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Chapter 1

Introduction

1.1 Pairs Trading

Leading up to the late 1980s, when Pairs Trading was developed, there were

many shocks to the economy; the Energy Crises of 1970s, recession in 1982-83

and the junk bond collapse in 1988 in particular. This lead to a climate where

investors wished to be hedged against market movements. Pairs Trading was

developed as a means of making profitable trades while also keeping market

exposure low.

Ehrman [5] defines Pairs Trading as:

A nondirectional, relative-value investment strategy that seeks to

identify two companies with similar trading characteristics whose eq-

uity securities are currently trading at a range outside their historical

range. This investment strategy entails buying the undervalued secu-

rity while short-selling the overvalued security; thereby maintaining

market neutrality.

It is in effect a bet that the securities will return to their historical range and

so a bet of the two securities against each other rather than against the market.

Pure Arbitrage refers to a situation where a series of trades can be made such

that with probability 1, the payoff is non-negative and the payoff is positive with

positive probability, that is a situation where riskless profit is possible. Pairs

Trading does not meet these criteria as engaging in the pairs trade exposes the

trader to fluctuations in the stock prices, or market risk.
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This sort of trade is regarded as Statistical Arbitrage, which only requires that

the expected value of the trade be positive. A single Statistical Arbitrage trade

has positive probability of loss but the usual context of the trade is where many

similar trades are also being made or this trade is repeated over time. As the

number of trades becomes large, the Law of Large Numbers implies that the

average returns approach their expected value. As this expected value is posi-

tive, when we repeat this process many times, an Arbitrage situation arises.

This project is concerned with modeling situations in which a pairs trade is

possible and profitable and determining an ‘optimal’ trade if it exists.
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1.2 Factor Models

To attempt any mathematical analysis of Pairs Trading, we first require a math-

ematical framework for the underlying financial market.

We define the return on an asset in some time period to be the percentage

change in its value, X, that is

rX =
Xfinal −Xinitial

Xinitial

≈ log

(
Xfinal

Xinitial

)
.

This notion makes sense for any asset, but our main concern is with stocks, so

from here any asset will assumed to be a tradable stock.

Arbitrage Pricing Theory supposes that a stock’s return, rX , in some time period

is made up of two main components: the stock specific component, re
X which is

some company specific constant, and a linear combination of some factors f (i),

i = 1, 2, . . . , n. That is:

rX = re
X +

n∑
i=1

β
(i)
X f (i) + εX

E[rX ] = re
X +

n∑
i=1

β
(i)
X E[f (i)]

where εX is a random variable with zero mean and uncorrelated with f (i), β
(i)
X

is a measure of the sensitivity to factor i of stock X and is given by

β
(i)
X =

cov(rX , f
(i))

var(f (i))

when the f (i) are uncorrelated.

If we expand the time horizon to include more than one period then we must

make some assumptions:

• Assumptions on re
X :

re
X has the natural interpretation of being a numerical representation of

the company fundamentals; these are things that will not change without

a major restructuring of the company so it is reasonable to assume that

re
X is constant in time, at least in the periods we will be considering. Note

that any company specific deviation from E[rX ] is captured in εX .
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• Assumptions on β
(i)
X :

β
(i)
X represents the sensitivity of stock X to factor i. This is also build into

the structure of X and so will be constant in the short run.

• Assumptions on f (i):

These are exogenous factors indicative of the state of the market. For

example, the Capital Asset Pricing Model (CAPM) has one factor which

is the return on the market portfolio above the riskfree rate. Another

popular model, the Fama-French Model has 3 factors. In our use, exoge-

nous means that their values are determined outside the model, we view

(f
(1)
t , f

(2)
t , . . . f

(n)
t ) as a process which we observe and cannot affect.

We allow relationships between the f (i), but in any sensible model they

would not be perfectly correlated. If this were the case, a smaller model

would capture exactly the same information and would be preferable.

These factors are changing with time, but as mentioned before, are ex-

ogenous so that they are unaffected by the values of rX . As these factors

represent fundamental aspects of the market we would not expect the

dependence structure between f (i) and f (j) to change over time. So we

assume that, or any s, t, h > 0,

E
[
f

(i)
t f (j)

s

]
= E

[
f

(i)
t+hf

(j)
s+h

]
.
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1.3 Desirable Model Properties

1.3.1 Real World Approach

Presently, Pairs Trading is one of the many techniques used by large financial

institutions. As there are so many pairs in the trading universe to consider, it

takes a lot of data to find the good candidates for potential pairs trades. By

looking at what is done in the real world we can extract the important charac-

teristics we would like in a model approximating this elusive real world.

The steps involved with a (real world) pairs trade, according to Vidyamurthy

[16], are as follows:

1. Identify potential stock pairs.

2. Verify that a pairs trade is appropriate.

3. Determine the ratio of stocks to buy and short sell.

Identify Potential Stock Pairs

The feature we would most like to have in a pair is co-integration, loosely speak-

ing this guarantees that the stock price will return to some known level in a

reasonable time, a more precise definition will follow. A necessary condition

for co-integration between some series is that correlation between the series be

1, but this is extremely rare so we compromise and take all pairs that are al-

most perfectly correlated as our candidates for a pairs trade. Vidyamurthy [16]

goes into more detail about what constitutes ‘almost’ in this sense. Note that

we are concerned with price ratios so is convenient in this analysis to consider

log-prices.

Verify If A Pairs Trade is Appropriate

(Almost) Perfect correlation gives a necessary condition for co-integration but

not a sufficient one. With a potential pair we do the following:

1. Determine the linear combination.

We have a pair of highly correlated stocks, that means that there exists

some linear relationship between them. To find it, we run a regression of

one stock’s returns against the other’s.
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2. Test for co-integration.

A desirable property of a pair (for pairs trading) is that the ratio of prices

returns to some historical level, we refer to this as mean reversion. Given

our linear relationship between the two log-price series, we test that what

is left over returns to 0 sufficiently often.

If the residuals are sufficiently mean reverting then a Pairs Trade is appropriate

for the pair of stocks.

Determine Details of the Trade

The slope of the linear combination determined above will be the ratio a which

to trade. We do this so that our returns maintain the market neutrality we de-

sire. For example, if the linear combination between x = log(X) and y = log(Y )

were discovered to be y = γx then we would trade x : y in the ratio γ : 1.

These are the properties we would like to mimic in a formulated model.

Now to properly define some of these terms:

1.3.2 Stationarity

Definition 1. (Strict Stationarity)

A process Xt is stationary in the strict sense if, for any {t1, . . . , tk} where k =

1, 2, . . . ;

Ft1,...,tk = Ft1+h,...,tk+h

for all h, where Ft1,...,tk is the distribution function of (Xt1 , . . . , Xtk).

Definition 2. (Weak Stationarity)

A square integrable process Xt is stationary in the weak (wide) sense if

E(Xt) = µ(t) = µ

is t−invariant and

cov(Xt, Xs) = f(|t− s|).

This implies that var(Xt) =cov(Xt, Xt) = f(0) is also constant in t.

As a Gaussian process is completely specified by its mean and covariance func-

tions, for this class of processes, weak and strong stationarity are equivalent.
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1.3.3 Co-Integration

Definition 3. (Co-Integration)

Two nonstationary time series At, Bt are co-integrated if there is some γ ∈ R
such that At − γBt is stationary in the weak sense.

If we put co-integration into a factor model framework, co-integration of asset

returns of X and Y is equivalent to

β
(i)
X = γβ

(i)
Y (1.1)

for all i.

First assuming that the relationship in 1.1 holds:

By the factor model:

rX,t = re
X +

n∑
i=1

β
(i)
X f

(i)
t + εX,t,

rY,t = re
Y +

n∑
i=1

β
(i)
Y f

(i)
t + εY,t,

where the ε·,t are independent and have zero mean.

So if, for some γ, β
(i)
X = γβ

(i)
Y for all i then

E(rX,t − γrY,t) = re
X − γre

Y ,

which is constant over time. Also

E
[
(rX,t − re

X)(rY,s − re
y)
]

=
n∑

i=1

n∑
j=1

β
(i)
X β

(j)
Y E[f

(i)
t f (j)

s ],

which depends only on |t − s| by assumptions on f
(i)
t , so the returns are co-

integrated with factor of co-integration γ.

Now if the series are co-integrated, it remains for us to show that β
(i)
X = γβ

(i)
Y

for all i. But this is not difficult as

E(rX,t − γrY,t) = re
X − γre

Y +
n∑

j=1

(β
(i)
X − γβ

(i)
Y )E[f

(i)
t ]
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so, as E[f
(i)
t ] changes over time, the only way that E(rX,t−γrY,t) can be constant

over time is if β
(i)
X = γβ

(i)
Y for all i.

Formal testing of co-integration of real world time series has some difficulties,

some of which are detailed in [13]. We are more concerned with developing a

model which has co-integration as a feature than determining co-integration on

existing series though.

1.3.4 Ergodicity

The Pairs Trade relies on Statistical Arbitrage. We are betting that the price

ratio will return to some historical value, so in our model we will require that,

with probability 1, we will return to our historical value. Moreover, we would

like to return there in finite time.

Definition 4. (Ergodicity) A d−dimensional random process, {Xt, t ≥ 0;X0 =

x} is ergodic if there is some measure µ such that, for any µ−integrable function

f ,

lim
t→∞

1

t

∫ t

0

f(Xs)ds =

∫
Rd

fdµ.

This means that the long run average behavior mimics the instantaneous behav-

ior. So an ergodic process will visit each state infinitely often, and this implies

that the time between visits is certainly finite.

Theorem 1. [11] (Hasminski):

For a diffusion process, {Xt}t≥0 with stochastic differential equation dXt =

µ(x)dt + σ(x)dWt, µ(x) ∈ Rd and σ(x) ∈ Rd×d, the following are sufficient

conditions for ergodicity:

• µ(x) and σ(x) are smooth with bounded derivatives of any order and σ(x)

is additionally bounded, that is each element of σ(x) is bounded.

• There exists β > 0 such that, for some compact subset K ⊂ Rd,

xTµ(x) ≤ −βxTx

for all x ∈ Rd \K, where xT denotes the transpose of x.
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Tighter conditions for ergodicity exist, but these conditions will suffice for the

models considered here.

1.4 Stochastic Integration

1.4.1 Itô Integral

The exposition in this subsection comes from [10]:

We wish to make sense of ∫ t

0

bsdWs,

where {Wt}t≥0 is the standard Brownian motion and {bt}t≥0 is a process adapted

to {Wt}.

The Itô Integral is defined for simple processes bt =
∑n

k=0 ck 11(tk−1,tk] as∫ t

0

bsdWs =
n−1∑
k=1

ck
(
Wtk+1

−Wtk

)
Note that if the ck are nonrandom then

∫ t

0
bsdWs is necessarily Gaussian.

Then, taking ck as Ftk−measurable with finite variance to consider a more

general class of functions that need not be Gaussian. We then take the stan-

dard measure theory approach of an approximating sequence of simple functions

to extend the definition of the Itô integral to a wider class of processes.

A couple of relevant properties of the integral defined this way are:

E
[∫ t

0

bsdWs

]
= 0 (1.2)

E

[(∫ t

0

bsdWs

)2
]

=

∫ t

0

E[b2s]ds (1.3)

So combining these observations gives that, if bs = f(s) is nonrandom∫ t

0

f(s)dWs ∼ N
(

0,

∫ t

0

f(s)2ds

)
,

where N (µ, σ2) denotes the normal distribution with mean µ and variance σ2.
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Definition 5. We call {Xt} an Itô process if

Xt = X0 +

∫ t

0

asds+

∫ t

0

bsdWs

for some {at}, {bt} adapted to {Wt}.
In this case we say Xt has a stochastic differential given by

dXt = atdt+ btdWt.

1.4.2 Diffusion Processes

Definition 6. We call {Xt} a diffusion process if Xt is an Itô process and

Markovian, that is, for {Ft} the σ−algebra generated by the process up to t,

E [g(Xt+h)|Ft] = E [g(Xt+h)|Xt] for all h > 0 and all bounded measurable g.

Any process with a stochastic differential given by

dXt = a(t,Xt)dt+ b(t,Xt)dWt

is a diffusion process. The evolution of the process from time t only requires

knowledge of the process at time t, and not its prior progress so that the Marko-

vian property is satisfied.

1.4.3 Linear SDEs

The exposition in this subsection uses material pursued in [8], Chapter 5:

A linear SDE is one of the form:

dXt = [A(t)Xt + a(t)] dt+ σ(t)dWt, X0 = X0, (1.4)

where Xt ∈ Rd.

It has an associated deterministic differential equation

d′(t) = A(t)d(t) + a(t), d(0) = X0. (1.5)

Standard tenets of calculus guarantee a unique, absolutely continuous solution,

d, to this initial value problem.

Consider Φ : R → Rd satisfying

Φ′(t) = A(t)Φ(t), Φ(0) = I.
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Then the solution to the deterministic part of (1.4) is

d(t) = Φ(t)

[
d(0) +

∫ t

0

Φ−1(s)a(s)ds

]
.

Note that Φ−1(t) is guaranteed to exist otherwise there would be some t0 and

v 6= 0 such that Φ(t0)v = 0 which would imply that Φ(t0)v is a solution to

d′(t) = A(t)d(t). But our solution is unique so that this would imply Φ(t)v = 0

for all t which contradicts Φ(0) = I. Thus Φ(t) is nonsingular.

Then, by Itô’s formula the process given by

Xt = Φ(t)

[
X0 +

∫ t

0

Φ−1(s)a(s)ds+

∫ t

0

Φ−1(s)σ(s)dWs

]
satisfies (1.4).

Indeed,

dXt = A(t)Xtdt+ Φ(t)
[
Φ−1(t)a(t)dt+ Φ−1(t)σ(t)dWt

]
= [A(t)Xt + a(t)] dt+ σ(t)dWt.

1.4.4 Kolmogorov Backward Equations

Let us consider the process {Xt}, Xt ∈ R with stochastic differential dXt =

a(t,Xt)dt+ b(t,Xt)dWt, Wt ∈ Rd a vector whose components are independent

brownian motions. We term

a(t,x) =
(
a(1)(t,x), . . . , a(d)(t,x)

)T
the Drift Vector and

b(t,x) =
[
b(i,j)(t,x)

]
, i, j = 1, 2, . . . , d,

the Diffusion Matrix.

As in [11], Chapter 2. Let u(s, x) be some function differentible in s and twice

differentible in x. Define the operator A by

Au(s,x) =
d∑

i=1

a(i)(s,x)uxi
(s,x) +

1

2

d∑
i,j=1

b(i,j)(s,x)uxixj
(s,x),

where uxi
(s,x) = ∂

∂xi
u(s,x).
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Definition 7. The Kolmogorov Backwards Equation for the process {Xt} is

given by:

us(s,x) +Au(s,x) = 0. (1.6)

Claim 1. Let, for free t > 0, y ∈ R, u(s,x) = p(s,x; t,y) is the transition

density from Xs = x to Xt = y along with the condition that lims↑t u(s,x) =

δ(x − y) for δ the Dirac Delta-function on Rd. Then u(s,x) is a solution to

(1.6).

Claim 2. Let u(s,x) = E [ψ(t,Xt)|Xs = x] with the condition that lims↑t u(s,x) =

ψ(t, x). Then u(s,x) is a solution to (1.6).

For proof of Claim 1 see [7], Chapter 12.

Proof of Claim 2:

By Claim 1, v(s,x) = p(s,x; t,y) solves vs(s,x)+Av(s,x) = 0 for all t > s and

y ∈ Rd. Then

u(s,x) = E [ψ(t,Xt)|Xs = x]

=

∫
Rd

p(s,x; t,y)ψ(t,y)dy,

and so u is a solution to us(s,x) +Au(s,x) = 0 by linearity of A.

As s and t become close lims↑t v(s,x) = δ(x− y) so

lim
s↑t

u(s,x) =

∫
Rd

δ(x− y)ψ(s,y)dy

= ψ(s,x).
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Chapter 2

Ornstein-Uhlenbeck Processes

2.1 Models Considered

We will be specifically considering the following two models:

1. One Process Model

Xt = x exp{Ft} (2.1)

Yt = kXt exp{Ỹt}, t ≥ 0, (2.2)

where {Ft} is a factor component and {Ỹt} is an Ornstein-Uhlenbeck pro-

cess which may or may not depend on Ft.k is a multiplicative constant

which reflects the historical ratio of stock prices. x represents the price of

X in the absence of other factors.

2. Two Processes Model

Xt = x exp{Ft + X̃t} (2.3)

Yt = y exp{Ft + Ỹt}, t ≥ 0, (2.4)

where {Ft} is a common factor component and {(X̃t, Ỹt)} is a two di-

mensional Ornstein-Uhlenbeck process. We will take y = kx where k is

representative of the historical price ratio between stocks X and Y . x and

y represents the prices of X and Y , respectively, in the absence of other

factors.

In both cases we consider the factor component Ft to be a linear combination of

factors F
(i)
t such that X and Y have the same sensitivities to all factors. This
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implies that any departure from the historical price ratio is due to the move-

ments of Ỹt (and X̃t for the second model).

The Ornstein-Uhlenbeck process arises naturally here as it is a mean revert-

ing process; the drift vector is giving the process a tendency to return to zero

(equilibrium)

2.1.1 One Process Model

Recall (2.1). This is a model that supposes that stock X is fairly stable and

can be well predicted through factors {Ft} and stock Y fluctuates around it.

In equilibrium (Ỹt = 0), the stock prices are in ratio (Y : X) 1 : k, so if

we are to maintain a market neutral position, a natural trade to make would

be in this ratio. We trade when the ratio of stock prices becomes sufficiently

different from 1 : k.

Note that if Yt

kXt
= a then log(Yt) − log(kXt) = log(a), so dealing with log

differences is equivalent to dealing with ratios. We choose to use the former.

Note also that log(Yt) − log(kXt) > 0 means that in some sense Yt is over-

valued relative to Xt so the correct thing to do would be to short Y and long

X, and vice versa when log(Yt)− log(kXt) < 0.

Let b1 < 1, b2 > 1 and τ be the time that log(Yt) − log(kXt) = 0 after

log(Yt)− log(kXt) = log(bi), i = 1, 2.

• When log(Yt) − log(kXt) = log(b1) < 0 we short k units of stock X and

long 1 unit of stock Y and reverse at time τ .

• When log(Yt) − log(kXt) = log(b2) > 0 we long k units of stock X and

short 1 unit of stock Y and reverse at time τ .

If we consider for a moment the b1 case, the net transaction at the initial trade,

time T is

kXT − YT = YT (b1 − 1) = kXT (1− b−1
1 ).

17



At the conclusion of the trade, −kXτ + Yτ = 0.

This leaves a net return of

YT (b1 − 1) = kXT (1− b−1
1 ).

Similarly it can be shown the second case yields a return of

YT (1− b2) = kXT (b−1
2 − 1).

Note that both of these are necessarily positive.

This section ignores the time value of money. This is done because we are

dealing with a short term investment so that the change in value over time is

negligible. We have also assumed that the transaction costs of a single trade

are negligible so that transaction costs only become relevant when many trades

are made in a short time.

2.1.2 Two Processes Model

Recall (2.3). In this model both stocks have a common factor component {Ft}
so all of the departure from the historical ratio is captured in (X̃t, Ỹt). The

dependence of X̃t and Ỹt plays a large part in how the stock prices evolve jointly.

We suppose that, without any deviations from the mean value, the stocks are in

a 1 : k price ratio. We write y = kx, so that k is indicative of the historical price

ratio of stocks X and Y . Then we adopt the same trading strategy, namely, for

b1, b2, τ defined as before.

• When log(Yt) − log(kXt) = log(b1) < 0 we short k units of stock X and

long 1 unit of stock Y and reverse at τ .

• When log(Yt) − log(kXt) = log(b2) > 0 we long k units of stock X and

short 1 unit of stock Y and reverse at τ .

Also as above, the net returns are given by:

YT (b1 − 1) = kXT (1− b−1
1 ), b1 > 1,

YT (1− b2) = kXT (b−1
2 − 1), b2 < 1.
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2.2 Functions of Matrices

The exposition in this section is based on the material presented in Chapter 5

of [12].

For a polynomial p(z) =
∑n

j=0 ajz
j and A ∈ Cn×n, the set of all n× n matrices

with complex coefficients, define

p(A) =
n∑

j=0

ajA
j.

Let A ∈ Cn×n have minimal polynomial ψ(z),

ψ(z) = (z − λ1)
n1(z − λ2)

n2 . . . (z − λm)nm ,

where λi are distinct eigenvalues of A.

We say that two functions, g and h agree on the spectrum of A if, for all

i = 1, 2, . . . ,m and j = 0, 1, . . . , ni,

dj

dzj
g(z)

∣∣
z=λi

=
dj

dzj
h(z)

∣∣
z=λi

.

Given ψ then for any polynomial p there are polynomials q and r such that r is

of lesser degree than ψ and

p(z) = q(z)ψ(z) + r(z).

Recall that ψ(A) = 0 by definition of the minimal polynomial. It follows that

p(A) = r(A)

Lemma 1. For g, h polynomials and A ∈ Cn×n with eigenvalues λ1, . . . , λm;

g(A) = h(A) iff g agrees with h on the spectrum of A.

Theorem 2. If f is defined on the spectrum of A and g is the polynomial of

minimum degree determined by the values of f on the spectrum of A then f(A)

exists and f(A) := g(A).

Theorem 3. Let A ∈ Cn×n have eigenvalues λ1, . . . , λm and let f have Taylor

Series around z0 given by

f(z) =
∞∑

k=0

αk(z − z0)
k,
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converging in radius r such that |λj − z0| < r for all λ1, . . . , λm. Then f(A)

exists and is given by

f(A) =
∞∑

k=0

αk(A− z0I)
k

.

This means in particular that

eA =
∞∑

r=0

1

r!
Ar

for all A ∈ Cn×n

Theorem 4. Let G(z1, . . . , zl) be a polynomial in z1, . . . , zl and fi, i = 1, 2, . . . , l

be functions defined on the spectrum of A ∈ Cn×n such that G(f1, f2, . . . , fl) = 0

on the spectrum of A then

G(f1(A), f2(A), . . . , fl(A)) = 0.

The proofs of all these theorems use Hermite polynomial interpolation on the

spectrum of A and then Lemma 1.

A consequence of this is that if A and B commute, then eA+B = eAeB.
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2.3 Univariate Process

Let {Wt} be a standard brownian motion. A stochastic process {Xt : t ≥ 0} is

called an Ornstein-Uhlenbeck (OU) process if it satisfies the following stochastic

differential equation for constants ρ, σ, θ:

dXt = −ρ(Xt − θ)dt+ σdWt.

Note that if {Xt} is OU then, for any α ∈ R, {Xt − α} is also OU, so without

loss of generality, we can let θ = 0.

This is a diffusion process and so is automatically Markovian.

2.3.1 Explicit Solution

Using that this is a linear stochastic differential equation, and following section

1.4.3, we solve the deterministic part of the equation which yields

Xt = Ce−ρt.

If we consider C = Ct as a process adapted to {Wt} then we obtain

Xt = e−ρt

[
X0 +

∫ t

0

σeρrdWr

]
. (2.5)

The integrand in the Itô integral
∫ t

0
σeρrdWr is nonrandom, so that the pro-

cess has independent increments (in particular, is independent of X0) and hasa

normal distribution ∫ t

0

σeρrdWr ∼ N
(

0,
σ2

2ρ

(
e2ρt − 1

))
.

This means

E[Xt] = E[X0]e
−ρt, (2.6)

cov(Xt, Xs) = e−ρ(t+s)

(
var(X0) +

σ2

2ρ

(
e2ρ(t∧s) − 1

))
. (2.7)

Indeed,

E[Xt] is clearly seen from taking expectations of (2.5).
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To prove (2.7), we write

cov(Xt, Xs) = E
[(
Xt − e−ρtE[X0])(Xs − e−ρsE[X0]

)]
,

= E[XtXs]− E[X0]
2e−ρ(t+s),

where

E[XtXs] = E
[(
e−ρt

[
X0 +

∫ t

0

σeρrdWr

])(
e−ρs

[
X0 +

∫ s

0

σeρrdWr

])]
= E

[
e−ρ(t+s)

(
X2

0 + σ2

∫ t

0

eρvdWv

∫ s

0

eρrdWr

)]
Then, as increments are independent, only the overlapping intervals add to the

expectation of the integral. So by this, (1.2) and (1.3)

E
[∫ t

0

eρvdWv

∫ s

0

eρrdWr

]
= E

[(∫ t∧s

0

eρrdWr

)2
]

=

∫ t∧s

0

e2ρrdr

=
1

2ρ
(eρ(t∧s) − 1),

where t ∧ s is the minimum of s and t.

So the covariance is given by e−ρ(t+s)
(
E[X2

0 ]− E[X0]
2 + σ2

2ρ

(
e2ρ(t∧s) − 1

))
and

we are done.

If X0 = x with probability 1, then Xt has distribution

(Xt|X0 = x) ∼ N
(
xe−ρt,

σ2

2ρ

(
1− e−2ρt

))
(2.8)

and has mean and covariance functions given by (2.7) and (2.6) by:

E[Xt|X0 = x] = xe−ρt

cov(Xt, Xs|X0 = x) =
σ2

2ρ

(
e−ρ|t−s| − e−ρ(t+s)

)
.

2.3.2 Stationary Distribution

We now consider the possibility of a stationary distribution for Xt. When

X0 = x is given we see from (2.8) that (when ρ > 0), letting t → ∞, yields a
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limiting distribution given by

X∞ ∼ N
(

0,
σ2

2ρ

)
.

This is irrespective of the initial value X0 = x and so is a candidate for the

stationary distribution.

If we consider X0 ∼ N
(
0, σ2

2ρ

)
, as∫ t

0

σeρrdWr ∼ N
(

0,
σ2

2ρ

(
e2ρt − 1

))
and it is independent of X0, it is easily seen that for all t ≥ 0,

Xt ∼ N
(

0,
σ2

2ρ

)
.

Moreover, by (2.7)

cov(Xt, Xs) =
σ2

2ρ
e−ρ|t−s|.

Then, as E(Xt) = 0 and cov(Xt, Xs) = f(|t − s|), {Xt} stationary in the weak

sense.

It is also stationary in the strong sense. From [11]: If we impose a time shift on

(2.8), then the transition density from Xs = x to Xt = y , (t > s) is given by

p(s, x; t, y) =

√
ρ√

πσ2(1− e−2ρ(t−s))
exp

{
−ρ(y − xe−ρ(t−s))2

σ2(1− e−2ρ(t−s))

}
This depends on t and s through (t − s) only, so we can re-express p(s, x; t, y)

as p(x; t− s, y).

Then take Ft1,t2,...,tk(x1, x2, . . . , xk) = P(Xt1 ≤ x1, . . . , Xtk ≤ xk). By indepen-

dent increments,

Ft1,t2,...,tk(x1, x2, . . . , xk) = Ft1(x1)Ft2−t1(x2 − x1) . . . Ftk−tk−1
(xk − xk−1).

If we then shift time by h, nothing changes. Indeed, let t∗i = ti + h

Ft∗i−t∗i−1
(xi − xi−1) = F(ti+h)−(ti−1+h)(xi − xi−1)

= Fti−ti−1
(xi − xi−1).
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Also,

Ft∗1
= Ft1+h(x1) = Ft1(x1).

Then, as

Ft∗1,t∗2,...,t∗k
(x1, x2, . . . , xk) = Ft∗1

(x1)Ft∗2−t∗1
(x2 − x1) . . . Ft∗k−t∗k−1

(xk − xk−1),

strong stationarity is assured.

2.3.3 Ergodicity

Recalling the sufficient conditions for ergodicity from Theorem 1, Chapter 1,

we need to check the following:

• −ρx and σ are smooth with bounded derivatives of any order and σ(x) is

bounded.

This is true by inspection

• There exists a β > 0 such that, for some compact subset K ⊂ R,

−ρx2 ≤ −βx2

for all x ∈ R \K

If ρ > 0 then this is satisfied when we take β = ρ.

Thus when ρ > 0 we are assured ergodicity.

When ρ = 0 we are left with a pure Brownian motion and it is well known

that the time taken to reach any level (different from a fixed starting point) has

infinite expectation and so is not at all suitable for the model for which we are

considering it.

When ρ < 0 the process is repelled from 0. The model we consider requires that

the process returns to 0 but in this instance the process is actively discouraged

from doing so, thus it is inappropriate for the model we consider.

Thus we only consider processes where ρ > 0 and so our process is ergodic.
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2.4 Multivariate Process

Let {Wt} be a d-dimensional standard Brownian motion; that is the components

of {Wt} are independent univariate standard Brownian Motions. A process

{Xt} is called an Ornstein-Uhlenbeck process if, for some constant d×dmatrices

A,Σ with Σ positive definite, that is Σ is symmetric and has only positive

eigenvalues, one has

dXt = −AXtdt+ ΣdWt.

Note that we can be more expansive here and include a vector to which the

process is attracted, we use 0 without loss of generality.

2.4.1 Solution

We solve this multivariate SDE by simultaneously solving the one-dimensional

equations that arise from considering components separately. As each of these is

a linear SDE, we can use the approach in Section 1.4.3. Solving the deterministic

part gives

X = e−AtC.

Next, considering C = Ct as a process adapted to {Wt}, gives us that

Xt = e−At

(
X0 +

∫ t

0

eArΣdWr

)
. (2.9)

As this is a diffusion process, ΣΣT is a matrix of instantaneous covariances and

so must be positive definite. For a general Σ, let Σ = (ΣΣT )1/2. It is clear that

Σ is positive definite, we see that ΣΣ
T

= ΣΣT and so without loss of generality,

we can take Σ to be positive definite.

2.4.2 Ergodicity

Recalling the sufficient conditions for ergodicity from Theorem 1 of Chapter 1,

we need to check the following:

• −Ax and Σ are smooth with bounded derivatives of any order and Σ is

bounded.

This is true by inspection
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• There exists β > 0 such that, for some compact subset K ⊂ Rd,

−xTAx ≤ −β||x||2

for all x ∈ Rd \K.

Claim 3. This is true when 1
2
(AT + A) is positive definite.

Proof of Claim 3:

If the matrix A is symmetric then the stated condition is exactly that of A being

positive definite, which equivalently states that all eigenvalues of A are positive.

If A is not symmetric then take A∗ = 1
2
(A+ AT ) which is symmetric.

Also, we clearly have

xTAx ≡ (xTAx)T = xTATx,

so that

xTA∗x = xTAx.

So from above we require A∗ be positive definite.

2.4.3 Case: Diagonal Matrix A

We now move specifically to the 2-dimensional case, as it is the one modeled in

Section 2.1.2. We also consider

Σ =

(
σ2

1 ασ1σ2

ασ1σ2 σ2
2

)
,

with σ1, σ2 > 0 and |α| ≤ 1 (so this is a covariance matrix).

Our initial simplification of the process is to take A to be a diagonal matrix,

after dealing with this case, we will relax the assumptions to more general cases.

The physical interpretation of A being diagonal is that the two processes are

attracted independently to 0, but deviations from the deterministic path there

are correlated. Recall that we require the eigenvalues of A to be positive if the

26



process is to be ergodic, that is the diagonal entries of A are both positive. So

we assume

A =

(
λ1 0

0 λ2

)
,

with λ1, λ2 > 0. From (2.2) it is clear that

eAt =

(
eλ1t 0

0 eλ2t

)
.

From (2.9), considering
∫ t

0
eArΣdWr, as the integrand is non-random, this is

Gaussian with mean 0 and covariance given by, as both A and Σ are symmetric

and eAt diagonal, ∫ t

0

eArΣΣT eAT rdr =

∫ t

0

eArΣ2eArdr.

Letting σ1 = σ2 = 1, this reduces to

∫ t

0

(
eλ1r 0

0 eλ2r

)(
1 + α2 2α

2α 1 + α2

)(
eλ1r 0

0 eλ2r

)
dr

=

(
1+α2

2λ1

(
e2λ1t − 1

)
2α

λ1+λ2

(
e(λ1+λ2)t − 1

)
2α

λ1+λ2

(
e(λ1+λ2)t − 1

)
1+α2

2λ2

(
e2λ2t − 1

) )
.

The solution to Xt when X0 = x has the bivariate normal distribution given by

Xt ∼ N2

(
e−Atx, e−At

(∫ t

0

eArΣ2eArdr

)
e−At

)
.

In the case where σ1 = σ2 = 1 this reduces to

N2

((
x1e

−λ1t

x2e
−λ2t

)
,

(
1+α2

2λ1

(
1− e−2λ1t

)
2α

λ1+λ2

(
1− e−(λ1+λ2)t

)
2α

λ1+λ2

(
1− e−(λ1+λ2)t

)
1+α2

2λ2

(
1− e−2λ2t

) ))
.

So that {Xt} has stationary distribution

Xt ∼ N2

(
0,

(
1+α2

2λ1

2α
λ1+λ2

2α
λ1+λ2

1+α2

2λ2

))
.
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2.4.4 Case: Symmetric Matrix A

Relaxing the diagonal assumption and letting A be symmetric, we can view

A = PDP−1 where P is an orthonormal matrix, that is its columns consist

of orthonormal vectors so that P T = P−1, and D is diagonal. In this case,

eAt = PeDtP−1 and we continue as above to obtain∫ t

0

eArΣΣT eAT rdr =

∫ t

0

PeDrP T Σ2PeDrP Tdr,

and when X0 = x,

Xt ∼ N2

(
Pe−DtP Tx, P e−Dt

(∫ t

0

eDrP T Σ2PeDrdr

)
e−DtP T

)
.

In terms of the physical nature of the process, this means that the extent to

which the first component relates to the second is the same as the extent that

second relates to the first.

2.4.5 Case: General Matrix A

For a general A, eAT t need not equal eAt. However the process is still Gaussian

and so has distribution given by

Xt ∼ N2

(
e−Atx, e−At

(∫ t

0

eArΣ2eAT rdr

)
e−AT t

)
but little else can be said.
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2.5 Verification of Model Validity

From the analysis of the OU processes we are now in a position to show that

the model properties in (1.3) are satisfied.

The univariate Ornstein-Uhlenbeck process is stationary when the initial distri-

bution is constant and ergodic for ρ > 0 and so when this holds, the residuals

for the first model, given by Ỹt have all the required properties.

Similarly for the multivariate process, when 1
2
(AT +A) has only positive eigen-

values, the process is ergodic and so will return to the line of interest sufficiently

often, recall from model (2.3) that we are interested in when the OU process

hits a line passing through the origin.

In this way our models are sensible for the problem at hand.
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Chapter 3

Hitting Time Distributions

3.1 Preamble

Recall from Section 2.1 that we are going to consider two different models for

movements of stocks Xt and Yt. Our trading rule is to trade in the appropriate

direction when the prices are sufficiently different from the historical price ratio

and reverse the trade when equilibrium is re-established.

3.1.1 One Process

Recall from model (2.1) in Section 2.1 that in describing the price movements

of two stocks X and Y we had factors Ft and a univariate OU process Ỹt. Xt is

fixed relative to Ft and Yt fluctuates around it.

We set t = 0 when the trade begins, that is when log(Y0)− log(kX0) = − log(b)

for some b > 0. The sign of − log(b) indicates which stock to short and which

to long. We are interested in τ = inf{t ≥ 0 : log(Yτ )− log(kXτ ) = 0}.
Notice that log(Yt) − log(kXt) = Ỹt. Thus the holding time of our trade (the

time between opening and closing the trade) is:

τ = inf{t ≥ 0 : Ỹt = 0}, Ỹ0 = − log(b).

As Ỹt is OU, this leads naturally to considering the hitting time of a level c by

the OU process particularly c = 0.
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3.1.2 Two Processes

Similarly recall from model (2.3) in Section 2.1 that we have our two stocks, X

and Y with a common factor component, Ft. Each stock has an associated OU

process which together form a bivariate OU process.

We initiate a trade at t = 0 where log(Y0) − log(kX0) = − log(b). The di-

rection of the trade is determined by the sign of − log(b). We are concerned

with the holding time of the trade, τ = inf{t ≥ 0 : log(Yτ )− log(kXτ ) = 0}.

Under this model, log(Yt)− log(kXt) = Ỹt − X̃t, so our holding time becomes

τ = inf{t ≥ 0 : Ỹt − X̃t = 0}, Ỹ0 = X̃0 − log(b).

As (X̃t, Ỹt) is bivariate OU process, this leads to analysing the hitting times of

bivariate OU processes to linear boundaries.
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3.2 Reflection Principle

The exposition in this section is based on the material presented in Chapter 13

of [7].

Theorem 5. [7, Theorem 13.11]: (Strong Markov property) For any Brownian

motion {Wt} in Rd and finite (a.s.) stopping time τ , W′
t = Wt+τ −Wτ ,t ≥ 0,

is a Brownian motion independent of Fτ

Proof. Take a sequence τn → τ so that each τn takes only countably many val-

ues and τn ≥ τ + 2−n. Then Fτ ⊂
⋂

nFτn .

Also, each Wn
t = Wτn+t − Wτn is a Brownian motion independent of Fτ by

the independent increments of Brownian motion, and Wn
t → W′

t (a.s) through

continuity. Independence is guaranteed through dominated convergence and

extension.

Lemma 2. [7, Lemma 13.14]: Take a univariate Brownian motion Wt with an

associated stopping time τ Then Wt and

W̃t = Wt∧τ − (Wt −Wt∧τ )

have the same distribution.

Proof. By the strong Markov property, W ′
t = Wt+τ −Wτ is a Brownian motion

independent of τ and Wt∧τ . Since W ′ is symmetric about 0,

(τ,Wt∧τ ,W
′
t)

d
= (τ,Wt∧τ ,−W ′

t).

We notice that

Wt = Wt∧τ +W ′
(t−τ)+

and

W̃t = Wt∧τ −W ′
(t−τ)+

so they have the same distribution.
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In particular:

Suppose {Wt} is standard brownian motion, W0 = 0 and τc = inf{t : Wt = c},
the first hitting time of level c > 0. Then

P(Wt ≥ c) = P(τc ≤ t;Wt −Wτc ≥ 0)

= P(τc ≤ t)P(Wt −Wτc ≥ 0|τc ≤ t),

butWt−Wτc is independent of its history (up to τc). This implies (Wt−Wτc |τc ≤
t) is just Wt−Wτc in distribution. This means that P(Wt−Wτc ≥ 0|τc ≤ t) = 1

2
.

Thus

P(τc ≤ t) = 2P(Wt ≥ c)

P(τc ≤ t) =

√
2

πt

∫ ∞

c

e−
x2

2t dx

=

√
2

π

∫ ∞

c/
√

t

e−
y2

2 dy.

So τc has density given by

fτc(t) =
c√
2π
t−3/2 exp

{
−c

2

2t

}
.
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3.3 Time Change

Theorem 6. : (Dambis-Dubins-Schwarz)[4]

For Xt a continuous stochastic process with almost all paths nowhere constant,

there exists some function Π such that Π ◦Xt is a standard Drownian motion.

For a function π(t), define

Π ◦Xt = Xπ(t)

3.3.1 Time Changed Hitting Times

Univariate Process

An alternate way of dealing with the hitting problem is to use the above theorem

to transform the OU process into a Weiner process. Recall for the univariate

process that when X0 = x, Xt has an explicit solution

Xt = e−ρt

[
x+

∫ t

0

σeρrdWr

]
.

Let us examine
∫ t

0
σeρrdWr.

As the integrand is nonrandom this expression is Gaussian, has independent

increments and has variance given by∫ t

0

(σeρr)2dr =
σ2

2ρ
(1− e−2ρt)

So if s = σ2

2ρ
(1− e−2ρt) then

∫ t

0
σeρrdWr = W̃s where W̃s is a standard Brownian

motion.

Setting

s(t) =
σ2

2ρ
(1− e−2ρt),

we have

Xt = e−ρt[x+ W̃s(t)], W̃s(0) = 0

Thus the case of Xt hitting level c (from X0 = x) is the same as W̃s(t) hitting

ce−ρt − x starting from 0. Inverting s(t) we have transformed the problem so
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that we require W̃s, (W̃0 = 0) to hit the boundary

c

√
1 +

2ρs

σ2
− x. (3.1)

From this we infer that the density for Xt hitting level c from x is a transfor-

mation of W̃s hitting boundary in (3.1).

Note that if ρ > 0 this boundary is square root. It is well known that W̃s

hits such boundaries with finite expectation, that is the process is positively

recurrent. Sato, [15], gives tail behavior of the hitting time distribution.

In the case that c = 0 we can find a closed form for the hitting density. The

approach is outlined in [1]. When c = 0 our problem is reduced to a Weiner

process hitting a level −x which we know, from Section 3.2, the density to be:

fτ−x(s) =
|x|√
2π
s−3/2 exp

{
−x

2

2s

}
, s > 0 (3.2)

which means, transforming, we reach the well known result

fτ (t) =
|x|√
2πσ

(
ρ

sinh(ρt)

)3/2

exp

{
− ρx2e−ρt

2σ2 sinh(ρt)
+
ρt

2

}
, t > 0.
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A plot when ρ = 1, σ2 = 2 is included below.

An alternate method for arriving at this density using 3 dimensional Bessel

Bridges is given in [6]

Multivariate Process

We can use a similar procedure on the first component of a multivariate OU

process so that after the transformation, it will become standard Brownian

motion. However, this messes up the other components such that this process

is of no help in solving the boundary hitting problem. The only case where it

would help is where we have two independent OU processes, and in that case

we can analyse them as separate univariate processes.
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3.4 Differential Equation Approach

3.4.1 Univariate Process

Let τ = inf{t ≥ 0 : Xt = c}. For the univariate process, µ(x, t) = −ρx and

σ(x, t) = σ.

From Section 1.4.4, setting ψ(Xt, t) = e−λt it follows that U(x) = E
[
e−λτ |X0 = x

]
satisfies the differential equation

ρxU ′(x)− 1

2
σ2U ′′(x) = −λU(x). (3.3)

This differential equation has two linearly independent solutions given by U1(x) =

D−λ/ρ(x
√

2ρ/σ) and U2(x) = D−λ/ρ(−x
√

2ρ/σ) where Dν(x) is the parabolic

cylinder function (Weber function).

The Laplace transform of the density of the first hitting to boundary boundary

c from x was found in [3] and [2]. It is given by

Lx,c(λ) =


D−λ/ρ(−x

√
2ρ/σ)

D−λ/ρ(−c
√

2ρ/σ)
exp

(
ρ(x2−c2)

2σ2

)
if x < c,

D−λ/ρ(x
√

2ρ/σ)

D−λ/ρ(c
√

2ρ/σ)
exp

(
ρ(x2−c2)

2σ2

)
if x > c.

The following derivation was given in [3].

As Xt is Markovian, letting p(x|y, t) be the transition density from x to y in time

t and fc(x|t) the density of τ and letting p̂ and f̂ being the Laplace transforms

of these. By the famous Chapman-Kolmogorov equation

p(x|y, t) =

∫ t

0

fc(x|r)p(c|y, t− r)dr.

When we take Laplace transforms of both sides, this becomes

p̂(x|y, λ) = f̂(x|λ)p̂(c|y, λ).

From this we can see that p̂(x|y, λ) = u(x)v(y) for some u and v. So we see

f̂c(x|λ) = u(x)
u(c)

.

Then, as f̂c(x|λ) solves (3.3), u(x) must also be a solution to that differen-

tial equation. Since the solutions to the differential equation (3.3) are given,

U1, U2 the Laplace transform is as given.
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To extract the density from this, we need to invert this Laplace transform.

It appears that no closed form solution exists in general, but numerical approx-

imations can be obtained.

3.4.2 Multivariate Process

When dealing with a process in more than one dimension. We assume the

process is governed by

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt, X0 = x,

where σ(Xt, t) is a positive definite real d× d matrix.

A hyperplane in d−dimensional space is of (d − 1)−dimensions. Any hyper-

plane is a rotation of another hyperplane with its first component fixed at some

level. In view of this, we only consider hyperplanes constant in their first com-

ponent when looking at the the hitting time problem.

The usual backward equation, Section 1.4.4 becomes

∂

∂t
ψ(x, t) = −∇xψ(x, t)Tµ(x, t)− 1

2
Tr(σ(x, t)Hσ(x, t)),

where H is the matrix of the second spatial derivatives of ψ and Tr(A) refers

to the sum of the diagonal elements of A.

Now let τ = inf{t ≥ 0 : X
(1)
t = c}, µ(x, t) = −Ax , σ(x, t) = Σ and

u(Xt, t) = e−λt so that we have an OU process. Then U(x) = E
[
e−λτ |X0 = x

]
satisfies the equation

−λU(x) = ∇U(x)TAx− 1

2
Tr(ΣHΣ)

or equivalently, taking A(i) the ith column of A and Σ(i,j) the (i, j) entry of Σ,

−λU(x)−
d∑

i=1

A(i)x Uxi
(x) +

1

2

d∑
i,j=1

Σ(i,j)Uxixj
(x) = 0,

with boundary condition

U(c, x2, . . . , xd) = 1.

This is an elliptic partial differential equation by positive definiteness of Σ. In

non-trivial cases, a numerical approximation to the solution can be obtained.
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3.4.3 Hitting Time Moments

All of the moments of the first hitting time can be computed from its Laplace

transform by differentiaing the latter at zero:

E[τn|X0 = x] =
dn

dλn
(−1)nLx,c(λ)

∣∣∣
λ=0

.

Following [14], we can rewrite L(λ) as

L(λ) =
φ(λ

ρ
, x

√
2ρ
σ

)

φ(λ
ρ
, c

√
2ρ
σ

)
,

where

φ(a, b) =
∞∑

n=0

(
√

2b)n

n!

Γ(n+a
2

)

Γ(a
2
)

=
∞∑

n=0

(
√

2b)n

n!
γn(a), (3.4)

with γn(a) = Γ((n+a)/2)
Γ(a/2)

.

Note that here we let x < c. Due to the symmetry of the process, x hitting c

from above is the same as −x hitting −c from below. In this way, all cases are

considered in looking at x < c.

Then, setting φk(b) = dk

dλkφ(λ, b)
∣∣
λ=0

, it follows that

n∑
k=0

(
n

k

)
(−1)kE[τ k|x] 1

ρn−k
φn−k

(
c

√
2ρ

σ

)
=

1

ρn
φn(x),

which in turn leads to

E[τn|x] = (−1)n

{
1

φn
φn

(
x

√
2ρ

σ

)
−

n∑
k=0

(
n

k

)
(−1)n−kE[τn−k|x] 1

ρk
φk

(
c

√
2ρ

σ

)}
.

This a system of linear equations which can be solved in a recursive manner.

In the case where ρ = 1, σ2 = 2 it reduces to

E[τn|x] = (−1)n

{
φn(x)−

n∑
k=0

(
n

k

)
(−1)n−kE[τn−k|x]φk(c)

}
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Ricciardi and Sato [14] showed that the solution takes the form

E[τn|x] = det



φ1(c) φ0(c) 0 0 . . . 0

φ2(c) 2φ1(c) φ0(c) 0 . . . 0

φ3(c) 3φ2(c) 3φ1(c) φ0(c) . . . 0

. . .

φn(x) nφn−1(c)
(

n
2

)
φn−2(c)

(
n
3

)
φn−3(c) . . . nφ1(c)



− det



φ1(x) φ0(c) 0 0 . . . 0

φ2(x) 2φ1(c) φ0(c) 0 . . . 0

φ3(x) 3φ2(c) 3φ1(c) φ0(c) . . . 0

. . .

φn(x) nφn−1(c)
(

n
2

)
φn−2(c)

(
n
3

)
φn−3(c) . . . nφ1(c)


,

with φk(b) = φ(k)(0, b)

It can also be shown, as in [14], that

φk(b) =
k

2k

∞∑
n=1

(
√

2b)n

n!
Γ
(n

2

)
α(k)

n ,

with α
(1)
n = 1 and α

(k+2)
n (k = 0, 1, 2, . . . ) given by the following representation

α(k+2)
n = det



ψ0 −1 0 0 . . . 0

ψ1 ψ0 −1 0 . . . 0

ψ2 2ψ1 ψ0 −1 . . . 0

. . .

ψk kψk−1

(
k
2

)
ψk−2

(
k
3

)
ψk−3 . . . ψ0


, (3.5)

where ψ(z) is the digamma function, ψ(k)(z) the kth derivative of ψ evaluated

at z and ψk = ψ(k)(n
2
)− ψ(k)(1).

ψ(z) =
1

Γ(z)

d

dz
Γ(z)

To prove this, Given the representation in (3.4), we only need to show that

dk

dak
γn(a)

∣∣
a=0

=
k

2k
Γ
(n

2

)
α(k)

n .

If this is true, the power series coincide and equality of the series is assured.
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Rewrite γn(a) as a
2
χn(a), where

χn(a) =
Γ(n+a

2
)

Γ(1 + a
2
)
.

From analyticity of χn(a) that all derivatives of χn exist in the vicinity of the

origin, and so we can write

γ(k)
n (a) =

a

2
χ(k)

n (a) +
k

2
χ(k−1)

n (a),

which implies that

γ(k)
n (0) =

k

2
χ(k−1)

n (0).

Further, we have

d

da
χn(a) =

Γ(1 + a
2
) d

da
Γ(n+a

2
)− Γ(n+a

2
) d

da
Γ(1 + a

2
)

2Γ(1 + a
2
)2

=
Γ(n+a

2
)

Γ(1 + a
2
)

1

2

[
d
da

Γ(n+a
2

)

Γ(n+a
2

)
−

d
da

Γ(1 + a
2
)

Γ(1 + a
2
)

]
= χn(a)ξn(a),

with

ξn(a) =
1

2

[
ψ

(
n+ a

2

)
− ψ

(
1 +

a

2

)]
.

Differentiating this relation gives

χ(k)
n (0) =

k−1∑
i=0

(
k

i

)
χ(i)

n (0)ξ(k−i)
n (0),

from which it is clear that

γ(k)
n (0) =

k

k − 1

k−1∑
i=0

(
k

i

)
γ(i)

n (0)ξ(k−i)
n (0).

Then, if we let

dk

dak
γn(0) =

k

2k
Γ
(n

2

)
α(k)

n ,

we can easily check that αn(a) is given by the expression (3.5).

In particular,

E[τ |x] =
1

ρ

(
φ1

(
c

√
2ρ

σ

)
− φ1

(
x

√
2ρ

σ

))
=

1

2ρ

∞∑
n=1

2n(
√
ρ)n(cn − xn)

σnn!
Γ
(n

2

)
.
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Or, in the standard case (ρ = 1, σ2 = 2):

E[τ |x] =
1

2

∞∑
n=1

(
√

2)n(cn − xn)

n!
Γ
(n

2

)
.
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3.5 A Mixture Distribution Approximation

We have a differential equation whose solution is the Laplace transform of a

density of interest. From this Laplace transform we can extract the moments

of the distribution. We can use the knowledge of the first few moments of the

distribution of τ to construct an approximation to it.

Definition 8. A mixture of random variables {Yj}k
j=1 with densities {fj(y; θj)}k

j=1

is a random variable Y with density given by:

f(y; θ) =
k∑

j=1

cjfj(y; θj),

cj ∈ [0, 1] ∀j ∈ {1, . . . , k},
k∑

j=1

cj = 1.

Note that f(y; θ) is necessarily a probability density by the restrictions on cj.

Let the support of Y be S and the support of Yj be Sj. Then trivially S = ∪jSj.

Also, for all moments of Y we have

E[Y r] =

∫
S

yrf(y; θ)dy

=

∫
S

yr

k∑
j=1

cjfj(y; θj)dy

=
k∑

j=1

∫
Sj

yrcjfj(y; θj)dy

=
k∑

j=1

cjE[Y r
j ].

Given a variable of interest τ , take an indexed family of random variables with

parameter θj ∈ Rdj , {Yj}n
j=1 with densities fj(y; θj). Also define

φ(j, r; θj) = E[Y r
j ]

Let Y be the mixture of Yj which best approximates τ . A first and crude way

of determining cj and θj would be moment estimation. Given

mr = E[τ r]
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we aim to find cj and θj that satisfy

mr =
k∑

j=1

cjφ(j, r; θj), r = 1, 2, . . . , k, (3.6)

for k being the minimum number of moments required to get a unique solution.

3.5.1 Distributions Used

In looking at the hitting times of the OU process we are dealing with a non-

negative, univariate quantity so an appropriate family of distributions to use

could be Gamma distributions, γ(kj, θj), with scale parameters, θj, and shape

parameters, kj, θj, kj ∈ R

For Y ∼ γ(k, θ)

E[Y r] = θr Γ(k + r)

Γ(k)
, k = 1, 2, . . .

A sensible method for dealing with a hitting time density would be to only

consider gamma distributions which have zero density at t = 0 so that at least

this property of the actual hitting time is preserved, so k = 1 would not be a

good model.

In what follows, let γ(y; k, θ) be the density for the random variable with gamma

distributions with scale parameter θ and shape parameter k

3.5.2 Comparison With Simulations

Below is some R code used to generate 104 first hitting times of a level by a

univariate Ornstein-Uhlenbeck process. We considered the case

ρ = 1, σ =
√

2, x =, 1 c = 0

We choose this case because it has a well known density, and so we can compare

the mixture approximations to the actual density to determine their validity.

Then, when the exact hitting density is unknown, we have an idea of what form

the mixture would take for it to be a decent approximation.
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> ####################################################

> ### set estimation parameters ###

> ####################################################

> h <- 0.005

> n<- 10000

> ####################################################

> ### set the parameters of the process ###

> ### dX(t) = -rho X(t) dt + sigma dW(t) ###

> ####################################################

> rho <- 1

> sigma <- sqrt(2)

> hit <- 0 ### hitting level 0 ###

> xinit <- 1 ### starting from X(0)=1 ###

> ####################################################

> ### generate n realisations of the OU process ###

> ####################################################

> kappa <- exp(-rho*h)

> zvar <- 0.5*sigma^2/rho

> times <- 0

> for(i in 1:n){

+ t <- 0

+ x<- xinit

+ while((hit-x)*(hit-xinit) >= 0){

+ t <- t+h

+ x<- kappa*x + sqrt(1-kappa^2)*rnorm(1,0,zvar)

+ }

+ times[i]<- t ### vector of hitting times ###

+ }

This gave the following approximate values for the moments:

E(τ) ≈ 0.978147

E(τ 2) ≈ 1.943

E(τ 3) ≈ 6.03113

E(τ 4) ≈ 24.97828
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If we compare these moments to those found using Section 3.4.3 we find that

the mean is larger in the simulations than Section 3.4.3 would suggest. This

indicates a bias in the discrete approximation used, it tends to give slightly

higher hitting times compared to the true values.

From (3.2) we know that the density of this hitting time is equal to

fτ (t) =
1

2
√
π

(
1

sinh(t)

)3/2

exp

{
− e−t

4 sinh(t)
+
t

2

}
, t ≥ 0.

We now fit various mixtures to the data and plot the resulting approximate

density against this known density, keeping in mind that the simulation has a

bias so that the hitting times are slightly larger than they should be. In trying

to fit moments as in (3.6), the equations were inconsistent in many cases and

so no solution was obtained.

Because our simulation generates 104 observations, we can view it as a sample

and fit the appropriate mixtures to this ‘sample’. We use maximum likelihood

to determine the parameter estimates. This takes the estimated cj, θj and kj

to be those values under which the observed sample is most likely.

What follows is meant to give an idea of the validity of the various gamma

approximations rather than to be statistically rigorous. Given an approxima-

tion f̂τ (t) to fτ (t), we would like the quadratic error∫ ∞

0

(
f̂τ (t)− fτ (t)

)2

dt

to be as small as possible. However, we will instead look at graphs of the

mixture densities and comment on the validity (or not) of an approximation

through this inexact visual measure.
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In what follows, maximum likelihood estimates have been obtained in varying

frameworks. The αi mentioned are θ−1
i in our formulation.

1. Fitting a single gamma distribution with no parameter restrictions

> llh <- function(pars){

+ k<-pars[1]

+ alpha<-pars[2]

+ -sum(dgamma(times,k,alpha,log=TRUE))}

> optim(c(1,1),llh)

$par

k=1.273920

alpha=1.302496

2. Two gamma distributions with no restrictions on the parameters

> llh <- function(pars){

+ alpha1<-pars[1]

+ k1<-pars[2]

+ alpha2<-pars[3]

+ k2<-pars[4]

+ c<-pars[5]

+ -sum(log(c*dgamma(times,k1,alpha1)+(1-c)*dgamma(times,k2,alpha2)))}

> optim(c(1,1,2,2,0.5),llh)

$par

alpha1=1.3080598

k1=1.8247097

alpha2=8.0589896

k2=2.9502948

c=0.5973547

3. Three gamma distributions with no restrictions on the parameters

> llh <- function(pars){

+ alpha1<-pars[1]

+ k1<-pars[2]

+ alpha2<-pars[3]
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+ k2<-pars[4]

+ alpha3<-pars[5]

+ k3<-pars[6]

+ c1<-pars[7]

+ c2<-pars[8]

+ -sum(log(c1*dgamma(times,k1,alpha1)+c2*dgamma(times,k2,alpha2)+(1-c1-c2)*dgamma(times,k3,alpha3)))}

> pars<-optim(c(1,1,2,2,3,3,0.3,0.4),llh)

>

> pars

$par

alpha1=1.1053022

k1=2.5650427

alpha2=4.2744285

k2=2.8428879

alpha3=5.7225660

k3=3.9676221

c1=0.2371395

c2=2.1259410
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Plots of the hitting time density and the density from these gamma approxima-

tions are included below:

The fit of a single gamma distribution with no parameter restrictions is:

This is a very poor approximation, but is only really a starting point. One good

point is that the right tail appears not too bad which indicates that gamma

distributions are not an altogether terrible choice.
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A mixture of two gamma distributions with no parameter restrictions gives a

fit:

This is already a much better approximation. Considering the slight bias from

the simulation means that it is even closer to the real distribution than it looks.

Another problem is that the optimisation is sensitive to the initial parameters

used for the ‘optim’ function in R. However, in all variation in the parameters

obtained, the graph of the density did not vary noticeably.
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A mixture of two gamma distributions with the scale parameters constrained

to be the same for both distributions gives a fit:

When we restrict that θ1 = θ2, to find the optimal mixture of gamma distribu-

tions with common scale (and rate), we get a poor approximation to the actual

distribution. Thus, when we consider a two gamma mixture, we will consider

two completely distinct gamma distributions.
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A mixture of three gamma distributions with no parameter restrictions gives a

fit:

This is also a good fit but does not appear to differ from the two distribution

approximation greatly. Part of the problem may be that in the parameter es-

timates one of the weightings is negative and another is greater than 1. The ci

could be constrained so that ci ∈ [0, 1], but this can only have the effect of mak-

ing the fit worse. Since the unconstrained three gamma distribution mixture is

not greatly better than the two distribution, the constrained mixture will not

be either.

Again we find that when different initial parameters (for ‘optim’) are used,
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the parameter estimates vary quite a lot although the resulting graph does not

change greatly.

Remarks

It would appear from this that a two gamma distribution mixture provides a

decent approximation to the density in this known case and so this type of

mixture may be appropriate in the situations where no closed form for the

hitting density exists, (i.e. not hitting level 0) and for the multivariate hitting

time.
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Chapter 4

Concluding Remarks

The trades described in Sections 2.1.1 and 2.1.2 generate a positive net cashflow

at time 0 and at their conclusion generate zero cashflow. This means that the

only risk we are exposed to is that the stocks will never attain the required ratio.

But we know from Chapter 2 that the stocks return to this ratio with proba-

bility 1. These trades are the ones we will be considering, since exit conditions

and the ratio of stocks to trade were specified for them, so all that remains is to

determine optimal entry conditions. That is, we need to determine b such that

when the price ratio hits level b, we trade as described in Sections 2.1.1 and 2.1.2.

In this chapter we look at ways to develop an optimal trade. Optimality in

this sense means that time taken per dollar earned would be as small as possi-

ble.

4.1 One Process Model

When we begin at a ratio b > 1, the returns are given by Y0(1−b) = kX0(b
−1−1)

and the expected hitting time of hitting level 0 from log(b) is given by

1

ρ

(
φ1 (0)− φ1

(
log(b)

√
2ρ

σ

))
,

where φk(z) are as defined in Section 3.4.3.

When the ratio b is large, to enter the trade, we are waiting for the OU process

to reach some high level. This will happen very infrequently and so violates our

requirement in Section 2.1 that trades would be in the short term so that the
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time value of money could be ignored. Let BU be the largest value for b such

that the frequency for the ratio of prices to exceed b will be high enough from

a practitioner’s standpoint.

A ratio of b close to 1 would mean we enter a trade at a very slight devia-

tion for the process. This would entail in a large amount of trades over a very

short time, resulting in transaction costs becoming greater than neglibible. This

violates the requirements of Section 2.1. Let BL be the least value for b such

that the frequency of trades results in a rate of transaction costs that are not

too high from a practitioner’s standpoint.

The problem reduces to finding

z∗ = min
BL≤b∗≤BU

z(b)

= min
BL≤b∗≤BU

φ1 (0)− φ1

(
log(b)

√
2ρ
σ

)
ρY0(b− 1)

 ,

The problem now clearly amounts to finding b∗ solving the equation for the

critical point

b∗σ
√
ρ

(
φ1

(
log(b∗)

√
2ρ

σ

)
− 1

)
=
√

2(b∗ − 1)φ2

(
log(b∗)

√
2ρ

σ

)
, BL ≤ b∗ ≤ BU

and taking the minimum of z(BL), z(BU) and z(b∗).

This equation could be solves numerically.

4.2 Two Processes Model

For the model described in (2.3), while we have an expression for the cashflow

generated by the trade, we can only approximate the expected holding time for

the trade. Given the Laplace transform of the density of τb, the time taken for

the the ratio Y
kX

to reach 1 from b, we can obtain the expected value and thus

choose the optimal ratio b. This is a possible direction for further work.

4.3 Further Work

Some things that could be done from here are:
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• Numerically solve the partial differential equations for the Laplace trans-

form of multivariate OU process hitting time, and numerically invert this

Laplace transform.

• Given some real data for stocks for which a pairs trade is feasible, estimate

parameters for both the one process and two processes models. Then de-

vise and run a formal test to see if the two processes model is significantly

better than the one process model.

• Use a better estimation procedure for the mixture distribution than the

method of moments. The EM algorithm is particularly useful in this sort

of problem, see for example [9].

• Use a wider variety of distributions for the mixture approximation method.

• Devise and perform a formal test for determining which of the models

from Section 3.5.2 is best for the density in question.
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