4. (Row s I may or may not be

matched to column r in the final factorization of A.)

. Again, we give the rows and columns of the bipartite graph H(Ac) the same numbers

they had in H; the column vertex numbers are 1 through c and r, and the row numbers

may be anything (but the last row is s'). In the directed graph G(Ac), we will also number

the vertices 1 through c and r; again, bear in mind that the row of Ac corresponding to

a vertex v was not necessarily row vI in H, and in particular the row corresponding to

vertex r of G(Ac) is row s I of H.

Now the first c diagonal elements of Ac are nonzero, and dominant. Let Lc and Uc be

the triangular factors of Ac without pivoting, Ac =LcUc. The element [Life mentioned in

the statement of the theorem is in fact [Lc]rc, the element in the last row and next-to-last

column of Lc.

As before, we show that [Lc]rc _ 0 by exhibiting a directed path from vertex 7' to

vertex c of G(Ac), based on a c-alternating path in H. However there is not necessarily an

edge between column vertex r and row vertex s I in H; thus we must find a c-alternating

path that ends at s t, not r. The details of how to do that will complete the proof.

We now trace the pivoting process to discover where row st came from. If row r t of

H was not used as one of the first c pivots, then it has not moved and st = r t. If row r'
was used as a pivot, suppose it was in column cl _<c, and that the row interchanged with

r t at step cl was row r_. (Recall that all row and column numbers are vertex numbers

of H.) Again, either r_ = sI or else r_ was later used as a pivot in some column c2 > cl,

when it was interchanged with some row r_. Continuing inductively, we eventually arrive

at a row r_: which is equal to st, which was not used as a pivot in the first c steps.

The sequence of nonzeros we followed while tracing the pivoting process was

t t rl Strr= rlo,Cl,rl,c2, r2,...,ck_l, k_l,ck, rlk =

Each (ci, r_) is an edge of one of the bipartite elimination graphs "H0, HI, ..., Hc cor-

responding to the first c steps of symbolic Gaussian elimination of H. Therefore, by
i for each i Furthermore eachLemma 10, there is a c-alternating path in H from ci to r i

(r__ 1, ci) is an edge of .hd, and is thus a one-edge c-alternating path from rf_ 1 to ci. Con-

catenating these paths yields a c-alternating walk )42 (which may repeat vertices or edges)
from r t to s t in H.

Now if edge (d, r t) is not an edge of A4, then Q followed by (d, r') followed by )4; is a

c-alternating walk from column c to row s t. Alternatively, if (d, r') is an edge of M, then

d = cl, and Q followed by }4;[d"s_]is a c-alternating walk from column c to row s t. Either

" way, we have a walk in H from c to s t that is c-alternating with respect to ._4. This walk

corresponds to a directed walk from vertex r to vertex c of G(Ac). Thus there is a directed

". path from vertex r to vertex c of G(Ac). The intermediate vertices on this path are less

than both r and c, because r and c are the last two vertices of G(Ac). Therefore (r, c)
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is an edge of G+(Ac). Since ali square Hall submatrices of Ac are nonsingular, therefore,

[Lc]Tc is nonzero. Thus [L],.c is nonzero and the proof is complete. []

4.4. Remarks on LU factorization with pivoting

Theorem 13 showed that GX(A) is a tight exact bound on the structure of the factors L

and U, assuming that the structure of A is not only strong Hall, but also has its rows

permuted so that the diagonal is nonzero. We can get a tight exact bound on U without

assuming a nonzero diagonal. The following result does not depend on row ordering.

Corollary 7. Let H be a square bipartite graph with the strong Hall property. Let (r, c)

be an edge of the filled column intersection graph G+n(H). Then there is a nonsingular

matrix A (depending on r and c) with H(A) = H, such that the upper triangular factor

U of A in Gaussian elimination with partial pivoting has [U]rc # 0.

Proof: Since H is strong Hall, it has a column-complete matching. Let H be H with

its row vertices permuted so that (i',i) is a matching edge for all i. The filled column

intersection graph is independent of the row permutation, so G+(tl) = G_(-ff). Corollary 4

says that the upper triangles of G_(H) and Gx(H) are the same. Therefore (r,c) is an

edge of Gx(H). Then, by Theorem 13, there is a nonsingular matrix A with H(A) = H,

such that the upper triangular factor U of A in Gaussian elimination with partial pivoting

has[V],o# 0.
By a measure-theoretic argument like that in Theorem 10, we can choose A so that

there is never a tie for the choice of pivot element, that is, so that at each elimination step

all the subdiagonal nonzeros of the pivot column have different magnitudes. Under this

assumption, the upper triangular factor U is independent of the row ordering of A. Let A

be A with its rows permuted so H(A) = H. The upper triangular factor U of A is equal

to U, and hence [U]rc # 0. []

Theorem 13 on LU differs from Theorem 10 on QR in that the latter is all-at-once; that

is, for each structure a single matrix exists that fills all the predicted nonzeros. Theorem 13

is not all-at-once, and no tight exact all-at-once result is possible for LU factorization with

partial pivoting. To see this, consider a matrix that is tridiagonal plus a full first column,

/ /
× × ×

A-- X X X X

X X X X

X X X

The graph H(A) is strong Hall. The row merge graph G×(A) is full. As Theorem 13 says,

any single po:dtion in L or U can be made nonzero by an appropriate choice of pivots.

But the first row of U will have the same structure as some row of A, so it is impossible

for U to be full.



- 33-

One application of structure prediction for partial pivoting is to predict which columns

of A will update which other columns if the factorization is done with a column-by-column

algorithm. For example, Gilbert [15] gave a parallel implementation of LU factorization

with partial pivoting in which tasks (columns of the factorization) were scheduled dynam-

" ically to processors, based on a precedence relationship determined by precomputing the

elimination tree [23]oi Gn(A). Since [U]ij is nonzero if and only if column i updates

column j during the factorization, a corollary of Theorem 13 is that, for strong Hall A,

this is the tightest prediction possible from the structure of A alone.

Corollary 8 (Gilbert [15]). Let a strong Hall structure for the square matrix A be

given. If k is the parent of j in the elimination tree of Gn( A ), then there exists a choice of

nonzero values of A that will make column j update column k during factorization with

partial pivoting. [3

This corollary is a one-at-a-time result. However, if we restrict our attention to the

edges of the elimination tree of Gn(A) instead of all of G_(A), it may be possible to prove

an all-at-once result. We conjecture that for every square strong Hall matrix H, there

exists a single matrix A with H(A) = H such that every edge of the elimination tree

of Gn(A) corresponds to a nonzero in the upper triangular factor U of A with partial

pivoting.

Little if anything is known about the case when H(A) is not strong Hall. Hare et

al. [21] gave a complete exact result for QR factorization assuming only the Hall property;

is a similar analysis possible for partial pivoting? In particular, since the upper triangles

" of GX(A) and G_(A) can differ in the non-strong Hall case, how tight is the former for

partial pivoting? There are non-strong Hall structures for which Gx(A) is tight but GA(A)

is not; an example is a matrix whose only nonzeros are the diagonal and the first row.

5. Remarks

The theme of this paper is that, when solving a nonsymmetric linear system, structure

prediction is easier if the matrix is strong Hall. On the other hand, a system whose

matrix is not strong Hall can be partitioned (by Dulmage-Mendelsohn decomposition)

into smaller strong Hall systems. This useful coincidence makes some intuitive sense.

Symbolic independence of vectors (the Hall property) is a weaker condition than numeric

linear independence. In a sense, Dulmage-Mendelsohn decomposition tries to wring as

much as possible out of symbolic relationships before Gaussian elimination takes over to

handle numeric relationships; the tight exact (i.e. numeric) lower bounds in this paper say

. that Dulmage-Mendelsohn decomposition is doing its job.

I'Jredicting structure in algorithms that combine numerical and structural information

is an interesting challenge. Murota et al. [25] have studied block triangular decompositions
that take some but not ali of the numerical values into account.
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We point out once more that Hare, Johnson, Olesky, vail den Driessche, and Pothen [21,

28] have recently obtained tight exact bounds on both Q and R in the general Hall case,

thus extending the work of Coleman, Edenbrandt, and Gilbert that we reviewed iii Sec-

tion 3. It would be interesting to see whether our bounds on L and U for partial pivoting,

in Section 4, could be similarly extended.

We conclude by mentioning three open problem areas for nonsymmetric structure

prediction.

First, it would be interesting to understand the relationship between the structure of

L and the structure of L °, both of which are different ways of storing the lower triangular

f_ctor in Gaussian elimination with partial pivoting. Can the techniques discussed in this

paper be used to obtain bounds on the structure of L°?

Second, it would be useful to achieve a complete structural understanding of the Bunch-

Kaufmann symmetric indefinite factorization [18, Chapter 4.4]. tlere a symmetric indefi-

nite matrix is factored symmetrically by choosing pivots from the diagonal, but each pivot

may be either an element or a 2 × 2 submatrix. Thus the factorization is PAP T = LDL T,

where P is a permutation, L is lower triangular, and D is block diagonal with 1 × 1 and

2 × 2 blocks. This factorization is particularly useful for solving "augmented systems" of
the form

where A is rectangular and K is symmetric and (perhaps) positive definite [1]. Even the
common case K = I is not well understood.

Third, it would be interesting to understand the structural issues in the incomplete

LU factorizations sometimes use¢_ to precondition iterative methods for solving linear

systems [7].
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