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This study examines pairs trading using a general state space model framework. It models the
spread between the prices of two assets as an unobservable state variable assuming that it follows a
mean-reverting process. This new model has two distinctive features: the (1) non-Gaussianity and
heteroscedasticity of innovations to the spread, and (2) nonlinearity of the mean reversion of the
spread. It shows how to use the filtered spread as the trading indicator in carrying out statistical
arbitrage and proposes a new trading strategy which uses a Monte Carlo-based approach to selecting
the optimal trading rule. The new model and trading strategy are illustrated by two examples: PEP
vs. KO and EWT vs. EWH. The empirical results show that the new approach can achieve 21.86%
(31.84%) annualized return for the PEP-KO (EWT-EWH) pair. Then all the possible pairs among the
five largest and the five smallest U.S. banks listed on the NYSE are considered. For these pairs, the
performance of the proposed approach with that of the existing popular approaches, are compared
both in-sample and out-of-sample. In almost all the cases considered, our approach can significantly
improve the return and the Sharpe ratio.

Keywords: Pairs trading; State space models; Mean-reverting; Heteroscedasticity; Quasi Monte
Carlo Kalman filter

JEL codes: C11, C32, C41, G11, G17

1. Introduction

In the early 1980s, a group of physicists, mathematicians
and computer scientists, led by quantitative analyst Nun-
zio Tartaglia, used a sophisticated statistical approach to
find opportunities for arbitrage trading (Gatev et al. 2006).
Tartaglia’s strategy, later coined pairs trading, is to find a
pair of stocks whose prices have moved simultaneously his-
torically, and make a profit by applying simple contrarian
principles. Since then, pairs trading has become a popular
short-term arbitrage strategy used by hedge funds and is often
considered as the ‘ancestor’ of statistical arbitrage.

Pairs trading is a self-financing portfolio constructed with a
long position in one security and a short position in the other.
Given that the two securities have moved together histori-
cally, when a temporary anomaly occurs, one security would
be overvalued, compared with the other, relative to the long-
term equilibrium. An investor may be able to make money
by selling the overvalued security, buying the undervalued
security, and clearing the exposure when the two securities
revert to their long-term equilibrium. Because the effect of the
market’s movement is hedged by this self-financing portfolio,
pairs trading is market-neutral.

*Email: gzhang46@bu.edu

The methods for pairs trading can be broadly divided into
nonparametric and parametric methods. In particular, Gatev et
al. (2006) proposed a nonparametric distance-based approach
to determine the securities for constructing the pairs. A pair
is chosen by finding the securities that minimize the sum
of squared deviations between two normalized prices. They
argued that this approach ‘best approximates the description
of how traders themselves choose pairs.’ They found that
average annualized excess returns reach 11% for the top port-
folio pairs using CRSP daily data from 1962 to 2002. Other
nonparametric methods on pairs trading can also be found in
Bogomolov (2013), among others. Overall, the nonparamet-
ric distance-based approach provides a simple and general
method for selecting ‘good’ pairs; however, as Krauss (2017)
and others point out, this selection metric is prone to choosing
pairs with a small variance of the spread, and thereby limiting
the profitability of pairs trading.

By contrast, the parametric approach tries to capture the
mean-reverting characteristic of the spread using a parametric
model. For example, Elliott et al. (2005) proposed a mean-
reverting Gaussian Markov chain model for the spread that
is observed with Gaussian noise. For other parametric meth-
ods of pairs trading see Vidyamurthy (2004), Cummins and
Bucca (2012), Tourin and Yan (2013), Moura et al. (2016),
Stübinger and Endres (2018), Clegg and Krauss (2018), Elliott
and Bradrania (2018), and Bai and Wu (2018). Overall, the
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parametric approach provides tractable methods for the anal-
ysis of pairs trading. However, most of the existing parametric
models are too simple to be capable of capturing the dynam-
ics of asset prices, which substantially limits the returns from
pairs trading.

Compared with existing methods of pairs trading, the
proposed approach has the following features:

(1) It is based on a general state space model that includes
a nonlinear non-Gaussian model. This model can cap-
ture several stylized features of financial asset prices,
including heavy-tailedness, heteroscedasticity, volatil-
ity clustering and nonlinear dependence;

(2) The trading strategy is different from existing ones.
It uses the model’s features such as heteroscedasticity
and volatility clustering, and it can potentially achieve
significantly higher returns and Sharpe ratios;

(3) The optimal trading rule is also different from the
existing ones. Although this rule has no analytic solu-
tion, we show that it can be computed effectively using
simulation; and finally,

(4) The optimal trading rule can adapt to various objec-
tives, such as a high cumulative return, Sharpe ratio,
or Calmar ratio.

This approach is applied to two pairs: PEP vs. KO and EWT
vs. EWH. Our new approach achieves an annualized return
of 0.2186 (0.3184) and a Sharpe ratio of 2.9518 (3.8892) on
the PEP-KO (EWT-EWH) pair. In comparison, a conventional
approach applied to the same pairs can only achieve an annu-
alized return of 0.1311 (0.1480) and a Sharpe ratio of 1.1003
(1.1277) for the PEP-KO (EWT-EWH) pair. Next, we test the
approach using all the possible pairs among the largest five
banks and the smallest five banks listed on the NYSE to find
significant improvements over the conventional approach for
almost all the pairs. We also find that pairs of small banks
produce higher returns than the pairs of large banks. This
is likely because the spread between small banks is more
volatile, providing more opportunities for active trading.

The remainder of this paper is organized as follows.
Section 2 proposes a new model for pairs trading. Section 3
proposes a new trading strategy based on the mean-reverting
property of spreads, and compares it with conventional trad-
ing strategies using simulation. Section 4 implements the
proposed approach on actual data, and in Section 5 the
conclusions are presented.

2. A new model for pairs trading

I propose the following general state space model with the
linear observable process for pairs trading:

PA,t = λ+ γPB,t + xt + εt (1)

xt+1 = f (xt; θ)+ g (xt; θ) ∗ ηt (2)

where PA is the price of security A; PB is the price of security
B; γ is the hedge ratio between the two securities; and x is the
unobservable true spread between PA and PB. I assume that
x follows a mean-reverting process as in (2), εt ∼ N(0, σ 2

ε ),

and ηt ∼ p(ηt; θ). Popular choices for f, g and p can be the
following. Our framework applies to all of them.

• Linear mean-reverting (Ornstein–Uhlenbeck pro-
cess): f (xt; θ) = θ1 + θ2xt

• Nonlinear mean-reverting model: f (xt; θ) = θ1 +
θ2xt + θ3x2

t
• Ait-Sahalia’s nonlinear mean-reverting model (Ait-

Sahalia 1996): f (xt; θ) = θ1 + θ2x−1
t + θ3xt + θ4x2

t
• Homoskedasticity model: g(xt; θ) = θ0

• Linear heteroscedastic model: g(xt; θ) = θ0 +∑m
i=1 θixt−i

• ARCH(m) nonlinear heteroscedastic model: g(xt; θ)

=
√
θ0 +∑m

i=1 θix2
t−i

• APARCH(m, δ) nonlinear heteroscedastic model:
g(xt; θ) = (θ0 +∑m

i=1 θi | xt−i |δ) 1
δ

• Gaussian distributed noise: p(η;μ, σ) = 1√
2πσ

exp

(− (μ−η)2
2σ 2 )

• Student’s t distributed noise: p(η; ν) = �( ν+1
2 )√

νπ�( ν2 )

(1 + η2

ν
)−

ν+1
2

• Generalized error distributed noise: p(η;α,β,μ) =
β

2α�( 1
β
)
exp(−(| η − μ | /α)β)

In models (1)–(2), since λ and θ1 in the f function can
not be identified simultaneously, I let λ = 0 and denote ψ =
(γ , θ , σε) ∈ Ψ as the identifiable parameter of the models (1)–
(2). ψ is estimated based on the data set {PA,t, PB,t}T

t=1.
It is easy to find that the general framework for pairs trad-

ing includes linear and Gaussian model as special case for
the dynamics of the spread, and my approach can be applied
to all these cases. The new model has three advantages com-
pared with existing models for pairs trading, such as Elliott
et al. (2005) and Moura et al. (2016). First, because η can
be non-Gaussian, x can follow a non-Gaussian process. By
allowing for this non-Gaussianity in η, the model can capture
the distributional deviation from Gaussianity and reproduce
heavy-tailed returns.

Second, the model can capture heteroscedasticity in finan-
cial data. A well-known feature of financial time-series is
volatility clustering: ‘large changes tend to be followed by
large changes, of either sign, and small changes tend to be
followed by small changes’ (Mandelbrot 1963). This feature
was documented later in Ding et al. (1993), and Ding and
Granger (1996) among others. In model (2), the volatility
persistence can be represented by an ARCH-style modeling.
Details about the application of an ARCH model in finance
can be found in Bollerslev et al. (1992).

Third, to characterize the nonlinear dependence in finan-
cial data, I allow f to be nonlinear. Scheinkman and
LeBaron (1989) found evidence indicating the presence of
nonlinear dependence in the weekly returns of the CRSP
value-weighted index. Ait-Sahalia (1996) found nonlinearity
in the drift function of interest rate and concluded that ‘the
principal source of rejection of existing (linear drift) models
is the strong nonlinearity of the drift.’ I keep the functional
form of f flexible and as a result, we can capture the nonlinear
dependence in financial data.
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3. A new approach to pairs trading

In this section, I discuss the trading strategies and trading rules
for pairs trading. In this study, a trading strategy is a method of
buying and selling of assets in markets based on the estimation
of the unobservable spread. A trading rule is the predefined
value that generates the trading signal for a specific trading
strategy with an investing objective. To implement a strategy
and rule on pairs trading, we need the following quantities:
(i) parameter estimates for the models (1)–(2), (ii) an estimate
of the spread, and (iii) choice of a specific strategy and the
optimal trading rule. I discuss these aspects in this section.
More specifically, in Section 3.1, I present an algorithm for
filtering the unobservable spread and parameter estimation.
In Section 3.2, I discuss two benchmark trading strategies.
In Section 3.3, I present and compare three popular trad-
ing rules associated with the benchmark trading strategies. In
Section 3.4, I propose a new trading strategy, where I change
the way we open or close a trade, and discuss the benefit of
this new strategy compared with the benchmark strategies.
Because the existing trading rule can not be simply applied
to the models (1)–(2), I propose a new approach to calculate
the optimal trading rule based on a simulation of the spread.
The details of this simulation-based method are presented in
Section 3.5. In Section 3.6, I summarize the procedures for
pairs trading. These procedures can be applied to pairs trad-
ing for all the trading strategies and rules discussed in this
paper.

3.1. Algorithm for filtering and parameter estimation

For the specification of models (1)–(2), I run the following
algorithm of Quasi Monte Carlo Kalman filter (QMCKF) for
nonlinear and non-Gaussian state space models to estimate the
unobservable spread and unknown parameters in the models,
based on the observations {PA,t, PB,t}T

t=1. This approach treats
linear and Gaussian model as a special case, and its theoreti-
cal properties are studied in Zhang (2020). Suppose the initial
spread x0 follows N(μ,Σ) for any reasonable choices of μ
and �.

• Step 1: For non-Gaussian density p(ηt), we
use Gaussian mixture density to approximate its
pdf and denote the approximation as p̃(ηt) =∑m

i=1 αiφ(ηt − ai, Pi),
∑m

i=1 αi = 1 associated with
parameters {αi, ai, Pi}m

i=1, and Gaussian density φ†.
If ηt is Gaussian, then this step can be dropped.

• Step 2: Generate a Box-Muller transformed Hal-
ton sequence {x(g)t,s }G

g=1 with sequence size G from
φ(xt − bt,s, Pt,s), where bt,s and Pt,s are from Step 5

† To get this approximation, we determine the values of {αi, ai, Pi}m
i=1

by minimizing the relative entropy between the true density p(ηt) and
its approximation p̃(ηt). The relative entropy is defined by

H (p|p̃) =
∫ (

log
p (η)

p̃ (η)

)
× p (η) dη.

The above relative entropy can be computed in a numerical manner
if it does not admit a closed-form solution.

in the previous period. Compute and store

ct+1,i = 1

G

G∑
g=1

f
(
x(g)t,s

)
+ g

(
x(g)t,s

)
∗ ak .

and

Qt+1,i = 1

G

G∑
g=1

(
f
(
x(g)t,s

)
− ct+1,i

)2

+
(
g
(
x(g)t,s

))2
∗ Pk ,

where ak and Pk , k = 1, . . . , m, are from the approx-
imation in Step 1. When t = 0, {x(g)0,s }G

g=1 is sampled
from N(μ,Σ).

• Step 3: Repeat Step 2 for s = 1, 2, . . . , Jt+1, with
Jt+1 = mt, and k = 1, . . .m, and store ct+1,i and
Qt+1,i for i = 1, 2, . . . , It+1, with It+1 = Jt+1 ∗ m =
mt+1.

• Step 4: Based on the results from Step 3, gen-
erate a Box-Muller transformed Halton sequences
{x(g)t+1,i}G

g=1 from φ(xt+1 − ct+1,i, Qt+1,i) for i =
1, 2, . . . , It+1, with It+1 = mt+1. Then generate
P(g)A,t+1,i = x(g)t+1,i + γ ∗ PB,t+1. Compute and store
the following

P̄A,t+1,i = 1

G

G∑
g=1

P(g)A,t+1,i,

Vt+1,i = 1

G

G∑
g=1

(
P(g)A,t+1,i − P̄A,t+1,i

)2
+ σ 2

ε ,

St+1,i = 1

G

G∑
g=1

(
x(g)t+1,i − ct+1,i

)

×
(
P(g)A,t+1,i − P̄A,t+1,i

)
.

• Step 5: Compute Kt+1,i = St+1,iV
−1
t+1,i, Pt+1,i =

Qt+1,i − K2
t+1,iVt+1,i, and bt+1,i = ct+1,i + Kt+1,i

(PA,t+1 − P̄A,t+1,i) where Qt+1,i and ct+1,i are from
Step 3.

• Step 6: Repeat Steps 4-5 for i = 1, 2, . . . , It+1,
with It+1 = mt+1. Compute and store x̄t+1 and P̄t+1

where x̄t+1 = ∑It+1
i=1 βt+1,ibt+1,i , and

P̄t+1 =
It+1∑
i=1

βt+1,i
(
Pt+1,i + b2

t+1,i

)

−
(

It+1∑
i=1

βt+1,ibt+1,i

)2

,

βt+1i = φ
(
PA,t+1 − ct+1,i − γ ∗ PB,t+1, Vt+1,i

)
∑It+1

i=1 φ
(
PA,t+1−ct+1,i−γ ∗ PB,t+1, Vt+1,i

) .

• Step 7: Repeat Steps 2-6 for t = 0, 1, 2, . . . , T .
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The output {x̄t}T
t=1 from Step 6 is our estimation of the

spread. To estimate the unknown parameter in the model, we
first write the log-likelihood function as

LG
T (ψ) ≡

T∑
t=1

log f G
(
ψ ; PA,t, PB,t

)

=
T−1∑
t=0

log

[
It+1∑

i

1√
2πVt+1,i

× exp

(
−
(
PA,t+1 − P̄A,t+1,i

)2
2 ∗ Vt+1,i

)]

and the MLE, ψ̂MLE, of the unknow parameter will be deter-
mined to maximize the above likelihood. That is,

ψ̂MLE = argmax
ψ∈Ψ

LG
T (ψ) .

A straightforward grid search can be used to find ψ̂MLE when
the number of the unknown parameters is small. Otherwise,
several optimization algorithms can be applied to find ψ̂MLE.
See Hajivassiliou and McFadden (1998) and Cameron and
Trivedi (2005) for details.

Also, a dual state-parameter estimation approach can be
used to estimate the parameters. In this approach, we consider
the unknown parameters as state variables and obtain the fil-
tering estimation of the original state variables and unknown
parameters simultaneously. See Wan et al. (1999) and Wan
and Nelson (2000) for examples.

3.2. Benchmark trading strategies

As I discussed in Section 1, the basic idea for pairs trading
is to open a trade (short one asset and long the other one)
when the spread deviates from the equilibrium, and to close
the trade when the spread returns to the equilibrium. The trad-
ing strategies for pairs trading are constructed based on this
idea. I use Figures 1 and 2 to illustrate two benchmark trading
strategies (hereinafter, Strategies A and B). In Figures 1 and
2, the same estimated spread is plotted as solid lines, while a
preset upper boundary U and a preset lower boundary L are
plotted as dashed lines. I discuss how to choose the optimal
U and L in Section 3.3. The upper and lower boundaries act
as thresholds to determine whether the spread has deviated
enough from the long-term equilibrium, and we use these two
criteria to open a trade. In addition, a preset value C acts as
a threshold to determine whether the spread has returned to
the long-term equilibrium, and we use this criterion to close
a trade. In this study, I take C as the mean of the spread, and
plot it as a solid green line in both Figures 1 and 2.

In Strategy A (illustrated in Figure 1), a trade is opened at t1
when the spread is higher than or equal to U. In this case, we
sell 1 share of stock A and buy γ shares of stock B. When the
spread is less than or equal to the mean (i.e.C), we close the
trade and clear the position. The return from this trade is thus
U −C. At t2, when the spread is less than or equal to L, we
open a trade, buying 1 share of stock A and selling γ shares of
stock B. We close this trade and clear the position at t′2, when

the spread is higher than or equal to the mean. The return from
this trade is C −L.

In Strategy B (illustrated in Figure 2), we open a trade when
the spread crosses the upper boundary from below (e.g. at t1 )
or crosses the lower boundary from above (e.g. at t2 ). Unlike
the Strategy A, we will hold the portfolio until we need to
switch the position. Thus, in Strategy B, we clear the exposure
at the same time when we open a new trade ( i.e. t2 and t′1
coincide).

3.3. Conventional trading rules

When implementing pairs trading, the trading rule for a spe-
cific trading strategy is the computation of optimal thresholds,
U and L, for fulfilling an investing objective based on that
strategy. There are three popular approaches for computing
the optimal thresholds, when the model (2) is linear mean-
reverting, homoscedastic, and Gaussian (i.e. f is linear, g is
a constant, and η is a Gaussian noise). The optimal trad-
ing rule for a general specification of model (2) is given in
Section 3.5.

• Rule I: Ad hoc boundaries

Rule I takes U to be one (1-σ rule) or two (2-σ rule) stan-
dard deviations above the mean, L to be one or two standard
deviations below the mean, and C is the mean of the spread.
This rule is simple and popular in practice. In particular, the
2-σ rule was first applied by Gatev et al. (2006) and later
checked by Moura et al. (2016), Zeng and Lee (2014), and
Cummins and Bucca (2012). The 1-σ rule was discussed in
Zeng and Lee (2014), and the performance of the 1-σ rule
and 2-σ rule was compared in the same paper.

• Rule II : Boundaries based on the first-passage-time

This rule was first adopted by Elliott et al. (2005) and later
by Moura et al. (2016). Suppose xt, the spread, follows a
standardized Ornstein–Uhlenbeck process:

dxt = −xt dt +
√

2 dWt

Let T0,x0 be the first passage time of xt, and we know T0,x0 has
a pdf known explicitly:

f0,x0(t) =
√

2

π

|x0|e−t(
1 − e−2t

)3/2 exp

(
− x2

0e−2t

2
(
1 − e−2t

)
)

Here, given the value of current spread, t∗, the optimizer of
the above pdf, is the likeliest time that the spread will revert
to the mean. In model (2), if the spread follows the Ornstein–
Uhlenbeck process, then we can first standardize x, and use t∗

to construct the optimal C. A similar idea can be applied to
compute U and L.

• Rule III: Boundaries based on the renewal theorem

This rule was first proposed by Bertram (2010), and then
extended by Zeng and Lee (2014). Under this rule, each
trading cycle is separated into two parts, τ1 and τ2, defined
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Figure 1. Trading Strategy A.

Figure 2. Trading Strategy B.

by

τ1 = inf {t; xt = C|x0 = U} , and

τ2 = inf {t; xt = U |x0 = C} ,

where x is the spread. Suppose T is the time taken to complete
each trade cycle, i.e. T = τ1 + τ2, and Nτ is the number of
transactions we can have in the period [0, τ ]. Then, by the

renewal theorem, the return per unit time is given by:

(U − C) lim
τ→∞

E (Nτ )

τ
= U − C

E (T)
= U − C

E (τ1)+ E (τ2)
.

where E(τ1) and E(τ2) can be computed based on the density
of the first passage time, as mentioned in Rule II.

The problem of this rule, as Zeng and Lee (2014) have
pointed out, is that when there is no transaction cost, this strat-
egy implies that U (and L) will be arbitrarily close to C. This
suggests that the trader values the trading frequency more than
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Figure 3. Trading Strategy C. (a) Trading Strategy C in Homoscedastic Model. (b) Trading Strategy C in Heteroscedastic Model.

the profit per trade. Consequently, this could increase the risk
of the portfolio significantly.

3.4. The new trading strategy

I summarize the new trading strategy (hereinafter, Strategy C)
in Figure 3. The basic idea of Strategy C is similar to both
Strategies A and B: opening a trade when the spread is far

away from the equilibrium and closing the trade when the
spread returns to the equilibrium. Unlike Strategies A and
B, in Strategy C, we open a trade when the spread crosses
the upper boundary from above (or crosses the lower bound-
ary from below), and we clear the position when the spread
crosses the mean, or crosses the boundaries (U and L) after
a trade has been opened (i.e. the spread crosses the upper
boundary from below or the lower boundary from above). For
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example, in Figure 3(a) for a homoscedastic model, at t1, t2,
t3, and t4, we open a trade; and at t′1, t′2, t′3, and t′4, we clear the
exposure. In Figure 3(b) for a heteroscedastic model, we open
a trade at t1 and t2, and we close the trade at t′1, and t′2.

Now I discuss the properties of this trading strategy when
the model (2) is homoscedastic (i.e. the g function is constant)
and when it is heteroscedastic (i.e. g is non-constant). In the
first situation, the main benefit of Strategy C is that we can
avoid holding the portfolio when the spread is larger than the
upper boundary (or smaller than the lower boundary). This
would significantly decrease the portfolio risk and drawdown.
The main drawback of Strategy C is that the return can be
lower because we open a trade when the spread is closer to
the mean of the spread than in the case of Strategy A. There-
fore, there is a trade-off between the risk and the return. When
model (2) is heteroscedastic, this strategy can not only reduce
the risk but also improve the return because opening a trade
now depends on the level of volatility, and consequently, the
boundaries are no longer constant over time. The logic of this
new strategy is illustrated in Figure 3(a,b), for homoscedastic
and heteroscedastic cases, respectively.

3.5. Simulation based method for optimal trading rule

For a general specification of models (1)–(2), the conventional
trading rules in Section 3.3 are difficult to apply. For example,
the 1-σ or 2-σ rules can not be applied when model (2) is
heteroscedastic. For a complicated specification of model (2),
it is impossible to derive the density of the first passage time
explicitly; thus, rules II and III are unavailable in this case.

To compute the optimal trading rule under model (2) for
all of the trading strategies, I propose to select the optimal
boundaries (i.e. for U and L; I set C as the mean of the
spread by default† ) based on the Monte Carlo simulation of
the spread (Equation (2) given the estimation of the unknown
parameters). Different criteria or investing objectives, such as
expected return, Sharpe ratio or Calmar ratio, can be used to
determine the optimal boundaries for a given trading strategy.

Now, I use the following five specifications of model (2)
to describe the details of the computation of the new trading
rules:

• Model 1: xt+1 = 0.9590 ∗ xt + 0.0049 ∗ ηt, ηt ∼
N(0, 1)

• Model 2: xt+1 = 0.9 ∗ xt + 0.2590 ∗ x2
t + 0.0049 ∗

ηt, ηt ∼ N(0, 1)
• Model 3: xt+1 = 0.9590 ∗ xt +√

(0.00089 + 0.08 ∗ x2
t ) ∗ ηt, ηt ∼ N(0, 1)

• Model 4: xt+1 = 0.9590 ∗ xt + 0.0049√
3

∗ ηt, ηt ∼ t-
distribution with 3 degrees of freedom

• Model 5: xt+1 = 0.9 ∗ xt + 0.2590 ∗ x2
t + 0.0049√

3
∗

ηt, ηt ∼ t-distribution with 3 degrees of freedom

† I assume C as the mean of the spread for simplicity, and this
assumption can be relaxed to construct more flexible strategies. For
example, we can define C ≡ (mean ±�) for a parameter � and
we close the trade when the spread enters into this region. My
simulation-based method can also be applied to compute the opti-
mal �. See an example of this strategy in Tie et al. (2018). A
more detailed discussion of this strategy is provided in the online
appendix.

Model 1 is a linear, Gaussian, and homoscedastic model.
This is the most popular model used for pairs trading. See
Elliott et al. (2005) and Moura et al. (2016) for examples of
this model. Model 2 is a nonlinear mean-reverting and Gaus-
sian model; Model 3 is a linear mean-reverting, Gaussian, and
nonlinear heteroscedastic model; Model 4 is a linear mean-
reverting and non-Gaussian model; and Model 5 is a nonlinear
mean-reverting and non-Gaussian model. The last four mod-
els are different extensions of Model 1 and have never been
discussed in the literature on pairs trading. These five models
can be considered as the benchmark models for pairs trad-
ing. Further extensions are available based on the combination
of these models, and our simulation-based method for the
optimal trading rule can also be applied to them.

For every specification of Models 1–5, I calculate the opti-
mal trading rules through the N simulations of the spread for
Strategies A, B and C and compare the resulting performances
of the three strategies based on the expected return and Sharpe
ratio. More specifically, across all of the examples, I represent
the optimal trading rule (upper boundary U and lower bound-
ary L) as the ratio of its difference with the mean of the spread
to one standard deviation of the spread, and I consider the
upper boundary U between [0.1, 2.5] and lower boundary L
between [−2.5, −0.1] for a grid size of 0.1. For every speci-
fication of Models 1-5 and every realization of the process of
the spread {x(m,n)

t }T
t=1, where m is for different models (m = 1,

2, 3, 4, 5), and n is for different realizations of the spread
in the simulation (n = 1, . . .N), I choose Ui from [0.1, 2.5]
and Lj from [−2.5, −0.1], where i, j = 1, . . . , 25, and compute
the resulting cumulative return and Sharpe ratio for difference
strategies. More specifically, I denote the cumulative return
and Sharpe ratio as CRm,k,n

i,j and, SRm,k,n
i,j , respectively, where

k is for difference strategies (k = 1, 2, 3). For model m and
strategy k, the resulting expected cumulative return CRm,k

i,j and

Sharpe ratio SRm,k
i,j are computed as

CRm,k
i,j = 1

N

N∑
n=1

CRm,k,n
i,j , and SRm,k

i,j = 1

N

N∑
n=1

SRm,k,n
i,j .

Then, the optimal trading rule (U∗
m,k , L∗

m,k) is selected to

maximize CRm,k
i,j or SRm,k

i,j , that is,[
U∗

m,k , L
∗
m,k

] = arg max
Ui,Lj

zm,k
i,j

where z = CR or SR. Across all of the examples, I set the total
trading period to be 1000 trading days (or approximately four
years), and I set the simulation size to be N = 10, 000. For
simplicity, I assume that the transaction cost is 20 bp (0.2%)‡
, and the annualized risk-free rate is set at 0.

In Table 1, I report the optimal trading rule for every combi-
nation of the five models and three strategies, and the resulting
expected cumulative return and Sharpe ratio§. As we can
find from this table, when the model is heteroscedastic, Strat-
egy C outperforms the other two strategies in terms of both

‡ This transaction cost is on one asset of the pair. Since a complete
trading includes transactions on two assets, the total transaction cost
of one complete trading is 40 bp.
§ If the spread and the strategy are symmetric around the mean,
then the optimal upper boundary and lower boundary should also be
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Table 1. Optimal Selection of Trading Rule for Cumulative Return and Sharpe Ratio.

Model Strategy U∗ L∗ CR U∗ L∗ SR

Model 1 A 0.7 − 0.7 0.3868 1.1 − 1.1 0.0882
B 0.5 − 0.5 0.4245 0.5 − 0.5 0.0807
C 1 − 1 0.2990 0.9 − 0.9 0.1044

Model 2 A 0.8 − 0.8 0.5562 1.2 − 1.3 0.1308
B 0.6 − 0.6 0.6085 0.6 − 0.6 0.1203
C 1.2 − 1.3 0.3300 1.2 − 1.3 0.1163

Model 3 A 0.3 − 0.2 3.9413 0.4 − 0.4 0.0751
B 0.1 − 0.1 4.0139 0.1 − 0.1 0.0743
C 0.8 − 0.8 6.6763 0.1 − 0.1 0.2499

Model 4 A 0.6 − 0.6 0.3792 1 − 1 0.0881
B 0.4 − 0.5 0.4071 0.5 − 0.5 0.0782
C 1 − 1 0.2243 1 − 1 0.0829

Model 5 A 0.7 − 0.7 0.5359 1.2 − 1.2 0.1293
B 0.5 − 0.5 0.5760 0.5 − 0.5 0.1145
C 1.2 − 1.2 0.2423 1.4 − 1.4 0.0961

Note: The third and forth columns are the optimal boundaries based on maximizing the cumulative return, and the fifth column
is the resulting cumulative return. The sixth and seventh columns are the optimal boundaries based on maximizing the Sharpe
ratio, and the eighth column is the resulting Sharpe ratio. The cumulative return is displayed in decimal.

the cumulative return and the Sharpe ratio. Moreover, for
the other homoscedastic models (Models 1, 2, 4, and 5), the
Sharpe ratio of Strategy C is competitive, although the cumu-
lative return is not. This supports our discussion of this new
strategy in Section 3.4.

I leave the detailed results of the simulation method in the
appendix. More precisely, the expected cumulative returns
and Sharpe ratio as functions of various choices of U and L
are given in Figures A1–A5 for every possible combination of
the three strategies and four models.

3.6. Summary

Now I summarize the procedures for pairs trading based on
models (1)–(2) and conclude this section.

• Step 1: Choose a specific model for (1)–(2). Given
this model and observations {PA,t, PB,t}T

t=1, we run
the Quasi Monte Carlo Kalman filter and obtain the
filtered estimation of the spread {x̄t}T

t=1 and the esti-
mation of the unknown parameters in the model.
The details of running QMCKF are discussed in
Section 3.1.

• Step 2: Choose a trading strategy, and determine the
optimal trading rule (i.e. the optimal U and L) for a
specific criterion using the Monte Carlo simulation
based on the data until time T. The details of this
step can be found in Sections 3.2–3.5.

• Step 3: For t>T, we run QMCKF and estimate
x̄t with ψ = ψ̂ , the estimate of the parameters
obtained in Step 1. We use this {x̄t}t>T and follow
the preset trading strategy and optimal trading rule
from Step 2 to generate the signal for trading.

symmetric around zero, i.e, U∗ = −L∗. However, due to the approx-
imation error in gridding, the absolute values of U∗ and L∗ may not
be exactly the same in Table 1.

Table 2. Parameter Estimation of Model I and Model II on PEP vs.
KO and EWT vs. EWH.

Panel A: PEP vs. KO Panel B: EWT vs. EWH

Model I Model II Model I Model II

γ 1.98 2.03 1.40 1.42
σ 2
ε 0.012 0.011 0.0007 0.0006
θ0 − 0.0001 − 0.001 − 0.0004 − 0.0015
θ1 0.9572 0.9330 0.9898 0.9589
θ2 0.029 0.0003 0.0337 0.0016
θ3 – 0.1283 – 0.1136

4. Applications

In this section, I test the performance of pairs trading through
general state space modeling for different trading strategies.
Across all of the applications in this section, I assume that the
transaction cost is 20 bp and the annualized risk-free rate is
2%, and I test the performance of Strategies A, B, and C for
two specifications of model (2):

• Model I: xt+1 = θ0 + θ1xt + θ2 ∗ ηt, ηt ∼ N(0, 1)
• Model II: xt+1 = θ0 + θ1xt +

√
θ2 + θ3x2

t ∗ ηt, ηt ∼
N(0, 1)

As I explained in Section 3.4, the new trading strategy
(Strategy C) can significantly improve the performance of
pairs trading when the model (2) is heteroscedastic. See
Model 3 of Table 1 for a comparison based on simulation. In
the following, I use actual data to compare the performance
of various strategies and show the improvement of the het-
eroscedastic modeling combined with the proposed strategy.

4.1. Pepsi vs. Coca

In this example, I examine the performance of pairs trading
for PEP (Pepsi) and KO (Coca). The data consist of daily
observations of adjusted closing prices of PEP and KO from
01/03/2012 to 06/28/2019. Panel A of Table 2 reports the
parameter estimation of both Models I and II for this pair. The
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Table 3. Annualized Performance of Pairs Trading on PEP vs. KO and EWT vs. EWH.

Strategy and Model Return Std Dev Sharpe Calmar Pain index

Panel A: PEP vs. KO
Strategy A, Model I 0.1311 0.0988 1.1003 1.3742 0.0195
Strategy B, Model I 0.1385 0.1153 1.0052 1.2204 0.0334
Strategy C, Model I 0.0618 0.0534 0.7649 0.8243 0.0087
Strategy A, Model II 0.1340 0.1038 1.0751 1.4040 0.0200
Strategy B, Model II 0.1407 0.1139 1.0366 1.2398 0.0258
Strategy C, Model II 0.2186 0.0659 2.9518 8.2384 0.0030

Panel B: EWT vs. EWH
Strategy A, Model I 0.1480 0.1111 1.1277 1.3042 0.0156
Strategy B, Model I 0.1109 0.1362 0.6531 0.7836 0.0328
Strategy C, Model I 0.1294 0.0740 1.4458 3.0926 0.0080
Strategy A, Model II 0.1402 0.1223 0.9622 1.2354 0.0196
Strategy B, Model II 0.1093 0.1349 0.6473 0.7717 0.0306
Strategy C, Model II 0.3184 0.0752 3.8892 10.3005 0.0032

annualized performance metrics are provided in Panel A of
Table 3. It is clear that in Model II, the annualized return of
Strategy C is almost 50% higher than those of Strategies A and
B, while Strategy C maintains almost half of the risk (mea-
sured by annualized standard deviation) of Strategy A or B.
By comparing these matrices, we find that this improvement
is significant. However, the difference in the performances of
Strategies A and B across the two models is limited. This
implies that the effect of heteroscedasticity modeling on the
performances of Strategies A and B is not significant. This is
because in Strategies A and B, the hedging portfolio is held
until the spread is around the mean; therefore, the frequency
of changing positions is lower in Strategies A or B than that
in Strategy C.

4.2. EWT vs. EWH

In this example, I examine the performance of pairs trading
for EWT and EWH. The data consist of daily adjusted clos-
ing prices of EWT and EWH from 01/01/2012 to 05/01/2019.
EWT is the iShares MSCI Taiwan ETF managed by Black-
Rock. It seeks to track the investment results of an index
composed of Taiwanese equities, while EWH similarly cor-
responds to Hong Kong equities. Following the example of
PEP vs. KO, I test the performance of Strategies A, B, and C
for Models I and II. I report the parameter estimation in Panel
B of Table 2, and the annualized performance in Panel B of
Table 3. Comparing the annualized performance, we find that
the heteroscedasticity modeling can improve the performance
of Strategy C significantly, while it has no effect on Strategy
A or B.

4.3. Pairs trading on U.S. Banks listed on the NYSE

I use this example to illustrate the improvement of our new
modeling and strategy by implementing pairs trading on U.S.
banks listed on the NYSE from 01/01/2013 to 01/10/2019.
To avoid data snooping and make our results more concrete, I
use a simple method in choosing assets and constructing pairs.
Specifically, based on market capacity, I select the five largest
banks to construct a group of large banks and the five small-
est banks to construct a group of small banks. The large bank

group includes JPM, BAC, WFC, C, and USB† , and the small
bank group includes CPF, BANC, CUBI, NBHC, and FCF‡ .
I compare the performance of Model I combined with Strat-
egy A against Model II combined with Strategy C. Model I
combined with Strategy A is a popular approach in the exist-
ing literature on pairs trading, making it a good benchmark
for comparison.

In Panel A of Table A1, I report the performance of these
two approaches on 10 pairs of the large banks. The perfor-
mance on 10 pairs among the small banks is given in Panel
B of Table A1. It is apparent that Model II combined with
Strategy C outperforms Model I combined with Strategy A
for almost all the pairs, either in terms of annualized returns
or annualized Sharpe ratios. The improvement in the Sharpe
ratio of Model II combined with Strategy C is much more
significant than that in returns. For example, when trading is
implemented on pairs among large banks, the improvement in
return is 41.29%, and the improvement in the Sharpe ratio is
89.23%. If trading is implemented on pairs of small banks, the
improvement in returns is 74.41%, and that in the Sharpe ratio
is 151.8%.

In addition, by comparing the results in both panels of
Table A1, we find that the performance of pairs of small banks
is better than that of large banks, either for Model I com-
bined with Strategy A or Model II combined with Strategy
C is applied for trading. For example, applying Model I com-
bined with Strategy A, the mean of the returns of all pairs of
large banks is 0.0703, and that of small banks can be improved
to 0.1524. Moreover if Model II combined with Strategy C is
applied, we can get an improvement of 0.1664 (from 0.0994
to 0.2658) by switching from trading on large banks to trading
on small banks. In Table A2, I report the performance of the
two approaches of pairs trading for all possible pairs between
large banks and small banks, that is, I pair one large bank
with one small bank. For some pairs, such as JPM-CUBI and

† JPM is for J P Morgan Chase & Co; BAC is for Bank of America
Corporation; WFC is for Wells Fargo & Company; C is for Citigroup
Inc.; USB is for U.S. Bancorp.
‡ CPF is for CPB Inc.; BANC is for Banc of California, Inc.; CUBI is
for Customers Bancorp, Inc.; NBHC is for National Bank Holdings
Corporation; FCF is for First Commonwealth Financial Corporation.
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BAC-CUBI, the spread is far from being mean-reverting, thus
resulting in poor pairs trading performance.

To further investigate the performance of pairs trading, I
check the out-of-sample performance of the two approaches
on the 10 bank stocks. More precisely, I separate 01/10/2012
to 01/12/2019 into two periods: 01/10/2012 to 01/01/2018 (in-
sample period) and 01/01/2018 to 01/12/2019 (out-of-sample
period). I use the in-sample data to train the model, estimate
the parameter of the model, and determine the optimal trad-
ing rules. In the out-of-sample period, I use the parameters
and optimal trading rules based on in-sample data to gener-
ate the trading signal. The results are given in Tables A3–A6.
From these tables, we can also confirm our earlier findings
that Model II combined with Strategy C outperforms Model
I combined with Strategy A in terms of both the returns and
Sharpe ratio, and the improvement is more significant with
regard to the Sharpe ratio.

5. Conclusion

Pairs trading is a statistical arbitrage involving the long/short
position of overpriced and underpriced assets. The results in
this study show that digging into the modeling and trading
strategy can improve the performance of pairs trading signifi-
cantly and harness the greater potential of pairs trading in the
financial markets. This finding can help empirical research on
the general profitability of pairs trading and the discussion of
tests of market efficiency, which I leave for future research to
address.
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Appendix

Figure A1. Performance of Strategy A, B and C, based on Model 1. (a) Return of Strategy A, Model 1. (b) Sharpe Ratio of Strategy A,
Model 1. (c) Return of Strategy B, Model 1. (d) Sharpe Ratio of Strategy B, Model 1. (e) Return of Strategy C, Model 1. (f) Sharpe Ratio of
Strategy C, Model 1.
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Figure A2. Performance of Strategy A, B and C, based on Model 2. (a) Return of Strategy A, Model 2. (b) Sharpe Ratio of Strategy A,
Model 2. (c) Return of Strategy B, Model 2. (d) Sharpe Ratio of Strategy B, Model 2. (e) Return of Strategy C, Model 2. (f) Sharpe Ratio of
Strategy C, Model 2.
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Figure A3. Performance of Strategy A, B and C, based on Model 3. (a) Return of Strategy A, Model 3. (b) Sharpe Ratio of Strategy A,
Model 3. (c) Return of Strategy B, Model 3. (d) Sharpe Ratio of Strategy B, Model 3. (e) Return of Strategy C, Model 3. (f) Sharpe Ratio of
Strategy C, Model 3.
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Figure A4. Performance of Strategy A, B and C, based on Model 4. (a) Return of Strategy A, Model 4. (b) Sharpe Ratio of Strategy A,
Model 4. (c) Return of Strategy B, Model 4. (d) Sharpe Ratio of Strategy B, Model 4. (e) Return of Strategy C, Model 4. (f) Sharpe Ratio of
Strategy C, Model 4.
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Figure A5. Performance of Strategy A, B and C, based on Model 5. (a) Return of Strategy A, Model 5. (b) Sharpe Ratio of Strategy A,
Model 5. (c) Return of Strategy B, Model 5. (d) Sharpe Ratio of Strategy B, Model 5. (e) Return of Strategy C, Model 5. (f) Sharpe Ratio of
Strategy C, Model 5.
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Table A1. Performance of Pairs Trading on Pairs of Large Banks and Pairs of Small Banks.

Model I + Strategy A Model II + Strategy C Improvement (in %)

Pair Stock #1 Stock #2 Return Sharpe Return Sharpe Return Sharpe

Panel A: Pairs of Large Banks
1 JPM BAC 0.1185 1.0030 0.0961 1.1126 − 18.90 10.93
2 JPM WFC 0.0229 0.2268 0.0581 0.7434 153.7 227.8
3 JPM C 0.0567 0.5359 0.1049 1.3486 85.01 151.7
4 JPM USB 0.0412 0.3971 0.0663 0.7832 60.92 97.23
5 BAC WFC 0.0451 0.3455 0.0695 0.6046 54.10 74.99
6 BAC C 0.0874 0.8158 0.1369 1.7516 56.64 114.7
7 BAC USB 0.0554 0.3786 0.0923 1.0077 66.61 166.2
8 WFC C 0.1031 0.8041 0.1014 0.9731 − 1.649 21.02
9 WFC USB 0.0591 0.5631 0.0674 0.8934 14.04 58.66
10 C USB 0.1140 0.9040 0.2009 2.0862 76.23 130.8

Mean 0.0703 0.5974 0.0994 1.1304 41.29 89.23
Min 0.0229 0.2268 0.0581 0.6046 153.7 166.6
Max 0.1185 1.0030 0.2009 2.0862 69.54 108.0

Median 0.0579 0.5495 0.0942 0.9904 62.69 80.24

Panel B: Pairs of Small Banks
1 CPF BANC 0.1832 0.6745 0.2158 1.3428 17.79 99.08
2 CPF CUBI 0.1092 0.4736 0.2374 1.3563 117.4 186.4
3 CPF NBHC 0.1436 0.7694 0.1912 1.2573 33.15 63.41
4 CPF FCF 0.1162 0.7127 0.2175 1.7210 87.18 141.5
5 BANC CUBI 0.1583 0.5199 0.4820 1.9742 204.5 279.7
6 BANC NBHC 0.2105 0.8353 0.1807 1.1435 − 14.16 36.90
7 BANC FCF 0.1669 0.5830 0.3094 2.1898 85.38 275.6
8 CUBI NBHC 0.1575 0.6049 0.2392 1.4485 51.87 139.5
9 CUBI FCF 0.1362 0.5593 0.2718 1.5292 99.56 173.4
10 NBHC FCF 0.1425 0.8161 0.3132 2.5273 119.8 209.7

Mean 0.1524 0.6549 0.2658 1.6490 74.41 151.8
Min 0.1092 0.4736 0.1807 1.1435 65.48 141.4
Max 0.2105 0.8353 0.4820 2.5273 129.0 202.6

Median 0.1506 0.6397 0.2383 1.4889 58.29 132.7

Note: Return is the annualized return, displayed in decimal. Sharpe is the annualized Sharpe ratio.
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Table A2. Performance of Pairs Trading on Pairs Between Large Banks and Small Banks.

Model I + Strategy A Model II + Strategy C Improvement (in %)

Pair Stock #1 Stock #2 Return Sharpe Return Sharpe Return Sharpe

1 JPM CPF 0.0670 0.3965 0.1833 1.4799 173.6 273.2
2 JPM BANC 0.0587 0.2396 0.0935 0.8334 59.28 247.8
3 JPM CUBI − 0.0604 − 0.2669 0.0423 0.3536 170.0 232.5
4 JPM NBHC 0.1860 0.9750 0.2683 2.1385 44.25 119.3
5 JPM FCF 0.1151 0.7230 0.2594 2.3479 125.4 224.7
6 BAC CPF 0.0778 0.3770 0.2486 1.5596 219.5 313.7
7 BAC BANC 0.0565 0.2124 0.1383 0.7916 144.8 272.7
8 BAC CUBI − 0.0959 − 0.3612 0.0473 0.5852 149.4 262.0
9 BAC NBHC 0.1942 0.9496 0.3420 2.4948 76.11 162.7
10 BAC FCF 0.1729 0.9061 0.2541 2.1954 46.96 142.3
11 WFC CPF 0.0420 0.2149 0.1138 1.2746 171.0 493.1
12 WFC BANC 0.1671 0.6058 0.2071 1.0214 23.94 68.60
13 WFC CUBI 0.0606 0.2572 0.2053 1.3002 238.8 405.5
14 WFC NBHC 0.1410 0.7844 0.1237 0.9464 − 12.27 20.65
15 WFC FCF 0.1058 0.5948 0.1366 1.3104 29.11 120.3
16 C CPF 0.1421 0.7000 0.2214 2.1513 55.81 207.3
17 C BANC 0.0244 0.0961 0.1999 1.1101 719.3 1055
18 C CUBI − 0.0031 − 0.0138 0.0617 0.4357 2090 3257
19 C NBHC 0.2164 1.0536 0.2927 2.3896 35.26 126.8
20 C FCF 0.1520 0.7687 0.2246 1.8611 47.76 142.1
21 USB CPF 0.0782 0.4494 0.2408 2.0902 207.9 365.1
22 USB BANC 0.1435 0.5450 0.2361 1.7444 64.53 220.1
23 USB CUBI − 0.0678 − 0.2938 0.0700 0.3497 203.2 219.0
24 USB NBHC 0.1911 1.2574 0.2384 2.1422 24.74 70.37
25 USB FCF 0.0789 0.5077 0.1206 1.1142 52.85 119.5

Mean 0.0898 0.4671 0.1828 1.4409 103.6 208.4
Min − 0.0959 − 0.3612 0.0423 0.3497 144.1 196.8
Max 0.2164 1.2574 0.3420 2.4948 58.04 98.41

Median 0.0789 0.5077 0.2053 1.3104 160.2 158.1

Note: Return is the annualized return, displayed in decimal. Sharpe is the annualized Sharpe ratio.
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Table A3. In Sample and Out of Sample Performance of Pairs Trading on Pairs of Large Banks.

Model I + Strategy A Model II + Strategy C Improvement (in %)

Pair Stock #1 Stock #2 Return Sharpe Return Sharpe Return Sharpe

Panel A: In Sample Performance
1 JPM BAC 0.1145 0.8864 0.1501 1.8003 31.09 103.1
2 JPM WFC 0.0160 0.1461 0.0795 0.9451 396.9 546.9
3 JPM C 0.0664 0.5686 0.1013 1.5193 52.56 167.2
4 JPM USB 0.0186 0.2172 0.0629 1.4293 238.2 558.1
5 BAC WFC 0.0027 0.0179 0.0568 0.4748 2004 2553
6 BAC C 0.0920 0.7252 0.1193 1.5417 29.67 112.6
7 BAC USB 0.0603 0.3936 0.1535 1.5144 154.6 284.8
8 WFC C 0.0827 0.5918 0.1219 1.2283 47.40 107.6
9 WFC USB 0.0600 0.6432 0.0739 0.9603 23.17 49.30
10 C USB 0.1146 0.8553 0.1695 1.7648 47.91 106.3

Mean 0.0628 0.5045 0.1089 1.3178 73.42 161.2
Min 0.0027 0.0179 0.0568 0.4748 2004 2553
Max 0.1146 0.8864 0.1695 1.8003 47.91 103.1

Median 0.0634 0.5802 0.1103 1.4719 74.11 153.7

Panel B: Out of Sample Performance
1 JPM BAC − 0.0503 − 0.4730 − 0.0500 − 0.4760 0.5964 − 0.6342
2 JPM WFC − 0.0809 − 0.5693 − 0.0361 − 0.3281 55.38 42.37
3 JPM C − 0.0841 − 0.6845 0.0299 0.3228 135.6 147.2
4 JPM USB 0.0867 0.9267 0.1297 1.6816 49.60 81.46
5 BAC WFC 0.0364 0.4593 0.0464 0.4636 27.47 0.9362
6 BAC C − 0.0512 − 0.3766 0.0149 0.2612 129.1 169.4
7 BAC USB − 0.0037 − 0.0252 0.0587 0.5169 1686 2151
8 WFC C − 0.0586 − 0.3472 0.0698 0.7619 219.1 319.5
9 WFC USB − 0.1029 − 0.6961 0.0269 0.3591 126.4 151.6
10 C USB − 0.0486 − 0.2948 0.0942 0.7796 293.8 364.5

Mean − 0.0357 − 0.2081 0.0384 0.4343 207.6 308.7
Min − 0.1029 − 0.6961 0.0500 − 0.4760 51.41 31.62
Max 0.0867 0.9267 0.1297 1.6816 49.60 81.46

Median − 0.0508 − 0.3619 0.0382 0.4114 175.2 213.7

Note: The data is from 01/10/2012 to 01/01/2018. Return is the annualized return, displayed in decimal. Sharpe is the annualized Sharpe
ratio.
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Table A4. In Sample and Out of Sample Performance of Pairs Trading on Pairs of Small Banks.

Model I + Strategy A Model II + Strategy C Improvement (in %)

Pair Stock #1 Stock #2 Return Sharpe Return Sharpe Return Sharpe

Panel A: In Sample Performance
1 CPF BANC 0.2713 0.9758 0.3513 2.0574 29.49 110.8
2 CPF CUBI 0.1226 0.4404 0.4457 1.9114 263.5 334.0
3 CPF NBHC 0.1905 0.9823 0.2559 1.7188 34.33 74.98
4 CPF FCF 0.1855 1.2385 0.2453 2.5505 32.24 105.9
5 BANC CUBI 0.2500 0.6928 0.4076 1.9505 63.04 181.5
6 BANC NBHC 0.2406 0.8926 0.1699 1.4127 − 29.38 58.27
7 BANC FCF 0.2056 0.7819 0.3308 1.8279 60.89 133.8
8 CUBI NBHC 0.1130 0.3808 0.2164 1.8059 91.50 374.2
9 CUBI FCF 0.1125 0.4133 0.1886 1.1579 67.64 180.2
10 NBHC FCF 0.1026 0.5723 0.2523 1.8035 145.9 215.1

Mean 0.1794 0.7371 0.2864 1.8197 59.64 146.9
Min 0.1026 0.3808 0.1699 1.1579 65.59 204.1
Max 0.2713 1.2385 0.4457 2.5505 64.28 105.9

Median 0.1880 0.7374 0.2541 1.8169 35.16 146.4

Panel B: Out of Sample Performance
1 CPF BANC 0.1856 0.7541 0.1649 0.8297 − 11.15 10.03
2 CPF CUBI − 0.0924 − 0.3528 0.2424 1.8467 362.3 623.4
3 CPF NBHC − 0.0769 − 0.3944 0.1621 1.0216 310.8 359.0
4 CPF FCF − 0.0373 − 0.1906 0.2094 1.4249 661.4 847.6
5 BANC CUBI 0.1266 0.7454 0.4109 2.5902 224.6 247.5
6 BANC NBHC − 0.1577 − 0.6720 − 0.0797 − 0.3926 49.46 41.58
7 BANC FCF 0.0107 0.0821 0.1601 1.3930 1396 1596
8 CUBI NBHC − 0.1475 − 0.5514 0 – 100 –
9 CUBI FCF − 0.1137 − 0.4079 0 – 100 –
10 NBHC FCF − 0.0578 − 0.3088 0.1520 1.0421 363.0 437.4

Mean − 0.0360 − 0.1296 0.1422 0.9756 494.6 852.6
Min − 0.1577 − 0.6720 − 0.0797 − 0.3926 49.46 41.58
Max 0.1856 0.7541 0.4109 2.5902 121.4 243.5

Median − 0.0674 − 0.3308 0.1611 1.0319 339.2 411.9

Note: The data is from 01/10/2012 to 01/01/2018. Return is the annualized return, displayed in decimal. Sharpe is the annualized Sharpe
ratio.
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Table A5. In Sample Performance of Pairs Trading on Pairs Between Large Banks and Small Banks.

Model I + Strategy A Model II + Strategy C Improvement (in %)

Pair Stock #1 Stock #2 Return Sharpe Return Sharpe Return Sharpe

1 JPM CPF 0.1668 0.9415 0.2866 3.0567 71.82 224.7
2 JPM BANC 0.2067 0.7134 0.2581 1.5501 24.87 117.3
3 JPM CUBI 0.0649 0.9832 0.2576 1.6633 296.9 69.17
4 JPM NBHC 0.1505 0.8387 0.2735 2.2745 81.73 171.2
5 JPM FCF 0.2083 1.3273 0.3281 2.9235 57.51 120.3
6 BAC CPF 0.1572 0.7484 0.2099 1.7310 33.52 131.3
7 BAC BANC 0.2361 0.7452 0.1708 1.0044 − 27.66 34.78
8 BAC CUBI 0.0789 0.2755 0.1669 1.4519 111.5 427.0
9 BAC NBHC 0.2608 1.2323 0.3354 2.5663 28.60 108.3
10 BAC FCF 0.1918 1.0401 0.2653 2.3337 38.32 124.4
11 WFC CPF 0.0376 0.1924 0.0988 0.6388 162.8 232.0
12 WFC BANC 0.2371 0.8323 0.2165 1.0599 − 8.690 27.53
13 WFC CUBI 0.0729 0.2682 0.2307 1.9597 216.5 630.7
14 WFC NBHC 0.0974 0.5548 0.0917 0.6167 − 5.850 11.16
15 WFC FCF 0.0656 0.3971 0.1413 1.1406 115.4 187.2
16 C CPF 0.0571 0.2873 0.1766 1.4015 206.3 387.8
17 C BANC 0.2454 0.8899 0.2154 1.9512 − 12.22 119.3
18 C CUBI 0.0715 0.2696 0.1589 1.0954 122.2 306.3
19 C NBHC 0.1279 0.6511 0.2125 1.5321 66.15 135.3
20 C FCF 0.1160 0.6154 0.1790 1.3736 54.31 123.2
21 USB CPF 0.0654 0.4915 0.2126 1.9990 225.1 306.7
22 USB BANC 0.2164 0.7529 0.3389 1.9118 56.61 153.9
23 USB CUBI 0.0565 0.2443 0.2826 1.9450 400.2 696.2
24 USB NBHC 0.1340 0.9289 0.1947 1.5321 45.30 64.94
25 USB FCF 0.0922 0.6221 0.2167 2.1579 135.0 246.9

Mean 0.1366 0.6737 0.2208 1.7148 61.61 154.5
Min 0.0376 0.1924 0.0917 0.6167 143.9 220.5
Max 0.2608 1.3273 0.3389 3.0567 29.95 130.3

Median 0.1279 0.7134 0.2154 1.6633 68.41 133.2

Note: The data is from 01/10/2012 to 01/01/2018. Return is the annualized return, displayed in decimal. Sharpe is the annualized Sharpe
ratio.
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Table A6. Out of Sample Performance of Pairs Trading on Pairs Between Large Banks and Small Banks.

Model I + Strategy A Model II + Strategy C Improvement (in %)

Pair Stock #1 Stock #2 Return Sharpe Return Sharpe Return Sharpe

1 JPM CPF 0.1514 0.8997 0.2731 2.3058 80.38 156.3
2 JPM BANC 0.2190 0.9752 0.2023 1.1630 − 7.626 19.26
3 JPM CUBI 0.0965 1.1227 0.1610 1.0135 66.84 − 9.727
4 JPM NBHC 0.0303 0.1492 0.1799 1.8165 493.7 1117
5 JPM FCF 0.0878 0.4209 0.1682 1.0338 91.57 145.6
6 BAC CPF 0.0379 0.1702 0.1592 1.3579 320.1 697.8
7 BAC BANC 0.1763 0.6913 0.1693 0.8830 − 3.971 27.73
8 BAC CUBI 0.0926 0.3435 0.1014 0.4298 9.503 25.12
9 BAC NBHC − 0.0212 − 0.0999 0.0144 0.7148 167.9 815.5
10 BAC FCF 0.0196 0.0899 0.1117 0.8152 469.9 8.6.8
11 WFC CPF − 0.0625 − 0.2981 − 0.0061 0.6388 90.24 314.3
12 WFC BANC 0.0583 0.2249 0.1282 0.6058 119.9 169.4
13 WFC CUBI − 0.0181 − 0.0652 0.2826 1.5870 1661 2534
14 WFC NBHC − 0.1181 − 0.5631 0.0447 0.2594 137.8 146.1
15 WFC FCF − 0.0821 − 0.3725 0.1225 0.8413 249.2 325.9
16 C CPF − 0.0072 − 0.0314 0.1433 1.1894 2090 3888
17 C BANC 0.1238 0.4691 0.0839 0.6480 − 32.23 38.13
18 C CUBI 0.0459 0.1692 0.2568 1.2778 459.5 655.2
19 C NBHC − 0.0648 − 0.2911 0.2108 2.1138 425.3 826.1
20 C FCF − 0.0265 − 0.1143 0.2174 1.2651 920.4 1207
21 USB CPF 0.2108 2.2429 0.2652 2.4946 25.81 11.22
22 USB BANC 0.1951 0.8939 0.1909 1.3332 − 2.153 49.14
23 USB CUBI 0.1516 0.7685 0.2356 1.5712 55.41 104.5
24 USB NBHC − 0.0242 − 0.1258 0.1514 0.9637 725.6 866.1
25 USB FCF 0.0037 0.0192 0.1979 1.2151 5249 6229

Mean 0.0510 0.3076 0.1626 1.1815 218.6 284.2
Min − 0.1181 − 0.5631 − 0.0061 0.2594 94.84 146.4
Max 0.2190 2.2429 0.2826 2.4946 29.04 11.22

Median 0.0379 0.1692 0.1682 1.1630 343.8 587.4

Note: The data is from 01/01/2018 to 01/12/2019. Return is the annualized return, displayed in decimal. Sharpe is the annualized Sharpe
ratio.
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