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MANAGING OPTIONS RISK FOR EXOTIC OPTIONS
An exotic derivative is one for which no liquid market exists.  As a general rule, the only liquid options
are European-exercise calls and puts, including interest rate caps, floors, and European swaptions.  Since
exotic derivatives can rarely be marked-to-market based on publicly available prices at which they can be
bought and sold, they usually have to be marked based on some hedging strategy which involves
combinations of dynamic hedging using forwards and European-exercise options.

The general approach we will be following is one of building up techniques for marking-to-market and
calculating risk on less liquid instruments by designing hedging strategies involving more liquid
instruments.  A less liquid instrument is marked based on the cost of executing the hedging strategy, and
risk is then calculated by estimating the degree of uncertainty around this cost.  We will do this in
successive stages - at each stage, instruments for which we developed marks at previous stages will be
considered available for use in creating hedging strategies to mark other instruments.  However, we must
be careful to realize that any risks due to uncertainty of how to mark an instrument will be inherited by
instruments which it is then used to mark.  So we will often be faced (once again) with tradeoffs between
basis risk (employing a hedging strategy which uses more liquid instruments but which leaves a lot of
room for uncertainty) and liquidity risk (employ a hedging strategy which does not introduce much
uncertainty by using less liquid instruments).

As one example of how the stages will work: USD/JPY FX
•  We will use more liquid forwards to create a hedge for less liquid forwards on USD/JPY FX and

estimate the resulting basis risk.

•  We will use both less liquid and more liquid forwards on USD/JPY FX along with more liquid
European-exercise options on USD/JPY FX to create a hedge for less liquid European-exercise
options on USD/JPY FX.

•  We will use both less liquid and more liquid European-exercise options on USD/JPY FX to create
a hedge for barrier options on USD/JPY FX.

•  We will use barrier options on USD/JPY FX to create a hedge for lookback options on USD/JPY
FX.

The following table, taken from RISK Magazine, May, 2000, shows the principal forms of exotic
products and how widely they are used in different markets.  Those which are classified as correlation-
dependent, as well as virtually all interest rate exotics, have payoffs based on more than one underlying
security.  We will address the risk management of these exotics in another section.  In this section we will
focus on exotics whose payoff is based on just one underlying security, but many of the principles we
establish here are applicable to multi-security exotics as well.
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Intensity of use of option structures in various market

Interest rate
options Forex options Equity options

Commodity
options

OTC Exchanges OTC Exchanges OTC Exchanges OTC Exchanges

First-generation options
European-style A A A A A O A A
American-style A A R A A A
Bermuda-style A A R O

Second-generation options
Path-dependent options

Average price (rate) A A A A A
Barrier options A A A A
Capped O O A O
Lookback R R O R
Ladder O O A O
Ratchet O O A O
Shout R R R O

Correlation-dependent options
Rainbow options R O O O
Quanto options A A A A
Basket options R A A A R

Time-dependent options
Chooser options R R R O
Forward start options R R A A
Cliquet options R R A O

Single payout options
Binary options A A A A
Contingent premium options A A R A

A = actively used; O =
occasionally used; R = rarely
used; blank = not used
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Here’s another table of exotic option types, showing which ones can be hedged using static
combinations of vanilla options and which require dynamic hedging with vanilla options.  In
addition to the options listed in the RISK Magazine chart, we have also added a few others
which have a reasonable amount of use.  Dynamic hedging is divided up into the coverage of
3 primary risks:  shape of the volatility surface, liquidity risk, and correlation risk.
Management of the first two risk types will be covered in this section; management
Of correlation risk will be covered in the section on multi-factor exotics.

Dynamic Hedge Needed

Static Hedge
possible

Shape of
volatility
surface Liquidity Risk

Correlation
Risk

First-generation options
European-style
American-style ���� ����

Bermuda-style ���� ����

Second-generation options
Path-dependent options

Average price (rate) ���� small
Barrier options ���� Reverse barriers
Lookback by barriers
Ladder by barriers
Ratchet by barriers
Shout ����

Correlation-dependent
options

Rainbow options ����

Quanto options ����

Basket options ����

Time-dependent options
Chooser options price risk only ����

Forward start options Strikeless vo
Cliquet options Strikeless vol
Compound options price risk only ����

Volatility swaps Strikeless vol
Variance swaps ����

Single payout options
Binary options ����

Contingent premium
options

����

Power options ����
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It is reasonably straight-forward to see that the payoff of any derivative whose payments are a
function solely of the price of one underlying security at a single future time can be replicated
as closely as one likes with the payoff of a combination of vanilla forwards, calls, and puts,
since any (smooth) function can be approximated as closely as you wish, by a piecewise-
linear function, and vanilla options at different strikes can produce any desired piecewise
linear payoff.  Hence, this portfolio of vanillas can be held as a nearly perfect hedge of the
exotic derivative (see Carr & Madden , “Towards a Theory of Volatility Trading”, available
on Peter Carr’s website).  For a concrete example of how this can be used in practice, let’s
consider gold-in-gold options.

A plain vanilla gold option would be, for example, an option to exchange 1,000 ounces of
gold for $300,000 in one year.  Another way of viewing it is that the buyer has an option to
receive 1,000 x (G - 300), where G is the gold price in one year.  If G = 330, the buyer can
exchange $300,000 for 1,000 ounces of gold, under the option, and then sell the 1,000 ounces
of gold for $330,000, a net profit of $330,000 - $300,000 = $30,000.
A gold-in-gold option calls for this price increase to be received in gold.  So if the price of
gold goes up 10% from $300 to $330, the option buyer receives 10% x 1,000 ounces = 100
ounces of gold.  Since gold is worth $330 in ounces, this is a profit of 100 x $330 = $33,000,
a payoff of 11% rather than 10%.

In general, the payoff is x% * (1 + x%) = x%+x2%.

This can be hedged with 101% of a vanilla option struck at par plus 2% of a call option struck
at each 1% up in price, e.g.., to hedge a 1,000 ounces gold-in-gold contract with a strike of
$300, a 1,001 ounce call with a strike of $300, a 2 ounce call at $303, a 2 ounce call at $306, a
2 ounce call at $309, and so on.  The payoff on these calls, if gold rises by x%, is
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In practice, there is some degree of underhedging based on the spacing between strikes used
in the hedge and that there will be some highest strike above which you won’t buy any
hedges. This leads to basis risk, which could be calculated fairly easily by an assumed
probability distribution of final gold prices multiplied by the amount of mis-hedge at each
price level.  This basis risk can be reduced as low as one likes, in principle, by going to a
sufficiently fine and broad range of strikes, but then we will be encountering liquidity risk in
finding liquid prices for this large a set of vanilla calls.  The basis risk can also be reduced by
dynamic hedging in gold forwards the residual payments of the gold-in-gold option less the
hedge package.

Even if this is not selected as a desirable hedge from a trading viewpoint, it still makes sense
as a way to represent the trade from a risk management viewpoint, for the following reasons:

1) It allows realistic marking-to-market based on liquid, public prices.  Alternative marking
procedures would utilize an analytic pricing model for the gold-in-gold option, which is
easily derivable using the PDE, but a level of volatility needs to be assumed and there is
no straightforward procedure for deriving this volatility from observed market volatilities
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of vanilla options at different strikes.  The hedge package method recommended will
converge to this analytic solution as you increase the number of vanilla option hedges
used, provided all vanilla options are priced at a flat volatility (it is recommended that this
comparison be made as a check on the accuracy of the implementation of the hedging
package method).  But the hedging package method has the flexibility to price the gold-in-
gold option based on any observed volatility curve (in fact you don’t use the volatility
curve but the directly observed vanilla option prices, so the pricing is not dependent on
any option model).

2) The hedge package method gives an easier calculation of remaining risk than the analytic
method, which requires Monte Carlo simulation of dynamic hedging.

3) The hedge package method gives an easy means of integrating gold-in-gold options into
standard risk reports, such as vega exposure by strike and maturity.

4) It is sometimes raised as an objection to the hedge package method that it requires
transactions in vanilla options at strikes in which there is no available liquidity.  But any
trading desk sophisticated enough to deal in exotic options should be sophisticated enough
to have a system for hedging and pricing desired positions in vanilla options at illiquid
strikes with vanilla options at liquid strikes (methods we discussed in our section on
Vanilla Options Risk).

These points are ones which hold generally for the replication of exotic derivatives with
vanilla options.  By representing the exotic derivative as closely as possible with a hedge
package of vanilla options, you can minimize the remaining basis risk which needs to be
managed using techniques specific to the exotic derivative and maximize the amount of risk
which can be combined with and managed as part of the vanilla options book, utilizing
established risk management tools such as the spot-vol matrix.  Placing as much risk as
possible within a single context also increases the chances that risks from one position may
offset risks in another position – it is only the net risks which need to be managed.

The Excel workbook BASKETHEDGE calculates a basket of vanilla options which can
replicate any non-standard payoff which is solely dependent on the price of one underlying
security at a single future time.  Different worksheets in this workbook illustrate the
application of this technique to a variety of exotics.  In addition to the gold-in-gold option,
these are:

•  A contract which makes payments based on the logarithm of the final price.  This log
contract is a particularly important product, since it has been shown to provide a static
hedge for variance swaps (see Demeterfli, Derman, Kanal, and Zou, “A Guide to
Variance Swaps”, RISK, June, 1999).

•  The convexity risk on a conststant maturity swap
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•  A compound option.  In this case only the exposure to the price of the underlying
security is being hedged, not the exposure to changes in the implied volatility of the
option on which an option is being written.  Hedging the implied volatility requires
more general techniques of the type which we will discuss later in this section, when
we treat barrier options.

Digital Options

European binary options come very close to fulfilling the previously stated condition of
having a payout which is a function of the price of an asset at one definite time.  Therefore it
can be treated by the methodology just stated, using a basket of vanilla options to hedge it and
using this hedge package to mark-to-market, including skew impact, calculate remaining risk,
and incorporate into standard risk reports.  Details are in Taleb’s Chapter 17, in which he
demonstrates that a European binary call can be replicated as closely as one wishes by the
proper ratio of call spread (a vanilla call just below the barrier offset by a vanilla just above
the barrier).  So why do we need a special treatment?  Because the discontinuous nature of the
payment at the strike leads either to unrealistically large hedge positions in vanilla calls
(liquidity risk, since market prices would be impacted by an attempt to transact so many calls)
or significant hedge slippage (basis risk) between the binary option and its hedge.

For example, let’s say a customer approaches a trading desk wanting to buy a 1-year binary
call which will pay $10MM if the S&P index is above the current 1-year forward level at the
end of 1 year.  Let us start by assuming that all vanilla calls are priced at a 20% flat implied
volatility.  The straight analytical formula for the value of the binary is

$10MM x N(d2), where d2 = (ln( ) )price
strike t t−

1
2

2σ σ

= (ln( ) )1
1
2

20% 20%2−  = 10% N(-.1) = .46017, giving a price of the binary of $4,601,700.

Replicating the binary option using a vanilla call spread, the exact choice of vanilla calls to be
used makes virtually no difference to the price (as long as we assume a flat implied volatility),
but does make significant difference to the mix between liquidity risk and basis risk.  For
example:

•  Buy a vanilla call on $100 billion at a strike of 99.995% of the forward level at a price
of 7.9678802% for $100 billion x 7.9678802% = $7,967,880,200 and sell a vanilla call
on $100 billion at a strike of 100.005% of the forward level at a price of 7.9632785%
for $7,963,278,500, for a net cost of $7,967,880,200 - $7,963,278,500 = $4,601,700.

•  Buy a vanilla call on $2 billion at a strike of 99.75% of the forward level at a price of
8.0812430% for $161,624,900 and sell a vanilla call on $2 billion at a strike of
100.25% of the forward level at a price of 7.8511554% for $157,023,100, for a net
cost of $4,601,800.

•  Buy a vanilla call on $500MM at a strike of 99% of the forward level at a price of
8.4357198% for $42,178,600 and sell a vanilla call on $500MM at a strike of 101% of
the forward level at a price of 7.5152765% for $37,576,400, for a net cost of
$4,602,200.
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Note the inverse relationship between the width of the call spread (.01%, .50% and 2%,
respectively) and the size of the legs of the call spread ($100 billion, $2 billion, and $500MM
respectively).

The first combination offers the smallest basis risk — it will exactly replicate the binary
option as long as the S&P index at the end of one year is outside the range 99.995% -
100.005%, that is, as long as the S&P index does not finish within about one-half point of its
current forward level.  But liquidity risk is heavy — purchases and sales in the size of $100
billion would be certain to move market prices if they could be accomplished at all.  (Even if
the trading desk does not expect to actually buy this call spread, its use in representing the risk
profile of the trade will lead to illiquid dynamic hedging requirements because they are too
large).  At the other end of the spectrum, the third combination is of a size which could
possibly be transacted without major market movement, but basis risk is now much larger.
Exact replication of the binary option only takes place in a range outside 99% - 101% of the
current forward, so there are about 100 points of market movement on either side of the
current forward level in which replication would be inexact.  And replication could be very
inexact — if the index ended at 100.1% of the forward, for example, the customer would be
owed $10MM but the vanilla call at 99% would only pay $500MM x 1.1% = $5.5MM, a net
loss of $4.5MM.

Of course, the basis risk can be dynamically hedged with purchases and sales of S&P futures.
But the large payment discontinuity of the binary can lead to unmanageable hedging
situations.  For example, suppose you are close to expiration and the S&P is one point below
the forward level.  If there is no further movement, you will make about $4.995MM on the
vanilla call and owe nothing on the binary, but an uptick of just two points will lead to a loss
of about $5MM.  Should you put on a delta hedge of a size which will make $5MM for a two
point uptick?  The problem is that a position of this size will cost you $10MM for a four point
downtick, and you do not gain anything from option payouts to offset this loss.  While in
theory, in a world of complete liquidity and no transaction costs, you could put on this hedge
only at the exact moment you approach the binary strike and take it off as soon as you move
away from that strike, in practice such strategies are wholly implausible.  Actual experience
of trading desks caught needing to delta hedge a sizable binary position which happens to be
near the strike as expiration approaches is excruciatingly painful.  Traders have their choice of
gambles, but they must decide on a large bet in one direction or another.

In light of this, risk managers will always seek to place some sort of controls on binary
positions.  These controls, which may be complementary, come in the form of both limits and
reserves.  Limits are placed on either the size of the loss which can occur for a certain size
price move, or the maximum delta position which can be required for a hedge, or the
maximum gamma, the change in delta, which can be required for a given price move.  Delta
and gamma limits are based on the anticipated liquidity and transaction costs of the
underlying market in which hedging is being done.  Limits on loss size are designed to allow
traders to take a purely insurance approach to binaries, hoping to come out ahead on the long
run.  This requires that no one binary be too large.  Such an approach needs to be combined
with eliminating binaries close to a strike and expiration from delta and gamma reports, so
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that delta hedging is not attempted.  It also requires decisions about how binaries should be
combined for limit purposes.

To operate like insurance, binaries need to be widely scattered as to maturity date and strike
level, and limits need to bucket strikes and maturities in a manner which forces this scattering.
However, bucketing should only combine binaries in one direction (bought or sold) — it is
dangerous to allow netting of one binary with another except when date and strike (and any
other contract terms, such as exact definition of the index) exactly match.
A valuation and reserve policy should also be consistent with the insurance approach to
binaries — P&L should be recognized only the extent it can come close to being locked in.
Gains which have great uncertainty attached to them should only be recognized when
realized.  There are several methods for accomplishing this.  I will provide a detailed example
of one which I consider particularly elegant in its balancing of liquidity and basis risks, its
maximal use of static hedge information, and good fit with dynamic hedging risk reporting.
In this approach, every binary has assigned to it an “internal” representation which is designed
to be as close as possible to the binary in its payouts while still being capable of liquid
hedging, and which is designed to be “conservative” relative to the binary in that the internal
track will always produce a lower P&L for the firm than the binary.  All risk reports for the
firm are based on the internal representation, not the true representation of the binary.  The
MTM difference between the true and internal representation, which by design must always
be a positive value to the firm, is booked to a reserve account  Since the reserve is always
positive, this policy sometimes results in the firm recognizing “windfall” profits but never
windfall losses.

Let’s see how this policy would work in the case we have been considering.  A call spread
will be selected as the internal representation of the binary by choosing the smallest spread
with which results in a position size which is considered to be small enough to be liquid,
either by representing a real possibility for purchase in the market or by being representable in
the firm’s risk reports by delta positions which can be achieved with reasonable liquidity.  But
rather than choosing a call spread which straddles the binary, and which therefore has payouts
greater than the binary in some scenarios, we choose a call spread which is on one side of the
binary and therefore always has payouts greater than the binary.  If 2% is the width of call
spread we select as the smallest consistent with a liquid position, then we will use as an
internal representation a call spread consisting of a sale of $500MM at a strike of 98% and a
purchase of $500MM at a strike of 100% (notice that the internal representation has the
opposite sign from the hedge which would extinguish it).  The resulting MTM would be
$500MM x8.9259724% - $500MM x 7.9655791 = $44,629,900 - $39,827,900 = $4,802,000.
This is the MTM of the internal representation.  The actual binary continues to be MTM at
$4,601,700 — the difference of $200,300 is placed into a reserve.  If the actual sale price of
the binary to a customer is $5MM, then only $200M of the profit from the difference between
the price and MTM goes into immediate P&L recognition, the other $200M goes into a
reserve against anticipated liquidity costs of managing the digital risk.

What happens to this reserve?  There are several possibilities:
•  The firm might decide to actually buy the static overhedge which costs $4,802,000.

The internal hedge reports of the firm will now show no net position between the
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internal representation of the binary and the actual call spread hedge.  If the S&P
index ends up below 98% or above 100%, there will be no difference between the
eventual payout under the binary and the payin due to the call spread, and the reserve
will end up at 0.  If the S&P index ends up between 98% and 100%, the call spread
will have a payin while there is no payout on the binary.  For example, if the S&P
index ends at 99%, the call spread will pay $5MM, which will be the final value of the
reserve.  At expiry of the options, this $5MM will be recognized in P&L as a windfall
gain.

•  The firm might not do any static hedging and just delta hedge based on the internal
representation of the static overhedge.  Since the static overhedge was selected to be of
a size which allows liquid delta hedging, the results in this case should be close to the
results in the case that the static overhedge is actually purchased, but with some
relatively small variance.  As an example, suppose that we are very close to expiry and
the S&P index forward is at 99%.  Based on the internal representation of the call
spread overhedge, the appropriate delta will be a full $500MM long in the S&P index
forward and roughly $5MM in dynamic hedging profits should already have been
realized but held in reserve.  If the index ends at 99%, the $5MM in dynamic hedging
profits will be taken from the reserve and recognized in P&L as a windfall gain.  If the
index ends just above 100%, the $5MM in dynamic hedging profits realized to date
plus the $5MM gain from the 1% increase on the $500MM long in the S&P index will
be exactly enough to pay the $10MM owed on the binary.  Note that keeping the
$5MM in dynamic hedging profits realized to date in reserve is necessary to avoid
having to reverse a previously recognized gain in order to pay off on the binary.

•  Other combinations are possible, such as static hedges which are not overhedges, but
all produce similar results.

This technique of representing a binary internally as a static overhedge is sometimes objected
to by front office personnel as trading off a very probable gain in order to achieve security.  In
this view, the $400M which was originally realized on the transaction was real P&L and
$200M was sacrificed in order to achieve security in the very small minority of cases in which
the index finishes very close to the strike.  The idea that $200M has been thrown away is, in
fact, an “optical” illusion caused by focusing only on those cases in which the index finishes
outside the 99% to 101% range.  The trade still has a $400M expected value — it just consists
of a sure $200M in the vast majority of cases in which the index finishes outside 99% - 101%
and a set of windfall profits up to $10MM when the index finishes within this range.  The
front office view would be correct if there were some means, such as dynamic hedging, of
being “almost” sure of achieving this $400M result in all cases, but it was exactly the lack of
such means, the fact that dynamic hedging to try to come close to achieving $400M in all
cases results in some cases with disastrous losses, which cased us to seek an alternative
approach.  This reserve methodology can be seen to be consistent with moving the front office
away from viewing these trades as normal derivatives trades which can be approached in an
isolated manner and towards viewing them as necessarily being part of a widely diversified
portfolio of binaries.  In this context, over a long enough time period, the sum of occasional
windfall gains can become a steady source of income.  If limits can insure a wide enough
diversification, then reserves may not be necessary.
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So far in the example we have assumed a lack of volatility skew.  In the presence of skew, the
binary will price quite differently.  Let’s see the impact of using a 20.25% implied volatility
for a strike of 99% and a 20% volatility for a strike of 101%.  The cost of the 99% vanilla call
is now 8.534331%, resulting in a net cost of $5,095,274.  Just as with the other non-standard
payment cases previously discussed, the reduction to a package of vanilla options let’s us pick
up the impact of volatility skew.  We can see that binary options are highly sensitive to skew.

Taleb, on p. 286, says "the best replication for a digital is a wide risk reversal (that would
include any protection against skew).  There will be a trade-off between transaction costs and
optimal hedges.  The trader needs to shrink the difference between the strikes as time
progresses until expiration, at a gradual pace.  As such an optimal approach consumes
transaction costs, there is a need for infrequent hedging."  Using a call spread (also known as
a "risk reversal") which is wide reduces the size of the vanilla options which are needed,
reducing transaction costs and liquidity concerns, and also capturing the volatility skew more
accurately, since a wide spread could utilize more liquid strikes.  As we have seen, the width
of the spread should not materially impact the total hedge cost.

In many cases, the underlying price will finish nowhere near the strike and no further
transactions are needed.  But in those cases where the underlying is threatening to finish close
to the strike, basis risk will get too large and the trader will need to roll from the original call
spread into a tighter call spread, incurring transactions costs both due to the need to purchase
and sell options and because the size of the options transactions is growing as the spread
narrows.  This potential transactions cost needs to be factored into the valuation of binary
options.  Following Taleb, on p. 286, "when the bet option is away from expiration, the real
risks are the skew.  As it nears expiration, the risks transfer to the pin.  In practice, the skew is
hedgable, the pin is not.

Barrier Options

So far we've dealt strictly with exotic options whose payment is based on the price of an asset
at a single time period, i.e., European-style options.  Next we want to look at how an option
which is based on asset prices at many time periods can be handled.  Barrier options are a
good choice because they illustrate dependence on the entire volatility surface, both in terms
of time and strike level,because they have a large range of variants, because they are
overwhelmingly the most traded exotic options among foreign exchange options and are also
used with equities, commodities, and interest rates, and because they can be used as building
blocks in forming static hedges for other exotic options, such as lookback options, roll-down
options, and ratchet options.

A barrier option is one whose payoff is equal to that of a standard call or put but which only
pays off under the condition that some price level (called the barrier) has been breached (or
not) at some time period prior to the time the call or put payoff is determined.  Options which
only pay if a barrier has been breached are called knock-in ("down and in" if the barrier is
below the asset's price at the time the option in written, "up and in" otherwise).  Options
which only pay if a barrier has not been breached are called knock-out (either "down and out"
or "up and out").  Variations include double barrier options which either knock out if either a
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down and out or an up and out condition has been reached or which knock in if either a down
and in or up and in condition has been reached.  Another variation is a delayed start barrier,
where the barrier condition can be activated only during a specified time period which begins
after the option start date.

Barrier options may or may not have significant digital features.  Table 19.1 in Taleb and the
surrounding text offer a good discussion of this point.  When significant digital features are
involved, the same type of limit, hedge adjustment, and reserving issues we discussed for
European digitals are needed.  But the most important feature of barrier options, shared by all
barrier options, is that they are dependent on large parts of the implied volatility surface,
which is a sharp contrast with European options.  For example, to price a one-year European
call at a strike of 100, you only need to know how the market is pricing probability
distributions for the price one year from now, with almost all the sensitivity being to the part
for the probability distribution close to 100.  By contrast, a one-year up-and-out call with a
strike at 100 and barrier at 110 is sensitive to probability distributions of price at all times up
to one year (since you need to know how likely it is that the knock-out condition will be met)
and is very sensitive to the price distribution close to 110 as well as close to 100.

While good analytic models based on PDEs have been developed for both barrier and double
barrier options (see Hull, p. 462-464 for the single barrier equations), these models have the
drawback that they need to assume a single level of volatility and there are no good rules for
translating a volatility surface observed for European options into a single volatility to be used
for the barrier options. In fact, cases can be shown where no single volatility assumption can
be utilized with the PDE approach to give a reasonable price for the barrier option.  We will
illustrate this point with the following example:

Asset price ( S ) 100.00  Value of Up-and-Out Call with skewed
Strike price ( X ) 100.00 volatility of 20% at 100, 18% at 120
Barrier ( H ) 120.00
Cash rebate ( K ) 0.00Using Local Volatility Model 3.090
Time to maturity ( T ) 0.25Using Carr Static Hedge Model 3.095
Risk-free rate ( r ) 0.00%
Cost of carry ( b ) 0.00%
Volatility ( s ) 20.00%

Value of Up-and-Out Call Using Standard PDE Formula

Volatility Value of Up-and-out Call
1.00% 0.1995
2.00% 0.3989
3.00% 0.5984
4.00% 0.7979
5.00% 0.9973
6.00% 1.1968
7.00% 1.3962
8.00% 1.5956
9.00% 1.7942
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10.00% 1.9897
11.00% 2.1772
12.00% 2.3499
13.00% 2.5008
14.00% 2.6242
15.00% 2.7166
16.00% 2.7771
17.00% 2.8070
18.00% 2.8087
19.00% 2.7858
20.00% 2.7421
21.00% 2.6816
22.00% 2.6080
23.00% 2.5245
24.00% 2.4340
25.00% 2.3390
26.00% 2.2415
27.00% 2.1432
28.00% 2.0455
29.00% 1.9492
30.00% 1.8552

Note that the analytic result, which utilizes the formula shown in Hull, has option values that
first increase as the volatility level rises, since rising volatility causes the call value to
increase.  At higher volatility levels the option values decrease as the volatility level rises,
since rising volatility increases the probability of knock-out.  Since the barrier level starts far
away from the current price, it is only at high volatilities that the impact of rising volatility on
probability of knock-out dominates the impact of rising volatility on the value of the call.

Methods for utilizing the full volatility surface, which we shall discuss shortly, would agree
with those analytical results for flat volatility surfaces.  But if we assume a skewed volatility
surface, with implied volatility of 20% for a European call struck at 100 and of 18% for a
European call struck at 120, approaches which utilize the full volatility surface (either the
Derman-Kani trinomial tree approach or the Carr static hedging approach) would price the
barrier option at 3.10, which is 10% higher than the 2.81 maximum value the barrier option
reaches at any volatility level using the analytic approach.  The reason for this is that the
lower volatility as you approach the barrier decreases the chance of penetrating the barrier
without simultaneously lowering the value of the call.

The following approaches to pricing and hedging barrier options using the full volatility
surface are possible:

A.  Dynamic Hedging Models

These models price barrier options (or any other exotic option whose payoff is a function of a
single underlying asset) based on the cost of dynamically hedging the exotic with a portfolio
of the underlying asset and vanilla European options.  This is analogous to the Black-Scholes
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model pricing of vanilla European options based on the cost of dynamically hedging with the
underlying asset.  These models utilize the full set of current prices of vanilla European
options, and so make use of the full volatility surface, along with a theory of how these vanilla
option prices can evolve with time.  If you utilize an actual dynamic hedging strategy
consistent with the model, you will be successful in replicating the model's price for the exotic
to the extent that the model's theory about the evolution of the vanilla options prices is correct
and to the extent that transactions costs are reasonably insignificant.

There are two principal types of dynamic hedging models used for exotics:

1) Local volatility models which assume that volatility is a known and unvarying function of
time and underlying price level.  These models are natural extensions of the Black-
Scholes model which assumes that volatility is known and unvarying but also assumes it
is the same at all times and underlying price levels.  Based on the assumption of the local
volatility model, you can derive a definite price at any future time and underlying price
level of any vanilla or exotic option.  The cost of the dynamic hedge will therefore differ
from the originally derived price only to the extent that future volatilities prove to follow a
varying function of time and underlying price level (or that transaction costs are
significant).

2) Stochastic volatility models which assume that volatilities will vary over time based on
some assumed model.  The cost of the dynamic hedge will differ from the derived price to
the extent that the process of actual volatility variation differs from that assumed by the
model (or that transaction costs are significant).

B. Static Hedging Models

These models price barrier options based on the cost of a replication strategy which calls for
an almost unvarying hedge portfolio (at least of the vanilla options; it would be possible to
use a dynamic hedge of the underlying, though the particular static hedging models we will
discuss only utilize vanilla options in the hedge portfolio).  These models utilize nearly static
hedge portfolios both as a way to reduce transaction costs (which can be considerably higher
when buying and selling vanilla options than when buying and selling the underlying) and as
a way to reduce dependence on assumptions about the evolution of volatility.  Three
approaches to static hedging of barriers can be distinguished:

1) The approach of Derman, Ergener, and Kani, which is broadly applicable to all exotic
options whose payoff is a function of a single underlying asset, but which has
considerable exposure to being wrong about future volatility levels.

2) The approach of Peter Carr and his colleagues which is more specifically tailored to
barrier options, utilizing an analysis of the Black-Scholes formula to form a hedge
portfolio which is immune to changes in overall volatility level.  However, the Carr
approach is still vulnerable to changes in the volatility skew.  It is easier to implement
than the Derman-Ergener-Kani approach in cases of single barriers in the absence of drift
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(i.e., forward equal to spot), but harder to implement for double barriers and in cases
where forward does not equal spot.

3) Approaches which utilize optimal fitting give solutions close to those provided by the Carr
approach for single barriers in the absence of drift, but are more flexible in handling drift
and double barriers, and are less vulnerable to changes in volatility skew.

The following table compares these different approaches to pricing and hedging barriers on a
number of criteria:

Barrier Options managed using

Risk exposure
to:

Vanilla options
book managed
using portfolio

approach
Dynamic

hedge

Derman-
Engener-

Kani static
hedge Carr static hedge

Optimization
static hedge

Price jump Low None None None None

Parallel vol
shift

Low None High None None

Vol time shift None None High None Low

Vol smile
shift

None None High None Low

Vol skew shift None None High High Low

Dynamic
hedging costs

Low and
moderately easy
to estimate using
Monte Carlo

Hard to
estimate

None None None

Transaction
costs

Low and
moderately easy
to estimate using
Monte Carlo

High and
hard to

estimate

Low and
easy to

estimate

Low and easy to
estimate

Low and easy
to estimate

Flexibility to
extend to
other cases

Extends
easily to all
structures

Extends
moderately
easily to all
structures

Can extend with greatly
added complication to
barriers with drift,
double barriers, no
obvious extension to
other cases

Extends
moderately
easily to all
structures
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A relatively straightforward implementation for a local volatility model is the trinomial tree
approach of Derman and Kani (see Derman and Kani, “Riding on a Smile”, RISK, Feb. 94),
which builds the unique trinomial tree for modeling the price diffusion of the underlying and
which meets the following two criteria:

a) Volatility is a known and unvarying function of time and underlying price level

b) The tree correctly prices all European calls and puts on the underlying at different strike
levels and time to expiry.

Dynamic hedging utilizes the full volatility surface in pricing barrier options and can be
readily utilized for representing the barrier option in risk reports through its vanilla option
hedges, and can easily be applied to any derivative based on a single underlying.  Its
drawback is its vulnerability to incorrect assumptions about volatility evolution and to
transaction costs of buying and selling vanilla options.  Vanilla options typically have far
lower liquidity and far higher transaction costs than non-option underlyings such as spot and
forward contracts.  It is also quite difficult to calculate the potential risks of incorrect
assumptions and probable transaction costs relative to similar calculations for the dynamic
hedging of vanilla options.  When performing a Monte Carlo simulation of the dynamic
hedging of a vanilla option, the underlying hedge at each time step along each random path
can be easily calculated using the Black-Scholes delta formula.  By contrast, a Monte Carlo
simulation of the dynamic hedging of a barrier requires the recalibration of the entire local or
stochastic volatility model, along with its sensitivities to changes in vanilla option prices, at
each time step along each random path in order to calculate the required change in hedge.

Both the Derman-Ergener-Kani approach and the Carr approach are based on the idea of
finding a basket of vanilla options which statically replicate the differences between the
barrier option and a closely related vanilla option.  To facilitate discussion, we will confine
ourselves to the case of a knock-out call, since a knock-in call can be handled as a vanilla call
less a knock-out call, and puts can be priced from calls using put-call parity.  The idea is to
purchase a vanilla call with the same strike and expiration date as the knock-in being sold and
then reduce the cost of creating the knock-in by selling a basket of vanilla options (this basket
may have purchases as well as sales in the Derman-Ergener-Kani approach, but either way the
net initial cash flow on the basket is positive to the barrier option seller).  The basket of
vanilla options must be constructed so that:

a) It has no payoff if the barrier is never hit.  In this case the payout on the barrier option,
which has not been knocked-out, is exactly offset by the payin from the vanilla call which
was purchased, so there is nothing left over to make payments on the basket.

b) Its value when the barrier is hit is an exact offset to the value of the vanilla call.  When the
barrier is hit, you know you will not need to make any payments on the barrier option, so
you can afford to now sell the vanilla call you purchased.  You do not want to later be
vulnerable to payouts on the basket of vanilla options you sold, so you must purchase this
basket.  In order for cash flows to be zero, the basket purchase price must equal the vanilla
call sale price.
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You can guarantee the first condition by only using calls struck at the barrier in the case of a
barrier higher than the current price and by only using puts struck at the barrier in the case of
a barrier lower than the current price.  If the barrier is never hit, then certainly you won't be
above the up barrier at expiration, so you won't owe anything on a call, and you certainly
won't be below the down barrier at expiration, so you won't owe anything on a put.

Where the Derman-Ergener-Kani and Carr approaches differ is in how they attempt to assure
that the option package will be equal in value to the vanilla call at the time the barrier is hit.
Both take advantage of knowing that at the time you are reversing your position in these
vanilla options the underlying must be at the barrier.  Note that both approaches will have the
advantage that the only possible transaction costs involve a single event, the reversing of all
positions when the barrier is hit.  Therefore, the possible size of transaction costs is a
straightforward calculation.

The Derman-Ergener-Kani approach (see Derman, Ergener. And Kani, “Forever Hedged”,
RISK, Sep. 94) uses a package of vanilla options which expire at different times.  The
algorithm works backwards, starting at a time close to the expiration of the barrier option.  If
the barrier is hit at this time, the only vanilla options still outstanding will be the vanilla call
and the very last option to expire in the package.  Since both the underlying price is known
(namely, the barrier) and the time to expiry is known, the only remaining factor in
determining the values of the vanilla options is the implied volatility, which can be derived
from a local or stochastic volatility model (if from a stochastic volatility model, it will be
based on expected values over the probability distribution).  Thus the Derman-Ergener-Kani
approach can be viewed as the static hedging analogue of the dynamic hedging approaches we
have been considering.  Once the prices of the vanilla options at the time the barrier is hit are
calculated, you can easily determine the amount of the option that is part of the basket which
needs to be sold in order to exactly offset the sale of the vanilla call with the purchase of the
option in the basket.  You then work backwards time period by time period, calculating the
values of all vanilla options if the barrier is hit at this time period and calculating what volume
of the new option in the basket is needed to set the price of the entire basket equal to the price
of the vanilla call.  At each stage, you only need to consider unexpired options, so you only
need to consider options for which you have already computed the volumes held.  A detailed
example illustrating this technique can be found in Hull, section 18.8.

The following points about the Derman-Ergener-Kani approach should be noted:

(1) If the barrier is hit in between two time periods for which vanilla options have been
included in the package, the results are approximated by the nearest prior time period.
The inaccuracy of this approximation can be reduced as closely as you wish by increasing
the number of time periods used.

(2) The approach can easily accommodate all sorts of complexities, such as the existence of
drift (dividend rate unequal to risk free rate), time-varying barrier levels (such as forward-
starting barriers) and double barriers, since a separate computation is made for each time
the barrier could potentially be hit.
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(3) Since the approach relies on the results of a local or stochastic volatility model to forecast
future volatility surface levels and shapes, it is vulnerable to the same issue as when these
models are used for dynamic hedging — the hedge will only work to the extent that the
assumptions underlying the model prove to be true.  This is illustrated in the following
table, which shows the potential mismatch in unwind cost at a period close to expiry based
on differences between model assumed volatilities and actual volatilities at the time the
barrier is hit.

Asset price ( S ) 100.00
Strike price ( X ) 100.00
Barrier ( H ) 95.00
Time to maturity ( T ) 0.25
Risk-free rate ( r ) 0.00%
Cost of carry ( b ) 0.00%
Volatility ( s ) 20.00%

Value of Purchased Down-and-Out Call Using Standard PDE Formula
        Hedged Using Vanilla Options According to Derman-
        Ergener-Kani Method Based on 20% Volatility

VOL DO Call Hedge Net
10.00% 1.9576 1.8606 0.0970
11.00% 2.1274 2.0117 0.1157
12.00% 2.2862 2.1573 0.1289
13.00% 2.4337 2.2981 0.1356
14.00% 2.5703 2.4348 0.1355
15.00% 2.6964 2.5680 0.1284
16.00% 2.8128 2.6981 0.1147
17.00% 2.9201 2.8256 0.0945
18.00% 3.0192 2.9508 0.0684
19.00% 3.1108 3.0740 0.0368
20.00% 3.1955 3.1955 0.0000
21.00% 3.2740 3.3151 -0.0411
22.00% 3.3469 3.4335 -0.0866
23.00% 3.4146 3.5507 -0.1361
24.00% 3.4778 3.6668 -0.1890
25.00% 3.5367 3.7819 -0.2452
26.00% 3.5917 3.8960 -0.3043
27.00% 3.6433 4.0094 -0.3661
28.00% 3.6916 4.1220 -0.4304
29.00% 3.7371 4.2340 -0.4969
30.00% 3.7798 4.3453 -0.5655

Note that the Derman-Ergener-Kani approach is vulnerable to model errors both as to level of
volatility surface and skew of volatility surface and skew of volatility surface.
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The Carr approach  (see Carr, Ellis and Gupta,”Static Hedging of Exotic Options”, Journal of
Finance, 1998, vol. LIII(3), p. 1165 – 1190) avoids this dependence on projecting future
volatility surfaces and is much simpler to implement, but at a price — it cannot handle
volatility skews (though it can handle volatility smiles) and its simplicity depends on an
absence of drift (dividend rate equals risk-free rate).

The Carr approach achieves a degree of model independence by working directly with the
Black-Scholes equations and determining hedge package which will work providing only that
volatility is flat.  In these circumstances, one can calculate exactly a single vanilla put which
will be selling at the same price as the vanilla call in the case that a down barrier is hit.  It is
based on the principle of put-call symmetry, which states that for all strike pairs, K1 and K2,
such that 21KK =forward price.

)( 12 KCallK = )( 21 KPutK

This is a direct consequence of the Black-Scholes formulas.  Since there is no drift, the
forward price is equal to the spot price, which is the barrier level, H.  Since the call is struck at
K, we can find a reflection strike, R, such that KR = H and by put-call symmetry,

)(KCallR = )(RPutK

Since KR = H , KHR 2= , KHR =  so you need to purchase 
H
K

R
K =  puts struck

at KH 2

For an up barrier, one must separately hedge the intrinsic value and the time value of the
vanilla call at the time the barrier is hit.  The intrinsic value can nearly be perfectly offset by
selling binary options which pay 2 x I, the intrinsic value.  Any time the barrier is hit, there
will be nearly a 50-50 chance that the binary will finish in the money, so its value is close to
50% x 2 x I = I.  In fact, standard lognormal pricing of a binary will result in assuming
slightly less than a 50% chance of finishing above the barrier so we need to supplement the
binary with I of a plain vanilla call struck at the barrier.  The exact value of the binary when

the barrier is hit is )
2

(2 τσ−×× NI  and the value of the vanilla call struck at the barrier, and

hence exactly at-the-money when the barrier is hit is ))
2

()
2

(( τστσ −−× NNI

= ))
2

(21( τσ−−× NI

The sum of these two terms is then exactly I.
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The Carr approach has several advantages:

•  It shows that there is at least a plausible way of pricing the barrier based on options with
tenor equal to the final tenor of the barrier, indicating that this is probably where most of
the barrier's risk exposure is coming from.

•  By finding an equivalent package of options we already know how to represent in
standard risk reports, it allows the barrier to be accommodated in standard risk reports.
This is true independent of whether we actually choose to perform this hedge.

•  Since we know how to price all the pieces of the hedge package using the volatility
skew, this provides us with pricing for the barrier which accommodates skew.

•  Having a large binary component of the hedge is an excellent means of highlighting and
isolating the "pin" risk contained in this barrier which dies in-the-money.  Techniques
we have already developed for managing pin risk on binaries can now easily be brought
into play.  For example, we could establish a reserve against the pin risk of the binary.
This approach is quite independent of whether the trading desk actually sells a binary as
apart of the hedge — the risk of the binary is present in any case.

•  Because the Carr approach uses a small number of options in the hedge package, it is
very well suited for intuitive understanding of how changes in the shape of the volatility
surface impact barrier prices.

•  Even if you choose to hedge and price using a dynamic hedging approach, the Carr
methodology can still be useful in identifying cases which are relatively insensitive to all
the assumptions which need to be made in choosing between competing dynamic
hedging models.  Since the Carr methodology constructs its static hedge using vanilla
options, any model which is calibrated to market prices has identical prices for these
vanilla options and so must have identical prices for the barrier option.

•  Neither the presence of volatility smiles, nor uncertainty as to future volatility smiles,
impacts the Carr approach.  Since it deals with options which are symmetrically placed
relative to the at-the-money strike, all smile effects cancel out.

The simplicity of the Carr approach is lost in the presence of drift of for double barriers (see
the appendix to Carr & Chou "Breaking Barriers", on Carr's website, for a method of using a
large number of vanilla options to create a volatility independent static hedge of barrier
options in the presence of drift; see Carr, Ellis, and Gupta, "Static Hedging of Exotic Options"
for a method of using a large number of vanilla options to create a volatility level-independent
static hedge of double barrier options).  The Carr approach cannot handle changes in drift or
any volatility shape other than a symmetric smile.

A more general approach to static hedging, which can handle all drift and volatility shape
conditions, is optimization, in which a set of vanilla options is chosen which fits as closely as
possible, the unwind of the barrier option at different possible times, drifts, and volatility
levels and shapes which may prevail when the barrier is hit.  The optimization approach is
discussed in Dembo’s “Hedging in Markets that Gap”, Handbook of Derivatives and
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Synthetics.  It is often the case that no perfect static hedge can be found, but in these cases the
optimization produces information on the distribution of possible hedge errors which can be
useful input to determining a reasonable reserve.  A similar approach can be taken to many
different types of exotic structures.

The spreadsheet STATICOPT illustrates how optimization can be used to find a static hedge
for a barrier option.  If the possible conditions when the barrier is hit are restricted to zero
drift and volatility smile but no skew, then the EXCEL Solver will find a set of vanilla options
which almost exactly matches the barrier unwind for all volatility levels and times to expiry.
Of course, this is not a surprise, since we know from the Carr approach that a perfect static
hedge is possible under these circumstances.  When different non-zero drift and volatility
skew conditions are allowed, the match of the barrier unwind is no longer as exact.

Combinations of Exotic Options

Some exotic options can be constructed as static combinations of other exotics.  If we already
know how to use vanilla options to hedge the exotic options which comprise the static
combination, then the static combination automatically extends to a vanilla hedge for the
other exotics.

A simple example is a contingent premium option which entails no initial payment by the
option buyer, who only pays at option termination under the circumstances that the option
finishes in the money.  This type of option is popular with some clients both because of the
deferral of cash payment and because the client will not need to pay for an option which turns
out to be “useless,” although it should be noted that an option which finishes just slightly in
the money will still require a net payment by the option buyer, since the payment due from
the option seller will be less than the option’s cost.  It is easy to see that a contingent premium
option is just a standard vanilla option plus a forward to defer payment of the option premium
plus a binary option to offset the option premium due in the event the price finishes below (in
the case of a call) the strike of the vanilla option.

As one further example, let’s see how to construct a static hedge for a type of exotic option
called a lookback option.  In this case, we will construct the static hedge using a package
barrier options.

Lookback calls come in two varieties: (1) those which pay the difference between the
maximum price which an asset achieves during a selected period and the closing price, and
(2) those which pay the difference between the maximum price which an asset achieves
during a selected period and a fixed strike.  Symbolically, the lookback either pays )1) Smax -
ST of (2) max [0,Smax - K].  We can exactly reproduce the payoffs of a lookback of the first
type by buying a lookback of the second type with a strike equal to the current price of the
asset, selling the asset forward to time T and buying a forward delivery of S0 dollars at time T.
Since Smax is certainly ≥ S0, max [0,Smax - S0] = Smax - S0, the total payoff if this combination
at time T is max[0,Smax - S0] - ST + S0 = (Smax - S0) - ST + S0 = Smax - ST. So if we can create
the second type of lookback option by static hedging, we can create the first type of lookback
option by static hedging as well.
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Lookback options have a closely related product called ratchet options which pay max[0, Smax
 - K] rounded  down by a specified increment.  For example, if K = 100 and Smax = 117.3, the
lookback call of the second type would pay 17.3, a ratchet call with increments of 1 would
pay 17, a ratchet call with increments of 5 would pay 15, and a ratchet call with increments of
10 would pay 10.  Since a lookback call can be approximated as closely as we want by a
ratchet call with a small enough increment, it is sufficient to show how to statically hedge a
ratchet call.

In section 3.3 of “Static Hedging of Exotic Options” by Carr, Ellis, and Gupta, they show how
to create a static hedge for a ratchet call using barrier calls.  Using the notation of KI (strike,
trigger) for a knock-in call, a ratchet call with strike of K and increment of I can be
reproduced by the following sum of knock-in calls:
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There is no protection above K+N*I, so N must be chosen large enough that this is not a
serious risk.  For any given increment K+J*I, if Smax ≤ K+J*I, the knock-ins don’t occur and
the payouts on both KI(0,K+J*I) and KI(I,K+J*I) are 0.  If Smax >K+J*I, the knock-ins do
occur, and the net payouts of KI(0,K+J*I) -KI(I,K+J*I) = I exactly match the payouts due on
the ratchet.
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