

SIMULATING
COPULAS

Stochastic Models,
Sampling Algorithms, and Applications

2nd Edition

10265hc_9789813149243_tp.indd 1 16/5/17 2:45 PM

Series in Quantitative Finance ISSN: 1756-1604

Series Editor: Ralf Korn (University of Kaiserslautern, Germany)

Editorial Members: Tang Shanjian (Fudan University, China)
 Kwok Yue Kuen (Hong Kong University of Science
 and Technology, China)

Published
Vol. 1 An Introduction to Computational Finance
 by Ömür Uğur

Vol. 2 Advanced Asset Pricing Theory
 by Chenghu Ma

Vol. 3 Option Pricing in Incomplete Markets:
 Modeling Based on Geometric Lévy Processes and
 Minimal Entropy Martingale Measures
 by Yoshio Miyahara

Vol. 4 Simulating Copulas:
 Stochastic Models, Sampling Algorithms, and Applications
 by Jan-Frederik Mai and Matthias Scherer

Vol. 5 Extreme Financial Risks and Asset Allocation
 by Olivier Le Courtois and Christian Walter

Vol. 6 Simulating Copulas:
 Stochastic Models, Sampling Algorithms and Applications
 (Second Edition)
 by Jan-Frederik Mai and Matthias Scherer

Alisha - 10265 - Simulating Copulas.indd 1 16-05-17 3:18:47 PM

Series in Quantitative Finance – Vol. 6

Jan-Frederik Mai
XAIA Investment AG, Germany

Matthias Scherer
Technische Universität München, Germany

SIMULATING
COPULAS

Stochastic Models,
Sampling Algorithms, and Applications

with contributions by

Claudia Czado • Elke Korn • Ralf Korn • Jakob Stöber

2nd Edition

NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI • TOKYO

World Scientific

10265hc_9789813149243_tp.indd 2 16/5/17 2:45 PM

Published by

World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Series in Quantitative Finance — Vol. 6
SIMULATING COPULAS
Stochastic Models, Sampling Algorithms and Applications
Second Edition

Copyright © 2017 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy
is not required from the publisher.

ISBN 978-981-3149-24-3

Desk Editor: Alisha Nguyen

Typeset by Stallion Press
Email: enquiries@stallionpress.com

Printed in Singapore

Alisha - 10265 - Simulating Copulas.indd 2 16-05-17 3:18:47 PM

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page v

To the new generation:
Viola, Lara, Fabian, and Paul.

v

b2530 International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd 6 01-Sep-16 11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page vii

Preface

The joint treatment of d ≥ 2 random variables requires vector-valued

stochastic models. In the financial industry, multivariate models are ap-

plied to, e.g., asset allocation problems (portfolio optimization), the pricing

of basket options, risk management, and the modeling of credit portfolios.

In particular, the development during the past years highlighted that the

financial industry is in urgent need of realistic and viable models in large

dimensions. Other fields of application for multivariate stochastic mod-

els include geostatistics, hydrology, insurance mathematics, medicine, and

reliability theory.

Besides specifying the univariate marginals, for multivariate distribu-

tions it is additionally required to appropriately define the dependence

structure among the modeled objects. In most applications, a portfolio per-

spective is significantly more demanding compared to modeling univariate

marginals. One consequence is that analytical solutions for the aforemen-

tioned applications can typically be derived under restrictive assumptions

only. An increasingly popular alternative to accepting unrealistic simplifi-

cations is to solve the model in question by Monte Carlo simulation. This

allows for very general models but requires efficient simulation schemes for

multivariate distributions. This book aims at providing a toolbox for the

simulation of random vectors with a considerable spectrum of dependence

structures.

vii

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page viii

viii Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Why Sampling Copulas?

This book focuses on sampling copulas, i.e. distribution functions on [0, 1]d

with uniform univariate marginals. At first glance, this standardization

to univariate margins seems to be a rather artificial assumption. The

justification for considering copulas instead of more general multivariate

distribution functions is provided by Sklar’s seminal decomposition (see

Sklar (1959) and Section 1.1.2). Heuristically speaking, Sklar’s theorem

allows us to decompose any d-dimensional multivariate distribution func-

tion F into its univariate margins F1, . . . , Fd and the dependence structure

among them. The latter is described by the copula behind the model, de-

noted C. More precisely, we have F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))

for (x1, . . . , xd) ∈ Rd. The converse implication also holds, i.e. coupling uni-

variate margins with some copula yields a multivariate distribution. This

observation is especially convenient for the specification of a multivariate

model, since a separate treatment of the dependence structure and uni-

variate margins is usually easier compared to specifying the multivariate

distribution in one step.

Sklar’s decomposition also applies to sampling applications. Assume

that we want to simulate from a multivariate distribution function F with

univariate marginal distribution functions F1, . . . , Fd and copula C. Given

a sampling scheme for the copula C, the following algorithm generates

a sample from the distribution F by applying the generalized inverses

F−1
1 , . . . , F−1

d (see Lemma 1.4) to the sample of the copula.

Algorithm 0.1 (Sampling Multivariate Distributions)

Let F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) be a d-dimensional distribution

function. Let sample C () be a function that returns a sample from C.

Sampling F is then possible via the following scheme:

FUNCTION sample F ()

Set (U1, . . . , Ud) := sample C ()

RETURN
(
F−1
1 (U1), . . . , F

−1
d (Ud)

)

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page ix

Preface ix

Why Another Book on Copulas?

Our main motivation for writing this book was to summarize the fast-

growing literature on simulation algorithms for copulas. Several results on

new sampling techniques for classical copulas, e.g. the Archimedean and

Marshall–Olkin families, have lately been published. Moreover, new fam-

ilies and construction principles have been discovered; an example is the

pair-copula construction. At the same time, the financial industry has be-

come aware that copula models (beyond a Gaussian dependence structure)

are required to realistically model various aspects of quantitative finance.

This book takes account of this fact by providing a comprehensive toolbox

for financial engineering, and, of course, for other applications as well. All

algorithms are described in pseudo-code. Thus, they can easily be imple-

mented in the user’s preferred programming language. Moreover, we aim at

being comprehensive with respect to sampling schemes for univariate ran-

dom variables as well as with respect to the use of Monte Carlo sampling

engines in general. We purposely included sampling schemes for very basic

copulas, even though this might not be required for an expert in the field.

Another intention is to provide an elementary introduction to copulas from

the perspective of probabilistic representations. Hence, an experienced re-

searcher might skip some parts of the book. But someone who is new to

the field of copulas can use the book as a stand-alone textbook. The book,

however, does not treat statistical estimation of dependence models.

Especially for sampling applications, the dimension of the copula plays

a crucial role. To give an example, the original probabilistic model behind

the so-called d-dimensional Marshall–Olkin copula is based on 2d − 1 ran-

dom variables, i.e. the dimension d enters exponentially. Hence, this book

explicitly focuses on the d-dimensional case and discusses the efficiency of

the provided algorithms with respect to their dimension. Especially in the

field of portfolio credit risk modeling, there are some applications requiring

high-dimensional models with d = 125 or even more.

Copulas can be investigated from two (not necessarily disjoint) perspec-

tives: (1) analytically, i.e. viewing them as d-dimensional functions, and (2)

probabilistically, i.e. viewing them as the dependence structure behind some

random vector. Both perspectives have their distinct advantages.

(1) The analytical perspective aims at deriving statements about cop-

ulas from their functional form. This is especially successful for

analytically tractable families. In this case, it is often possible

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page x

x Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

to deduce very general dependence properties from the paramet-

ric form of the respective copula. For high-dimensional sampling

applications, however, this approach is of minor use, since the func-

tional form does not, in general, provide a convenient rule for the

construction of a sampling algorithm.

(2) Investigating copulas from a probabilistic perspective is based on

stochastic representations of the dependence structure. This means

that there is an explicit (and preferably simple) probability space,

on which the random vector associated with a copula is defined.

The immediate advantage is that such probabilistic constructions

provide a recipe for a sampling algorithm. Besides sampling, it is

also possible to investigate the copula from the respective repre-

sentation.

This book pursues a mostly probabilistic treatment. This is especially

suitable for sampling applications.

Acknowledgments

First of all, we would like to thank C. Czado, E. Korn, R. Korn, and

J. Stöber for providing the chapters on pair copulas, univariate sampling al-

gorithms, and Monte Carlo techniques. We also would like to thank several

friends and colleagues for patiently answering questions, reading previous

versions of the manuscript, and pointing us at several improvements. These

are K. Bannör, G. Bernhart, F. Durante, C. Hering, P. Hieber, M. Hofert,

H. Joe, D. Krause, A. Min, A. Reuß, D. Neykova, W. Richter, S. Schenk,

D. Selch, and N. Shenkman. Finally, we would like to thank our editor,

Tasha D’Cruz, for her extremely valuable feedback and professional han-

dling of the manuscript.

Jan-Frederik Mai and Matthias Scherer

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page xi

Preface xi

Preface to the second edition

We were very pleased when ICP/WS approached us in early 2016 with

the proposal of a second edition of this book. For several reasons, we

immediately agreed to provide a revised and extended edition. First of all,

there was the opportunity to correct some typographical errors that we

(and others) noticed in the meanwhile. Second, we negotiated a soft-cover

version that allows the reader to acquire the book at a cheaper price. We

hope the book enjoys an even wider dissemination consequently. Third, and

most important, we felt we made significant progress in the main theme of

the book: the identification of conditionally independent (sub-)families of

multivariate distributions and the design of new parametric copula models.

This progress was supported by the remarkable PhD theses of German

Bernhart and Steffen Schenk.1 This strand of research particularly led to a

deeper understanding of multivariate extreme-value distributions and fatal-

shock models. We have chosen to add these results as a separate, additional

chapter. This preserves the structure of the first edition, so references to

theorems etc. are consistent across the two editions. Furthermore, we have

also monitored the fast growing literature on copulas and included new

results and references related to the simulation of copulas. We would like

to thank A. Hüttner and H. Sloot for providing valuable suggestions for

improvements.

Jan-Frederik Mai and Matthias Scherer, December 2016

1Gentlemen, many thanks for the fruitful and pleasant collaboration!

b2530 International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd 6 01-Sep-16 11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page xiii

Contents

Preface vii

1. Introduction 1

1.1 Copulas . 4

1.1.1 Analytical Properties 7

1.1.2 Sklar’s Theorem and Survival Copulas 14

1.1.3 General Sampling Methodology in Low

Dimensions . 22

1.1.4 Graphical Visualization 26

1.1.5 Concordance Measures 28

1.1.6 Measures of Extremal Dependence 33

1.2 General Classifications of Copulas 36

1.2.1 Radial Symmetry 36

1.2.2 Exchangeability 39

1.2.3 Homogeneous Mixture Models 41

1.2.4 Heterogeneous Mixture Models/Hierarchical Models 48

1.2.5 Extreme-Value Copulas 52

2. Archimedean Copulas 57

2.1 Motivation . 58

2.2 Extendible Archimedean Copulas 61

2.2.1 Kimberling’s Result and Bernstein’s Theorem . . 62

2.2.2 Properties of Extendible Archimedean Copulas . . 65

2.2.3 Constructing Multi-Parametric Families 69

2.2.4 Parametric Families 69

2.3 Exchangeable Archimedean Copulas 76

xiii

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page xiv

xiv Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

2.3.1 Constructing Exchangeable Archimedean Copulas 82

2.3.2 Sampling Exchangeable Archimedean Copulas . . 85

2.3.3 Properties of Exchangeable Archimedean Copulas 87

2.4 Hierarchical (H-Extendible) Archimedean Copulas 89

2.4.1 Compatibility of Generators 90

2.4.2 Probabilistic Construction and Sampling 91

2.4.3 Properties . 93

2.4.4 Examples . 95

2.5 Other Topics Related to Archimedean Copulas 97

2.5.1 Simulating from the Generator 97

2.5.2 Asymmetrizing Archimedean Copulas 99

3. Marshall–Olkin Copulas 101

3.1 The General Marshall–Olkin Copula 102

3.1.1 Canonical Construction of the MO Distribution . 104

3.1.2 Alternative Construction of the MO Distribution 110

3.1.3 Properties of Marshall–Olkin Copulas 118

3.2 The Exchangeable Case 122

3.2.1 Reparameterizing Marshall–Olkin Copulas 126

3.2.2 The Inverse Pascal Triangle 129

3.2.3 Efficiently Sampling eMO 131

3.2.4 Hierarchical Extensions 138

3.3 The Extendible Case . 140

3.3.1 Precise Formulation and Proof of Theorem 3.1 . . 141

3.3.2 Proof of Theorem 3.2 146

3.3.3 Efficient Simulation of Lévy-Frailty Copulas . . . 150

3.3.4 Hierarchical (H-Extendible) Lévy-Frailty Copulas 153

4. Elliptical Copulas 159

4.1 Spherical Distributions . 161

4.2 Elliptical Distributions . 166

4.3 Parametric Families of Elliptical Distributions 170

4.4 Elliptical Copulas . 174

4.5 Parametric Families of Elliptical Copulas 175

4.6 Sampling Algorithms . 179

4.6.1 A Generic Sampling Scheme 179

4.6.2 Sampling Important Parametric Families 181

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page xv

Contents xv

5. Pair Copula Constructions 185

5.1 Introduction to Pair Copula Constructions 186

5.2 Copula Construction by Regular Vine Trees 191

5.2.1 Regular Vines . 191

5.2.2 Regular Vine Matrices 196

5.3 Simulation from Regular Vine Distributions 203

5.3.1 h-Functions for Bivariate Copulas and Their

Rotated Versions 204

5.3.2 The Sampling Algorithms 208

5.4 Dependence Properties . 218

5.5 Application . 223

5.5.1 Time Series Model for Each Margin 224

5.5.2 Parameter Estimation 224

5.5.3 Forecasting Value at Risk 226

5.5.4 Backtesting Value at Risk 227

5.5.5 Backtest Results 228

6. Sampling Univariate Random Variables 231

6.1 General Aspects of Generating Random Variables 231

6.2 Generating Uniformly Distributed Random Variables . . . 232

6.2.1 Quality Criteria for RNG 233

6.2.2 Common Causes of Trouble 234

6.3 The Inversion Method . 234

6.4 Generating Exponentially Distributed Random Numbers . 235

6.5 Acceptance-Rejection Method 235

6.6 Generating Normally Distributed Random Numbers . . . 238

6.6.1 Calculating the Cumulative Normal 238

6.6.2 Generating Normally Distributed Random

Numbers via Inversion 238

6.6.3 Generating Normal Random Numbers with Polar

Methods . 239

6.7 Generating Lognormal Random Numbers 240

6.8 Generating Gamma-Distributed Random Numbers 240

6.8.1 Generating Gamma-Distributed RNs with β > 1 . 241

6.8.2 Generating Gamma-Distributed RNs with β < 1 . 242

6.8.3 Relations to Other Distributions 243

6.9 Generating Chi-Square-Distributed RNs 243

6.10 Generating t-Distributed Random Numbers 244

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page xvi

xvi Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

6.11 Generating Pareto-Distributed Random Numbers 245

6.12 Generating Inverse Gaussian-Distributed Random

Numbers . 245

6.13 Generating Stable-Distributed Random Numbers 246

6.14 Generating Discretely Distributed Random Numbers . . . 247

6.14.1 Generating Random Numbers with Geometric

and Binomial Distribution 248

6.14.2 Generating Poisson-Distributed Random

Numbers . 248

7. The Monte Carlo Method 251

7.1 First Aspects of the Monte Carlo Method 251

7.2 Variance Reduction Methods 254

7.2.1 Antithetic Variates 255

7.2.2 Antithetic Variates for Radially Symmetric

Copulas . 257

7.2.3 Control Variates 258

7.2.4 Approximation via a Simpler Dependence

Structure . 260

7.2.5 Importance Sampling 262

7.2.6 Importance Sampling via Increasing the

Dependence . 263

7.2.7 Further Comments on Variance Reduction

Methods . 265

8. Further Copula Families with Known Extendible Subclass 267

8.1 Exogenous Shock Models 268

8.1.1 Extendible Exogenous Shock Models 271

8.2 Extreme-Value Copulas 285

8.2.1 Multivariate Distributions with Exponential

Minima . 293

8.2.2 Hierarchical (H-extendible) Extreme-Value

Copulas . 294

Appendix A Supplemental Material 301

A.1 Validating a Sampling Algorithm 301

A.2 Introduction to Lévy Subordinators 302

A.2.1 Compound Poisson Subordinator 306

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page xvii

Contents xvii

A.2.2 Gamma Subordinator 308

A.2.3 Inverse Gaussian Subordinator 309

A.2.4 Stable Subordinator 310

A.3 Scale Mixtures of Marshall–Olkin Copulas 311

A.4 Generalizations of Lévy Subordinators 315

A.4.1 Additive Subordinators 315

A.4.2 IDT Subordinators 316

A.5 Further Reading . 319

Bibliography 323

Index 335

b2530 International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd 6 01-Sep-16 11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 1

Chapter 1

Introduction

Before we start, let us clarify some notations.

General comment: The dimension of a random vector is typically

denoted by d ≥ 2.

Important sets: N denotes the set of natural numbers {1, 2, . . .}, and
N0 := {0} ∪ N. R denotes the set of real numbers. Moreover, for d ∈ N,
Rd denotes the set of all d-dimensional row vectors with entries in R. For

v := (v1, . . . , vd) ∈ Rd, we denote by v′ its transpose. For some set A, we

denote by B(A) the corresponding Borel σ-algebra, which is generated by

all open subsets of A. The cardinality of a set A is denoted by |A|. Subsets
and proper subsets are denoted by A ⊂ B and A � B, respectively.

Probability spaces: A probability space is denoted by (Ω,F ,P), with
σ-algebra F and probability measure P. The corresponding expectation op-

erator is denoted by E. The variance, covariance, and correlation operators

are written as Var, Cov, Corr, respectively. Random variables (or vectors)

are mostly denoted by the letter X (respectively X := (X1, . . . , Xd)). As

an exception, we write U := (U1, . . . , Ud) for a d-dimensional random vec-

tor with a copula as joint distribution function.1 If two random variables

X1, X2 are equal in distribution, we write X1
d
= X2. Similarly,

d→ denotes

convergence in distribution. Elements of the space Ω, usually denoted by

ω, are almost always omitted as arguments of random variables, i.e. instead

of writing X(ω), we simply write X . Finally, the acronym i.i.d. stands for

“independent and identically distributed”.

Functions: Univariate as well as d-dimensional distribution functions

are denoted by capital letters, mostly F or G. Their corresponding survival

functions are denoted F̄ , Ḡ. As an exception, a copula is denoted by the

letter C; its arguments are denoted (u1, . . . , ud) ∈ [0, 1]d. The characteristic

1The letter U indicates that U1, . . . , Ud are uniformly distributed on the unit interval.

1

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 2

2 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

function of a random variable X is denoted by φX(x) := E[exp(i xX)].

The Laplace transform of a non-negative random variable X is denoted

by ϕX(x) := E[exp(−xX)]. Moreover, the nth derivative of a real-valued

function f is abbreviated as f (n); for the first derivative we also write f ′.
The natural logarithm is denoted log.

Stochastic processes: A stochastic process X : Ω × [0,∞) → R on

a probability space (Ω,F ,P) is denoted by X = {Xt}t≥0, i.e. we omit the

argument ω ∈ Ω. The time argument t is written as a subindex, i.e. Xt

instead of X(t). This is in order to avoid confusion with deterministic

functions f , whose arguments are written in brackets, i.e. f(x).

Important univariate distributions: Some frequently used proba-

bility distributions are introduced here. Sampling univariate random vari-

ables is discussed in Chapter 6.

(1) U [a, b] denotes the uniform distribution on [a, b] for −∞ < a < b <

∞. Its density is given by f(x) = �{x∈[a,b]} (b− a)−1 for x ∈ R.
(2) Exp(λ) denotes the exponential distribution with parameter λ > 0,

i.e. with density f(x) = λ exp(−λx)�{x>0} for x ∈ R.
(3) N (µ, σ2) denotes the normal distribution with mean µ ∈ R and

variance σ2 > 0. Its density is given by

f(x) =
1√
2πσ2

e−
1
2

(x−µ)2

σ2 , x ∈ R.

(4) LN (µ, σ2) denotes the lognormal distribution. Its density is given

by

f(x) =
1

x
√
2πσ2

e−
1
2

(log(x)−µ)2

σ2 �{x>0}, x ∈ R.

(5) Γ(β, η) denotes the Gamma distribution with parameters β, η > 0,

i.e. with density

f(x) =
ηβ

Γ(β)
e−η x xβ−1

�{x>0}, x ∈ R.

Note in particular that the exponential law Exp(λ) = Γ(1, λ) is a

special case of the Gamma distribution.

(6) χ2(ν) denotes the χ2-distribution (Chi-square) with ν ∈ N degrees

of freedom. The density satisfies

f(x) =
1

2ν/2Γ(ν/2)
xν/2−1e−x/2

�{x>0}, x ∈ R.

From the density we can easily see that χ2(ν) = Γ(ν/2, 1/2) is a

second important special case of the Gamma distribution. If Z has

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 3

Introduction 3

a χ2(ν)-distribution and X1, . . . , Xν are i.i.d. standard normally

distributed random variables, then Z
d
= X2

1 + . . .+X2
ν .

(7) IG(β, η) denotes the inverse Gaussian distribution with parameters

η, β > 0, i.e. with density

f(x) =
β

x
3
2

√
2 π

eη β− 1
2 (β

2/x+η2 x)
�{x>0}, x ∈ R.

(8) S(α, h) denotes the (exponentially tilted) α-stable distribution with

0 < α < 1 and h ≥ 0, as discussed for instance in Barndorff-Nielsen

and Shephard (2001). This distribution is characterized via its

Laplace transform. If X has a S(α, h)-distribution, then
E
[
e−xX

]
= e−((x+h)α−hα), x > 0.

We write S(α, 0) =: S(α). Note: S(1/2, h) = IG(2−1/2,
√
2 h).

(9) Bin(n, p) denotes the binomial distribution with n trials and suc-

cess probability p ∈ (0, 1). The (discrete) density of X with

Bin(n, p)-distribution is

P(X = k) =

(
n

k

)
pk(1− p)n−k, k ∈ {0, . . . , n}.

(10) Poi(λ) denotes the Poisson distribution with mean λ > 0. The

(discrete) density of X with Poi(λ)-distribution is P(X = k) =

λk exp(−λ)/k! for k ∈ N0.

(11) t(ν) denotes the Student’s t-distribution with ν ∈ N degrees of

freedom. The density2 is given by

f(x) =
Γ
(
ν+1
2

)
√
πνΓ(ν2)

(
1 +

x2

ν

)−(ν+1
2)

, x ∈ R.

(12) t(µ, ν) denotes the (non-central) Student’s t-distribution with non-

centrality parameter µ ∈ R and ν ∈ N degrees of freedom. This

distribution is composed of Z, a normally distributed random vari-

able with unit variance and zero mean, and V , a Chi-square dis-

tributed random variable with ν degrees of freedom (independent

of Z), via (Z + µ)/
√
V/ν.

(13) Pareto(α, x0) denotes the Pareto distribution with parameters

α, x0 > 0, i.e. with survival function

F̄ (x) = 1− F (x) =
(x0
x

)α
�{x≥x0} + �{x<x0}, x ∈ R.

2The motivation for this distribution is the composition of Z, a normally distributed
random variable with unit variance and zero mean, and V , a Chi-square distributed
random variable with ν degrees of freedom (independent of Z): Z/

√
V/ν has a t(ν)-

distribution.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 4

4 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

(14) Geo(p) denotes the geometric distribution with success probability

p ∈ (0, 1]. The (discrete) density of X with Geo(p)-distribution is

P(X = k) = (1− p)k−1 p for k ∈ N.
(15) Beta(a, b) denotes the Beta distribution with parameters a, b > 0.

Its density is given by

f(x) = �{x∈(0,1)}
Γ(a+ b)

Γ(a) Γ(b)
xa−1 (1− x)b−1.

Abbreviations for other distributions are introduced when they first appear.

The symbol ∼ means “distributed according to”, e.g. E ∼ Exp(1) means

that E is an exponential random variable with unit mean.

1.1 Copulas

The law of a d-dimensional random vector X := (X1, . . . , Xd), defined on a

probability space (Ω,F ,P), is usually studied from its distribution function

F (x1, . . . , xd) := P(X1 ≤ x1, . . . , Xd ≤ xd), x1, . . . , xd ∈ R.
For i = 1, . . . , d the distribution function Fi of Xi is called the (univariate)

marginal law or margin and can be retrieved from F via

Fi(xi) := P(Xi ≤ xi) = F (∞, . . . ,∞, xi,∞, . . . ,∞), xi ∈ R.
Taking∞ as an argument of F is used as a shorthand notation for taking the

limits as the arguments x1, . . . , xi−1, xi+1, . . . , xd tend to infinity. It is im-

portant to mention that it is not enough to know the margins F1, . . . , Fd in

order to determine F . Additionally it is required to know how the marginal

laws are coupled. This is achieved by means of a copula of (X1, . . . , Xd).

Generally speaking, knowing the margins and a copula is equivalent to

knowing the distribution. It is now appropriate to give the definition of a

copula.

Definition 1.1 (Copula)

(1) A function C : [0, 1]d → [0, 1] is called a (d-dimensional) copula,

if there is a probability space (Ω,F ,P) supporting a random vector

(U1, . . . , Ud) such that Uk ∼ U [0, 1] for all k = 1, . . . , d and

C(u1, . . . , ud) = P(U1 ≤ u1, . . . , Ud ≤ ud), u1, . . . , ud ∈ [0, 1].

(2) On a probability space (Ω,F ,P) let (U1, . . . , Ud) be a random vec-

tor on [0, 1]d whose joint distribution function (restricted to [0, 1]d)

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 5

Introduction 5

is a copula C : [0, 1]d → [0, 1]. For i = 2, . . . , d and indices

1 ≤ j1 < . . . < ji ≤ d the notation Cj1,...,ji : [0, 1]i → [0, 1] is

introduced for the joint distribution function of the random subvec-

tor (Uj1 , . . . , Uji). It is itself a copula and called an i-margin of

C.

For a random vector (U1, . . . , Ud) ∈ [0, 1]d on the d-dimensional unit cube

the values of its distribution function on Rd \ [0, 1]d are completely deter-

mined by its values on [0, 1]d. Thus, copulas are defined on [0, 1]d only. A

d-dimensional copula C induces a probability measure dC on the unit cube

[0, 1]d. More clearly, if a random vector (U1, . . . , Ud) on [0, 1]d is defined on

the probability space (Ω,F ,P) and has distribution function C, then

dC(B) := P
(
(U1, . . . , Ud) ∈ B

)
, B ∈ B([0, 1]d).

The measure dC is called the probability measure associated with the copula

C. It is uniquely determined by C. The three simplest examples of copulas

are defined in the following examples.

Example 1.1 (Independence Copula)

The function Π : [0, 1]d → [0, 1], given by

Π(u1, . . . , ud) :=

d∏
i=1

ui, u1, . . . , ud ∈ [0, 1],

is called the independence copula. To see that Π actually is a copula,

consider a probability space (Ω,F ,P) supporting i.i.d. random variables

U1, . . . , Ud with U1 ∼ U [0, 1]. The random vector (U1, . . . , Ud) then has

U [0, 1]-distributed margins and joint distribution function

P(U1 ≤ u1, . . . , Ud ≤ ud) =
d∏

i=1

P(Ui ≤ ui) =
d∏

i=1

ui

= Π(u1, . . . , ud), u1, . . . , ud ∈ [0, 1].

The independence of the components of Π explains the nomenclature.

Example 1.2 (Comonotonicity Copula)

Considering a probability space (Ω,F ,P) supporting a single random vari-

able U ∼ U [0, 1], the random vector (U1, . . . , Ud) := (U, . . . , U) ∈ [0, 1]d has

U [0, 1]-distributed margins and joint distribution function

P(U1 ≤ u1, . . . , Ud ≤ ud) = P(U ≤ min{u1, . . . , ud})
= min{u1, . . . , ud}, u1, . . . , ud ∈ [0, 1].

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 6

6 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Consequently, the function M : [0, 1]d → [0, 1], defined by

M(u1, . . . , ud) := min{u1, . . . , ud}, u1, . . . , ud ∈ [0, 1],

is a copula called the copula of complete comonotonicity (also called the

upper Fréchet–Hoeffding bound, see Lemma 1.3).

Example 1.3 (Countermonotonicity Copula)

Considering a probability space (Ω,F ,P) supporting a single random vari-

able U ∼ U [0, 1], the bivariate random vector (U1, U2) := (U, 1−U) ∈ [0, 1]2

has perfectly negatively associated components (i.e. if U1 is large, then U2 is

small, and vice versa). This random vector has U [0, 1]-distributed margins

and joint distribution function

P(U1 ≤ u1, U2 ≤ u2) = P(1− u2 ≤ U ≤ u1)
= (u1 + u2 − 1)�{1−u2≤u1}, u1, u2 ∈ [0, 1].

Consequently, the function W : [0, 1]2 → [0, 1], defined by

W (u1, u2) := (u1 + u2 − 1)�{u1+u2≥1}, u1, u2 ∈ [0, 1],

is a bivariate copula called the copula of complete countermonotonicity

(also called the lower Fréchet–Hoeffding bound, see Lemma 1.3).

When dealing with copulas, especially in larger dimensions, many computa-

tions exhibit a combinatorial character. This is mainly due to the fact that

the dimension d ≥ 2 is a “discrete” number. The following basic fact from

probability calculus will sometimes be useful in this regard and is stated

here for later reference. It shows how to compute the probability of a union

of events in terms of probabilities of intersections.

Lemma 1.1 (Principle of Inclusion and Exclusion)

Let (Ω,F ,P) be a probability space. With A1, . . . , An ∈ F one has3

P
(n⋃

i=1

Ai

)
=

∑
∅�=I⊂{1,...,n}

(−1)|I|+1P
(⋂

j∈I

Aj

)

=

n∑
k=1

(−1)k+1
∑

1≤i1<...<ik≤n

P
(k⋂

j=1

Aij

)
.

Proof. See, e.g., Billingsley (1995, p. 24). �
3For n = 2: P(A1 ∪A2) = P(A1) + P(A2)− P(A1 ∩ A2).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 7

Introduction 7

1.1.1 Analytical Properties

Univariate distribution functions can be characterized by analytical prop-

erties. It is well known that a function F : R → [0, 1] is the distribution

function of some (real-valued) random variable X if and only if it is right-

continuous, non-decreasing, limx→−∞ F (x) = 0, and limx→∞ F (x) = 1

(see, e.g., Billingsley (1995, Theorem 12.4, p. 176)). There is an analo-

gous characterization of multivariate distribution functions via analytical

properties, using the notions of groundedness and d-increasingness.

Definition 1.2 (Groundedness and d-Increasingness)

Let C : [0, 1]d → [0, 1] be an arbitrary function.

(1) C is called grounded, if C(u1, . . . , ud) = 0 whenever ui = 0 for at

least one component i ∈ {1, . . . , d}.
(2) C is called d-increasing, if for all

u := (u1, . . . , ud), v := (v1, . . . , vd) ∈ [0, 1]d

with ui < vi for all i = 1, . . . , d one has4

∑
(w1,...,wd)∈×d

i=1{ui,vi}
(−1)|{i :wi=ui}| C(w1, . . . , wd) ≥ 0.

Obviously, a copula C : [0, 1]d → [0, 1] is a grounded function by Defini-

tion 1.1. To see that a d-dimensional copula is also d-increasing, consider

a probability space (Ω,F ,P) supporting a random vector (U1, . . . , Ud) ∼ C
and let u := (u1, . . . , ud),v := (v1, . . . , vd) ∈ [0, 1]d with ui < vi for

all i = 1, . . . , d. For each subset ∅ �= I ⊂ {1, . . . , d}, define the vector

w(I) := (w
(I)
1 , . . . , w

(I)
d) by

w
(I)
k :=

{
uk , k ∈ I
vk , k /∈ I , k = 1, . . . , d.

4For d = 2: dC
(
[u1, u2]× [v1, v2]

)
= C(v1, v2)−C(v1, u2)−C(u1, v2)+C(u1, u2) ≥ 0.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 8

8 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Using the principle of inclusion and exclusion (see Lemma 1.1) in the fol-

lowing third equality, one checks that5

0 ≤ P
(d⋂

i=1

{
ui < Ui < vi

})
= P
(d⋂

i=1

{
Ui < vi

} \ d⋃
i=1

{
Ui < ui

})

= P
(d⋂

i=1

{
Ui < vi

}) − P(d⋃
i=1

({
Ui < ui

} ∩ {U1 < v1, . . . , Ud < vd
}))

= C(v1, . . . , vd) +
∑

∅�=I⊂{1,...,d}
(−1)|I|C(w(I)

1 , . . . , w
(I)
d)

=
∑

(w1,...,wd)∈×d
i=1{ui,vi}

(−1)|{i :wi=ui}| C(w1, . . . , wd).

Hence, the complicated condition of d-increasingness in the case of a copula

C means that the associated probability measure dC assigns non-negative

mass to any non-trivial d-box [u1, v1] × . . .× [ud, vd], and is therefore well

defined. Conversely, one can show that groundedness, d-increasingness, and

a normalization are sufficient to define a proper distribution function, com-

pare Theorem 1.1. This result is based on a canonical construction of a

probability space from a given (distribution) function. However, this con-

struction is useless for sampling applications and only serves as an existence

proof. Therefore it is omitted in this introduction and the interested reader

is referred to Ressel (2011). Summing up, the following characterization of

copulas via analytical properties is obtained. Theorem 1.1 is used to define

a copula in many textbooks (see, e.g., Nelsen (2006, p. 45)).

Theorem 1.1 (Copulas via Analytical Properties)

A function C : [0, 1]d → [0, 1] is a copula if and only if it is grounded,

d-increasing, and satisfies C(1, . . . , 1, ui, 1, . . . , 1) = ui for all components

i = 1, . . . , d and ui ∈ [0, 1].

Proof. This statement can be retrieved, e.g., from a result in Ressel

(2011), which characterizes arbitrary multivariate distribution functions.

Note in particular that the last condition of the claimed statement corre-

sponds precisely to the fact that the marginal laws associated with a copula

have to be uniform on [0, 1]. �
5Note that the absolute continuity of the U [0, 1]-law implies the almost sure equality

of events such as {Ui < vi} and {Ui ≤ vi}, which is used frequently here.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 9

Introduction 9

1.1.1.1 Testing if C is a Copula

Checking whether a given function C : [0, 1]d → [0, 1] is a copula might be

a tedious exercise. To solve it, one can either

(1) try to construct a probability space (Ω,F ,P) supporting a random

vector (U1, . . . , Ud) whose distribution function is C, or

(2) try to verify the three analytic conditions of Theorem 1.1.

If approach (1) is taken and the probability space (Ω,F ,P) is con-

structed “conveniently”, a simulation algorithm for the respective copula

C is immediately available: one simply has to mimic the construction of

(U1, . . . , Ud) ∼ C. However, finding the right probability space requires

one to already have a good understanding of the given copula C. Approach

(2) is purely analytic and does not provide a simulation algorithm. But

checking the characterizing properties of a copula analytically might be a

difficult task. In particular, it is often difficult, not to say impossible, to

check whether a given function is d-increasing or not. Only in very special

cases, and mostly only in dimension d = 2, can this condition be checked

explicitly. An example is provided below. For another example, namely

bivariate Archimedean copulas, see Nelsen (2006, Theorem 4.1.4, p. 111).

Example 1.4 (Bivariate Cuadras–Augé Copula)

With a parameter α ∈ [0, 1] we define the function Cα : [0, 1]2 → [0, 1] by

Cα(u1, u2) := min{u1, u2} max{u1, u2}1−α, u1, u2 ∈ [0, 1].

Theorem 1.1 is used in the sequel to prove analytically that Cα is a proper

copula. First observe that groundedness and Cα(u, 1) = Cα(1, u) = u,

u ∈ [0, 1], are obvious properties. Hence, the only non-obvious property is

two-increasingness. To this end, let 0 ≤ u1 < v1 ≤ 1 and 0 ≤ u2 < v2 ≤ 1.

We have to show that

Cα(u1, u2) + Cα(v1, v2)− Cα(u1, v2)− Cα(v1, u2) ≥ 0. (1.1)

We distinguish all possible cases:

(1) u1 < v1 ≤ u2 < v2: In this case, (1.1) boils down to

u1 u
1−α
2 + v1 v

1−α
2 − u1 v1−α

2 − v1 u1−α
2 ≥ 0

⇔ (v1 − u1) (v1−α
2 − u1−α

2) ≥ 0.

Clearly, this is satisfied.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 10

10 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

(2) u1 ≤ u2 ≤ v1 ≤ v2: In this case, we have that uα2 ≤ vα1 , implying

u2 v
1−α
1 ≤ u1−α

2 v1. Therefore,

Cα(u1, u2) + Cα(v1, v2)− Cα(u1, v2)− Cα(v1, u2)

= u1 u
1−α
2 + v1 v

1−α
2 − u1 v1−α

2 − u2 v1−α
1

≥ u1 u1−α
2 + v1 v

1−α
2 − u1 v1−α

2 − u1−α
2 v1

= (v1−α
2 − u1−α

2) (v1 − u1) ≥ 0.

Hence, (1.1) is established.

(3) u2 ≤ u1 < v1 ≤ v2: It can be verified that the function g(x) :=

(v1−α
1 − x1−α)/(v1 − x) is non-increasing on [0, v1), which implies

v1−α
2

u2
≥ v1−α

1

v1
= g(0) ≥ g(u1) = v1−α

1 − u1−α
1

v1 − u1 .

Rearranging the last inequality implies

Cα(u1, u2) + Cα(v1, v2)− Cα(u1, v2)− Cα(v1, u2)

= u2 u
1−α
1 + v1 v

1−α
2 − u1 v1−α

2 − u2 v1−α
1 ≥ 0,

as desired.

(4) u2 < v2 ≤ u1 < v1: This case is symmetric to case (1).

(5) u2 ≤ u1 ≤ v2 ≤ v1: This case is symmetric to case (2).

(6) u1 ≤ u2 < v2 ≤ v1: This case is symmetric to case (3).

Hence, we have shown that Cα is indeed a copula, using the analytic charac-

terization of Theorem 1.1. But the reader will agree that the proof is quite

tedious and doesn’t provide insight into the kind of dependence structure

induced by the copula Cα. Therefore, this proof is of limited practical value

for applications. A much simpler and more elegant proof is provided in

Example 1.8. Additionally, it immediately provides a sampling algorithm.

A point of discontinuity x of the distribution function F of a (univariate)

random variable X on a probability space (Ω,F ,P) corresponds to an atom

of X , i.e. limy↑x F (y) < F (x) implies P(X = x) > 0. In contrast, a

copula cannot have an atom, since the margins are standardized to U [0, 1]-
distributions, which have a continuous (univariate) distribution function.

This implies that a copula is always a continuous function. Moreover,

the partial derivatives of a copula with respect to each argument exist

(Lebesgue) almost everywhere.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 11

Introduction 11

Lemma 1.2 (Smoothness of a Copula)

Let C : [0, 1]d → [0, 1] be a copula.

(1) For every (u1, . . . , ud), (v1, . . . , vd) ∈ [0, 1]d it holds that

∣∣C(u1, . . . , ud)− C(v1, . . . , vd)∣∣ ≤ d∑
i=1

|ui − vi|.

In particular, C is Lipschitz continuous with the Lipschitz constant

equal to 1.

(2) For k = 1, . . . , d and fixed (u1, . . . , uk−1, uk+1, . . . , ud) ∈ [0, 1]d−1,

the partial derivative uk �→ ∂
∂uk

C(u1, . . . , ud) exists (Lebesgue) al-

most everywhere on [0, 1] and takes values in [0, 1].

Proof. See Schweizer and Sklar (1983, Lemma 6.1.9, p. 82) for a proof

of part (1). See also Darsow et al. (1992) for a proof in the bivariate case.

Part (2) is an immediate consequence of the monotonicity and continuity

of the functions uk �→ C(u1, . . . , ud) for k = 1, . . . , d. The boundedness of

the partial derivatives by [0, 1] follows from the Lipschitz constant 1. �
Each copula C is pointwise bounded from above by the comonotonicity

copula M . This is intuitive, since the comonotonicity copula implies the

strongest positive association possible between components. In dimension

d = 2, the countermonotonicity copula W is a pointwise lower bound. In

contrast, in dimensions d ≥ 3 there is no “smallest” copula. The explana-

tion for this fact is the following: for d = 2 it is immediate from Example

1.3 that the two components in a random vector (U1, U2) ∼ W , defined

on (Ω,F ,P), are perfectly negatively associated. More clearly, it holds al-

most surely (a.s.) that U1 = 1 − U2, i.e. the minus sign implies that if one

variable moves in one direction, the other moves precisely in the opposite

direction. However, for d ≥ 3 there are at least three directions and it

is not clear how to define three directions to be perfect opposites of each

other. Nevertheless, the following result provides a sharp lower bound for

arbitrary copulas.

Lemma 1.3 (Fréchet–Hoeffding Bounds)

Let C : [0, 1]d → [0, 1] be a copula and M the upper Fréchet–Hoeffding

bound. Then it holds for every (u1, . . . , ud) ∈ [0, 1]d that

W (u1, . . . , ud) : = max
{(d∑

i=1

ui

)
− (d− 1), 0

}
≤ C(u1, . . . , ud) ≤M(u1, . . . , ud).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 12

12 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Moreover, the lower bound is sharp in the sense that for a given

(u1, . . . , ud) ∈ [0, 1]d one can find a copula C such that W (u1, . . . , ud) =

C(u1, . . . , ud). However, for d ≥ 3 the function W is not a copula.

Proof. Originally due to Fréchet (1957); see also Mikusinski et al. (1992).

For the claimed sharpness statement, see Nelsen (2006, p. 48). Given a

random vector (U1, . . . , Ud) ∼ C on a probability space (Ω,F ,P), the upper
bound follows from the fact that for each k = 1, . . . , d one has

d⋂
i=1

{
Ui ≤ ui

} ⊂ {Uk ≤ uk
}
,

implying

C(u1, . . . , ud) = P
(d⋂

i=1

{
Ui ≤ ui

}) ≤ P(Uk ≤ uk) = uk.

Taking the minimum over k = 1, . . . , d on both sides of the last equation

implies the claimed upper bound. The lower bound is obtained as follows:

C(u1, . . . , ud) = P
(d⋂

i=1

{
Ui ≤ ui

})
= 1− P

(d⋃
i=1

{
Ui > ui

})

≥ 1−
d∑

i=1

P(Ui > ui) = 1−
d∑

i=1

(1− ui) = 1− d+
d∑

i=1

ui.

Since C(u1, . . . , ud) ≥ 0, the claimed lower bound is established. �

If the probability measure dC associated with a copula C is absolutely con-

tinuous with respect to the Lebesgue measure on [0, 1]d, then by the the-

orem of Radon–Nikodym there is a (Lebesgue) almost everywhere unique

function c : [0, 1]d → [0,∞) such that

C(u1, . . . , ud) =

∫ u1

0

. . .

∫ ud

0

c(v1, . . . , vd) dvd . . .dv1, u1, . . . , ud ∈ [0, 1].

In this case, the copula C is called absolutely continuous with copula density

c. Analytically, a d-dimensional copula C is absolutely continuous, if it is

d times differentiable, and in this case it is almost everywhere (see, e.g.,

McNeil et al. (2005, p. 197)):

c(u1, . . . , ud) =
∂

∂u1
. . .

∂

∂ud
C(u1, . . . , ud), u1, . . . , ud ∈ (0, 1).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 13

Introduction 13

Example 1.5 (Density of the Independence Copula)

The independence copula Π from Example 1.1 is absolutely continuous,

since for all u1, . . . , ud ∈ [0, 1] one has

Π(u1, . . . , ud) =

d∏
k=1

uk =

∫ u1

0

. . .

∫ ud

0

1 dvd . . . dv1.

Hence, the copula density of Π is equal to 1 on [0, 1]d.

This book also discusses copulas that are not absolutely continuous. For

some copulas C, their associated measure dC can be decomposed into

dC = dCabs + dCsing , where dCabs is absolutely continuous with respect

to the Lebesgue measure, but dCsing is not. In this case, C is said to

have a singular component . A singular component often causes analytical

difficulties when working with the respective copula. For example, if no

density exists, standard maximum likelihood techniques are not directly

applicable for parametric estimation purposes. Nevertheless, such distri-

butions can still have interesting and useful properties for applications.

Analytically, a singular component can often be detected by finding points

(u1, . . . , ud) ∈ [0, 1]d, where some (existing) partial derivative of the copula

has a point of discontinuity. An example is provided by the comonotonicity

copula.

Example 1.6 (Copula with Singular Component)

Consider the copula

M(u1, . . . , ud) = min{u1, . . . , ud}
from Example 1.2. We have already seen that the components of a random

vector (U1, . . . , Ud) ∼ M are almost surely all identical. In other words,

the associated probability measure dM assigns all mass to the diagonal of

the unit d-cube [0, 1]d, a set with zero d-dimensional Lebesgue measure.

Hence,M is not absolutely continuous. Indeed, we can check that the partial

derivatives

∂

∂uk
M(u1, . . . , ud) =

{
1 , uk < min{u1, . . . , uk−1, uk+1, . . . , ud}
0 , uk > min{u1, . . . , uk−1, uk+1, . . . , ud} ,

k = 1, . . . , d, exhibit a jump at min{u1, . . . , uk−1, uk+1, . . . , ud}. Note in

particular that the partial derivative w.r.t. the kth component is not defined

at min{u1, . . . , uk−1, uk+1, . . . , ud}, which is a set with (one-dimensional)

Lebesgue measure zero.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 14

14 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

1.1.2 Sklar’s Theorem and Survival Copulas

1.1.2.1 Sklar’s Theorem

At the heart of copula theory stands the seminal theorem of Sklar. In a

nutshell, it states that any multivariate probability distribution can be split

into its univariate margins and a copula. Conversely, combining some given

margins with a given copula, one can build a multivariate distribution. This

result allows us to divide the treatment of a multivariate distribution into

two often easier subtreatments: (1) investigation of the univariate marginal

laws, and (2) investigation of a copula, i.e. a standardized and therefore

often more convenient multivariate distribution function. To prepare the

proof of Sklar’s theorem, the following lemma is a useful intermediate step.

Given a random variable X ∼ F , it shows how to transform it such that

one obtains a uniform distribution. It is called the distributional transform

of F . A short overview of its applications, as well as the following lemma,

can be found in Rüschendorf (2009).

Lemma 1.4 (Standardizing a Probability Distribution)

Consider a probability space (Ω,F ,P) supporting two independent random

variables V and X. It is assumed that V ∼ U [0, 1] and X ∼ F for an

arbitrary distribution function F . The following notation is introduced for

x ∈ R and u, v ∈ (0, 1):

F (x−) : = lim
y↑x

F (y), ∆F (x) := F (x)− F (x−),

F−1(u) : = inf{y ∈ R : F (y) ≥ u}, F (v)(x) := F (x−) + v∆F (x).

The function F−1 is called the generalized inverse of F . The following

statements are valid.

(1) F (V)(X) ∼ U [0, 1].
(2) F−1

(
F (V)(X)

)
= X almost surely (a.s.).

(3) F−1(V) ∼ F .

Proof. For part (1), let U := F (V)(X), fix u ∈ (0, 1), and define qu :=

sup{y ∈ R : F (y) < u}. We have to prove that P(U ≤ u) = u.

First we prove that for (x, v) ∈ (qu,∞)× (0, 1) we have

F (x−) + v∆F (x) ≤ u ⇔ u = F (qu) = F (x). (1.2)

To see “⇐”, notice that x > qu and F (qu) = F (x) = u imply F (x) =

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 15

Introduction 15

F (x−) = u, yielding F (x−) + v∆F (x) = u. To see “⇒”, notice that

u ≥ F (x−) + v∆F (x) = v F (x)︸ ︷︷ ︸
≥F (x−)

+(1− v)F (x−)

≥ F (x−) ≥ F (qu) ≥ u.
The last inequality is due to the right-continuity of F . This implies u =

F (qu) = F (x−) + v∆F (x) = F (x−). But this implies that ∆F (x) = 0, or

put differently, F (x) = F (x−) = u, hence (1.2) is established.

Moreover, the definition of qu and the fact that F (x−)+v∆F (x) ≤ F (x)
imply

(−∞, qu)× (0, 1) ⊂ {(x, v) ∈ R× (0, 1) : F (x−) + v∆F (x) < u}. (1.3)

Therefore, we obtain from (1.2) and (1.3) that

{F (X−) + V ∆F (X) ≤ u}
= {F (X−) + V ∆F (X) ≤ u, X < qu}
∪ {F (X−) + V ∆F (X) ≤ u, X = qu}
∪ {F (X−) + V ∆F (X) ≤ u, X > qu}

= {X < qu} ∪ {F (qu−) + V ∆F (qu) ≤ u, X = qu}
∪ {F (X) = F (qu) = u, X > qu}. (1.4)

Now (1.2) further implies that

P(F (X) = F (qu) = u, X > qu)

= P
(
X ∈ (qu, sup{x ≥ qu : F (x) = u})) = 0, (1.5)

where the last probability is 0, since F is constant on the set (qu, sup{x ≥
qu : F (x) = u}) or the interval is even empty in case {x ≥ qu : F (x) =

u} = ∅. Combining (1.4) and (1.5), and recalling the independence of X

and V , we obtain

P(U ≤ u) = F (qu−) + P(F (qu−) + V ∆F (qu) ≤ u)P(X = qu)

= F (qu−) + P(F (qu−) + V ∆F (qu) ≤ u)∆F (qu).
If ∆F (qu) > 0, then this implies the claim, since

P(F (qu−) + V ∆F (qu) ≤ u) = P
(
V ≤ u− F (qu−)

∆F (qu)

)
=
u− F (qu−)
∆F (qu)

.

If ∆F (qu) = 0, then this also implies the claim, since in this case F (qu−) =
F (qu) = u. To see the latter, notice that the definition of the supremum

allows us to find a sequence xn ↑ qu satisfying F (xn) < u. Together with the

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 16

16 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

continuity of F in qu this implies F (qu) = limn→∞ F (xn) ≤ u. But F (qu) ≥
u is trivial by the right-continuity of F . Hence, part (1) is established.

Part (2) is easier to check. First, it is clear by definition that F (X−) ≤
F (V)(X) ≤ F (X) almost surely. Second, it holds for all x ∈ R with

∆F (x) > 0 that u ∈ (F (x−), F (x)] ⇒ F−1(u) = x, also by definition.

Combining both simple facts directly implies F−1
(
F (V)(X)

)
= X almost

surely, as claimed.

Part (3) follows directly from the fact that F−1(v) ≤ x ⇔ F (x) ≥ v

for all x ∈ R, v ∈ (0, 1). The latter is a direct consequence of the right-

continuity of F . �

Remark 1.1 (Continuous Case)

If the distribution function F in Lemma 1.4 is continuous, then F (V) = F

does not depend on V . This means that one actually has F (X) ∼ U [0, 1]
and F−1

(
F (X)

)
= X almost surely. This means that in the continuous

case, the auxiliary random variable V from Lemma 1.4 is not required to

standardize the margins.

Theorem 1.2 (Sklar’s Theorem)

Let F be a d-dimensional distribution function with margins F1, . . . , Fd.

Then there exists a d-dimensional copula C such that for all (x1, . . . , xd) ∈
Rd it holds that

F (x1, . . . , xd) = C
(
F1(x1), . . . , Fd(xd)

)
. (1.6)

If F1, . . . , Fd are continuous, then C is unique. Conversely, if C is a d-

dimensional copula and F1, . . . , Fd are univariate distribution functions,

then the function F defined via (1.6) is a d-dimensional distribution func-

tion.

Proof. Originally due to Sklar (1959). The following proof is taken

from Rüschendorf (2009, Theorem 2.2); see also Moore and Spruill

(1975). Consider a probability space (Ω,F ,P) supporting a random vector

(X1, . . . , Xd) ∼ F and an independent random variable V ∼ U [0, 1]. Using
the notation from Lemma 1.4, define the random vector (U1, . . . , Ud) by

Uk := F
(V)
k (Xk) = Fk(Xk−) + V ∆Fk(Xk), k = 1, . . . , d. Then by part

(1) of Lemma 1.4 we obtain Uk ∼ U [0, 1] for all k = 1, . . . , d, hence the

distribution function of (U1, . . . , Ud) is a copula by definition. We denote

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 17

Introduction 17

this copula by C and claim that it satisfies (1.6). To see this,

F (x1, . . . , xd) = P(Xk ≤ xk, for k = 1, . . . , d)

= P
(
F−1
k

(
F

(V)
k (Xk)

) ≤ xk, for k = 1, . . . , d
)

= P
(
F

(V)
k (Xk) ≤ Fk(xk), for k = 1, . . . , d

)
= C
(
F1(x1), . . . , Fd(xd)

)
,

where the second equality follows from part (2) in Lemma 1.4 and the third

follows from the fact that

F−1
k (u) ≤ x⇔ Fk(x) ≥ u for all x ∈ R, u ∈ (0, 1), k = 1, . . . , d. (1.7)

The latter is a direct consequence of the right-continuity of Fk. To see

the uniqueness of the copula in the case of continuous margins, one simply

has to observe that for all u1, . . . , ud ∈ (0, 1) one can find x1, . . . , xd ∈ R
satisfying Fk(xk) = uk, k = 1, . . . , d, by the intermediate value theorem.

Hence, assuming the existence of two copulas C1, C2 satisfying (1.6) one

obtains

C1(u1, . . . , ud) = C1

(
F1(x1), . . . , Fd(xd)

)
= F (x1, . . . , xd)

= C2

(
F1(x1), . . . , Fd(xd)

)
= C2(u1, . . . , ud).

Hence, C1 = C2.

The converse part of the statement is proved as follows. Let (Ω,F ,P) be
a probability space supporting a random vector (U1, . . . , Ud) ∼ C. Define

the random vector (X1, . . . , Xd) by Xk := F−1
k (Uk), k = 1, . . . , d. Lemma

1.4(3) implies that Xk ∼ Fk for k = 1, . . . , d. Furthermore,

P(Xk ≤ xk, for k = 1, . . . , d) = P
(
F−1
k (Uk) ≤ xk, for k = 1, . . . , d

)
= P
(
Uk ≤ Fk(xk), for k = 1, . . . , d

)
= C
(
F1(x1), . . . , Fd(xd)

)
.

The second equality again follows from (1.7). �

If a random vector (X1, . . . , Xd) ∼ F has continuous margins F1, . . . , Fd,

the copula in Theorem 1.2 is unique, and we refer to it as “the” copula

of (X1, . . . , Xd). The proof of Lemma 1.4, and consequently of Sklar’s

theorem, would be less technical in the case of continuous margins. For

similar technical reasons, we will often assume later on in this book that

a multivariate distribution has continuous margins. For most applications,

this assumption is justified anyway. In the case of discontinuous margins,

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 18

18 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

one sometimes faces certain subtleties that complicate things. For a reader-

friendly overview of some of these subtleties we refer the reader to the

articles Marshall (1996) and Genest and Nešlehová (2007).

Sklar’s theorem allows us to conveniently construct multivariate distri-

bution functions in two steps. In a first step one may choose the univariate

margins, and in a second step a copula connecting them. Thus, having

a repertoire of parametric models for the margins and the copula, it is

possible to fit a multivariate distribution to given data by first fitting the

parameters of the margins and subsequently the copula parameters (see

Joe and Xu (1996)). This is the main reason for the popularity of copulas

in statistical modeling. And, as already outlined in Algorithm 0.1, this

two-step procedure can also be used for simulation.

Example 1.7 (Gaussian Copula)

On a probability space (Ω,F ,P), let (X1, . . . , Xd) be a normally distributed

random vector with joint distribution function

F (x1, . . . , xd) :=∫
×d

i=1(−∞,xi]

(2 π)−
d
2 det

(
Σ
)− 1

2 exp
(
− 1

2
(s− µ)Σ−1 (s− µ)

′)
ds,

for a symmetric, positive-definite matrix Σ and a mean vector µ =

(µ1, . . . , µd) ∈ Rd, where s := (s1, . . . , sd) and det(Σ) is the determinant of

Σ. Denoting by σ2
1 := Σ11, . . . , σ

2
d := Σdd > 0 the diagonal entries of Σ, the

marginal law Fi of Xi is a normal distribution with mean µi and variance

σ2
i , i = 1, . . . , d. The copula CGauss

Σ of (X1, . . . , Xd) is called the Gaussian

copula and is given by

CGauss
Σ (u1, . . . , ud) := F

(
F−1
1 (u1), . . . , F

−1
d (ud)

)
. (1.8)

The copula of a multivariate distribution F with strictly increasing contin-

uous margins F1, . . . , Fd is always implicitly given by (1.8), but sometimes

this expression can be computed explicitly. In the Gaussian case, however,

this is not possible due to the fact that no closed-form antiderivatives of

normal densities are known.

1.1.2.2 Survival Copulas

Sometimes it is more convenient to describe the distribution of a random

vector (X1, . . . , Xd) by means of its survival function instead of its dis-

tribution function. Especially when the components Xk are interpreted as

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 19

Introduction 19

lifetimes, this description is more intuitive. Letting (X1, . . . , Xd) be defined

on a probability space (Ω,F ,P), its survival function is defined as

F̄ (x1, . . . , xd) := P(X1 > x1, . . . , Xd > xd), x1, . . . , xd ∈ R.

For k = 1, . . . , d the univariate marginal survival function F̄k := 1 − Fk of

Xk can be retrieved from F̄ via

F̄k(xk) = P(Xk > xk) = F̄ (−∞, . . . ,−∞, xk,−∞, . . . ,−∞), xk ∈ R.

Using −∞, . . . ,−∞, xk,−∞, . . . ,−∞ as the argument of F̄ is a shorthand

notation for taking the limits as x1, . . . , xk−1, xk+1, . . . , xd tend to −∞.

Analogously to Sklar’s theorem (see Theorem 1.2), a d-dimensional sur-

vival function can be decomposed into a copula and its marginal survival

functions.

Theorem 1.3 (Survival Analog of Sklar’s Theorem)

Let F̄ be a d-dimensional survival function with marginal survival functions

F̄1, . . . , F̄d. Then there exists a d-dimensional copula Ĉ such that for all

(x1, . . . , xd) ∈ Rd it holds that

F̄ (x1, . . . , xd) = Ĉ
(
F̄1(x1), . . . , F̄d(xd)

)
. (1.9)

If F̄1, . . . , F̄d are continuous, then Ĉ is unique. Conversely, if Ĉ is a d-

dimensional copula and F̄1, . . . , F̄d are univariate survival functions, then

the function F̄ defined via (1.9) is a d-dimensional survival function.

Proof. Similar to the proof of Theorem 1.2. �

Due to uniqueness in the case of continuous margins, the copula Ĉ in The-

orem 1.3 is called “the” survival copula of a random vector (X1, . . . , Xd)

with survival function F̄ . It is important to stress that the survival copula

Ĉ is a proper copula, i.e. a distribution function and not a survival function.

For some multivariate distributions, the survival function (survival copula)

is the more natural object to study, compared to its distribution function

(copula). For example, the analytical expression of the survival function

(survival copula) might be much more convenient to work with. Popular

examples comprise the families of Archimedean copulas and Marshall–Olkin

copulas, which naturally arise as survival copulas of simple stochastic mod-

els (see Chapters 2 and 3). Therefore, it is useful to know both concepts:

the copula as well as the survival copula.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 20

20 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

1.1.2.3 The Connection between C and Ĉ

Knowing the copula of a random vector allows us to compute its survival

copula, and vice versa. This computation is accomplished by the principle

of inclusion and exclusion (see Lemma 1.1). Given the copula C of a ran-

dom vector (X1, . . . , Xd) on a probability space (Ω,F ,P) with continuous

margins F1, . . . , Fd, its survival copula Ĉ is computed as follows: we recall

from Lemma 1.4 the notation F−1
i (x) := inf{y ∈ R |Fi(y) ≥ x}, x ∈ (0, 1),

for the generalized inverse of Fi, i = 1, . . . , d. The continuity of the margins

implies that Fi ◦ F−1
i (x) = x for all x ∈ (0, 1) and i = 1, . . . , d (see Mai

(2010, p. 22–23)). For u1, . . . , ud ∈ (0, 1) it follows that

Ĉ(u1, . . . , ud)

= Ĉ
(
F̄1

(
F−1
1 (1− u1)

)
, . . . , F̄d

(
F−1
d (1− ud)

))
= P
(
X1 > F−1

1 (1− u1), . . . , Xd > F−1
d (1− ud)

)
= P
(d⋂

k=1

{
Xk > F−1

k (1− uk)
})

= 1− P
(d⋃

k=1

{
Xk ≤ F−1

k (1− uk)
})

= 1−
d∑

k=1

(−1)k+1
∑

1≤j1<...<jk≤d

P
(k⋂

i=1

{
Xji ≤ F−1

ji
(1− uji)

})

= 1 +
d∑

k=1

(−1)k
∑

1≤j1<...<jk≤d

×

× Cj1,...,jk

(
Fj1

(
F−1
j1

(1− uj1)
)
, . . . , Fjk

(
F−1
jk

(1− ujk)
))

= 1 +

d∑
k=1

(−1)k
∑

1≤j1<...<jk≤d

Cj1,...,jk

(
1− uj1 , . . . , 1− ujk

)
. (1.10)

In the above computation, the second and the sixth equalities follow from

Theorems 1.3 and 1.2, respectively. Interchanging the roles of Ĉ and C

yields by a similar computation

C(u1, . . . , ud) = 1 +
d∑

k=1

(−1)k
∑

1≤j1<...<jk≤d

Ĉj1,...,jk

(
1− uj1 , . . . , 1− ujk

)
.

In the bivariate case d = 2 this simplifies to

C(u1, u2) = Ĉ(1− u1, 1− u2) + u1 + u2 − 1.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 21

Introduction 21

An algorithm for computing volumes of d-dimensional survival copulas from

their associated copula is provided in Cherubini and Romagnoli (2009).

An alternative view on the copula C and the survival copula Ĉ of a

random vector (X1, . . . , Xd) with continuous6 margins F1, . . . , Fd can be

extracted from the proofs of Theorems 1.2 and 1.3: C is the distribu-

tion function of
(
F1(X1), . . . , Fd(Xd)

)
and Ĉ is the distribution function

of
(
F̄1(X1), . . . , F̄d(Xd)

)
. Sometimes it is useful to switch from a cop-

ula C to its survival copula Ĉ, or vice versa. In probabilistic terms, if

(U1, . . . , Ud) ∼ C, then (1 − U1, . . . , 1 − Ud) ∼ Ĉ. This also explains that
ˆ̂
C = C, i.e. the survival copula of the survival copula is the original copula.

The following sampling algorithm is included for later reference.

Algorithm 1.1 (Sampling the Survival Copula)

Input: A sampling algorithm for the copula C.

(1) Sample (U1, . . . , Ud) ∼ C.
(2) Return (1− U1, . . . , 1− Ud) ∼ Ĉ.

Finally, the copula C (and hence also the survival copula Ĉ by the earlier

computation) of a random vector (X1, . . . , Xd) with continuous margins is

invariant under strictly increasing transformations.

Lemma 1.5 (Invariance under Strictly ↗ Transformations)

Let (X1, . . . , Xd) be a random vector with continuous margins and copula

C. For strictly increasing functions g1, . . . , gd : R → R, the copula of(
g1(X1), . . . , gd(Xd)

)
is again C.

Proof. See Embrechts et al. (2003, Theorem 2.6). �

Lemma 1.5 is often used to transform or standardize the marginal laws

without changing the copula. For example, let F1, F2 be two continuous and

strictly increasing distribution functions and (U1, U2) be a random vector

with the copula C as the joint distribution function. Then the random

vector (F−1
1 (U1), F

−1
2 (U2)) has copula C, but margins F1, F2.

As a corollary to Lemma 1.5, we observe that when strictly decreasing

transformations are applied to the univariate marginals of some random

vector with copula C, the resulting random vector has copula Ĉ, i.e. the

survival copula of C.

6In the general case one has to work with the auxiliary random variable such as in
Lemma 1.4.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 22

22 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Corollary 1.1 (Strictly ↘ Transformations)

Let (X1, . . . , Xd) be a random vector with continuous margins and copula

C. For strictly decreasing functions g1, . . . , gd : R → R, the copula of(
g1(X1), . . . , gd(Xd)

)
is Ĉ.

Proof. From Lemma 1.5 we know that the copula of some random vector

is invariant under strictly increasing transformations. Moreover, we know

that
(
F̄1(X1), . . . , F̄d(Xd)

)
has distribution function Ĉ. We notice that the

functions
(
gi ◦ F̄−1

i

)
(x) = gi

(
F̄−1
i (x)

)
, i = 1, . . . , d, are strictly increasing,

since all gi and F̄
−1
i are strictly decreasing. Consequently, applying gi◦F̄−1

i ,

i = 1, . . . , d, to the respective components of
(
F̄1(X1), . . . , F̄d(Xd)

)
does not

alter its copula Ĉ, and the resulting random vector (after cancellation of

F̄−1
i ◦ F̄i, i = 1, . . . , d) is simply

(
g1(X1), . . . , gd(Xd)

)
. �

1.1.3 General Sampling Methodology in Low Dimensions

For a given copula C : [0, 1]2 → [0, 1] there is a general methodology of

how to simulate from C. This simulation algorithm uses the fact that the

partial derivatives of a copula have a probabilistic meaning. To see this

it is useful to consider an easy special case first. Assume that a given

bivariate copula C is absolutely continuous with copula density c. Now fix

a possible realization of the second component U2, say U2 = u2 ∈ (0, 1). It

is well known from basic probability calculus that the conditional density

fU1|U2=u2
of U1 given the event {U2 = u2} equals the fraction of the joint

density of (U1, U2) and the density of U2 evaluated at u2. Since the density

of U2 ∼ U [0, 1] is constantly 1, it follows that fU1|U2=u2
(u1) = c(u1, u2) for

u1 ∈ [0, 1]. Thus, we obtain

∂

∂u2
C(u1, u2) =

∂

∂u2

∫ u2

0

∫ u1

0

c(v1, v2)dv1 dv2 =

∫ u1

0

c(v1, u2)dv1

=

∫ u1

0

fU1|U2=u2
(v1) dv1 = P(U1 ≤ u1 |U2 = u2).

In other words, for fixed u2 ∈ (0, 1) the function u1 �→ ∂
∂u2

C(u1, u2) equals

the (conditional) distribution function FU1|U2=u2
of the first component U1

conditioned on the event that {U2 = u2}. This means that one can first

simulate the second component U2 ∼ U [0, 1], then fix it (i.e. set u2 :=

U2), and subsequently use a univariate sampling technique (see Chapter

6) to simulate U1 from the distribution function FU1|U2=u2
. Recalling the

standard inversion algorithm to simulate a random variable from a given

distribution function, see, e.g., Lemma 1.4(3), one obtains the following

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 23

Introduction 23

generic sampling scheme (see Algorithm 1.2). It is shown in Darsow et al.

(1992) that the right-continuous version of the (almost everywhere existing)

partial derivative of a bivariate copula can always be interpreted as the

conditional distribution function of one variable given the other, i.e. in the

general, not necessarily absolutely continuous, case. Hence, Algorithm 1.2

is valid for an arbitrary bivariate copula C.

Algorithm 1.2 (Conditional Sampling for Bivariate Copulas)

The input for the algorithm is a bivariate copula C : [0, 1]2 → [0, 1].

(1) Simulate U2 ∼ U [0, 1].
(2) Compute (the right-continuous version of) the function

FU1|U2
(u1) :=

∂

∂u2
C(u1, u2)

∣∣∣∣∣
u2=U2

, u1 ∈ [0, 1].

(3) Compute the generalized inverse of FU1|U2
, i.e.

F−1
U1|U2

(v) := inf
{
u1 > 0 : FU1|U2

(u1) ≥ v
}
, v ∈ (0, 1).

(4) Simulate V ∼ U [0, 1], independent of U2.

(5) Set U1 := F−1
U1|U2

(V) and return (U1, U2) ∼ C.
This algorithm is based on a canonical probability space (Ω,F ,P) support-
ing only two i.i.d. random variables U2, V ∼ U [0, 1]. Since this algorithm is

by no means restricted to any specific class of copulas, it can in principle

be used to sample arbitrary bivariate copulas. The only tedious step is

the computation of the partial derivative and its generalized inverse, which

typically requires a nice analytic form of the copula. However, even though

Algorithm 1.2 is quite general, it is not always the most intuitive approach

for a specific copula. If the probabilistic motivation of a certain copula is

well understood, one typically finds an easier and more intuitive algorithm.

The following example illustrates this fact.

Example 1.8 (Sampling a Bivariate Cuadras–Augé Copula)

Consider the copula Cα from Example 1.4 with a parameter α ∈ (0, 1).

With fixed u2 ∈ (0, 1) we compute

FU1|U2=u2
(u1) :=

∂

∂u2
Cα(u1, u2) =

{
u1 (1− α)u−α

2 , u1 < u2
u1−α
1 , u1 > u2

,

where u1 ∈ [0, 1] \ {u2}. Keep in mind that the function FU1|U2=u2
is not

defined at the point u2. In order to make it a distribution function (i.e.

right-continuous), we therefore have to set FU1|U2=u2
(u2) := u1−α

2 . The

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 24

24 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

generalized inverse of this conditional distribution function is computed to

be

F−1
U1|U2=u2

(v) =

v
1−α u

α
2 , v < (1− α)u1−α

2

u2 , (1− α)u1−α
2 ≤ v < u1−α

2

v
1

1−α , v ≥ u1−α
2

, v ∈ (0, 1).

Algorithm 1.2 implies simulating i.i.d. variables U2, V ∼ U [0, 1] and then

returning
(
F−1
U1|U2

(V), U2

)
.

In this example, one can clearly see that the computation of the gen-

eralized inverse can be tedious. Moreover, the analytic expression of this

generalized inverse is difficult to investigate further in order to obtain a

deeper understanding of the dependence structure induced by Cα. There-

fore, this copula is a good example to demonstrate the use of an alternative

probabilistic construction. To this end, let (Ω,F ,P) be a probability space

on which three independent exponential random variables E1, E2, E1,2 are

defined. We assume E1, E2 ∼ Exp
(
(1− α)/α) and E1,2 ∼ Exp(1). Define

the two random variables U1 and U2 by

U1 := exp
(
− 1

α
min
{
E1, E1,2

})
,

U2 := exp
(
− 1

α
min
{
E2, E1,2

})
. (1.11)

Then, it follows for 0 < u1, u2 < 1 that

P(U1 ≤ u1, U2 ≤ u2)
= P
(
min
{
E1, E1,2

} ≥ −α log(u1),min
{
E2, E1,2

} ≥ −α log(u2)
)

= P
(
E1 ≥ −α log(u1), E2 ≥ −α log(u2),

E1,2 ≥ max
{− α log(u1),−α log(u2)

})
= P
(
E1 ≥ −α log(u1)

)
P
(
E2 ≥ −α log(u2)

)×
× P(E1,2 ≥ −α log(min{u1, u2})

)
= u1−α

1 u1−α
2 min{u1, u2}α = Cα(u1, u2).

Hence, we can simulate Cα alternatively by simulating E1, E2, E1,2 inde-

pendently of each other and then returning (U1, U2) as defined in (1.11).

The above construction additionally provides a second (this time probabilis-

tic and simple) proof for the fact that Cα is a copula, which was established

in a quite tedious way in Example 1.4.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 25

Introduction 25

Example 1.9 (Sampling a Copula of Class BC2)

The function Ca,b : [0, 1]2 → [0, 1] for parameters a, b ∈ (0, 1) is shown

below to define a copula, where

Ca,b(u1, u2) = min{ua1, ub2} min{u1−a
1 , u1−b

2 }, u1, u2 ∈ [0, 1].

This family of copulas is named BC2 in Mai and Scherer (2011b), since it

can be considered a class of “Building Components” for so-called extreme-

value copulas. To show that Ca,b actually defines a proper copula consider

a probability space (Ω,F ,P) supporting two i.i.d. random variables V1, V2 ∼
U [0, 1]. Define the random vector (U1, U2) by

U1 := max
{
V

1
a
1 , V

1
1−a

2

}
, U2 := max

{
V

1
b

1 , V
1

1−b

2

}
.

A small computation shows that (U1, U2) ∼ Ca,b. This construction obvi-

ously implies a very easy sampling algorithm for Ca,b. If the general con-

ditional method from Algorithm 1.2 is used for sampling instead, the effort

is considerably larger, since the computation of the generalized inverse is

quite tedious.

Example 1.10 (Sampling the Comonotonicity Copula)

Consider the copula M from Example 1.2 in the bivariate case d = 2. With

fixed u2 ∈ (0, 1) we know from Example 1.6 that

FU1|U2=u2
(u1) :=

∂

∂u2
C(u1, u2) =

{
1 , u2 < u1
0 , u2 > u1

, u1 ∈ [0, 1] \ {u2}.

Keep in mind that the function FU1|U2=u2
is not defined at the point u2. In

order to make it a distribution function (i.e. right-continuous), we therefore

have to set FU1|U2=u2
(u2) := 1. The generalized inverse of this conditional

distribution function is clearly given by

F−1
U1|U2=u2

(v) ≡ u2, v ∈ (0, 1).

Hence, Algorithm 1.2 implies simulating U2 and then setting U1 :=

F−1
U1|U2

(V) = U2, independent of V . A scatterplot is given in Figure 1.4.

There is a result lifting Algorithm 1.2 to arbitrary dimensions d ≥ 2. It

is based on the so-called multivariate quantile transform, which was in-

troduced in O’Brien (1975), Arjas and Lehtonen (1978), and Rüschendorf

(1981). Given an arbitrary multivariate distribution function F with mar-

gins F1, . . . , Fd, it provides a canonical construction of a random vector

X := (X1, . . . , Xd) ∼ F as a function of i.i.d. random variables V1, . . . , Vd

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 26

26 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

with V1 ∼ U [0, 1] on a probability space (Ω,F ,P). More clearly, X is

defined recursively as follows:

X1 : = F−1
1 (V1),

Xk : = F−1
k|1,...,k−1(Vk |X1, . . . , Xk−1), k = 2, . . . , d,

where Fk|1,...,k−1(. |x1, . . . , xk−1) denotes the conditional distribution func-

tion of Xk, conditioned on the event {X1 = x1, . . . , Xk−1 = xk−1}. Again,
these required conditional distribution functions can be computed analyt-

ically from F via successive partial derivatives. However, these computa-

tions are often tedious or even impossible. Therefore, this general sampling

strategy has its limitations for practical applications. In particular, if the

dimension d is large, it requires the computation of higher-order partial

derivatives.

1.1.4 Graphical Visualization

The most immediate and intuitive step when investigating a probability

law is trying to find ways to visualize it by a graph. A bivariate copula

C can be visualized by a three-dimensional function plot, i.e. for each pair

of arguments (u1, u2) in the plane [0, 1]2 the value C(u1, u2) is plotted on

the height axis. As an example, Figure 1.1 illustrates function plots of

the bivariate Cuadras–Augé copula Cα, as introduced in Example 1.4, for

several choices of α.

Similarly, instead of depicting the whole function plot, it is possible to

only plot a discrete grid of level sets

Lk,n := {(u1, u2) ∈ [0, 1]2 : C(u1, u2) = k/n}, k = 0, 1, . . . , n.

Due to the fact that C(u, 1) = C(1, u) = u, u ∈ [0, 1], each level set Lk,n is

a continuous line segment from the point (k/n, 1) to (1, k/n), which makes

it superfluous to indicate the height k/n of the level set within the graph.

Figure 1.2 illustrates such level set plots of the bivariate Cuadras–Augé

copula Cα, as introduced in Example 1.4, for several choices of α.

In the case of one-dimensional probability laws, the plot of the dis-

tribution function is somehow inconvenient for judging the probabilistic

properties of the underlying distribution. If the distribution is absolutely

continuous, it is more illuminating to plot its density. Analogously, in the

case of an absolutely continuous bivariate copula, a function plot of the

copula density is more illuminating than the function plot of the copula

itself. However, this is impossible in the case of copulas with a singular

component, as for example for Cα from Example 1.4.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 27

Introduction 27

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2
0.4

0.6
0.81.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2
0.4

0.6
0.81.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2
0.4

0.6
0.81.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 1.1 Function plots of Cα(u1, u2) = min{u1, u2} max{u1, u2}1−α for α = 0 (upper
left, independence case), α = 0.2, α = 0.4, α = 0.6, α = 0.8, and α = 1 (lower right,
case of complete comonotonicity). One observes that the bend on the diagonal emerges
with increasing parameter α.

In two (or three) dimensions it is also possible to visualize the distribu-

tion associated with a copula C by means of a two- (or three-) dimensional

scatterplot. This requires a sampling algorithm for C. The idea is to sim-

ulate n ∈ N independent realizations of a random vector associated with

C. These points are then plotted using a two- (or three-) dimensional co-

ordinate system. This technique is somehow the analog of a histogram in

the univariate case. Figure 1.3 depicts two-dimensional scatterplots of the

bivariate Cuadras–Augé copula Cα, as introduced in Example 1.4, for sev-

eral choices of α. Notice in particular that C0 = Π and C1 = M . The

interpretation of such scatterplots is the following:

number of points in B

number of all points
≈ P((U1, U2) ∈ B

)
= dC(B), B ∈ B(R2).

If d ≥ 4, the visualization of a copula suffers from the lack of dimen-

sions. One possible approach to still obtain a visualization is to consider

all possible bivariate subpairs of components and arrange bivariate visual-

izations in a matrix. This is particularly useful if the dependence between

different pairs is heterogeneous. In later chapters, we will encounter such

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 28

28 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 = 0
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 = 0.2
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 = 0.4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 = 0.6
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 = 0.8
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 = 1

Fig. 1.2 Level set plots of Cα(u1, u2) = min{u1, u2} max{u1, u2}1−α for α =
0, 0.2, 0.4, 0.6, 0.8, 1.

cases and provide examples of graphical visualizations of these structures

(see Figure 2.10).

1.1.5 Concordance Measures

For many applications it is desirable to encode the strength of dependence

induced by a copula in a single number. This leads to the notion of so-

called concordance measures. One says that two pairs (u1, u2), (v1, v2) ∈
[0, 1]2 are concordant, if both components u1, u2 are either both greater or

both less than their respective components of the second pair v1, v2, i.e. if

(u1−v1) (u2−v2) > 0. Otherwise, they are called discordant. Introduced in

Scarsini (1984), concordance measures are functions from the set of copulas

to the interval [−1, 1] satisfying certain desirable axioms. For example,

the value 1 should stand for the strongest positive dependence and the

independence copula should be mapped to the value 0, so that the range

[−1, 1] can be interpreted as interpolating from perfect negative to perfect

positive association. More details can be found in Nelsen (2006, p. 157ff).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 29

Introduction 29

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

=0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

=0.2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

=0.4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

=0.6

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

=0.8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

=1

Fig. 1.3 Scatterplots of 1 000 samples from Cα(u1, u2) = min{u1, u2} max{u1, u2}1−α

for α = 0, 0.2, 0.4, 0.6, 0.8, 1.

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 1.4 Scatterplots of 250 samples from the comonotonicity copula (left), the counter-
monotonicity copula (right), and 2 500 samples from the independence copula (middle).

In the case of bivariate copulas, we introduce the two most prominent

examples for later reference: Kendall’s tau and Spearman’s rho.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 30

30 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Definition 1.3 (Kendall’s Tau)

Let C be a bivariate copula. Consider a probability space (Ω,F ,P) sup-

porting (U1, U2) ∼ C. The value

τC := 4E
[
C(U1, U2)

]− 1

is called Kendall’s tau of the copula C.

Some of the most important properties of Kendall’s tau are listed in the

following lemma.

Lemma 1.6 (Properties of Kendall’s Tau)

Let C, C̃ be bivariate copulas.

(1) Consider a probability space (Ω,F ,P) supporting two i.i.d. random

vectors (U1, U2), (V1, V2) ∼ C. Then

τC = P
(
(U1 − V1) (U2 − V2) > 0

)− P((U1 − V1) (U2 − V2) < 0
)

= E
[
sign
(
(U1 − V1) (U2 − V2)

)]
.

(2) If C ≤ C̃ pointwise, then τC ≤ τC̃ .
(3) For the independence copula, we have τΠ = 0. Furthermore, τC =

1⇔ C =M .

(4) One has the representation

τC = 1− 4

∫ 1

0

∫ 1

0

∂

∂u1
C(u1, u2)

∂

∂u2
C(u1, u2) du1 du2.

Proof. See Nelsen (2006, Theorem 5.1.1, p. 159) for part (1). Parts (2)

and (3) follow from Nelsen (2006, Theorem 5.1.9, p. 169). Part (4) follows

from Li et al. (2002). Recall in particular from Lemma 1.2(2) that the

partial derivatives of a copula exist almost everywhere. �
In particular, part (1) of Lemma 1.6 shows why it is reasonable to call

Kendall’s tau a concordance measure: it equals the difference of the proba-

bility of concordance and the probability of discordance of two pairs of i.i.d.

random vectors. The formula of part (4) often helps to compute Kendall’s

tau. Here is an example.

Example 1.11 (Kendall’s Tau of the Cuadras–Augé Copula)

Consider once again the copula Cα from Example 1.4. It is easy to compute

∂

∂u1
Cα(u1, u2) =

{
u1−α
2 , u1 < u2

(1− α)u2 u−α
1 , u1 > u2

,

∂

∂u2
Cα(u1, u2) =

{
u1−α
1 , u2 < u1

(1− α)u1 u−α
2 , u2 > u1

.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 31

Introduction 31

By virtue of Lemma 1.6(4) this implies that

τCα = 1− 4

∫ 1

0

∫ u2

0

u1−α
2 (1− α)u1 u−α

2 du1

+

∫ 1

u2

u1−α
1 (1− α)u2 u−α

1 du1 du2

= 1− 4

∫ 1

0

u1−2α
2 (1− α) u

2
2

2
+ (1− α)u2 1

2− 2α

(
1− u2−2α

2

)
du2

= 1− 4
(1− α

2

∫ 1

0

u3−2α
2 du2 +

1

2

(1
2
−
∫ 1

0

u3−2α
2 du2

))
= 1− 4

(1
4
+
(1− α

2
− 1

2

) 1

4− 2α

)
=

α

2− α.

Notice in particular that for α ranging in [0, 1], Kendall’s tau interpolates

between 0 and 1. This is consistent with the fact that C0 = Π and C1 =M .

Another popular concordance measure is Spearman’s rho.

Definition 1.4 (Spearman’s Rho)

Let C be a bivariate copula. Consider a probability space (Ω,F ,P) sup-

porting (U1, U2) ∼ C. The value

ρC := Corr(U1, U2) = 12Cov(U1, U2)

is called Spearman’s rho of the copula C.

Some of the most important properties of Spearman’s rho are listed in the

following lemma.

Lemma 1.7 (Properties of Spearman’s Rho)

Let C, C̃ be bivariate copulas.

(1) Consider (Ω,F ,P) supporting three i.i.d. random vectors (U1, U2),

(V1, V2), (W1,W2) ∼ C. Then one has ρC =

3
(
P
(
(U1 − V1) (U2 −W2) > 0

)− P((U1 − V1) (U2 −W2) < 0
))
.

(2) If C ≤ C̃ pointwise, then ρC ≤ ρC̃.
(3) One has ρΠ = 0. Furthermore, ρC = 1⇔ C =M .

(4) One has

ρC = 12

∫ 1

0

∫ 1

0

C(u1, u2) du1 du2 − 3.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 32

32 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Proof. See Nelsen (2006, Theorem 5.1.6, p. 167) for part (1). Parts (2)

and (3) follow from Nelsen (2006, Theorem 5.1.9, p. 169). Part (4) follows

from Fubini’s theorem:

E[U1 U2] = E
[∫ 1

0

∫ 1

0

�{u1<U1,u2<U2} du1 du2
]

=

∫ 1

0

∫ 1

0

P(U1 > u1, U2 > u2)du1 du2,

which, together with P(U1 > u1, U2 > u2) = 1−u1−u2+C(u1, u2), implies

the claimed formula. �

Again, the formula of part (4) sometimes helps to compute Spearman’s rho.

Here is an example.

Example 1.12 (Spearman’s Rho of the Cuadras–Augé Copula)

Consider once again the copula Cα from Example 1.4. One computes

ρCα = 12

∫ 1

0

∫ 1

0

min{u1, u2} max{u1, u2}1−α du1 du2 − 3

= 12

∫ 1

0

u1−α
2

∫ u2

0

u1 du1 + u2

∫ 1

u2

u1−α
1 du1 du2 − 3

= 12

∫ 1

0

u1−α
2

u22
2

+ u2
1

2− α
(
1− u2−α

2

)
du2 − 3

= 12
(1
2

∫ 1

0

u3−α
2 du2 +

1

2− α
(1
2
−
∫ 1

0

u3−α
2 du2

))
− 3

= 12
(1

2 (2− α) −
(1

2− α −
1

2

) 1

4− α
)
− 3 =

3α

4− α.

Like in the case of Kendall’s tau, one verifies that ρC0 = 0 and ρC1 = 1,

which is consistent with the facts that C0 = Π and C1 =M .

Rewriting the formula of Lemma 1.7(4) for ρC , one checks that

ρC =

∫ 1
0

∫ 1
0
C(u1, u2) du1 du2 −

∫ 1
0

∫ 1
0
Π(u1, u2) du1 du2∫ 1

0

∫ 1
0 M(u1, u2) du1 du2 −

∫ 1
0

∫ 1
0 Π(u1, u2) du1 du2

. (1.12)

This means that ρC can be considered a normalized average distance be-

tween the copula C and the independence copula Π. Formula (1.12) sug-

gests a natural extension to higher dimensions d > 2, due to Wolff (1980).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 33

Introduction 33

Definition 1.5 (Multivariate Spearman’s Rho)

For a given copula C : [0, 1]d → [0, 1] Spearman’s multivariate rho is

defined by ρC :=∫
[0,1]d

C(u1, . . . , ud) d(u1, . . . , ud)−
∫
[0,1]d

Π(u1, . . . , ud) d(u1, . . . , ud)∫
[0,1]d

M(u1, . . . , ud) d(u1, . . . , ud)−
∫
[0,1]d

Π(u1, . . . , ud) d(u1, . . . , ud)
.

Solving the integrals over Π and M in the definition of ρC , it follows that

ρC =
d+ 1

2d − (d+ 1)

(
2d
∫
[0,1]d

C(u1, . . . , ud) d(u1, . . . , ud)− 1
)
.

Like in the bivariate case, ρC obviously satisfies ρΠ = 0 and ρM = 1. This

and other multivariate extensions of bivariate concordance measures can

also be found, e.g., in Schmid and Schmidt (2006, 2007a,b).

1.1.6 Measures of Extremal Dependence

Especially for some applications in the context of mathematical finance

and insurance risk, measures of extremal dependence have gained increas-

ing interest in recent years. The reason for this is that various empirical

studies suggest that during economic crises, the dependence between eco-

nomic entities is often “extreme”. A typical question would be: Given one

entity suffers badly from a crisis, how much does this affect another entity?

To quantify the answers to such questions, several measures of extremal

dependence have been invented. Two of them are listed as follows.

Definition 1.6 (Upper- and Lower-Tail Dependence)

For a bivariate copula C the coefficients of upper- and lower-tail depen-

dence UTDC and LTDC are defined as

UTDC := lim
u↑1

C(u, u)− 2 u+ 1

1− u , LTDC := lim
u↓0

C(u, u)

u
,

if the respective limit exists (see Larsson and Nešlehová (2011) for copulas

without existing lower-tail dependence).

The intuition behind Definition 1.6 is that for a random vector (U1, U2) on

a probability space (Ω,F ,P), whose joint distribution function is the copula

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 34

34 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

C, it holds that

UTDC = lim
u↑1

C(u, u)− 2 u+ 1

1− u
= lim

u↑1
P(U1 ≤ u, U2 ≤ u)− P(U1 ≤ u)− P(U2 ≤ u) + 1

P(U2 > u)

L.1.1
= lim

u↑1
P(U1 > u,U2 > u)

P(U2 > u)
= lim

u↑1
P(U1 > u |U2 > u).

Thus, the coefficient of upper-tail dependence equals the probability that

U1 is large given U2 is large. Similarly, LTDC equals the probability that

U1 is small given U2 is small. Positive upper- or lower-tail dependence are

desirable in stochastic models that support extreme scenarios. A bivariate

Gaussian copula is a popular example for a distribution whose tail depen-

dencies are both 0 (see Lemma 4.7). As a consequence, models based on

normality assumptions are often criticized for their lack of extreme scenar-

ios.

Remark 1.2 (Tail Dependence for Arbitrary Random Vectors)

The notions of upper- and lower-tail dependence are more generally de-

fined for arbitrary bivariate random vectors (X1, X2) with continuous, but

not necessarily uniform, marginal laws F1, F2. The definition in this more

general case is the same as before, where the copula C is the copula of the

corresponding random vector. More clearly, the lower-tail dependence co-

efficient of the bivariate random vector (X1, X2), defined on (Ω,F ,P), is
given by

lim
x↓0
P
(
X1 ≤ F−1

1 (x)
∣∣X2 ≤ F−1

2 (x)
)
= lim

u↓0
C(u, u)

u
= LTDC,

provided the existence of the limit. For the upper-tail dependence coefficient

the corresponding similar definition of UTDC applies. Notice in particular

that in the definition of LTDC it does not matter whether we exchange X1

and X2.

Remark 1.3 (Tail Dependence of the Survival Copula)

Existence provided, the upper-tail dependence coefficient of the survival

copula Ĉ of a random vector equals the lower-tail dependence coefficient

of the respective copula C, i.e. UTDĈ = LTDC. This follows from the

computation (1.10):

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 35

Introduction 35

UTDĈ = lim
u↑1

Ĉ(u, u)− 2 u+ 1

1− u
(1.10)
= lim

u↑1
1 + C(1− u, 1− u)− 2 (1− u)− 2 u+ 1

1− u
= lim

u↓0
C(u, u)

u
= LTDC.

Similarly, LTDĈ = UTDC, existence provided.

Example 1.13 (Tail Dependence of the Cuadras–Augé Copula)

In the case of a bivariate Cuadras–Augé copula Cα, as introduced in Exam-

ple 1.4, one may check (using the rule of de l’Hospital) that UTDCα = α,

since

UTDCα = lim
u↑1

Cα(u, u)− 2 u+ 1

1− u
= lim

u↑1
u1+1−α − 2 u+ 1

1− u = lim
u↑1

(2− α)u1−α − 2

−1 = α.

In contrast, Cα has zero lower-tail dependence (unless α = 1):

LTDCα = lim
u↓0

u1+1−α

u
= lim

u↓0
u1−α = �{α=1}.

Asymmetric tail dependence parameters, i.e. UTDCα �= LTDCα, are some-

times desirable. For example if Cα is the survival copula of two companies’

bankruptcy times, then positive upper-tail dependence of Cα – correspond-

ingly lower-tail dependence of the bankruptcy times by Remark 1.3 – has

an intuitive interpretation. It implies that the early default of one firm is

likely to coincide with the early default of the other firm. In contrast, zero

lower-tail dependence of Cα means that the extraordinarily long survival of

one firm does not automatically induce longevity of the other.

One possible extension of the bivariate concept of tail dependence to di-

mensions d > 2 is introduced by Frahm (2006) and is presented here.

Definition 1.7 (Upper- and Lower-Extremal Depend. Coefficient)

For a d-dimensional copula C : [0, 1]d → [0, 1] the upper- and lower-

extremal dependence coefficients UEDCC and LEDCC are defined by

UEDCC : = lim
u↑1

1 +
∑d

i=1(−1)i
∑

1≤j1<...<ji≤d Cj1,...,ji(u, . . . , u)

1− C(u, . . . , u) ,

LEDCC : = lim
u↓0

C(u1, . . . , ud)∑d
i=1(−1)i+1

∑
1≤j1<...<ji≤d Cj1,...,ji(u, . . . , u)

,

if the corresponding limit exists.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 36

36 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Using the principle of inclusion and exclusion (see Lemma 1.1) it is possible

to understand the intuition behind this definition. Letting (U1, . . . , Ud) be

defined on (Ω,F ,P) and having as joint distribution function the copula C,

it holds that

UEDCC = lim
u↑1

1 +
∑d

i=1(−1)i
∑

1≤j1<...<ji≤dCj1,...,ji(u, . . . , u)

1− C(u, . . . , u)

= lim
u↑1

1 +
∑d

i=1(−1)i
∑

1≤j1<...<ji≤d P(Uj1 ≤ u, . . . , Uji ≤ u)
1− P(U1 ≤ u, . . . , Ud ≤ u)

L.1.1
= lim

u↑1
P(U1 > u, . . . , Ud > u)

P
(
max{U1, . . . , Ud} > u

)
= lim

u↑1
P
(
min{U1, . . . , Ud} > u

∣∣ max{U1, . . . , Ud} > u
)
.

Thus, UEDCC gives the probability that all components of (U1, . . . , Ud) ∼
C are large given at least one of them is large. Similarly, LEDCC gives the

probability that all components are small given at least one is small. Let us

point out that in the case d = 2 the UEDC is not the same as the UTD,

the difference being that one conditions on the maximum of U1, U2 being

greater than u, instead of just conditioning on U2 being greater than u.

There are other versions of upper-extremal dependence coefficients which

really extend the bivariate UTD (see, e.g., Li (2009)). To conclude, the

UTD as well as the UEDC are limits of probabilities, hence they take

values in [0, 1], and the closer they are to 1, the more likely are extreme

events. Similar interpretations hold for LTD and LEDC.

1.2 General Classifications of Copulas

This section provides a structural classification of dependence structures.

Many specific parametric families of copulas encountered in later chapters

can be categorized according to this classification. Some structural proper-

ties discussed here are useful to understand the probabilistic model behind

some specific parametric families of copulas.

1.2.1 Radial Symmetry

A random variable X ∈ R is called symmetric about x ∈ R, if X−x has the

same distribution as x−X ; or equivalently, if X
d
= 2 x−X . In terms of the

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 37

Introduction 37

distribution function F and the survival function F̄ of X , this is equivalent

to the fact that F (y) = 1− F ((2 x− y)−) for all y ∈ R, since
F (y) = P(X ≤ y) = P(2 x−X ≤ y) = P(X ≥ 2 x− y)

= F̄ (2 x− y) + ∆F (2 x− y)
= 1− F (2 x− y) + F (2 x− y)− F ((2 x− y)−)
= 1− F ((2 x− y)−).

If F is continuous, then this is equivalent to F (y) = F̄ (2 x − y), y ∈ R. If

X has finite mean, it follows that E[X] = x. The normal distribution is

a prominent example of a distribution which is symmetric about its mean.

This definition of symmetry is extended to the multivariate setup in the

following definition.

Definition 1.8 (Radially Symmetric)

(1) A d-dimensional random vector (X1, . . . , Xd) is called radially sym-

metric about (x1, . . . , xd) ∈ Rd if

(X1, . . . , Xd)
d
= (2 x1 −X1, . . . , 2 xd −Xd).

(2) A copula C is called radially symmetric if it is its own survival

copula, i.e. if C = Ĉ.

It is important to note that radial symmetry is a stronger notion than com-

ponentwise symmetry. By definition, the components of a radially symmet-

ric random vector are symmetric themselves. However, there are random

vectors with symmetric components that are not radially symmetric.7 Here

is an example.

Example 1.14 (Componentwise Symmetry � Radial Symmetry)

We consider a probability space (Ω,F ,P) supporting two i.i.d. U [0, 1]-
distributed random variables V1, V2, and define (U1, U2) by

(U1, U2) :=
(
max{V 2

1 , V
2
2 },max{V 3

1 , V
3
2
2 }
)
.

Recall from Example 1.9 with (a, b) = (1/2, 1/3) that the joint distribution

function of (U1, U2) is the copula C given by

C(u1, u2) = min
{
u

1
2
1 , u

1
3
2

}
min
{
u

1
2
1 , u

2
3
2

}
, u1, u2 ∈ [0, 1].

7Every random vector (U1, . . . , Ud) which has a copula as its distribution function has
symmetric components, since Uk ∼ U [0, 1] is symmetric about 1/2.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 38

38 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

In particular, U1, U2 are both U [0, 1]-distributed, i.e. symmetric about 1/2.

However, (U1, U2) is not radially symmetric about (1/2, 1/2). This can be

seen as follows: on the one hand, we have

P
(
U1 − 1

2
≤ 1

4
, U2 − 1

2
≤ 1

4

)
= P
(
U1 ≤ 3

4
, U2 ≤ 3

4

)
= C
(3
4
,
3

4

)
=
(3
4

) 7
6 ≈ 0.715.

On the other hand, we compute that

P
(1
2
− U1 ≤ 1

4
,
1

2
− U2 ≤ 1

4

)
= P
(
U1 ≥ 1

4
, U2 ≥ 1

4

)
= 1− P

(
U1 ≤ 1

4

)
− P
(
U2 ≤ 1

4

)
+ P
(
U1 ≤ 1

4
, U2 ≤ 1

4

)
=

1

2
+
(1
4

) 7
6 ≈ 0.698.

To understand part (2) of Definition 1.8, observe that the U [0, 1]-law is

symmetric about 1/2. If C is a copula and (U1, . . . , Ud) ∼ C on a probability

space (Ω,F ,P), then (U1, . . . , Ud) is radially symmetric (necessarily about

(1/2, . . . , 1/2)), if

(U1, . . . , Ud)
d
= (1− U1, . . . , 1− Ud).

Since (1 − U1, . . . , 1 − Ud) ∼ Ĉ, this means precisely that C is its own

survival copula, i.e. C = Ĉ. One can further show that radially symmetric

copulas are precisely the copulas of radially symmetric random vectors. To

see this in the simpler case of continuous margins, consider the following

argument. On a probability space (Ω,F ,P), suppose that (X1, . . . , Xd) is

radially symmetric about (x1, . . . , xd) and has continuous margins. Denote

its margins by F1, . . . , Fd, its unique copula by C, and its unique survival

copula by Ĉ. Using the definition of radial symmetry in Equation (∗) below,
it follows for all y1, . . . , yd ∈ R that

C
(
F1(y1), . . . , Fd(yd)

)
= P(X1 ≤ y1, . . . , Xd ≤ yd)

= P(X1 − x1 ≤ y1 − x1, . . . , Xd − xd ≤ yd − xd)
(∗)
= P(x1 −X1 ≤ y1 − x1, . . . , xd −Xd ≤ yd − xd)
= P(X1 ≥ 2 x1 − y1, . . . , Xd ≥ 2 xd − yd)
= Ĉ
(
F̄1(2 x1 − y1), . . . , F̄d(2 xd − yd)

) (∗∗)
= Ĉ

(
F1(y1), . . . , Fd(yd)

)
.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 39

Introduction 39

Equation (∗∗) follows from the componentwise symmetry again. Hence,

radially symmetric random vectors are characterized by symmetric margins

and a copula which equals its own survival copula, i.e. C = Ĉ.

Concerning the tail dependence properties of a bivariate radially sym-

metric random vector, it is immediately clear from C = Ĉ that the upper-

and lower-tail dependence coefficients are identical.

1.2.2 Exchangeability

Generally speaking, the distribution function F of a random vector

(X1, . . . , Xd) can be a very complicated object. In particular for large

dimensions d � 2 there are only a limited number of examples of dis-

tribution functions F that allow for a successful analytical study. If the

distribution is exchangeable, however, the associated distribution function

F can often be simplified and written in a quite compact form, which is

convenient to explore further. Exchangeability intuitively means that the

dependence structure between the components of a random vector is com-

pletely symmetric and does not depend on the ordering of the components.

Such symmetric dependence structures sometimes arise naturally and are

often quite intuitive and easy to understand. For this reason, many exam-

ples of copulas encountered in this book are exchangeable. The respective

definition is the following.

Definition 1.9 (Exchangeability)

(1) A random vector (X1, . . . , Xd) on a probability space (Ω,F ,P)
is called exchangeable if for all permutations π : {1, . . . , d} →
{1, . . . , d} one has that

(X1, . . . , Xd)
d
= (Xπ(1), . . . , Xπ(d)).

(2) An infinite sequence {Xk}k∈N of random variables on a probabil-

ity space (Ω,F ,P) is called exchangeable if for each d ∈ N and

1 ≤ i1 < i2 < . . . < id the random vector (Xi1 , . . . , Xid) is ex-

changeable.

(3) A distribution function F is called exchangeable, if it is invariant

with respect to permutations of its arguments, i.e. if for all permu-

tations π : {1, . . . , d} → {1, . . . , d} one has that

F (x1, . . . , xd) = F (xπ(1), . . . , xπ(d)), x1, . . . , xd ∈ R.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 40

40 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Using the notation of Sklar’s theorem (see Theorem 1.2), this

means that the margins F1, . . . , Fd are identical and the copula C

is permutation invariant.

A bivariate copula C is exchangeable if and only if C(u1, u2) = C(u2, u1)

for all u1, u2 ∈ [0, 1]. Moreover, exchangeability of a bivariate copula means

that a scatterplot exhibits a great level of symmetry with respect to the

diagonal {u1 = u2}. The notion of an infinite exchangeable sequence is

included, since it plays an important role in the subsequent paragraph. It

is immediately clear that a random vector (X1, . . . , Xd) on a probability

space (Ω,F ,P) is exchangeable if and only if its distribution function F

(or equivalently its survival function F̄) is invariant with respect to per-

mutations of its arguments. This also explains part (3) in Definition 1.9.

Intuitively, (X1, . . . , Xd) is exchangeable if and only if all margins are iden-

tical, all two-margins are identical, all three-margins are identical, and so

on. Here is an example.

Example 1.15 (Exchangeable Normal Distribution)

Let X := (X1, . . . , Xd) ∼ Nd(µ,Σ) be multivariate normally distributed

with mean vector µ := (µ1, . . . , µd) and positive definite covariance matrix

Σ. Denote as usual the diagonal elements of Σ by σ2
1 := Σ11, . . . , σ

2
d := Σdd

and the off-diagonal elements by ρij σi σj := Σij , i �= j, where ρij :=

Corr(Xi, Xj). Since the multivariate normal distribution is characterized

by µ and Σ, a check for exchangeability requires one to only consider one-

and two-dimensional margins. First, X1
d
= . . .

d
= Xd is equivalent to µ1 =

. . . = µd, σ
2
1 = . . . = σ2

d. Provided we have this, (Xi, Xj)
d
= (X1, X2) is

equivalent to ρij = ρ12 for all i �= j. This finally implies that

X is exchangeable ⇔ µi =: µ ∈ R, σ2
i =: σ2 > 0, ρij =: ρ.

If this is the case, one can additionally show that ρ > −1/(d−1) in order to

guarantee that Σ is positive definite (see Lemma 1.8). To summarize, the d-

dimensional exchangeable multivariate normal distribution is parameterized

by three parameters (µ, σ2, ρ) ∈ R× (0,∞)× (−1/(d− 1), 1].

The dependence structure of an exchangeable random vector is limited to

some extent. For instance, for exchangeable random vectors (X1, . . . , Xd)

with an existing covariance matrix, one can show that their pairwise corre-

lation ρ := Corr(Xi, Xj) (which is independent of i, j) is bounded below by

−1/(d− 1). In particular, it follows that an infinite exchangeable sequence

can never exhibit negative correlation between pairs.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 41

Introduction 41

Lemma 1.8 (Positive Definiteness of Exchangeable Cov. Matrix)

Let X be an exchangeable random vector with an existing covariance matrix

Σ. Denote the pairwise correlation coefficient by ρ ∈ [−1, 1]. Then ρ ≥
−1/(d− 1). If Σ is positive definite, we obtain ρ > −1/(d− 1).

Proof. Denote the covariance matrix by Σ and recall that all off-diagonal

entries are identical by exchangeability. Σ is positive semi-definite, hence

it follows for every x = (x1, . . . , xd) ∈ Rd \ {0} that

xΣx
′ ≥ 0 ⇔ ρ ≥ −

∑d
i=1 x

2
i∑d

i=1

(
xi
∑

j �=i xj
) =: −f(x1, . . . , xd).

Let x1 = . . . = xd =: x ∈ R \ {0} to obtain

ρ ≥ −f(x, . . . , x) = − d x2

d (d− 1)x2
= − 1

d− 1
.

If Σ is positive definite, all “≥” signs are replaced by “>” signs. �

1.2.3 Homogeneous Mixture Models

If all components of a random vector X := (X1, . . . , Xd) are independent

and identically distributed with common (univariate) distribution function

F , then simulation is trivial. We simply have to call d times the univari-

ate sampling algorithm which returns a sample of F . One popular and

convenient approach to extend this procedure to a case with dependent

components is to randomize the function F . For example, the function F

may be chosen randomly from a pre-specified class of distribution functions.

As an example, take any parametric family of distribution functions and

randomly draw the parameter(s) in a first step. Such a random choice of

F makes the components of X dependent. Here is an example.

Example 1.16 (First Example of a Homogeneous Mixture)

On a probability space (Ω,F ,P) let Y ∼ Bin(1, 1/2) denote the outcome of

a coin toss. If Y = 1, then we draw (X1, . . . , Xd) i.i.d. from the U [−1, 0]-
distribution, and if Y = 0 we draw them i.i.d. from a U [0, 1]-distribution.
It is then clear that

P(X1 < 0, X2 > 0) = P(Y = 1, Y = 0) = 0,

P(X1 < 0)P(X2 > 0) = P(Y = 1)P(Y = 0) =
1

2
· 1
2
=

1

4
,

implying that X1 and X2 are dependent. In mathematical terms, this ex-

ample may be constructed on a probability space (Ω,F ,P) supporting d+ 1

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 42

42 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

independent random variables Y ∼ Bin(1, 1/2), U1, . . . , Ud ∼ U [0, 1] as
follows:

(1) Define the (random) distribution function F = {Fx}x∈R by

Fx :=

{
(1 + x)�{−1≤x≤0} + �{x>0} , Y = 1

x�{0≤x≤1} + �{x>1} , Y = 0
, x ∈ R.

(2) Sample X1, . . . , Xd i.i.d. from F . This might be accomplished by

setting

Xk :=

{−Uk , Y = 1

Uk , Y = 0
, k = 1, . . . , d.

In general, a generic simulation algorithm for such random vectors is given

in Algorithm 1.3.

Algorithm 1.3 (Generic Sampling of Homogeneous Mixtures)

The input for the algorithm is a stochastic model for F = {Fx}x∈R.

(1) Sample a realization of the distribution function F = {Fx}x∈R.

(2) Draw i.i.d. samples X1, . . . , Xd from F .

We say that a random vector (X1, . . . , Xd), which is constructed as in Al-

gorithm 1.3, is obtained as a homogeneous mixture. This nomenclature in-

dicates that all possible paths {F (ω)}ω∈Ω of F are “mixed” with a certain

probability measure. This mixture is “homogeneous”, since all components

of (X1, . . . , Xd) are affected by F in the very same manner. On the one

hand, such dependence structures are very convenient for sampling appli-

cations, since a simulation algorithm can be performed in two consecutive

steps. On the other hand, the class of multivariate distributions obtained

by this approach is of a very special and limited form (see Theorem 1.4).

Nevertheless, many important examples of copulas are motivated by such

an approach (see, e.g., Sections 2.2 and 3.3).

In the sequel, the possible kinds of dependence structures that can be

simulated via Algorithm 1.3 are determined. In this regard it is useful to

note that there is an intimate connection between exchangeability and the

aforementioned mixture approach. It is obvious that the random vector

(X1, . . . , Xd) constructed in Algorithm 1.3 is exchangeable. However, it

even satisfies a stronger condition. To this end, the notion of extendibility

is important.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 43

Introduction 43

Definition 1.10 (Extendibility)

(1) An exchangeable random vector (X1, . . . , Xd) on a probability space

(Ω,F ,P) is called extendible, if there exists a probability space

(Ω̃, F̃ , P̃) supporting an infinite exchangeable sequence {X̃k}k∈N

such that (X1, . . . , Xd)
d
= (X̃1, . . . , X̃d).

(2) An exchangeable distribution function F (resp. a copula C) is called

extendible, if on some probability space (Ω,F ,P) a random vector

(X1, . . . , Xd) ∼ F (resp. (U1, . . . , Ud) ∼ C) is extendible.

Unlike in the case of exchangeability, there is no immediate analytic way to

check or define the extendibility of a distribution function F (or a copula

C). Whereas it is easy to check whether a given distribution function is

exchangeable, it is typically very difficult to check whether it is extendible

or not. For examples see Chapters 2, 3, and 8.

Remark 1.4 (Exchangeability vs. Extendibility)

If a random vector is extendible, this immediately implies that it is also

exchangeable by definition. Conversely, not every exchangeable random

vector is extendible. In fact, we will encounter several such examples in

later chapters. To provide a very simple example, consider a probability

space (Ω,F ,P) supporting a standard normally distributed random vari-

able X ∼ N (0, 1). Then the bivariate random vector (X,−X) is clearly

exchangeable, since X
d
= −X. However, Lemma 1.9 below shows that

(X,−X) cannot be extendible, since Corr(X,−X) = −1 < 0.

It is immediately clear that a random vector X = (X1, . . . , Xd) which

is constructed as in Algorithm 1.3 is not only exchangeable, but also ex-

tendible: instead of drawing d samples X1, . . . , Xd in step (2), we could

as well draw these samples in perturbed order (exchangeability), and we

could as well draw infinitely many samples X1, X2, X3, . . . (extendibility).

Conversely, it can also be shown that every exchangeable and extendible

random vector can be simulated8 by Algorithm 1.3. The proof of this fact

relies on a seminal structural result by Bruno de Finetti and can be stated

as follows in Theorem 1.4.

8However, it is not always easy to find the random distribution function {Fx}x∈R.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 44

44 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Theorem 1.4 (De Finetti’s Theorem)

An infinite sequence of random variables {X̃k}k∈N on a probability space

(Ω̃, F̃ , P̃) is exchangeable if and only if it is conditionally i.i.d., i.e. there

exists a sub-σ-algebra G̃ ⊂ F̃ such that

P̃(X̃1 ≤ x1, . . . , X̃d ≤ xd | G̃) =
d∏

k=1

P̃(X̃1 ≤ xk | G̃)

holds for all x1, . . . , xd ∈ R.
Proof. Originally due to de Finetti (1937). An elegant proof can be given

as an application of the so-called reversed martingale convergence theorem

(see Aldous (1985, Theorem 3.1)). �
Assume (X1, . . . , Xd), defined on (Ω,F ,P), is exchangeable and extendible.

Let {X̃k}k∈N be an extension of (X1, . . . , Xd) on (Ω̃, F̃ , P̃) and let G̃ be as

in Theorem 1.4. Since (X1, . . . , Xd)
d
= (X̃1, . . . , X̃d), sampling (X̃1, . . . , X̃d)

is equivalent to sampling (X1, . . . , Xd). A sample of (X̃1, . . . , X̃d) can be

obtained using Algorithm 1.3 with input F = {Fx}x∈R, where

Fx := P̃(X̃1 ≤ x | G̃), x ∈ R.
Note that Fx is a G̃-measurable random variable, and so is particularly

random! There are in fact some examples where the latter conditional

probability can be computed explicitly and sampling from the respective

{Fx}x∈R is possible. Here is an example.

Example 1.17 (Extendible Multivariate Normal Distribution)

Let X = (X1, . . . , Xd) be exchangeable and multivariate normally dis-

tributed, with a positive definite covariance matrix. Example 1.15 shows

that the distribution of X is parameterized by (µ, σ2, ρ) ∈ R × (0,∞) ×
(−1/(d − 1), 1]. It is shown in the sequel that X is extendible if and only

if ρ ≥ 0. The necessity is clear, since −1/(d − 1) → 0 as d → ∞. To see

the sufficiency, consider a probability space (Ω̃, F̃ , P̃) supporting i.i.d. stan-

dard normally distributed random variables ε0, ε1, ε2, Define the random

variables

X̃k := µ+ σ (
√
ρ ε0 +

√
1− ρ εk), k ∈ N.

Then {X̃k}k∈N is an infinite exchangeable sequence, which satisfies

X̃1

X̃2

...

X̃d

 =

µ

µ
...

µ

+

σ
√
ρ σ
√
1− ρ 0 . . . 0

σ
√
ρ 0 σ

√
1− ρ . . . 0

...
. . .

...

σ
√
ρ 0 0 . . . σ

√
1− ρ

ε0
ε1
...

εd

 ,

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 45

Introduction 45

implying that (X̃1, . . . , X̃d)
d
= (X1, . . . , Xd) (see Lemma 4.3(2)). Hence,

{X̃k}k∈N is an extension of X. Note in particular that ρ ≥ 0 is impor-

tant for this extension, since otherwise
√
ρ is not well defined. Using the

language of de Finetti’s theorem, X̃1, X̃2, . . . are i.i.d. conditioned on the

sigma algebra generated by ε0, i.e. G̃ := σ(ε0), with univariate distribution

function (Φ is the distribution function of N (0, 1))

Fx = P̃(X̃1 ≤ x|G̃) = Φ
(x− µ− σ√ρ ε0

σ
√
1− ρ

)
, x ∈ R.

Note that Fx is random, since it depends on ε0.

This book is especially concerned with the simulation of copulas. In order

to guarantee that the multivariate distribution function obtained from a

homogeneous mixture as in Algorithm 1.3 is a copula, one has to guarantee

that the marginal distributions of the components are uniformly distributed

on the unit interval. This means that one has to ensure that F = {Fx}x∈R

satisfies F0 = 0, F1 = 1, and P(Xi ≤ x) = E[Fx] = x for x ∈ [0, 1]. In this

case, we denote as usual (U1, . . . , Ud) := (X1, . . . , Xd) and F = {Fu}u∈[0,1].

Some specific examples of such algorithms can be found in Chapters 2 and

3. Here is a simple example.

Example 1.18 (Maresias Copula)

Let G,H : [0, 1] → [0, 1] be two distribution functions on [0, 1] satisfying

G(u) = 2 u − H(u), u ∈ [0, 1]. Valid choices for G are, for instance,

G1(u) = �{u>1/2} (2 u− 1), G2(u) = uα for α ∈ [1, 2], or

G3(u) =

{
u/α , u < 1/2

(2− 1/α)u− (1− 1/α) , u ≥ 1/2
, u ∈ [0, 1],

for a parameter α ≥ 1. Consider a probability space (Ω,F ,P) supporting a

Bernoulli-distributed random variable Y ∼ Bin(1, 1/2). Define the random

distribution function

Fu :=

{
G(u) , Y = 1

H(u) , Y = 0
, u ∈ [0, 1].

It is then easy to observe that E[Fu] = 1/2
(
G(u) +H(u)

)
= u, u ∈ [0, 1].

Hence, if we first draw Y in order to determine F , and subsequently draw

random variables U1, U2, . . . , Ud independently from F , they are all uni-

formly distributed on [0, 1]. Hence, their joint distribution function is a

copula, given by

CG(u1, . . . , ud) =
1

2

(d∏
k=1

G(uk) +

d∏
k=1

H(uk)
)
, u1, . . . , ud ∈ [0, 1].

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 46

46 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Copulas obtained from this construction are called Maresias copulas, be-

cause this example was constructed there. Figure 1.5 illustrates the func-

tions G and H, as well as a scatterplot of the resulting bivariate copula CG,

for the case G = G1.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

G
(u

)
an

d
H

(u
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 1.5 Function plot of G1 and the corresponding H1(u) := 2u−G1(u) (left). Scat-
terplot of 1 000 samples from the Maresias copula corresponding to G1 (right).

Example 1.19 (Extendibility of Bivariate Cuadras–Augé Copula)

Recall the copula Cα from Example 1.4. Since Cα(u1, u2) = Cα(u2, u1) for

all u1, u2 ∈ [0, 1], a random vector (U1, U2) ∼ Cα on (Ω,F ,P) is exchange-

able. It can be shown furthermore that it is also extendible (see Section 3.3

for more details). This chapter also shows that an extension does not need

to be unique.

Random vectors that are constructed by homogeneous mixtures exhibit

a somewhat limited dependence structure. For instance, the distribution

(function) of an arbitrary k-margin (Xi1 , . . . , Xik) of (X1, . . . , Xd) does

only depend on k, and not on the specific subset {i1, . . . , ik} ⊂ {1, . . . , d}.
This simply means that extendibility implies exchangeability. A further

restriction is the fact that such random vectors in some sense cannot exhibit

negative association (see, e.g., the following lemma).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 47

Introduction 47

Lemma 1.9 (Pairwise Correlation in Homog. Mixture Models)

Let (X1, . . . , Xd) be an (exchangeable and) extendible random vector on

a probability space (Ω,F ,P). Furthermore, assume that all (co-) vari-

ances of (X1, . . . , Xd) exist. Then for each 1 ≤ i < j ≤ d it holds that

Corr(Xi, Xj) ≥ 0.

Proof. This follows directly from Lemma 1.8 by considering d → ∞.

However, with de Finetti’s theorem at hand, we can provide an alterna-

tive proof. Without loss of generality, let E[Xi] = 0 for all i = 1, . . . , d.

Otherwise consider Yi := Xi − E[Xi], i = 1, . . . , d. Denote by {X̃k}k∈N

an extension of (X1, . . . , Xd) on (Ω̃, F̃ , P̃). Moreover, denote by G̃ the σ-

algebra of Theorem 1.4, and define Fx := P̃(X̃1 ≤ x | G̃), x ∈ R. We then

have independently of the index i that Ẽ[X̃i | G̃] =
∫
R xdFx. Using the

conditional i.i.d. structure one therefore obtains

E[XiXj] = Ẽ[X̃i X̃j] = Ẽ
[
Ẽ[X̃i | G̃] Ẽ[X̃j | G̃]

]
= Ẽ
[(∫

R
xdFx

)2]
≥ 0.

This implies the claim. �
Non-negative pairwise correlations are the most common (but only one

particular) way of measuring positive association between the components

of a random vector. In a non-normal setup, correlations might not be

the best measures of association, or might not even exist. One alternative

notion of positive association (among numerous9) is the following: a random

vector X := (X1, . . . , Xd) on a probability space (Ω,F ,P) exhibits positive
orthant dependency (POD) if for all x1, . . . , xd ∈ R it satisfies positive upper

and lower orthant dependency, i.e.

(PUOD) P(X1 > x1, . . . , Xd > xd) ≥
d∏

k=1

P(Xk > xk), and

(PLOD) P(X1 ≤ x1, . . . , Xd ≤ xd) ≥
d∏

k=1

P(Xk ≤ xk). (1.13)

In terms of a survival copula Ĉ and a copula C of X, (1.13) is equivalent

to the fact that Ĉ ≥ Π and C ≥ Π pointwise. Clearly, if the components of

X are independent, then (1.13) is satisfied with equality. We have seen in

Theorem 1.4 that extendible random vectors have components that are con-

ditionally i.i.d. given some information. Thus, one might wonder whether

extendible random vectors always exhibit POD. However, in general this

conjecture is wrong, as the following toy example shows.
9For a detailed study of different measures of association see Müller and Stoyan (2002).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 48

48 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Example 1.20 (Homogeneous Mixtures Need Not Exhibit POD)

Consider a probability space (Ω,F ,P) supporting a random variable U ∼
U [0, 1]. Define the (random) survival function

F̄x :=

1 , x ∈ (−∞, 1− U)
1
2 , x ∈ [1− U, 1 + U)

0 , x ∈ [1 + U,∞)

, x ∈ R.

Now let the random vector (X1, X2) be defined as a homogeneous mixture

from {Fx}x∈R, where Fx := 1− F̄x, x ∈ R. Then

P
(
X1 >

1

2
, X2 >

3

2

)
= E
[
F̄ 1

2
F̄ 3

2

]
= 0 +

1

2
· 1
2
P(U > 1/2) =

1

8
.

However, we also find

P
(
X1 >

1

2

)
P
(
X1 >

3

2

)
= E
[
F̄ 1

2

]
E
[
F̄ 3

2

]
=

3

4
· 1
4
=

3

16
>

1

8
.

Therefore, (X1, X2) does not exhibit POD, not even PUOD, though it is a

conditionally i.i.d. model.

1.2.4 Heterogeneous Mixture Models/Hierarchical Models

In many practical applications one faces situations where exchangeable de-

pendence structures are not sufficiently flexible. For instance, the assump-

tion of exchangeability implies that all bivariate subvectors of the random

vector in question are equal in distribution. In reality, this is clearly not

always satisfied. As Theorem 1.4 shows, exchangeability is often the conse-

quence of a stochastic model in which a latent source of dependence (namely

F = {Fx}x∈R in the case of a homogeneous mixture) affects all components

in the very same manner. However, it is often more realistic to assume that

there are multiple latent factors. Considering, e.g., a portfolio with loans

or stocks issued by d companies, it is natural to subdivide the portfolio

into groups according to, e.g., industrial branches, geographic regions, or

some other economic criterion, and to associate a latent factor with each

subgroup. Given such a partition it might be intuitive to assume that, e.g.,

the pharmaceutical branch is affected by different market factors than the

financial branch. Nevertheless, there might be a global factor which affects

all industrial branches, so the branches cannot be modeled independently of

each other. The result of such a construction is a dependence structure (in-

duced by various latent factors) where each subgroup (being affected in the

same way by the latent factors) is extendible. The subgroups, however, are

dependent. To model such structures without losing the advantages of the

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 49

Introduction 49

mixture approach with regard to efficient simulation, one often extends the

approach to a heterogeneous mixture. A generic probabilistic construction

of such a stochastic model is outlined in Algorithm 1.4.

Algorithm 1.4 (Generic Sampling of Heterog. Mixture Models)

This algorithm provides a generic sampling scheme for heterogeneous mix-

ture models. As input one has the dimension d ≥ 2 and a partition of

the dimension d1 + d2 + . . .+ dJ = d into J groups, where d1, . . . , dJ ∈ N.
Moreover, a stochastic model for J possibly dependent distribution functions

F (j) = {F (j)
x }x∈R is required, j = 1, . . . , J . Sampling is then accomplished

as follows:

(1) Sample the paths of the groups’ distribution functions

F (1), . . . , F (J).

(2) For each j = 1, . . . , J draw dj i.i.d. samples Xj,1, . . . , Xj,dj from

F (j) and return the random vector:(
X1,1, . . . , X1,d1︸ ︷︷ ︸

group 1

, X2,1, . . . , X2,d2︸ ︷︷ ︸
group 2

, . . . , XJ,1, . . . , XJ,dJ︸ ︷︷ ︸
group J

)
.

In case the copula behind the model is required, the unconditional marginal

distribution functions must be derived and applied to the components Xj,l,

l = 1, . . . , dj , j = 1, . . . , J .

Clearly, if F (1), . . . , F (J) are independent, the simulation boils down to J

independent homogeneous mixtures. So the crucial point for such hetero-

geneous models is the incorporation of a dependence structure between the

random distribution functions F (1), . . . , F (J). Often, it is reasonable to

assume that all components are affected by some global factor and sub-

groups are additionally affected by independent and group-specific factors.

The result is a hierarchical dependence structure. A general construction

principle based on independent stochastic objects is outlined here. The

resulting copulas of this construction principle are termed h-extendible in

Mai and Scherer (2012), reflecting the interpretation of a hierarchical and

extendible structure. This construction is introduced here and is illustrated

with several specific examples in later chapters.

Definition 1.11 (H-Extendible Copulas: Recursive Definition)

Consider the probability space (Ω,F ,P). A random vector (X1, . . . , Xd) is

called h-extendible with 1 ≤ n ≤ d levels of hierarchy, if the following holds:

for n = 1, h-extendibility corresponds to the previously defined notion of

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 50

50 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

extendibility. For n ≥ 2, there exists some σ-algebra G ⊂ F and a partition

d1 + . . .+ dJ = d, dj ∈ N, such that conditioned on G:
(1) (X1, . . . , Xd) splits into J independent subvectors,

(2) each subvector is h-extendible with at most n− 1 levels, and

(3) at least one subvector has n− 1 levels.

We call a copula h-extendible with n levels of hierarchy if it is the distribu-

tion function of an h-extendible random vector (U1, . . . , Ud) whose univari-

ate marginal laws are uniform on [0, 1]. If, additionally, the dependence

structure within all subgroups is of the same parametric family as the orig-

inal vector, the copula is called h-extendible with respect to the family in

question.

This recursive definition is simple and at the same time flexible (from a

theoretical point of view). An iterative reformulation, however, might be

better suited for later stating a general construction principle.

Remark 1.5 (H-Extendible Copulas: Iterative Definition)

Again, consider the probability space (Ω,F ,P). The vector (U1, . . . , Ud) has

an h-extendible copula with n levels of hierarchy as its distribution function

if the univariate marginal laws are uniform, i.e. Uk ∼ U [0, 1], k = 1, . . . , d,

and there exists an increasing sequence of σ-algebras G1 � . . . � Gn ⊂ F
such that:

(1) Conditioned on G1, (U1, . . . , Ud) splits into J independent groups

of sizes d1 + . . . + dJ = d. Assuming that the subvector

(Ud1+...+dj−1+1, . . . , Ud1+...+dj) contains the elements of group j ∈
{1, . . . , J}, d0 := 0, one has

P(U1 ≤ u1, . . . , Ud ≤ ud | G1) =
J∏

j=1

P
(
Ui ≤ ui, ∀Ui ∈ group j |G1

)
.

(2) Conditioned on G2, the groups of level (1) further split into in-

dependent subgroups. Each dj is further partitioned as dj =

dj,1 + . . .+ dj,Jj and

P(U1 ≤ u1, . . . , Ud ≤ ud | G2) =
J∏

j=1

Jj∏
l=1

P
(
Ui ≤ ui, ∀Ui ∈ subgroup l of group j | G2

)
.

(k) For 2 < k < n we further iterate the definition. Given Gk, level
(k − 1) subgroups split into independent subgroups.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 51

Introduction 51

(n) Conditioned on Gn, we have: (a) all components are independent

(but not necessarily identically distributed) and (b) inside each fi-

nal level (n) subgroup components are independent and identically

distributed, i.e.

P(U1 ≤ u1, . . . , Ud ≤ ud | Gn) (a)
=

d∏
i=1

P
(
Ui ≤ ui | Gn

)
,

P(Ui ≤ ui, ∀Ui ∈ final subgroup l | Gn) (b)
=
∏

i :Ui ∈final subgroup l

P
(
Uk ≤ ui | Gn

)
,

for Uk arbitrarily chosen from the final subgroup l.

We now provide a general construction principle based on Remark 1.5. For

n = 1 we assume that the dependence structure of an extendible copula

model (U1, . . . , Ud) ∼ Cθ is induced by a global stochastic object M (0),

affecting i.i.d. components alike. The stochastic object M (0) can be a ran-

dom variable, a random vector, a stochastic process, or any other stochas-

tic object defined on (Ω,F ,P). The components (U1, . . . , Ud) are defined

as Uk := f(εk,M
(0)), k = 1, . . . , d, where ε1, . . . , εd is an i.i.d. sequence of

random variables independent of the random object M (0) and f is a real-

valued measurable functional. Going one step further with a factor model

in mind, we divide the random vector into J groups of sizes d1, . . . , dJ ,

respectively, where d1 + . . . + dJ = d. For notational convenience, assume

that U1, . . . , Ud1 belong to the first group, Ud1+1, . . . , Ud1+d2 to the second

group, and so on. We now generalize the extendible model by introduc-

ing additional independent group-specific stochastic objectsM (1), . . . ,M (J)

such that

Uk : = f1
(
εk,M

(0),M (1)
)
, k = 1, . . . , d1,

...

Uk : = fJ
(
εk,M

(0),M (J)
)
, k = d1 + . . .+ dJ−1 + 1, . . . , d.

This construction requires real-valued measurable functionals f1, . . . , fJ
and independent stochastic objects M (1), . . . ,M (J). The result is a ran-

dom vector (U1, . . . , Ud) satisfying the hierarchical axioms of Definition 1.5.

With

G1 := σ
(
M (0)

)
� G2 := σ

(
M (0),M (1), . . . ,M (J)

)

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 52

52 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

one has (abbreviating d0 := 0)

P(U1 ≤ u1, . . . , Ud ≤ ud | G1) =
J∏

j=1

P
(
Ud1+...+dj−1+1 ≤ ud1+...+dj−1+1, . . . , Ud1+...+dj ≤ ud1+...+dj

∣∣G1)
and

P(Ud1+...+dj−1+1 ≤ ud1+...+dj−1+1, . . . , Ud1+...+dj ≤ ud1+...+dj | G2) =
d1+...+dj∏

l=d1+...+dj−1+1

P
(
Uk ≤ ul

∣∣G2), j = 1, . . . , J,

where k is an arbitrary index in {d1 + . . .+ dj−1 +1, . . . , d1 + . . .+ dj}. So
far, it is not guaranteed that the components U1, . . . , Ud have a uniform dis-

tribution, so we have an h-extendible random vector but not necessarily an

h-extendible copula. Ensuring U1, . . . , Ud ∼ U [0, 1], and therefore obtaining

an h-extendible copula, the functionals f1, . . . , fJ and the stochastic objects

M (1), . . . ,M (J) must be chosen in a well-considered way, which might be

quite tricky. It is even more complicated to design the model in a way that

ensures a particular parametric class of extendible copulas {Cθ} in each

step.

1.2.5 Extreme-Value Copulas

Some copulas studied later on have a very nice analytic property, which

plays a central role in extreme-value theory.

Definition 1.12 (Extreme-Value Copula)

A copula C : [0, 1]d → [0, 1] is called an extreme-value copula if it sat-

isfies the extreme-value property C(ut1, . . . , u
t
d) = C(u1, . . . , ud)

t for all

t > 0, u1, . . . , ud ∈ [0, 1].

Specific examples of extreme-value copulas include the independence cop-

ula Π, the upper Fréchet–Hoeffding bound M , as well as Marshall–Olkin

copulas as discussed in Chapter 3. Such copulas occur in multivariate

extreme-value theory as possible limit copulas. More precisely, let F be

a multivariate distribution function with continuous margins F1, . . . , Fd.

Consider a probability space (Ω,F ,P) supporting i.i.d. random vectors

{(X(n)
1 , . . . , X

(n)
d)}n∈N with distribution function F . For each n ∈ N one

considers the vector of componentwise maxima (M1:n, . . . ,Md:n), where

Mk:n := max
{
X

(1)
k , . . . , X

(n)
k

}
, k = 1, . . . , d. If there exist sequences

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 53

Introduction 53

{a1:n}n∈N, . . . , {ad:n}n∈N, {b1:n}n∈N, . . . , {bd:n}n∈N and a random vector

(X1, . . . , Xd) such that(M1:n − a1:n
b1:n

, . . . ,
Md:n − ad:n

bd:n

)
d−→ (X1, . . . , Xd), as n→∞, (1.14)

then the copula of the limit random vector (X1, . . . , Xd) must be of the

extreme-value kind. A proof of this fact can be found, e.g., in Joe (1997, p.

172ff). Conversely, given an extreme-value copula C, it may occur as the

copula of a limit random vector as in (1.14): consider i.i.d. random vectors

{(U (n)
1 , . . . , U

(n)
d)}n∈N with joint distribution function C on a probability

space (Ω,F ,P). For each n ∈ N denote by Mk:n := max
{
U

(1)
k , . . . , U

(n)
k

}
the componentwise maxima, for k = 1, . . . , d. Choosing ak:n ≡ 1 and

bk:n = 1/n for all k ∈ {1, . . . , d} and n ∈ N, it is observed for t1, . . . , td ≥ 0

that

P
(M1:n − 1

1/n
≤ −t1, . . . , Md:n − 1

1/n
≤ −td

)
= P
(
U

(1)
1 ≤ − t1

n
+ 1, . . . , U

(1)
d ≤ − td

n
+ 1
)n

= C
(
− t1
n

+ 1, . . . ,− td
n

+ 1
)n

= C
((
− t1
n

+ 1
)n
, . . . ,

(
− td
n

+ 1
)n) n→∞−→ C

(
e−t1 , . . . , e−td

)
.

The third equality in the computation above requires the extreme-value

property of C. Notice that the entries exp(−tk), k = 1, . . . , d, of C in

the limit constitute univariate extreme-value distribution functions of the

Weibull kind as tk ranges in [0,∞) (see, e.g., Joe (1997, p. 170)). Hence,

C occurs as a possible limit copula in (1.14).

From an analytical perspective, each extreme-value copula admits a so-

called Pickands representation. This characterizes an extreme-value copula

by a measure on the d-dimensional unit simplex subject to certain boundary

conditions.

Theorem 1.5 (De Haan and Resnick (1977), Pickands (1981))

A d-dimensional copula C is an extreme-value copula if and only if there

exists a (positive) finite measure δ on the d-dimensional unit simplex

Ad :=
{
(u1, . . . , ud) ∈ [0, 1]d

∣∣u1 + . . .+ ud = 1
}
,

subject to the conditions
∫
Ad
uj δ(du1, . . . , dud) = 1, j = 1, . . . , d, such that

C(u1, . . . , ud) =
(d∏

i=1

ui

)P(log u1∑d
k=1

log uk
,...,

log ud∑d
k=1

log uk

)
,

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 54

54 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

where P , called the Pickands dependence function, is defined on Ad and

given by

P (w1, . . . , wd) =

∫
Ad

max{u1w1, . . . , udwd} δ(du1, . . . , dud).

Proof. This theorem is named after Pickands (1981), even though it is in

turn based on de Haan and Resnick (1977). A full proof (using the language

of extreme-value distributions rather than extreme-value copulas) can be

retrieved from Resnick (1987, Proposition 5.11, p. 268ff). �

Theorem 1.5 can be used to derive expressions for tail dependence pa-

rameters of general extreme-value copulas based on the measure δ (see Li

(2009)). Moreover, Theorem 1.5 is useful for constructing parametric fam-

ilies of extreme-value copulas.

Example 1.21 (Pickands Dep. Funct. of Cuadras–Augé Copulas)

Consider the bivariate copula Cα from Example 1.4. The extreme-value

property is easily verified to hold for Cα, so in regard of Theorem 1.5 it

is natural to ask what the measure δ and the corresponding dependence

function P look like. It is derived in Falk et al. (2004, Example 4.3.2,

p. 124) that δ is a discrete measure, whose mass is concentrated on three

points. More precisely, it is determined by

δ
({

(1, 0)
})

= δ
({

(0, 1)
})

= 1− α, δ
({

(1/2, 1/2)
})

= 2α.

One verifies that the boundary conditions are valid, i.e.∫
A2

u1 δ(du1, du2) =

∫
A2

u2 δ(du1, du2) = (1− α) · 1 + 2α · 1
2
= 1.

Moreover, the Pickands dependence function P is computed to have the

form

P (w1, w2) =

∫
A2

max{u1w1, u2w2} δ(du1, du2)

= (1− α)w1 + (1− α)w2 + 2α
1

2
max{w1, w2}

= max{w1, w2}+ (1− α) min{w1, w2}.
Indeed, one may check that for u1, u2 ∈ (0, 1)

P
(log u1
log(u1 u2)

,
log u2

log(u1 u2)

)
=

log
(
min{u1, u2}

)
log(u1 u2)

+ (1− α) log
(
max{u1, u2}

)
log(u1 u2)

.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 55

Introduction 55

Hence, it is verified that

(u1 u2)
P

(
log u1

log(u1 u2) ,
log u2

log(u1 u2)

)
= elog

(
min{u1,u2}

)
+log
(
max{u1,u2}1−α

)
= Cα(u1, u2).

Since the Pickands dependence function P (w1, w2) is defined only for non-

negative w1, w2 with w1 + w2 = 1, one may alternatively parameterize it

by w ∈ [0, 1] setting P̃ (w) := P (w, 1 − w). The function P̃ can then easily

be visualized for different choices of α ∈ [0, 1] (see Figure 1.6). The fact

that P̃ is not differentiable in w = 1/2 for α > 0 indicates that Cα has a

singular component (see Joe (1997, Theorem 6.5, p. 176)).

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

w

=0

=0.2

=0.4

=0.6

=0.8

=1

Fig. 1.6 The Pickands dependence function P̃ (w) = max{w, 1−w}+(1−α) min{w, 1−
w} of a bivariate Cuadras–Augé copula is illustrated for α = 0, 0.2, 0.4, 0.6, 0.8, 1.

Example 1.22 (Copulas of Class BC2)

In Example 1.9 we introduced the family of copulas

Ca,b(u1, u2) = min{ua1, ub2} min{u1−a
1 , u1−b

2 }, u1, u2 ∈ [0, 1],

where a, b ∈ (0, 1). It is left as an exercise for the reader to show that BC2

copulas (1) are extreme-value copulas, and (2) have a discrete Pickands

measure δ with at most two atoms. Scatterplots of this family are given in

Figure 1.7 below.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 56

56 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 1.7 Scatterplots of 1 000 samples from the copula BC2 with parameters (a, b) =
(0.9, 0.1) (left), (0.4, 0.3) (middle), and (0.3, 0.5) (right).

Besides being the limit copulas of componentwise maxima, extreme-value

copulas have a second natural interpretation. They are precisely the cop-

ulas of so-called min-stable multivariate exponential distributions (see Joe

(1997, p. 174–175) and Lemma 8.2). This means that combined with ex-

ponential margins they form a class of multivariate distribution functions

F such that (X1, . . . , Xd) ∼ F, 1 ≤ i1 < . . . < ik ≤ d, c1, . . . , ck > 0 ⇒
min{c1Xi1 , . . . , ckXik} ∼ Exp(λ) for some λ > 0. For a deeper treatment

of this family, see Section 8.2.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 57

Chapter 2

Archimedean Copulas

Exchangeable in d ≤ 2: 2.3

Exchangeable in d ≤ 3: 2.3

. . .

Extendible: 2.2

Exchangeable ∀d ∈ N

H-extendible: 2.4

Fig. 2.1 Classification of families of Archimedean copulas, including the sections where
these are discussed in this chapter.

This chapter on Archimedean copulas is organized as follows (see Fig-

ure 2.1). After a brief motivation in Section 2.1, Section 2.2 studies ex-

tendible Archimedean copulas. Those allow for a stochastic representation

with components that are conditionally i.i.d. in the sense of de Finetti’s

theorem (see Theorem 1.4). Subsequently, Section 2.3 studies the more

57

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 58

58 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

general family of exchangeable Archimedean copulas. This family addi-

tionally allows for negative association between components. Intuitively,

this family “shrinks” in the dimension d, with the extendible class as

limit for d → ∞. Finally, Section 2.4 shows how to construct and sim-

ulate h-extendible (hierarchical) Archimedean copulas. This is important

in order to take into account non-exchangeable dependence patterns with-

out losing some advantages of the (extendible) Archimedean class.

2.1 Motivation

Let (Ω,F ,P) be a probability space supporting a list of i.i.d. exponential

random variables E1, . . . , Ed with mean E[E1] = 1. Independent of this list,

let M be a positive random variable. Define the vector of random variables

(X1, . . . , Xd) by

(X1, . . . , Xd) :=
(E1

M
, . . . ,

Ed

M

)
. (2.1)

What can we conclude about this vector?

(1) Mixture model interpretation: Dividing an exponential ran-

dom variable by a positive number corresponds to dividing its mean

by exactly this value, or, similarly, corresponds to multiplying its

intensity parameter by this number. In the above construction we

start with Ek’s having an intensity of 1, which are then multiplied

by the realization of 1/M . In this sense, the above construction

can equivalently be interpreted as a two-step experiment. In a first

step, the intensity M is drawn. In a second step, a d-dimensional

vector of i.i.d. Exp(M) variables is drawn. Using the notation of

Section 1.2.3, we have a conditionally i.i.d. model with random

distribution function {Fx}x∈R, Fx :=
(
1− exp(−M x)

)
�{x>0}.

(2) Margins: For each margin k ∈ {1, . . . , d}, one has

F̄k(x) = P(Xk > x) = P(Ek > xM)

= E
[
E[�{Ek>xM}|M]

]
= E
[
e−xM

]
=: ϕ(x), x ≥ 0,

where ϕ is the Laplace transform of M . To conclude, the marginal

laws are related to the mixing variableM via its Laplace transform.

(3) Copula: As long as M is not deterministic, the Xk’s are depen-

dent, since they are all affected by the random variable M . Intu-

itively speaking, whenever the realization of M is large (small), all

realizations of Xk are more likely to be small (large). From this

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 59

Archimedean Copulas 59

regard, it is natural that the resulting copula is parameterized by

the Laplace transform ofM . This indeed holds, as we observe that

the survival copula of the random vector (X1, . . . , Xd) is given by

ϕ
(
ϕ−1(u1) + . . .+ ϕ−1(ud)

)
:= Cϕ(u1, . . . , ud), (2.2)

where u1, . . . , ud ∈ [0, 1] and ϕ is the Laplace transform of M .

Copulas of this structure are called Archimedean copulas. Written

differently, with Cϕ given by Equation (2.2), it holds that

P
(
X1 > x1, . . . , Xd > xd

)
= Cϕ

(
ϕ(x1), . . . , ϕ(xd)

)
,

where x1, . . . , xd ≥ 0. The copula Cϕ in Equation (2.2) is obviously

a symmetric function in its arguments, showing that the vector of

Xk’s has an exchangeable distribution (which also follows from the

construction as a homogeneous mixture model).

Proof. The joint survival function of (X1, . . . , Xd) is given by

F̄ (x1, . . . , xd) = P(X1 > x1, . . . , Xd > xd)

= E
[
E
[
�{E1>x1 M} · · ·�{Ed>xd M}

∣∣M]]
= E
[
e−M

∑d
k=1 xk

]
= ϕ
(d∑

k=1

xk

)
,

where (x1, . . . , xd) ∈ [0,∞)d. The proof is established by trans-

forming the marginals to U [0, 1] and by using the survival version

of Sklar’s theorem. �

Instead of the constructive way, most textbooks introduce Archimedean

copulas analytically. A d-dimensional copula is called Archimedean,1 if it

admits the functional form2 Cϕ(u1, . . . , ud) := ϕ
(
ϕ−1(u1)+ . . .+ϕ

−1(ud)
)
,

where u1, . . . , ud ∈ [0, 1]. In this case, the function ϕ : [0,∞) → [0, 1] is

called the generator of Cϕ and ϕ−1 denotes its inverse. We shall see that

this parametric family allows for a large spectrum of dependence structures,

and, at the same time, remains analytically tractable due to the convenient

form (2.2). This renders the class of Archimedean copulas a very popular

class for applications. However, both the constructive and the analytical

approach evoke some questions:
1The wording Archimedean copula stems from a purely analytical property, related to

the classical Archimedean property, and was first used in Ling (1965).
2Let us briefly remark that some authors change the order of ϕ and ϕ−1. Analytically,

this is of course identical, since (ϕ−1)−1 = ϕ. Based on the probabilistic construction,
however, we interpret ϕ as a Laplace transform and therefore prefer the initially used
definition.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 60

60 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

(1) Construction (2.1) and the earlier considerations show that each

positive random variable M induces a copula of form (2.2). The

question at hand is whether all copulas of form (2.2) can be con-

structed in this way. Formulated analytically, what kind of func-

tions ϕ define3 an Archimedean copula? Sampling Archimedean

copulas requires a probabilistic model. At this point it is open

if model (2.1) contains all Archimedean copulas (which is not the

case) or if there exists a more general probabilistic model (which

is the case, see Section 2.3).

(2) Given that Archimedean copulas can be parameterized by positive

random variables M (via ϕ), it is natural to ask what dependence

properties of Cϕ can be related to stochastic properties of M and

to analytical properties of ϕ.

(3) An immediate observation is that Cϕ (seen as a function) is sym-

metric, meaning that Cϕ is invariant under permutations of its

arguments. Given that ϕ is chosen such that Cϕ is a copula, the

associated random vector (U1, . . . , Ud) ∼ Cϕ is exchangeable. Since

this might not be justified in all applications, a natural question is

to ask for non-exchangeable generalizations. Such extensions, their

probabilistic models, and sampling schemes are provided in Section

2.4.

(4) Different Archimedean generators ϕ can imply the same copula Cϕ.

More precisely, let ϕ define the copula Cϕ and let c > 0 be some

arbitrary positive constant. Then, the function ϕc(x) := ϕ(c x) has

inverse ϕ−1
c (x) = ϕ−1(x)/c and implies the very same Archimedean

copula when used in Equation (2.2), i.e. Cϕ = Cϕc . Given that

ϕ(x) = E[exp(−xM)] is the Laplace transform of some positive

random variable M , ϕc(x) = ϕ(c x) = E[exp(−x cM)] is the

Laplace transform of cM . We conclude that such a deterministic

shift in construction (2.1) only affects the univariate marginal laws

but not the resulting dependence structure. The same holds when

E1, . . . , Ed are distributed as Exp(λ) for some λ > 0, so taking unit

exponentials in the first place is just a convenient standardization.

3For instance, one easily verifies that ϕ(x) := exp(−x) corresponds to the independence
copula Π, whereas the choice ϕ(x) = x does not imply a copula.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 61

Archimedean Copulas 61

2.2 Extendible Archimedean Copulas

The basis for this section is construction (2.1). Notice that the cru-

cial step in the derivation of the survival copula of (X1, . . . , Xd) =

(E1/M, . . . , Ed/M) is that, conditioned onM , the random variables Xk are

i.i.d. exponential with intensity M . The exchangeable d-dimensional ran-

dom vector (X1, . . . , Xd) can be extended to arbitrary dimensions by simply

adding further components Xk := Ek/M , k > d, where the additional Ek’s

are Exp(1)-distributed and independent of all previously defined objects.

Hence, this construction naturally provides an extendible sequence where

the conditional independence construction related to de Finetti’s theorem

(see Theorem 1.4), namely construction (2.1), is explicitly known. Formu-

lating this construction as an algorithm, which was first done by Marshall

and Olkin (1988), yields a very convenient sampling strategy for extendible

Archimedean copulas.

Algorithm 2.1 (Sampling Extendible Archimedean Copulas)

(1) Sample i.i.d. E1, . . . , Ed, where Ek ∼ Exp(1), k ∈ {1, . . . , d}.
(2) Sample a positive random variable M with Laplace transform ϕ.

(3) Return (U1, . . . , Ud), where Uk := ϕ
(
Ek/M

)
, k ∈ {1, . . . , d}.

Proof. Recall that the survival function of (E1/M, . . . , Ed/M) is given by

ϕ(x1 + . . .+ xd) = Cϕ

(
ϕ(x1), . . . , ϕ(xd)

)
. Moreover, the marginal survival

functions are ϕ, since for x ≥ 0 one has P(Ek/M > x) = E[exp(−xM)] =

ϕ(x), k = 1, . . . , d. Therefore,
(
ϕ(E1/M), . . . , ϕ(Ed/M)

) ∼ Cϕ, since ϕ

is continuous and strictly decreasing, which is precisely the vector that is

returned in the last step of Algorithm 2.1. �

We observe that two things are required for using Algorithm 2.1: (1) the

functional form of the Laplace transform ϕ, and (2) a sampling scheme for

the positive random variable M . This means that starting with a random

variableM on the one hand, it is required to compute its Laplace transform

and to have a sampling scheme available. On the other hand, starting from

a Laplace transform ϕ, we have to identify the underlying random variable

M which then also has to be sampled.4 Obviously, the best case is to have

4Starting with ϕ it might be difficult to identify the random variable whose Laplace
transform is ϕ. Helpful in this regard are tables of Laplace transforms (see Oberhettinger
and Badii (1973)). Alternatively, one might address this issue numerically, which is done,
e.g., in Hofert (2011). Sampling bivariate Archimedean copulas using the analytical form
of the generator is done in Section 2.5.1.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 62

62 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

a repertoire of parametric families of random variables, along with their

Laplace transforms and some efficient sampling schemes, at hand. This is

provided in Section 2.2.4.

An important advantage of Algorithm 2.1 is the low effort to sample a

high-dimensional Archimedean copula. More precisely, the additional effort

of one more dimension is of order O(1). Only one additional exponential

random variable is to be drawn and the transformation of the last step in

Algorithm 2.1 has to be applied.5 Overall, only d+1 random variables have

to be drawn for the simulation of a d-dimensional random vector.

2.2.1 Kimberling’s Result and Bernstein’s Theorem

Let us switch to the analytical perspective on Archimedean copulas and

introduce the notion of an (Archimedean) generator.

Definition 2.1 (Archimedean Generator)

An (Archimedean) generator is a function ϕ : [0,∞) → [0, 1] with

the following properties: (1) ϕ(0) = 1 and limx↗∞ ϕ(x) = 0, (2) ϕ

is continuous, (3) ϕ is decreasing on [0,∞) and strictly decreasing on[
0, inf{x > 0 : ϕ(x) = 0}), where inf ∅ :=∞.

This definition represents the necessary requirements on ϕ such that, if

applied in Equation (2.2), the resulting function Cϕ fulfills the properties of

groundedness and of uniform margins: ϕ−1 is well defined on (0, 1] because

of (2) and (3). Required is the convention ϕ−1(0) := inf{x > 0 : ϕ(x) = 0}
for generators that reach 0 at some point. Such generators are called non-

strict, in contrast to strict generators that remain strictly positive on [0,∞).

We check uniform margins and groundedness via

Cϕ(1, . . . , 1, uj, 1, . . . , 1) = ϕ
(
ϕ−1(1) + . . .+ ϕ−1(uj) + . . .+ ϕ−1(1)

)
(1)
= ϕ
(
0 + . . .+ 0 + ϕ−1(uj) + 0 + . . .+ 0

)
= uj

and

Cϕ(u1, . . . , uj−1, 0, uj+1, . . . , ud) =

ϕ
(
ϕ−1(u1) + . . .+ ϕ−1(0) + . . .+ ϕ−1(ud)︸ ︷︷ ︸

≥ϕ−1(0)=inf{x>0:ϕ(x)=0}

)
= 0.

5This is typical for extendible models when the conditional independence construction
is known and used for sampling.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 63

Archimedean Copulas 63

Still, in order to define a copula via Equation (2.2), it remains to ensure

that each d-volume is positive.6 This problem was solved by Schweizer and

Sklar (1963) for the bivariate case; see also Moynihan (1978), Schweizer

and Sklar (1983, Section 6.3), or Nelsen (2006, p. 111). One can show that

Cϕ is a copula in dimension d = 2 if and only if ϕ is a convex generator.

However, there exist convex Archimedean generators that do not imply

Archimedean copulas in dimension d ≥ 3. A simple example is the function

ϕ : [0,∞)→ [0, 1], with x �→ (1− x)�{x∈[0,1]}, which is a convex generator.

Considering the resulting function Cϕ, we observe that this is precisely the

lower Fréchet–Hoeffding bound of Lemma 1.3,

Cϕ(u1, . . . , ud) = max{u1 + . . .+ ud − d+ 1, 0}, (u1, . . . , ud) ∈ [0, 1]d.

This function, however, is only a copula for dimension d = 2. In higher

dimensions it assigns negative mass to certain rectangles.7

The next step is to investigate the problems raised in the introduction

to this chapter from a probabilistic view. We know from the probabilistic

model (2.1) that each positive random variable M defines an Archimedean

copula: the corresponding Laplace transform ϕ defines an Archimedean

copula Cϕ in all dimensions d ≥ 2. Hence, Laplace transforms of positive

random variables must be suitable generators. Before going further, let us

recall the required notion of complete monotonicity.

Definition 2.2 (Complete Monotonicity)

An (Archimedean) generator ϕ is completely monotone (c.m.) if it has

derivatives of all orders on (0,∞) and

(−1)j ϕ(j)(x) ≥ 0, ∀x > 0, j ∈ N0,

where ϕ(j) denotes the jth order derivative of ϕ.

Note that this condition involves ϕ being (1) continuous on (0,∞) (since it

is differentiable), (2) decreasing (since the first derivative is non-positive),

and (3) convex (since the second derivative is non-negative). Examples of

completely monotone functions are ϕ(x) = exp(−ϑx) and ϕ(x) = (1+x)−ϑ

for ϑ > 0. We can now formulate Bernstein’s theorem, which links com-

pletely monotone generators to Laplace transforms, and therefore estab-

lishes a probabilistic link to such functions.
6An example for a generator that does not imply an Archimedean copula is provided

by McNeil and Nešlehová (2009). The function ϕ : [0,∞) → [0, 1], with x �→ (1 −
x)�{x∈[0,1/2]} + (3/2 − 2x)�{x∈(1/2,3/4]} is a generator in the sense of Definition 2.1,
but the resulting function Cϕ (in dimension d = 2) assigns negative mass to the rectangle
[11/16, 13/16]× [11/16, 13/16].
7See, e.g., Embrechts et al. (2003) or McNeil et al. (2005, p. 200): the Cϕ volume of

[1/2, 1]d is 1− d/2.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 64

64 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Theorem 2.1 (Bernstein’s Theorem)

A generator ϕ : [0,∞) → [0, 1] is completely monotone if and only if

ϕ is the Laplace transform of a positive random variable M , i.e. ϕ(x) =

E[exp(−xM)] and P(M > 0) = 1.

Proof. Originally in Bernstein (1929). See also Widder (1946, Theorem

12a, p. 160) or Feller (1966, Theorem 1, p. 439). �

First of all, we recall that distinct distributions have distinct Laplace trans-

forms (see Feller (1966, Theorem 1, p. 430)). Combining the fact that each

positive random variableM implies a copula (for all d ≥ 2) with Bernstein’s

theorem, which provides a relation between Laplace transforms of positive

random variables and completely monotone generators, we have solved the

classification of extendible Archimedean copulas halfway. We now know

that a completely monotone generator ϕ implies a copula Cϕ in all dimen-

sions. The reverse direction is established by Kimberling’s theorem (see

Kimberling (1974)). This establishes necessary and sufficient conditions on

a generator ϕ to define copulas Cϕ in all dimensions d ≥ 2.

Theorem 2.2 (Kimberling’s Theorem: Extendible Cϕ)

Equation (2.2) defines a copula in all dimensions d ≥ 2 if and only if the

generator ϕ is completely monotone.

Proof. The seminal reference is Kimberling (1974); see also Alsina et al.

(2006, Theorem 4.4.6). The result follows from the more general result of

Theorem 2.3 below. �

Let us briefly summarize the key facts of this section: (1) There is an

intimate correspondence between the class of extendible Archimedean cop-

ulas (defining a copula in all dimensions d ≥ 2) and the class of positive

random variables. (2) They are related via the Laplace transform ϕ and

construction (2.1). Technically, this involves the notion of complete mono-

tonicity, Bernstein’s theorem, and Kimberling’s theorem. Hence, extendible

Archimedean copulas are precisely the ones with completely monotone gen-

erators. (3) All extendible Archimedean copulas can therefore be conve-

niently sampled using Algorithm 2.1. Required, however, is a sampling

scheme for M and an analytical expression of its Laplace transform ϕ.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 65

Archimedean Copulas 65

2.2.2 Properties of Extendible Archimedean Copulas

This section lists several properties of extendible Archimedean copulas. In

most references, these properties are inferred from analytical properties of

ϕ. We aim at relating these properties (whenever possible) to the mixture

model that generates this class of copulas to provide alternative proofs and

to gain a deeper understanding of the induced dependence structure.

2.2.2.1 Tail Dependence

Both upper- and lower-tail dependence coefficients of Archimedean copulas

can directly be inferred from their definition and the simple functional form

of Archimedean copulas. For the second to last step in (2.3) and (2.4), the

substitution ϕ−1(u) := x is used. The last step is an application of de

l’Hospital’s rule.

UTDCϕ = 2− lim
u↗1

1− ϕ(2ϕ−1(u)
)

1− u
= 2− lim

x↘0

1− ϕ(2 x)
1− ϕ(x) = 2− 2 lim

x↘0

ϕ′(2 x)
ϕ′(x)

, (2.3)

LTDCϕ = lim
u↘0

ϕ
(
2ϕ−1(u)

)
u

= lim
x↗∞

ϕ(2 x)

ϕ(x)
= 2 lim

x↗∞
ϕ′(2 x)
ϕ′(x)

. (2.4)

The choice of mixing variable M in construction (2.1) obviously affects

the tail dependence coefficients of the resulting Archimedean copula. Some

general statements in this regard are listed in the following lemma; a deeper

analysis is provided in Li (2009) and Charpentier and Segers (2009). Exam-

ples where the lower-tail dependence coefficient does not exist are presented

in Larsson and Nešlehová (2011).

Lemma 2.1 (Tail Dependence of Archimedean Copulas)

Consider an extendible Archimedean copula Cϕ as in (2.1). Then:

(1) If the mixing variable M has existing expectation, i.e. E[M] < ∞,

the upper-tail dependence coefficient of the resulting copula is 0, i.e.

UTDCϕ = 0.

(2) If the mixing variable M is bounded away from 0, i.e. P
(
M ∈ [0, ε)

)
= 0

for some ε > 0, then LTDCϕ = 0.

Proof. Without loss of generality let M be non-deterministic. The as-

sumption E[M] < ∞ implies that E[M] = − limx↘0 ϕ
′(x) exists in (0,∞).

Part (1) then follows from (2.3). The assumption P
(
M ∈ [0, ε)

)
= 0 for

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 66

66 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

some ε > 0 implies that ϕ(2 x) = E[exp(−2 xM)] ≤ E[exp(−xM − x ε)] =
exp(−x ε)ϕ(x). This establishes (2), since

0 ≤ LTDCϕ = lim
x↗∞

ϕ(2 x)

ϕ(x)
≤ lim

x↗∞
e−x εϕ(x)

ϕ(x)
= 0.

�

Archimedean copulas are flexible in the sense that one can construct families

without tail dependence, with (only) upper-tail dependence, with (only)

lower-tail dependence, and with both upper- and lower-tail dependence. To

discuss this further, Lemma 2.1 is useful in two regards. First, for several

parametric families we can immediately conclude that the upper- and/or

lower-tail dependence coefficient is 0.8 Second, it suggests that if we want

to construct an Archimedean copula with lower-tail dependence, the mixing

variable M must not be bounded away from 0. Similarly, a heavy-tailed

mixing variable is required in order to have upper-tail dependence. The

converse statement, however, is not true, as the following example shows.

Example 2.1 (Infinite Expectation of M � UTDCϕ > 0)

Let M ∼ Pareto(1, 1), i.e. let M have density f(x) = x−2
�{x≥1}. The

Laplace transform of M is

ϕ(x) = E
[
e−xM

]
=

∫ ∞

1

e−xmm−2dm = x

∫ ∞

x

e−mm−2dm, x > 0,

using a change of variables to verify the last equality. Consequently,

ϕ′(x) =
∫ ∞

x

e−mm−2dm− e−xx−1.

Using de l’Hospital’s rule, this yields

lim
x↘0

ϕ′(2 x)
ϕ′(x)

= lim
x↘0

∫∞
2x e

−mm−2dm− e−2x/(2 x)∫∞
x e−mm−2dm− e−x/x

= . . . = lim
x↘0

e−2x

e−x
= 1.

Applied in Equation (2.3), this shows that UTDCϕ = 0.

2.2.2.2 Kendall’s Tau

Kendall’s tau of an Archimedean copula can be derived as a functional of

the generator ϕ (see Nelsen (2006, p. 163) and Joe (1997, p. 91)). We find

τCϕ = 1 + 4

∫ 1

0

ϕ−1(x)

(ϕ−1)′(x)
dx = 1− 4

∫ ∞

0

u
(
ϕ′(u)

)2
du. (2.5)

8When we later consider parametric families of Archimedean copulas, we shall see that
most of them do not possess upper-tail dependence, which results exactly from the fact
that they are defined via a light-tailed mixing variable M . Moreover, all parametric
families with M taking values in N do not have lower-tail dependence.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 67

Archimedean Copulas 67

In terms of applications, Kendall’s tau is often used to estimate one-

parametric bivariate Archimedean copulas: one sets the parameter such

that the empirical version of Kendall’s tau9 agrees with the theoretical

value.

Example 2.2 (Clayton Copula)

The Clayton family, introduced in Equation (2.11), has the generator

ϕ(x) = (1 + x)−1/ϑ for ϑ ∈ (0,∞). Hence, ϕ−1(x) = x−ϑ − 1 and

(ϕ−1)′(x) = −ϑx−ϑ−1. Consequently

τCϕ = 1 + 4

∫ 1

0

x−ϑ − 1

−ϑx−ϑ−1
dx

= 1 + 4

∫ 1

0

xϑ+1 − x
ϑ

dx = . . . =
ϑ

ϑ+ 2
∈ (0, 1).

2.2.2.3 Density of Archimedean Copulas

The density of an Archimedean copula with a completely monotone gener-

ator can be computed by taking the d-partial derivatives with respect to

u1, . . . , ud (see McNeil et al. (2005, p. 197)). One obtains

cϕ(u1, . . . , ud) = ϕ(d)
(
ϕ−1(u1) + . . .+ ϕ−1(ud)

)
(ϕ−1)′(u1) · · · (ϕ−1)′(ud).

The above formula looks quite innocuous but becomes numerically chal-

lenging when the dimension d is large. This issue is addressed in Hofert et

al. (2012) and explicit formulas for ϕ(d) are given for some Archimedean

families. Note that interpreting ϕ as the Laplace transform of M might be

beneficial in this situation, since then ϕ(d)(x) = (−1)d E[Md exp(−xM)],

which can be solved explicitly or by numerical integration; depending on

the respective family ϕ.

2.2.2.4 Positive Lower Orthant Dependence (PLOD)

Archimedean copulas with completely monotone generators ϕ are positive

lower orthant dependent (PLOD), i.e. Π(u1, . . . , ud) ≤ Cϕ(u1, . . . , ud) for

all (u1, . . . , ud) ∈ [0, 1]d (see Joe (1997, p. 20)), where Π is the indepen-

dence copula. This property is quite natural given the construction (2.1),

where independent components are affected in the very same way (and are

thus made “positively dependent”) by the random variable M . Note that

9Given n samples from a bivariate distribution, the empirical Kendall’s tau is defined
as the number of concordant pairs minus the number of discordant pairs divided by the
total number of pairs (see McNeil et al. (2005, p. 229)).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 68

68 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

this does not necessarily hold for Archimedean copulas without completely

monotone generators, where, however, the stochastic model is also quite

different (see construction (2.14)).

Proof. We have to show that for all (u1, . . . , ud) ∈ [0, 1]d one has

Π(u1, . . . , ud) ≤ ϕ
(
ϕ−1(u1) + . . .+ ϕ−1(ud)

)
. (2.6)

Using ϕΠ(x) := exp(−x) and ϕ−1
Π (x) := − log(x), Π can be written as

an Archimedean copula. We set ϕ−1(uk) =: xk for k = 1, . . . , d and let

f(x) := − log
(
ϕ(x)
)
. Note that complete monotonicity of ϕ implies that

ϕ > 0, making this transformation admissible. Inequality (2.6) can then be

rearranged to

f(x1) + . . .+ f(xd) ≥ f(x1 + . . .+ xd), ∀ (x1, . . . , xd) ∈ [0,∞)d. (2.7)

By induction, it is enough to show that f(x1) + f(x2) ≥ f(x1 + x2),

for (x1, x2) ∈ [0,∞)2. We observe that f(0) = − log
(
ϕ(0)
)

= 0.

Moreover, using the complete monotonicity of ϕ, the second derivative

f (2)(x) =
(
ϕ′(x)2 − ϕ(2)(x)ϕ(x)

)
/ϕ2(x) is less than or equal to 0. This

follows from a connection of absolutely monotone functions with Hankel

determinants, establishing

det

(
ϕ(x) −ϕ′(x)
−ϕ′(x) (−1)2ϕ(2)(x)

)
= ϕ(x)ϕ(2)(x)− ϕ′(x)ϕ′(x) ≥ 0, ∀x ≥ 0

(see Widder (1946, Corollary 16, p. 167)). Hence, f is concave. Without

loss of generality, let x1 + x2 > 0 and write

x1 =
x1

x1 + x2
· (x1 + x2) +

x2
x1 + x2

· 0,

x2 =
x1

x1 + x2
· 0 + x2

x1 + x2
· (x1 + x2).

Using that f is concave and f(0) = 0, we obtain

f(x1) ≥ x1
x1 + x2

· f(x1 + x2), f(x2) ≥ x2
x1 + x2

· f(x1 + x2).

Combining both inequalities implies the required subadditivity of f . �

Let us remark that a closely related result on the ordering of Cϕ1 ≤ Cϕ2

is provided in Genest and MacKay (1986) (see also Nelsen (2006, p.

136)). There, it is shown that Cϕ1(u1, . . . , ud) ≤ Cϕ2(u1, . . . , ud) for all

(u1, . . . , ud) ∈ [0, 1]d if and only if f(x) := ϕ−1
1

(
ϕ2(x)

)
is subadditive.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 69

Archimedean Copulas 69

2.2.3 Constructing Multi-Parametric Families

Outer/exterior power family: It is known (see Nelsen (2006, Theo-

rem 4.5.1, p. 141)) that for a completely monotone generator ϕ and for

α ∈ (0, 1], a new completely monotone generator ϕα(x) := ϕ(xα) can be

defined.10 This statement can be shown either analytically (which is done in

the above reference) or via the following probabilistic interpretation. Con-

sider an α-stable Lévy subordinator11 Λ = {Λt}t≥0 and an independent pos-

itive random variableM with Laplace transform ϕ. Stopping the process Λ

at time M yields another positive random variable, denoted M̂ := ΛM . Its

Laplace transform is given by E[exp(−xΛM)] = E[E[exp(−xΛM)|M]] =

E[exp(−M xα)] = ϕ(xα), where we used the fact that the Laplace exponent

of an α-stable Lévy subordinator is Ψ(x) = − log(E[exp(−xΛt)])/t = xα.

Generators defined in this way have one additional parameter and are there-

fore more flexible. Note that the simulation of such structures is easy if M

and Λ can be simulated. Moreover, constructions of this kind turn out to

be useful for defining h-extendible (hierarchical) Archimedean copulas via

Lévy subordinators (see Section 2.4).

Inner/interior power family: It is also known that for a completely

monotone generator ϕ and β ∈ N, a new completely monotone generator

ϕβ(x) := ϕ(x)β can be defined. To observe this, consider β i.i.d. copies

M1, . . . ,Mβ of the positive random variable M whose Laplace transform is

ϕ. Then, the sum M1 + . . . +Mβ is again a positive random variable and

its Laplace transform is the product of the individual Laplace transforms,

hence ϕβ . Again, this is straightforward to simulate if a simulation scheme

for M is available.

More on outer/inner families can be found in Nelsen (1997).

2.2.4 Parametric Families

This section introduces some of the Archimedean families that have been

studied in the literature. We purposely selected families that have specific

properties and describe those. The included scatterplots indicate the large

flexibility of Archimedean copulas and might be used to visually understand

the various dependence structures. Recall that each positive random vari-

able defines an Archimedean copula via the mixture model (2.1). Therefore,

10The reader might be surprised by the wording “outer/exterior”. The explanation for
this is that the original source (see Oakes (1994)) parameterizes Archimedean copulas
by means of ϕ−1 instead of ϕ, where the power is then taken “outside”.
11An introduction to Lévy subordinators is given in Appendix A.2.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 70

70 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

our list of random variables cannot be complete. A battery of additional

generator functions including their properties can be found in Nelsen (2006,

p. 116).

2.2.4.1 Ali–Mikhail–Haq Family

The generator of the Ali–Mikhail–Haq (AMH) family is given by

ϕ(x) =
1− ϑ
ex − ϑ, ϕ−1(x) = log

(1− ϑ
x

+ ϑ
)
, ϑ ∈ [0, 1). (2.8)

This corresponds to a discrete mixing variable M with Geo(1 − ϑ)-

distribution,12 i.e.

P(M = m) = (1 − ϑ)ϑm−1, m ∈ N.

A simple representation13 of such a distribution is M
d
= �log(U)/ log(ϑ)�,

where U ∼ U [0, 1] and �x� is the ceiling function �x� := min{m ∈ Z : m ≥
x} (see Devroye (1986, p. 499)). In the bivariate case, the range of ϑ can be

extended to [−1, 1), but the interpretation of ϕ as the Laplace transform

of a Geometric distribution is only available on [0, 1). When ϑ decreases

to 0, the limit is the independence copula (see Figure 2.2). This is quite

natural from the perspective of the mixing model, since for ϑ = 0 we have

P(M = 1) = 1. The Ali–Mikhail–Haq family does not have tail dependence.

Kendall’s tau for this family is τCϕ = 1− 2
(
ϑ+ (1− ϑ)2 log(1− ϑ))/(3ϑ2).

This illustrates that the Ali–Mikhail–Haq family is not able to imply strong

dependence, since Kendall’s tau is increasing in ϑ and converges to 1/3 for

ϑ ↗ 1. A further characterization of this family, based on quotients of

polynomials, is provided in Nelsen (2006, p. 148). The name of this family

stems from Ali et al. (1978).

2.2.4.2 Frank Family

The generator of the Frank family is given by

ϕ(x) = − 1

ϑ
log
(
e−x(e−ϑ − 1) + 1

)
, ϕ−1(x) = − log

(e−ϑx − 1

e−ϑ − 1

)
, (2.9)

12For x ≥ 0: E
[
e−xM

]
=

∑∞
m=1 e

−xm(1 − ϑ)ϑm−1 = e−x(1 − ϑ)
∑∞

m=0(e
−x ϑ)m =

(1 − ϑ)/(ex − ϑ).
13Note: P

(log(U)
log(ϑ)

 = m
)
= P

(
ϑm−1 > U ≥ ϑm

)
= ϑm−1 − ϑm = (1− ϑ)ϑm−1.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 71

Archimedean Copulas 71

where ϑ ∈ (0,∞). This corresponds to a discrete mixing variable M with

distribution14

P(M = m) =
(1− e−ϑ)m

mϑ
, m ∈ N.

Note that this distribution might be seen as a logarithmic distribution15

with parameter p = 1 − exp(−ϑ). The Frank family does not have tail

dependence. Kendall’s tau for this family is τCϕ = 1 + 4
(∫ ϑ

0 t(ϑ exp(t) −
ϑ)−1dt − 1

)
/ϑ. Its limiting cases are the independence copula for ϑ ↘ 0

and the comonotonicity copula for ϑ ↗ ∞. The distinct property of the

Frank family is that, in the bivariate case,16 it is the only Archimedean

family which is radially symmetric, i.e. its copula and its survival copula

are the same. This statement was shown in Frank (1979) and is visualized

in Figure 2.3.

2.2.4.3 Joe Family

The generator of the Joe family is given by

ϕ(x) = 1− (1− e−x)1/ϑ, ϕ−1(x) = − log
(
1− (1− x)ϑ), (2.10)

where ϑ ∈ [1,∞). This corresponds to a discrete mixing variable M with a

Sibuya distribution17

P(M = m) = (−1)m+1

(
1/ϑ

m

)
, m ∈ N.

The sampling of general discrete random variables with a given probability

distribution function is treated in Chapter 6. A more specific algorithm to

sample from M in the present situation is presented in Hofert (2011). This

algorithm is repeated below for the readers’ convenience.

Algorithm 2.2 (Sampling M for Joe’s Family: Hofert (2011))

Define α := 1/ϑ and the functions

F (n) := 1− 1

nB(n, 1− α) , n ∈ N,

G−1(y) :=
(
(1 − y) Γ(1− α))−ϑ

, y ∈ [0, 1],

14For x ≥ 0: E
[
e−xM

]
=

∑∞
m=1 e

−xm (1−e−ϑ)m

mϑ
= 1

ϑ

∑∞
m=1

(e−x(1−e−ϑ))m

m
=

− 1
ϑ
log(e−x(e−ϑ − 1) + 1).

15X ∼ Log(p) if P(X = m) = pm/
(−m log(1− p)

)
for m ∈ N and p ∈ (0, 1). Sampling

such distributions is considered in Kemp (1981).
16In the trivariate case, one can quickly find numerically a point (u1, u2, u3) ∈ [0, 1]3

satisfying C(u1, u2, u3) �= Ĉ(u1, u2, u3).
17For x ≥ 0: E

[
e−xM

]
=

∑∞
m=1 e

−xm(−1)m+1
(1/ϑ

m

)
= 1 − ∑∞

m=0

(1/ϑ
m

)
(−e−x)m =

1− (1− e−x)1/ϑ.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 72

72 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

where Γ and B abbreviate the Gamma and Beta functions,18 respectively.

Then, M can be sampled via the following algorithm:

(1) Sample U ∼ U [0, 1].
(2) If U ≤ α then return 1.

(3) If F (�G−1(U)�) < U then return �G−1(U)�. Otherwise �G−1(U)�,
where �x� := max{m ∈ Z : m ≤ x} and �x� := min{m ∈ Z : m ≥ x}.

The Joe family does not have lower-tail dependence but has upper-tail

dependence equal to 2 − 2
1
ϑ . Kendall’s tau for this family is τCϕ = 1 −

4
∑∞

k=1

(
k (ϑ k + 2) (ϑ (k − 1) + 2)

)−1
. The limiting cases of this family

are the independence copula for ϑ = 1 (where P(M = 1) = 1) and the

comonotonicity copula for ϑ ↗ ∞ (see Figure 2.4). This family appears,

e.g., in Joe (1993).

2.2.4.4 Clayton Family

The wording19 Clayton family stems from the reference Clayton (1978).

The generator of the Clayton family is given by

ϕ(x) = (1 + x)−1/ϑ, ϕ−1(x) = x−ϑ − 1, ϑ ∈ (0,∞). (2.11)

This corresponds to a Gamma-distributed20 mixing variableM ∼ Γ(1/ϑ, 1).

In the bivariate case, the range of ϑ can even be extended to [−1, 0)∪(0,∞).

Then, however, the interpretation of the copula as the result of a mixture

model involving a Gamma-distributed random variable is lost and the gen-

erator function is not completely monotone anymore. The Clayton family

has lower-tail dependence 2−
1
ϑ but does not have upper-tail dependence.

Kendall’s tau for this family is τCϕ = ϑ/(ϑ + 2) (see Example 2.2). The

18The Beta function is defined as B(x, y) := Γ(x) Γ(y)/Γ(x + y).
19H. Joe names this copula the MTCJ copula and provides as additional references
Mardia (1962), Takahasi (1965), Kimeldorf and Sampson (1975), and Cook and Johnson
(1981), where this copula appears explicitly or implicitly.
20Using the substitution m̃ := m (1 + x) and the definition of the Gamma function, we
find

E
[
e−xM

]
=

∫ ∞

0
e−xm m1/ϑ−1e−m

Γ(1/ϑ)
dm =

1

Γ(1/ϑ)

∫ ∞

0
e−m(x+1)m1/ϑ−1dm

=
1

Γ(1/ϑ)

∫ ∞

0
e−m̃

(m̃

1 + x

)1/ϑ−1 1

1 + x
dm̃

=
1

Γ(1/ϑ)(1 + x)1/ϑ

∫ ∞

0
e−m̃m̃1/ϑ−1dm̃ = (1 + x)−1/ϑ, x ≥ 0.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 73

Archimedean Copulas 73

limiting cases are the independence copula when ϑ ↘ 0 and the comono-

tonicity copula when ϑ↗∞ (see Figure 2.5).

The Clayton copula is hidden in the following application (see Schmitz

(2004)). Consider a list of i.i.d. random variables X1, . . . , Xn with con-

tinuous distribution function F . Let X(1) ≤ . . . ≤ X(n) denote the order

statistic of this sample. We can compute the copula of (−X(1), X(n)) via

P(−X(1) ≤ x,X(n) ≤ y) = P
(⋂n

i=1{Xi ∈ [−x, y]}) = (F (y) − F (−x))n for

−x ≤ y and 0 otherwise. Considering the marginals of −X(1) and X(n),

respectively, note that FX(n)
(y) = F (y)n and F−X(1)

(x) =
(
1 − F (−x))n.

Sklar’s theorem yields the copula C−X(1),X(n)
(u, v) = max

{
0, (u1/n+v1/n−

1)n
}
, which is the bivariate Clayton copula with parameter ϑ = 1/n.

The copula of X(1) and X(n) can then be found by using the fact that

−X(1) is a strictly decreasing transformation of X(1). Therefore (see Nelsen

(2006, Theorem 2.4.4, p. 26) or Embrechts et al. (2003, Example 2.3)),

the copula of the smallest and the largest sample is CX(1),X(n)
(u, v) =

v − C−X(1),X(n)
(1 − u, v). This shows that X(1) and X(n) are asymptot-

ically independent.

A second example where the Clayton family naturally occurs is pre-

sented in McNeil et al. (2005, Example 5.12). Here, it is shown that the

(bivariate) Clayton copula is the survival copula of the (bivariate) Pareto

distribution (see also Mardia (1962)).

2.2.4.5 Gumbel Family

This family was (implicitly) introduced in Gumbel (1960a). The generator

of the Gumbel family is given by

ϕ(x) = e−x1/ϑ

, ϕ−1(x) =
(− log(x)

)ϑ
, ϑ ∈ [1,∞). (2.12)

This corresponds to a 1/ϑ-stable-distributed mixing variable M ∼ S(1/ϑ).
The Gumbel family has no lower-tail dependence but has upper-tail depen-

dence 2−2
1
ϑ . Kendall’s tau for this family is τCϕ = (ϑ−1)/ϑ. The limiting

cases for ϑ ↘ 1 and ϑ ↗∞ are the independence and the comonotonicity

copula, respectively (see Figure 2.6). The Gumbel family plays a distinct

role as the only Archimedean family that is at the same time an extreme-

value copula (see Definition 1.12). Writing out the functional form of Cϕ

one easily verifies ϕ
(
ϕ−1(ut1)+. . .+ϕ

−1(utd)
)
= ϕ
(
ϕ−1(u1)+. . .+ϕ

−1(ud)
)t

for all t ≥ 0. The proof that there are no other Archimedean families with

this property is due to Genest and Rivest (1989) and can also be found in

Nelsen (2006, p. 143).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 74

74 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

2.2.4.6 Inverse Gaussian Family

The generator of the inverse Gaussian (IG) family is given by

ϕ(x) = e(1−
√
1+2ϑ2x)/ϑ, ϕ−1(x) =

(
1− ϑ log(x))2 − 1

2ϑ2
, (2.13)

where ϑ ∈ (0,∞). This corresponds to a continuous mixing variable M ∼
IG(1, 1/ϑ). The IG family has no tail dependence. We do not have a

closed-form expression for Kendall’s tau, but it is not difficult to numerically

compute it from Equation (2.5). Scatterplots based on different parameter

values are given in Figure 2.7.

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 2.2 Scatterplot of 2 500 samples from the AMH copula with ϑ = 0.1 (left), 0.5
(middle), and 0.9 (right). Note that the dependence is increasing with ϑ, and the limiting
case ϑ = 0 corresponds to independence.

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 2.3 Scatterplot of 2 500 samples from the Frank copula with ϑ = 1 (left), 10 (mid-
dle), and 20 (right). Note that the dependence is increasing with ϑ, the limiting case
ϑ ↘ 0 corresponds to independence, and the case ϑ ↗ ∞ to comonotonicity. Also note
that the scatterplot has two axes of symmetry: (1) symmetry around the first diago-
nal (corresponding to exchangeability) and (2) symmetry around the second diagonal
(corresponding to the fact that the bivariate Frank copula is radially symmetric).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 75

Archimedean Copulas 75

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 2.4 Scatterplot of 2 500 samples from the Joe copula with ϑ = 1.1 (left), 5 (middle),
and 10 (right). Note that the dependence is increasing with ϑ, the limiting case ϑ = 1
corresponds to independence, and ϑ ↗ ∞ corresponds to the comonotonicity copula.

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 2.5 Scatterplot of 2 500 samples from the Clayton copula with ϑ = 0.1 (left), 2
(middle), and 20 (right). Note that the dependence is increasing with ϑ, the limiting
case ϑ ↘ 0 corresponds to independence, and the case ϑ ↗ ∞ to comonotonicity.

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 2.6 Scatterplot of 2 500 samples from the Gumbel copula with ϑ = 1.1 (left), 2
(middle), and 10 (right). Note that the dependence is increasing with ϑ, the limiting
case ϑ ↘ 1 corresponds to independence, and the case ϑ ↗ ∞ to comonotonicity.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 76

76 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 2.7 Scatterplot of 2 500 samples from the IG copula with ϑ = 0.1 (left), 2 (middle),
and 20 (right). Note that the dependence is increasing with ϑ.

2.3 Exchangeable Archimedean Copulas

Recalling Kimberling’s theorem from Section 2.2, on the one hand it is

established that ϕ defines a copula Cϕ in all dimensions d ≥ 2 if and only

if ϕ is a completely monotone generator. On the other hand, the function

x �→ (1 − x)�{x∈[0,1]} provides an example of a generator that defines a

copula Cϕ in dimension d = 2 but not for d ≥ 3. This leaves us with

the following questions: (1) How do we characterize generators that define

copulas Cϕ for some fixed d > 2 (recall that the bivariate case was solved

by Schweizer and Sklar (1963))? (2) Given such a characterization, is there

some probabilistic model that might be used to sample from Cϕ?

Sketching a roadmap for this subsection, it turns out that (somewhat

similar to Bernstein’s theorem) the notion of d-monotonicity can be re-

lated to the so-called Williamson d-transform of a positive random variable

R. Moreover, Cϕ is a proper copula in dimension d if the generator ϕ

is d-monotone (note the similarity to Kimberling’s theorem). Finally, a

stochastic model for general exchangeable Archimedean copulas in dimen-

sion d is constructed, involving the random variable R that is related to ϕ

via the Williamson d-transform.

To address the issues (1) and (2) raised above, let us start with some

very general thoughts. If Cϕ is an Archimedean copula for some fixed

dimension d, the symmetry of Cϕ manifests that the underlying distribu-

tion is exchangeable. Moreover, we have already classified all extendible

Archimedean copulas, so we are looking for an exchangeable Archimedean

copula that is not extendible. What is special about extendibility (and can

thus be ruled out)? We know that the components of extendible random

vectors have non-negative pairwise correlation (in the Archimedean case,

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 77

Archimedean Copulas 77

they are PLOD, see Section 2.2.2.4). This puts us on the right track, as the

example for a generator that defines an exchangeable Archimedean copula

for d = 2 but not for d ≥ 3 was the generator that corresponds to the

countermonotonicity copula in dimension d = 2 (see Example 1.3). Hence,

it might be worthwhile to investigate exchangeable models that are flexible

enough to allow for negative dependence. One such model is the follow-

ing. On a probability space (Ω,F ,P) consider a list E1, . . . , Ed of i.i.d.

exponentially distributed random variables with mean 1 and define

Sd :=
(E1

E1 + . . .+ Ed
, . . . ,

Ed

E1 + . . .+ Ed

)
.

Intuitively, it is clear that the components defined in the above way are

negatively dependent.21 More precisely, one can show the following lemma.

The density of Sd is provided in Fang et al. (1990, Theorem 5.2(2), p. 115).

Lemma 2.2 (Properties of Sd)

(1) The sum E1 + . . . + Ed follows an Erlang distribution, i.e. a Gamma

distribution with scale parameter d and rate parameter 1, i.e. with den-

sity

f(x) = �{x>0}
xd−1e−x

(d− 1)!
, x ∈ R.

(2) Sd is uniformly distributed on the d-dimensional unit simplex, i.e. on

the set

Ad := {(u1, . . . , ud) ∈ [0, 1]d : u1 + . . .+ ud = 1}.
(3) Sd and E1 + . . .+ Ed are independent random variables.

(4) The survival copula Ĉ of Sd is of the Archimedean kind, given by

Ĉ(u1, . . . , ud) =
(
u

1
d−1

1 + . . .+ u
1

d−1

d − (d− 1)
)d−1

+

= Cϕd−1
(u1, . . . , ud),

with ϕd−1(x) := (1 − x)d−1
+ = max(1− x, 0)d−1.

(5) If R is independent of Sd and Erlang distributed with parameter d, then

R Sd
d
= (E1, . . . , Ed).

21Consider, e.g., the case d = 2 where this is especially apparent, since E1/(E1 +E2) =
1− E2/(E1 +E2).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 78

78 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Proof.

(1) The statement is obtained by means of a standard computation and it

also follows as a byproduct from the proof of (2).

(2) Note that (E1, . . . , Ed) has joint probability density function

(x1, . . . , xd) �→ �{x1>0,...,xd>0}e−
∑d

i=1 xi .

Define the transformation h : (0,∞)d → (0, 1)d−1 × (0,∞) by

(x1, . . . , xd) �→
(x1∑d

i=1 xi
, . . . ,

xd−1∑d
i=1 xi

,

d∑
i=1

xi

)
.

Then, h−1 : (0, 1)d−1 × (0,∞)→ (0,∞)d is given by

(y1, . . . , yd−1, y) �→
(
yy1, yy2, . . . , yyd−1, y

(
1−

d−1∑
i=1

yi
))
.

It follows that

(h−1)′ =

∂
∂y1

h−1
1 . . . ∂

∂y1
h−1
d−1

∂
∂y1

h−1
d

...
. . .

...
...

∂
∂yd−1

h−1
1 . . . ∂

∂yd−1
h−1
d−1

∂
∂yd−1

h−1
d

∂
∂yh

−1
1 . . . ∂

∂yh
−1
d−1

∂
∂yh

−1
d

=

y 0 . . . 0 −y
0 y . . . 0 −y
...

...
. . .

...
...

0 0 . . . y −y
y1 y2 . . . yd−1

(
1−

d−1∑
i=1

yi
)

,

where hi abbreviates hi(x1, . . . , xd) := (h(x1, . . . , xd))i, the ith compo-

nent of h. By either using Laplace expansion along the last row, or by

alternatively using the fact that the determinant is a multilinear func-

tional that is invariant when one row or column is added to another

one, we obtain the determinant det
(
(h−1)′

)
= yd−1. Density transfor-

mation (see, e.g., Czado and Schmidt (2011, Satz 1.3, p. 6)) provides

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 79

Archimedean Copulas 79

that the joint probability density function of h(E1, . . . , Ed) is given by

fh(E1,...,Ed)

(
y1, . . . , yd−1, y

)
= f(E1,...,Ed)

(
h−1(y1, . . . , yd−1, y)

) · ∣∣det ((h−1)′
)∣∣

= �
{yy1>0,...,yyd−1>0,y

(
1−

d−1∑
i=1

yi

)
>0}

e−yyd−1

(∗)
= �

{y1>0,...,yd−1>0,y>0,
d−1∑
i=1

yi<1}
e−yyd−1

=
(
�{y>0}e−yyd−1 1

(d− 1)!

)
︸ ︷︷ ︸

(∗∗)

·
(
(d− 1)!�

{y1>0,...,yd−1>0,
d−1∑
i=1

yi<1}

)
︸ ︷︷ ︸

(∗∗∗)

,

where (∗∗) equals the density of hd(E1, . . . , Ed) = E1+ . . .+Ed, i.e. an

Erlang distribution with scale parameter d, and (∗ ∗ ∗) is the density of

(h1, . . . , hd−1)(E1, . . . , Ed) =
(
E1/
∑d

i=1Ei, . . . , Ed−1/
∑d

i=1Ei

)
, which

is uniformly distributed on the set in the indicator. To justify (∗),
first consider yy1 > 0, . . . , yyd−1 > 0, y

(
1 −∑d−1

i=1 yi
)
> 0 and assume

y < 0. It follows that y1 < 0, . . . , yd−1 < 0 as yy1, . . . , yyd−1 should

be positive. Hence, y
(
1 −∑d−1

i=1 yi
)
< 0. This contradiction shows

that the assumption is wrong and y > 0. Thus, it follows from yy1 >

0, . . . , yyd−1 > 0, y
(
1 −∑d−1

i=1 yi
)
> 0 that y1 > 0, . . . , yd−1 > 0, y >

0,
∑d−1

i=1 yi < 1. The other direction is trivial.

It follows that
(
E1/
∑d

i=1Ei, . . . , Ed−1/
∑d

i=1Ei

)
is uniformly dis-

tributed on the set {y1 > 0, . . . , yd−1 > 0,
∑d−1

i=1 yi < 1} and conse-

quently (E1∑d
i=1 Ei

, . . . ,
Ed−1∑d
i=1 Ei

,
Ed∑d
i=1 Ei

)
follows the uniform distribution on Ad, as

Ed∑d
i=1 Ei

= 1−
∑d−1

i=1 Ei∑d
i=1 Ei

.

(3) The claim follows directly from the proof of (2), since E1 + . . . + Ed

and (E1∑d
i=1 Ei

, . . . ,
Ed−1∑d
i=1Ei

)
are independent and Sd is a function of the latter.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 80

80 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

(4) Consider u ∈ (0, 1) and k ∈ {1, . . . , d} and compute

P
(Ek

E1 + . . .+ Ed
> u
)
= P
(
Ek >

u

1− u
∑
i�=k

Ei

)
(∗)
= E
[
e
− u

1−u

∑
i�=k

Ei
]

(∗∗)
=
(
1 +

u
1−u

1

)−(d−1)

=
(1

1− u
)−(d−1)

= (1− u)d−1 =: F̄k(u).

Thus, F̄−1
k (v) = 1− v 1

d−1 for v ∈ (0, 1). Observe that to justify (∗) we
condition on

∑
i�=k Ei and in (∗∗) we exploit the fact that

∑
i�=k Ei ∼

Erlang(d − 1) = Γ(1, d − 1), which is why the Laplace transform is

known (see Section A.2.2).

Moreover,22 by substituting the density of (h1, . . . , hd−1)(E1, . . . , Ed)

obtained in the proof of (2), we deduce using ui ∈ (0, 1) that

P
(
Sd > (u1, . . . , ud)

)
= P
(
h1 > u1, . . . , hd−1 > ud−1, 1−

d−1∑
i=1

hi > ud

)

=

∫ 1

u1

∫ 1

u2

. . .

∫ 1

ud−1

�{∑d−1
i=1 xi<1−ud}(d− 1)! dxd−1 . . . dx2dx1

=

∫∫
[0,1]d−1

�{x1>u1} . . .�{xd−2>ud−2}�{∑d−1
i=1 xi−(x1+...+xd−2)>ud−1}×

× �{∑d−1
i=1 xi<1−ud}(d− 1)! d(x1, . . . , xd−1).

We substitute (x1, . . . , xd−1)
f�→(x1, . . . , xd−2,

∑d−1
i=1 xi) with det(f ′) = 1

and transform further

P
(
Sd > (u1, . . . , ud)

)
=

∫∫
[0,1]d−2×[0,d−1]

�{x1>u1} . . .�{xd−2>ud−2}�{x−(x1+...+xd−2)>ud−1}×

× �{x<1−ud}(d− 1)! d(x1, . . . , xd−2, x)

= (d − 1)!

∫ 1

u1

. . .

∫ 1

ud−2

∫ d−1

0

�{1−ud>x>ud−1+(x1+...+xd−2)}dxd(x1, . . . , xd−2)

= (d − 1)!

∫ 1

u1

. . .

∫ 1

ud−2

(
1 − ud − (

ud−1 + (x1 + . . . + xd−2)
))

+
dxd−2

︸ ︷︷ ︸
=− 1

2

(
1−(ud+ud−1+x1+...+xd−2)

)2
+

∣∣∣∣
xd−2=1

xd−2=ud−2

=1
2

(
1−(ud+ud−1+ud−2+x1+...+xd−3)

)2
+

. . . dx1.

22Operators such as “>” are understood componentwise and we abbreviate hi :=
hi(E1, . . . , Ed).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 81

Archimedean Copulas 81

By applying iteratively the same computations, we obtain

P
(
Sd > (u1, . . . , ud)

)
= (d− 1)!

1

(d− 1)!

[
1− (ud + . . .+ u1)

]d−1

+

=
[
1− (ud + . . .+ u1)

]d−1

+

= max
(
1− (ud + . . .+ u1), 0

)d−1
.

Now Sklar’s theorem provides that

ĈSd(u1, . . . , ud) =
[
1−
((

1− u
1

d−1

d

)
+ . . .+

(
1− u

1
d−1

1

))]d−1

+

=
[
u

1
d−1

d + . . .+ u
1

d−1

1 − (d− 1)
]d−1

+

= Cϕd−1
(u1, . . . , ud),

with ϕd−1(x) := (1− x)d−1
+ = max(1− x, 0)d−1.

(5) Consider a random variable R ∼ Erlang(d) (note P(R > 0) = 1),

independent of Sd, and let x1 > 0, . . . , xd > 0. Then, because of (4),

one has

P
(
R Sd > (x1, . . . , xd)

)
= E
[
P
(
Sd >

1

R
(x1, . . . , xd) | R

)]
= E
[(
1− 1

R
(x1 + . . .+ xd)

)d−1

+

]
=

∫ ∞

0

1

(d− 1)!
e−xxd−1

(
1−

d∑
i=1

xi/x
)d−1

+
dx

=

∫ ∞
d∑

i=1
xi

1

(d− 1)!
e−x
(
x−

d∑
i=1

xi

)d−1

dx

=

∫ ∞

0

1

(d− 1)!
e
−y−

d∑
i=1

xi

yd−1dy

= e
−

d∑
i=1

xi

∫ ∞

0

1

(d− 1)!
e−yyd−1dy︸ ︷︷ ︸

=1 as integral over density
of Erlang distribution

= e
−

d∑
i=1

xi︸ ︷︷ ︸
surv. func. of (E1,...,Ed)

,

where we have substituted y := x−∑d
i=1 xi. The claim follows.

�

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 82

82 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

2.3.1 Constructing Exchangeable Archimedean Copulas

Now consider a positive random variable R, independent of Sd. Define the

random vector

(X1, . . . , Xd) := R Sd =
(RE1∑d

k=1 Ek

, . . . ,
REd∑d
k=1 Ek

)
. (2.14)

Let us start with two important cases:

(1) The simplest case in (2.14) is to take R = 1. Then, the random vector

boils down to a uniform distribution on the d-dimensional simplex, as

seen in Lemma 2.2(2).

(2) It is also possible to relate this model to the initial mixture model

of extendible Archimedean copulas. It holds that Sd and
∑d

k=1 Ek

are independent (see Lemma 2.2(3)). This allows us to define R :=

(
∑d

k=1 Ek)/M and the model agrees with the model for extendible

Archimedean copulas, given in Equation (2.1). Therefore, (2.14) is

a proper generalization of (2.1).

In general, we can interpret the model (2.14) as mixing a uniform distribu-

tion on the unit d-dimensional simplex using a random radius R. Condi-

tioned on the factor R, the induced survival copula equals the Archimedean

copula with generator ϕ(x) = max(1−x, 0)d−1 = (1−x)d−1
+ , being a point-

wise lower bound for all Archimedean copulas (see McNeil and Nešlehová

(2009, Proposition 4.6)). In this regard, instead of conditional independence

(as in the case of model (2.1)) one could heuristically speak of “conditional

countermonotonicity”. As opposed to the constructions in the completely

monotone case (where an infinite sequence {Xk}k∈N with Xk := Ek/M is

constructed), the present construction can not be extended to dimension

d + 1 without changing the margins. The model (2.14) is again related

to Archimedean copulas via its survival copula. It holds that (X1, . . . , Xd)

has an Archimedean survival copula, where the generator is the Williamson

d-transform of the random variable R, denoted ϕd,R. Since this is a little-

known transform, let us state the definition.

Definition 2.3 (Williamson d-Transform)

The Williamson d-transform (see Williamson (1956)) of a positive random

variable R is defined as

ϕd,R(x) := E
[
max
(
1− x

R
, 0
)d−1
]
, x ≥ 0, (2.15)

where d ∈ N with d ≥ 2.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 83

Archimedean Copulas 83

It is worth noting that the distribution of a positive random variable is

characterized uniquely by its Williamson d-transform. Moreover, there ex-

ists an inversion formula which is surprisingly simple.23 More precisely, the

distribution function FR of a positive random variable R with Williamson

d-transform ϕd,R is given by

FR(x) = 1−
d−2∑
k=0

(−1)kxkϕ(k)
d,R(x)

k!
− (−1)d−1xd−1ϕ

(d−1)
d,R+(x)

(d− 1)!
, (2.16)

where x ≥ 0 and ϕ
(d−1)
d,R+ denotes the (d−1)-fold derivative of ϕd,R, whenever

non-negative.

Example 2.3 (Independence Copula in Dimension d ≥ 2)

The d-dimensional independence copula Π(u1, . . . , ud) = u1 · · ·ud is of the

Archimedean kind with generator ϕd,R(x) = exp(−x). Unlike in the ex-

tendible model (2.1), where it is easily seen that M ≡ const implies the

independence copula, in construction (2.14) it is not immediate how R

must be chosen in order to obtain independent components. To determine

the distribution of R, we use the inversion formula (2.16) and find with

exp(−x)(k) = (−1)k exp(−x) that

FR(x) = 1−
d−2∑
k=0

xk e−x

k!
− xd−1 e−x

(d− 1)!
= 1− e−x

d−1∑
k=0

xk

k!
, x ≥ 0.

This is precisely the distribution function of an Erlang distribution with

d degrees of freedom. This example also illustrates that the choice of R

depends on the dimension and the result is clearly consistent with Lemma

2.2(5).

The main theorem of this section is now stated. It characterizes d-

dimensional Archimedean copulas via d-monotone generator functions.

These, in turn, are related to positive random variables via Williamson’s

d-transform. This relation then manifests a probabilistic model for each

such copula.

Theorem 2.3 (Exchangeable Archimedean Copulas)

Consider the model (2.14) for a positive random variable R.

(1) The survival copula of (2.14) is an Archimedean copula whose generator

is given by the Williamson d-transform of R.
23Having in mind the non-trivial inversion formula(s) of the Laplace transform (see, e.g.,
Widder (1946, Chapter II, Section 7)).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 84

84 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

(2) The Williamson d-transform of R is d-monotone on [0,∞), i.e. (a)

it is differentiable on (0,∞) up to the order d − 2 and the derivatives

satisfy

(−1)j ϕ(j)
d,R(x) ≥ 0, ∀x > 0, j = 0, 1, . . . , d− 2,

(b) (−1)d−2 ϕ
(d−2)
d,R is non-increasing and convex on (0,∞), and (c)

ϕd,R is continuous at 0.

(3) The set of d-monotone functions on [0,∞) starting from 1 agrees with

the set of Williamson d-transforms of positive random variables.

(4) All (exchangeable) Archimedean copulas can be obtained by this ap-

proach.

(5) The extendible subset is obtained by choosing R := T/M , where T ∼
Erlang(d) is independent of the positive random variable M .

Proof.

(1) The proof involves two steps: (a) From Lemma 2.2, it follows that

P
(
R Sd > (x1, . . . , xd)

)
= P
(
Sd >

1

R
(x1, . . . , xd)

)
= E
[
P
(
Sd >

1

R
(x1, . . . , xd) | R

)]
= E
[(
1− 1

R
(x1 + . . .+ xd)

)d−1

+

]
= ϕd,R(x1 + . . .+ xd).

(b) Moreover,

P
(
R

Ek∑d
i=1Ei

> x
)
= P
(
Ek >

x/R

1− x/R
∑
i�=k

Ei,
x

R
< 1
)

(∗)
= E
[
�{ x

R<1}e
− x/R

1−x/R

∑
i�=k

Ei
]

(∗∗)
= E
[
�{ x

R<1}
(
1 +

x/R

1− x/R
)−(d−1)

]
= E
[(

1− x

R

)d−1

+

]
= ϕd,R(x).

Note that in (∗) we compute the probability conditioned on
∑

i�=k Ei

and R and to justify (∗∗) we use the fact that∑i�=k Ei ∼ Erlang(d−1)

and condition onR. The statement follows by applying Sklar’s theorem.

(2) See McNeil and Nešlehová (2009, Proposition 3.1(i)).

(3) To prove (3), for ϕ
(d−2)
d,R a suitable random variable is constructed in

McNeil and Nešlehová (2009, Appendix B).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 85

Archimedean Copulas 85

(4) The claim follows from McNeil and Nešlehová (2009, Theorem 2.2) and

(1), (2), and (3).

(5) Choose R := T/M with independent random variables T ∼ Erlang(d)

and M , the latter with Laplace transform ϕ. Then

ϕd,R(x)

= E
[
E
[(

1− xM

T

)d−1

+

∣∣∣M]] = E[∫ ∞

0

(
1− xM

u

)d−1

+

ud−1e−u

(d− 1)!
du
]

= E
[∫ ∞

0

(u− xM)d−1
+

e−u

(d− 1)!
du
]
= E
[∫ ∞

xM

(u− xM)d−1 e−u

(d− 1)!
du
]

(∗)
= E
[∫ ∞

0

yd−1e−(y+xM)

(d− 1)!
dy
]

(∗∗)
= E
[
e−xM

] ∫ ∞

0

e−yyd−1

(d− 1)!
dy = ϕ(x),

where (∗) requires the substitution y = u−xM and for (∗∗) we observe
that we integrate out the density of an Erlang distribution. This implies

the claim.
�

To conclude, for a fixed dimension d ≥ 2 a generator implies an

Archimedean copula if and only if the generator is d-monotone.24 Each

such generator corresponds uniquely to a positive random variable R with

the Williamson d-transform equal to the generator. Finally, the respective

Archimedean copula appears as the survival copula of construction (2.14),

which might be used to sample the Archimedean copula.

2.3.2 Sampling Exchangeable Archimedean Copulas

The following algorithm samples an Archimedean copula via construction

(2.14).

Algorithm 2.3 (Sampling Exchangeable Archimedean Copulas)

Fix d ≥ 2 and let R be a positive random variable with Williamson d-

transform ϕd,R. Sampling a d-dimensional Archimedean copula with gen-

erator ϕd,R is possible via the following steps.

(1) Sample i.i.d. E1, . . . , Ed, where E1 ∼ Exp(1).
(2) Sample R > 0, whose Williamson d-transform is ϕd,R.

(3) Compute Xk := R Ek

E1+...+Ed
for k = 1, . . . , d.

(4) Return (U1, . . . , Ud), where Uk := ϕd,R(Xk).

24From this, Kimberling’s theorem (see Theorem 2.2) follows as an immediate corollary.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 86

86 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

We observe that Algorithm 2.3 is similarly convenient to implement as

Algorithm 2.1. Moreover, this algorithm is equally fast: only d+1 random

variables have to be drawn and one transform must be applied to each

coordinate. However, there are some subtle differences. While Algorithm

2.1 is independent of the dimension (only the Laplace transform of the

mixing variable is required), the Williamson d-transform must be available

in the respective dimension. In particular, ϕd,R �= ϕd+1,R in general. The

consequences are (1) we cannot simply add further dimensions, and (2) we

must compute the Williamson d-transform for each dimension in which we

want to sample25 the Archimedean copula.

Example 2.4 (Mixing with a Die)

Let R be the outcome of rolling a standard die, i.e. P(R = i) = 1/6 for

i = 1, . . . , 6. The Williamson d-transform of R is easily found to be

ϕd,R(x) =
1

6

6∑
i=1

max
(
1− x

i
, 0
)d−1

, x ≥ 0.

Using this to simulate a bivariate and trivariate Archimedean copula with

Algorithm 2.3 yields Figure 2.8. Note the singular component of the result-

ing copula. Its specific form results from the fact that we mix the counter-

monotonicity copula with the six possible outcomes of the die experiment

(each having the same probability).

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0
0.2

0.4
0.6

0.8
1

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

Fig. 2.8 Scatterplot of 500 samples from the bivariate Archimedean copula of Example
2.4 (left) and 2 500 samples from the trivariate copula (right).

25It is often much easier to find this transform for d = 2 (compared to d > 2), since for
d = 2 the power in the definition of the Williamson d-transform vanishes.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 87

Archimedean Copulas 87

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0
0.2

0.4
0.6

0.8
1

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Fig. 2.9 Scatterplot of 2 500 samples from the Archimedean copula of Example 2.5 with
ϑ = 0.05 for the bivariate (left) and trivariate case (right).

Example 2.5 (Mixing with a Geo(ϑ)-Distribution)

In this example, taken from McNeil and Nešlehová (2009), let R follow a

Geo(ϑ)-distribution, ϑ ∈ (0, 1). The Williamson d-transform of R is

ϕd,R(x) =

∞∑
i=1

max
(
1− x

i
, 0
)d−1

ϑ(1− ϑ)i−1, x ≥ 0,

and a scatterplot is provided in Figure 2.9.

2.3.3 Properties of Exchangeable Archimedean Copulas

In this section, we briefly review some properties of non-extendible

Archimedean copulas. The results (2.3) and (2.4) on tail dependence and

Kendall’s tau (2.5) are identical to the case of extendible Archimedean

copulas.

2.3.3.1 Exchangeable Cϕ are not necessarily PLOD

In contrast to extendible Archimedean copulas, the class of exchangeable

Archimedean copulas is no longer PLOD. To verify this, simply consider the

bivariate countermonotonicity copulaW (u1, u2) = (u1+u2−1)�{u1+u2≥1},
corresponding to the two-monotone generator ϕ2,R≡1(x) = (1−x)�{x∈[0,1]},
as an example. More generally, observe that a generator defined via the

Williamson d-transform (2.15) might be non-strict, i.e. ϕd,R(x) = 0 for

suitable x, d, and R (see, e.g., Example 2.4). Archimedean copulas de-

fined via non-strict generators ϕ can never be PLOD. To justify this state-

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 88

88 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

ment, observe that the support of Cϕ is the set
{
(u1, . . . , ud) ∈ [0, 1]d :

ϕ−1(u1) + . . . + ϕ−1(ud) ≤ ϕ−1(0)
}
. For non-strict ϕ we can select

(û1, . . . , ûd) ∈ (0, 1]d such that Cϕ(û1, . . . , ûd) = 0 < Π(û1, . . . , ûd). Hence,

Cϕ is not PLOD. However, based on construction (2.14) it is possible to

guess an alternative lower bound, which is proven in McNeil and Nešlehová

(2009, Proposition 13). Construction (2.14) starts with negatively depen-

dent components Sd which are multiplied by the random variable R. Since

this latter multiplication (with random R) increases the dependence among

the components, a lower bound is obtained for R ≡ 1 (or any other positive

constant R). More precisely, for all d-monotone functions ϕd,R one has for

all (u1, . . . , ud) ∈ [0, 1]d, d ≥ 2,

Cϕd,R≡1
(u1, . . . , ud) ≤ Cϕd,R

(u1, . . . , ud), (2.17)

where ϕd,R≡1(x) = (1− x)d−1
+ .

2.3.3.2 Density

Since a d-monotone generator is not necessarily d times differentiable, the

existence and form of a copula density is a difficult issue in the present

situation. A solution (including statements on a singular component) is

provided in McNeil and Nešlehová (2009, Propositions 8 and 9), which we

repeat below.

Theorem 2.4 (Density of Cϕd,R
)

Consider a d-dimensional Archimedean copula with d-monotone generator

ϕd,R. Further, denote by H the distribution function of the random vector

R Sd. Then:

(1) Cϕd,R
is absolutely continuous if and only if H is.

(2) Sufficient for Cϕd,R
being absolutely continuous is ϕd,R being (d + 1)-

monotone.

(3) Cϕd,R
is absolutely continuous if and only if ϕ

(d−1)
d,R exists and is abso-

lutely continuous on (0,∞). In this case, the density of Cϕd,R
is given

for almost every (u1, . . . , ud) ∈ (0, 1)d by

c(u1, . . . , ud) =
ϕ
(d)
d,R

(
ϕ−1
d,R(u1) + . . .+ ϕ−1

d,R(ud)
)

ϕ′
d,R(ϕ

−1
d,R(u1)) · · ·ϕ′

d,R(ϕ
−1
d,R(ud))

.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 89

Archimedean Copulas 89

2.4 Hierarchical (H-Extendible) Archimedean Copulas

The simple construction principles (2.1) and (2.14) and the convenient

parametric form (2.2) renders the family of Archimedean copulas a very

tractable class of copulas. Being parameterized by real-valued functions,

i.e. by infinite-dimensional objects, Archimedean copulas allow us to model

a vast spectrum of dependence structures. This is illustrated by the ex-

amples in the previous sections. However, classical Archimedean copulas

are symmetric functions, and the related random vectors are exchange-

able. This property is often not justified in applications. To overcome this

shortcoming without giving up the convenient structure of Archimedean

copulas, the class of hierarchical (or nested) Archimedean copulas was in-

troduced. Loosely speaking, one might think of this class as Archimedean

copulas connecting certain groups. These groups are then connected by

some other copula, again of the Archimedean family. The functional form

of such structures is given by

Cϕ0

(
Cϕ1(u1,1, . . . , u1,d1), . . . , CϕJ (uJ,1, . . . , uJ,dJ)

)
. (2.18)

Structures with deeper levels of hierarchy are defined recursively, and the

respective inner copula is then further nested. Definition (2.18) is based

on J + 1 generator functions: ϕ0 for the outer Archimedean family, ϕj for

group j = 1, . . . , J . However, it is difficult to decide if for a certain choice

of generators the resulting function (2.18) is a proper copula. It is typically

not possible to arbitrarily combine J + 1 generators in the above way.

However, a quite convenient sufficient condition is known. Denoting by Φ∞
the set of all completely monotone Archimedean generators, it is possible

to construct h-extendible copulas with respect to the family {Cϕ}ϕ∈Φ∞ of

extendible Archimedean copulas, as outlined in this section. The following

sufficient condition on the involved generators to define a copula is given in

Joe (1997, p. 88) for three- and four-dimensional copulas and may be found

in McNeil (2008) for more general structures: if for each j = 0, . . . , J the

function ϕj is a c.m. generator, and if additionally

(ϕ−1
0 ◦ ϕj)

′ is c.m., j ∈ {1, . . . , J}, (2.19)

then (2.18) defines a proper copula, which is h-extendible with respect to

the family {Cϕ}ϕ∈Φ∞ . The function ϕ0 is referred to as the outer gener-

ator and the functions ϕj , for j = 1, . . . , J , as the inner generators. The

involved generators are called compatible if condition (2.19) holds. A sam-

pling algorithm for such structures was first stated by McNeil (2008). An

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 90

90 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

implementation of several families of classical and hierarchical Archimedean

copulas can be found in the R package nacopula (see Hofert and Mächler

(2011)).

This section focuses on a construction principle for hierarchical

Archimedean copulas, based on the reference Hering et al. (2010). More

precisely, we show how a random vector with a hierarchical Archimedean

survival copula (2.18) is constructed. Such an approach is useful, since it

provides a sampling strategy for hierarchical Archimedean copulas. The

construction principle turns out to be flexible enough to comprise all co-

pulas of form (2.18) whose generators satisfy (2.19).

2.4.1 Compatibility of Generators

The (difficult-to-verify) nesting condition (2.19) is now investigated further.

Specific examples for generators satisfying (2.19) are given in Joe (1997),

McNeil (2008), Hofert (2008), and Hofert (2011). Here, we rather fix a c.m.

outer generator ϕ0 and identify the set

Mϕ0 :=
{
ϕ c.m. generator | (ϕ−1

0 ◦ ϕ)′ c.m.
}

of inner generators which are compatible with ϕ0 (see Theorem 2.5 below).

In order to establish this result, the notion of Lévy subordinators, i.e. non-

decreasing Lévy processes, is required. Such processes are introduced in

Section A.2 of the Appendix. Bridging the gap to copulas, an application

of the Lévy–Khinchin theorem (see Theorem A.6) allows us to determine

the set Mϕ0 . Theorem 2.5 shows that for a given (outer) generator ϕ0, all

compatible (inner) generators can be parameterized by ϕ0, a drift constant

µ ≥ 0, and a Lévy measure ν on (0,∞).

Theorem 2.5 (Compatible Generators)

Let ϕ0 be a c.m. generator. Then

Mϕ0 =
{
ϕ
∣∣∣ϕ(x) = ϕ0

(
µx+

∫
(0,∞)

(1− e−xt) ν(dt)
)
,

where µ ≥ 0 and ν is a measure on (0,∞) satisfying (A.4),

and either µ > 0, or ν
(
(0, 1)

)
=∞, or both

}
.

Proof. It is shown in Feller (1966, p. 450) that Ψ : [0,∞)→ [0,∞) is the

Laplace exponent of a classical Lévy subordinator if and only if Ψ(0) = 0,

limx↓0Ψ(x) = 0, and Ψ has a c.m. derivative on (0,∞). It follows that for

two c.m. generators ϕ0 and ϕ, (ϕ−1
0 ◦ϕ)′ is c.m. if and only if ϕ−1

0 ◦ϕ =: Ψ

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 91

Archimedean Copulas 91

is the Laplace exponent of a classical Lévy subordinator. Fixing ϕ0, this

implies that all possible inner generators ϕ are given by ϕ = ϕ0 ◦Ψ for the

Laplace exponent Ψ of a classical Lévy subordinator Λ. More clearly, ϕ is

the Laplace transform of ΛM , where Λ is a classical Lévy subordinator and

M is an independent positive random variable with Laplace transform ϕ0.

Note that such a random variableM exists due to Bernstein’s theorem (see

Theorem 2.1). Since limx→∞ ϕ(x) = 0 is necessary to obtain a generator,

one must choose Laplace exponents Ψ satisfying limx→∞ Ψ(x) = ∞. This

excludes Lévy subordinators Λ with the property that P(Λt = 0) > 0 for

some t > 0, which are compound Poisson subordinators with drift µ = 0 and

Lévy measure ν satisfying ν
(
(0, 1)

)
< ∞. The claim is finally established

by the Lévy–Khinchin representation. �

2.4.2 Probabilistic Construction and Sampling

It is shown in the previous section that if the nesting condition (2.19) holds,

the functions ϕ−1
0 ◦ ϕj , for j = 1, . . . , J , are Laplace exponents of classi-

cal Lévy subordinators. On the other side, one can start with a suitable

combination of Lévy subordinators to arrive at a probabilistic model for

hierarchical Archimedean copulas. In this sense, the sampling algorithm of

McNeil (2008) for hierarchical Archimedean copulas of form (2.18) can be

rewritten using classical Lévy subordinators. To do so, consider a probabil-

ity space (Ω,F ,P) supporting i.i.d. exponential random variables with mean

1, denoted {Ej,i}j=1,...,J, i=1,...,dj . Moreover, independent of these random

variables let M > 0 be a positive random variable (which might be inter-

preted as a random time) with Laplace transform ϕ0(x) = E[exp(−xM)].

Independent of all Ej,i andM , let Λ(1), . . . ,Λ(J) be J independent, classical

Lévy subordinators with Laplace exponents Ψ1, . . . ,ΨJ , respectively. These

Laplace exponents are assumed to satisfy limx→∞ Ψj(x) =∞, j = 1, . . . , J ,

which corresponds to Λ
(j)
t > 0 a.s. for all t > 0 and j = 1, . . . , J . We now

construct the random vector(
E1,1

Λ
(1)
M

, . . . ,
E1,d1

Λ
(1)
M︸ ︷︷ ︸

group 1

,
E2,1

Λ
(2)
M

, . . . ,
E2,d2

Λ
(2)
M︸ ︷︷ ︸

group 2

, ,
EJ,1

Λ
(J)
M

, . . . ,
EJ,dJ

Λ
(J)
M︸ ︷︷ ︸

group J

)
. (2.20)

An interpretation of this construction is the following. Originally i.i.d. expo-

nential random variables are partitioned into J groups. Our first aim is for

each group to have an Archimedean dependence structure. We know from

construction (2.1) that this can be achieved by dividing all members of the

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 92

92 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

group by the same positive random variable. However, we additionally aim

at an Archimedean dependence structure between the groups. Both aims

are achieved by taking as the positive random variable affecting group j the

Lévy subordinator Λ(j) stopped at the random time M . The dependence

structure within this group is of the Archimedean kind with the generator

given by the Laplace transform of Λ
(j)
M . On the other side, we use the fact

that all group-specific Lévy subordinators are stopped at the same random

time M to introduce dependence between the groups. We shall later see

that the induced dependence between members of a group is at least as

large as the dependence between members of different groups. The precise

form of the hierarchical Archimedean copula induced by construction (2.20)

is computed in Theorem 2.6.

Theorem 2.6 (Probabilistic Model with Lévy Subordinators)

The survival copula of the random vector constructed in (2.20) admits

the form (2.18). The outer generator ϕ0 is the Laplace transform of the

positive random variable M . The group-specific generators are given by

ϕj := ϕ0 ◦ Ψj, for j = 1, . . . , J . They are the Laplace transforms of Λ
(j)
M .

Moreover, the univariate survival functions of the components are

P
(
Ej,i/Λ

(j)
M > x

)
= (ϕ0 ◦Ψj)(x), x > 0, j = 1, . . . , J, i = 1, . . . , dj .

Proof. The joint survival function of the random vector constructed in

(2.20) is

P

(
Ej,i

Λ
(j)
M

> xj,i, ∀ j, i
)

= E
[
e−

∑J
j=1 Λ

(j)
M

∑dj
i=1 xj,i

]

= E
[J∏
j=1

e−M Ψj

(∑dj
i=1 xj,i

)]

= E
[
e−M

∑J
j=1 Ψj

(∑dj
i=1 xj,i

)]
= ϕ0

(J∑
j=1

ϕ−1
0 ◦ (ϕ0 ◦Ψj)

(dj∑
i=1

xj,i

))
.

The component Ej,i/Λ
(j)
M has survival function

P
(
Ej,i/Λ

(j)
M > x

)
= E
[
e−xΛ

(j)
M

]
= E
[
e−M Ψj(x)

]
= (ϕ0 ◦Ψj)(x).

Hence, the survival copula has the claimed form. �
Composing hierarchical Archimedean copulas using Lévy subordinators im-

plies that the copula is specified by an arbitrary positive random variableM

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 93

Archimedean Copulas 93

and J quite arbitrary classical Lévy subordinators. The nesting condition

(2.19) holds by construction, i.e. Theorem 2.6 ensures that the resulting

generators are compatible. Moreover, Equation (2.20) suggests a conve-

nient sampling strategy which is formulated as Algorithm 2.4.

Algorithm 2.4 (Sampling Hierarchical Archimedean Copulas)

(1) Sample i.i.d. Ej,i ∼ Exp(1), j = 1, . . . , J , i = 1, . . . , dj .

(2) Sample26 M > 0.

(3) For each group j = 1, . . . , J , sample the subordinator Λ(j) at time M ,

i.e. sample27 the random variable Λ
(j)
M .

(4) Return (U1,1, . . . , UJ,dJ), where

Uj,i := (ϕ0 ◦Ψj)
(
Ej,i/Λ

(j)
M

)
, j = 1, . . . , J, i = 1, . . . , dj .

Note that for sampling a hierarchical Archimedean copula in dimension d

with J groups, only d+J+1 random variables have to be simulated, which

is extremely fast. Efficient sampling strategies for various subordinators are

known (see Cont and Tankov (2004, p. 171ff) and the references therein).

There exist approximate sampling strategies for general Lévy subordinators

(see, e.g., Bondesson (1982) and Damien et al. (1995)). Some examples for

subordinators are found in the Appendix.

2.4.3 Properties

The hierarchical Archimedean copulas constructed earlier have the follow-

ing h-extendible structure. Let (U1,1, . . . , U1,d1 , . . . , UJ,1, . . . , UJ,dJ) have

distribution function (2.18). If 1 ≤ j1 < . . . < ji ≤ J are indices of i dis-

tinct groups, then (Uj1,1, . . . , Uji,1) ∼ Cϕ0 . Moreover, within the jth group,

it holds that (Uj,1, . . . , Uj,dj) ∼ Cϕj . This shows that the construction is

truly h-extendible with respect to the family {Cϕ}ϕ∈Φ∞ . Considering bi-

variate marginals of (2.18), it is easily observed that any two components

from different groups are coupled via the Archimedean copula Cϕ0 . On the

other hand, any two components from some group j are coupled via the

Archimedean copula Cϕj . Therefore, the dependence properties of bivariate

marginals can be traced back from known results on bivariate Archimedean

copulas. However, appealing to construction (2.20), the inner generators ϕj

have the specific form ϕj = ϕ0◦Ψj, where Ψj is the Laplace exponent of the

26M has Laplace transform ϕ0 (the outer generator).
27Λ

(j)
M has Laplace transform ϕ0 ◦Ψj (the inner generator of group j).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 94

94 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Lévy subordinator of group j and ϕ0 is the Laplace transform of M . The

construction suggests that components from the same group should be at

least as dependent as components from different groups. This presumption

holds and is made precise in Lemma 2.3.

Lemma 2.3 (Concordance Ordering)

Let ϕ0 be a completely monotone Archimedean generator and let Ψ be the

Laplace exponent of a classical Lévy subordinator with limx→∞ Ψ(x) =∞.

Then, it holds that Cϕ0◦Ψ(u, v) ≥ Cϕ0(u, v) for all u, v ∈ [0, 1].

Proof. See Joe (1997, Corollary 4.2, p. 90). �

Note that Lemma 2.3 may be applied to show that various measures of

association (e.g. Kendall’s tau and the upper- and lower-tail dependence

coefficient) are ordered in the same way for pairs within a group compared

to pairs from different groups. The probabilistic model based on Lévy sub-

ordinators allows one to obtain a deeper understanding of copula (2.18).

Based upon the choice of random variable M and Lévy subordinators, it is

possible to draw conclusions about implied dependence measures. As an ex-

ample, pairwise upper-tail dependence coefficients are treated. Recall from

Equation (2.3) that (given existence) UTDCϕ = 2− 2 limx↓0 ϕ′(2 x)/ϕ′(x).
Applied to the present situation (a pair of random variables from different

groups having the Archimedean survival copula Cϕ0 , a pair from the same

group j having survival copula Cϕ0◦Ψj), that means inter-sector pairs are

affected by the mixing variable M , whereas intra-sector pairs are affected

by the mixing variable Λ
(j)
M . Lemma 2.3 implies that Cϕ0◦Ψj ≥ Cϕ0 , and,

hence, also UTDCϕ0◦Ψj
≥ UTDCϕ0

. This means that intra-sector tail de-

pendence is always greater than or equal to inter-sector tail dependence.

Going one step further, it is interesting to investigate how the parametric

models forM and the Lévy subordinator translate into properties of the im-

plied upper-tail dependence coefficients. If either E[M] or E[Λ
(j)
1] is finite,

it is possible to draw conclusions about the implied upper-tail dependence

coefficients. In particular, it follows from Lemma 2.1 that finite expectation

of M implies zero upper-tail dependence of Cϕ0 . Moreover, it is necessary

to have E[Λ
(j)
1] =∞ to obtain an intra-sector upper-tail dependence which

is strictly larger than the inter-sector one. The relations in Table 2.1 are

verified by taking the respective limits and constructing suitable examples

and counterexamples.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 95

Archimedean Copulas 95

Table 2.1 Upper-tail dependence parameters within a group and between

groups, depending on the first moment of M and Λ
(j)
1 , respectively.

E[Λ
(j)
1] < ∞ E[Λ

(j)
1] = ∞

E[M] < ∞ 0 = UTDCϕ0
= UTDCϕ0◦Ψj

0 = UTDCϕ0
≤ UTDCϕ0◦Ψj

E[M] = ∞ UTDCϕ0
= UTDCϕ0◦Ψj

UTDCϕ0
≤ UTDCϕ0◦Ψj

2.4.4 Examples

The first example shows how to construct h-extendible copulas with respect

to the Gumbel family, i.e. with respect to the family {Cϕϑ
}ϑ∈[1,∞), where

ϕϑ(x) = exp(−x1/ϑ) as given in (2.12). This example is taken from Mai

and Scherer (2012).

Example 2.6 (H-Extendible Gumbel Copulas)

Let M ∼ S(1/ϑ0), ϑ0 > 1, and all involved Lévy subordinators are specified

as stable Lévy subordinators, i.e. Ψj(x) = x1/ϑj , ϑj > 1 for j = 1, . . . , J

(see Section A.2.4). Then one readily verifies that the inner generators are

given by ϕj(x) = ϕ0 ◦ Ψj(x) = exp(−x1/(ϑj ϑ0)), i.e. they remain within

the class of Gumbel generators. Hence, all exchangeable margins of the

constructed h-extendible vector have a Gumbel copula as the dependence

structure.

Let us now present two examples of hierarchical Archimedean copulas with

different group-specific dependence to illustrate the flexibility of this ap-

proach.

Example 2.7 (A Geo ◦ (Γ, α-stable)-Archimedean Copula)

In this example, we construct a four-dimensional hierarchical Archimedean

copula with two groups, each having two members. We let M ∼ Geo(1−ϑ),
ϑ ∈ [0, 1). For the first sector, we take a Gamma subordinator Λ(1) whose

Laplace exponent is given by Ψ1(x) = β log(1 + x), β > 0 (see Sec-

tion A.2.2). For the second sector, an α-stable subordinator Λ(2) with

Laplace exponent Ψ2(x) = xα, α ∈ (0, 1), is chosen. Recall from Sec-

tion 2.2.4 that ϕ0, the Laplace transform of M , is the generator of the

Ali–Mikhail–Haq family, given by ϕ0(x) = (1− ϑ)/(exp(x) − ϑ), ϑ ∈ [0, 1).

The inner generators are given by ϕ1(x) = (1 − ϑ)/((1 + x)β − ϑ) and

ϕ2(x) = (1 − ϑ)/(exp(xα) − ϑ). For the first sector, step (3) of Algorithm

2.4 involves sampling a Γ(βM, 1)-distribution. For the second sector it in-

volves sampling a distribution with Laplace transform exp(−M xα), which

can be sampled asM1/αS, where S ∼ S(α) (see Hofert (2008)). Concerning

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 96

96 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

0.246
0.235

0.129
0.12

0.129
0.119

0.129
0.107

0.129
0.105

0.739
0.735

1,1

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

1,2

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2,1

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2,2

Fig. 2.10 2 500 vectors of random variates from the hierarchical Archimedean copula
of Example 2.7, constructed by a Geometric random time M and the Laplace expo-
nents of a Gamma and an α-stable subordinator, respectively. The parameters are
(ϑ, β, α) = (0.5, 2, 0.3). Theoretical Kendall’s taus (upper entry) are compared to em-
pirical Kendall’s taus (lower entry) for each pair of columns. Shades of grey indicate the
degree of dependence.

the dependence properties of this copula, Kendall’s tau corresponding to the

outer copula is given by τCϕ0
= 1−2/(3ϑ2)((1−ϑ)2 log(1−ϑ)+ϑ). Although

there is no closed form for τCϕ0◦Ψ1
and τCϕ0◦Ψ2

available, numerical evalua-

tion of Equation (2.5) suggests that for any choice of ϑ, values for β and α

can be chosen such that the sector copulas have desired values for Kendall’s

tau. It is therefore possible to choose the parameters such that for any pos-

sible τCϕ0
, desired values for τCϕ0◦Ψ1

and τCϕ0◦Ψ2
greater than or equal to

τCϕ0
are obtained. Moreover, the involved upper-tail dependence parameters

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 97

Archimedean Copulas 97

are given by UTDCϕ0
= UTDCϕ0◦Ψ1

= 0 and UTDCϕ0◦Ψ2
= 2 − 2α. The

lower-tail dependence parameters are given by LTDCϕ0
= LTDCϕ0◦Ψ2

= 0

and LTDCϕ0◦Ψ1
= 2−β. Figure 2.10 shows 2 500 random variates drawn

from the constructed copula.

Example 2.8 (An IG ◦ (Γ, cPP)-Archimedean Copula)

This example also involves two groups with two members. The random time

is specified as M ∼ IG(1, 1/ϑ), ϑ > 0, i.e. an inverse Gaussian distribution

with Laplace transform ϕ0(x) = exp
(
(1−√1 + 2ϑ2 x)/ϑ

)
, ϑ ∈ (0,∞) (see

Section 2.2.4.6). For the first sector, a Gamma subordinator Λ(1) with 0

drift is chosen. Its Laplace exponent is Ψ1(x) = β log(1+x) for an intensity

parameter β > 0. For the second sector, the Laplace exponent is determined

as Ψ2(x) = x+1−exp(−xα), α ∈ (0, 1), corresponding to a compound Pois-

son subordinator Λ(2) with drift 1, jump intensity 1, and jumps following

an α-stable distribution (see Section A.2.1). For the resulting hierarchical

Archimedean copula, this yields the inner generators ϕ0 ◦ Ψ1 and ϕ0 ◦ Ψ2.

The upper-tail dependence parameters are given by UTDCϕ0
= 0 for the

outer copula, and by UTDCϕ0◦Ψ1
= 0 and UTDCϕ0◦Ψ2

= 2 − 2α for the

inner copulas. Figure 2.11 shows 2 500 random variates drawn from this

copula.

2.5 Other Topics Related to Archimedean Copulas

2.5.1 Simulating from the Generator

This section shows how to sample bivariate Archimedean copulas only

from their analytic expressions. This is the case, for example, when we

know that a function ϕ is a two-monotone generator, but cannot determine

the distribution of the random variable R of the corresponding stochastic

model (2.14). The following algorithm for the simulation of a bivariate

Archimedean copula was introduced by Genest and MacKay (1986). It

allows us to simulate the respective copula from ϕ and ϕ−1. Required,

however, are
(
(ϕ−1)′

)−1
and (ϕ−1)′; both need to be derived for the re-

spective generator.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 98

98 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

0.4
0.384

0.2
0.19

0.2
0.179

0.2
0.184

0.2
0.193

0.6
0.592

1,1

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

1,2

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2,1

●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2,2

Fig. 2.11 2 500 vectors of random variates from the hierarchical Archimedean copula
of Example 2.8, constructed by an Inverse Gaussian random time M and the Laplace
exponents of a Gamma subordinator and a compound Poisson subordinator, respectively.
Shades of grey indicate the degree of dependence. The parameters are specified to obtain
Kendall’s taus within the groups of 0.4 and 0.6, respectively, and in between the groups
of 0.2. This is again compared to the respective empirical Kendall’s taus.

Algorithm 2.5 (Sampling Bivariate Archimedean Copulas)

(1) Sample U1 and T independently with U[0, 1]-distribution.

(2) Define W :=
(
(ϕ−1)′

)−1
((ϕ−1)′(U1)/T).

(3) Define U2 := ϕ
(
ϕ−1(W)− ϕ−1(U1)

)
.

(4) Return (U1, U2) ∼ Cϕ.

Proof. See Genest and MacKay (1986). �

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 99

Archimedean Copulas 99

Example 2.9 (The Bivariate Frank Copula)

For the Frank copula, the required quantities to apply Algorithm 2.5 are

given below. A scatterplot of the bivariate Frank copula, generated with

Algorithm 2.5, is given in Figure 2.3.(
(ϕ−1)′

)−1
(x) = − 1

ϑ
log
(x

x− ϑ
)
, (ϕ−1)′(x) =

ϑ e−ϑx

e−ϑx − 1
.

Closely related to Algorithm 2.5 is Algorithm 2.6.

Algorithm 2.6 (Sampling Bivariate Archimedean Copulas 2)

(1) Sample U2 and V independently with U[0, 1]-distribution.

(2) Define U1 := ϕ
(
(ϕ′)−1(V ϕ′(ϕ−1(U2)))− ϕ−1(U2)

)
.

(3) Return (U1, U2) ∼ Cϕ.

Proof. Algorithm 2.6 is an application of Algorithm 1.2, i.e. the con-

ditional sampling method for bivariate copulas. Hence, we first need to

compute

FU1|U2
(u1) =

∂

∂ u2
Cϕ(u1, u2) = ϕ′(ϕ−1(u1) + ϕ−1(u2)

)
(ϕ−1)′(U2).

To finally apply Algorithm 1.2, only the inverse F−1
U1|U2

(x) is required. It is

given by

F−1
U1|U2

(x) = ϕ
(
(ϕ′)−1(xϕ′(ϕ−1(U2)))− ϕ−1(U2)

)
. �

2.5.2 Asymmetrizing Archimedean Copulas

This section shows two methodologies how non-exchangeable Archimedean-

related copulas can be constructed. The first one is known as the Khoudraji

transformation (see Khoudraji (1995)), the second one gives rise to Liouville

copulas, see Remark 2.1. More on asymmetrizing copulas is presented in

Liebscher (2008) and Durante (2009).

Let us start with the Khoudraji transformation. Consider independent

random vectors (V1, . . . , Vd) ∼ Cϕ and (Ũ1, . . . , Ũd) ∼ Π and parameters

(α1, . . . , αd) ∈ [0, 1]d. Define a new random vector (U1, . . . , Ud) by

Uk := max
{
V

1/αk

k , Ũ
1/(1−αk)
k

}
, k = 1, . . . , d.

It easily follows that each margin Uk is U [0, 1]-distributed and

P
(d⋂

k=1

{Uk ≤ uk}
)
= P
(d⋂

k=1

{Vk ≤ uαk

k }
)
P
(d⋂

k=1

{Ũk ≤ u1−αk

k }
)

= Cϕ

(
uα1
1 , . . . , uαd

d

)
Π
(
u1−α1
1 , . . . , u1−αd

d

)
.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 100

100 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

One easily recognizes that other copulas (instead of Π) might also be in-

cluded and how related combinations with more than two copulas are con-

structed. With a probabilistic model at hand, it is straightforward to for-

mulate the following sampling algorithm.

Algorithm 2.7 (Sampling Asymmetric Archimedean Copulas)

(1) Sample (V1, . . . , Vd) ∼ Cϕ.

(2) Sample (Ũ1, . . . , Ũd) ∼ Π, independent of (V1, . . . , Vd).

(3) Return (U1, . . . , Ud), where Uk := max
{
V

1/αk

k , Ũ
1/(1−αk)
k

}
.

Examples for scatterplots, generated with Algorithm 2.7, are presented in

Figure 2.12.

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 2.12 2 500 samples from the bivariate asymmetrized Clayton copula with pa-
rameters ϑ = 10, (α1, α2) = (0.95, 0.5) (left), (α1, α2) = (0.5, 0.5) (middle), and
(α1, α2) = (0.5, 0.95) (right).

Remark 2.1 (Liouville Distributions and Copulas)

Another possibility to overcome exchangeability of classical Archimedean

copulas is to replace Sd in Construction (2.14) by a non-uniform distri-

bution on the d-dimensional simplex. In McNeil and Nešlehová (2010), a

Dirichlet distribution is used for this purpose. The latter can be constructed

conveniently from d independent Γ(ak, 1)-distributed random variables Ek

that are divided by their norm, i.e. Dk := Ek/
∑d

i=1Ei, k = 1, . . . , d. A

mixture model of type R (D1, . . . , Dd) creates a Liouville distribution, its

survival copula is called Liouville copula. These copulas are thoroughly in-

vestigated in McNeil and Nešlehová (2010).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 101

Chapter 3

Marshall–Olkin Copulas

General Marshall–Olkin (MO): 3.1

Hierarchical MO: 3.2.4

Exchangeable MO: 3.2

Extendible MO: 3.3

Lévy-frailty copulas

H-extendible MO: 3.3.4

Fig. 3.1 Classification of subfamilies of Marshall–Olkin copulas, including the sections
where these are discussed in this chapter.

This chapter on Marshall–Olkin copulas is organized as follows (see Fig-

ure 3.1). First, Section 3.1 introduces the most general form of Marshall–

Olkin copulas. Second, Section 3.2 explicitly treats the subfamily of ex-

changeable Marshall–Olkin copulas. These have the advantage that the

functional form and the respective sampling algorithms are much sim-

101

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 102

102 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

pler and thus more efficient compared to the general case. Section 3.2.4

treats hierarchical versions of Marshall–Olkin copulas, constructed from

exchangeable building blocks. These lie between the most general and the

exchangeable Marshall–Olkin family. Finally, Section 3.3 studies the sub-

family of (exchangeable and) extendible Marshall–Olkin copulas, which are

also called Lévy-frailty copulas. These are even more efficient to simu-

late due to their latent factor structure. Furthermore, they give rise to

quite convenient parameterizations of Marshall–Olkin copulas via so-called

Laplace exponents of Lévy subordinators. Moreover, it is indicated in Sec-

tion 3.3.4 how h-extendible Marshall–Olkin copulas can be constructed from

extendible building blocks. This technique allows us to design parametric

subfamilies of Marshall–Olkin copulas that are convenient to parameterize,

flexible, and efficient to simulate.

3.1 The General Marshall–Olkin Copula

It is a well-known fact that a random variable X with support [0,∞),

defined on a probability space (Ω,F ,P), is exponentially1 distributed if

and only if for all x, y ≥ 0 it holds that

P(X > x+ y |X > y) = P(X > x) (3.1)

(see, e.g., Billingsley (1995, p. 190)). Condition (3.1) is typically called the

lack of memory property. Interpreting X as a lifetime, it intuitively means

that the residual lifetime is independent of age. In fact, it is precisely this

property which renders the exponential law one of the most popular and

most tractable probability distributions. For instance, it is noted in David

and Nagaraja (1970, p. 121) that “the exponential [distribution] occupies

as commanding a position in life testing as does the normal [distribution]

elsewhere in parametric theory”. The article by Marshall and Olkin (1967)

is concerned with a multivariate analog of the lack of memory property.

Lifting (3.1) to larger dimensions, a probability space (Ω,F ,P) is considered
on which a random vector (X1, . . . , Xd) with support [0,∞)d is defined,

which satisfies the following property: for all x1, . . . , xd, y ≥ 0, it holds

1Recall that an exponentially distributed random variable X with intensity parame-
ter λ has survival function F̄ (x) = exp(−λx) for x ≥ 0. An important property of
the exponential distribution is the min-stability: given independent, exponentially dis-
tributed random variables X and Y with parameter λ and η, respectively, the minimum
Z := min{X, Y } is also exponentially distributed with intensity parameter λ+ η.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 103

Marshall–Olkin Copulas 103

that

P
(
X1 > x1 + y, . . . , Xd > xd + y

∣∣X1 > y, . . . , Xd > y
)
=

P
(
X1 > x1, . . . , Xd > xd

)
. (3.2)

Interpreting X1, . . . , Xd as lifetimes, Condition (3.2) intuitively means that

the residual lifetimes of all components are independent of the age of the

whole system, in analogy with the one-dimensional case. In further analogy

with the univariate case, Marshall and Olkin (1967) show that there is

precisely one parametric family of multivariate distributions satisfying the

lack of memory property (3.2). More clearly, (3.2) has to be read iteratively

as follows: in dimension d = 1 we already know that (3.2) implies that

X1 is exponentially distributed. In dimension d = 2 one postulates that

X1, X2 both are exponentially distributed and (3.2) holds. It is shown in

Marshall and Olkin (1967, Lemma 2.2) that this implies the existence of

parameters λ{1}, λ{2}, λ{1,2} ≥ 0, with λ{k}+λ{1,2} > 0, k = 1, 2, such that

for x1, x2 ≥ 0 one has

F̄ (x1, x2) : = P(X1 > x1, X2 > x2)

= exp
(− λ{1} x1 − λ{2} x2 − λ{1,2} max{x1, x2}

)
.

This distribution is called the bivariate Marshall–Olkin distribution. In-

ductively, in dimension d ≥ 2 one can show that if all (d − 1)-dimensional

subvectors of (X1, . . . , Xd) have a Marshall–Olkin distribution and if (3.2)

is satisfied, then it follows that there exist parameters λI ≥ 0, ∅ �= I ⊂
{1, . . . , d}, with∑I:k∈I λI > 0, k = 1, . . . , d, such that for all x1, . . . , xd ≥ 0

one has

F̄ (x1, . . . , xd) : = P(X1 > x1, . . . , Xd > xd)

= exp
(
−

∑
∅�=I⊂{1,...,d}

λI max
i∈I
{xi}
)

(3.3)

(see Marshall and Olkin (1967, p. 39)). This distribution is called the (d-

dimensional) Marshall–Olkin distribution. In total 2d − 1 parameters are

involved, since {1, . . . , d} has 2d subsets (including the empty set, which is

not needed). In large dimensions, the Marshall–Olkin distribution is very

flexible but also difficult to work with, both due to the huge number of

parameters.

Other multivariate exponential distributions are proposed in the liter-

ature (see, e.g., Gumbel (1960b)), which do not share the lack of memory

property. In fact, plugging exponential marginal laws into an arbitrary cop-

ula yields a multivariate distribution by virtue of Sklar’s theorem, which

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 104

104 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

one might call “exponential”. Other families are studied in Section 8.2.

However, the previous motivation by means of the lack of memory property

suggests that not every distribution with exponential margins truly deserves

the name “multivariate exponential distribution”. From this perspective,

the Marshall–Olkin exponential distribution is the “right” multivariate ex-

ponential distribution. For a nice treatment of the characterization of the

Marshall–Olkin distribution by the lack of memory property, the interested

reader is referred to the work by Galambos and Kotz (1978, p. 103–132).

So far, the Marshall–Olkin distribution has only been introduced an-

alytically. However, Marshall and Olkin (1967) also provide a canonical

construction of this distribution. The intuition behind it is a system of ini-

tially fully functional components which are affected by exogenous shocks

destroying them. The random vector of extinction times of the components

exhibits the Marshall–Olkin distribution. A shock can hit one or more com-

ponents at the same time, rendering the extinction times dependent. In

particular, when a shock hits, e.g., five components at a time, then all cor-

responding extinction times have the same value, i.e. the distribution has a

singular component. This property together with the intuitive interpreta-

tion makes these distributions interesting in financial applications such as

risk management, insurance, and credit risk modeling (see, e.g., Embrechts

et al. (2003), Giesecke (2003), Lindskog and McNeil (2003), Elouerkhaoui

(2007), and Mai (2010)).

3.1.1 Canonical Construction of the MO Distribution

In order to outline the construction of Marshall and Olkin (1967) we con-

sider a probability space (Ω,F ,P). For each non-empty subset ∅ �= I ⊂
{1, . . . , d} let EI be an exponentially distributed random variable with

mean 1/λI > 0 and assume that these 2d − 1 random variables are inde-

pendent. Some λI are allowed to be 0, in which case we mean that EI ≡ ∞
with probability 1. However, we must guarantee that

∑
I:k∈I λI > 0 for

all k = 1, . . . , d. This means that for each k = 1, . . . , d there is at least

one subset I ⊂ {1, . . . , d} containing the index k such that λI is strictly

positive. In this case, the following random variables are almost surely well

defined in [0,∞):

Xk := min
{
EI

∣∣ I ⊂ {1, . . . , d}, k ∈ I}, k = 1, . . . , d. (3.4)

Lemma 3.1 (Canonical Construction of the MO Distribution)

The random vector
(
X1, . . . , Xd

)
defined by (3.4) has the Marshall–Olkin

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 105

Marshall–Olkin Copulas 105

distribution with the survival function given by (3.3).

Proof. This can be seen from the following computation with

x1, . . . , xd ≥ 0:

F̄ (x1, . . . , xd) : = P(X1 > x1, . . . , Xd > xd)

= P
(
EI > max

i∈I
{xi}, ∀ ∅ �= I ⊂ {1, . . . , d})

=
∏

∅�=I⊂{1,...,d}
e
−λI max

i∈I
{xi}

= exp
(
−

∑
∅�=I⊂{1,...,d}

λI max
i∈I
{xi}
)
.

�
For each k = 1, . . . , d the distribution of Xk is exponential with parameter∑

I:k∈I λI > 0. This follows from the fact that the minimum of indepen-

dent exponential random variables is again exponentially distributed and

the parameters are simply added up (see also the proof of Lemma 3.2).

Intuitively, the random variable EI is interpreted as the arrival time of an

exogenous shock affecting all those components of (X1, . . . , Xd) which are

indexed by a number in I. Accordingly, the kth component is destroyed

when hit by the first shock EI with k ∈ I, motivating the definition in Equa-

tion (3.4). The survival copula Ĉ of (X1, . . . , Xd) is computed in Li (2008,

Proposition 1). For our purpose, however, a slightly different expression is

more appropriate, which can be deduced from (3.3).

Lemma 3.2 (Survival Copula of the MO Distribution)

The survival copula Ĉ of the random vector (X1, . . . , Xd) as defined in

(3.4) is given by

Ĉ(u1, . . . , ud) =
∏

∅�=I⊂{1,...,d}
min
k∈I

{
u

λI∑
J:k∈J λJ

k

}
, u1, . . . , ud ∈ [0, 1].

Proof. In a first step one verifies that the marginal laws are exponential:

for the kth marginal survival function F̄k of Xk, one has

F̄k(x) = P(Xk > x) = P
(
EI > x, ∀ I ⊂ {1, . . . , d} : k ∈ I)

= exp
(
− x

∑
I:k∈I

λI

)
, x ≥ 0.

Hence, it follows from (3.3) that

F̄ (x1, . . . , xd) =
∏

∅�=I⊂{1,...,d}
min
k∈I

{
F̄k(xk)

λI∑
J:k∈J λJ

}
, x1, . . . , xd ≥ 0.

By an application of Theorem 1.3 the claim is thus established. �

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 106

106 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

The survival copula of the Marshall–Olkin distribution is called the

Marshall–Olkin copula in the sequel, and we denote it by C instead of Ĉ to

simplify notation. It has been studied extensively in the literature (see, e.g.,

Embrechts et al. (2003), Li (2008), and Mai and Scherer (2010)). The best-

studied example of Marshall–Olkin copulas is the bivariate Marshall–Olkin

copula, which by virtue of Lemma 3.2 is given by

C(u1, u2) = u

λ{1}
λ{1}+λ{1,2}
1 u

λ{2}
λ{2}+λ{1,2}
2 min

{
u

λ{1,2}
λ{1}+λ{1,2}
1 , u

λ{1,2}
λ{2}+λ{1,2}
2

}
= min

{
u
1− λ{1,2}

λ{1}+λ{1,2}
1 u2, u1 u

1− λ{1,2}
λ{2}+λ{1,2}

2

}
. (3.5)

In some textbooks (e.g., Embrechts et al. (2003) and Nelsen (2006)) the

bivariate Marshall–Olkin copula (3.5) is more conveniently parameterized

by the two parameters

α :=
λ{1,2}

λ{1} + λ{1,2}
∈ [0, 1], β :=

λ{1,2}
λ{2} + λ{1,2}

∈ [0, 1].

Figure 3.2 shows scatterplots of several bivariate Marshall–Olkin copulas.

One can clearly see a singular component of the copula on the line{
(u1, u2) ∈ [0, 1]2 : u

λ{2}+λ{1,2}
1 = u

λ{1}+λ{1,2}
2

}
.

Furthermore, one can observe in the plot on the right of Figure 3.2 that

if λ{2} = 0, then all realizations lie below this line, i.e. the support of the

copula is not all of [0, 1]2. This can easily be explained from the canonical

construction (3.4), since λ{2} = 0 implies E{2} ≡ ∞ and therefore X1 =

min{E{1}, E{1,2}} ≤ E{1,2} = X2 almost surely in this case.

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 3.2 Scatterplots of 500 samples from a bivariate Marshall–Olkin copula, corre-
sponding to the parameters (λ{1}, λ{2}, λ{1,2}) = (1, 2, 1) (left), (λ{1}, λ{2}, λ{1,2}) =
(10, 1, 5) (middle), and (λ{1}, λ{2}, λ{1,2}) = (3, 0, 10) (right).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 107

Marshall–Olkin Copulas 107

Regarding implementation, one difficulty when working with the

Marshall–Olkin distribution is the fact that its parameters are indexed by

subsets I ⊂ {1, . . . , d}. To tackle this problem, we propose associating any

of the 2d − 1 subsets ∅ �= I ⊂ {1, . . . , d} (uniquely) with a number in the

set {1, 2, . . . , 2d − 1}. To this end, recall that each number i in the set

{1, 2, . . . , 2d − 1} has a unique binary representation of the form2

i =

d−1∑
j=0

cj 2
j, c0, . . . , cd−1 ∈ {0, 1}.

Denoting the power set of {1, . . . , d} by Pd, we can therefore define the

following bijection:

Pd \ {∅} → {1, . . . , 2d − 1}, I �→
d−1∑
j=0

�{j+1∈I} 2j, (3.6)

{1, . . . , 2d − 1} → Pd \ {∅},
d−1∑
j=0

cj 2
j = i �→ {j ∈ {1, . . . , d} : cj−1 = 1

}
.

Here is an example in the case d = 3.

Example 3.1 (The Binary Representation of P3 \ {∅})
For d = 3, the Marshall–Olkin distribution has parameters λI , for

I ∈ {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
All 23 − 1 = 7 non-empty subsets of {1, 2, 3} are associated with elements

of the set {1, . . . , 7} via bijection (3.6), as follows:

1 = 20 ↔ {1}, 2 = 21 ↔ {2}, 3 = 20 + 21 ↔ {1, 2}, 4 = 22 ↔ {3},
5 = 20 + 22 ↔ {1, 3}, 6 = 21 + 22 ↔ {2, 3}, 7 = 20 + 21 + 22 ↔ {1, 2, 3}.

A sampling algorithm for general Marshall–Olkin copulas, based on the

canonical construction from Marshall and Olkin (1967) outlined earlier, is

given as follows.

Algorithm 3.1 (Sampling Marshall–Olkin Copulas)

The inputs for the algorithm are the parameters {λI}∅�=I⊂{1,...,d}. To this

end, one associates uniquely each subset ∅ �= I ⊂ {1, . . . , d} with a number

i ∈ {1, . . . , 2d − 1} via the binary representation (3.6). Thus, the input

2For example, the number 13 corresponds to (c0, c1, c2, c3) = (1, 0, 1, 1), since 13 =
1 · 20 + 0 · 21 + 1 · 22 + 1 · 23.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 108

108 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

parameters are passed to the algorithm in a vector of length 2d− 1, denoted

λ.

FUNCTION sample MO (vector: λ)

E := vector(1 : 2d − 1) (1)

Max := 0 (2)

FOR i = 1, . . . , 2d − 1 (3)

E[i] := sample EXP
(
λ[i]
)

(3a)

Max := max{Max,E[i]} (3b)

END FOR

X := vector(1 : d) (4)

U := vector(1 : d) (4)

FOR k = 1, . . . , d (5)

X [k] :=Max (5a)

END FOR

FOR k = 1, . . . , d (6)

rate := 0 (6a)

FOR i = 1, . . . , 2d − 1 (6b)

IF (within(k, i) = TRUE) (6c)

rate := rate + λ[i] (6d)

X [k] := min{X [k], E[i]} (6e)

END IF

END FOR

U [k] := exp(−rate ·X [k]) (6f)

END FOR

RETURN U

FUNCTION within (integers: k, i)

Represent i as binary number: i ∼= (c0, c1, . . . , cd−1) ∈ {0, 1}d (7)

IF (ck−1 = 1) (8)

RETURN TRUE

ELSE

RETURN FALSE

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 109

Marshall–Olkin Copulas 109

The individual steps of Algorithm 3.1 are explained in the sequel:

(1) The arrival times of all exogenous shocks {EI}∅�=I⊂{1,...,d} are stored

in the vector E of length 2d − 1, which is initialized here.

(2) The variable Max is used to denote the maximum of all EI later on,

i.e. Max := max{EI : ∅ �= I ⊂ {1, . . . , d}}.
(3) The independent random variables {EI}∅�=I⊂{1,...,d} are simulated in

step (3a), and the maximum is stored as variable Max in step (3b).

(4) The vectors X,U of length d are defined. U is the vector we are later

going to return, which contains a sample of the Marshall–Olkin copula

in question. X is related to U via the componentwise exponential

transformation in step (6f). This means that X is a sample from the

Marshall–Olkin distribution (not the copula) in question.

(5) The initial value for all components of X is set to Max in step (5a).

(6) This step computes the extinction times of the components, i.e.X [k] :=

min{EI : k ∈ I}, k = 1, . . . , d. For each component k, the FOR loop in

step (6b) walks through all non-empty subsets I ⊂ {1, . . . , d}. Step (6c)

checks if k ∈ I. If so, step (6e) takes EI into account in the minimum

of the definition of X [k]. Additionally, for each k = 1, . . . , d, step (6a)

defines the variable rate, which equals the exponential rate of the kth

marginX [k], i.e. rate =
∑

I : k∈I λI . To this end, step (6d) accumulates

the required λI ’s. This rate is used to transform the univariate margins

to U [0, 1]-distributions in step (6f).

(7) The conversion of an integer to a binary number is easily accomplished

in most programming languages, since integers are typically stored

as binaries in the computer’s memory. Alternatively, the following

“division-by-2” algorithm represents a given integer i (corresponding

to a subset I ⊂ {1, . . . , d}) in binary code. In Algorithm 3.2 below, the

number i mod 2 is in {0, 1}, depending on whether i is even or odd,

respectively. The number �i/2� denotes the greatest integer less than

or equal to i/2.

(8) The (k − 1)st position in the binary code of i is 1 if and only if k ∈ I.

Algorithm 3.2 (Computing the Binary Representation of i)

The input for the algorithm is an integer i ∈ N, as well as an empty list

object l. The algorithm recursively appends 0’s or 1’s to the list l, until it

contains the complete binary representation.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 110

110 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

FUNCTION compute binary (integer : i, list : l)

IF (i = 1)

l := append(l, 1)

RETURN(l)

ELSE

l := append(l, i mod 2)

compute binary
(�i/2�, l)

END IF

In small dimensions, say d ≤ 15, the runtime of Algorithm 3.1 is moder-

ate. Generally speaking, the runtime (and memory requirement) for the

simulation of one d-dimensional random vector is of order O(2d). For large
dimensions d� 2, this implies that it is practically impossible to simulate

the Marshall–Olkin distribution with acceptable computation time. The

main reason for this is that one has to consider all possible shocks when

computing the components as minima taken over them. One way to cir-

cumvent this problem is to consider substructures of the general case, which

is done in Sections 3.2 and 3.3.

3.1.2 Alternative Construction of the MO Distribution

There is an alternative construction of the Marshall–Olkin distribution via

multivariate geometric compounding (see Arnold (1975)). This alternative

approach implies a different sampling algorithm and allows us to speed up

the simulation in the exchangeable case later on. Therefore we present it

here. As a first step, the following lemma is proved.

Lemma 3.3 (Multiv. Geometric Compounding of Exponentials)

Consider a probability space (Ω,F ,P) supporting the following independent

objects:

(1) A sequence {εj}j∈N of i.i.d. random variables with ε1 ∼ Exp(1/λ) for

λ > 0.

(2) A sequence {Yj}j∈N of i.i.d. random variables taking values in the finite

set {1, 2, . . . ,m}. Denote pk := P(Y1 = k), k = 1, . . . ,m. Without loss

of generality, we assume pk > 0 for all k = 1, . . . ,m.

Define the random variables Nk := min{j ∈ N : Yj = k} and Ek :=

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 111

Marshall–Olkin Copulas 111

ε1 + . . .+ εNk
for k = 1, . . . ,m. Then:

(1) For each k = 1, . . . ,m, we have Nk ∼ Geo(pk) and Ek ∼ Exp(pk/λ).
(2) E1, . . . , Em are stochastically independent.

Proof. This proof goes back to Arnold (1975).

(1) Fix k ∈ {1, . . . ,m}. Nk ∼ Geo(pk) is clear by definition. To see that

Ek ∼ Exp(pk/λ), recall that the Laplace transform of an Exp(1/c)-

distributed random variable E is given by

u �→ E
[
e−uE

]
=

∫ ∞

0

e−ux 1

c
e−

1
c x dx =

1

1 + u c
, u ≥ 0.

It suffices to show that the Laplace transform of Ek is of this form with

c = λ/pk. So consider u ≥ 0 and check that

E
[
e−uEk

]
= E
[
e−u

∑Nk
j=1 εj

]
= E
[
E
[
e−u

∑Nk
j=1 εj

∣∣∣Nk

]]
= E
[Nk∏
j=1

E
[
e−u εj

∣∣∣Nk

]
︸ ︷︷ ︸

=E

[
e−u εj

]
= 1

1+uλ

]
= E
[(1

1 + u λ

)Nk
]

=

∞∑
i=1

(1

1 + u λ

)i
pk (1− pk)i−1 =

pk
1 + u λ

∞∑
i=0

(1− pk
1 + u λ︸ ︷︷ ︸

<1

)i

=
pk

1 + u λ

1

1− 1−pk

1+uλ

=
1

1 + u λ
pk

.

This verifies Ek ∼ Exp(pk/λ).
(2) Having proved part (1) already, to establish independence it suffices to

prove for u1, . . . , um ≥ 0 that the joint Laplace transform factorizes,

i.e.

E
[
e−

∑m
l=1 ul El

]
=

m∏
l=1

(1

1 + ul
λ
pl

)
. (3.7)

The proof is carried out by induction over m ∈ N. For m = 1 the

statement is trivial. Now suppose the statement is true for somem−1 ∈
N. Fix some k ∈ {1, . . . ,m}. Conditioned on the event {Y1 = k}, one
has Nl− 1 ∼ Geo(pl) for all l �= k, and also the m− 1 random variables∑Nl−1

j=1 εj+1 for l = 1, . . . ,m, l �= k, are independent by induction

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 112

112 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

hypothesis (IH). This implies that

E
[
e−

∑m
l=1 ul El

]
=

m∑
k=1

pk E
[
e−

∑m
l=1 ul

∑Nl
j=1 εj

∣∣∣Y1 = k
]

=

m∑
k=1

pk E
[
e
−ε1

∑m
l=1 ul−

∑m
l=1
l �=k

ul

∑Nl−1

j=1 εj+1
∣∣∣Y1 = k

]

=

m∑
k=1

pk E
[
e−ε1

∑m
l=1 ul

]
E
[
e
−∑m

l=1
l �=k

ul

∑Nl−1

j=1 εj+1
∣∣∣Y1 = k

]
(IH)
=
(1

1 +
∑m

l=1 ul λ

) m∑
k=1

pk

m∏
l=1

l �=k

(1

1 + ul
λ
pl

)
.

Hence, it is left to show that

m∏
l=1

(1

1 + ul
λ
pl

)
=
(1

1 +
∑m

l=1 ul λ

) m∑
k=1

pk

m∏
l=1

l �=k

(1

1 + ul
λ
pl

)
.

By multiplying both sides of the last equality by

1 +

m∑
k=1

uk λ =

m∑
k=1

pk

(
1 + uk

λ

pk

)
,

we can easily verify (3.7). �

Recall that the canonical construction of the Marshall–Olkin distribution

is based on the arrival times of 2d − 1 external shocks, one for each subset

of {1, . . . , d}. On a slightly different note, equipped with Lemma 3.3, let

us now model the shocks one after another. The first shock can hit any

subset of components of {1, . . . , d}. This random subset Y1 is modeled

as the outcome of an experiment with values in the power set (excluding

the empty set) Pd \ {∅} of {1, . . . , d}. Imagine we have been given an i.i.d.

sequence of this experiment, say {Yj}j∈N. Then the subset Y2 tells us which

components are killed by the second shock. Namely, the second shock kills

all components in Y2 \ Y1, unless this set is empty because all components

have already been killed by Y1. If it is empty, then we ignore the outcome

of Y2 and proceed with Y3. The interarrival times between the shocks are

modeled by exponential random variables. The following lemma makes this

alternative construction more precise.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 113

Marshall–Olkin Copulas 113

Lemma 3.4 (Alternative Construction of the MO Distribution)

Given parameters λI for ∅ �= I ⊂ {1, . . . , d} with
∑

I : k∈I λI > 0 for each

k = 1, . . . , d, consider a probability space (Ω,F ,P) supporting the following

independent objects:

(1) A sequence {Yi}i∈N of i.i.d. Pd\{∅}-valued random variables with dis-

tribution3

P(Y1 = I) =
λI∑

∅�=J⊂{1,...,d}
λJ
, I ∈ Pd\{∅}.

(2) A sequence {εi}i∈N of i.i.d. exponential random variables with parame-

ter4 ∑
∅�=J⊂{1,...,d}

λJ .

Then (X1, . . . , Xd) has the Marshall–Olkin distribution with parameters

{λI}, where
Xk := ε1 + ε2 + . . .+ εmin{i∈N : k∈Yi}, k = 1, . . . , d.

Proof. The proof is due to Arnold (1975) and consists of two steps:

(a) We define the random variables

NI := min{i ∈ N : Yi = I}, ∅ �= I ⊂ {1, . . . , d}. (3.8)

Then, it is obvious that

Xk = min
{ NI∑

j=1

εj : ∅ �= I ⊂ {1, . . . , d}, k ∈ I
}
, k = 1, . . . , d.

The last equality resembles the definition of the canonical construction

(3.4), if we denote EI :=
∑NI

j=1 εj for ∅ �= I ⊂ {1, . . . , d}. Given this,

the proof boils down to step (b).

(b) We have to show that {EI} is a collection of independent random vari-

ables with EI ∼ Exp(λI). But this follows directly from Lemma 3.3, if

we associate the power set Pd \ {∅} with the set {1, 2, . . . , 2d − 1} via
the bijection (3.6), i.e. by setting m = 2d − 1 in Lemma 3.3. �

Lemma 3.4 shows that a Marshall–Olkin copula can also be simulated by

the following alternative algorithm:
3These probabilities give the distribution of the subset of components killed by the first

shock.
4This is precisely the rate of the first shock to come.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 114

114 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Algorithm 3.3 (Sampling Marshall–Olkin Copulas II)
The inputs for the algorithm are the parameters {λI}∅�=I⊂{1,...,d}. To this
end, one associates uniquely each subset ∅ �= I ⊂ {1, . . . , d} with a number
i ∈ {1, . . . , 2d − 1} via the binary representation (3.6). Thus, the input
parameters are passed to the algorithm in the vector λ of length 2d − 1.

FUNCTION sample MO (vector: λ)

λsum := sum(λ) (1a)

rate := vector(1 : d) (1b)

FOR k = 1, . . . , d (1c)

rate[k] := 0

FOR i = 1, . . . , 2d − 1

IF (within(k, i) = TRUE)

rate[k] := rate[k] + λ[i]

END IF

END FOR

END FOR

y := vector(1 : 2d − 1) (2a)

p := vector(1 : 2d − 1) (2b)

FOR i = 1, . . . , 2d − 1

y[i] := i (2c)

p[i] := λ[i]/λsum (2d)

END FOR

destroyed := 0 (3a)

X := (0, . . . , 0) (3b)

U := (0, . . . , 0) (3b)

ε := 0 (3c)

WHILE (destroyed < d) (4)

Y := sample discrete(y,p) (4a)

ε := ε+ sample EXP(λsum) (4b)

FOR k = 1, . . . , d

IF
(
(within(k, Y) = TRUE) AND (X[k] = 0)

)
(4c)

destroyed := destroyed+ 1 (4d)

X[k] := ε (4e)

U [k] := exp(−rate[k] ·X[k]) (4f)

END IF

END FOR

END WHILE

RETURN
(
U [1], . . . , U [d]

)

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 115

Marshall–Olkin Copulas 115

The individual steps of Algorithm 3.3 are explained as follows:

(1) This is an initializing step. Step (1a) defines λsum as the sum of all pa-

rameters, i.e.
∑

∅�=I⊂{1,...,d} λI . This is required later on to compute the

probability law of the Yi’s. Step (1b) defines the d-dimensional vector

rate whose kth component rate[k] is supposed to be the exponential

rate
∑

I : k∈I λI of the kth margin of the Marshall–Olkin distribution

in question. The FOR loop in step (1c) accomplishes this computa-

tion, where the function within is the same as in Algorithm 3.1. The

vector rate is later required to transform the univariate margins to

U [0, 1]-distributions in (4f).

(2) The (2d− 1)-dimensional vectors y and p are defined in steps (2a) and

(2b). The vector y is simply (1, 2, . . . , 2d − 1), where each component

represents a subset ∅ �= I ⊂ {1, . . . , d} via the binary correspondence

(see step (2c)). The vector p contains the probabilities P(Y1 = I),

again using the binary representation of a set as a number (see step

(2d)).

(3) The upcoming WHILE loop is prepared. The variable destroyed de-

notes the number of components of the Marshall–Olkin vector X (de-

fined in step (3b)) that are already destroyed. Initially, destroyed := 0,

since all components are “alive”, see step (3a). The variable ε denotes

the sum of accumulated εj from Lemma 3.4, hence it is set to 0 at

the beginning (see step (3c)). The vector U in step (3b) has the same

meaning as in Algorithm 3.1, i.e. it is the transformation of the vector

X to uniform margins.

(4) While not all components are destroyed yet, i.e. WHILE (destroyed <

d), the following steps are repeated:

(4a) The next set Y of affected components is simulated. The respec-

tive sampling algorithm sample discrete is given in Algorithm 3.4.

(4b) The sum over the εj is increased by one more sample of an

Exp(λsum)-distribution.

(4c) For each component k = 1, . . . , d, it is checked whether k ∈ Y and

whether component k is still “alive”, i.e. whether X [k] = 0.

(4d) If so, then the kth component is destroyed, i.e. the number of

destroyed components is increased by one.

(4e) Moreover, X [k] is set to the accumulated sum over the εj’s.

(4f) This step simply transforms the univariate exponential margin of

the destroyed components to the U [0, 1]-law, i.e. the vector X (a

sample from the Marshall–Olkin distribution) is transformed to

the vector U (a sample from the Marshall–Olkin copula).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 116

116 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Notice that the simulation of the set-valued random variables Yi requires a

similar correspondence between Pd \ {∅} and {1, . . . , 2d − 1} as Algorithm
3.1. This correspondence renders the Yi discrete random variables taking

values in the set {1, . . . , 2d−1}, which is huge for large d. Using a bisection

routine one may sample these discrete random variables Yi by the following

sampling algorithm (one has to call it with n = 2d − 1).

Algorithm 3.4 (Sampling RVs with Finitely Many Values)

The input for the algorithm is the value set y = {y1, . . . , yn} ⊂ R and the

corresponding probabilities {p1, . . . , pn} ⊂ (0, 1] with p1+ . . .+ pn = 1. The

function x �→ �x� returns the greatest integer less than or equal to the real

number x.

FUNCTION sample discrete (vector: y,p)

n := length(y)

cum := vector(0 : n); cum[0] := 0

FOR i = 1, . . . , n

cum[i] := cum[i− 1] + p[i]

END FOR

U := sample U[0, 1]

upper := n; lower := 0

current :=
⌊
(upper + lower)/2

⌋
WHILE

(
(U > cum[current+ 1]) OR (U < cum[current])

)
IF (U > cum[current+ 1])

lower := current

ELSE

upper := current

END IF

current :=
⌊
(upper + lower)/2

⌋
END WHILE

RETURN y[current+ 1]

The computation of cum requires O(n) = O(2d) operations. But this step
has to be done only once if many samples are simulated. If we neglect

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 117

Marshall–Olkin Copulas 117

this computation, being a typical “divide-and-conquer” algorithm,5 the ex-

pected runtime of Algorithm 3.4 is of order O(log n) = O(d). Therefore,

sampling Yi is possible with an expected runtime of O(d) (since n = 2d− 1

in this case). The total runtime of Algorithm 3.3 is of order O(2d), since
the computation of the sum over all parameters in step (1a) requires 2d− 1

steps in general. Similarly, the computation of the exponential rates of the

margins in step (1c) is tedious.

Assume for a minute that p, λsum, as well as all marginal exponential

rates and the vector cum in Algorithm 3.4, are known beforehand and

passed as additional arguments to Algorithm 3.3, for example due to a

special parameterization, which is chosen for simplicity. Then the remaining

runtime of the sampling scheme mainly depends on the number of required

WHILE loops in Algorithm 3.3. Let N denote this random number, i.e.

N equals the smallest integer j such that Y1 ∪ . . . ∪ Yj = {1, . . . , d}. It is

intuitively clear that there might be a huge number of repetitions i < N

with Yi ⊂ (Y1∪Y2 ∪ . . .∪Yi−1). This means that we have to simulate many

of the Yi’s to no avail. The expected value E[N] of required repetitions can

be estimated by the following argument. Fix one component k ∈ {1, . . . , d}.
The probability that component k is destroyed in one repetition is given by

pk := P(k ∈ Yi) = P
(
Yi ∈ {I : k ∈ I}) = ∑

I : k∈I λI∑
∅�=I⊂{1,...,d} λI

.

Denote by Nk := min{i ∈ N : k ∈ Yi} the WHILE loop destroying compo-

nent k. Then Nk ∼ Geo(pk), since all Yi, i ∈ N, are i.i.d., and hence

E[Nk] =

∞∑
i=1

iP(Nk = i) =

∞∑
i=1

i pk (1 − pk)i−1 =
1

pk
.

Therefore, we obtain for each k = 1, . . . , d the estimate

1

pk
= E[Nk] ≤ E[N] = E[max{N1, . . . , Nd}]

≤ E[N1 + . . .+Nd] =
1

p1
+ . . .+

1

pd
.

If the parameters {λI} are chosen such that

0 ≈ pk � min{p1, . . . , pk−1, pk+1, . . . , pd} ≈ 1/(d− 1)

for one component k, i.e. if this component is very unlikely to fail compared

to the other components, then 1/pk ≈ 1/p1 + . . .+ 1/pd � 1. This exam-

ple shows that the (expected) overall runtime of the algorithm strongly
5In each step the remaining problem is divided in two parts from which one can be

removed.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 118

118 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

depends on the parameters. In contrast, in the most favorable case when

all components are equally likely to fail, i.e. if p1 = . . . = pd = 1/d, then

we obtain E[N] ≤ d2. Taking into account the fact that steps (3d) respec-

tively (4f) are of order O(d), in this most favorable case we hence obtain

at most the order O(d3) for the expected overall runtime of Algorithm 3.3

(still neglecting the initial computations of step (1), and cum in Algorithm

3.4).

Notice furthermore that both sampling algorithms for a general

Marshall–Olkin copula, Algorithm 3.1 and Algorithm 3.3, require a storage

capacity of order O(2d), since for example the parameters {λI} have to be

stored. This may cause serious problems for d� 2.

So far, we have mainly discussed the computational effort for the simu-

lation of one d-dimensional random vector in dependence of the dimension

d. For many applications it is important to be able to simulate a huge

number n ∈ N of i.i.d. random vectors. In this case, one simply has to

run Algorithms 3.1 or 3.3 n times. If doing so, for Algorithm 3.3 one only

has to perform the initializing step (1) as well as the computation of cum

in Algorithm 3.4 once and store the values λsum, rate, and cum for all

later runs. Hence, for the simulation of n i.i.d. d-dimensional Marshall–

Olkin vectors we obtain the runtime order O(n 2d) for Algorithm 3.1, and

the expected runtime order O(2d + n d3) for Algorithm 3.3, which may be

considerably smaller for n� 2.

Figure 3.3 illustrates scatterplots of samples from trivariate Marshall–

Olkin copulas. It can be observed that the measure dC induced by C

assigns positive mass to the “twisted” diagonal

{
(u1, u2, u3) ∈ [0, 1]3 : ur2 r3

1 = ur1 r3
2 = ur1 r2

3

}
,

rk :=
∑

I⊂{1,2,3} : k∈I

λI , k = 1, 2, 3.

More difficult to recognize in the plots is that dC also assigns positive mass

to the planes {(u1, u2, u3) ∈ [0, 1]3 : ur21 = ur12 }, {(u1, u2, u3) ∈ [0, 1]3 :

ur31 = ur13 }, and {(u1, u2, u3) ∈ [0, 1]3 : ur32 = ur23 }.

3.1.3 Properties of Marshall–Olkin Copulas

There are multiple reasons why Marshall–Olkin copulas are interesting for

applications. We list some of their most important properties in the sequel.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 119

Marshall–Olkin Copulas 119

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0 ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

● ●●

●

●●

●

●

●

●

●

●

● ●●●●

●

●

●● ●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ● ●●● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●

●●●●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

● ●

●

●

●●

●

●● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●
●

●

Fig. 3.3 Scatterplots of 1 000 samples from a Marshall–Olkin copula, corresponding
to the parameters (λ{1}, λ{2}, λ{3}, λ{1,2}, λ{1,3}, λ{2,3}, λ{1,2,3}) = (10, 1, 10, 1, 1, 1, 2)
(left) and (λ{1}, λ{2}, λ{3}, λ{1,2}, λ{1,3}, λ{2,3}, λ{1,2,3}) = (0, 8, 5, 1, 0, 1, 2) (right).

(1) Lack of memory property: As already indicated, the Marshall–

Olkin distribution has a natural motivation via the multivariate ex-

tension of the univariate lack of memory property. Therefore, it is

also sometimes called the “multivariate exponential distribution”, even

though this notion is nowadays typically used otherwise, cf. Section 8.2.

This intuitive property renders the Marshall–Olkin distribution a stan-

dard model in the field of reliability theory (see, e.g., Barlow and

Proschan (1975)).

(2) Extreme-value copula: The Marshall–Olkin copula is a so-called

extreme-value copula (see Definition 1.12), even though the Marshall–

Olkin distribution is not a multivariate extreme-value distribution.

Such copulas have important applications in the field of multivariate

extreme-value theory (see, e.g., Joe (1997), Beirlant et al. (2004), and

Mai and Scherer (2010)).

(3) Singular component: The Marshall–Olkin distribution is one of the

few prominent examples of multivariate distributions that are not abso-

lutely continuous, but still simple enough to be of practical value. Un-

like, for instance, the multivariate normal distribution or Archimedean

copulas, in the case of a Marshall–Olkin distribution there is a positive

probability that several components take the same value. In some ap-

plications, this property is highly desirable. Indeed, let (X1, . . . , Xd)

have as the joint distribution function a Marshall–Olkin distribution

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 120

120 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

with parameters {λI}. We introduce the notation

rk :=
∑

I⊂{1,...,d} : k∈I

λI , k = 1, . . . , d,

where the number rk > 0 is precisely the exponential rate of component

Xk. This means that the random vector

(U1, . . . , Ud) :=
(
e−r1 X1 , . . . , e−rd Xd

)
has the associated Marshall–Olkin copula. Then it holds true that

P
(
U

1
r1
1 = U

1
r2
2 = . . . = U

1
rd

d

)
= P(X1 = . . . = Xd)

=
λ{1,...,d}∑

∅�=I⊂{1,...,d} λI
. (3.9)

To verify the last equality, we use the notation from the canonical

construction (3.4) and see that

P(X1 = . . . = Xd) =

P
(
E{1,...,d} < min

{
EI : ∅ �= I ⊂ {1, . . . , d}, |I| < d

}︸ ︷︷ ︸
=:Ẽ

)
.

Now E{1,...,d} and Ẽ are independent and both exponentially dis-

tributed with rates λ{1,...,d} and λ̃ :=
∑

∅�=I⊂{1,...,d}, |I|<d λI , respec-

tively. This implies that

P(E{1,...,d} < Ẽ) =∫ ∞

0

∫ ∞

x

λ{1,...,d} e−λ{1,...,d} x λ̃ e−λ̃ y dy dx =
λ{1,...,d}

λ{1,...,d} + λ̃
,

which implies (3.9).

(4) Exogenous shock model interpretation: The canonical probability

space, which constructs a Marshall–Olkin distribution by (3.4), has an

intuitive interpretation. The random variables EI correspond to the

arrival times of exogenous shocks, and the Xk equal the first time a

shock hits the respective component. Such an intuitive interpretation

of a multivariate distribution is useful for applications, since it allows

for a good understanding of (the sensitivity of the model with respect

to) its parameters. Applications in insurance and credit risk modeling

can be found in Lindskog and McNeil (2003) and Giesecke (2003).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 121

Marshall–Olkin Copulas 121

(5) Positive upper-tail dependence: A careful and precise investigation

of extremal dependence coefficients of the Marshall–Olkin distribution

can be found in Li (2008). Loosely speaking, Marshall–Olkin copulas

exhibit strong dependence in the “upper extremes”, but independence

in the “lower extremes”. Such an asymmetry of extremal dependence

can be a convincing argument in favor of a stochastic model, particu-

larly in the field of credit risk modeling. For example, the upper-tail

dependence coefficient of the bivariate Marshall–Olkin copula (3.5) is

given by

UTDC = lim
u↑1

u
2− λ{1,2}

λ{1,2}+max{λ{1},λ{2}} − 2 u+ 1

1− u
=

λ{1,2}
λ{1,2} +max{λ{1}, λ{2}} ,

where the last equality follows from de l’Hospital’s rule. For exchange-

able Marshall–Olkin copulas, even the UEDC is known (see Mai (2010,

p. 108)).

(6) Concordance measures: As a subclass of extreme-value copulas,

Marshall–Olkin copulas are positive orthant dependent (POD) (see,

e.g., Joe (1997, Theorem 6.7, p. 177)). In the bivariate case, this

readily implies that concordance measures such as Spearman’s rho

and Kendall’s tau are non-negative. More precisely, for the bivariate

Marshall–Olkin copula (3.5) one can show that

ρC =
3λ{1,2}

3λ{1,2} + 2λ{1} + 2λ{2}
∈ [0, 1],

τC =
λ{1,2}

λ{1,2} + λ{1} + λ{2}
∈ [0, 1]

(see, e.g., Embrechts et al. (2003) for a derivation with alternative

parameterization). In particular, Marshall–Olkin copulas parameterize

a rich spectrum of dependence structures containing independence and

complete monotonicity as marginal special cases. For exchangeable

Marshall–Olkin copulas, even the multivariate Spearman’s rho is known

(see Mai (2010, p. 109)).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 122

122 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

3.2 The Exchangeable Case

Even though Marshall–Olkin copulas have desirable properties for many

practical applications (particularly in large dimensions), we have seen that

a simulation using the original shock model is quite inefficient, namely of

the exponential order O(2d). This is unacceptable if the dimension d is

larger than, say, d ≈ 15. Especially for some applications in portfolio credit

risk modeling, dimensions such as d = 125 or even larger are considered.

In this section the exchangeable subfamily of Marshall–Olkin copulas is de-

termined. Recall from Chapter 1 that exchangeable distribution functions

are the ones that are invariant with respect to permutations of their argu-

ments. It turns out that in this special case the sampling algorithm can

be sped up enormously to obtain computational efficiency of polynomial

order in d. Moreover, the serious problem of overparameterization can be

tackled by considering the exchangeable subfamily. Instead of the huge

number of 2d − 1 parameters one is left with only d parameters. Lemmas

3.5 and 3.6 prove this by clarifying which Marshall–Olkin distributions are

exchangeable. It is established that the characterizing condition is as fol-

lows: the random vector (X1, . . . , Xd), distributed according to a Marshall–

Olkin distribution with parameters λI ≥ 0, ∅ �= I ⊂ {1, . . . , d}, such that∑
I:k∈I λI > 0, k = 1, . . . , d, is exchangeable if and only if its parameters

satisfy the exchangeability condition

|I| = |J | ⇒ λI = λJ . (3.10)

To establish this result, we first assume that condition (3.10) holds for

some random vector (X1, . . . , Xd). The survival function and copula then

simplify considerably (see Lemma 3.5 below), and we observe that both are

invariant with respect to permutations of their arguments.

Lemma 3.5 (Exchangeable Marshall–Olkin Survival Copula)

The survival copula of the random vector (X1, . . . , Xd), as defined in Equa-

tion (3.4), with parameters satisfying (3.10), is given by

C(u1, . . . , ud) =

d∏
k=1

u

∑d−k
i=0 (

d−k
i)λi+1∑d−1

i=0 (
d−1
i)λi+1

(k) , (3.11)

where u(1) ≤ . . . ≤ u(d) denotes the ordered list of u1, . . . , ud ∈ [0, 1] and λi
is defined via

{λi} :=
{
λI : |I| = i

}
, i = 1, . . . , d.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 123

Marshall–Olkin Copulas 123

Equivalently, the survival function of (X1, . . . , Xd) is given by

F̄ (x1, . . . , xd) = exp
(
−

d∑
k=1

x(d+1−k)

d−k∑
i=0

(
d− k
i

)
λi+1

)
,

where x(1) ≤ x(2) ≤ . . . ≤ x(d) denotes the ordered list of x1, . . . , xd ≥ 0.

Clearly, both C and F̄ are invariant with respect to permutations of their

arguments.

Proof. The statement is obtained by applying Lemma 3.2 in the case

where the parameters satisfy (3.10). It is observed in this case that∑
I:k∈I λI is independent of k:∑

I:k∈I

λI =

d−1∑
i=0

(
d− 1

i

)
λi+1 =: c.

This is due to the fact that for each index k there are precisely (d−1) choose
i subsets I of {1, . . . , d} with (i+1) elements containing k, i = 0, . . . , d− 1.

Hence, an application of Lemma 3.2 implies

C(u1, . . . , ud) =

d∏
k=1

∏
1≤i1<...<ik≤d

(
min{ui1 , . . . , uik}

)λk
c

= u
λ1
c

(d) u
λ1
c +

λ2
c

(d−1) u
λ1
c +2

λ2
c +

λ3
c

(d−2) · · · u
∑d−1

i=0 (
d−1
i)

λi+1
c

(1)

=

d∏
k=1

u
1
c

∑d−k
i=0 (d−k

i)λi+1

(k) .

The second equation illustrates the required combinatorial observation: the

kth largest element u(k) of u1, . . . , ud is once the minimum of a set with

one element (namely of {u(k)}), (d − k) times the minimum of a set with

two elements (namely of {u(i), u(k)} for i > k), (d − k) choose two times

the minimum of a set with three elements, and so on. The claimed survival

function follows immediately from (the survival analog of) Sklar’s theorem,

since the margins are Exp(c)-distributed. �
It is now shown that condition (3.10) is necessary and sufficient to obtain

an exchangeable Marshall–Olkin distribution and copula, respectively.

Lemma 3.6 (Exchangeable Marshall–Olkin Distribution)

On a probability space (Ω,F ,P) let (X1, . . . , Xd) be a random vector with

a Marshall–Olkin distribution, i.e. with survival function (3.3) for param-

eters λI ≥ 0, ∅ �= I ⊂ {1, . . . , d}, such that
∑

I:k∈I λI > 0, k = 1, . . . , d.

Then (X1, . . . , Xd) is exchangeable if and only if its parameters satisfy the

exchangeability condition (3.10).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 124

124 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Proof. First, suppose that (3.10) is valid. Lemma 3.5 establishes via

the survival function (and copula, respectively) that the random vector

(X1, . . . , Xd) (and its associated copula, respectively) is exchangeable.

Conversely, assume that (X1, . . . , Xd) is exchangeable. This means that

the survival function (3.3) is invariant with respect to permutations of its

arguments. In order to simplify the notation, we write F̄ (x) instead of

F̄ (x1, . . . , xd), where x := (x1, . . . , xd). Moreover, the ith unit vector in

Rd is denoted by ei. We prove (3.10) by induction over the cardinality of

subsets of {1, . . . , d}. To begin with, we verify λ{1} = λ{2} = . . . = λ{d}:
for each k = 2, . . . , d, exchangeability implies that

∑
∅�=I⊂{1,...,d}

I �={1}

λI = − log F̄
(d∑

i=2

ei

)
= − log F̄

(d∑
i=1

i�=k

ei

)
=

∑
∅�=I⊂{1,...,d}

I �={k}

λI .

When we subtract the sum of all parameters on both sides, this in turn

verifies λ{1} = λ{2} = . . . = λ{d}. Now by induction hypothesis we assume

that all parameters λI corresponding to subsets I ⊂ {1, . . . , d} of cardinality
|I| ≤ k are identical. We now prove that all parameters λI corresponding

to subsets I ⊂ {1, . . . , d} of cardinality |I| = k+1 ≤ d are identical. To this

end, let I0 be an arbitrary subset of {1, . . . , d} of cardinality |I0| = k + 1.

Then∑
∅�=I⊂{1,...,d}

I�I0

λI = − log F̄
(d∑

i=1

i/∈I0

ei

)
= − log F̄

(d∑
i=k+2

ei

)
=

∑
∅�=I⊂{1,...,d}
I�{1,...,k+1}

λI .

When we subtract the sum of all parameters on both sides, this implies

λI0 +
∑

∅�=I⊂I0
|I|≤k

λI = λ{1,...,k+1} +
∑

∅�=I⊂{1,...,k+1}
|I|≤k

λI .

Using the induction hypothesis, this verifies that λ{1,...,k+1} = λI0 . Since

I0 was an arbitrary subset with cardinality k + 1, we may conjecture that

all parameters λI with |I| = k + 1 are identical. �

For the exchangeable subfamily of Marshall–Olkin distributions, Lemma

3.6 shows that the sets {λI : |I| = k} are singletons for k = 1, . . . , d.

This means that instead of 2d − 1 parameters λI , ∅ �= I ⊂ {1, . . . , d},
an exchangeable Marshall–Olkin distribution is parameterized by only d

parameters λ1, . . . , λd ≥ 0, where λk := λ{1,...,k}, k = 1, . . . , d. It is impor-

tant to stress that the case λ1 = . . . = λd = 0 is excluded by the earlier

assumptions on the λI ’s in order for construction (3.4) to be well defined.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 125

Marshall–Olkin Copulas 125

The parametric family of copulas of form (3.11) is denoted by eMO

(standing for exchangeable Marshall–Olkin) in the sequel. For the sake

of clarity, we explicitly define the class of exchangeable Marshall–Olkin

survival copulas by

eMO :=

{
d∏

k=1

u

∑d−k
i=0 (

d−k
i)λi+1∑d−1

i=0 (
d−1
i)λi+1

(k)

∣∣∣∣∣ (0, . . . , 0) �= (λ1, . . . , λd) ∈ [0,∞)d

}
.

Any copula C ∈ eMO is invariant under permutations of its arguments.

This implies that for 2 ≤ i ≤ d, all i-margins of C are of the same structural

kind. In particular, two-margins are bivariate Cuadras–Augé copulas with

parameter6

α := 1−
∑d−2

i=0

(
d−2
i

)
λi+1∑d−1

i=0

(
d−1
i

)
λi+1

(3.12)

(compare Example 1.4). Hence, the class eMO is a multivariate extension

of bivariate Cuadras–Augé copulas. In fact, this is an example showing

that extensions to higher dimensions need not be unique: for example, the

two three-dimensional eMO-copulas with parameters λ := (λ1, λ2, λ3) =

(1, 1, 1), respectively λ̃ := (λ̃1, λ̃2, λ̃3) = (3, 2, 3), have the same bivariate

margins, since formula (3.12) implies α = 1/2 for both parameter choices.

But the two associated trivariate eMO-copulas are not the same, since they

are given by

Cλ(u1, u2, u3) = u(1) u
1
2

(2) u
1
4

(3), Cλ̃(u1, u2, u3) = u(1) u
1
2

(2) u
3
10

(3),

respectively, i.e. the exponent of u(3) differs. This has no effect on bivariate

margins, but it does on trivariate events such as {U1 = U2 = U3}. For

instance, when we use formula (3.9) it holds that

Pλ(U1 = U2 = U3) =
1

7
�= 1

6
= Pλ̃(U1 = U2 = U3).

For a deeper discussion of this issue and its implications for parameter

estimation, the interested reader is referred to Hering and Mai (2012).

Figure 3.4 illustrates scatterplots from trivariate eMO-copulas. It is

observed that the measure dC induced by C assigns positive mass to the

diagonal of the unit cube. More difficult to recognize in the plots is that dC

also assigns positive mass to the planes {(u1, u2, u3) ∈ [0, 1]3 : u1 = u2},
6The first author wants to use this opportunity to mention that the expression for

the Cuadras–Augé parameter in his dissertation, Mai (2010, p. 65, l. 3), is a misprint.
Formula (3.12) is the correct expression.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 126

126 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

{(u1, u2, u3) ∈ [0, 1]3 : u1 = u3}, and {(u1, u2, u3) ∈ [0, 1]3 : u2 = u3}.
Comparing the plots with those in Figure 3.3 for general Marshall–Olkin

copulas, we see that the most obvious difference is that the diagonal of

the unit cube is always a part of the singular component, rather than a

“twisted” diagonal in the general case.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●●

●

●

●

●●
● ●●●

●

●

●

● ●

●

●
●

●●

●

●

●

●●

●
●

●

●

● ●

●

●

●● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

● ● ●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●● ●
●

●●● ● ●●

●

● ●
●

● ●●

●

● ●

●

●

●

●
● ●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

● ● ●

●

●

●

●● ●

●

●

●●●●

●

●

●

●

●

●

●

●●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●● ●●●●

●

● ●●

●

●

●

●

●

●

●

● ●●

●

● ●●●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

● ●● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ● ●

●
●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●●

●

●
●

● ●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

● ●● ●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●
●●● ●●

●

●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

● ● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

● ●● ●

●

●●●

●

●● ●●

●

●

●

● ●

●

●

●
●

●●

●

●

●
●

●

●●

●
● ●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●● ●●

●

● ●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

● ●

●

●

●

●

●● ●●

●

●●●● ●

●

●

●

●●●●●

●

● ●

●

●

●

●

●

●● ● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●● ●● ●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

● ●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●● ●●●

●

● ●

●

●●

●

●

● ● ●●

●

●

●

● ●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
● ●●

●

●

●

●

●

●●

●●

●

●

● ●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

Fig. 3.4 Scatterplots of 1 000 samples from the copula C(u1, u2, u3) ∈ eMO, cor-
responding to the parameters (λ1, λ2, λ3) = (1.2, 1.5, 1) (left) and (λ1, λ2, λ3) =
(0.1, 5, 0.1) (right). In the second case, the probability of having exactly two identi-
cal components is quite high, which can be observed in the scatterplot.

3.2.1 Reparameterizing Marshall–Olkin Copulas

Although the analytic expression of eMO-copulas is already quite handy,

the exponents still appear somewhat complicated. Therefore, we propose a

reparameterization of eMO-copulas to write them in a more compact form

C(u1, . . . , ud) =
d∏

k=1

u
ak−1

(k) , u1, . . . , ud ∈ [0, 1],

by introducing the notation

ak :=

∑d−k−1
i=0

(
d−k−1

i

)
λi+1∑d−1

i=0

(
d−1
i

)
λi+1

, k = 0, . . . , d− 1.

The advantage of this reparameterization is two-fold. First, the analytic

expression and therefore the notations in the sequel are simplified. Second,

it is a first and important step in determining the extendible subclass of

eMO-copulas (see Section 3.3). Unfortunately, there is also a disadvantage

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 127

Marshall–Olkin Copulas 127

of this reparameterization, of which one should be aware: the intuitive in-

terpretation of the parameters λ1, . . . , λd as intensities of exogenous shocks

is lost. Moreover, whereas the parameter space in terms of the original

parameters is simply [0,∞)d \ {(0, . . . , 0)}, it is not immediately clear how

the new parameters (a0, . . . , ad−1) can be chosen. Lemma 3.7 clarifies this

issue. The following notation is required.

Definition 3.1 (Difference Operator)

For a given sequence of real numbers a0, a1, . . ., the difference operator ∆

is defined by ∆ak := ak+1 − ak, k ∈ N0.

The difference operator ∆ is a linear operator in the sense that for sequences

a0, a1, . . ., b0, b1, . . ., and β ∈ R, one has

∆(β ak + bk) = (β ak+1 + bk+1)− (β ak + bk)

= β (ak+1 − ak) + (bk+1 − bk) = β∆ak +∆bk.

In the sequel, ∆ is often applied iteratively. For example, we write ∆2ak for

the expression ∆(∆ak) = ∆(ak+1−ak) = ∆ak+1−∆ak = ak+2−2 ak+1+ak.

More generally, we write ∆jak when ∆ is applied j times to ak. Notice in

particular that the expression ∆jak involves the j+1 numbers7 ak, . . . , ak+j .

Moreover, it is convenient to introduce the notation ∆0ak := ak. The

following definition is absolutely crucial for the study of eMO-copulas.

Definition 3.2 (d-Monotonicity of Sequences)

A finite sequence (a0, a1, . . . , ad−1) of real numbers is called d-monotone if

(−1)j ∆jak ≥ 0, k = 0, 1, . . . , d− 1, j = 0, 1, . . . , d− k − 1.

Intuitively, the difference operator can be considered a derivative for se-

quences, if the latter are interpreted as discrete functions N0 → R. For

example, the fact that all terms ∆0ak = ak are non-negative implies that

the sequence is non-negative. The fact that all terms −∆ak = ak − ak+1

are non-negative implies that the sequence is non-increasing (heuristically,

this corresponds to a non-positive first derivative). The fact that all terms

∆2ak = ∆ak+1 −∆ak = ak+2 − 2 ak+1 + ak are non-negative implies that

the sequence is “convex” in the sense that ak+1 ≤ (ak+2 + ak)/2 (heuristi-

cally, this corresponds to a non-negative second derivative). The following

theorem clarifies the role of this notion in the context of eMO-copulas.

7One has ∆jak =
∑j

i=0(−1)i+j
(j
i

)
ak+i (see Mai (2010, p. 54)).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 128

128 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Lemma 3.7 (Reparameterization of eMO-Copulas)

The family eMO can alternatively be written as

eMO =
{ d∏

k=1

u
ak−1

(k)

∣∣∣ (a0, . . . , ad−1) d-monotone, a0 = 1
}
.

Moreover, the original parameters (λ1, . . . , λd) ∈ [0,∞)d \ {(0, . . . , 0)} and
the new parameters (a0, . . . , ad−1) are related via

ak =

∑d−k−1
i=0

(
d−k−1

i

)
λi+1∑d−1

i=0

(
d−1
i

)
λi+1

, k = 0, . . . , d− 1,

λk = c (−1)k−1 ∆k−1ad−k, k = 1, . . . , d,

where c > 0 is an arbitrary positive constant which has no effect on the

copula (but on the marginal law of the associated Marshall–Olkin distribu-

tion).

Furthermore, one can show that the function
∏d

k=1 u
ak−1

(k) is a copula

if and only if a0 = 1 and (a0, . . . , ad−1) is d-monotone. This means that

there is a one-to-one correspondence between eMO-copulas and d-monotone

sequences starting from a0 = 1.

Proof. The proof is technical and can be found in Mai and Scherer

(2011a, 2009a) and Mai (2010, Chapter 3). However, the crucial idea of

the reparameterization as well as the probabilistic meaning of the new pa-

rameters are explained in Section 3.2.2. �

Recall that a random vector X with an exchangeable Marshall–Olkin dis-

tribution is parameterized by (λ1, . . . , λd). The univariate margins are ex-

ponential distributions with parameter c :=
∑d−1

i=0

(
d−1
i

)
λi+1 > 0, identical

for all components by exchangeability. Hence, the distribution of X is

completely determined by its survival copula, which is an eMO-copula,

and the marginal rate c. If we use the reparameterization discussed earlier,

this distribution is now determined by the parameters (c, a0, a1, . . . , ad−1).

Notice that the dimension of this new parameter vector only appears to

be d + 1 (i.e. increased by 1 compared with the original parameter vector

(λ1, . . . , λd)) but in fact is not, since a0 = 1. Given these new parameters

(c, a0, a1, . . . , ad−1), the original parameters (λ1, . . . , λd) are obtained pre-

cisely as stated in Lemma 3.7, where now c is not arbitrary but the given

marginal rate.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 129

Marshall–Olkin Copulas 129

3.2.2 The Inverse Pascal Triangle

There is a clever way of computing the new parameters (a0, . . . , ad−1) from

the original ones (λ1, . . . , λd) by recursion (see Mai and Scherer (2013b)).

Moreover, this computation sheds some light on the probabilistic mean-

ing of the new parameters. To this end, consider a probability space

(Ω,F ,P) supporting a random vector (X1, . . . , Xd), which follows an ex-

changeable Marshall–Olkin distribution with parameters (λ1, . . . , λd) ∈
[0,∞)d \ {(0, . . . , 0)}. Without loss of generality we let (Ω,F ,P) be

the probability space from the original construction (3.4) and recall that

λk equals the intensity of exogenous shocks affecting k-dimensional sub-

vectors of (X1, . . . , Xd). Now consider a (d − 1)-dimensional subvector,

w.l.o.g. (X1, . . . , Xd−1). Rewriting the canonical construction (3.4) of the

Marshall–Olkin distribution, this implies for k = 1, . . . , d− 1 that

Xk = min
{
EI

∣∣ k ∈ I}
= min

{
EI

∣∣ k ∈ I, d /∈ I} ∪ {EI

∣∣ {k, d} ⊂ I}
= min

{
min
{
EI

∣∣ k ∈ I, d /∈ I}, min
{
EI

∣∣ {k, d} ⊂ I}}.
The first minimum corresponds to the definition of a (d − 1)-dimensional

exchangeable Marshall–Olkin distribution with parameters (λ1, . . . , λd−1).

However, the appearance of the second minimum suggests that exoge-

nous shocks affecting the last component, which we have now eliminated,

have to be taken into account as well. More precisely, the components

indexed by I ⊂ {1, . . . , d − 1} are affected by EI and EI∪{d}. Since

min{EI , EI∪{d}} ∼ Exp(λ|I| + λ|I|+1), this observation implies that all

(d− 1)-dimensional subvectors of (X1, . . . , Xd) follow a (d− 1)-dimensional

exchangeable Marshall–Olkin distribution corresponding to the parameters

(λ1 + λ2, λ2 + λ3, . . . , λd−1 + λd) ∈ [0,∞)d−1 \ {(0, . . . , 0)}. Consequently,
one can compute the parameters of the (d−1)-dimensional subvectors from

λ1, . . . , λd via the following geometric scheme:

λ1 + λ2 λ2 + λ3 λd−1 + λd
↑ ↖ ↑ ↖ . . . ↖ ↑ ↖
λ1 λ2 λd−1 λd

One can now proceed iteratively and compute the following triangular

scheme, the kth row of which corresponds to the parameters of all k-

dimensional subvectors of (X1, . . . , Xd):

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 130

130 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

∑d
i=1

(
d−1
i−1

)
λi

∑d−1
i=1

(
d−2
i−1

)
λi

∑d
i=2

(
d−2
i−2

)
λi

...
. . .

λ1 + 2λ2 + λ3 λ2 + 2λ3 + λ4 . . .

λ1 + λ2 λ2 + λ3 . . . λd−1 + λd

λ1 λ2 . . . λd−1 λd

We call this triangular scheme the inverse Pascal triangle, since it resembles

the classical Pascal triangle for the computation of binomial coefficients. In

particular, the value at the tip of the triangle8 c :=
∑d

i=1

(
d−1
i−1

)
λi corre-

sponds to the exponential rate of the univariate margins, i.e. of the random

variables Xk, k = 1, . . . , d. Dividing the numbers in the whole triangular

scheme by c, one obtains the values a0, a1, . . . , ad−1 in the left column, i.e.

a0 =
1

c

d∑
i=1

(
d− 1

i− 1

)
λi, a1 =

1

c

d−1∑
i=1

(
d− 2

i− 1

)
λi, . . . ,

ad−2 =
1

c
(λ1 + λ2), ad−1 = λ1/c.

Clearly, this triangular scheme of non-negative numbers determines the

distribution of (X1, . . . , Xd), since already the bottom row does that. If we

start from the new parameters, instead of computing the triangle from the

bottom row we can alternatively start from the left column and compute

the whole triangular scheme as follows:

c a0
↘

c a1 → c (a0 − a1)︸ ︷︷ ︸
−c∆a0

↘ ↘
c a2 → c (a1 − a2)︸ ︷︷ ︸

−c∆a1

→ −c∆a0 + c∆a1︸ ︷︷ ︸
c∆2a0

↘ ↘ ↘
...

...
...

. . .

8This value was already denoted c in the proof of Lemma 3.5.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 131

Marshall–Olkin Copulas 131

Hence, the survival copula of (X1, . . . , Xd) (i.e. the distribution up to the

constant c) is alternatively determined by the first column of the triangular

scheme: the parameters (c, a0, . . . , ad−1). This is basically the idea of the

proof of Lemma 3.7 and shows how the difference operator ∆ naturally

comes into play. Notice that we can also extract from this argument a

probabilistic meaning of the new parameters (c, a0, . . . , ad−1): the value

c ak equals the exponential rate at which a single component in a (d − k)-
dimensional subvector of (X1, . . . , Xd) is destroyed, k = 0, . . . , d− 1.

3.2.3 Efficiently Sampling eMO

Exchangeability allows us to massively improve Algorithms 3.1 and 3.3 with

respect to runtime and memory requirements. The required modification is

based on a quite intuitive idea, presented in Mai and Scherer (2013a): the

original frailty model involves 2d − 1 shocks, but only at most d of these

shocks are relevant for determining the components’ lifetimes. These are

precisely the shocks that represent the minimum of a set of shocks related

to some component. Considering this, it is more efficient to only sam-

ple shocks that are truly required and to avoid simulating shocks that are

not important. This is indeed possible by pursuing the following recursive

strategy: (1) Simulate the time until the first shock appears. Being the

minimum of all (exponentially distributed) shocks, this is again an expo-

nential distribution.9 (2) Simulate the number of components destroyed by

the first shock (|Y1| in the notation of Lemma 3.4). The crucial point here

is that it is enough to know the cardinality |Y1| of Y1, due to the exchange-

ability of the distribution. (3) Set the lifetime of all components that have

been destroyed by the shock. (4) Update the parameters of the remaining

components. The remaining vector of lifetimes of the survived components

has again a Marshall–Olkin distribution, due to the lack of memory prop-

erty. (5) Continue (with the remaining model and updated parameters)

with step (1), until all components are destroyed.10 To formally derive this

algorithm we require the following technical result. Denote by Sd the set

of all permutation maps, i.e. bijections, on {1, . . . , d}.

9ε1 using the notation of Lemma 3.4.
10In principle, a related treatment is also possible in the general Marshall–Olkin case.
Updating and organizing the parameters requires in the general case computational effort
of order O(2d), so we can only improve the efficiency by exploiting some knowledge about
the parameters, e.g. as in the exchangeable case.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 132

132 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Lemma 3.8 (Technical Lemma)

Let (X1, . . . , Xd) be an exchangeable random vector on a probability space

(Ω,F ,P). Furthermore, let S1,S2 : Ω → Sd be two random permutations

such that S1 is independent of (X1, . . . , Xd) andS2. Moreover, assume that

the distribution of S1 is uniform on Sd, i.e. given by P(S1 = σ) = 1/d!,

σ ∈ Sd. Then it follows that

(X1, . . . , Xd)
d
=
(
X

S1

(
S2(1)
), . . . , X

S1

(
S2(d)
)),

where
d
= denotes equality in distribution. In words, this means that no

matter how S2 is defined, even if it contains some information about

(X1, . . . , Xd), it is totally blurred by S1.

Proof. By exchangeability, it follows for every (deterministic) σ ∈ Sd
that

(X1, . . . , Xd)
d
= (Xσ(1), . . . , Xσ(d)).

Since S1 is independent of (X1, . . . , Xd), this readily implies that

(X1, . . . , Xd)
d
= (XS1(1), . . . , XS1(d)). (3.13)

Even though S2 may not be, S1 ◦S2 is independent of (X1, . . . , Xd), since

for any Borel set B ⊂ Rd and σ ∈ Sd one has

P
(
S1 ◦S2 = σ, (X1, . . . , Xd) ∈ B

)
= P
(
S1 = σ ◦S−1

2 , (X1, . . . , Xd) ∈ B
)

= E
[
P
(
S1 = σ ◦S−1

2 , (X1, . . . , Xd) ∈ B
∣∣S2, (X1, . . . , Xd)

)]
= E
[
�{(X1,...,Xd)∈B} P

(
S1 = σ ◦S−1

2

∣∣S2

)]
= E
[
�{(X1,...,Xd)∈B} 1/d!

]
= P
(
(X1, . . . , Xd) ∈ B

)
P(S1 ◦S2 = σ).

The last equality uses the fact that P(S1 ◦S2 = σ) = 1/d!, σ ∈ Sd, which
is true by the independence of S1 and S2. Therefore,(

S1, (X1, . . . , Xd)
) d
=
(
S1 ◦S2, (X1, . . . , Xd)

)
.

This, together with (3.13), implies the claim. �

Now consider a random vector (X1, . . . , Xd) with eMO-distribution with

parameters (λ1, . . . , λd) and denote by (X̃1, . . . , X̃d) an independent copy

of (X1, . . . , Xd). For later reference, we denote by (c, a0, . . . , ad−1) the

new parameters of this eMO-distribution by virtue of Lemma 3.7. With-

out loss of generality, assume that both vectors are defined on (Ω,F ,P)
and (X1, . . . , Xd) is constructed as in Lemma 3.4 from

({Yi}i∈N, {εi}i∈N
)

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 133

Marshall–Olkin Copulas 133

and (X̃1, . . . , X̃d) is constructed as in Lemma 3.4 from
({Ỹi}i∈N, {ε̃i}i∈N

)
.

Lemma 3.4 implies that

(X1, . . . , Xd) = (ε1, . . . , ε1) + (η1, . . . , ηd),

where

ηk :=

{
0 , k ∈ Y1
ε2 + . . .+ εmin{i≥2 : k∈Yi} , k /∈ Y1

}
, k = 1, . . . , d.

Given Y1 =: {y1, . . . , y|Y1|} and {1, . . . , d} \ Y1 =: {x1, . . . , xd−|Y1|}, define
a random permutation S2 on {1, . . . , d} by

S−1
2 (yi) := d− |Y1|+ i, i = 1, . . . , |Y1|,

S−1
2 (xi) := i, i = 1, . . . , d− |Y1|.

In words, S−1
2 sorts the components of (η1, . . . , ηd) in such a way that the

|Y1| zeros are at the end of the vector. In particular, S2 depends on Y1
and therefore on (η1, . . . , ηd). Conditioned on Y1, the random subvector(
ηS2(1), . . . , ηS2(d−|Y1|)

)
obviously satisfies(

ηS2(1), . . . , ηS2(d−|Y1|)
)

=
(
ε2 + . . .+ εmin{i≥2 :S2(1)∈Yi}, . . . , ε2 + . . .+ εmin{i≥2 :S2(d−|Y1|)∈Yi}

)
d
=
(
ε̃1 + . . .+ ε̃min{i≥1 : 1∈Ỹi}, . . . , ε̃1 + . . .+ ε̃min{i≥1 : d−|Y1|∈Ỹi}

)
= (X̃1, . . . , X̃d−|Y1|).

A (d − k)-dimensional subvector of (X̃1, . . . , X̃d) follows a (d − k)-

dimensional eMO-distribution with parameters (c, a0, . . . , ad−k−1). Hence,

conditioned on Y1, the random vector
(
ηS2(1), . . . , ηS2(d−|Y1|)

)
has a (d −

|Y1|)-dimensional eMO-distribution with parameters (c, a0, . . . , ad−|Y1|−1).

Denote by S1 a random permutation on (Ω,F ,P), which is independent

of all other random objects and satisfies P(S1 = σ) = 1/d!, σ ∈ Sd. By

Lemma 3.8 it follows that

(η1, . . . , ηd)
d
=
(
ηS1◦S2(1), . . . , ηS1◦S2(d)

)
.

It is thus established that

(X1, . . . , Xd)
d
= (ε1, . . . , ε1) +

(
ηS1◦S2(1), . . . , ηS1◦S2(d)

)
.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 134

134 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

This implies that we can simulate (X1, . . . , Xd) as follows:

(1) Simulate ε1.

(2) Simulate |Y1| and then (X̃1, . . . , X̃d−|Y1|) ∼ eMO, a (d − |Y1|)-
dimensional vector with parameters (c, a0, . . . , ad−|Y1|−1). The latter

simulation recursively calls the sampling algorithm again.

(3) Set
(
ηS2(1), . . . , ηS2(d)

)
:= (X̃1, . . . , X̃d−|Y1|, 0, . . . , 0).

(4) Simulate S1.

(5) Return (X1, . . . , Xd) := (ε1, . . . , ε1) +
(
ηS1◦S2(1), . . . , ηS1◦S2(d)

)
.

In particular, the simulation steps (1), (2), and (4) of the above strategy

are independent of each other. This verifies Algorithm 3.5, which is im-

plemented precisely along these lines. The transformation (U1, . . . , Ud) :=(
exp(−cX1), . . . , exp(−cXd)

)
again provides a sample from the respective

eMO-copula, rather than from the Marshall–Olkin distribution, i.e. the

margins are standardized to the U [0, 1]-law.
A pseudo-code for this sampling strategy is provided with Algorithm

3.5. Before the algorithm is provided, let us make a few remarks for the

sake of clarity:

(1) The scheme is implemented recursively; it is called at most d times

for the simulation of a d-dimensional vector. The runtime for the sim-

ulation is random itself, since it depends on how many components

are destroyed in each step. A worst-case estimate for the runtime is

O(d2 log d) (see the following investigation).

(2) The constant c is set to c = 1 w.l.o.g. This is possible because Algo-

rithm 3.5 samples an eMO-copula and not an eMO-distribution. The

latter is easily obtained by transforming the margins to an Exp(c)-

distribution afterwards.

(3) Since the algorithm is based on the probabilistic construction of Lemma

3.4, it is helpful to recall the distributions of the involved random vari-

ables {εi}i∈N and {|Yi|}i∈N. The distribution of the interarrival times

{εi}i∈N in Lemma 3.4 in the exchangeable special case is exponential

with parameter

d∑
l=1

(
d

l

)
λl =

d∑
l=1

(
d

l

)
(−1)l−1 ∆l−1ad−l =

d−1∑
j=0

aj ,

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 135

Marshall–Olkin Copulas 135

where the first equation applies the reparameterization of Theorem 3.7

and the second uses the summation identity of Mai (2010, Lemma 4.4.6,

p. 112). Similarly, recalling the distribution of Y1 in Lemma 3.4 in the

exchangeable special case, we obtain

P(|Y1| = k) =

(
d
k

)
λk∑d

l=1

(
d
l

)
λl

=

(
d
k

)
(−1)k−1 ∆k−1ad−k∑d

l=1

(
d
l

)
(−1)l−1 ∆l−1ad−l

=

(
d
k

) ∑k−1
j=0 (−1)j

(
k−1
j

)
ad−k+j∑d−1

j=0 aj
,

where again the second equality uses the reparameterization of Theo-

rem 3.7 and the third equality uses the summation identities of Mai

(2010, Lemma 2.5.2, p. 54, and Lemma 4.4.6, p. 112).

Algorithm 3.5 (Sampling eMO-Copulas)

FUNCTION sample eMO (integer: d, vector: a,X)

Set alive := length(a) (1a)

Set destroyed := d− alive (1b)

IF (destroyed = 0) (2)

Set t0 := 0 (2a)

ELSE

Set t0 := max
i=1,...,destroyed

{X [i]} (2b)

END IF

Set λnext :=
alive−1∑

j=0

a[j] (3)

Set tnext := t0 + sample EXP(λnext) (4)

Set h := sample type of shock(a) (5)

FOR j = 1, . . . , h (6)

Set X [j + destroyed] := tnext (6a)

END FOR

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 136

136 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

IF (alive > h) (7)

ã := a[0 : alive− h− 1]

RETURN sample eMO (d, ã,X) (7a)

ELSE

RETURN sample permutate
(
exp(−X)

)
(7b)

END IF

Note that the algorithm requires the following functions:

FUNCTION sample type of shock (vector: a)

alive := length(a)

RETURN a sample of |Y |, where |Y | ∼ P(|Y | = k) =(
alive
k

) ∑k−1
j=0 (−1)j

(
k−1
j

)
a[alive− k + j]∑alive−1

j=0 a[j]

FUNCTION sample permutate (vector: X)

RETURN a random permutation of X

drawn uniform from Slength(X)

Descriptions of individual steps, as well as runtime estimations for Algo-

rithm 3.5, are provided in the sequel. The function sample eMO is called

with argument d for the dimension, and the vectors a and X. The vector

X is the zero vector when the function is called for the first time. The com-

ponents are then recursively simulated, so that X contains the previously

sampled extinction times (if any). The vector a contains the d-monotone

parameters of the eMO-copula of the remaining components, where a0 = 1.

Here one advantage of the reparameterization is observed: a k-margin of a

(d-dimensional) eMO-copula with parameters (a0, . . . , ad−1) is again a (k-

dimensional) eMO-copula with truncated parameter vector (a0, . . . , ak−1).

Therefore, no time-consuming parameter updates are needed, which would

be the case when working with the original parameterization.

(1a) The variable alive denotes the dimension of the remaining problem, i.e.

the number of components that are still “alive”. When the function is

called for the first time, alive = d.

(1b) The variable destroyed denotes the number of already destroyed com-

ponents, i.e. destroyed+ alive = d always holds.

(2) The position of the largest extinction time (so far) is stored in t0. This

may also be interpreted as the time that all remaining components

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 137

Marshall–Olkin Copulas 137

have survived so far. If the vector X is still empty, i.e. destroyed = 0,

then t0 := 0. Otherwise, t0 := maxi=1,...,destroyed {X [i]}. Finding the

maximum of a set with cardinality smaller or equal to d requires at

most d − 1 comparisons, so it belongs to O(d) (see Schöning (2001, p.

130)).

(3) The intensity of the next extinction time is computed. The minimum

of all upcoming extinction times (one has alive shocks affecting pre-

cisely one component, alive (alive− 1)/2 shocks affecting precisely two

components, . . . , one shock affecting all alive components) is again an

exponential distribution. Its intensity is the sum of the shocks’ inten-

sities, which in the new parameterization equals
∑alive

j=1 a[j − 1]. Com-

puting this intensity requires at most O(d) computation steps, since

alive ≤ d.
(4) The time until the next shock is simulated.

(5) The type of shock is simulated. The random variable h ∈ {1, . . . , alive}
is the number of components destroyed in this step. This simulation of

a discrete random variable with alive ≤ d possible outcomes requires

at most O(d) steps (see Algorithm 3.4).

(6) The vector of extinction times is enlarged by the h components de-

stroyed in this step.

(7) If at least one component is still alive, the function sample eMO is

recursively called again; now with truncated parameter vector ã. Oth-

erwise, a random permutation is applied to overcome the increasing or-

dering that is convenient for the implementation. The transformation

ofX by the mapping x �→ exp(−x) corresponds to the normalization to

uniform margins. Note that we chose c = 1 as the marginal intensity of

the corresponding Marshall–Olkin distribution. Sampling the required

random permutation is possible with effort O(d log d). For this, one

might simply simulate d independent U [0, 1]-distributed random vari-

ables and use their order statistics to permutate the vector X. Sorting

a vector of dimension d requires at most O(d log d) computation steps

using, e.g., HeapSort or MergeSort (see Schöning (2001, p. 130)).

It is guaranteed that in each call of sample eMO at least one component

is destroyed. Hence, for sampling a d-dimensional exchangeable Marshall–

Olkin distribution, the function sample eMO is at most called d times (re-

cursively). Therefore, the overall effort is at most O(d2 log d), i.e. poly-

nomial in the dimension of the problem. Moreover, this is a worst-case

estimate. The expected runtime is much shorter, since often multiple com-

ponents are destroyed in one step.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 138

138 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Assuming that we start with the original parameters (λ1, . . . , λd), Al-

gorithm 3.5 requires computation of the new parameters. If this compu-

tation is performed using the inverse Pascal triangle and a regular Pas-

cal triangle (containing the binomial coefficients), it requires (only once)

O(d2) steps. To summarize, the simulation of n i.i.d. samples of a d-

dimensional eMO-random vector in this case is at most of computational

order O(d2+n d2 log d). This is a considerable improvement compared with

the general case of Algorithms 3.1 and 3.3.

3.2.4 Hierarchical Extensions

The simulation of exchangeable Marshall–Olkin distributions (and copu-

las) was shown to be quite efficient. Given this, Lemma 3.9 provides a tool

to design and sample hierarchical and other flexible (non-exchangeable)

Marshall–Olkin distributions as well. Recall that for two independent ex-

ponential random variables E1 ∼ Exp(λ1) and E2 ∼ Exp(λ2), one has

min{E1, E2} ∼ Exp(λ1 + λ2). This so-called min-stability of the exponen-

tial distribution can be lifted to the multivariate case as follows.

Lemma 3.9 (Min-Stability of the Marshall–Olkin Distribution)

On a probability space (Ω,F ,P) let (X1, . . . , Xd) have a Marshall–Olkin

distribution with parameters λI , ∅ �= I ⊂ {1, . . . , d}, and let (X̃1, . . . , X̃d)

have a Marshall–Olkin distribution with parameters λ̃I , ∅ �= I ⊂ {1, . . . , d},
independent of (X1, . . . , Xd). It follows that(

min{X1, X̃1}, . . . ,min{Xd, X̃d}
)

has a Marshall–Olkin distribution with parameters λI + λ̃I , ∅ �= I ⊂
{1, . . . , d}.

Proof. Referring to the canonical construction (3.4), assume w.l.o.g. that

(X1, . . . , Xd) is constructed from the collection
{
EI

∣∣ ∅ �= I ⊂ {1, . . . , d}}
and (X̃1, . . . , X̃d) is constructed from the collection

{
ẼI

∣∣ ∅ �= I ⊂
{1, . . . , d}}. Furthermore, all random variables EI , ẼI , ∅ �= I ⊂ {1, . . . , d},
are assumed to be independent, corresponding to the independence of

(X1, . . . , Xd) and (X̃1, . . . , X̃d). Then, it follows that

min{Xk, X̃k} = min
{
min{EI , ẼI}

∣∣ k ∈ I}, k = 1, . . . , d.

Since min{EI , ẼI} is exponentially distributed with parameter λI + λ̃I , the

claim follows immediately. �

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 139

Marshall–Olkin Copulas 139

Lemma 3.9 can be used to design, e.g., hierarchical (non-exchangeable)

Marshall–Olkin distributions. Assuming a given partition d1 + . . . +

dJ = d of the dimension d, one can design a random vector

(X1,1, . . . , X1,d1 , . . . , XJ,1, . . . , XJ,dJ) ∈ (0,∞)d with a certain hierarchical

Marshall–Olkin distribution. To provide a motivation, assume Xj,i equals

the bankruptcy time of one of d companies. One might think of the groups

as being J industrial branches. Moreover, within a specific industrial branch

j it might be intuitive to assume that (Xj,1, . . . , Xj,dj) are equally affected

by branch-specific as well as global economic shocks. A reasonable model

for the branch-specific shocks might be an exchangeable Marshall–Olkin

distribution, say, the vector11

(X
′
j,1, . . . , X

′
j,dj

) ∼ eMO(λ
(j)
1 , . . . , λ

(j)
dj

), j = 1, . . . , J,

denotes the extinction times within sector j, if no global shocks were

present, i.e. as if the groups j = 1, . . . , J were mutually independent. Ad-

ditionally, it might be reasonable to model macroeconomic shocks affecting

all industry sectors, e.g. stemming from events such as natural catastrophes

that can hit companies of all branches in the same (exchangeable) way. The

extinction times of the companies stemming only from such macroeconomic

shocks (as if no group-specific shocks were present) might be modeled by a

random vector

(X
′′
1,1, . . . , X

′′
1,d1

, . . . , X
′′
J,1, . . . , X

′′
J,dJ

) ∼ eMO(λ
′′
1 , . . . , λ

′′
d).

Finally, the lifetimes of the companies are defined as

Xj,i := min{X ′
j,i, X

′′
j,i}, j = 1, . . . , J, i = 1, . . . , dj . (3.14)

Lemma 3.9 implies that this stochastic model exhibits again a Marshall–

Olkin distribution, which is no longer exchangeable, however. The simula-

tion of such hierarchical structures is straightforward: one simulates J + 1

independent exchangeable distributions using Algorithm 3.5, and then com-

putes the minima required in (3.14). Note that each layer of hierarchy added

in this way increases the order of the overall effort (at most) by the factor d.

If a sample from the corresponding (survival) copula is required, the group-

specific rates of the marginal laws must be computed and the univariate

marginals must be standardized to the required U [0, 1]-distribution.
11We denote by eMO(λ1, . . . , λd) the d-dimensional eMO-distribution with parameters
(λ1, . . . , λd).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 140

140 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

3.3 The Extendible Case

The goal of this section is to determine the subclass of extendible Marshall–

Olkin copulas, i.e. copulas that stem from a stochastic model with condi-

tionally independent and identically distributed components. The previous

section showed that exchangeable Marshall–Olkin copulas can be simu-

lated with computational effort of the order of at most O(d2 log d). In

the extendible special case, this can even be improved to obtain the effort

O(d log d). Moreover, a completely new access to Marshall–Olkin distribu-

tions is provided, which allows us to construct non-trivial, low-parametric

subfamilies of the general class. However, this requires quite a bit of theo-

retical work. As a starting point it is convenient to reconsider the concept

of d-monotone parameter sequences. The following notion is useful in this

regard.

Definition 3.3 (Complete Monotonicity of Sequences)

An infinite sequence of real numbers {ak}k∈N0 is called completely mono-

tone (c.m.) if (a0, a1, . . . , ad−1) is d-monotone for each d ≥ 2, i.e. if

(−1)j ∆jak ≥ 0, k ∈ N0, j ∈ N0.

We have seen in the previous section that an eMO-copula is parameterized

by a finite, d-monotone sequence (a0, a1, . . . , ad−1) of parameters with a0 =

1. There are now two possibilities: either this sequence can be extended

to an infinite completely monotone sequence, or not. If it can, then it is

possible to derive an alternative stochastic representation of the associated

Marshall–Olkin distribution. This alternative approach is based on the

notion of Lévy subordinators. This section is structured as follows:

(1) This section is heavily based on the notion of Lévy subordinators.

Readers that are unfamiliar with this subject are strongly encouraged

to start with the respective summary in the Appendix.

(2) The following theorem is proved in Section 3.3.1.

Theorem 3.1 (C.M. Sequences and Lévy Subordinators)

Any pair (c, {ak}k∈N0) of a number c > 0 and a completely monotone

sequence {ak}k∈N0 with a0 = 1 is associated with a Lévy subordinator

Λ, which is unique in distribution.

(3) Using (2), the following result is established in Section 3.3.2.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 141

Marshall–Olkin Copulas 141

Theorem 3.2 (Extendibility of eMO-Copulas)

Let (Ω,F ,P) be a probability space supporting an i.i.d. sequence of

unit exponential random variables {Ek}k∈N and an independent non-

zero Lévy subordinator Λ. Denote by (c, {ak}k∈N0) the pair associated

with Λ by Theorem 3.1.

Then for each d ≥ 2 the survival copula of the vector (X1, . . . , Xd) is the

eMO-copula associated with (a0, . . . , ad−1), where Xk := inf{t > 0 :

Λt > Ek}, k = 1, . . . , d, is the first passage time of Λ across the level

Ek. Moreover, the random variables X1, . . . , Xd are Exp(c)-distributed.

Theorem 3.2 reveals that a d-dimensional eMO-copula is extendible if

its associated sequence (a0, . . . , ad−1) can be extended to an infinite

completely monotone sequence and can thus be associated with some

Lévy subordinator. It can further be shown that these are all extendible

eMO-copulas, i.e. extendibility of the copula corresponds precisely to

extendibility of the parameter sequence (a0, . . . , ad−1). Because of The-

orem 3.2, extendible eMO-copulas are called Lévy-frailty copulas.

(4) In Section 3.3.3, Theorem 3.2 is applied to construct an unbiased and

quick simulation algorithm for eMO-copulas derived from completely

monotone sequences associated with compound Poisson subordinators.

(5) Hierarchical (h-extendible) versions of Lévy-frailty copulas are dis-

cussed in Section 3.3.4.

3.3.1 Precise Formulation and Proof of Theorem 3.1

Completely monotone sequences arise naturally in the context of probabil-

ity theory. A well-known theorem by Hausdorff (1921, 1923) is stated as

follows.

Theorem 3.3 (Hausdorff’s Moment Problem)

A sequence {ak}k∈N0 with a0 = 1 is completely monotone if and only

if there exists a probability space (Ω,F ,P) supporting a random variable

X ∈ [0, 1] such that ak = E[Xk], k ∈ N0. Moreover, the law of this random

variable X is uniquely determined by its moments.

Proof. Originally due to Hausdorff (1921, 1923). Sufficiency is a one-

liner, since for a given random variable X defining ak := E[Xk], k ∈ N0,

we see by the binomial formula that

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 142

142 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

(−1)j ∆jak =

j∑
i=0

(
j

i

)
(−1)i E[Xk+i] = E[Xk (1−X)j] ≥ 0.

The converse implication is more difficult to derive and we refer to Feller

(1966, Theorem 1, p. 225) for a full proof. The uniqueness statement relies

on the boundedness of the interval [0, 1] and follows from a classical result

of Müntz (1914) and Szász (1916). �

To conclude, Theorem 3.3 states that there is a bijection between the set

of all completely monotone sequences {ak}k∈N0 with a0 = 1 and the set of

all probability measures on [0, 1]. This will be useful later on.

The notion of complete monotonicity means that the “derivatives” of the

sequence alternate in sign. More clearly, a sequence {ak}k∈N0 is completely

monotone, if it is non-negative, non-increasing (non-positive first deriva-

tive), “convex” (non-negative second derivative), and so on. By definition,

the first d members of a completely monotone sequence are d-monotone.

The converse, however, is not true. An example of a three-monotone se-

quence which is not a subsequence of a completely monotone sequence is

provided in Example 3.2.

Example 3.2 (Proper d-Monotone Sequence)

Consider the sequence (a0, a1, a2) := (1, 1/2, ε) with 0 ≤ ε < 1/4. Then

it is not difficult to check that (1, 1/2, ε) is three-monotone. However,

there exists no (infinite) completely monotone sequence {bk}k∈N0 such that

(b0, b1, b2) = (1, 1/2, ε). If there were such a sequence, then by Theorem 3.3

there would be a probability space (Ω,F ,P) supporting a random variable X

with values in [0, 1] such that bk = E[Xk], k ∈ N0. But Jensen’s inequality

would then imply that

1

4
> ε = b2 = E[X2] ≥ E[X]2 = b21 =

1

4
,

which is a contradiction. Hence, the finite sequence (1, 1/2, ε) is a proper

three-monotone sequence in the sense that it cannot be extended to a com-

pletely monotone sequence.

It is obvious that every two-monotone sequence (1, a1) can be extended

to a completely monotone sequence, e.g. by the sequence {ak1}k∈N0 , which

equals the sequence of moments of a constant random variable X ≡ a1.

However, Example 3.2 shows that for d ≥ 3 this is no longer true in gen-

eral. It follows from12 Dette and Studden (1997, Theorem 1.4.3, p. 20)

12This result is originally derived in the monograph by Karlin and Shapley (1953).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 143

Marshall–Olkin Copulas 143

that a sequence (a0, a1, . . . , ad−1) can be extended to a completely mono-

tone sequence {ak}k∈N0 if and only if the so-called Hankel determinants

Ĥ1, Ȟ1, Ĥ2, Ȟ2, . . . , Ĥd−1, Ȟd−1 are all non-negative, where for all l ∈ N
with 2 l ≤ d− 1 and for all k ∈ N0 with 2 k + 1 ≤ d− 1 one has

Ĥ2 l := det

a0 . . . al
...

...

al . . . a2 l

 , Ȟ2 l := det

−∆a1 . . . −∆al

...
...

−∆al . . . −∆a2 l−1

 ,

Ĥ2 k+1 := det

a1 . . . ak+1

...
...

ak+1 . . . a2 k+1

 , Ȟ2 k+1 := det

−∆a0 . . . −∆ak

...
...

−∆ak . . . −∆a2 k

 .

For example, a sequence (1, a1, a2) is extendible to a completely mono-

tone sequence if and only if 1 ≥ a1 ≥ a2 ≥ a21. Figure 3.5 illustrates the set

of all three-monotone sequences.

The following theorem, together with Theorem 3.3, is a more precise

formulation of Theorem 3.1.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

subsequence of c.m. sequence
proper 3−monotone sequence

Fig. 3.5 Illustration of all three-monotone sequences (1, a1, a2) (a1 on the x-axis and
a2 on the y-axis). The set is subdivided into sequences that can be obtained as moments
of a random variable and proper three-monotone sequences. Computing the areas in
the plot, one may conclude that the share of sequences, which can be extended to a
completely monotone sequence, is 2/3.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 144

144 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Theorem 3.4 (A Useful Bijection)

There is a bijection from the set of all probability measures on [0, 1] to the

set of all characteristics (µ, ν) of Lévy subordinators with Laplace exponent

Ψ satisfying Ψ(1) = 1. Denoting a probability law on [0, 1] by P(X ∈ dx)

with a generic random variable X on [0, 1], the bijection is given as follows:

(1) P(X ∈ dx) �→ (µ, ν), where

µ := P(X = 1),

ν(B) := E
[1

1−X �{− logX∈B}
]
, B ∈ B((0,∞]

)
. (3.15)

(2) (µ, ν) �→ P(X ∈ dx), where for B ∈ B([0, 1])
P(X ∈ B) := µ�{1∈B} +

∫
{− log b | b∈B\{1}}

(
1− e−t

)
ν(dt). (3.16)

Proof.

(a) The first step is to check that the measure ν defined in (3.15) actually is

a Lévy measure, i.e. satisfies (A.4). To this end, consider a probability

space (Ω,F ,P) supporting a random variable X ∈ [0, 1] with the given

distribution. With ε > 0 it follows that

ν
(
(ε,∞]

)
= E
[1

1−X �{− logX∈(ε,∞]}
]

= E
[1

1−X �{X∈[0,e−ε)}
]
≤ 1

1− e−ε
<∞

and ∫
(0,1]

t ν(dt) =

∫
(0,1]

t
(
1− e−t

)−1
P(− logX ∈ dt)

= E
[− logX

1−X �{X∈[e−1,1)}
] (∗)
≤ e <∞.

Equation (∗) holds, since using the series expansion log(1 + y) =∑∞
k=1

(−1)k+1

k yk implies for y ∈ [exp(−1), 1) that∣∣∣ log y
1− y

∣∣∣ = ∣∣∣ log (1 + (−(1− y)))
1− y

∣∣∣ = ∣∣∣ ∞∑
k=1

−1
k

(1 − y)k−1
∣∣∣

≤
(∞∑

k=0

(1− y)k
)
=

1

y
≤ e.

Denoting by Ψ the Laplace exponent corresponding to the characteris-

tics (µ, ν) defined in (3.15), it is verified that

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 145

Marshall–Olkin Copulas 145

Ψ(1) = µ+

∫
(0,∞]

(
1− e−t

)
ν(dt)

= P(X = 1) +

∫
(0,∞]

(
1− e−t

) (
1− e−t

)−1
P(− logX ∈ dt)

= P(X = 1) + P(0 ≤ X < 1) = P(0 ≤ X ≤ 1) = 1,

establishing that Ψ(1) = 1.

(b) Verify that

P(X ∈ [0, 1]) = µ+

∫
(0,∞]

(
1− e−t

)
ν(dt) = Ψ(1) = 1,

implying that the measure defined by the right-hand side of (3.16) is

indeed a probability measure.

(c) It is left to check that the claimed mappings are the inverses of each

other. A rigorous proof is provided in Mai (2010, Lemma 4.1.3, p.

91). The idea of this mapping is based on the concatenation of three

bijections: (i) the bijection of Theorem 3.3 between probability mea-

sures on [0, 1] and completely monotone sequences {ak}k∈N0 , (ii) a bi-

jection between completely monotone sequences {ak}k∈N0 and Bern-

stein functions Ψ induced by the equality ak = Ψ(k + 1) − Ψ(k), and

(iii) a bijection between Bernstein functions Ψ and Lévy subordina-

tors Λ = {Λt}t≥0 induced via the Laplace transforms E[exp(−xΛt)] =

exp(−tΨ(x)). The bijection (ii) follows from a result in Gnedin and

Pitman (2008). The bijection (iii) is a classical result that can be found,

for instance, in Applebaum (2004, Theorem 1.3.23, p. 52) or Schilling

et al. (2010, Theorem 5.2, p. 35). �
By Theorem 3.3, we can find for each completely monotone sequence

{ak}k∈N0 with a0 = 1 a unique probability measure P(X ∈ dx) on [0, 1]. In

combination with Theorem 3.4 we can thus find for each completely mono-

tone sequence {ak}k∈N0 with a0 = 1 unique Lévy characteristics (µ, ν),

whose associated Laplace exponent Ψ satisfies Ψ(1) = 1. This Laplace

exponent additionally satisfies

Ψ(k + 1)−Ψ(k) = µ+

∫
(0,∞]

e−k t
(
1− e−t

)
ν(dt)

= P(X = 1) +

∫
(0,∞]

e−k t
(
1− e−t

) (
1− e−t

)−1
P(− logX ∈ dt)

= E
[
Xk

�{X=1}
]
+ E
[
Xk

�{X∈[0,1)}
]
= E[Xk] = ak, k ∈ N0.

To understand the role of the constant c > 0 in Theorem 3.1, notice that

if Ψ is the Laplace exponent of a Lévy subordinator with Ψ(1) = 1, then

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 146

146 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Ψ̃ := cΨ is the Laplace exponent of a Lévy subordinator with Ψ̃(1) = c.

Multiplying the completely monotone sequence {ak}k∈N0 by c, we obtain

a completely monotone sequence {c ak}k∈N0 associated with the Laplace

exponent Ψ̃ = cΨ satisfying Ψ̃(1) = c. Hence, we can extend the bijection

induced by Theorems 3.3 and 3.4 to the one claimed in Theorem 3.1, getting

rid of the constraint Ψ(1) = 1.

Formulated without the constant c > 0, for a given Laplace exponent

Ψ of an arbitrary (non-zero) Lévy subordinator, the sequence {Ψ(k + 1)−
Ψ(k)}k∈N0 is completely monotone (and non-zero). And conversely, for a

given (non-zero) completely monotone sequence {ak}k∈N0 it is possible to

find a (unique and non-zero) Laplace exponent Ψ satisfying Ψ(k + 1) −
Ψ(k) = ak, k ∈ N0. This correspondence was originally determined in

Gnedin and Pitman (2008). For our purpose, the formulation with the

constant c, although appearing a little complicated, is appropriate, since

it reflects the decomposition of the eMO-distribution into its exponential

margins on the one hand and its eMO-survival copula on the other hand.

3.3.2 Proof of Theorem 3.2

The correspondence between completely monotone sequences and Lévy sub-

ordinators from Theorem 3.4 motivates the following definition.

Definition 3.4 (Lévy-Frailty Copula)

For a given Laplace exponent Ψ of a Lévy subordinator satisfying Ψ(1) = 1,

we define the copula

CΨ(u1, . . . , ud) :=

d∏
i=1

u
Ψ(i)−Ψ(i−1)
(i) , (3.17)

where, as before, u(1) ≤ u(2) ≤ . . . ≤ u(d) denotes the ordered list of

u1, . . . , ud ∈ [0, 1]. CΨ is called a Lévy-frailty copula.

The term “Lévy-frailty copula” stems from Mai and Scherer (2009a) and is

justified by Theorem 3.2, which is repeated and proved in the sequel.

Theorem 3.5 (Extendibility of eMO-Copulas)

Let (Ω,F ,P) be a probability space supporting an i.i.d. sequence of unit

exponential random variables {Ek}k∈N and an independent non-zero Lévy

subordinator Λ. Denote by (c, {ak}k∈N0) the pair associated with Λ by The-

orems 3.3 and 3.4.

Then for each d ≥ 2 the survival copula of the vector (X1, . . . , Xd) is the

Lévy-frailty copula CΨ associated with (a0, . . . , ad−1) via Ψ, where Xk :=

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 147

Marshall–Olkin Copulas 147

inf{t > 0 : Λt > Ek}, k = 1, . . . , d, is the first passage time of Λ across the

random level Ek. Moreover, the random variables X1, . . . , Xd are Exp(c)-

distributed. It follows that (U1, . . . , Ud) ∼ CΨ, where Uk := exp(−cXk),

k = 1, . . . , d.

Proof. According to Definition A.7 of a (killed) Lévy subordinator we

denote

Λt = Λ̃t +∞ · �{Nt≥1}, t ≥ 0,

where Λ̃ is a classical (real-valued) Lévy subordinator and N is an indepen-

dent Poisson process. Recall from the remark after Theorem 3.4 that the

Laplace exponent of Λ is of the form cΨ, where c > 0 is the given constant

and Ψ satisfies Ψ(1) = 1. Referring to the Lévy–Khinchin representation

(see Theorem A.6), we split the Laplace exponent cΨ of Λ into two parts

via

cΨ(x) = c µ x+ c

∫
(0,∞)

(
1− e−t x

)
ν(dt) + c ν({∞})�{x>0}

=: c Ψ̃(x) + c ν({∞})�{x>0}, x ≥ 0,

where c Ψ̃ denotes the Laplace exponent of Λ̃ and c ν({∞}) is the intensity

of the Poisson process N . Recall that if ν({∞}) = 0 this is conveniently

interpreted as Λ = Λ̃, i.e. “N never jumps”. For arbitrary t1, t2, . . . , td ∈
[0,∞) with ordered list t(1) ≤ . . . ≤ t(d) and t(0) := 0, it is verified that

d∑
i=1

(d+ 1− i) (Λ̃t(i) − Λ̃t(i−1)

)
=

d∑
i=1

(d+ 1− i) Λ̃t(i) −
d−1∑
i=0

(d− i) Λ̃t(i)

=

d∑
i=1

Λ̃ti .

Λ̃ being a classical Lévy subordinator implies that the random vector of

increments

(Λ̃t(d) − Λ̃t(d−1)
, . . . , Λ̃t(1) − Λ̃t(0))

has independent components and the component Λ̃t(i)−Λ̃t(i−1)
has the same

distribution as Λ̃t(i)−t(i−1)
. Hence, one obtains

E
[
e−

∑d
i=1 Λ̃ti

]
=

d∏
i=1

E
[
e
−(d+1−i) Λ̃(t(i)−t(i−1))

]

=

d∏
i=1

exp
(
− (t(i) − t(i−1)) c Ψ̃(d+ 1− i)

)
.

Furthermore, since N is a Poisson process with intensity c ν({∞}), it follows
with a telescope argument that

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 148

148 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

P(Nt(d) = 0) = e−c ν({∞}) t(d) =
d∏

i=1

exp
(
− (t(i) − t(i−1)) c ν({∞})

)
.

From this, using the conditional independence of events in the third equal-

ity (conditioned on the σ-algebra σ(Λt : t ≥ 0)), and the convention

exp(−∞) = 0 in the fourth, it is straightforward to compute

F̄ (t1, . . . , td) := P
(
X1 > t1, X2 > t2, . . . , Xd > td

)
= P
(
E1 > Λt1 , E2 > Λt2 , . . . , Ed > Λtd

)
= E

[
d∏

i=1

e−Λti

]
= E
[
�{Nt(d)

=0} e−
∑d

i=1 Λ̃ti

]
+ 0

= P(Nt(d) = 0)E
[
e−

∑d
i=1 Λ̃ti

]
=

d∏
i=1

exp
(
− (t(i) − t(i−1))

(
c Ψ̃(d+ 1− i) + c ν({∞})))

=
d∏

i=1

exp
(
− (t(i) − t(i−1)) cΨ(d+ 1− i)

)
.

In the univariate case, one obtains by the same argument for i = 1, . . . , d

and t ≥ 0 that

F̄i(t) := P
(
Xi > t

)
= P
(
Ei > Λt

)
= e−t cΨ(1) = e−c t.

Thus, the Xi are Exp(c)-distributed. By the analog of Sklar’s theorem for

survival copulas (see Theorem 1.3), there exists a unique copula Ĉ which

satisfies

F̄ (t1, . . . , td) = Ĉ
(
e−c t1 , . . . , e−c td

)
.

On the other hand, since t �→ exp(−c t) is decreasing, Equation (3.17) in

Definition 3.4 implies

CΨ

(
e−c t1 , . . . , e−c td

)
=

d∏
i=1

e−c t(i)

(
Ψ(d+1−i)−Ψ(d−i)

)

=

d∏
i=1

e−t(i) cΨ(d+1−i)
d−1∏
i=1

et(i) cΨ(d−i)

=

d∏
i=1

e−t(i) cΨ(d+1−i)
d∏

i=1

et(i−1) cΨ(d+1−i)

= F̄ (t1, . . . , td).

Thus, by the uniqueness of Ĉ, it holds that Ĉ = CΨ. To finally see that the

random vector (U1, . . . , Ud) has joint distribution function CΨ, it suffices

to observe that

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 149

Marshall–Olkin Copulas 149

P
(
e−cX1 ≤ u1, . . . , e−cXd ≤ ud

)
= P
(
X1 > − log(u1)/c, . . . , Xd > − log(ud)/c

)
= CΨ(u1, . . . , ud).

Notice that the continuity of the exponential law allows one to replace “≥”
with “>” in the first equality. The claim is established. �

Example 3.3 (Exchangeable Multivariate Cuadras–Augé Copula)

Consider a parameter α ∈ (0, 1). Then the sequence {ak}k∈N0 := {(1 −
α)k}k∈N0 is completely monotone, since

(−1)j ∆jak =

j∑
i=0

(
j

i

)
(−1)i (1 − α)k+i = (1 − α)k αj ≥ 0, j, k ∈ N0.

We now face the following problem: can we identify the Lévy subordinator

that is associated with this sequence? As a first step, we have to find the

unique random variable X on [0, 1] satisfying (1 − α)k = E[Xk], k ∈ N0.

It is obvious that the constant random variable X ≡ 1 − α is the required

one. Therefore, using Theorem 3.4 yields the associated Lévy characteris-

tics (µ, ν), which are given by

µ = P(X = 1) = 0, ν(B) = �{− log(1−α)∈B}
1

α
, B ∈ B((0,∞]

)
.

This corresponds precisely to a compound Poisson subordinator with inten-

sity 1/α and constant jump sizes of height − log(1 − α). The respective

Lévy-frailty copula has the functional form

Cα(u1, . . . , ud) =

d∏
k=1

u
(1−α)k−1

(k) , u1, . . . , ud ∈ [0, 1].

We have seen that Lévy-frailty copulas are conveniently parameterized by

a Laplace exponent Ψ satisfying Ψ(1) = 1. Moreover, we have also seen

that this parameterization is related to the parameterization in terms of the

parameters (a0, . . . , ad−1) via ak = Ψ(k + 1) − Ψ(k), k ∈ N0. Combining

this with Lemma 3.7, one obtains the following relation to the original

parameters (λ1, . . . , λd):

λk =

k−1∑
i=0

(
k − 1

i

)
(−1)i (Ψ(d− k + i+ 1)−Ψ(d− k + i)

)
, k = 1, . . . , d.

In terms of the Lévy characteristics, one can rewrite the last expression by

an application of the binomial formula to obtain

λk = µ�{k=1} +
∫
(0,∞]

e−t (d−k)
(
1− e−t

)k
ν(dt), k = 1, . . . , d.

Furthermore, notice that Ψ(1) = 1 implies µ = 1 − ∫
(0,∞]

(1 −
exp(−t)) ν(dt) ∈ [0, 1], which allows us to represent the parameters

(λ1, . . . , λd) as a function of the Lévy measure ν only.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 150

150 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

3.3.3 Efficient Simulation of Lévy-Frailty Copulas

Theorem 3.2 (respectively Theorem 3.5) is the key to an efficient sam-

pling algorithm, because it reveals Lévy-frailty copulas as a homogeneous

mixture. To see this, one observes that a simulation of (U1, . . . , Ud) from

Theorem 3.5 is equivalent to the construction of Algorithm 1.3 with input

F = {Fx}x∈R, where

Fx :=
(
1− e−Λmax{x,0}

)
�{x>0}, x ∈ R. (3.18)

In other words, conditioned on the σ-algebra σ(Λt : t > 0), the random

variables X1, . . . , Xd from the proof of Theorem 3.5 are i.i.d. with distribu-

tion function F as given by (3.18). To summarize, this implies the following

generic sampling algorithm for Lévy-frailty copulas.

Algorithm 3.6 (Generic Sampling of Lévy-Frailty Copulas)

To sample the copula CΨ(u1, . . . , ud) from Definition 3.4, the following

steps may be exercised. The algorithm has as its input a Laplace exponent

Ψ satisfying Ψ(1) = 1.

(1) Generate E1, . . . , Ed i.i.d. with E1 ∼ Exp(1).
(2) Find the maximum E(d) := max{E1, . . . , Ed}.
(3) Independently of the random variables E1, . . . , Ed, simulate one path of

a Lévy subordinator Λ = {Λt}t∈[0,T] with Laplace exponent Ψ, where T

is chosen large enough13 such that ΛT ≥ E(d).

(4) Determine the first passage times

Xk := inf
{
t > 0 : Λt > Ek

}
, k = 1, . . . , d.

(5) Return (U1, . . . , Ud), where Uk := exp(−Xk), k = 1, . . . , d.

Admittedly, the simulation of the path of a Lévy subordinator as well as the

determination of the first passage times are itself not straightforward. But if

the Lévy subordinator is of the compound Poisson type (with handy jump

size distribution), then an unbiased and very quick sampling algorithm

can be implemented. This algorithm is provided in the sequel. By virtue

of Remark A.4, any Lévy subordinator can be approximated arbitrarily

close by a compound Poisson subordinator. Hence, in theory, the following

algorithm provides an approximate sampling scheme for arbitrary Lévy-

frailty copulas.
13To find bounds for the expected time T until which the path of the Lévy subordinator
must be sampled, note that E[E(d)] ∈ O(

log(d)
)
(see Mai and Scherer (2009b, Lemma

3.1)). For most model specifications, E[Λt], t ≥ 0, is known explicitly. Bounds, however,
can additionally be found using Ψ(1) = 1 and Jensen’s inequality, since exp(−E[Λt]) ≤
E[exp(−Λt)] = exp(−tΨ(1)) = exp(−t), implying E[Λt] ≥ t.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 151

Marshall–Olkin Copulas 151

Algorithm 3.7 (Sampling CPP Lévy-Frailty Copulas)
Input is the dimension d ≥ 2, as well as the parameters of a compound
Poisson subordinator, i.e. the drift constant µ ∈ [0, 1], the intensity β > 0,
and the parameter (vector) θ of the jump size distribution. Note that µ ≤ 1
follows from Ψ(1) = 1.

FUNCTION sample LFC (vector: (d, µ, β,θ))

X := vector(1 : d) (1a)

U := vector(1 : d) (1b)

E := vector(1 : d) (1c)

FOR k = 1, . . . , d

E[k] := sample EXP(1) (1c)

END FOR

Max := max{E} (1d)

Λ := list
(
(0, 0)

)
(1e)

maxvalue := 0 (1f)

WHILE (maxvalue < Max) (2)

nextjumptime := sample EXP(β) (2a)

nextjumpsize := sample JUMP(θ) (2b)

maxvalue := maxvalue + µ · nextjumptime+ nextjumpsize (2c)

Λ := append
(
Λ, (nextjumptime, nextjumpsize)

)
(2d)

END WHILE

FOR k = 1, . . . , d (3)

indi := 1 (3a)

maxvalue := 0 (3b)

time := 0 (3c)

WHILE (maxvalue < E[k]) (4)

indi := indi+ 1 (4a)

maxvalue := maxvalue + µ · Λ[indi][1] + Λ[indi][2] (4b)

time := time+Λ[indi][1] (4c)

END WHILE

IF (maxvalue − Λ[indi][2] > E[k]) (5a)

X[k] := time− (maxvalue − Λ[indi][2]− E[k])/µ

ELSE (5b)

X[k] := time

END IF

U [k] := exp(−X[k]) (6)

END FOR

RETURN U

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 152

152 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

The individual steps of Algorithm 3.7 are explained as follows:

(1) This is an initializing step. (1a) The d-dimensional vector X denotes

the respective sample of the eMO-distribution in question, whereas

(1b) the d-dimensional vector U denotes the sample from the corre-

sponding Lévy-frailty copula. (1c) The d-dimensional vector E con-

tains the exponential threshold levels E1, . . . , Ed, which are sampled

and stored in this step. (1d) The largest threshold level is stored in the

variable Max for later use. (1e) Λ is a list of two-dimensional vectors.

It is indexed by two indices, i.e. Λ[i] denotes the ith member of the list,

which is a two-dimensional vector. Each list member corresponds to a

jump of the compound Poisson subordinator. Hence Λ[i][1], the first

component of the ith list member, denotes the ith jump, and Λ[i][2],

the second component of the ith list member, denotes the jump size

of the ith jump. The first list member is initialized to be the two-

dimensional zero vector. (1f) The variable maxvalue is an auxiliary

variable, which is used in the following loop.

(2) This WHILE loop computes and stores all required jump times and

jump sizes of the compound Poisson subordinator in the list object

Λ. These numbers completely determine the path of the subordinator

until all threshold levels are crossed. The variable maxvalue denotes

the current value of the subordinator. While it has not yet crossed the

maximum Max of all threshold levels, (2a) the waiting time until the

next jump is simulated,14 (2b) the next jump size is simulated, and

(2c) the value of the subordinator after the jump is adjusted accord-

ingly. (2d) Finally, the jump times and sizes are stored in Λ. The

command append(Λ, (a, b)) appends the vector (a, b) to the list object

Λ and returns the extended list.

(3) This FOR loop computes all components of the random vector in ques-

tion. (3a) The variable indi runs through all jump times of the sub-

ordinator, starting with the first. (3b) The variable maxvalue again

denotes the current value of the subordinator. (3c) The variable time

denotes the current jump time.

(4) While the current value of the subordinator is still less than the respec-

tive threshold level, (4a) the next jump time is considered by increasing

indi, (4b) the current value is adjusted by taking into account the next

jump, and (4c) the time until the first passage is accumulated.

(5) Two possibilities are distinguished: either (5a) the threshold level Ek

14It is exponentially distributed (see Equation (A.1)).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 153

Marshall–Olkin Copulas 153

is hit between two jump times (because of the continuous linear growth

with drift rate µ), or (5b) it is jumped over. In the first case, the exact

first passage time has to be determined by an appropriate adjustment.

In the second case, the jump time equals the first passage time.

(6) The random vector X has an eMO-distribution with Exp(1)-margins.

It is transformed by x �→ exp(−x) to obtain the vector U , which has

the desired Lévy-frailty copula as joint distribution function.

3.3.4 Hierarchical (H-Extendible) Lévy-Frailty Copulas

Our next goal is to construct h-extendible copulas with respect to the fam-

ily {CΨ} of Lévy-frailty copulas. For an h-extendible structure with two

levels, corresponding to a partition d = d1 + . . . + dJ , consider as ingre-

dients J + 1 independent Lévy subordinators Λ(0),Λ(1), . . . ,Λ(J) with as-

sociated Laplace exponents Ψ0,Ψ1, . . . ,ΨJ , each having fixpoint 1. More-

over, let α ∈ (0, 1) denote an additional free parameter. With independent

i.i.d. unit exponential trigger variables E1,1, . . . , E1,d1 , . . . , EJ,1, . . . , EJ,dJ ,

it is shown in Mai and Scherer (2011a) that the random vector

(U1,1, . . . , U1,d1, . . . , UJ,1, . . . , UJ,dJ) has an h-extendible copula with re-

spect to {CΨ}, where

Uj,k := exp
(
− inf

{
t > 0 : Λ

(0)
α t + Λ

(j)
(1−α) t > Ej,k

})
, (3.19)

for k = 1, . . . , dj , j = 1, . . . , J . The precise form of the copula is

given in (3.20). This construction has an obvious factor structure and

is easily verified to be h-extendible with two levels of hierarchy. How-

ever, sampling from the stochastic representation (3.19) is a challenging

task (see the algorithm described in Mai and Scherer (2011a)). In con-

trast to the latter reference, we might as well construct the same dis-

tribution making use of the min-stability property in Lemma 3.9. Let

(U
(0)
1,1 , . . . , U

(0)
1,d1

, . . . , U
(0)
J,1 , . . . , U

(0)
J,dJ

) ∼ CΨ0 . Given a partition d1 + . . . +

dJ = d, consider mutually independent random vectors

(U
(1)
1 , . . . , U

(1)
d1

) ∼ CΨ1 , . . . , (U
(J)
1 , . . . , U

(J)
dJ

) ∼ CΨJ ,

all independent of (U
(0)
1,1 , . . . , U

(0)
1,d1

, . . . , U
(0)
J,1 , . . . , U

(0)
J,dJ

). Each of these

J + 1 independent Lévy-frailty vectors might be constructed like in The-

orem 3.5. After the margin transformation τ
(j)
k := −α log(U

(j)
k)/(1 − α),

j = 1, . . . , J, k = 1, . . . , dj , with some α ∈ (0, 1), the random vectors

(τ
(j)
1 , . . . , τ

(j)
dj

) follow extendible Marshall–Olkin distributions, j = 1, . . . , J .

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 154

154 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

The same holds for τ
(0)
j,k := − log(U

(0)
j,k), k = 1, . . . , dj , j = 1, . . . , J . Using

the min-stability property of Lemma 3.9, it follows that the random vector

(τ1,1, . . . , τ1,d1 , . . . , τJ,1, . . . , τJ,dJ) :=(
min
{
τ
(0)
1,1 , τ

(1)
1

}
, . . . ,min

{
τ
(0)
J,dJ

, τ
(J)
dJ

})
has a Marshall–Olkin distribution. Since each component is exponentially

distributed with parameter 1/α, the distribution function of the random

vector

(U1,1, . . . , U1,d1, . . . , UJ,1, . . . , UJ,dJ) :=(
exp
(− τ1,1

α

)
, . . . , exp

(− τ1,d1

α

)
, . . . , exp

(− τJ,1
α

)
, . . . , exp

(− τJ,dJ

α

))
is a copula. The following lemma shows that it is of the h-extendible

Marshall–Olkin kind. To this end, let us introduce the notation ΨΠ(x) := x,

x ≥ 0, i.e. the Laplace exponent inducing the independence copula CΨΠ =

Π. Lemma 3.10 is generalized to superclasses of the Marshall–Olkin law in

Lemma 8.6.

Lemma 3.10 (H-Extendible Lévy-Frailty Copula)

The copula of the random vector (U1,1, . . . , U1,d1 , . . . , UJ,1, . . . , UJ,dJ) is

h-extendible with respect to the family {CΨ} of Lévy-frailty copulas. If

1 ≤ j1 < . . . < jk ≤ J are selected from k distinct groups, it holds that

(Uj1,1, . . . , Ujk,1) ∼ CαΨ0+(1−α) ΨΠ
. Moreover, the random subvector of the

jth group satisfies

(Uj,1, . . . , Uj,dj) ∼ CαΨ0+(1−α)Ψj
, j = 1, . . . , J.

Proof. We compute the survival function of the vector

(τ1,1, . . . , τ1,d1 , . . . , τJ,1, . . . , τJ,dJ) from above:

P(τ1,1 > t1,1, . . . , τ1,d1 > t1,d1 , . . . , τJ,1 > tJ,1, . . . , τJ,dJ > tJ,dJ)

= P
(
τ
(0)
j,k > tj,k, k = 1, . . . , dj , j = 1, . . . , J

)×
×

J∏
j=1

P
(
τ
(j)
k > tj,k, k = 1, . . . , dj

)

= CΨ0

(
e−t1,1 , . . . , e−tJ,dJ

) J∏
j=1

CΨj

(
e−

1−α
α tj,1 , . . . , e−

1−α
α tj,dj

)
.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 155

Marshall–Olkin Copulas 155

Since τj,k ∼ Exp(1/α) for all j, k, the survival copula of (τ1,1, . . . , τJ,dJ),

which equals the distribution function of (U1,1, . . . , UJ,dJ), is given by

P
(
τ1,1 > −α log(u1,1), . . . , τJ,dJ > −α log(uJ,dJ)

)
= CΨ0

(
uα1,1, . . . , u

α
J,dJ

) J∏
j=1

CΨj

(
u1−α
j,1 , . . . , u1−α

j,dj

)

=
(
CΨ0(u1,1, . . . , uJ,dJ)

)α (J∏
j=1

CΨj (uj,1, . . . , uj,dj)
)1−α

. (3.20)

The last equality holds, since Lévy-frailty copulas are extreme-value copulas

(see Section 1.2.5), and therefore satisfy CΨ(u
t
1, . . . , u

t
d) = CΨ(u1, . . . , ud)

t,

t ≥ 0. Comparing the copula (3.20) with the one derived in Mai and

Scherer (2011a, Theorem 3.4), the constructed model agrees in distribution

with model (3.19). From this, the h-extendible structure is obvious. �
In contrast to construction (3.19), this alternative construction of h-

extendible Marshall–Olkin copulas applying Lemma 3.9 implies a very con-

venient simulation algorithm, since it only requires us to simulate inde-

pendent Lévy-frailty copulas. Simulation of the latter can be achieved, for

example, by Algorithm 3.7. Notice, furthermore, that the convex combina-

tion of two Laplace exponents with fixpoint 1 is again of such kind. The

parameter α interpolates between independent and fully dependent groups:

the limiting case α = 0 implies that the J groups are independent, the op-

posite case α = 1 implies that the group-specific dependencies vanish, i.e.

the overall copula is the extendible copula CΨ0 . Of course, the simulation

of hierarchical Lévy-frailty copulas as in Lemma 3.10 is straightforward,

as the following algorithm shows. Like in Algorithm 3.7 we assume that

all involved Lévy subordinators are of the compound Poisson type. In this

case, the sampling algorithm is unbiased.

Algorithm 3.8 (Sampling H-Extendible Lévy-Frailty Copulas)

The inputs for the algorithm are the parameter α ∈ (0, 1), the number of

groups J , the group sizes d1, . . . , dJ , as well as the parameters of all J + 1

involved compound Poisson subordinators (corresponding to the Laplace ex-

ponents Ψ0,Ψ1, . . . ,ΨJ). These comprise the intensities β0, β1, . . . , βJ , the

drifts µ0, µ1, . . . , µJ , as well as parameters for the respective jump size dis-

tributions θ0, θ1, . . . , θJ .

(1) For each j = 1, . . . , J , simulate (mutually independently) a dj-

dimensional random vector (U
(j)
1 , . . . , U

(j)
dj

) from the copula CΨj using

Algorithm 3.7 with parameters (µj , βj, θj).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 156

156 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

(2) Independently of step (1), simulate a (d1+. . .+dJ)-dimensional random

vector (U
(0)
1,1 , . . . , U

(0)
1,d1

, . . . , U
(0)
J,1 , . . . , U

(0)
J,dJ

) from the copula CΨ0 using

Algorithm 3.7 with parameters (µ0, β0, θ0).

(3) Return the random vector(
max
{(
U

(0)
1,1

) 1
α ,
(
U

(1)
1

) 1
1−α
}
, . . . ,max

{(
U

(0)
1,d1

) 1
α ,
(
U

(1)
d1

) 1
1−α
}
, . . .

. . . ,max
{(
U

(0)
J,1

) 1
α ,
(
U

(J)
1

) 1
1−α
}
, . . . ,max

{(
U

(0)
J,dJ

) 1
α ,
(
U

(J)
dJ

) 1
1−α
})
.

(3.21)

Figure 3.6 illustrates a hierarchical Lévy-frailty copula by means of pairwise

scatterplots in a five-dimensional example with two groups and α = 1/2;

Algorithm 3.8 was used to sample the respective copula. All three involved

Lévy subordinators are of the compound Poisson type with exponential

jump sizes. More precisely, their Laplace exponent is of the parametric

form

Ψ(x) : = µx+ β
x

x+ η
, x ≥ 0, (3.22)

(µ, β, η) ∈ {(µ, β, η) ∈ [0, 1]× (0,∞)2 : β ≤ 1 + η, µ = 1− β/(1 + η)
}
.

This corresponds to a drift µ ∈ [0, 1], an intensity β, and exponential jump

sizes with mean 1/η. The restrictions on the three parameters stem from

the condition Ψ(1) = 1. For this specification, recall that the bivariate

Lévy-frailty copula is given by

CΨ(u1, u2) = min{u1, u2} max{u1, u2}Ψ(2)−1

= min{u1, u2} max{u1, u2}1−
2 β

(1+η) (2+η) ,

where the last equality uses the parameter restriction µ = 1−β/(1+η). This
equals the bivariate Cuadras–Augé copula Cα from Example 1.4 with de-

pendence parameter α := 2 β/((1+η) (2+η)) ∈ [0, 1]. Explaining the matrix

scatterplot in Figure 3.6 further, the two numbers in each panel of the diag-

onal denote the respective indices j, i of the component max
{
U

(0)
j,i , U

(j)
i

}2
of the random vector (3.21) in question. Above the diagonal, the panel in

row l and column k illustrates the scatterplot corresponding to the bivari-

ate subvector with the indices given in the diagonal in row l and column k,

respectively. The pairwise Cuadras–Augé coefficients corresponding to the

respective pair are given below the diagonal, depending on whether the two

corresponding random variables are in the same or in different groups. The

numbers in row l and column k correspond to the samples in row k and col-

umn l. The upper value is the theoretical value, whereas the lower one gives

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 157

Marshall–Olkin Copulas 157

the empirical value for the specific panel based on the 1 500 samples. For

this estimation the maximum likelihood estimator derived in Ruiz-Rivas

and Cuadras (1988) is used. The figure illustrates the different levels of

dependence between and within groups.

0.434
0.462

0.234
0.234

0.234
0.233

0.234
0.227

0.234
0.245

0.234
0.24

0.234
0.238

0.723
0.716

0.723
0.709

0.723
0.726

1,1

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1,2

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2,1

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2,2

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

● ●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

● ●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2,3

Fig. 3.6 This figure illustrates 1 500 samples (by means of pairwise scatterplots) of
a five-dimensional random vector as considered in Lemma 3.10. The components are
partitioned into J = 2 groups with dimensions d1 = 2, d2 = 3. The three involved
compound Poisson subordinators are from family (3.22) with corresponding param-
eters (µ0, β0, η0) = (0.2995, 1.401, 1), (µ1, β1, η1) = (0.2, 2.4, 2), and (µ2, β2, η2) =
(0.0151, 0.994749, 0.01).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 158

158 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Remark 3.1 (Deeper Hierarchical Structures)

Of course, by iteration of Lemma 3.9 one can construct higher-order hi-

erarchical Lévy-frailty copulas. Instead of only partitioning the dimension

d = d1 + . . . + dJ , one can do the same within the subgroups. For exam-

ple, d1 might be partitioned into d1 = d1,1 + . . . + d1,J1 , and so on. In

summary, one has to simulate one Lévy-frailty copula for each introduced

subgroup. Therefore, the finer the partition, the more expensive the simu-

lation becomes. This approach, in some sense, allows us to “interpolate”

between the exchangeable (and extendible) subfamily and the most general

Marshall–Olkin copula. By choosing an appropriate “interpolation”, one

can obtain quite flexible structures, which still can be sampled efficiently in

large dimensions.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 159

Chapter 4

Elliptical Copulas

The class of elliptical copulas differs from most aforementioned classes of

copulas in the way that only an implicit analytical expression is available.

More precisely, an elliptical copula is defined via Sklar’s theorem as the

dependence structure of a related elliptical distribution and is obtained

from the respective multivariate distribution function by standardizing the

univariate marginal laws. Sampling such copulas therefore requires a sam-

pling scheme for the respective multivariate distribution and an analyti-

cal expression of the univariate marginal distribution functions. To make

this more precise, let1 X = (X1, . . . , Xd)
′ be a sample from some ellipti-

cal distribution and let F1, . . . , Fd be the univariate marginal laws. Then,(
F1(X1), . . . , Fd(Xd)

)′
is a sample from the respective copula. The ana-

lytical form of the copula is obtained by plugging the univariate marginal

quantile functions F−1
1 , . . . , F−1

d into the multivariate distribution function

F , i.e. C(u1, . . . , ud) := F
(
F−1
1 (u1), . . . , F

−1
d (ud)

)
. It is only rarely possi-

ble to simplify this expression, since the univariate quantiles are often not

available in closed form and the multivariate distribution function is typ-

ically complicated. The most prominent example of the class of elliptical

copulas is the Gaussian copula (see Example 1.7 of Chapter 1 and Section

4.5). Another important example is the t-copula (see Section 4.5).

Sketching a roadmap for this chapter (see Figure 4.1), we first introduce

spherical distributions. A random vector Y with a spherical distribution

has the stochastic representation

Y
d
= RS,

where R is a non-negative random variable (interpreted as radius) and
1The derivations in this chapter often involve multiplications of vectors with matrices.

Unlike all other chapters in this book, in this chapter we interpret random vectors as
column vectors to simplify notation.

159

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 160

160 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

S is a random vector (interpreted as direction) that is independent of R

and uniformly distributed on the unit sphere SL2,d :=
{
x ∈ Rd : ‖x‖2 =∑d

i=1 x
2
i = 1

}
. In a second step, elliptical distributions are defined as affine

transformations of spherical distributions. Hence, a random vector X of

this class admits the representation

X
d
= µ+A′ Y d

= µ+A′RS,

where µ ∈ Rd is a linear shift and A ∈ Rk×d is a linear transformation

of the k-dimensional spherically distributed random vector Y . Finally,

elliptical copulas are obtained by standardizing the univariate marginals of

such distributions. In this chapter, we use the notation and definitions of

Fang et al. (1990) and McNeil et al. (2005).

Elliptical distribution

Ed(µ,Σ, ϕ): 4.2

Normal Nd(µ,Σ)-distr.: 4.3

Student’s td(µ,Σ, ν)-distr.: 4.3

Exchangeable N -distr. Exch. ellipt. distr.

Exchangeable t-distr.

Extendible N -distr.

Extendible t-distr. Ext. ellip.

Th. 4.2

Extendible spherical distr.

S∞(ϕ):

4.1

Sd(ϕ):

4.1

Sph.

distr.

Fig. 4.1 Classification of spherical Sd(ϕ) and elliptical Ed(µ,Σ, ϕ) distributions and
sections where these are discussed in this chapter. Associated copulas are discussed in
Section 4.4.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 161

Elliptical Copulas 161

4.1 Spherical Distributions

Definition 4.1 (Spherical Distribution)

A d-dimensional random vector X = (X1, . . . , Xd)
′ has a spherical distri-

bution if for every orthogonal2 matrix O ∈ Rd×d one has

OX
d
= X. (4.1)

Property (4.1) means that spherical distributions are invariant under ro-

tations and reflections. It is easy to verify that this property immediately

implies exchangeability. To see this, take any permutation σ on {1, . . . , d}
and define O :=

(
eσ−1(1), . . . , eσ−1(d)

)
, where ei is the ith unit vector.

Then, O is orthogonal and by Equation (4.1),

OX =
(
Xσ(1), . . . , Xσ(d)

)′ d
= X.

Moreover, taking O := −I, where I is the identity matrix, shows that

spherical distributions are radially symmetric with respect to the origin, in

the sense that X
d
= −IX = −X.

The defining property (4.1) can also be used to show that characteristic

functions of spherical distributions can be parameterized by means of a

certain one-dimensional function ϕ (see Lemma 4.1(3)).

Lemma 4.1 (Spherical Distributions: Characterization)

The following statements equivalently characterize spherical distributions:

(1) The random vector X = (X1, . . . , Xd)
′ has a spherical distribution, i.e.

(4.1) holds.

(2) There exists a random variable R ≥ 0 and, independently, a random

vector S with uniform distribution on the unit sphere SL2,d such that

X
d
= RS. (4.2)

(3) There exists some function ϕ in one variable such that the characteristic

function of X, denoted φX , admits the representation

φX(t) = E
[
ei t

′X] = ϕ
(‖t‖2), t ∈ Rd, (4.3)

where ‖t‖ := (t21+. . .+t2d)1/2 is the usual Euclidean norm. With regard

to Equation (4.3), we sometimes write X ∼ Sd(ϕ).

2A matrix O ∈ Rd×d is called orthogonal if its columns and rows are orthonormal vec-
tors. This is equivalent to O′ O = OO′ = I, where I is the identity matrix. Interpreted
as a linear transformation, O can be seen as a rotation or reflection.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 162

162 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

(4) For all a ∈ Rd one has

a′ X d
= ‖a‖X1. (4.4)

Proof. (1) ⇒ (3): Suppose for t1, t2 ∈ Rd \ {0} that ‖t1‖ = ‖t2‖. Using
the Gram–Schmidt orthogonalization procedure we find an orthonormal

basis
{
t1/‖t1‖,O2, . . . ,Od

}
of Rd and we define the orthogonal matrix(

t1/‖t1‖,O2, . . . ,Od

)′
:= O1. Observe that this matrix is constructed to

satisfy O1 t1 = ‖t1‖ e1, where e1 = (1, 0, . . . , 0)′. Similarly, we construct a

second orthogonal matrix O2 with O2 t2 = ‖t2‖ e1. Consequently, O1 t1 =

O2 t2, O
′
1O2 t2 = t1, and the matrix O′

1O2 is orthogonal. Then

φX(t1) = φX(O′
1O2 t2) = E

[
ei t

′
2 O′

2 O1 X
] (4.1)

= E
[
ei t

′
2 X
]
= φX(t2).

We conclude that t �→ φX(t) only depends on t via ‖t‖, which proves the

claim.

(3) ⇒ (4): Observe that

φa′ X(t) = E
[
ei ta

′ X] = φX(ta)
(3)
= ϕ(t2 ‖a‖2) = ϕ(t2 ‖a‖2 ‖e1‖2)

= φX (t ‖a‖ e1) = E
[
ei t ‖a‖ e′

1 X
]
= E
[
ei t ‖a‖X1

]
= φ‖a‖X1

(t).

(4) ⇒ (1): Let O ∈ Rd×d be orthogonal. Then

φOX(t) = E
[
ei t

′ OX
]
= E
[
ei (O

′ t)′ X] (4)= E
[
ei ‖O

′ t‖X1
]

= E
[
ei ‖t‖X1

] (4)
= E
[
ei t

′ X] = φX(t).

Summing up, we have established (1) ⇔ (3)⇔ (4) so far. It is left to show

that (2) ⇔ (1), (3), (4).

(2) ⇒ (1), (3), (4): Clearly, S is spherically distributed. Using (3) ⇔ (1)

there exists some ϕS such that E
[
exp(i t′S)

]
= ϕS

(‖t‖2). More clearly,

ϕS(x) =
1

ν(SL2,d)

∫
SL2,d

eix
′ yν(dy),

where x ∈ Rd is an arbitrary vector with ‖x‖2 = x and ν(dy) denotes the

surface measure on SL2,d. This shows that

φRS(t) = E
[
ei t

′ RS
]
= E
[
E
[
eiR t′ S∣∣R]]

= E
[
ϕS(R

2 ‖t‖2)] = ∫ ∞

0

ϕS(r
2 ‖t‖2) dP(R ≤ r)

is a function of ‖t‖2. Hence, RS is spherical by (3) ⇔ (1).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 163

Elliptical Copulas 163

(1), (3), (4) ⇒ (2): Let X be spherical with ϕ from part (3). For ar-

bitrary x ∈ Rd with unit norm ‖x‖2 = x′ x = 1 we see that

φX (t) = ϕ(‖t‖2) = ϕ
(
(‖t‖x)′ (‖t‖x)) = φX (‖t‖x). (4.5)

Then

φX(t) = φX(t)
1

ν(SL2,d)

∫
SL2,d

1 ν(dx)

︸ ︷︷ ︸
=1

(4.5)
=

1

ν(SL2,d)

∫
SL2,d

φX(‖t‖x)ν(dx)

=
1

ν(SL2,d)

∫
SL2,d

E
[
ei ‖t‖x′ X]ν(dx)

= E
[1

ν(SL2,d)

∫
SL2,d

ei ‖t‖X′ xν(dx)
]

= E
[
ϕS(‖t‖2 ‖X‖2)

]
=

∫ ∞

0

ϕS(r
2 ‖t‖2) dP(‖X‖ ≤ r).

Now define a probability space supporting R
d
= ‖X‖ and, independent

of R, S ∼ Uniform(SL2,d). The claim is established by observing that

φX (t) = φRS(t) for all t ∈ Rd. �

Lemma 4.1 establishes that spherical distributions can be characterized by

means of ϕ; this function is consequently called the characteristic generator

and the notation X ∼ Sd(ϕ) is used to describe a d-dimensional spherical

random vector with characteristic function (4.3). When used for sampling,

the stochastic representation (4.2) allows for the following interpretation:

First, a direction S ∈ SL2,d is drawn. Being uniformly distributed on the

unit d-sphere, all directions are equally likely (compare Figure 4.2). In a

second step, independent of the direction, a radius (distance to the origin)

R is drawn and multiplied by the direction S, yielding the required sample

in Rd.

The following corollary to Lemma 4.1 lists some statements on the char-

acteristic function (c.f.) of spherical distributions, which are almost imme-

diately obtained from Lemma 4.1.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 164

164 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Corollary 4.1 (The Characteristic Function Revisited)

Define the set of all characteristic generators of spherical distributions by

Φd := {ϕ : t �→ ϕ(‖t‖2) is the c.f. of a d-dimensional random vector}.
Then the following assertions hold:

(1) Φ2 ⊃ Φ3 ⊃ Φ4 ⊃ . . .
(2) ϕ ∈ Φd if and only if ϕ(x) =

∫
[0,∞) ϕS(x r

2) dF (r), with ϕS as defined

in the proof of Lemma 4.1 and F an arbitrary distribution function on

[0,∞).

(3) Any ϕ ∈ Φd is real-valued.

Proof.

(1) Let ϕ ∈ Φd+1. This implies that there exists some spherical random

vector (X1, . . . , Xd+1)
′ such that

ϕ(t21 + . . .+ t2d+1) = E
[
ei

∑d+1
k=1 tk Xk

]
.

Clearly,

E
[
ei

∑d
k=1 tk Xk

]
= ϕ(t21 + . . .+ t2d)

is a characteristic function as well.

(2) Clear by Lemma 4.1(2).

(3) Let X be spherically distributed. Then by Lemma 4.1(4) and Euler’s

formula exp(i x) = cos(x) + i sin(x), we obtain

φX(t) = E
[
ei t

′X] = E[ei ‖t‖X1
]

= E
[
cos
(‖t‖X1

)]
+ iE

[
sin
(‖t‖X1

)]
.

Since −X1
d
= X1, sin(−x) = − sin(x), and sin(0) = 0, one has

E
[
sin
(‖t‖X1

)]
= E
[
sin
(‖t‖X1

)
�{X1>0}

]
+ E
[
sin
(‖t‖X1

)
�{X1<0}

]
+ 0

= E
[
sin
(‖t‖X1

)
�{X1>0}

]
+ E
[
sin
(− ‖t‖X1

)
�{−X1<0}

]
= E
[
sin
(‖t‖X1

)
�{X1>0}

] − E[sin (+ ‖t‖X1

)
�{X1>0}

]
= 0. �

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 165

Elliptical Copulas 165

Example 4.1 (Prominent Spherical Distributions)

(1) Let Z = (Z1, . . . , Zd)
′ be multivariate normally distributed (formally

defined in Definition 4.3) with zero mean vector and covariance matrix

σ2 I for some σ > 0, i.e. Z1, . . . , Zd are i.i.d. N (0, σ2)-distributed. It

is well known that for each Zk ∼ N (0, σ2), one has E[exp(i tk Zk)] =

exp(−σ2 t2k/2) (see Billingsley (1995, Example 26.1, p. 344)). It follows

by the independence of the components that

E[exp(i t
′
Z)] = exp(−σ2 ‖t‖2/2).

Hence, Z has a spherical distribution by Lemma 4.1(3).

(2) Let Z be defined as in the previous example with σ = 1 and consider

an independent random variable W ≥ 0. Then it follows that

φ√W Z(t) = E
[
ei t

′ √
W Z
]

= E
[
E
[
ei t

′ √
W Z
∣∣∣W]]

= E
[
e−W ‖t‖2/2

]
=

∫
[0,∞)

e−w ‖t‖2/2 dP(W ≤ w)

= ϕ(‖t‖2), ϕ(x) :=

∫
[0,∞)

e−wx/2 dP(W ≤ w),

showing with Lemma 4.1(3) that
√
W Z

also has a spherical distribution.

Distributions obtained as in Example 4.1(2) are called mixtures of normal

distributions. The following theorem, which is due to Schoenberg (1938),

shows that this construction comprises all extendible spherical distribu-

tions.

Theorem 4.1 (Extendible Spherical Distributions)

X has a spherical distribution and is extendible if and only if there exists a

random variable W ≥ 0 and an independent random vector Z with indepen-

dent and standard normally distributed components such that X
d
=
√
W Z.

Proof.

⇒: If X is extendible with associated characteristic generator ϕ, then ϕ ∈⋂
d∈NΦd. Up to the substitution r2 �→ w/2, it is shown in Fang et al.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 166

166 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

(1990, Theorem 2.21, p. 48) that

ϕ ∈
⋂
d∈N

Φd ⇔ ϕ(x) =

∫ ∞

0

e−xw/2 dP(W ≤ w), for some r.v. W ≥ 0.

Comparing this to Example 4.1(2) establishes the claim.

⇐: The random vector
√
W Z is spherical by Example 4.1(2). It is clearly

extendible; one simply has to extend Z by adding independent standard

normal components.
�

At first glance, it is somewhat surprising that the normal distribution ap-

pears in the characterization of the extendible subclass in Theorem 4.1.

In contrast, the canonical stochastic representation of spherical distribu-

tions contains a uniformly distributed random vector S on SL2,d. The

connection between these two stochastic representations is clarified by the

following lemma.

Lemma 4.2 (Spherical Decomposition of i.i.d. Normals)

Let S be uniformly distributed on SL2,d and let R ≥ 0 be an indepen-

dent random variable such that R2 ∼ χ2(d). Then RS
d
= Z, where

Z = (Z1, . . . , Zd)
′ is normally distributed with zero mean vector, zero cor-

relations, and unit variances. We write Z ∼ Nd(0, I).

Proof. Let Z ∼ Nd(0, I). By Example 4.1(1), Z is spherical. By Lemma

4.1(2), one can represent Z via Z
d
= RS, where R

d
= ‖Z‖ and R is inde-

pendent of S, which is uniformly distributed on SL2,d. Since

‖Z‖2 = Z2
1 + . . .+ Z2

d ∼ χ2(d),

the claim follows. �

4.2 Elliptical Distributions

The family of elliptical distributions is a generalization of the class of spher-

ical distributions. Each elliptical distribution is obtained as a linear trans-

formation of spherical distributions. Formally, it is defined as follows.

Definition 4.2 (Elliptical Distribution)

The random vector X = (X1, . . . , Xd)
′ has an elliptical distribution if

X
d
= µ+A′ Y d

= µ+A′RS, (4.6)

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 167

Elliptical Copulas 167

where Y has a spherical distribution on Rk, A ∈ Rk×d with Σ := A′A ∈
Rd×d, and rk(Σ) = k ≤ d, µ ∈ Rd. The second equality recalls the canonical

representation Y
d
= RS of spherical distributions in Lemma 4.1(2).

Provided the existence of a density, an elliptical distribution has ellipti-

cally contoured density level surfaces, which explains the name. Besides

the transformation via A, the random variable R introduces additional de-

pendence to the components and influences in particular the (joint) tail

behavior of the distribution (see Schmidt (2002)).

Remark 4.1 (Notation and Parameterization)

For elliptical distributions, we use the notation X ∼ Ed(µ,Σ, ϕ), where

ϕ ∈ Φk is the function characterizing the spherical distribution of Y . The

distribution of X depends on A only via Σ, i.e. it makes no difference (in

distribution) if we replace A with some possibly different matrix B ∈ Rk×d

with B
′
B = Σ = A

′
A. Moreover, µ is unique, but ϕ and Σ are not

uniquely determined by the distribution (see McNeil et al. (2005, Remark

3.27, p. 93)).

The most important properties of elliptical distributions are listed in the

sequel. Notice that the spherical distributions arise as a special case with

Σ = I and µ = 0.

Lemma 4.3 (Properties of Elliptical Distributions)

Let X ∼ Ed(µ,Σ, ϕ) be defined as in Equation (4.6). Then:

(1) The characteristic function of X is

φX(t) = E
[
ei t

′ X] = ei t
′ µϕ(t′ Σ t), t ∈ Rd. (4.7)

(2) Elliptical distributions are stable under affine transformations in the

following sense. Let B ∈ Rd×m and ν ∈ Rm. Then

ν +B′ X ∼ Em(ν +B′ µ, B′ ΣB,ϕ).
(3) Marginal laws: Take any l-dimensional subvector (Xi1 , . . . , Xil)

′ from
X, for 1 ≤ i1 < . . . < il ≤ d. This subvector is then distributed as

El(µl,Σl, ϕ), where µl := (µi1 , . . . , µil)
′ is the respective subvector of

µ and Σl ∈ Rl×l is the block-matrix containing the respective elements

{Σmj}m,j=i1,...,il of Σ.

(4) The covariance matrix is influenced by both Σ and ϕ. Given that

E[‖Y ‖2] <∞ and P(‖Y ‖ > 0) = 1, it holds that

E[X] = µ, Cov(X) =
1

k
E[‖Y ‖2] Σ. (4.8)

Note that E[‖Y ‖2] depends on ϕ.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 168

168 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Proof.

(1) Follows from Lemma 4.1(3) and basic linear algebra.

(2) Follows from part (1) by computing the characteristic function of the

linear transform.

(3) Consider some subset ∅ �= I ⊂ {1, . . . , d} with |I| = l. Define B ∈
Rd×|I| to be the matrix whose columns are the unit vectors ei for i ∈ I
and apply it along with ν = 0 in (2).

(4) Let Z = (Z1, . . . , Zk)
′ ∼ Nk(0, I). By Lemma 4.2 there exists some

random variable RZ such that R2
Z ∼ χ2(k) and some random vector

S independent of RZ and uniformly distributed on the k-dimensional

unit sphere, such that Z
d
= RZ S. From E[RZ] > 0, we conclude for

i = 1, . . . , k that

0 = E[Zi] = E[RZ]E[Si] ⇒ E[S] = 0.

Moreover, from E[R2
Z] = k one has for all i = 1, . . . , k

1 = E[Z2
i] = E[R

2
Z]E[S

2
i] ⇒ Var(Si) =

1

k
.

Finally, for i �= j

0 = E[Zi Zj] = E[R
2
Z]E[Si Sj] ⇒ Cov(S) =

1

k
I.

Now consider the spherically distributed random vector Y with decom-

position Y
d
= RS, E[R2] <∞. Then

E[X] = E[µ+A′ Y] = E[µ+A′RS]

= µ+ E[R]A′ E[S] = µ+ 0.

Moreover, denoting by {aij} the entries of A, one finds using

E[Si1 Si2] = �{i1=i2}/k that

E[X2
j] = E

[
(µj +R

k∑
i=1

aij Si)
2
]

= µ2
j + 2E[R] 0 + E[R2]E

[
(

k∑
i=1

aij Si)
2
]

= µ2
j + E[R

2]

k∑
i1=1

k∑
i2=1

ai1j ai2jE[Si1 Si2]

= µ2
j + E[R

2]

k∑
i=1

a2ij
1

k
,

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 169

Elliptical Copulas 169

establishing Var(Xj) = E[R
2]/k
∑k

i=1 a
2
ij . Considering the mixed mo-

ments, we find for l �= j that

E[XlXj] = E
[
(µl +R

k∑
i=1

ail Si) (µj +R

k∑
i=1

aij Si)
]

= µl µj + 0 + 0 + E[R2]

k∑
i1=1

k∑
i2=1

ai1l ai2jE[Si1 Si2]

= µl µj + E[R
2]

1

k

k∑
i=1

ail aij ,

implying Cov(Xl, Xj) = E[R
2]/k
∑k

i=1 ail aij and finally

Cov(X) =
E[R2]

k
Σ.

�

We are now in the position to lift Theorem 4.1 from the spherical to the

elliptical case, providing a characterization of the subclass of extendible

elliptical distributions.

Theorem 4.2 (Extendible Elliptical Distributions)

Let X be defined as in Equation (4.6) with E[‖Y ‖2] < ∞ and P(‖Y ‖ >
0) = 1. Then X is extendible if and only if µ1 = . . . = µd and X

d
= µ+RZ∗

for R > 0, with E[R2] < ∞ and Z∗ multivariate normal with zero mean

vector and covariance matrix Σ, independent of R. The matrix Σ is given

by

Σ = σ2

1 . . . ρ
...
. . .

...

ρ . . . 1

 , σ2 > 0, ρ ≥ 0.

Proof.

⇐: A conditionally i.i.d. construction of the distribution in question is

the following. Take independent standard normal random variables

M, ε1, . . . , εd ∼ N (0, 1). Then define

Wi := σ
(√
ρM +

√
1− ρ εi

) ∼ N (0, σ2), i = 1, . . . , d.

One easily verifies that W = (W1 . . . ,Wd)
′ d
= Z∗ ∼ Nd(0,Σ). This

shows that W (resp. Z∗) is extendible, sinceW1, . . . ,Wd are i.i.d. given

the sigma algebra generated by M . Moreover, RZ∗ is also extendible,

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 170

170 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

since RW1, . . . , RWd are i.i.d. given the sigma algebra generated by

M and R. Shifting RZ∗ by µ with µ1 = . . . = µd does not affect

extendibility. It is left to show that X = µ + RZ∗ ∼ Ed(µ,Σ, ϕ).

With A′ A = Σ and Z
d
= RZ S ∼ Nd(0, I) from Lemma 4.2, one has

X = µ+RZ∗
d
= µ+RA′ Z

d
= µ+RA′ (RZ S) = µ+ (RRZ)A

′ S.

We obtain the required representation with µ, Σ = A′A as claimed,

and ϕ stemming from the radius RRZ .

⇒: Necessary for extendibility is exchangeability. Hence, E[X] = µ implies

µ1 = . . . = µd, as otherwise the univariate marginal laws could not

be the same. Similarly, we obtain a homogeneous variance. Since

(by exchangeability) all bivariate marginals must also be the same, we

obtain the claimed homogeneous structure of Σ. It is left, however, to

show that the off-diagonal entries ρ of Σ are non-negative. This follows

from the fact that extendible random vectors must have non-negative

pairwise correlations (resp. covariances) (see Lemma 1.9) and in the

present case we have Cov(X) = E[R2] Σ/d (see Lemma 4.3(4)).

Moreover, X ∼ Ed(µ,Σ, ϕ) implies X
d
= µ + A′ Y for Y spherically

distributed on Rk with k = rk(Σ) ≤ d. We already have µ and A′A =

Σ. It is left to verify that Y is related to i.i.d. normals. This, however,

was solved in Theorem 4.1, providing Y
d
= RZ with R > 0 and Z ∼

Nd(0, I) (independent). Hence, we have X
d
= µ+RA′ Z, establishing

the claim since A′ Z d
= Z∗. �

4.3 Parametric Families of Elliptical Distributions

Definition 4.3 (Multivariate Normal Distribution)

The random vector X = (X1, . . . , Xd)
′ follows a multivariate normal dis-

tribution, abbreviated X ∼ Nd(µ,Σ), if

X
d
= µ+A′ Z d

= µ+A′RS, (4.9)

with mean vector µ ∈ Rd, (positive-semidefinite) covariance matrix Σ =

A′ A ∈ Rd×d, where A ∈ Rk×d with rk(A) = k ≤ d, and k-dimensional

vector Z ∼ Nk(0, I), whose independent components have univariate stan-

dard normal law, i.e. Zi ∼ N (0, 1) for i = 1, . . . , k. The distribution of

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 171

Elliptical Copulas 171

R2 equals that of Z2
1 + . . .+Z2

k , so it is a χ2-distribution with k degrees of

freedom.

Lemma 4.4 (Properties of the Multivariate Normal Distribution)

Let X ∼ Nd(µ,Σ). Then:

(1) The characteristic function of X is given by

φX(t) = E
[
ei t

′X] = ei t
′ µ− 1

2 t′ Σ t, t ∈ Rd. (4.10)

(2) For positive-definite Σ, the density of X is given by

f(x) =
e−

1
2 (x−µ)′Σ−1(x−µ)

(2 π)d/2 det(Σ)1/2
, x ∈ Rd. (4.11)

Note that the level curves of f are ellipsoids with

(x− µ)′ Σ−1 (x− µ) ≡ const.

(3) Stability under convolution: Given independent X ∼ Nd(µ,Σ), X̃ ∼
Nd(µ̃, Σ̃), the sum of both random vectors is again multivariate normal,

i.e.

X + X̃ ∼ Nd

(
µ+ µ̃,Σ+ Σ̃

)
.

(4) Uncorrelated corresponds to independent: A normally distributed ran-

dom vector with uncorrelated components has independent components.

Proof.

(1) Represent X by X
d
= µ + A′Z, where Z ∼ Nk(0, I) and Σ = A′A.

Then apply Example 4.1(1) and Equation (4.7).

(2) Most textbooks, e.g. DeGroot (2004, Section 5.4, p. 51), define the

multivariate normal distribution via its density (4.11) and derive the

characteristic function (4.10).

(3) Follows from Lemma 4.3(2) with (X ′, X̃ ′)′ ∈ R2 d, B′ := (I, I) ∈
Rd×2 d, and ν := 0 ∈ Rd.

(4) Zero correlation implying independence can be deduced either from the

characteristic function, the density (both factorize), or the stochastic

representation (4.9). �

Lemma 4.4(3) and Lemma 4.3(2) show that the multivariate normal dis-

tribution with mean vector µ = 0 and d-dimensional identity matrix I as

covariance, i.e. X ∼ Nd(0, I), satisfies the defining property (4.1) of spher-

ical distributions. For any orthogonal matrix O the distribution of OX is

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 172

172 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Nd(O 0, O′ I O) = Nd(0, I). Alternatively, this might also be shown using

Lemma 4.1. The characteristic function of X ∼ Nd(0, I), obtained from

(4.10) with Σ = I and µ = 0, is easily seen to be a function of ‖t‖ alone.
Besides the multivariate normal distribution, another popular elliptical

distribution is the multivariate Student’s t-distribution.

Definition 4.4 (Multivariate Student’s t-Distribution)

Let X = (X1, . . . , Xd)
′ be constructed as

X
d
= µ+Σ1/2

√
W Z

d
= µ+Σ1/2 Z

√
ν√

χ2
ν

, (4.12)

where Z ∼ Nd(0, I) and Σ1/2 Σ1/2 = Σ is positive definite.3 All random

variables and vectors, i.e. W , Z, and χ2
ν , used in Equation (4.12) are

independent, and the mixing variable W is inverse Gamma distributed with

parameters W ∼ InvΓ(ν/2, ν/2) (see Remark 4.2). Then X is said to

have the multivariate Student’s t-distribution with ν degrees of freedom and

location parameter µ, abbreviated X ∼ td(µ,Σ, ν). Note that the td(0, I, ν)-
distribution can be seen as a mixture of normal distributions (see Example

4.1(2)).

Alternatively, the multivariate Student’s t-distribution can be con-

structed as an elliptical distribution via the representation

X
d
= µ+Σ1/2RS, (4.13)

where R2/d is distributed as an F (d, ν)-distribution4 and Σ1/2 Σ1/2 = Σ.

Again, R and S are independent.

Remark 4.2 (Inverse Gamma Distribution)

The inverse Gamma distribution InvΓ(β, η) is the distribution of Y :=

1/X, where X ∼ Γ(β, η). Its density f is obtained from the density of the

Gamma distribution via the density transformation theorem. One finds

f(x) = �{x>0}
ηβ x−(β+1) e−η/x

Γ(β)
.

The characteristic function of Y ∼ InvΓ(β, η) is given by

φ(x) =
2(−i η x)β/2Kβ

(√−4 i η x)
Γ(β)

3The matrix Σ1/2 can be found via Σ1/2 = OΛ1/2 O′, where the orthogonal matrix O
contains the standardized eigenvectors of Σ and Λ1/2 is a diagonal matrix containing the
square roots of the respective eigenvalues. Defined in this way, it is the unique symmetric
root of Σ. Note that OΛ1/2 is an alternative (but non-symmetric) root of Σ.
4The F (d, ν)-distribution is the distribution of (X1/d)/(X2/ν), where X1 ∼ χ2(d) and

X2 ∼ χ2(ν) are independent (see DeGroot (2004, p. 42)).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 173

Elliptical Copulas 173

(see Witkovský (2001)), where Kβ is the modified Bessel function of the

second kind. The choice W ∼ InvΓ(ν/2, ν/2) in Definition 4.4 implies

that W
d
= ν/χ2

ν , showing the equivalence of the first two representations in

Equation (4.12).

Lemma 4.5 (Properties of the Multivariate t-Distribution)

Let X ∼ td(µ,Σ, ν). Then:

(1) The characteristic function of X is given by ei t
′ µϕ(t ′Σ t), where

ϕ(x) =
2Γ
(
(ν + 1)/2

)
√
π Γ
(
ν/2
) ∫ ∞

0

cos(s
√
ν x) (1 + s2)−(ν+1)/2 ds.

(2) The density of X is given by

f(x) =
Γ
(
1
2 (ν + d)

)(
1 + 1

ν (x− µ)′Σ−1(x− µ)
)−(ν+d)/2

Γ
(
ν
2

)
(π ν)d/2 det(Σ)1/2

, (4.14)

where x ∈ Rd. Note that the level curves of f are ellipsoids with

(x− µ)′ Σ−1 (x− µ) ≡ const.

Further, we observe that for Σ = I, the density does not factorize

in univariate marginal densities, showing that Σ = I does not imply

independence, in contrast to the multivariate normal distribution.

(3) The covariance matrix of X is given by Σ ν/(ν − 2), provided that

ν > 2. Clearly, Σ is the limiting covariance matrix as ν →∞.

(4) The limit distribution of td(µ,Σ, ν) for ν →∞ is the normal distribu-

tion Nd(µ,Σ).

Proof.

(1) See Fang et al. (1990, Theorem 3.9, p. 85).

(2) See Fang et al. (1990, p. 82) or DeGroot (2004, p. 60).

(3) Note that R2/d ∼ F (d, ν) (see, e.g., DeGroot (2004, p. 43)), so

E[R2/rk(Σ)] = E[R2/d] = ν/(ν − 2) for ν > 2. The result then fol-

lows from the general covariance formula for elliptical distributions, i.e.

Equation (4.8).

(4) This follows from taking the limits in the density or the characteristic

function, respectively.
�

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 174

174 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

4.4 Elliptical Copulas

Recall that a d-dimensional random vector X = (X1, . . . , Xd)
′ ∼

Ed(µ,Σ, ϕ) has an elliptical distribution if X
d
= µ + A′ Y d

= µ + A′RS,

where Y ∼ Sk(ϕ), A ∈ Rk×d, Σ := A′A ∈ Rd×d, rk(Σ) = k ≤ d, µ ∈ Rd,

and R, S are given as in Equation (4.2).

Definition 4.5 (Elliptical Copula)

An elliptical copula is defined as the copula of the related elliptical distri-

bution F . Its analytical form is obtained via Sklar’s theorem (see Theorem

1.2) from the distribution function F , i.e.

C(u1, . . . , ud) := F
(
F−1
1 (u1), . . . , F

−1
d (ud)

)
, (u1, . . . , ud) ∈ [0, 1]d,

where F−1
k are the univariate quantile functions, k = 1, . . . , d.

Remark 4.3 (Parameterization of Elliptical Copulas)

A problem with the notation Ed(µ,Σ, ϕ) is that this characterization of an

elliptical distribution is not unique. For any c > 0, we can take Σ̃ := cΣ,

ϕ̃(t) := ϕ(t/c) and obtain the same distribution. Moreover, applying a

strictly increasing transformation to all univariate marginals of X does not

change its copula (see Lemma 1.5). Hence, for the copula of an elliptical

distribution, the shift by µ is not relevant and we might always assume

µ = 0. Moreover, we can further standardize the matrix Σ by using the

following normalization: introduce P ∈ Rd×d with pij := Σij/(
√
Σii

√
Σjj).

Then, P is a correlation matrix and the copula of X ∼ Ed(µ,Σ, ϕ) is the

same as the one of Y ∼ Ed(0, P, ϕ), since the marginals just undergo a

strictly increasing affine transformation from one distribution to the other,

which does not affect the copula. Obviously, the parameterization with P

has fewer parameters and is therefore more convenient, so we denote by

CP,ϕ the copula of Ed(0, P, ϕ).

Lemma 4.6 (Properties of Elliptical Copulas)

Let the elliptical copula CP,ϕ be given. Then the following properties hold:

(1) Elliptical copulas are radially symmetric, i.e. CP,ϕ = ĈP,ϕ.

(2) The upper- and lower-tail dependence coefficients, being the same by

radial symmetry, depend on the choice of R. Loosely speaking, heavy

tails of R translate into positive tail dependence.

(3) For a bivariate elliptical copula CP,ϕ with P having off-diagonal entries

p := p12 = p21, stemming from a non-degenerate elliptical distribution

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 175

Elliptical Copulas 175

X = (X1, X2)
′ with P(X1 = µ1) = P(X2 = µ2) = 0, Kendall’s tau is

given by

τCP,ϕ =
2

π
arcsin(p) ∈ [−1, 1].

It is worth mentioning that this measure of dependence does not depend

on the choice of R, respectively ϕ.

Proof.

(1) Let CP,ϕ be the copula of the random vector µ+ A′ Y , using the no-

tation of Equation (4.6) (we assume w.l.o.g. that µ = 0 and A′A = P ;

a correlation matrix). Multiplying this random vector componentwise

by (−1) gives the random vector A′ (−1)Y , whose copula is ĈP,ϕ ac-

cording to Corollary 1.1. Since Y
d
= −I Y = (−1)Y for spherically

distributed Y , we finally have CP,ϕ = ĈP,ϕ.

(2) A deep investigation of this subject, including quantitative results for

regularly varying R (at infinity), is provided in Schmidt (2002). The

specific cases of the Gaussian and the t-copula are investigated in Lem-

mas 4.7 and 4.8.

(3) A proof and an extension to spherical distributions with P(Xi = µi) ∈
(0, 1), i = 1, 2, is given in Lindskog et al. (2003).

�

4.5 Parametric Families of Elliptical Copulas

Definition 4.6 (Gaussian Copula)

The normal or Gaussian copula CGauss
P is the copula of X ∼ Nd(0, P),

where P is a correlation matrix. The functional form is obtained by

CGauss
P (u1, . . . , ud) := FP

(
Φ−1(u1), . . . ,Φ

−1(ud)
)
, (4.15)

where (u1, . . . , ud) ∈ [0, 1]d, FP is the joint distribution function of X, and

Φ−1 is the quantile function of the univariate standard normal law.

Instead of defining CGauss
P using the correlation matrix P , one could equiv-

alently use the covariance matrix Σ. In this case, the quantile functions

must be adjusted accordingly. Both choices imply the very same copula;

the choice P , however, is the more intuitive parameterization and does not

contain redundant parameters.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 176

176 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Lemma 4.7 (Gaussian Copula: Tail Independence)

Both tail dependence coefficients of the bivariate Gaussian copula with

correlation parameter p ∈ (−1, 1) are 0.

Proof. We consider w.l.o.g. the lower-tail dependence, which agrees with

the upper-tail dependence by radial symmetry. The proof requires a refor-

mulation of the tail dependence formula. Following Embrechts et al. (2003),

we find for some exchangeable copula C

LTDC = lim
u↓0

C(u, u)

u

(∗)
= lim

u↓0
d

du
C(u, u)

= lim
u↓0

(∂

∂u1
C(u1, u2)

∣∣
u1=u2=u

+
∂

∂u2
C(u1, u2)

∣∣
u1=u2=u

)
= lim

u↓0
(
P(U2 ≤ u|U1 = u) + P(U1 ≤ u|U2 = u)

)
(∗∗)
= 2 lim

u↓0
P(U2 ≤ u|U1 = u) = 2 lim

u↓0
P(U1 ≤ u|U2 = u),

where (∗) follows from de l’Hospital’s rule and (∗∗) requires exchange-

ability. For the Gaussian copula, a simple transformation with Φ−1

shows that the above limit agrees with 2 limx↓−∞ P(X2 ≤ x|X1 = x) for

(X1, X2) :=
(
Φ−1(U1),Φ

−1(U2)
) ∼ N2(0, p), i.e. (X1, X2)

′ is bivariate stan-
dard normally distributed with correlation p. For the next step, we need

the conditional distribution of X2 given X1 = x. This can be found by

computing the conditional density, which involves dividing the joint den-

sity by the density of X1 at x (see, e.g., Fahrmeir and Hamerle (1984, Satz

3.6, p. 27)). We find X2|X1 = x ∼ N (p x, 1− p2). Hence
LTDCGauss

p
= 2 lim

x↓−∞
P(X2 ≤ x|X1 = x)

= 2 lim
x↓−∞

Φ
(
x

1− p√
1− p2

)
= 0.

�

Example 4.2 (H-Extendible Gaussian Copula)

Consider the Gaussian copula

CGauss
P (u1, . . . , ud) = FP

(
Φ−1(u1), . . . ,Φ

−1(ud)
)
,

where P is a correlation matrix and FP is the distribution function of the

Nd(0, P) law. The extendible Gaussian copula corresponding to P has a

homogeneous correlation ρ with ρ ∈ [0, 1] (see Example 1.17). A conditional

i.i.d. construction for the extendible Gaussian copula is (similar to the proof

of Theorem 4.2) given by

Ui := Φ
(√
ρM (0) +

√
1− ρ εi

)
, i = 1, . . . , d,

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 177

Elliptical Copulas 177

where M (0), ε1, . . . , εd
i.i.d.∼ N (0, 1). It is clear that with Zi :=

√
ρM (0) +√

1− ρ εi ∼ N (0, 1), the vector Z = (Z1, . . . , Zd)
′ is multivariate normal,

and the correlation of Zk with Zl is ρ, k �= l. Φ transforms the univari-

ate marginal laws to U [0, 1]. All components U1, . . . , Ud are i.i.d. given

G1 := σ(M (0)), the σ-algebra generated by M (0). On the second level, an

h-extendible Gaussian copula with two levels of hierarchy and J groups is

constructed as follows: the correlation matrix P is now a block matrix; be-

tween different groups with homogeneous ρ0 ∈ [0, 1], inside group j with

homogeneous ρj ∈ [ρ0, 1]. A stochastic model generating this copula is

Uk := Φ
(√
ρ0M

(0) +
√
ρj − ρ0M (j) +

√
1− ρj εk

)
, (4.16)

for k ∈ {
1 +

∑j−1
l=1 dl, . . . ,

∑j
l=1 dl

}
, j = 1, . . . J , where M (0),

M (1), . . . ,M (J), ε1, . . . , εd
i.i.d.∼ N (0, 1) and the partition into groups is as

in Section 1.2.4. Extensions to more levels of hierarchy are possible by

introducing additional factors.

An important advantage of h-extendible Gaussian copulas is that sampling,

along the lines of construction (4.16), is extremely fast and conveniently

simple to implement. Note that for two levels of hierarchy (dimension d

and J groups), only d + J + 1 random variables have to be drawn and a

simple transformation must be applied to all components. Since J ≤ d, we
have an overall effort of linear order O(d) in the dimension, which is smaller

than the effort in the general case (see Algorithm 4.3).

Another important elliptical copula is the t-copula, which we now dis-

cuss.

Definition 4.7 (t-Copula)

The t-copula Ct
P,ν is the copula of X ∼ td(0, P, ν), where P is a correlation

matrix. The analytical form is obtained by

Ct
P,ν(u1, . . . , ud) := tν,P

(
t−1
ν (u1), . . . , t

−1
ν (ud)

)
, (4.17)

where (u1, . . . , ud) ∈ [0, 1]d, tν,P is the joint distribution function of X and

t−1
ν is the quantile function of the univariate standard t-distribution with ν

degrees of freedom.

Lemma 4.8 (t-Copula: Tail Dependence)

The upper- (and lower-, by radial symmetry) tail dependence coefficient

of a bivariate t-copula Ct
P,ν with ν degrees of freedom and P having off-

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 178

178 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

diagonal entries p ∈ (−1, 1) is given by

UTDCt
ν,p

= LTDCt
ν,p

= 2 tν+1

(
−
√

(ν + 1)(1− p)
1 + p

)
,

where tν+1 is the distribution function of the univariate t-distribution with

ν + 1 degrees of freedom, zero mean, and unit variance.

Proof. The proof is mostly similar to the derivation of the tail de-

pendence coefficients in the Gaussian case. The difference, however, is

that for X1, X2 being standard t-distributed with ν degrees of freedom

and copula Ct
P,ν , the conditional distribution of X2|X1 = x is again a t-

distribution with ν + 1 degrees of freedom, expectation p x, and variance

(ν + x2) (1 − p2)/(ν + 1). This can be found from the conditional density

of X2|X1 = x (see DeGroot (2004, p. 62)). Then

LTDCt
ν,ρ

= 2 lim
x↓−∞

P(X2 ≤ x|X1 = x)

= 2 lim
x↓−∞

tν+1

((x− p x)√ν + 1√
(ν + x2) (1− p2)

)

= 2 lim
x↓−∞

tν+1

(
sign(x)

√
ν + 1

√
1− p√

ν/x2 + 1
√
1 + p

)

= 2 tν+1

(
−
√

(ν + 1)(1− p)
1 + p

)
.

�

Example 4.3 (H-Extendible Grouped t-Copula)

The notion of a grouped t-copula is originally due to Daul et al. (2003);

a modified version that fulfills the h-extendibility criterion is presented in

Mai and Scherer (2012). One defines (Z1, . . . , Zd)
′ ∼ Nd(0,Σ) using the

construction Zi :=
√
ρM (0) +

√
1− ρ εi as in Theorem 4.2, i.e. the Zi’s

are standard normal with pairwise correlation ρ ∈ [0, 1]. Independent of

all previously defined random variables, take a list of independent random

variables R(1), . . . , R(J) with distribution R(j) d
=
√
νj/χ2(νj). Consider the

random vector(
tν1(R

(1)Z1), . . .︸ ︷︷ ︸
group 1

, tν2(R
(2)Zd1+1), . . .︸ ︷︷ ︸
group 2

, . . . , tνJ (R
(J)Zd1+...+dJ−1+1), . . .︸ ︷︷ ︸

group J

)
,

where tνj denotes the distribution function of the components R(j)Zl in

group j, which is a t(νj)-distribution. This transforms R(j)Zl to U [0, 1]-
distributed marginals. The resulting random vector is h-extendible: con-

ditioned on G1 = σ(M (0)), the groups are independent. Conditioned on

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 179

Elliptical Copulas 179

G2 = σ(M (0), R(1), . . . , R(J)), all components are independent. Note that

the dependence within group j is a t-copula with homogeneous correlation

matrix and νj degrees of freedom. Between the groups, the dependence is of

the Gaussian kind with correlation matrix Σ. Hence, we have positive tail

dependence within each group and zero tail dependence between the groups.

Similar to the h-extendible Gaussian copula, the h-extendible grouped t-

copula is very efficient to simulate. Using the above stochastic model, only

d+ J + 1 random variables must be drawn and suitably combined in order

to obtain a sample of a d-dimensional grouped t-copula with J groups.

Clearly, this is of linear order in d.

4.6 Sampling Algorithms

In this section, we state a generic sampling scheme for elliptical distributions

based on their stochastic representation. This requires a sampling scheme

for the respective radius variable R and a sampling scheme for a uniform

distribution on the unit sphere. Besides this generic scheme, we present

specific algorithms for the normal distribution and the t-distribution. In

each case, a sample of the associated copula is obtained by standardizing the

marginal laws. This requires the univariate marginal distribution functions.

4.6.1 A Generic Sampling Scheme

Algorithm 4.1 (Sampling Elliptical Distributions and Copulas)

To simulate a random vector from (the copula of) an elliptical distribution

X ∼ Ed(µ,Σ, ϕ), corresponding to the stochastic representation X
d
= µ+

A′RS with A′ A = Σ, perform the following steps:

(1) Simulate the radius R.

(2) Simulate S, uniformly distributed on the k-dimensional unit sphere (see

Algorithm 4.2).

(3) Compute (and return, if X is required) X := µ+A′RS.

(4) If a sample from the copula is to be returned, perform steps (1) to (3)

with µ = 0 and standardize the univariate marginals via Ui := Fi(Xi),

i = 1, . . . , d, where Fi is the univariate marginal distribution function

of Xi. Then return U := (U1, . . . , Ud)
′.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 180

180 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Algorithm 4.2 (Sampling Uniformly on the d-Sphere)

A simple approach to sample uniformly on the d-dimensional unit sphere is

the following rejection scheme. Repeat simulating V := (V1, . . . , Vd)
′, where

the Vi’s are i.i.d. with U [−1, 1]-distribution, until ‖V ‖2 = V 2
1 +. . .+V 2

d ≤ 1.

Then take S := V /‖V‖. This becomes slow in high dimensions, since the

probability of accepting a sample is precisely the size of the d-dimensional

unit ball divided by the size of the d-dimensional cube with side-length 2,

which tends to 0 in d. A faster scheme for high-dimensional cases is given

in Muller (1959), which consists of generating Z = (Z1, . . . , Zd)
′ from a

Nd(0, I)-distribution and taking S := Z/‖Z‖. A faster scheme for low-

dimensional cases is given in Marsaglia (1972). An example for d ∈ {2, 3}
is provided in Figure 4.2.

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−1.0 −0.5 0.0 0.5 1.0−
1.

0
−

0.
5

 0
.0

 0
.5

 1
.0

−1.0
−0.5

 0.0
 0.5

 1

●

●

●

●

●

●

●

●●

●● ●

●

●
●

●

●

●●

●
●

●●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●●

●

●

●
●

●

●●●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

Fig. 4.2 Scatterplot of 250 samples from the uniform distribution on the two-sphere
(left) and 1 000 samples from the uniform distribution on the unit three-sphere (right).

Example 4.4 (R ≡ 1 and R ∼ Geo(ϑ))
Let us first visualize as a starting point the case R ≡ 1 in dimension two.

To simulate from the respective copula, we need the marginal law of Si,

i = 1, 2. This is found to be5

F (x) : = P(S1 ≤ x) =
∫ 2π

0

�{cos(y)≤x}
dy

2 π
=

∫ π

0

�{y≥arccos(x)}
dy

π

= 1− arccos(x)/π, x ∈ (−1, 1).
5Note that (S1, S2)

d
=

(
cos(U), sin(U)

)
for U ∼ U [0, 2π]. Moreover, we have identical

marginal distributions F1 = F2 by exchangeability.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 181

Elliptical Copulas 181

Given this, we simply have to simulate S uniformly on the two-dimensional

unit sphere and then transform the univariate marginals using F . The result

is visualized in Figure 4.3 (left). To make the example more interesting,

we now choose R ∼ Geo(ϑ), ϑ ∈ (0, 1). We compute the marginal law G of

Xi = RSi, i = 1, 2, by conditioning on R and obtain

G(x) =

∞∑
i=1

P(R = i)F (x/i).

Then, we sample RS and standardize the marginals using G. The result is

displayed in Figure 4.3 (middle) and (right).

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 4.3 Scatterplot of 250 samples from the bivariate copula of S, the uniform dis-
tribution on the two-sphere (left), and 2 500 samples from the bivariate copula of RS,
where R ∼ Geo(0.1) (middle) and R ∼ Geo(0.5) (right).

4.6.2 Sampling Important Parametric Families

For the multivariate normal distribution (and the associated Gaussian

copula) we have two stochastic representations at hand (compare Equa-

tion (4.9)). More convenient to implement is the representations based on

a list of i.i.d. standard normal variates (Z1, . . . , Zd)
′ =: Z ∼ Nd(0, I), since

it only requires a sampling scheme for independent univariate standard nor-

mal random variables. Hence, Algorithm 4.3 is formulated in this way, and

we do not suggest using the generic Algorithm 4.1 for the Gaussian copula.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 182

182 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Algorithm 4.3 (Sampling the Gaussian Copula)

To simulate a random vector from CGauss
P , where P ∈ Rd×d is a positive-

definite correlation matrix, perform the following steps:

(1) Compute the Cholesky decomposition6 of P , i.e. compute the matrix

L ∈ Rd×d with LL′ = P , where L ∈ Rd×d is a lower triangular matrix.

Alternatively, one can compute P 1/2, where P 1/2 P 1/2 = P , and use it

later on instead of L.

(2) Simulate a vector of independent standard normal random variables

Z ∼ Nd(0, I).

(3) Compute X := LZ ∼ Nd(L 0, L I L′) = Nd(0, P).

(4) Return the vector
(
Φ(X1), . . . ,Φ(Xd)

)′
, where Φ is the distribution

function of a univariate standard normal distribution.7

For an efficient implementation it is evident that if several random vectors

have to be drawn, the required Cholesky decomposition needs to be com-

puted only once. Scatterplots based on different parameters are visualized

in Figure 4.4.

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 4.4 Scatterplot of 2 500 samples from the bivariate Gaussian copula with p = −0.5
(left), 0 (middle), and 0.5 (right). Note that the dependence is increasing with p, and
the case 0 corresponds to independence. Also note that the scatterplots have two axes
of symmetry: (1) symmetry around the first diagonal (corresponding to exchangeabil-
ity) and (2) symmetry around the second diagonal (corresponding to the fact that the
Gaussian copula is radially symmetric).

To sample from the t-copula Ct
P,ν , we again start with independent

6A derivation of this decomposition and explicit algorithms are given, e.g., in Golub
and van Loan (1989, p. 97ff). Finding this decomposition requires effort in the order of
O(d3). Efficient schemes for sparse matrices and parallel computing might even improve
the performance.
7Note that since P is a correlation matrix, the univariate marginal laws are Xi ∼

N (0, 1), i = 1, . . . , d.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 183

Elliptical Copulas 183

N (0, 1)-distributed random variables. These are made dependent via (1) a

linear transformation and (2) a mixing variable (see Equation (4.12)). In a

final step, the marginals are transformed to U [0, 1]-distributions.
Algorithm 4.4 (Sampling the t-Copula)

To simulate a random vector from Ct
P,ν , where P ∈ Rd×d is a positive-

definite correlation matrix and ν the degrees of freedom, perform the fol-

lowing steps:

(1) Compute the Cholesky decomposition of P , i.e. compute the matrix

L ∈ Rd×d with LL′ = P , where L ∈ Rd×d is a lower triangular matrix.

Alternatively, one can compute P 1/2, where P 1/2 P 1/2 = P , and use it

later on instead of L.

(2) Simulate a vector Z = (Z1, . . . , Zd)
′ of independent N (0, 1)-distributed

random variables.

(3) Simulate W from an InvΓ(ν/2, ν/2)-distribution. Alternatively, one

can draw V ∼ χ2(ν).

(4) Compute X :=
√
W LZ. Alternatively, one might use X :=√

ν/V LZ. Both representations are equal in distribution.

(5) Return the vector
(
tν(X1), . . . , tν(Xd)

)′
, where tν is the distribution

function of a univariate t-distribution with ν degrees of freedom and

mean 0.

Similar to the Gaussian case, when several random variables have to be

drawn, the required Cholesky decomposition (alternatively the root of P)

must only be computed once. Scatterplots of the t-copula are provided in

Figure 4.5.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 184

184 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 4.5 Scatterplot of 2 500 samples from the bivariate t-copula with p = −0.3 (left),
0.5 (middle), and 0.9 (right). The degrees of freedom are set to ν = 2 in the upper
panel, and to ν = 10 in the lower panel. Note that the dependence is increasing with
p. Also note that the scatterplot has two axes of symmetry: (1) symmetry around the
first diagonal (corresponding to exchangeability) and (2) symmetry around the second
diagonal (corresponding to the fact that the Student’s t-copula is radially symmetric).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 185

Chapter 5

Pair Copula Constructions

This chapter was contributed by Claudia Czado and Jakob Stöber,1 for

which we would like to thank them very much.2

In the introductory section to this book it was noted that compared

to the scarceness of work on multivariate copulas, there is extensive liter-

ature on bivariate copulas and their properties. Pair copula constructions

(PCCs) build high-dimensional copulas out of bivariate ones, thus exploit-

ing the richness of the class of bivariate copulas and providing a flexible

and convenient way to extend the bivariate theory to arbitrary dimensions.

This construction principle was introduced in the pioneering work of Bed-

ford and Cooke (2001a) and Bedford and Cooke (2002), generalizing an

approach by Joe (1996). Aas et al. (2009) were the first to use PCCs in an

inferential context and presented a more practical approach with algorithms

to calculate likelihoods and to do simulations.

The earliest research on pair copulas arose from questions related to

the construction of a multivariate distribution and sought to derive a gen-

eral principle for finding distributions fulfilling certain given specifications.

This view on the subject is an appropriate starting point for obtaining

existence theorems and motivating the graphical description using vines.

From a statistical point of view, however, more important issues include

whether a multivariate distribution can be decomposed into bivariate (pair)

copulas and the distributions of the margins and which assumptions need

to be made in order to do so. Starting with the decomposition of a given

distribution has the benefit that it is not only very intuitive but also shows

the restrictions of regular vine constructions and why not all multivariate

copulas can be built using a PCC.

1Lehrstuhl für Mathematische Statistik, Technische Universität München, Parkring 13,
85748 Garching-Hochbrück, Germany, cczado@ma.tum.de and stoeber@ma.tum.de.
2The numerical computations were performed on a Linux cluster supported by DFG

grant INST 95/919-1 FUGG.

185

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 186

186 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

This chapter is organized as follows. First, Section 5.1 introduces PCCs.

Section 5.2 formalizes the description of PCCs by regular vines and intro-

duces a matrix notation which can conveniently be used to describe algo-

rithms for the generation of random samples and facilitate their implemen-

tation in computer code. After that, some further remarks on notation and

on bivariate copulas are made in Section 5.3, before outlining an algorithm

to simulate from PCCs. Section 5.4 discusses the dependence properties

realizable by PCCs and Section 5.5 concludes with an application to Value

at Risk (VaR) forecasting.

5.1 Introduction to Pair Copula Constructions

Consider d random variables X = (X1, . . . , Xd) with joint density function

f1:d(x1, . . . , xd). This density can be recursively factorized using conditional

densities:

f1:d(x1, . . . xd) = f1(x1) · f2|1(x2|x1) · f3|2,1(x3|x1, x2) · . . .
· fd|1:(d−1)(xd|x1, . . . , xd−1). (5.1)

This expression is unique up to relabeling. We will now apply Sklar’s the-

orem (Theorem 1.2) to the conditional densities and thereby decompose

a multivariate density into bivariate copula densities and densities of one-

dimensional margins. By differentiating formula (1.6) corresponding to

a distribution with joint density f(x1, . . . , xd), marginal densities fj and

marginal cumulative distribution functions (cdfs) Fj , j = 1, . . . , d, we ob-

tain

f1:d(x1, . . . xd) =

c1:d(F1(x1), F2(x2), . . . , Fd(xd)) · f1(x1) · f2(x2) · · · · · fd(xd)
for some d-variate copula density c1:d(.). In the bivariate case, this simplifies

to

f1,2(x1, x2) = c1,2(F1(x1), F2(x2)) · f1(x1) · f2(x2)
and yields

f1|2(x1|x2) = c1,2(F1(x1), F2(x2)) · f1(x1) (5.2)

for the conditional density of X1, given X2 = x2. Equation (5.2) can be

applied stepwise to each factor on the right-hand side of (5.1) in order

to decompose the multivariate density into bivariate copula densities and

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 187

Pair Copula Constructions 187

densities of one-dimensional margins as desired. For example, the factor

f(x3|x1, x2) can be decomposed into

f3|2,1(x3|x1, x2) = c3,2|1(F3|1(x3|x1), F2|1(x2|x1)) · f3|1(x3|x1),
and generally we have for X �∈ X = (X1, . . . , Xd)

fX|X(x|x) = cX,Xj |X−j
(FX|X−j

(x|x−j), FXj |X−j
(xj |x−j)) · fX|X−j

(x|x−j),

where x−j denotes the vector x without the jth component and

FX|X−j
(x|x−j) the conditional distribution function ofX , givenX−j = x−j

evaluated at x. For this decomposition we assume, as already suggested

by the notation, that the copula cX,Xj |X−j
of the conditional distribution

depends on the realization x−j of X−j only through its arguments. In

general, cX,Xj |X−j
will of course also depend on x−j but we have to make

this assumption in order to keep inference and in particular model selec-

tion possible, fast, and tractable. For the existence theorem of Section

5.2 this assumption is not necessary. Practitioners, however, will almost

always be interested in estimation problems, too, and for this reason we

keep the assumption throughout this chapter and use it to simplify our

notation where possible. Because of this assumption, not all multivariate

distributions (with densities) can be modeled using a (simplified) pair cop-

ula construction as we understand it. For examples on which distributions

can be expressed using a PCC and which not, we refer the reader to Haff

et al. (2010).

Let us now illustrate a complete decomposition of (5.1) in five dimen-

sions given as

f(x1, . . . x5) = f(x1) · f(x2|x1) · f(x3|x1, x2)·
· f(x4|x1, x2, x3) · f(x5|x1, x2, x3, x4). (5.3)

To shorten the notation, we define

Fi|i1,...,ir := Fi|i1,...,ir (xi|xi1 , . . . , xir),
fi|i1,...,ir := fi|i1,...,ir (xi|xi1 , . . . , xir),
ci,j|i1,...,ir := ci,j|i1,...,ir

(
Fi|i1,...,ir , Fj|i1,...,ir

)
,

for i �= j and additional distinct indices i1, . . . , ir. If the arguments of a

density are denoted and it is clear from the context which density we refer

to, the notation of indices is omitted.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 188

188 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Example 5.1 (A Five-Dimensional Example)

Applying Equation (5.2), Expression (5.3) is assumed to be further decom-

posable as follows:

f(x2|x1) = c2,1(F2, F1) · f(x2), (5.4a)

f(x3|x1, x2) = c3,2|1(F3|1, F2|1) · f(x3|x1)
= c3,2|1(F3|1, F2|1) · c3,1(F3, F1) · f(x3), (5.4b)

f(x4|x1, x2, x3) = c4,2|1,3 · f(x4|x1, x3) = c4,2|1,3 · c4,1|3 · f(x4|x3)
= c4,2|1,3 · c4,1|3 · c4,3 · f(x4), (5.4c)

f(x5|x1, x2, x3, x4) = c5,2|1,3,4 · f(x5|x1, x3, x4)
= c5,2|1,3,4 · c5,4|1,3 · f(x5|x1, x3)
= c5,2|1,3,4 · c5,4|1,3 · c5,3|1 · f(x5|x1)
= c5,2|1,3,4 · c5,4|1,3 · c5,3|1 · c5,1 · f(x5). (5.4d)

This gives the expression for the joint density

f(x1, . . . , x5) = c5,2|4,3,1 · c5,4|3,1 · c4,2|3,1 · c5,3|1 · c4,1|3
· c3,2|1 · c5,1 · c4,3 · c3,1 · c2,1
· f(x5) · f(x4) · f(x3) · f(x2) · f(x1).

(5.5)

Hereby the conditional distribution functions which form the copula densi-

ties’ arguments can themselves be obtained from copula cdfs. For example,

the second argument of c4,2|3,1 is F2|3,1 and can be expressed using only

lower-level copulas (i.e. copulas in which we condition on fewer variables)

in the following way:

F (x2|x1, x3) =
∂C2,3|1(F (x2|x1), F (x3|x1))

∂F (x3|x1) , (5.6)

where F (x3|x1) and F (x2|x1) can be expressed similarly using c3,1 and c2,1.

To see this, we determine, using the chain rule for differentiation, the rule

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 189

Pair Copula Constructions 189

for differentiation under the integral sign, and Equation (5.2), that

F (x2|x1, x3) =
∫ x2

−∞
f(y2|x1, x3)dy2

=

∫ x2

−∞
c2,3|1(F (y2|x1), F (x3|x1))f(y2|x1)dy2

=

∫ x2

−∞

∂

∂F (y2|x1)
∂

∂F (x3|x1)C2,3|1(F (y2|x1), F (x3|x1))f(y2|x1)dy2

=
∂

∂F (x3|x1)
∫ x2

−∞

∂

∂y2
C2,3|1(F (y2|x1), F (x3|x1))dy2

=
∂

∂F (x3|x1)C2,3|1(F (x2|x1), F (x3|x1)).

Obviously, this also holds when conditioning on more than one variable and

F (x|x) = ∂CX,Xj |X−j
(F (x|x−j), F (xj |x−j))

∂F (xj |x−j)
(5.7)

does hold in general for X �∈ X = (X1, . . . , Xd). If we want to obtain

expressions for the arguments of the bivariate densities which only con-

tain bivariate copulas already used in the decomposition and which do not

require integration, we will have to make a “clever choice” in each step.

How this recursive calculation works in Example 5.1 is illustrated in Figure

5.1. For the first arguments of the conditional copula densities in (5.4),

marked with circles in Figure 5.1, it is clear that the copulas (marked with

diamonds) from which they can be calculated using Expression (5.7) are

available. They are obtained from decomposing the remaining conditional

density in Sklar’s theorem (5.2), e.g. f(x5|x1, x3, x4) after applying Sklar’s

theorem on f(x5|x1, . . . , x4) in (5.4d).

For the second arguments, which are left unmarked in Figure 5.1, how-

ever, the necessary copulas are in general not available. For example, F2|1,3,
the second argument of c4,2|1,3 in (5.4c), is obtained from the copula with

density c3,2|1, chosen in (5.4b).

If we had chosen the copula density c4,1|2,3 instead of c4,2|1,3 in (5.4c),

the density of neither C3,1|2 nor C2,1|3, from which the argument F1|2,3
can be calculated, would have been included in the decomposition (Figure

5.2). But how to systematically make a “clever choice” in each step? The

arguments of copulas conditioned on d variables will always have to be

expressed by copulas conditioned on d−1, . . . , 1 variables. It is thus natural

to use a bottom-up approach, since possible choices on the “higher” levels

depend on the choices made on the “lower” levels. To illustrate how this

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 190

190 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

F5 F1 F3 F1 F4 F3 F3 F1 F4 F3 F3 F1 F3 F1 F2 F1

c5,1 c3,1 c4,3 c3,1 c4,3 c3,1 c3,1 c2,1

F5|1 F3|1 F4|3 F1|3 F4|3 F1|3 F3|1 F2|1

c5,3|1 c4,1|3 c4,1|3 c3,2|1

F5|1,3 F4|1,3 F4|1,3 F2|1,3

c5,4|1,3 c4,2|1,3

F5|1,3,4 F2|1,3,4

c5,2|1,3,4

Fig. 5.1 Following this chart, the arguments of all copulas in decomposition (5.5) for
Example 5.1 can be obtained recursively.

works, the structure of the decomposition in Example 5.1 is displayed by a

sequence of trees in Figure 5.3.

c4,2|3 c3,1|2 or c2,1|3

F4|2,3 F1|2,3

c4,1|2,3

Fig. 5.2 If we choose c4,1|3,2 instead of c4,2|3,1 in (5.4c), the copulas required for ob-
taining the second argument F1|3,2 are not included in (5.4a,b,d).

In the first tree, i.e. T1, we have all the bivariate copulas of decompo-

sition (5.5), each Ci,j pictured as an edge linking the univariate margins

i and j (pictured as nodes). For T2 we have the bivariate copula indices

which were the edges in tree T1 as nodes. The edges are the indices of the

conditional copulas conditioned on one variable. They link the nodes from

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 191

Pair Copula Constructions 191

which their arguments are obtained using an expression as in (5.7). Con-

tinuing in a similar fashion, all bivariate copulas required can be identified

by four trees. Consider, for example, the density

c4,2|1,3(F (x4|x1, x3), F (x2|x1, x3)),
where the arguments are obtained from

F (x4|x1, x3) =
∂C4,1|3(F (x4|x3), F (x1|x3))

∂F (x1|x3)
and

F (x2|x1, x3) =
∂C2,3|1(F (x2|x1), F (x3|x1))

∂F (x3|x1) .

It is displayed as edge 2, 4|1, 3 between nodes 2, 3|1 and 1, 4|3. Note that

we will usually denote edges in ascending order, e.g. 2, 4|1, 3. For copulas,
the ordering in the notation is always chosen such that Ci,j|i1,...,ir has first

argument Fi|i1,...,ir and second argument Fj|i1,...,ir , for i �= j and additional

distinct indices i1, . . . , ir.

In the following section regular vine tree sequences which are sequences

of trees as in Figure 5.3 and which correspond to valid decompositions

having the desired properties are defined.

5.2 Copula Construction by Regular Vine Trees

We begin with the graph theoretical definition of our main object, the

regular vine (R-vine) tree sequence, in Section 5.2.1, where we also state

the general existence result for R-vine distributions. Section 5.2.2 continues

by introducing a matrix notation for storing R-vine tree sequences. For the

general theory on vines our presentation follows Bedford and Cooke (2001a)

and Bedford and Cooke (2002). The introduction to the matrix notation is

taken from Dißmann (2010).

5.2.1 Regular Vines

To define R-vines, we recall some basic definitions from graph theory. Let

N be a set and E be a set of possible combinations from N , i.e.

E ⊂ {{n1, n2}|n1, n2 ∈ N} .
Then we call the tuple G = (N,E) an undirected graph, the elements of

N nodes, and the elements of E edges. A path in a graph can be defined

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 192

192 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

1 3 4

2 5

1,3 3,4

1,2

1,5
T1

1,2 1,3 3,4

1,5

2,3|1 1,4|3

3,5|1
T2

2,3|1 1,4|3 3,5|1
2,4|13 5,4|13

T3

2,4|13 5,4|13
5,2|134

T4

Fig. 5.3 Graphical illustration of decomposition (5.5) for Example 5.1, from the lowest
level in tree T1 to the highest level in tree T4. A line in the graph corresponds to the
indices of a copula linking two distributions on a lower level through conditioning.

as a sequence of nodes (n1, . . . , nk) ∈ Nk, k ≥ 2, where Nk denotes the

k-fold Cartesian product, such that for each node ni there exists an edge

connecting it to the next. That means

{ni, ni+1} ∈ E for i = 1, . . . , k − 1,

and we call the sequence a cycle if n1 = nk. A tree T = (N,E) is an acyclic

undirected graph (i.e. we cannot find any sequence from N that is a cycle),

which is connected, i.e. for all nodes a, b ∈ Tj , j = 1, . . . , d− 1, there exists

a path (n1, . . . , nk) ∈ Nk
j with a = n1, b = nk.

Based on the above graph theoretic notation, R-vine tree sequences can

be defined as follows.

Definition 5.1 (Regular Vine Tree Sequence)

V = (T1, . . . , Td−1) is a regular vine tree sequence on d elements if:

(1) T1 is a tree with nodes N1 = {1, . . . , d} and a set of edges E1.

(2) For j ≥ 2, Tj is a tree with nodes Nj = Ej−1 and edges Ej.

(3) For j = 2, . . . , d− 1 and {a, b} ∈ Ej it must hold that |a ∩ b| = 1.

The last property is called the proximity condition. It ensures that if there

is an edge e connecting a and b in Tj, j ≥ 2, then a and b must share a

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 193

Pair Copula Constructions 193

common node in Tj−1.

Figure 5.4 shows the corresponding R-vine tree sequence of Example

5.1, this time using the set formalism from Definition 5.1 instead of the

indices in the pair copula decomposition. Understanding how the different

forms of labeling correspond to each other is the key to understanding how

an R-vine corresponds to a copula decomposition.

1 3 4

2 5

{1, 3}=̂1, 3 {3, 4}=̂3, 4

{1, 2}=̂1, 2 {1, 5}=̂1, 5
T1

{1, 2}=̂12 {1, 3}=̂1, 3 {3, 4}=̂3, 4

{1, 5}=̂1, 5

{
{1, 2}, {1, 3}

}
=̂2, 3|1

{
{1, 3}, {3, 4}

}
=̂1, 4|3

{
{1, 3}, {1, 5}

}
=̂3, 5|11

T2
{
{1, 2}, {1, 3}

}
=̂2, 3|1

{
{1, 3}, {3, 4}

}
=̂1, 4|3

{
{1, 3}, {1, 5}

}
=̂3, 5|1

{{
{1, 2}, {1, 3}

}
,
{
{1, 3}, {3, 4}

}}
=̂2, 4|1, 3

{{
{1, 3}, {3, 4}

}
,
{
{1, 3}, {1, 5}

}}
=̂4, 5|1, 3

T3

{{
{1, 2}, {1, 3}

}
,
{
{1, 3}, {3, 4}

}}
=̂2, 4|1, 3

{{
{1, 3}, {3, 4}

}
,
{
{1, 3}, {1, 5}

}}
=̂4, 5|1, 3

{{{
{1, 2}, {1, 3}

}
,
{
{1, 3}, {3, 4}

}}
,

{{
{1, 3}, {3, 4}

}
,
{
{1, 3}, {1, 5}

}}}
=̂2, 5|1, 3, 4 T4

Fig. 5.4 The R-vine from Example 5.1, displayed using the set formalism. The dashed
line shows an edge which is not allowed due to the proximity condition, since edges {1, 2}
and {3, 4} do not share a common node in T1.

We will see that if we specify a bivariate copula for every edge in an

R-vine we find a multivariate copula where the copulas of this R-vine spec-

ification occur as conditional copulas. To assign copulas to edges, some

further notation is needed. For e ∈ Ei define

Ae :=
{
j ∈ N1

∣∣∣∃ e1 ∈ E1, . . . , ei−1 ∈ Ei−1 : j ∈ e1 ∈ . . . ∈ ei−1 ∈ e
}
.

Ae is called the complete union of e. The conditioning set of an edge

e = {a, b} is
De := Aa ∩ Ab

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 194

194 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

and the conditioned sets are given by

Ce,a := Aa \De, Ce,b := Ab \De, Ce := Ce,a ∪ Ce,b.
Let us illustrate these sets using edge e =

{{1, 2}, {1, 3}} of Example 5.1.

The complete union consists of all nodes on the level of T1 which are con-

tained in e, i.e. Ae = {1, 2, 3}. We further have De = {1}, since Aa = {1, 2}
and Ab = {1, 3} and subsequently Ce = {2, 3}.

Until this point the R-vine tree sequence defined earlier is solely a graph

theoretic object and does not include any stochastic component. We estab-

lish this by defining what we mean when we say that a vector of random

variables has an R-vine distribution.

Definition 5.2 (Regular Vine Distribution)

A joint distribution F on d random variables X1, . . . , Xd is called a regular

vine distribution, if we can find a tuple (F ,V , B) such that:

(1) Marginal distributions: F = (F1, . . . , Fd) is a vector of continuous

invertible marginal distribution functions, representing the marginal

distribution functions of Xi, i = 1, . . . , d.

(2) Regular vine tree sequence: V is an R-vine tree sequence on d

elements.

(3) Bivariate conditional distributions:

B = {Be|i = 1, . . . , d− 1; e ∈ Ei}
where Be is a symmetric bivariate copula with density and Ei are the

edge sets of the R-vine.

(4) Connection between tree sequence and bivariate (conditional)

distributions: For each e ∈ Ei, i = 1, . . . , d− 1, e = {a, b}, Be is the

corresponding copula to the conditional distribution of XCe,a and XCe,b

given XDe = xDe . Be(., .) does not depend on xDe .

The copula Be for edge e =
{{1, 2}, {1, 3}} of Example 5.1 means that the

conditional bivariate distribution function of (X2, X3), given X1 = x1, is

given by

F (x2, x3|x1) = Be (F (x2|x1), F (x3|x1)) .
From now on, we will denote the copula Be corresponding to edge e by

CCe,aCe,b|De
(and the corresponding density by cCe,aCe,b|De

), as we already

did for the density ci,j|i1,...,ir of the copula corresponding to the conditional

distribution of Xi and Xj given Xi1 = xi1 , . . . , Xir = xir in the introduc-

tion.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 195

Pair Copula Constructions 195

Remark 5.1 (Non-Symmetric Copulas)

Having defined the regular vine tree sequence as a collection of undirected

graphs in Definition 5.1, we have to restrict ourselves to symmetric copulas

in Definition 5.2. This is, however, only a formal restriction as the theory

presented in this chapter remains true when introducing directed edges, but

it is a common assumption in the literature on vines in order to be able to

use the convenient set notation. In simulations and applications we will be

able to use non-symmetric copulas, and we will provide advice on how to

treat this case throughout the text.

If we start with a tuple (F ,V , B) which has properties (1)–(3) of Definition

5.2, we can always go in the inverse direction and find a distribution F to

which they correspond.

Theorem 5.1 (Existence of Regular Vine Distributions)

Let (F ,V , B) have properties (1)–(3) of Definition 5.2. Then there is a

unique distribution with density

f1,...,d = f1 · . . . · fd ·
d−1∏
i=1

∏
e∈Ei

cCe,aCe,b|De
(FCe,a|De

, FCe,b|De
) (5.8)

such that for each e ∈ Ei, i = 1, . . . , d− 1, with e = {a, b}, we have for the

cdf of XCe,a and XCe,b
, given XDe ,

F
(
xCe,a , xCe,b

|xDe

)
= Be

(
F (xCe,a |xDe), F (xCe,b

|xDe)
)
,

and that the one-dimensional margins are given by F (xi) = Fi(xi), i =

1, . . . , d.

Proof. The proof can be found in Bedford and Cooke (2001a). The

mere existence can be shown more elegantly by generalizing regular vines

to Cantor trees (which allow for more general forms of dependence) as

demonstrated in Bedford and Cooke (2002). �
This existence and uniqueness result justifies the definition of regular vine

distributions in terms of the tuple (F ,V , B) from which they can always

be regained. A regular vine copula is a regular vine distribution where all

margins are uniformly distributed on [0, 1]. As the pair copula construc-

tions and decompositions from the introduction are realized as regular vine

copulas, these terms will be used equivalently from now on.

Remark 5.2 (Directed Graphs)

The existence result stated in Theorem 5.1 still holds when we introduce

ordered pairs and switch to directed graphs. This influences Equation (5.8)

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 196

196 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

only by specifying which element of an edge is “a” and which is “b”. With-

out explicitly saying so, Bedford and Cooke (2001a) already showed this.

Theorem 3 of their paper is applicable to the new situation without changes.

Counting all possibilities of choosing edges, Morales-Nápoles (2010) shows

that there are d!/2 · 2(d−2
2) R-vines in d dimensions. In many applications,

however, only two subclasses of R-vines are used.

Definition 5.3 (C-Vine Tree Sequence, D-Vine Tree Sequence)

A regular vine tree sequence V = (T1, . . . , Td−1) is called:

(1) A D-vine tree sequence if for each node n ∈ Ni we have

|{e ∈ Ei|n ∈ e}| ≤ 2.

(2) A C-vine tree sequence if in each tree Ti there is one node n ∈ Ni such

that |{e ∈ Ei|n ∈ e}| = d− i.
In particular Aas et al. (2009) have developed inference methods for D- and

C-vine distributions. Applying (5.8) to these special cases, the density of a

C-vine distribution can be expressed as

d∏
k=1

f(xk)

d−1∏
j=1

d−j∏
i=1

cj,j+i|1,...,j−1 (F (xj |x1, . . . , xj−1), F (xi+j |x1, . . . , xj−1))

and for the D-vine distribution as

d∏
k=1

f(xk)

d−1∏
j=1

d−j∏
i=1

×

× ci,j+i|i+1,...,i+j−1 (F (xi|xi+1, . . . , xi+j−1), F (xi+j |xi+1, . . . , xi+j−1)) .

These expressions are unique up to relabeling, and there are d!/2 distinct

D-vines and d!/2 distinct C-vines in d dimensions. A graphical illustration

of these special tree structures can be seen in Figure 5.5. For D-vine tree

sequences, it is sufficient to require |{e ∈ Ei|n ∈ e}| ≤ 2 for n ∈ N1. The

condition for i ≥ 1 follows then by the proximity condition.

5.2.2 Regular Vine Matrices

While the notation from graph theory is convenient for giving an intuitive

picture of a regular vine, it is less useful for describing algorithms and

their implementation into computer code. We will now develop a shorter

matrix notation describing the tree structure of an R-vine to be applied in

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 197

Pair Copula Constructions 197

T1

T2

T3

T4

T1

T2

T3

T4

Fig. 5.5 The tree structures of a D-vine (on the left) and of a C-vine (on the right) in
four dimensions. Since the structures are unique up to permutations on the basic level,
labeling is omitted.

programming. Such a matrix language was first introduced in Kurowicka

(2009). Our discussion follows Dißmann (2010).

The idea is to exploit the tree structure in order to store the sets{{Ce,a, Ce,b}, De

}
in an upper triangular matrix. These sets contain all

information about the R-vine tree sequence. For this let M be an upper

triangular matrix with entries mi,j , i ≤ j . Each entry mi,j is allowed to

take integer values from 1 to d.

Definition 5.4 (Regular Vine Matrix)

M is called a regular vine matrix if it satisfies the following conditions:

(1) {m1,i, . . . ,mi,i} ⊂ {m1,j, . . . ,mj,j} for 1 ≤ i < j ≤ d (the entries of

a selected column are also contained in all columns to the right of that

column).

(2) mi,i �∈ {m1,i−1, . . . ,mi−1,i−1} (the diagonal entry of a column is not

contained in any column further to the left).

(3) For all i = 3, . . . , d, k = 1, . . . , i − 1 there exist (j, l) with j < i and

l < j such that{
mk,i, {m1,i, . . . ,mk−1,i}

}
=
{
mj,j , {m1,j, . . . ,ml,j}

}
or{

mk,i, {m1,i, . . . ,mk−1,i}
}
=
{
ml,j , {m1,j, . . . ,ml−1,j ,mj,j}

}
.

The last property in this definition is the counterpart of the proximity

condition for regular vine trees. Using this formal definition of an R-vine

matrix one can prove that there is a bijection between regular vine trees

and regular vine matrices, given by the algorithms we will outline next.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 198

198 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

For the practitioner, Definition 5.4 is mainly relevant for constructing a

valid R-vine matrix directly or when wanting to perform a tree structure

selection on the matrix level. While we believe it to be very important for

a mathematically sound introduction to R-vine copula modeling to intro-

duce all needed definitions, we will, within the application-oriented scope

of this book, once again omit proofs in the following section and focus on

an informal description of the algorithms.

Algorithm 5.1 (Finding a Regular Vine Matrix for a Regular

Vine)

The input for the algorithm is a regular vine V = (T1, . . . , Td−1) and the

output will be a regular vine matrix M .

X := {} (1)

FOR i = d, . . . , 3 (2)

Choose x, x̃,D with x̃ �∈ X and |D| = i− 2 s.t. ∃ an edge e

with Ce = {x, x̃}, De = D (3a)

mi,i := x,mi−1,i := x̃ (3b)

FOR k = i− 2, . . . , 1 (4)

Choose x̂ s.t. ∃ an edge e

with Ce = {x, x̂} and |De| = k − 1 (5a)

mk,i := x̂ (5b)

END FOR

X := X ∪ {x} (6)

END FOR

Choose x, x̃ ∈ {1, . . . , d} \ X (7a)

m2,2 := x,m1,2 := x̃,m1,1 := x̃ (7b)

RETURN M := (mk,i|k = 1, . . . , d, k ≤ i) (8)

Intuitively this means the following. In the first step we select one of the

elements of the conditioned set of the single edge in tree Td−1, i.e. 5 or 2

from edge 5, 2|1, 3, 4 in Example 5.1, and put it in the lower right corner

of a d-dimensional matrix. Selecting, for example, the element 5 we write

down all numbers which are in the conditioned sets of an edge together with

5 (bolded in Figure 5.6) ordered by the levels of the tree above this entry.

In particular this identifies the edges 5, 2|1, 3, 4; 5, 4|1, 3; 3, 5|1; and 1, 5.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 199

Pair Copula Constructions 199

1

3

4

2

5

1 3 4

2 5

1,3 3,4
1,2

1,5 T1

1,2 1,3 3,4

1,5

2,3|1 1,4|3

3,5|1

T2

2,3|1 1,4|3 3,5|1
2,4|1,3 4,5|1,3

T3

2,4|1,3 4,5|1,3
2,5|1,3,4

T4

Fig. 5.6 Construction of the right column of the corresponding R-vine matrix for Ex-
ample 5.1. We select 5 in the highest edge, and all entries which are in a conditioned set
together with 5.

Thereby all information about how X5 depends on X1, . . . , X4 is stored

in the right column of the matrix and we remove all nodes and edges of the

vine containing 5. These are exactly the ones which we have just identified

for 5 in the conditioned set, and we end up with a reduced vine tree sequence

as given in Figure 5.7.

With this second vine we repeat the described procedure, selecting, e.g.,

2 in the highest tree and putting it on the diagonal of the matrix. Adding

the entries which are in the conditioned sets together with 2, the matrix

becomes the following:

1 1

3 3

4 4

2 2

5

1 3 4

2

1,3 3,4
1,2

T1

1,2 1,3 3,4
2,3|1 1,4|3

T2

2,3|1 1,4|3
2,4|1,3

T3

Fig. 5.7 The reduced vine after the first step.

After this, the selected nodes are removed and the resulting reduced vine

tree sequence is displayed in Figure 5.8. The steps outlined are repeated

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 200

200 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

1 3 4
1,3 3,4

T1

1,3 3,4
1,4|3

T2

Fig. 5.8 Construction of the next column in the R-vine matrix: Here we select 1 in the
highest edge and then all entries which are in a conditioned set together with 1.

until all nodes of the original vine have been removed and we obtain the

final matrix

4 4 3 1 1

3 4 3 3

1 4 4

2 2

5

 . (5.9)

Following this procedure we can always compute an R-vine matrix when a

regular vine tree sequence is given. Hereby the conditioned and conditioning

sets of the edges are stored in the following way. The diagonal entry mk,k

of each row k is the first entry of all conditioning sets of the entries which

have been deleted from the vine filling up the row. The entries above the

diagonal are added corresponding to an edge ei with conditioned set Cei =

{mk,k,mi,k}, i < k. The proximity condition implies that the conditioning

set of ei is Dei = {mi−1,k, . . . ,m1,k}.
Keeping that in mind, all information about the R-vine can be read from

the regular vine matrix and the vine tree sequence can easily be drawn.

The algorithm for the inverse direction inverts the steps of Algorithm 5.1

by adding nodes on the basic level together with corresponding edges one

after another.

Algorithm 5.2 (Tree Sequence from an R-Vine Matrix M)

The input for the algorithm is a d-dimensional regular vine matrix M and

the output will be a regular vine V = (T1, . . . , Td−1).

N1 := {1, . . . , d} (1a)

E2 := {}, . . . , Ed−1 := {} (1b)

E1 := {m2,2,m1,2} (1c)

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 201

Pair Copula Constructions 201

FOR i = 3, . . . , d (2)

ei1 := {mi,i,m1,i} (3a)

E1 := E1 ∪ {ei1} (3b)

FOR k = 1, . . . , i− 2 (4)

Select ak ∈ Ek with Aak
= {m1,i, . . . ,m1+k,i} (5a)

eik+1 := {eik, ak} (5b)

Ek+1 := Ek+1 ∪ {eik+1} (5c)

END FOR

END FOR

RETURN

V :=
(
T1 := (N1, E1), T2 := (E1, E2), . . . , Td−1 := (Ed−2, Ed−1)

)
(6)

The specific order in which edges are added in Algorithm 5.2 is chosen such

that it coincides with the set notation.

The algorithm starts in row 2, adding an edge between the two entries

in this row, in our example 3 and 4 (see Figure 5.9(a)). Further, node 3, 4

is added to tree T2. It then moves one row to the right, adding edge 1, 3 in

tree T1, as well as node 1, 3 to tree T2 (see Figure 5.9(b)). Then the edge

1, 4|3 between 1, 3 and 3, 4 in T2 and the node 1, 4|3 in tree T3 are added.

These steps are repeated until the whole R-vine tree sequence is rebuilt

after row d.

Remark 5.3 (Directed Graphs)

All algorithms presented in this section work exactly the same way if we

replace unordered sets with ordered pairs, i.e. if we switch to directed graphs.

Introducing ordering, we get a one-to-one correspondence between R-vine

matrices and directed regular vines (since x and x̃ in Algorithm 5.1 become

distinguishable). Therefore we can also assign non-symmetric copulas to an

R-vine as soon as it is described by an R-vine matrix by using the convention

that the first argument of the copula always corresponds to the diagonal

entry of the R-vine matrix.

With the algorithms outlined, all necessary tools to describe the structure

of a pair copula construction have now been developed. To conclude this

section, Example 5.2 shows the corresponding matrices for the special vine

tree sequences from Definition 5.3.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 202

202 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

(a)

4 4 3 1 1

3 4 3 3

1 4 4

2 2

5

1 3 4

2 5

3,4

T1

3,4 T2

(b)

4 4 3 1 1

3 4 3 3

1 4 4

2 2

5

1 3 4

2 5

3,41,3

T1

1,3 3,4 T2

(c)

4 4 3 1 1

3 4 3 3

1 4 4

2 2

5

1 3 4

2 5

3,41,3

T1

1,3 3,4
1,4|3

T2

1,4|3 T3

Fig. 5.9 Graphical illustration of the steps in Algorithm 5.2 to rebuild the R-vine

tree sequence of Example 5.1.

Example 5.2 (C-Vine and D-Vine Matrix)

After permutation of (1, . . . , d) the R-vine matrix of a d-dimensional C-

vine tree sequence can always be expressed as

1 · · · 1 1 1
. . .

...
...

...

d− 2 d− 2 d− 2

d− 1 d− 1

d

 .

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 203

Pair Copula Constructions 203

The matrix for a D-vine can be written as

1 · · · d− 4 d− 3 d− 2 d− 1
. . .

...
...

...
...

d− 3 1 2 3

d− 2 1 2

d− 1 1

d

.

5.3 Simulation from Regular Vine Distributions

As we have seen in the decomposition of Section 5.1, evaluating the density

of an R-vine copula involves evaluating expressions of the form (5.7) given

by

F (x|x) = ∂Cx,xj|x−j
(F (x|x−j), F (xj |x−j))

∂F (xj |x−j)
.

Following Aas et al. (2009), we will use the notation h(u; v,Θ) to represent

this conditional distribution function in the bivariate case when X1 = U1

and X2 = U2 are uniform random variables, i.e. F1(u1) = u1 and F2(u2) =

u2 for u1, u2 ∈ [0, 1]. That is,

h(u1;u2,Θ) = F (u1|u2) = ∂Cu1,u2(u1, u2; Θ)

∂u2
,

where the second parameter u2 corresponds to the conditioning variable

and Θ denotes the set of parameters for the bivariate copula Cu1,u2 . Since

sampling from a PCC will be performed by an algorithm based on in-

verse transformation sampling, we also need the inverse of the conditional

distribution function, i.e. h−1(u1;u2,Θ) which denotes the inverse of the

h-function with respect to the first variable u1. For readers unfamiliar with

inverse transformation sampling, Fishman (1996) and Rizzo (2007) offer a

detailed introduction of this concept.

The remainder of this section is structured as follows. The h- and h−1-

functions will be derived for several bivariate copulas in Section 5.3.1 where

we will also show how they have to be modified for rotated copulas. Based

on that, the main subject of this chapter, namely the simulation algorithms,

are treated in Section 5.3.2.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 204

204 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

We will only show how to sample from an R-vine copula, since a realiza-

tion from an R-vine distribution in the sense of Definition 5.2 with marginal

cdfs F1, . . . , Fd is then accomplished by setting

X1 := F−1
1 (U1), X2 := F−1

2 (U2), . . . , Xd := F−1
d (Ud),

where (U1, . . . , Ud) is a realization from the corresponding R-vine copula.

5.3.1 h-Functions for Bivariate Copulas and Their Rotated

Versions

The examples we consider for calculating the h-function and h−1 are the

Gaussian copula and general Archimedean copulas. To illustrate the general

case we give also precise expressions for the Frank and the Gumbel copulas.

Further calculations for the Clayton/MTCJ and Joe copulas (families B4

and B5 in Joe (1997, p. 141)), the BB1 and BB7 copulas (Joe (1997, p.

151) and Joe (1997, p. 153)) and the Student’s t-copula can be found in

the appendix of Aas et al. (2009) and in Schepsmeier (2010). In some cases

there is no closed-form expression for the inverse h-function and it has to

be evaluated numerically.

Example 5.3 (Gaussian Copula)

The cdf of the Gaussian copula is given by

CGauss
P (ρ12)

(u1, u2; ρ12) = FP (ρ12)(Φ
−1(u1),Φ

−1(u2); ρ12)

=

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞
φ2(x1, x2; ρ12)dx1dx2,

where

P (ρ) :=

(
1 ρ

ρ 1

)
, φ2(x1, x2; ρ12) =

1

2π(1− ρ212)
1
2

· e−
x2
1−2ρ12x1x2+x2

2
2(1−ρ212)

is the bivariate Gaussian density with zero means, unit variances, and cor-

relation parameter ρ12, and FP (ρ12) denotes the corresponding cdf. Further

set q1 := Φ−1(u1) and q2 := Φ−1(u2). Then, following Aas et al. (2009),

the h-function can be calculated as

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 205

Pair Copula Constructions 205

h(u1;u2, ρ12) =
∂

∂u2
C(u1, u2; ρ12)

=
∂

∂u2

∫ q2

−∞

∫ q1

−∞
φ2(x1, x2; ρ12)dx1dx2

=
∂q2
∂u2

∂

∂q2

∫ q2

−∞

∫ q1

−∞
φ2(x1, x2; ρ12)dx1dx2

=
1

φ(q2)

∫ q1

−∞
φ2(x1, q2; ρ12)dx1

=
1

φ(q2)

∫ q1

−∞

1

2π(1− ρ212)
1
2

· e−
x2
1−2ρ12x1q2+q22

2(1−ρ2
12

) dx1

=
1

φ(q2)

∫ q1

−∞

1

2π(1− ρ212)
1
2

· e−
(x1−ρ12q2)2+(q22−ρ212q22)

2(1−ρ2
12

) dx1

=
1

φ(q2)
· 1

(2π)
1
2

· e−q22
2

∫ q1

−∞

1

(2π)
1
2 (1− ρ212)

1
2

e
− (x1−ρ12q2)2

2(1−ρ2
12

) dx1

=
1

φ(q2)
· φ(q2) · Φ

(
q1 − ρ12q2
(1− ρ212)

1
2

)
= Φ

(
q1 − ρ12q2
(1− ρ212)

1
2

)
.

Furthermore, this function can be easily inverted using the quantile function

of the standard normal distribution, yielding the corresponding inverse h-

function

h−1(u1;u2, ρ12) = Φ
(
Φ−1(u1) · (1 − ρ212)

1
2 + ρ12q2

)
.

Example 5.4 (Bivariate Archimedean Copula)

Bivariate Archimedean copulas are given in the form

C(u1, u2;ϕ) = ϕ(ϕ−1(u1) + ϕ−1(u2)) (5.10)

(see Equation (2.2)). From (5.10) the general form of the h-function for

Archimedean copulas can be derived as

h(u1;u2, ϕ) =
∂
(
ϕ(ϕ−1(u1) + ϕ−1(u2))

)
∂u2

= ϕ′(ϕ−1(u1) + ϕ−1(u2)) · 1

ϕ′(ϕ−1
(
u2)
) (5.11)

by the chain rule, and simple inversion of (5.11) as in Algorithm 2.6 gives

h−1(u1;u2, ϕ) = ϕ

((
ϕ′)−1

(
u1ϕ

′ (ϕ−1(u2)
))− ϕ−1(u2)

)
. (5.12)

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 206

206 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Example 5.5 (Gumbel Copula)

An important bivariate Archimedean copula is the Gumbel copula (cf.

Equation (2.12)) with generator function

ϕ(x) = e−x1/ϑ

, ϑ ∈ (1,∞).

For the inverse of ϕ and required derivatives we have

ϕ−1(u) = (− log(u))
ϑ
, ϕ′(x) = e−x1/ϑ

(
− 1

ϑ
x(1/ϑ)−1

)
,

(
ϕ′)−1

(y) =

(
(ϑ− 1) ·W

(
(−ϑy) 1

(1−ϑ)

(ϑ− 1)

))ϑ

. (5.13)

Hereby, W in (5.13) denotes the Lambert W function (see Corless et al.

(1996) for a definition and properties). To derive (5.13), let

ϕ′(x) = e−x1/ϑ

(
− 1

ϑ
x(1/ϑ)−1

)
!
= y.

Defining z := x1/ϑ, we have

e−zz1−ϑ

(
− 1

ϑ

)
= y ⇔ e

z
(ϑ−1)

z

(ϑ− 1)
=

(−ϑy) 1
(1−ϑ)

(ϑ− 1)

⇔ z

(ϑ− 1)
=W

(
(−ϑy) 1

(1−ϑ)

(ϑ− 1)

)

⇔ z = (ϑ− 1)W

(
(−ϑy) 1

(1−ϑ)

(ϑ− 1)

)
,

since, by definition of the Lambert W function, W (z)eW (z) = z. From this,

we get (5.13) by resubstitution of x for y.

Example 5.6 (Frank Copula)

The bivariate Frank copula family, cf. Equation (2.9), has the generator

function

ϕ(x) = − 1

ϑ
· log (e−x(e−ϑ − 1) + 1

)
, ϑ ∈ (−∞,∞) \ {0}.

Inverting ϕ and calculating the derivative yields

ϕ−1(u) = − log

(
e−ϑu − 1

e−ϑ − 1

)
,

ϕ′(x) =
1

ϑ
· 1

e−x (e−ϑ − 1) + 1

(
e−ϑ − 1

)
e−x

=
1

ϑ
·
(
1− 1

e−x (e−ϑ − 1) + 1

)
,

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 207

Pair Copula Constructions 207

and thus determining the inverse
(
ϕ′)−1

(y) is straightforward:

(
ϕ′)−1

(y) = − log

(
ϑy

(1− ϑy)(e−ϑ − 1)

)
.

Given the cdf, h-function, or inverse h-function for a copula, these func-

tions can also be calculated for rotated versions of the bivariate copula by

90 ◦, 180 ◦, and 270 ◦. These rotated copulas are interesting because they

allow for an easy modification of common parametric families to describe

more general forms of dependence. For example, using bivariate Gumbel,

Clayton, and Student’s t-copulas, only tail dependence in the “lower left”

and the “upper right” corners of the unit cube can be covered. Rotating

the bivariate copulas does make it possible to model tail dependence in the

“upper left” and “lower right” corners as well.

Rotating a bivariate, absolutely continuous copula means rotating the

corresponding density c:

90 ◦ : c90(u1, u2) := c(1− u1, u2)
180 ◦ : c180(u1, u2) := c(1− u1, 1− u2)
270 ◦ : c270(u1, u2) := c(u1, 1− u2).

The 180 ◦-rotated copula is exactly the survival copula of C since

c180(u1, u2) = c(1 − u1, 1 − u2) means (1 − U1, 1 − U2) ∼ C and thus

(U1, U2) ∼ Ĉ in the notation of Section 1.1.2. As shown in Equation (1.10),

we have

C180(u1, u2) = C(1− u1, 1− u2) + u1 + u2 − 1

for the cdf. For 90 ◦ we calculate

C90(u1, u2) =

∫ u2

0

∫ u1

0

c(1− v1, v2)dv1dv2

=

∫ u2

0

[
−∂C(1− v1, v2)

∂v2

]u1

0

dv2

=

∫ u2

0

(
1− ∂C(1− u1, v2)

∂v2

)
dv2 = u2 − C(1− u1, u2),

and similarly C270(u1, u2) = u1 − C(u1, 1 − u2). From these, the corre-

sponding h-functions

h90(u1;u2) = 1− h(1− u1;u2)
h180(u1;u2) = 1− h(1− u1; 1− u2)
h270(u1;u2) = h(u1; 1− u2)

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 208

208 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

and inverse h-functions

h−1
90 (u1;u2) = 1− h−1(1− u1;u2)
h−1
180(u1;u2) = 1− h−1(1 − u1; 1− u2)
h−1
270(u1;u2) = h−1(u1; 1− u2)

are easily derived by differentiation and by applying the inverse h-function

of the original copula. The calculations are left to the reader.

5.3.2 The Sampling Algorithms

For the remainder of this chapter let us assume that all one-dimensional

margins are uniform, i.e. we sample from a d-dimensional copula. Other

distributions for the margins can then be included by transforming the

uniform data to the desired distribution using inverse cdfs.

Simulations from vines were first discussed in Bedford and Cooke

(2001a) and Bedford and Cooke (2001b) but without explicitly stating pro-

grammable algorithms. Aas et al. (2009) and Kurowicka and Cooke (2007)

showed sampling algorithms for C-vines and D-vines. While Kurowicka and

Cooke (2007) also gave hints on how to treat the general R-vine case, it was

Dißmann (2010) who demonstrated how to write a sampling algorithm for

the general R-vine using the matrix notation from Section 5.2.2. The algo-

rithms we are going to present here are improved versions of these, where

some redundant calculations have been omitted.

The general algorithm to draw a sample from a d-dimensional vine cop-

ula will be the following stepwise inverse transformation procedure:

First: Sample Wi
i.i.d.∼ U [0, 1], i = 1, . . . , d.

Then: U1 :=W1

U2 := F−1
2|1 (W2|U1)

...

Ud := F−1
d|d−1,...,1(Wd|Ud−1, . . . , U1).

To determine the conditional cdfs Fi|i−1,...,1, i = 1, . . . , d, we will use Re-

lation (5.7) together with the definition of the h-function to calculate it

iteratively using h-functions. We can then invert it by applying inverse h-

functions. For this, we use the expression h(u; v, θ) for a general h-function,

with parameters θ of a specified bivariate copula. Before deriving algo-

rithms for arbitrary dimensions, let us first consider a three-dimensional

example.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 209

Pair Copula Constructions 209

Example 5.7 (Three-Dimensional R-Vine)

In three dimensions, there is (again, up to permutations in the one-

dimensional margins) only one possible R-vine structure, displayed in Fig-

ure 5.10. Having drawn W1,W2,W3 we can directly set U1 :=W1. For U2,

1 2 3
1,2 2,3

T1

1,2 2,3
1, 3|2

T2

Fig. 5.10 The only possible three-dimensional R-vine (up to permutations).

we have

F (u2|u1) = ∂C2,1(u2, u1)

∂u1
= h(u2;u1, θ1,2).

Thus, U2 := h−1(W2;U1, θ1,2). The calculation for U3 is similar:

F (u3|u1, u2) =
∂C3,1|2 (F (u3|u2), F (u1|u2))

∂F (u1|u2)
= h
(
F (u3|u2);F (u1|u2), θ1,3|2

)
= h
(
h(u3;u2, θ3,2);h(u1;u2, θ1,2), θ1,3|2

)
.

This implies

F−1
3|2,1(w3|u1, u2) = h−1

(
h−1
(
w3;h(u2;u1, θ1,2), θ1,3|2

)
;u1, θ1,3

)
.

To generalize this procedure we need to find an algorithmic way of selecting

the right arguments for the inverse h-functions in each step.

C-Vines and D-Vines

This is particularly easy for the C-vine, which always has (up to relabeling)

the structure shown in Figure 5.11 for five dimensions.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 210

210 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

2 3

1 5

4

1,2 1,3
1,5

1,4

T1

1,3

1,2 1,5

1,4

2, 3|1
2, 5|1

2, 4|1

T2

2, 4|1

2, 3|1 2, 5|1

3, 4|12
3, 5|12

T3

3, 4|12 3, 5|12
4, 5|123

T4

1 1 1 1 1

2 2 2 2

3 3 3

4 4

5

Fig. 5.11 The five-dimensional C-vine tree sequence with its corresponding C-vine ma-
trix.

In this special case, we can express F (ui|u1, . . . , ui−k) as

F (ui|u1, . . . , ui−k) = (5.14)

∂Ci,i−k|1,...,i−k−1 (F (ui|u1, . . . , ui−k−1), F (ui−k|u1, . . . , ui−k−1))

∂F (ui−k|u1, . . . , ui−k−1)

for i = 1, . . . , d and k = 1, . . . , i − 1. The sampling algorithm uses the

copula parameters stored in matrix

Θ =

θ1,2 θ1,3 θ1,4 . . .

θ2,3|1 θ2,4|1 . . .

θ3,4|1,2 . . .
. . .

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 211

Pair Copula Constructions 211

to calculate the entries of the following d× d matrix:

V =

u1 u2 u3 u4 . . .

F (u2|u1) F (u3|u1) F (u4|u1) . . .

F (u3|u1, u2) F (u4|u1, u2) . . .

F (u4|u1, u2, u3) . . .
. . .

 . (5.15)

For this, we use that F (uj |u1, . . . , uj−1) = wj for j = 1, . . . , d, and that

rewriting (5.14) in terms of h-functions as

F (ui|u1, . . . , ui−k) = h((F (ui|u1, . . . , ui−k−1), F (ui−k|u1, . . . , ui−k−1))

and inverting it for i = 1, . . . , d and k = 1, . . . , i − 1 yields

F (ui|u1, . . . , ui−k−1) =

h−1
(
F (ui|, u1, . . . ui−k);F (ui−k|u1, . . . , ui−k−1), θi,i−k|1,...,i−k−1

)
.

Algorithm 5.3 applies this relationship recursively to calculate the entries

of matrix (5.15) and generate a sample (U1, . . . , Ud), which we can find in

the first row of matrix (5.15) from the C-vine copula.

Algorithm 5.3 (Sampling from a C-Vine Copula)

The input for the algorithm is a matrix Θ of copula parameters for the

d-dimensional C-vine; the output will be a sample from the C-vine copula.

Sample Wi
i.i.d.∼ U [0, 1], i = 1, . . . , d (1)

V1,1 :=W1 (2)

FOR i = 2, . . . , d (3)

Vi,i :=Wi (4)

FOR k = i− 1, . . . , 1 (5)

Vk,i := h−1(Vk+1,i;Vk,k,Θk,i) (6)

END FOR

END FOR

RETURN Ui := V1,i, i = 1, . . . , d (7)

Remark 5.4 (Storing the Matrix)

We do not need to store the whole matrix in this algorithm, since the only

entries we are going to use more than once are Vi,i = Wi. Thus, we can

always delete or overwrite the other entries after they have been used as

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 212

212 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

input for the next recursion. The matrix structure is chosen to illustrate

the iterative procedure, and because it is needed to understand the general

regular vine case presented later.

For sampling from a D-vine copula (Figure 5.12) the relationship which we

use instead of (5.14) is

F (ui|uk, uk+1, . . . , ui−1) =

∂Ci,k|k+1,...,i−1 (F (ui|uk+1, . . . ui−1), F (uk|uk+1, . . . , ui−1))

∂F (uk|uk+1, . . . , ui−1)
, (5.16)

where i = 1, . . . , d and k = 1, . . . , i − 1. In contrast to the C-vine, we do

not automatically obtain the second argument in (5.16), which we need to

further use the equality, during the recursion. This means that an extra

step for its computation has to be added and that we have to calculate two

matrices

V =

u1 u2 u3 u4 . . .

F (u2|u1) F (u3|u2) F (u4|u3) . . .

F (u3|u2, u1) F (u4|u3, u2) . . .

F (u4|u3, u2, u1) . . .
. . .

 , (5.17)

V 2 =

u1 u2 u3 u4 . . .

F (u1|u2) F (u2|u3) F (u3|u4) . . .

F (u1|u2, u3) F (u2|u3, u4) . . .

F (u1|u4, u3, u2) . . .
. . .

 , (5.18)

using the matrix of copula parameters

Θ =

θ1,2 θ2,3 θ3,4 . . .

θ3,1|2 θ4,2|3 . . .

θ4,1|3,2 . . .
. . .

 .

This is done recursively in Algorithm 5.4.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 213

Pair Copula Constructions 213

1 2 3 4 5
1,2 1,3 1,4 1,4

T1

1,2 2,3 3,4 4,5
1, 3|2 2, 4|3 3, 5|4

T2

1, 3|2 2, 4|3 3, 5|4
1, 4|23 2, 5|34

T3

1, 4|23 2, 5|34
1, 5|234

T4

1 1 2 3 4

2 1 2 3

3 1 2

4 1

5

Fig. 5.12 The five-dimensional D-vine and the five-dimensional D-vine matrix.

Algorithm 5.4 (Sampling from a D-Vine Copula)

The input for the algorithm is a matrix Θ of copula parameters for the

d-dimensional D-vine; the output will be a sample from the D-vine distri-

bution.

Sample Wi
i.i.d.∼ U [0, 1], i = 1, . . . , d (1)

V1,1 :=W1; V
2
1,1 :=W1 (2)

FOR i = 2, . . . , d (3)

Vi,i :=Wi (4)

FOR k = i− 1, . . . , 1 (5)

Vk,i := h−1(Vk+1,i;V
2
k,i−1,Θk,i) (6)

IF i < d (7)

V 2
k+1,i := h(V 2

k,i−1;Vk,i,Θk+1,i) (8)

END IF

END FOR

V 2
1,i := V1,i (9)

END FOR

RETURN Ui := V1,i, i = 1, . . . , d (10)

Just as we noted for the C-vine copula in Remark 5.4, we do not need to

store all matrix entries calculated during the recursion. The entries in row

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 214

214 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

i of the first matrix can always be deleted after they have been used to

calculate ui and the entries of the second matrix.

R-Vines

Having considered simulations for these two special structures, we can de-

velop the sampling procedure for the general R-vine copula. The C- and

D-vine tree sequences can be seen as extreme cases: In the C-vine case there

is one node in each tree which shares edges with all other nodes, while in

the D-vine case each node has joint edges at most with two other nodes.

In simulations, we always have to select an entry from the second matrix

(5.18) as the second argument for the inverse h-function in the D-vine case.

For the C-vine case we do not even need the second matrix. Similar to the

number of joint edges for each node, the sampling procedure for the R-vine

copula will be a mixture of the two extreme cases.

Let a d-dimensional R-vine matrix M = (mi,j)i,j=1,...,d as defined in

Section 5.2.2 be given. Without loss of generality, we assume that the

entries on the diagonal are ordered as 1, 2, . . . , d. This can always be realized

by permuting the labeling of the dimensions. Furthermore, let us assume

that the parameters for the pair copulas are given in a matrix Θ, where

Θi,j is the parameter of cmj,j ,mi,j |m1,j ,...,mi−1,j
, i.e.

Θ =

θm1,2,2 θm1,3,3 θm1,4,4 . . .

θm2,3,3|m1,3
θm2,4,4|m1,4

. . .

θm3,4,4|m2,4,m1,4
. . .

. . .

 . (5.19)

For the general R-vine copula, where, other than for the C-vine and D-vine

copulas, different tree structures are possible, the arguments of all functions

have to be expressed in terms of the R-vine matrix M . In particular, we

determine the conditional cdf corresponding to (5.14) and (5.16) as

F (umi,i |umk,i
, umk−1,i

, . . . , um1,i) =
∂Cmi,i,mk,i|mk−1,i,...,m1,i

(y)

∂F (umk,i
|umk−1,i

, . . . , um1,i)
, (5.20)

where y := F (umi,i |umk−1,i
, . . . , um1,i), F (umk,i

|umk−1,i
, . . . , um1,i) for i =

1, . . . , d and k = 1, . . . , i− 1.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 215

Pair Copula Constructions 215

Again, we will calculate two matrices

V =

u1 u2 u3 u4 . . .
F (u2|um1,2) F (u3|um1,3) F (u4|um1,4) . . .

F (u3|um1,3 , um2,3) F (u4|um1,4 , um2,4) . . .

F (u4|um1,4 , um2,4 , um3,4) . . .

. . .

 , (5.21)

V 2 =

. . .
F (um1,2 |u2) F (um1,3 |u3) F (um1,4 |u4) . . .

F (um2,3 |um1,3 , u3) F (um2,4 |um1,4 , u4) . . .

F (um3,4 |um1,4 , um2,4 , u4) . . .

. . .

 , (5.22)

just as for the D-vine copula.

There are two questions which have to be addressed before a sampling

algorithm can be constructed: From which column do we have to select the

second argument of the inverse h-function (and the first argument of the

h-function)? Do we have to select it from the first matrix (5.21) or from

the second matrix (5.22)?

To answer these, let us recall the R-vine matrices M corresponding to

the C-vine case

1 · · · 1 1 1
. . .

...
...

...

d− 2 d− 2 d− 2

d− 1 d− 1

d

and to the D-vine case

1 · · · d− 4 d− 3 d− 2 d− 1
. . .

...
...

...
...

d− 3 1 2 3

d− 2 1 2

d− 1 1

d

.

Using these we can understand how the choices in Algorithms 5.3 and 5.4

can be expressed in the form of R-vine matrices, which will give us an idea

of how to choose the right arguments in the general framework. Further-

more, let us introduce the matrix M = (m̃k,i), k ≤ i, which is defined

as m̃k,i := max{mk,i,mk−1,i, . . . ,m1,i}. Note that M = M holds for the

C-vine matrix, i.e. we have m̃k,i = k for all entries ofM. For the D-vine,

M �=M , in particular m̃k,i = i− 1 for all off-diagonal entries ofM.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 216

216 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

For the C-vine copula, we always select an entry from the kth column

within Step (6) of Algorithm 5.3. This corresponds to column mk,i = m̃k,i.

For the D-vine copula we stay in column i − 1 (= m̃k,i) in Step (6) of

Algorithm 5.4. Similarly, the sampling algorithm for an R-vine copula will

always choose m̃k,i. The entry, which is needed as the second argument for

the inverse h-function has to be in this column, since the second argument

in (5.20) is F (umk,i
|umk−1,i

, . . . , um1,i), and m̃k,i is the largest index in this

expression. The first row where an entry containing index m̃k,i can be

located is row m̃k,i, since the diagonals of M are arranged in increasing

order and since ml,h ≤ h for l = 1, . . . , h by property (3) of Definition 5.4.

Furthermore, each element in column h of (5.21) and (5.22) contains the

index h, which means that the entry we are looking for cannot be found in

a column to the right of column m̃k,i.

In matrix V (5.21), all entries in column m̃k,i are conditional cdfs of

Um̃k,i
given other variables, and in matrix V 2 (5.22) Um̃k,i

is part of the

conditioned variables. Thus, we only need to check whether m̃k,i = mk,i to

choose from the appropriate matrix.

Algorithm 5.5 summarizes the results of the preceding paragraph. An

inductive proof of the fact that at each step of the algorithm the appropriate

entry is selected is straightforward by showing that the calculated matrices

take the form of (5.21) and (5.22). A more formal proof can be found in

Dißmann (2010, Chapter 5).

Algorithm 5.5 (Sampling from an R-Vine Copula)

The input for the algorithm is a matrix Θ, given in (5.19), of copula pa-

rameters for the d-dimensional R-vine copula. The output will be a sample

from the R-vine copula.

Sample Wi
i.i.d.∼ U [0, 1], i = 1, . . . , d (1)

V1,1 :=W1 (2)

FOR i = 2, . . . , d (3)

Vi,i :=Wi (4)

FOR k = i− 1, . . . , 1 (5)

IF (mk,i = m̃k,i) (6)

Vk,i := h−1(Vk+1,i;Vk,m̃k,i
,Θk,i) (7a)

ELSE

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 217

Pair Copula Constructions 217

Vk,i := h−1(Vk+1,i;V
2
k,m̃k,i

,Θk,i) (7b)

END IF ELSE

IF (i < d) (8)

IF (mk,i = m̃k,i) (9)

V 2
k+1,i := h(Vk,m̃k,i

;Vk,i,Θk+1,i) (10a)

ELSE

V 2
k+1,i := h(V 2

k,m̃k,i
;Vk,i,Θk+1,i) (10b)

END IF ELSE

END IF

END FOR

END FOR

RETURN Ui := V1,i, i = 1, . . . , d (11)

To illustrate the steps of Algorithm 5.5, let us once again consider Example

5.1, where the R-vine matrix (see (5.9)) after reordering of the diagonal is

given by

M =

1 1 2 3 3

2 1 2 2

3 1 1

4 4

5

 .

For columns 1–4 corresponding to U1, . . . , U4 this matrix is the same as for a

D-vine copula, which means that except for row 1 we have mk,i �= m̃k,i and

that we select the second entry of the inverse h-function from the second

matrix (5.22). In row 1, m1,i = m̃1,i for i = 1, . . . , 5 such that in the last

step of the iteration for U1, . . . , U4 we select from (5.21).

For obtaining U5 conditional on the other variables, we calculate first

F (u5|u1, u2, u3) from F (u5|u1, u2, u3, u4) = w5 as

F (u5|u1, u2, u3) = h−1
(
w5;F (u4|u1, u2, u3), θ4,5|1,2,3

)
.

Here, F (u4|u1, u2, u3) is given in matrix (5.21) and as m45 = 4 = m̃45 it

gets correctly selected.

In the next two steps of the recursion, we need F (u1|u2, u3) and

F (u2|u3), which are given in the third column of the second matrix (5.22).

Correspondingly we have m3,5 = 1 �= m̃3,5 = 3 and m2,5 = 2 �= m̃2,5 = 3.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 218

218 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

In the last step, we do select u3 from the third column of matrix (5.21),

m̃1,5 = 3.

As it was noted in Remark 5.3, an R-vine matrix corresponds to a di-

rected vine. We can thus introduce one further dimension in the parameter

of the h-function giving the angle of rotation, and still apply Algorithm 5.5.

The simplified algorithms for the C-vine and D-vine copulas correspond to

the special structure in the corresponding R-vine matrices from Example

5.2.

Using the results from Section 5.2 a regular vine distribution can be

specified, and with Algorithm 5.5 we have also collected all necessary tools

to sample from it.

5.4 Dependence Properties

Due to the high number of admissible R-vine structures in d dimensions

and the freedom to select arbitrary bivariate copulas as conditional copulas

for each edge, pair copula constructions are highly flexible. For practical

applications it is important to understand the dependence properties of

PCCs, particularly compared to other frameworks for constructing multi-

variate copulas such as nested Archimedean copulas (NACs) and elliptical

copulas. In the following we show that important elliptical copulas are R-

vine copulas and discuss the main results of Joe et al. (2010), who consider

tail dependence properties for PCCs.

Multivariate Gaussian and Student’s t-Copulas

The multivariate copula families which are most often used in applications

are still the multivariate normal and the multivariate Student’s t-copula.

These copulas can also be constructed using an R-vine and are thus nested

within the class of vine copulas.

Table 5.1 summarizes the properties of the bivariate conditional dis-

tributions of a multivariate normal or Student’s t-distribution, which are

needed to identify them as an R-vine distribution. Considering the decom-

position of a multivariate normal distribution using an R-vine, we obtain

the following result:

Theorem 5.2.

The multivariate Gaussian copula can be represented as a regular vine

distribution where all bivariate copulas are Gaussian.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 219

Pair Copula Constructions 219

Table 5.1 Bivariate conditional distributions of the multivariate normal and the
multivariate Student’s t-distribution.

µ = (µi)i=1,...,d =

(
µU

µC

)
, where

µU = (µi)i=1,2, µC = (µi)i=3,...,d

(Σij)i,j=1,...,d =

(
ΣU ΣUC

ΣCU ΣC

)
, where

ΣU = (Σij)i,j=1,2, ΣCU = (Σij)i=3,...,d;j=1,2 = ΣT
UC , ΣC = (Σij)i,j=3,...,d

Multivariate Gaussian distribution in d dimensions

conditional distribution multivariate Gaussian with

µU|C = µU +ΣUCΣ−1
C (xC − µC)

X1,X2|X3,...,d = xC ΣU|C = ΣU − ΣUCΣ−1
C ΣCU

copula corresponding to bivariate Gaussian copula CGauss
RU|C , with correlation

X1,X2|X3,...,d = xC RU|C = diag(ΣU|C)−
1
2 ΣU|C diag(ΣU|C)−

1
2

Multivariate Student’s t-distribution in d dimensions

conditional distribution Student’s t with µU|C = µU + ΣUCΣ−1
C (xC − µC)

X1,X2|X3,...,d = xC Σt
U|C =

(ΣU−ΣUCΣ
−1
C ΣCU)·(ν+d−2)

ν+(xC−µC)T Σ−1
C (xC−µC)

,

νU|C = ν + d− 2

copula corresponding to bivariate Student’s t-copula Ct
Rt

U|C
, with correlation

X1,X2|X3,...,d = xC Rt
U|C = diag(Σt

U|C)−
1
2 Σt

U|C diag(Σt
U|C)−

1
2

Proof. The result follows directly from the fact that the conditional bi-

variate copulas of a multivariate normal distribution are Gaussian copulas

which do not depend on the values of the conditioning variables and that

the lower-dimensional marginal distributions of a multivariate normal dis-

tribution are again normal, cf. Table 5.1. �

Remark 5.5 (Inverse Direction)

The inverse direction, i.e. that every regular vine specification where all

bivariate copulas are Gaussian and we have Gaussian margins leads to a

multivariate normal distribution, also holds and can be shown, e.g., by in-

duction. Another way to prove it would be to directly write down a joint nor-

mal distribution which will decompose to a regular vine distribution with the

specified copulas. To do that, we need to understand how conditional/partial

correlations, which coincide for the multivariate normal distribution, spec-

ified in a vine correspond to the correlation matrix.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 220

220 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

While we refer the reader to Bedford and Cooke (2002) for the general case,

we will now define partial correlations in general and use them to demon-

strate how a three-dimensional Gaussian distribution can be constructed

using an R-vine.

Definition 5.5 (Partial Correlation)

Let X1, X2, X3, . . . , Xd be random variables and X�
1|3,...,d, X

�
2|3,...,d be the

linear functions of X3, . . . , Xd, minimizing E[(X1−X�
1|3,...,d)

2] and E[(X2−
X�

2|3,...,d)
2], respectively. Then the partial correlation coefficient of X1,

X2, denoted by ρ1,2;3,...,d, is defined as the ordinary correlation coefficient

between Y1 := X1 −X�
1|3,...,d and Y2 := X2 −X�

2|3,...,d, i.e.

ρ1,2;3,...,d =
E
[
(Y1 − E[Y1])(Y2 − E[Y2])

]
√
V ar(Y1)V ar(Y2)

.

It can be calculated recursively by

ρ1,2;3,...,d =
ρ1,2;3,...,d−1 − ρ1,d;3,...,d−1 · ρ2,d;3,...,d−1√

1− ρ21,d;3,...,d−1

√
1− ρ22,d;3,...,d−1

, (5.23)

cf. Yule and Kendall (1965, p. 290). Using this formula, the bivariate

copulas’ parameters can be calculated.

Example 5.8 (Three-Dimensional Gaussian Distribution)

Let us consider a three-dimensional Gaussian distribution with zero means,

unit variances, and correlations ρ12 = ρ23 = ρ13 = 0.4. Applying (5.23) we

calculate

ρ1,3;2 =
ρ13 − ρ12ρ23√
1− ρ212

√
1− ρ223

=
0.4− 0.16

0.84
=

2

7
.

This distribution is an R-vine distribution with standard normal marginal

distributions, the unique R-vine tree sequence V in three dimensions with

E1 = {{1, 2}, {2, 3}} (Figure 5.10) and

B =
{
B{1,2} = CGauss

P (0.4) , B{2,3} = CGauss
P (0.4) , B{{1,2},{2,3}} = CGauss

P (2
7)

}
,

where P (ρ) :=

(
1 ρ

ρ 1

)
.

Knowing the bivariate conditional copulas of a multivariate Student’s t-

distribution, we can decompose it in a similar way.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 221

Pair Copula Constructions 221

Theorem 5.3.

The multivariate Student’s t-copula with parameters ν and correlation ma-

trix R can be constructed as a regular vine copula where all bivariate copulas

corresponding to edges in Ti are bivariate Student’s t-copulas with ν+ i− 1

degrees of freedom, and some appropriate 2× 2 correlation matrices.

Proof. Using the properties summarized in Table 5.1, the proof is com-

pletely analogous to the Gaussian case. Since conditional copula param-

eters and partial correlations coincide for the multivariate Student’s t-

distribution (see Cambanis et al. (1981)) the inverse direction can also be

proven in the same way as for the Gaussian copula. �

We have seen that by using only Gaussian or Student’s t-pair copulas we

regain the multivariate Gaussian or Student’s t-distribution. But as all

types of bivariate copulas can be used in a PCC, the construction is much

more flexible and types of dependence like asymmetric tail dependence

(which the Gaussian/Student’s t-copulas do not exhibit) can be modeled.

Tail Dependence

As we have seen in Chapter 4, Lemmas 4.7 and 4.8, the bivariate Gaus-

sian copula is upper- and lower-tail independent, whereas the Student’s

t-copula has both upper- and lower-tail dependence. Passing over from tail

dependence coefficients to tail dependence functions

b(w) = lim
u→0

C(uw)

u
, for w ∈ [0, 1]d,

this stays true for their multivariate counterparts.

Vine copulas can be used to construct multivariate copulas with asym-

metric tail dependence. While we refer the reader to the original work

of Joe et al. (2010) for a complete treatment of the subject, we want to

highlight their main results. In Theorem 4.1, Joe et al. (2010) show under

some regularity conditions that if all bivariate copulas in T1 of a D-vine

are upper- (lower-) tail dependent, then also the whole vine copula exhibits

upper- (lower-) tail dependence. While this shows that the R-vine copula

model is a reasonable approach for describing data which exhibits flexible

multivariate tail dependence, it only gives a vague idea about which depen-

dencies can be modeled. Joe et al. (2010) clarify this in Section 5, comparing

the possible range of bivariate tail dependence for three-dimensional vine

copula models and the three-dimensional Student’s t-copula. They point

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 222

222 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

out that while the overall range of dependence is similar, the upper- and

lower-tail dependence can differ for each margin in the vine model.

Flexibility vs. Parametric Margins

The possibility to choose from d!/2 · 2(d−2
2) R-vine tree sequences in d di-

mensions (see Morales-Nápoles (2010)) and to use arbitrary bivariate cop-

ulas for each edge of the vine is of course not only reflected in the tails

of the vine copula but over the whole range of the distribution. Taking

all possible choices into consideration, the PCC offers great flexibility and

understanding how the properties of the multivariate copula arise from the

two-dimensional building blocks is still an area of ongoing research. As

Berg and Aas (2009) note, a downside of the flexibility of vine copulas

is that neither their unspecified bivariate margins nor the resulting mul-

tivariate distribution belong to a known parametric family. They can be

obtained only through (numerical) integration and simulation, which is,

on the one hand, undesirable as it makes it difficult to understand how

changes in one edge of the vine copula affect the overall distribution, or

specific margins, and thus complicates model selection. On the other hand,

this is the reason why pair copula constructions can model marginal depen-

dencies which cannot be covered by common parametric families. When

the (1, 2) and (2, 3) margins are specified in three dimensions together with

the conditional copula of (1, 3|2), the (1, 3) margin is left unspecified. Sim-

ulating it for different copula families and parameter values, we see that

the level curves can be very asymmetric. Examples are displayed in Figure

5.13 using standard normal margins. They have been obtained from two-

dimensional kernel density estimates using 1 000 000 data points simulated

from the three-dimensional copula beforehand. The types and parameters

of the bivariate building blocks are listed in Table 5.2. The plots demon-

strate the flexibility of the vine distributions even in three dimensions.

Table 5.2 Model specifications for the plots in Figure 5.13. The abbreviations correspond
to (C)layton, G(umbel), (S)tudent, (J)oe, and (F)rank.

Sce- (1, 2) (2, 3) (1, 3|2)
nario C Par. τ C Par. τ C Par. τ

1 G 5 .80 C −.7 −.54 C .7 .26
2 S (.8, 1.2) .59 G 1.75 .43 S (−.95, 2.5) −.80
3 180J 2 .35 J 24 .92 180C 20 .91
4 F −34 −.89 C 20 .91 F 34 .89

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 223

Pair Copula Constructions 223

x1

x3

 0.01

 0.025

 0.05

 0.075

 0.1

 0.15

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Scenario 3

x1

x3

 0.01

 0.025

 0.05

 0.075

 0.1

 0.15

 0.2

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x1

x3

 0.01

 0.025

 0.05

 0.075

 0.1

 0.15

 0.2

 0.25

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Fig. 5.13 Estimated level curves of the bivariate (1, 3) margin of D-vine distributions
with standard normal margins corresponding to the four scenarios given in Table 5.2.

5.5 Application

To demonstrate the applicability of PCCs in practice, this section presents

their use in a simple multivariate ARMA-GARCH model for VaR forecast-

ing. The data set we consider consists of daily returns of ten selected stocks

in the German stock index (DAX), namely: Allianz, BASF, Bayer, Daimler,

Deutsche Bank, Deutsche Telekom, E.ON, RWE, SAP, and Siemens. This

section is structured as follows: Section 5.5.1 introduces the marginal time

series model which fits the margins of the given data set well. Section 5.5.2

gives references to the literature on how parameter estimation can be per-

formed in the context of PCCs. Section 5.5.3 continues with more details on

the selected portfolio and on how the VaR forecasts are calculated. Section

5.5.4 concludes with a statistical evaluation of the quality of our forecasts.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 224

224 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

5.5.1 Time Series Model for Each Margin

First we describe the utilized marginal time series structure. For this let

Xt := (X1t, . . . , Xdt) for t = 1, . . . , T denote d dependent time series. For

the ith marginal time series {Xit, t = 1, . . . , T } a univariate ARMA(1, 1)–

GARCH(1, 1) with Student’s t-innovations is assumed, i.e.

Xit = ΦiXi(t−1) + hit · Zit + θihi(t−1) · Zi(t−1)

Zit ∼ t(νi) i.i.d. for i = 1, . . . , d,

hit = ωi + αi

(
hi(t−1) · Zi(t−1)

)2
+ βih

2
i(t−1),

where for i = 1, . . . , d, αi, βi ∈ [0, 1], Φi ∈ [−1, 1], and θi ∈ (−∞,∞). We

assume that the time series is stationary and further require αi + βi < 1

for i = 1, . . . , d. For the dependence structure between the d marginal time

series, we impose a d-dimensional R-vine structure on the i.i.d. random

innovation vectors Zt = (Z1t, . . . , Zdt) for t = 1, . . . , T , i.e. Zt has the cdf

given by

F (z1t, . . . , zdt) = C
(
F t
ν1 (z1t), . . . , F

t
νd(zdt)

)
,

where C is a multivariate copula defined by an R-vine tree sequence V with

specified bivariate copulas B. To summarize, we consider a multivariate

ARMA–GARCH model, where the joint distribution of the innovations is

not modeled by a multivariate normal distribution or t-distribution but by

an R-vine distribution with Student’s t-margins.

To see whether the marginal models are appropriate for daily returns

in the DAX, we fit this model to data from the time period from January

16, 2001, to November 4, 2010. We then use the Kolmogorov–Smirnov

test to check whether the standardized residuals are observations from a

t-distribution as assumed, and the Ljung–Box test up to lags 5 and 25 to

test the null hypothesis

H0 : “The observations are uncorrelated”

against its alternative. For none of these tests can we reject the null hy-

pothesis on the 5% level for any of the marginal time series of our dataset,

indicating a reasonable marginal fit.

5.5.2 Parameter Estimation

Before the model of Section 5.5.1 can be used to forecast VaR by simulation

using the introduced algorithms, we need to determine suitable marginal

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 225

Pair Copula Constructions 225

and copula model parameters for our dataset. Since estimation of copula

models is not the main subject of this book we will only give references to

the literature on how this problem can be treated. For the R-vine model

there are two problems which need to be solved: (1) An R-vine tree struc-

ture and the bivariate copula for each edge need to be selected. (2) The

parameters of the bivariate copulas and the marginal models have to be

estimated. While there are different approaches for parameter estimation,

model selection is usually performed in a two-step procedure: at first a

model for each one-dimensional margin is fitted and then the residuals of

the marginal models are used to select a suitable copula model. Dißmann

(2010) uses a maximum spanning tree to select an R-vine tree sequence for

a given dataset and determines the bivariate copulas with a goodness-of-fit

test. Brechmann (2010) extends the procedure, discussing different criteria

for the selection of bivariate copulas and for simplification of the vine struc-

ture (e.g. using only independence copulas on higher levels of the vine).

We follow their approach to select an R-vine model for our dataset.

Since multivariate copula models often have large numbers of parame-

ters, maximum likelihood (ML) estimation is also usually done in a two-

step procedure. There are three different approaches: First, a parametric

method (see Joe and Xu (1996)) in which, after fitting marginal models,

the probability integral transform is used to obtain uniformly distributed

data for the estimation of copula parameters. Then a non-parametric ap-

proach as in Genest et al. (1995), where the dataset is transformed by the

empirical cdf instead of the cdf of a parametric model. These do both

provide consistent and asymptotically normal estimators (see Genest et al.

(1995) and Patton (2006)). However, they are not as efficient as joint ML,

which is why Liu and Luger (2009) apply an iterative procedure to increase

the efficiency. Kim et al. (2007) show that in case of severe misspecifi-

cations in the margins, the non-parametric approach outperforms all the

others; a careful analysis of the data should however reveal such severe

misspecifications. In our application with the challenge to model the time

series structure of the dataset we will use a parametric procedure and fit

an ARMA(1, 1)–GARCH(1, 1) model to each margin using ML. Then, we

fit the vine copula to the standardized residuals which are transformed to

uniformly distributed data using the cdfs of the residual distributions in

the marginal models.

While ML methods are more common in the literature on copula-

GARCH models, Bayesian joint estimation for marginal and vine copula

parameters is also possible as demonstrated in Hofmann and Czado (2010).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 226

226 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

It is however computationally more intensive, which is why we restrict our

attention to ML estimation for this application.

5.5.3 Forecasting Value at Risk

The VaR which we try to forecast using our copula-GARCH model is the

(one-day and ten-day) VaR of a portfolio consisting of the ten stocks we

have listed before; these are the stocks in the DAX with the highest market

capitalization on October 25, 2010. We consider two portfolios: for the first

the value of positions in the portfolio corresponds to the respective market

capitalization; for the second the number of stocks for each position in the

portfolio corresponds to the market capitalization.

We choose the one-day and ten-day horizons, as the ten-day VaR is

what is required from financial institutions for assessing the market risk of

their positions within the Basel framework (see Basel Committee (2006))

and the one-day horizon is needed to apply statistical procedures for the

backtesting of our model, which we will explain in Section 5.5.4.

The testing period for which VaR forecasts are calculated is from

September 11, 2009, to September 3, 2010, and consists of 250 trading

days. The model parameters which are used for estimating it are obtained

from a rolling window of 600 observations, requiring 250 model fits. For

comparison purposes we fit four different multivariate copula models and

include the independence copula as a benchmark:

(1) An R-vine PCC (45–90 copula parameters).

(2) A C-vine PCC (45–90 copula parameters).

(3) A multivariate Student’s t-copula (46 copula parameters).

(4) A multivariate Gaussian copula (45 copula parameters).

The bivariate copula families which are utilized in the PCCs are the in-

dependence copula, Gaussian, Student’s t, Gumbel, Clayton, Frank, Joe,

BB1, BB7, and their rotated versions (see Section 5.3.1 for definitions and

references).

While the R-vine model is the most general, simulating from a C-vine

is computationally much faster, which is why we consider the C-vine as a

second model. The independence copula ignores all forms of dependence

between the marginal time series and we include it to be able to observe the

benefits from using a multivariate model compared to univariate ARMA-

GARCH models for each margin. Gaussian and Student’s t are added for

comparison purposes because they are the most commonly used multivari-

ate copulas.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 227

Pair Copula Constructions 227

10.09.2009 18.11.2009 02.02.2010 15.04.2010 24.06.2010 02.09.2010

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

23.09.2009 01.12.2009 15.02.2010 28.04.2010 07.07.2010

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

Fig. 5.14 The observed relative portfolio values of the first portfolio over 250 trading
days (solid), together with the 90% VaR (dashed), the 95% VaR (dotted), and the 99%
VaR (dashed and dotted) calculated from the R-vine model. (Top panel: one-day VaR,
bottom panel: ten-day VaR.)

From each fitted model we simulate 100 000 observations of portfolio

returns for the next ten days and use these to calculate a one-day and a

ten-day VaR forecast from the quantiles of the simulated data. The VaR

forecasts for the first portfolio together with the observed values are plotted

in Figure 5.14 for the one-day forecast; it also shows the ten-day forecast

with corresponding observations. The portfolio value at each point of time

is normalized using the first value of the testing period.

As we can see, the values for the ten-day forecasts are much more spread

out compared to the one-day forecasts, which reflects the greater uncer-

tainty due to the longer time period.

5.5.4 Backtesting Value at Risk

Models for VaR values are only useful if they predict future risks accurately,

and their quality should always be evaluated by backtesting them with ap-

propriate methods. Backtesting a model means fitting it to historical data

(which is exactly what we did with our simulations) and comparing model-

based predictions to observed data afterwards. Considering for example

forecasts of the 95% VaR we would expect that an exception occurs on

average every 20th day and in a backtest it is checked whether this is the

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 228

228 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

case. Backtesting of VaR models is also required in the Basel framework,

where financial institutions have to backtest one-day-ahead forecasts of the

99% VaR over the last 250 trading days. Although we calculated both one-

day and ten-day forecasts in our simulations, backtesting is always done

for the one-day horizon. The Basel committee has chosen this forecasting

period because the portfolio composition of larger trading entities changes

very much over a ten-day horizon, which is why comparing the ten-day fore-

casts to actual trading returns is not meaningful (Basel Committee (1996)).

While this kind of reasoning is not applicable in our situation with a fixed

portfolio composition, there are also statistical arguments in favor of the

one-day horizon, as we do not have to deal with overlapping observation

periods in this case (Christoffersen and Pelletier (2004)).

As mentioned earlier, we do expect from a correct VaR model with cov-

erage rate α that the number x of exceptions during T trading days equals

on average x = α · T . From the calculated forecasts, we can statistically

examine whether the frequency of exceptions lies within the range which is

acceptable for a given confidence level and length of the testing period.

Statistical tests which rely on the frequency of exceptions are as follows:

(1) The traffic light approach of the Basel Committee (Basel Committee

(1996)).

(2) The Kupiec proportion of failures (POF) test (Kupiec (1995)).

Tests based solely on the number of exceptions within the time T are called

tests for unconditional coverage (UC).

A correct model should however not only show approximately the ex-

pected number of exceptions; the occurrences of exceptions should also be

independent. Tests which incorporate this i.i.d. hypothesis are called tests

for conditional coverage (CC). The tests we take into consideration are as

follows

(1) The mixed Kupiec test proposed by Haas (2001).

(2) The GMM duration-based test of Candelon et al. (2011).

For details on the applied testing methods for the quality of VaR forecasts,

we refer the reader to the cited literature.

5.5.5 Backtest Results

We employ the aforementioned tests to our one-day VaR forecasts at the

90%, 95%, and 99% levels. The resulting p-values of the test statistics

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 229

Pair Copula Constructions 229

are listed in Table 5.3 for the different copula models we are considering.

Whereas we can not reject any of the tests for the C-vine or the R-vine

on the 10% level, some of the tests are rejected for the multivariate Gaus-

sian/Student’s t-copula and all tests are heavily rejected for the indepen-

dence copula. This effect is stronger in the second portfolio than in the first

one where the composition is chosen to mimic the DAX composition.

This indicates that using a C-vine copula model for forecasting VaR

might be the best choice for a DAX portfolio. While the results for the

C-vine copula are similiar to the R-vine copula, simulating from a C-vine

is computationally much faster, as we have seen in Section 5.3 (because we

do not need to evaluate any h-functions).

While we can discriminate between the different models on the 90%

and 95% levels, it is very difficult to do so on the 99% level due to the low

number of expected value at risk exceptions over the testing period. This

renders the employed tests very weak, and, e.g., the traffic light system of

the Basel Committee would accept all models except for the independence

copula as equally good risk models.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 230

230 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Table 5.3 P-values for the test statistics of the VaR backtest for the
different models over a one-day horizon. The GMM test statistic for the
99% VaR obtained using the C-vine model could not be computed as
only one VaR exception was observed; we denote these cases by “NA”.

Portfolio 1
Value ∼ Kupiec Mixed GMM of Order Traffic

Market Cap. POF Kupiec 2 6 Light

99% 0.74 0.95 0.84 0.99
R-vine 95% 0.67 0.20 0.70 0.81 GREEN

90% 0.67 0.10 0.58 0.66

99% 0.28 0.40 NA NA
C-vine 95% 0.67 0.20 0.70 0.81 GREEN

90% 0.41 0.17 0.51 0.87

99% 0.38 0.31 0.62 0.99
Student’s t 95% 0.21 0.08 0.47 0.81 GREEN

90% 0.41 0.18 0.51 0.87

99% 0.38 0.31 0.62 0.99
Gaussian 95% 0.32 0.07 0.37 0.69 GREEN

90% 0.41 0.18 0.51 0.87

99% 0.00 0.00 0.00 0.00
Independence 95% 0.00 0.00 0.00 0.00 RED

90% 0.00 0.00 0.00 0.00

Portfolio 2
Value ∼ Kupiec Mixed GMM of Order Traffic

Market Cap. POF Kupiec 2 6 Light

99% 0.74 0.95 0.84 0.99
R-vine 95% 0.48 0.24 0.78 0.89 GREEN

90% 0.31 0.10 0.33 0.51

99% 0.28 0.40 NA NA
C-vine 95% 0.48 0.24 0.79 0.88 GREEN

90% 0.31 0.10 0.33 0.50

99% 0.76 0.90 0.92 0.99
Student’s t 95% 0.04 0.00 0.13 0.06 GREEN

90% 0.07 0.02 0.10 0.30

99% 0.76 0.90 0.92 0.99
Gaussian 95% 0.13 0.02 0.35 0.42 GREEN

90% 0.11 0.01 0.12 0.19

99% 0.00 0.00 0.00 0.00
Independence 95% 0.00 0.00 0.00 0.00 RED

90% 0.00 0.00 0.00 0.00

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 231

Chapter 6

Sampling Univariate Random
Variables

This chapter was contributed by Elke Korn and Ralf Korn,1 for which

we would like to thank them very much. Much more on the subject matter

is to be found in their recent monograph Korn et al. (2010).

6.1 General Aspects of Generating Random Variables

The basic ingredients for performing (stochastic) simulations are suitable

random numbers (RNs). For simulation purposes we do not need true

random numbers or cryptographically secure ones, but they should mimic

a random behavior closely and should be (at least approximately) inde-

pendent of each other. The main emphasis lies on producing them fast

and being able to reproduce the produced sequence if we have to analyze

the result. So, usually RNs for simulations are produced by deterministic

algorithms. They only appear to be random, which is why we speak of

pseudorandom numbers .

The task of generating general (pseudo) RNs consists of two distinct

subtasks, which are even looked at by different researchers. The first part

is generating uniformly distributed RNs U ∼ U [0, 1], while the second part

consists of transforming them to RNs with a specific distribution.

There are many ways to suitably transform the uniformly distributed

RNs into a given distribution. They all have their specific applications,

advantages, and disadvantages. The most important method is the inver-

sion method, which maps exactly one uniformly distributed RN to one with

the desired distribution. The monotonicity of the transformation can often

be further exploited, no RN is lost, and usually every cycle of the algo-

1Fachbereich Mathematik, Technische Universität Kaiserslautern, Erwin Schrödinger
Straße, 67663 Kaiserslautern, Germany, korn@mathematik.uni-kl.de.

231

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 232

232 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

rithm takes the same time, which is an advantage when the program is

parallelized.

However, in some cases the inversion method is too complicated, not

exact enough, or the calculations take too much time. Then, an acception-

rejection method might be better. This method is usually fast and some-

times even quite simple. The value of a simple algorithm should not be

underestimated. That way it is possible to write bug-free programs in little

time, which is especially useful when you are hunting for bugs in other pro-

grams. But the acception-rejection method needs more than one uniformly

distributed RN as input and the time for generating one number of the

desired distribution can differ significantly.

Sometimes, there exist other transformation methods similar to the in-

version method, which map two or more RNs to one or two new RNs.

Then we no longer have a monotone transformation as in the inversion

case, but the time cycle for producing a new RN is always of the same

length. These formulas often involve trigonometric or log-type functions,

and therefore they are usually slower and not suitable for hardware im-

plementations which require simple functions. But some of them have the

advantage of being very accurate, especially in the tails. This explains why

we sometimes offer more than one algorithm for producing RNs with a

desired distribution.

6.2 Generating Uniformly Distributed Random Variables

The basis for generating all kinds of random variables (RVs) is uniformly

distributed RNs. Usually, a computer language will provide at least one

routine for generating such RNs. These random number generators (RNGs)

can be characterized by the following quintuple of parameters (S, µ, f,U , g)
(see L’Ecuyer (1994)):

(1) S is the finite set of states, the so-called state space. Each sn ∈ S is

a particular state at iteration step n, an important value which can be

found as a variable in every RNG and changes after a new RN has been

produced.

(2) µ is the probability measure for selecting s0, the initial state, from S.
s0 is called the seed of the RNG.

(3) The function f , also called the transition function, describes how the

algorithm constructs a new state out of the previous one, i.e. sn+1 =

f(sn).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 233

Sampling Univariate Random Variables 233

(4) U is the output space. As we are considering uniformly distributed

RNs, we will mainly look at discrete sets U from [0, 1], [0, 1), (0, 1], or

(0, 1).

(5) The output function g : S → U maps the state sn ∈ S to a number

un ∈ U , the final random number we are interested in.

As the state space S is finite, the RNG will produce the same cycle of RNs

again after a while. The smallest integer ρ for which sn+ρ = sn is called

the period of the RNG. In good RNGs the period is often of the same size

as the state space, but sometimes the period is much smaller. In this case

the RNG has several disjoint cycles, and then it is very important which

seed to choose to start the generator.

6.2.1 Quality Criteria for RNG

To judge the quality of an RNG, we state various criteria:

(1) The period should be very long (nowadays a period of 232 is considered

too short). Otherwise it might happen that in a simulation the same

cycle of RNs is used again. This means that the events in the simulation

are no longer independent, and the result of the simulation could be

complete nonsense.

(2) The RNG should produce RNs very fast.

(3) The RNG should have a possibility of being used in parallelized pro-

grams, e.g. it should provide several disjoint and very long substreams.

(4) The uniform distribution should be very well approximated. The finite

set Φd := {(u0, . . . , ud−1)|s0 ∈ S} of all vectors of d successive outputs

from all possible initial states should cover the d-dimensional hypercube

[0, 1]d evenly. The size of this set equals the number of states |S| = |Φd|
as this set is seen as a multiset.

(5) The RNG should pass several statistical and theoretical tests. There

are well-known test suites which can be used to check the distribution

of the RNs. Examples are TestU01 by L’Ecuyer and Simard (2002),

DieHard by Marsaglia (1996), and NIST by NIST USA (2011).

The research in the field of uniformly distributed RNs is very active, so

we can only give a weak recommendation of some RNGs here. Please

take care, as they might even be outdated already. At the time of writ-

ing, good generators for producing uniformly distributed RNs are the

Mersenne Twister MT19338 (see Matsumoto and Nishimura (1998)) or

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 234

234 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

other Mersenne Twister types (see Matsumoto and Saito (2008)),2 com-

bined LFSRs or combined MRGs (see L’Ecuyer (1999)), several WELL-

RNGs (see L’Ecuyer et al. (2006)), XOR-Shift-RNG (see Marsaglia (2003)),

or special lagged Fibonacci RNGs. To explain the abbreviations just used

is beyond the scope of this survey. They will be explained in the given

references.

6.2.2 Common Causes of Trouble

When working with RNGs, the following issues might cause trouble:

(1) RNGs have to be initialized. The seed must be chosen carefully so that

the RNG works properly, which is usually done by an initialization

routine. But this routine has to be started by the user.

(2) The output space U has to be checked for whether it contains 0s or 1s.

This is often a source of errors when transformed with log(x) or 1/x.

(3) When interested in extreme values, the output space should be checked

for whether it includes extremely small numbers �= 0 or numbers very

close to 1. This is often not symmetric. Often you find 1 × 2−31 or

1 − 1 × 10−7 as the nearest neighbors to 0 or 1, which might not be

sufficient for simulation purposes.

6.3 The Inversion Method

The direct method for transforming uniformly distributed RNs into RNs of

a given distribution is the inverse transformation method, also called the

inversion method. To understand it, recall the definition of the generalized

inverse (note that we can use “min” as a distribution function is right-

continuous):

F−1 (u) := min {x ∈ R : F (x) ≥ u} , u ∈ (0, 1).

Then, we recall from Lemma 1.4(3) the relation

P
(
F−1(U) ≤ x) = P(U ≤ F (x)) = F (x), U ∼ U [0, 1]. (6.1)

This means that F−1(U) is distributed according to F and we are able to

formulate the inversion method as Algorithm 6.1. Note in particular the

monotone relationship between the uniformly distributed random variable

U and the transformed variable.
2C++ code for the Mersenne twister is available from Rick Wagner

http://www-personal.umich.edu/∼wagnerr/MersenneTwister.html.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 235

Sampling Univariate Random Variables 235

Algorithm 6.1 (Inversion Method)

FUNCTION inversion

Generate U ∼ U [0, 1]
RETURN X := F−1(U) ∼ F

Although various methods exist to generate random variables of a desired

distribution from univariate RNs, the inversion method is in general the

best choice for transforming RNs. The main reason for this is that it

preserves structures. More precisely, if the distribution structure of the

uniformly distributed pseudorandom numbers is good, so will be the struc-

ture of the transformed RNs. Another advantage is that it can easily be

combined with variance reduction techniques such as antithetic variates.

If it is not possible to invert F analytically, it can be inverted numeri-

cally (by, e.g., the Newton–Raphson method) or with an explicit approxi-

mation formula. Explicit approximation formulas can then be improved by

a Newton–Raphson, a regula falsi, or an interpolation step.

6.4 Generating Exponentially Distributed Random

Numbers

The textbook example for the inversion method is the generation of ex-

ponentially distributed random variables. An Exp(λ)-distributed random

variable X has the distribution function F (x) =
(
1−exp(−λx))�{x≥0}, for

x ∈ R, and the inverse of F is given by F−1(u) = −log(1− u)/λ, 0 ≤ u < 1.

Thus, Y := − log(1 − U)/λ with U ∼ U(0, 1) is Exp(λ)-distributed by

the inversion method. As (1 − U) and U have the same distribution, one

saves time by using Y := − log(U)/λ. In software packages often other

algorithms are implemented, as the evaluation of the logarithm function is

rather time-consuming.

6.5 Acceptance-Rejection Method

Besides the inversion method, the acceptance-rejection method is the sec-

ond major general method for sampling random variables from a given

distribution. It was proposed by von Neumann (1951). It is typically used

if the inversion of the distribution function F is very difficult, if evaluating

it is very time-consuming, or if only approximations of the inverse exist.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 236

236 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

The theoretical foundation of the acceptance-rejection method (AR

method) is given by Theorem 6.1; see Devroye (1986, p. 40) for a simple

proof. To formulate it, we need the following definition.

Definition 6.1 (Body of a Function)

Let f : Rd → R be a non-negative, integrable function. Then

Bf :=
{
(x, z) ∈ Rd × R | 0 ≤ z ≤ f(x)}

is called the body of f .

Theorem 6.1.

Let X be an Rd-valued random variable with density f , let U ∼ U [0, 1]
be independent of X, and c > 0 a constant. Then, (X, U c f(X)) is uni-

formly distributed on Bc·f . Vice versa, if the multivariate random variable

(X, Z) ∈ Rd+1 is uniformly distributed on Bf , then X has density f on

Rd.

Hence, if we are able to pick points randomly (i.e. with uniform distribution)

from the area Bf , then the first d components of every such point have

the distribution with the desired density f . Thus, the task boils down to

simulating uniformly distributed RNs on Bf . For this, we need the help of

a random variable Y with density g, which we are able to sample easily,

and which satisfies

f(x) ≤ c g(x), ∀ x ∈ Rd, (6.2)

with a constant 1 ≤ c <∞. g is then called a comparison density for f .

As we can simulate RNs Y with a density g, by the first part of Theorem

6.1, we obtain uniformly distributed points (Y , U c g(Y)) on Bc·g via gen-

erating a RN Y with density g and another independent RN U ∼ U [0, 1].
If U c g(Y) ≤ f(Y), then we have also found a point in Bf . Otherwise,

we reject the point and have to perform a new trial. The requirement

c g(x) ≥ f(x) ensures that we do not cut out points from Bf . This in-

deed guarantees that accepted points are also uniformly distributed on Bf .

Hence, we obtain Algorithm 6.2.

Algorithm 6.2 (Acceptance-Rejection Method)

FUNCTION rejection

REPEAT

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 237

Sampling Univariate Random Variables 237

Generate U ∼ U [0, 1)
Generate Y with density g

UNTIL
(
U ≤ f (Y) / (c g (Y))

)
RETURN Y

By construction of the AR method, there is a positive probability that one

needs more than one trial to produce one random number with a distribu-

tion according to density f . Indeed, we have

P
(
U ≤ f (Y)

c g (Y)

)
= E
[
P
(
U ≤ f (Y)

c g (Y)

∣∣∣ Y)]
= E
[f (Y)

c g (Y)

]
=

∫
f (y)

c g (y)
g (y) dy =

1

c
.

Hence, the smaller the constant c ≥ 1 can be chosen, the less likely the

method produces points that will be rejected. So, a comparison density

with a small constant c is desirable. However, the total speed of the method

is also heavily dependent on the time needed to generate the sample Y and

the time to calculate f(Y).

Note that in the case of a bounded density f with compact support, the

uniform density on the support of f can be used as a comparison density

(although the constant c might be large).

One way to speed up the acceptance-rejection method is the use of so-

called squeeze functions q1, q2 with

q1(x) ≤ f(x) ≤ q2(x) ≤ c g(x), ∀x ∈ Rd (6.3)

that should be computable much faster than the function f . As a conse-

quence of relation (6.3), a simulated number Y from the comparison density

can directly be accepted if we have U ≤ q1(Y)/(c g(Y)) or rejected in the

case of U > q2(Y)/(c g(Y)). The function f only has to be evaluated if

both cases do not apply.

For discrete probabilities the acceptance-rejection method has the very

same form when we substitute the density with the probability mass func-

tion.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 238

238 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

6.6 Generating Normally Distributed Random Numbers

When working with normally distributed RVs, we can always restrict

ourselves to the case X ∼ N (0, 1), as we have the well-known relation

σX + µ ∼ N (µ, σ2).

6.6.1 Calculating the Cumulative Normal

First, we need a fast way to compute the distribution function Φ(x) of the

normal distribution, as it has no simple analytical representation. There

exist several approximations (see, e.g., Abramowitz and Stegun (1972) or

Marsaglia (2004)), where we can choose between precise, fast, or simple

(e.g. without the use of an exp function) variants. A good basis for approx-

imations is the power series

Φ(x) =
1

2
+ φ(x)

∞∑
k=0

x2k+1

1 · 3 · 5 · · · (2 k + 1)
, x ≥ 0, φ(x) :=

1√
2π

e−x2/2.

Here we offer a fast-to-type approximation (see also Hastings (1955)) with

just four constants:

Φ(x) ≈ 1− φ(x) (a1 t+ a2 t
2 + a3 t

3
)
, t =

1

1 + p x
, x ≥ 0,

where

p = 0.33267, a1 = 0.4361836, a2 = −0.1201676, a3 = 0.937298.

The absolute error is uniformly less than 1 × 10−5. Due to the symmetry

of φ, we have Φ (x) = 1− Φ (−x) and can thus concentrate on x ≥ 0.

When working with rare events, more precise approximations should be

chosen. In particular, when large absolute values of x appear, it is better to

use a specialized approximation of the survival function Φ̄(x) = 1− Φ(x).

6.6.2 Generating Normally Distributed Random Numbers

via Inversion

Without an explicit analytical representation of the distribution function,

we cannot hope for an explicit formula of its inverse either. Of course, one

can obtain the inverse via solving Φ(x) = u numerically with the Newton–

Raphson algorithm

xn+1 = xn − Φ(xn)− u
φ(xn)

, (6.4)

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 239

Sampling Univariate Random Variables 239

which works quite well here. To find a good starting point, we can use one

of the many numerical approximations of the inverse.

Popular approximations are, e.g., the Moro inverse by Moro (1995), the

Acklam inverse,3 or the Beasley–Springer approximation by Beasley and

Springer (1977). For hardware implementation, a piecewise polynomial

interpolation together with a table of exact values is a further possibility.

As an example, we present the Beasley–Springer algorithm, modified by

Moro to achieve more accuracy in the tails (see Glasserman (2004, p. 67)):

Φ−1 (u) ≈
∑3

n=0 an
(
u− 1

2

)2n+1

1 +
∑3

n=0 bn
(
u− 1

2

)2n+2 , u ∈ [0.5, 0.92] ,

Φ−1 (u) ≈
8∑

n=0

cnt
n , t = log (− log (1− u)) , u ∈ (0.92, 1) ,

[ak]
3
k=0 := (2.50662823884,−18.61500062529,

41.39119773534,−25.44106049637)

[bk]
3
k=0 := (−8.47351093090, 23.08336743743,

− 21.06224101826, 3.13082909833)

[ck]
8
k=0 := (0.3374754822726147, 0.9761690190917186, 0.1607979714918209,

0.0276438810333863, 0.0038405729373609, 0.0003951896511919,

0.0000321767881768, 0.0000002888167364, 0.0000003960315187).

Again, we benefit from the symmetry of the normal distribution due

to Φ−1(1 − u) = −Φ−1(u), which implies that it is sufficient to have ap-

proximations only on [0.5, 1). This algorithm achieves a maximum absolute

error of 3× 10−9 for u ∈ (1× 10−11, 1− 1× 10−11). If more precision in the

tails is needed, we can add one or two Newton–Raphson steps (6.4) with a

good approximation of Φ.

6.6.3 Generating Normal Random Numbers with Polar

Methods

If we do not need the monotonicity of the inversion method, we can use

the classical method for generating two independent N (0, 1)-numbers, the

Box–Muller method. It transforms two independent U(0, 1]-numbers into

two independent standard normal RNs. As the functions log, cos, and sin

have to be evaluated, this algorithm is rather slow.
3See http://home.online.no/∼pjacklam/notes/invnorm/.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 240

240 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Algorithm 6.3 (The Box–Muller Method)

FUNCTION BoxMuller

Generate independent U1, U2 ∼ U (0, 1]

Y1 := sin (2 π U2)
√
−2 log (U1),

Y2 := cos (2 π U2)
√
−2 log (U1)

RETURN independent Y1, Y2 ∼ N (0, 1)

To make this method faster, Marsaglia and Bray added an acceptance-

rejection step to get rid of the time-consuming functions sin and cos.

Algorithm 6.4 (The Marsaglia–Bray Algorithm)

FUNCTION MarsagliaBray

REPEAT

Generate independent V1, V2 ∼ U [−1, 1]
X = V 2

1 + V 2
2

UNTIL (X ≤ 1)

Y1 := V1
√
−2 log(X)/X; Y2 := V2

√
−2 log(X)/X

RETURN independent Y1, Y2 ∼ N (0, 1)

Here, you have to take care of X �= 0. Note that RNs V ∼ U [−1, 1] can be

generated via V = 2U − 1 with U ∼ U [0, 1].

6.7 Generating Lognormal Random Numbers

As by its definition X ∼ LN (µ, σ2) if and only if we have log(X) ∼
N (µ, σ2), we can simply generate Y ∼ N (µ, σ2) by an appropriate al-

gorithm and then set X := exp (Y).

6.8 Generating Gamma-Distributed Random Numbers

We first recall some properties of the Gamma distribution. LetX ∼ Γ(β, η)

be a Gamma-distributed RV with shape parameter β and scale parameter

η.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 241

Sampling Univariate Random Variables 241

(1) Moments: We have E [X] = β/η, Var(X) = β/η2, and mode(X) =

(β − 1)/η for β ≥ 1.

(2) Scaling: X ∼ Γ(β, η)⇒ cX ∼ Γ(β, η/c) for any c > 0.

(3) Summation: Given independent Xi ∼ Γ(βi, η), i = 1, . . . , N , one has

N∑
i=1

Xi ∼ Γ(

N∑
i=1

βi, η).

(4) Exponential distribution: Γ(1, η) = Exp(η).

As a consequence of the scaling property, we only need to be able to generate

Γ(β, 1)-distributed RNs. By the last two properties we can generate Γ(β, 1)

RNs for positive integers β as the sum of β independent Exp(1)-distributed

RNs. Because of the summation property, we can further split up the

Gamma distribution into an integer part and a part with shape parameter

β < 1,

Γ(β, 1) ∼ Γ(�β�, 1) ∗ Γ(β − �β�, 1),

where “∗” denotes the convolution. We can thus concentrate on simulating

the two ingredients, Γ(α, 1) for α < 1 and Γ(n, 1) for n ∈ N, independently.
However, this method of simulating Γ(n, 1) is only suitable for small values

of n. For large n, it is inefficient and also unstable.

6.8.1 Generating Gamma-Distributed RNs with β > 1

Well-known algorithms for β > 1 are the AR methods by Ahrens and

Dieter, Best, and Cheng (for details see Devroye (1986, p. 407–413)). The

rejection constant of the latter algorithm is

c =
4 ββ e−β

λΓ(β)
, Γ (x) :=

∫ ∞

0

tx−1e−tdt, (6.5)

which asymptotically tends to 1.13 for large β. Cheng’s algorithm is based

on the Burr XII density g(x) with distribution function G(x),

g(x) =
λµxλ−1

(µ+ xλ)
2 , G(x) =

xλ

µ+ xλ
, x ≥ 0,

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 242

242 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

where λ and µ are chosen in dependence of β (see Algorithm 6.5). RNs

with this distribution can be generated with the inversion method, since

G−1(u) =
(
(µu)/(1− u))1/λ. Cheng chooses λ =

√
2 β − 1 and µ = βλ. To

speed up calculations a squeeze step (∗) is added.
Algorithm 6.5 (Cheng’s Algorithm for Γ(β, 1) with β > 1)

FUNCTION Chengs gamma (β)

REPEAT

Generate independent U1, U2 ∼ U (0, 1)

Y :=
1√

2 β − 1
log

(
U1

1− U1

)
X := β eY ; Z := U2

1 U2

R := β − log(4) +
(
β +
√
2 β − 1

)
Y −X

IF
(
R ≥ 4.5Z − 1− log(4.5)

)
THEN RETURN X (∗)

UNTIL
(
R ≥ log(Z)

)
RETURN X ∼ Γ(β, 1)

6.8.2 Generating Gamma-Distributed RNs with β < 1

The case β < 1 can be reduced to the former case, because if the RNs U ∼
U(0, 1) and V ∼ Γ(β + 1, 1) are independent, then Z = U1/βV ∼ Γ(β, 1)

(see Stuart’s theorem, e.g. in Devroye (1986, p. 182)). Note in particular

that we have U1/β ∼ Beta(β, 1).
But we still prefer a dedicated algorithm for 0 < β < 1. The example

we present here is constructed with the help of the Weibull distribution (see

Devroye (1986, p. 415)), and was chosen because of its simple form. For

further algorithms by Ahrens, Ahrens/Dieter, and Ahrens/Best (see Knuth

(1998, p. 134, 586) or Devroye (1986, p. 419)). In the following algorithm,

we have the rejection constant

c =
exp
(
(1− β) (ββ/(1−β)

))
Γ(β + 1)

≤ 3.07, ∀β ∈ (0, 1).

The rejection constant tends to 1 as β ↗ 1 or β ↘ 0.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 243

Sampling Univariate Random Variables 243

Algorithm 6.6 (Algorithm for Γ(β, 1) with 0 < β < 1)

FUNCTION Weibull gamma (β)

Set a := (1− β)ββ/(1−β)

REPEAT

Generate independent E1, E2 ∼ Exp(1)
Generate Weibull RN X := E

1/β
1

UNTIL
(
X ≤ E1 + E2 − a

)
RETURN X ∼ Γ(β, 1)

6.8.3 Relations to Other Distributions

The following relations can be found in Devroye (1986, p. 403):

(1) If X ∼ Γ(β, η), then 1/X is inverse Gamma distributed with parame-

ters β and η.

(2) If X ∼ Γ(a, η) and Y ∼ Γ(b, η), independent, then X/(X + Y) is Beta

distributed with parameters a, b.

(3) If X ∼ Γ(β, 1/2), then X ∼ χ2(2β).

(4) Stuart’s theorem: If Y ∼ Γ(b, 1), Z ∼ Beta(a, b − a) with b > a >

0, independent, then X1 := Y Z ∼ Γ(a, 1) and X2 := Y (1 − Z) ∼
Γ(b − a, 1), also independent. The case b = 1, 0 < a < 1 leads to a

method to generate Γ(β, 1)-distributed RNs with β < 1 on the basis of

exponentially distributed RNs and Beta-distributed RNs.

6.9 Generating Chi-Square-Distributed RNs

The Chi-square distribution is a special case of the Gamma distribution

as indicated in the properties of the Gamma distribution. So, Chi-square-

distributed RNs can be generated with the help of Gamma-distributed RNs.

Algorithm 6.7 (Chi-Square-Distributed RNs)

FUNCTION chi gamma(ν)

Generate Y ∼ Γ(ν/2, 1)

RETURN X := 2 Y ∼ χ2(ν)

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 244

244 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Chi-square-distributed RVs with degree k ∈ N can also be described with

the help of normally distributed RVs: for X1, . . . , Xk ∼ N (0, 1) i.i.d. one

has Z :=
∑k

i=1X
2
i ∼ χ2(k). If Xi ∼ N (µi, 1), i = 1, . . . , k, we obtain the

non-central Chi-square distribution χ2(δ2, k) with non-centrality parameter

δ2 =
∑k

i=1 µ
2
i as the distribution of Z :=

∑k
i=1X

2
i . This leads to Algorithm

6.8 for sampling RNs with non-central Chi-square distribution.

Algorithm 6.8 (χ2-Distributed RNs via N -Distributed RNs)

FUNCTION chi normal(δ2, k)

Generate independent Ni ∼ N (0, 1), i = 1, . . . , k

Set N̂1 := N1 +
√
δ2 ∼ N (

√
δ2, 1)

RETURN X := N̂2
1 +N2

2 + . . .+N2
k ∼ χ2(δ2, k)

If k is large, this method might be rather slow. As an alternative, we can

use the decomposition of a non-central Chi-square RV into a non-central

Chi-square part with one degree of freedom and a standard Chi-square part

with one degree of freedom less:

χ2(δ2, ν) = χ2(δ2, 1) + χ2(ν − 1), ν > 0. (6.6)

We thus only have to sample a normally distributed RV and a standard

Chi-square RV.

6.10 Generating t-Distributed Random Numbers

The definition of the Student’s t-distribution with ν ∈ N degrees of freedom,

t(ν), as a quotient of a standard normally distributed random variable

Z ∼ N (0, 1) and a certain function of a Chi-square-distributed random

variable V with ν degrees of freedom (see the sampling scheme below),

independent of Z, gives an easy way to sample from this distribution:

Algorithm 6.9 (t(ν)-Distributed RNs)

FUNCTION Student t (ν)

Generate Z ∼ N (0, 1)

Generate V ∼ χ2(ν)

RETURN X :=
Z√
V/ν

∼ t(ν)

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 245

Sampling Univariate Random Variables 245

This method can be easily extended to cover the case of a non-central t-

distribution t(µ, ν): simply replace Z in the last step of the algorithm by

Z + µ. The main disadvantage of this method could be speed in the cases

where it is very costly to sample from the χ2(ν)-distribution. To avoid the

AR method, Bailey’s formula (see Bailey (1994)) might be an alternative,

although time-consuming functions are involved. Generate independent

U1, U2 ∼ U(0, 1]. Then
X :=

√
ν (U

−2/ν
1 − 1) cos(2 π U2) ∼ t(ν). (6.7)

6.11 Generating Pareto-Distributed Random Numbers

In the case of Pareto-distributed RNs we generate U ∼ U(0, 1] and take

X := x0/(U
1/α) ∼ Pareto(α, x0), which is a simple example for the inver-

sion method.

6.12 Generating Inverse Gaussian-Distributed Random

Numbers

An inverse-Gaussian-distributed RV X ∼ IG(β, η) is related to the normal

distribution via

Y :=
η2 (X − β/η)2

X
∼ χ2(1),

which means that Y is the square of a normally distributed RV (see De-

vroye (1986, p. 148)). This property can be exploited to construct a method

for generating inverse-Gaussian-distributed RNs and was introduced by

Michael et al. (1976).

Algorithm 6.10 (Inverse Gaussian-Distributed RNs)

FUNCTION inverseGaussian (β, η)

Generate Z ∼ N (0, 1), U ∼ U [0, 1]
Set Y := Z2

Set X :=
β

η
+

Y

2η2
−
√
4Y β/η + Y 2/η2

2η

IF
(
U ≤ β

η ·X + β

)
THEN RETURN X ∼ IG(β, η)

ELSE RETURN
β2

η2X
∼ IG(β, η)

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 246

246 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

6.13 Generating Stable-Distributed Random Numbers

RNs with a stable distribution can be generated with a transformation al-

gorithm, first described by Chambers et al. (1976) (see also Weron (1996)).

Here in the special case with stable distributions having the Laplace trans-

form

ψ(t) = exp(−tα), α ∈ (0, 1),

which belongs to the distribution Sα(cos
1/α(πα/2), 1, 0) according to the

parameterization of Samoronitska and Taqqu (1994) or Weron (1996), this

method simplifies to Algorithm 6.11.

Algorithm 6.11 (Stable-Distributed RNs)

FUNCTION stable (α)

Generate U ∼ U [0, 1], E ∼ Exp(1) independent
Set U := π(U − 1

2), then U ∼ U [−π
2 ,

π
2]

Set X :=
sin(α (π/2 + U))

cos(U)1/α

(
cos(U − α (π/2 + U))

E

)(1−α)/α

RETURN X ∼ S(α, 0)
These distributions are often tilted with a parameter h ≥ 0, then have the

Laplace transform ψ̃(t) = exp(−(t + h)α + hα). The relation between the

corresponding densities

f̃(x) =
exp(−hx)
ψ(h)

f(x), x ∈ [0,∞),

leads to the following AR algorithm (see Hofert (2010, p. 100) and Hofert

(2012) for a discussion of alternative and faster algorithms).

Algorithm 6.12 (Tilted-Stable-Distributed RNs)

FUNCTION tilted stable (α, h)

REPEAT

Sample U ∼ U [0, 1]
Generate V := stable(α)

UNTIL
(
U ≤ exp(−hV)

)
RETURN V ∼ S(α, h)

The expected number of iterations is c = 1/ψ(h). If ψ(h) is close to 0 the

algorithm may be too slow.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 247

Sampling Univariate Random Variables 247

6.14 Generating Discretely Distributed Random Numbers

The use of the inversion method to simulate discretely distributed random

variables is straightforward. For the integer-valued random variableX with

distribution given by P(X = i) = pi, i ∈ N,

X := min

{
k ∈ N

∣∣∣ k∑
i=1

pi ≥ U
}
, U ∼ U [0, 1] ,

yields the desired random number. If this is coded in a straightforward

way, the expected number of steps in search of the minimum is E[X + 1].

The search can be accelerated by performing a binary search or by using

tables (see Devroye (1986, p. 89, 96)).

Algorithm 6.13 (Binary Search for Discrete RNs)

FUNCTION discrete (function CDF,Max)

Generate U ∼ U [0, 1]
Set L := 1; R :=Max

WHILE
(
L < R− 1

)
m := �(L+R)/2�

IF
(
CDF (m) =

m∑
i=1

pi < U
)
THEN Set L := m

ELSE Set R := m

END WHILE

RETURN R

In Algorithm 6.13 we have to take care that the number Max is greater

than or equal to the largest number that might appear in the calculations.

The algorithm only makes sense if Max > 2, otherwise a binary search is

superfluous.

The inversion method in the case of uniformly distributed integer-valued

RVs is particularly easy. If we want X ∼ U{0, 1, . . . , n − 1}, i.e. U is

uniformly distributed on {0, 1, . . . , n− 1}, we generate U ∼ U [0, 1) and

return X := �nU�.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 248

248 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

6.14.1 Generating Random Numbers with Geometric and

Binomial Distribution

In the the case of RNs with a geometric distribution, i.e. X ∼ Geo(p), we

generate U ∼ U [0, 1) and return X := �log(1 − U)/ log(1 − p)�. For the

binomially distributed RNs we can use RNs with a geometric distribution.

Algorithm 6.14 (Binomially Distributed RNs)

FUNCTION binomial (n, p)

Set X := −1; sum := 0

REPEAT

Generate V ∼ Geo(p)
sum := sum+ V ; X := X + 1

UNTIL (sum > n)

RETURN X ∼ Bin(n, p)

For p = 1/2 the coin flip method is often much faster. Simply generate n

i.i.d. random bits ∈ {0, 1} and add them up.

6.14.2 Generating Poisson-Distributed Random Numbers

Poisson-distributed RNs can be generated with the help of exponentially

distributed RNs, as the waiting time between two Poisson events is expo-

nentially distributed.

Algorithm 6.15 (Poisson-Distributed RNs)

FUNCTION Poisson1 (λ)

Set X := −1
product := 1

REPEAT

Generate U ∼ U [0, 1]
product := product · U
X := X + 1

UNTIL
(
product < exp(−λ))

RETURN X ∼ Poi(λ)

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 249

Sampling Univariate Random Variables 249

If λ is large, Algorithm 6.15 might be rather slow. Instead, one could use

an inversion algorithm which has been sped up with the help of the mode

of the Poisson distribution, which is �λ�.
Algorithm 6.16 (Poisson-Distributed RNs)

CALCULATE b := P(X ≤ �λ�); p := P(X = �λ�)

FUNCTION Poisson2 (λ, b, p)

Set X := �λ�; sum := b; product := p

Generate U ∼ U(0, 1]
IF (U > b)

REPEAT

X := X + 1; product := product · λ/X ;

sum := sum+ product

UNTIL (U ≤ sum)

END IF

IF (U ≤ b− p)
sum := sum− p
REPEAT

product := product ·X/λ; X := X − 1;

sum := sum− product
UNTIL (U > sum)

END IF

RETURN X ∼ Poi(λ)

b2530 International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd 6 01-Sep-16 11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 251

Chapter 7

The Monte Carlo Method

This chapter was contributed by Elke Korn and Ralf Korn,1 for which

we would like to thank them very much. Much more on the subject matter

is to be found in their recent monograph Korn et al. (2010).

7.1 First Aspects of the Monte Carlo Method

The technical term Monte Carlo method is used for a great variety of sub-

jects, methods, and applications in many areas. They range from high-

dimensional numerical integration via the calculation of success probabil-

ities in games of chance to the simulation of complicated phenomena in

nature. However, they are all based on the approximation of an expecta-

tion of a random variable X by the arithmetic mean of i.i.d. realizations of

X , i.e. the relation

E [X] ≈ 1

n

n∑
i=1

Xi =: X̄n. (7.1)

Here, X is a real-valued random variable with finite expectation, n a posi-

tive (sufficiently large) integer, and the Xi are independent realizations of

random variables with the same distribution as X . We call this type of

approximation the crude Monte Carlo method or simply the Monte Carlo

method, X̄n the crude Monte Carlo estimator (CMC).

It has been widely agreed to name J. von Neumann and S. Ulam as the

inventors of the Monte Carlo method. The method was secretly developed

and used during World War II. The first publication presenting it to an

(academic) audience was Metropolis and Ulam (1949). The name “Monte

1Fachbereich Mathematik, Technische Universität Kaiserslautern, Erwin Schrödinger
Straße, 67663 Kaiserslautern, Germany, korn@mathematik.uni-kl.de.

251

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 252

252 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Carlo method” should indicate that one uses a sort of gambling to obtain

an approximation procedure. Moreover, prior to the invention of pseudo-

random numbers, one sometimes used reported tables of roulette outcomes

as a source of i.i.d. random numbers.

The properties of CMC, yielding an unbiased and strongly consistent

estimator for the expectation, follow from the linearity of the expectation

operator and the strong law of large numbers for i.i.d. random variables as

stated in Theorem 7.1.

Theorem 7.1 (CMC is Strongly Consistent)

Let X be a real-valued random variable with finite expectation. Then the

crude Monte Carlo estimator is an unbiased and strongly consistent esti-

mator for E [X], i.e. we have

E
[
X̄n

]
= E [X] , X̄n

n→∞−→ E [X] almost surely. (7.2)

While these two properties are nice from a statistical point of view, calcu-

lating the variance of X̄n reveals the weakness of CMC:

Var(X̄n) =
1

n
Var(X), (7.3)

i.e. the standard deviation of CMC decreases as 1/
√
n with increasing num-

bers of samples n, given that Var(X) is finite. In this situation, the cen-

tral limit theorem yields an asymptotic 95% confidence interval for E [X],

namely [
X̄n − 1.96

σ√
n
, X̄n + 1.96

σ√
n

]
(7.4)

with σ2 := Var(X) and where 1.96 equals the 97.5% quantile of the standard

Gaussian distribution. There are two particular things to be learnt from

this fact:

(1) A Monte Carlo estimate should always be given together with a confi-

dence interval to be able to judge its accuracy.

(2) To increase the accuracy of CMC by one order (i.e. to reduce the length

of the confidence interval by a factor of 0.1), one needs a new run of

CMC which then has to be based on 100n simulated random variables.

The second point indicates the slow convergence of CMC, its main disad-

vantage.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 253

The Monte Carlo Method 253

Remark 7.1 (On Applications of the Monte Carlo Method)

(1) The special case of X = �A, where �A is the indicator function of

a certain event A, yields the CMC estimate for P (A) by the relative

frequency of the occurrence of A in a sequence of independent trials.

(2) The idea behind Monte Carlo integration is that an integral can often be

rewritten as an expectation of a random variable that has a probability

distribution with a density. In such a case, the integral can then be

estimated as an expectation by CMC.

(3) The confidence interval (7.4) still contains the typically unknown stan-

dard deviation σ of X. However, for large values of n we can simply

replace it with

X̄n ± 1.96
σ√
n
≈ X̄n ± 1.96

Sn√
n
, (7.5)

where S2
n the unbiased estimator of the (unknown) variance of X, i.e.

S2
n =

1

n− 1

n∑
i=1

(Xi − X̄n)
2.

(4) CMC can also be used to estimate E [f (X)] for an Rd-valued random

vector X and a real-valued function f via

E [f (X)] ≈ 1

n

n∑
i=1

f (Xi) ,

given this expected value is finite. Note that all properties, i.e. strong

consistency and unbiasedness, of CMC established for the univariate

situation carry over. In the case of σ2
f := Var

(
f(X)

)
<∞ we can also

use the formulas for the confidence intervals of CMC when we replace

the estimator for σ with the one for σf . This fact is often stated as

the independence of the Monte Carlo method from the dimension of the

underlying random variable.

(5) So far, copulas have not entered the scene in our presentation of

the Monte Carlo method. However, if we consider the situation of

X = f(Y1, . . . , Yd), where f is a real-valued function and the random

variables Yi are related via a copula C, then the copula enters CMC via

the sampling distribution of the vector (Y1, . . . , Yd).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 254

254 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Remark 7.2 (Variance Reduction)

The slow convergence indicated earlier is hard to improve. A popular way to

overcome it (at least partially), is by using the so-called variance reduction

methods. Their main idea often is not to sample a set of random variables

X1, . . . , Xn with the same distribution as X. Instead, one looks for a sample

Y1, . . . , Yn such that we have

E
[
Ȳn
]
= E [X] , Var(Ȳn) ≤ Var(X̄n). (7.6)

While the first relation ensures that the new estimator Ȳn has the correct

mean, the second relation indicates that it has a smaller variance. This

is what we call a variance reduction method. The variance-reducing prop-

erty roughly has two implications: either (1) for a given sample size n the

estimator Ȳn is more accurate than the CMC X̄n, or (2) for a given ac-

curacy, expressed in the length of the corresponding confidence intervals,

the estimator Ȳn needs a smaller sample size n. If the effort of generating

samples from the distribution of Yi is equal to that of sampling from the

distribution of X, then a variance reduction method is more efficient for

estimating E [X] than CMC.

Algorithm 7.1 (Crude Monte Carlo Method)

Let f be a given function and let sampleDISTRX be a procedure that

returns an independent random sample value from the distribution of X.

FUNCTION CMC (integer: n)

FOR i = 1, . . . , n

Set Xi := sampleDISTRX

END FOR

RETURN f̄ (X)n :=
1

n

n∑
i=1

f (Xi)

7.2 Variance Reduction Methods

As already indicated in the previous section, the construction of variance

reduction methods is the principal tool for speeding up calculations in the

Monte Carlo method. It is beyond the scope of this book to give a complete

survey of variance reduction techniques (we refer the interested reader to

Korn et al. (2010, Chapter 3) for a recent monograph on the application

of the Monte Carlo method in finance and insurance). We will concentrate

on the following methods:

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 255

The Monte Carlo Method 255

(1) antithetic variates (Section 7.2.1),

(2) control variates (Section 7.2.3), and

(3) importance sampling (Section 7.2.5),

and particularly highlight their use in connection with applications of cop-

ulas.2

7.2.1 Antithetic Variates

The method of antithetic variates aims at the introduction of a certain

kind of symmetry that imitates properties of the underlying probability

distribution into the sample. To explain it, we look at the CMC estimator

f̄ (U) =
1

n

n∑
i=1

f (Ui) ,

for E [f (U)] with U uniformly distributed on [0, 1], where Ui are indepen-

dent copies of U . To introduce symmetry, the antithetic variates estimator

(CMCAV) additionally uses the numbers 1− U1, . . . , 1− Un in

f̄anti (U) =
1

2

(
1

n

n∑
i=1

f (Ui) +
1

n

n∑
i=1

f (1− Ui)

)
. (7.7)

As U and 1−U have the same distribution, the antithetic estimator remains

unbiased. With σ2 = Var
(
f(U)

)
, the variance of the antithetic estimator

is given by

Var
(
f̄anti(U)

)
=
σ2

2n
+

1

2n
Cov
(
f(U), f(1− U)

)
, (7.8)

i.e. we have a smaller variance compared to the CMC estimator based on

2n random numbers if f(U) and f(1 − U) are negatively correlated. On

top of that, we also save computational effort as we only have to generate

n random numbers instead of 2n. By choosing g(x) = −f(1−x) in Cheby-

shev’s covariance inequality (see, e.g., Korn et al. (2010, Proposition 3.11))

and using Equation (7.8), we directly obtain Theorem 7.2.

Theorem 7.2 (Variance Reduction by Antithetic Variates)

Let f be a non-decreasing or a non-increasing function, and let U be uni-

formly distributed on [0, 1] with Cov
(
f(U), f(1−U)

)
being finite. Then we

have

Cov
(
f(U), f(1− U)

) ≤ 0.

2The ideas for applying certain variance reduction techniques in the copula context
have originated from discussions with Jan-Frederik Mai and Matthias Scherer.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 256

256 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

In particular, the antithetic Monte Carlo estimator based on n random

numbers has a smaller variance than the crude Monte Carlo estimator based

on 2n random numbers.

Remark 7.3 (Variance Reduction by Antithetic Variates)

Theorem 7.2 justifies the remark already made in connection with the in-

version method for uniformly distributed random variables U . As the dis-

tribution function F of a random variable Y is a non-decreasing function,

so is F−1. Hence, to estimate E
[
h(Y)

]
with a non-decreasing (a non-

increasing function) h, application of the theorem to the non-decreasing

(non-increasing) function f(x) := h
(
F−1(x)

)
shows the variance reduction

property of antithetic variates.

Algorithm 7.2 (MC with Antithetic Variates: Uniform Case)

FUNCTION CMCAV (integer: n)

FOR i = 1, . . . , n

Set Ui := sample U [0, 1]
END FOR

RETURN f̄anti(U) =
1

2

(
1

n

n∑
i=1

f (Ui) +
1

n

n∑
i=1

f (1− Ui)

)

Antithetic variates can also be used for other symmetric distributions such

as the normal distribution: for Xi ∼ N (µ, σ2), the suitable antithetic vari-

ate is

X̃i = 2µ−Xi.

For µ = 0, the antithetic variate is thus −Xi. With the use of Chebyshev’s

covariance inequality, a variance reduction theorem similar to Theorem 7.2

is valid. If we consider expectations of functions h of independent uniformly

distributed random variables Ui,

E[Z] = E
[
h(U1, . . . , Ud)

]
,

then the antithetic variates method can be applied component wise (note

that Π = Π̂, i.e. the independence copula is radially symmetric). In addition

to the d-dimensional vector U j = (U j
1 , . . . , U

j
d) one can also use

Ũ j = (1− U j
1 , . . . , 1− U j

d)

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 257

The Monte Carlo Method 257

for constructing an antithetic variate Monte Carlo estimator. It can be

shown that if h is non-decreasing in each component, then this method

yields a variance reduction. This is also the case if we only use the antithetic

variate 1− U j
m in some component m.

Remark 7.4 (Antithetic Variates: Confidence Intervals)

As the antithetic variate Monte Carlo estimator is a function of the n

independent samples

h(Ui) =
1

2

(
f(Ui) + f(Ũi)

)
,

with Ũi = 1−Ui the antithetic variate to Ui, we obtain a confidence interval

as in the case of the CMC estimator but have to use the variance estimator

σ̄2
anti =

1

n− 1

n∑
i=1

(
1

2

(
f(Ui) + f(Ũi)

)
− f̄anti (U)

)2

,

leading to the approximate 95% confidence interval for E [f (U)] of[
f̄anti (U)− 1.96

σ̄anti√
n
, f̄anti (U) + 1.96

σ̄anti√
n

]
.

There is a natural application of the antithetic variates approach when

considering radially symmetric copulas.

7.2.2 Antithetic Variates for Radially Symmetric Copulas

We first recall from the introduction that if C is a copula with

(U1, . . . , Ud) ∼ C, the random vector (U1, . . . , Ud) with uniform marginals

is radially symmetric about (1/2, . . . , 1/2), if we have (U1, . . . , Ud)
d
=

(1 − U1, . . . , 1 − Ud). This is exactly the necessary situation for the ap-

plication of the antithetic variates approach as described earlier: when

simulating (U1, . . . , Ud), we can also use (1−U1, . . . , 1−Ud) without addi-

tional simulation effort and then use the antithetic MC estimator

f̄anti (U1, . . . , Ud) :=

1

2

(
1

n

n∑
i=1

f
(
U

(i)
1 , . . . , U

(i)
d

)
+

1

n

n∑
i=1

f
(
1− U (i)

1 , . . . , 1− U (i)
d

))

as an approximation for E [f (U1, . . . , Ud)]. We illustrate its use with the

following simple two-dimensional example with

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 258

258 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

(1) univariate marginal laws U1, U2 ∼ U [0, 1], and

(2) dependence structure CGauss
ρ (u1, u2) := Fρ

(
Φ−1 (u1) ,Φ

−1 (u2)
)
for

ui ∈ [0, 1], i.e. the two-dimensional Gaussian copula3 with correlation

ρ ∈ [−1, 1].

Our aim is to compute E [U1 · U2].

As the Gaussian copula is radially symmetric about the origin, we can

directly apply the antithetic variates approach. Numerical results for n =

10 000 simulations in Table 7.1 show that, compared to the crude Monte

Carlo approach, we can reduce the length of the 95% confidence interval

by factors between 1 and 4. Note in particular that for perfectly negatively

correlated margins, we obtain no shortening of the interval while for perfect

positively correlated ones we obtain a factor of 4. The reason for this is

that in the perfectly negatively correlated case, we have U1 = 1 − U2, so

the products U1 U2 and (1 − U1) (1 − U2) agree. Thus, in this case, using

antithetic variates does not help.

Table 7.1 Estimating E [U1 U2] without and with antithetic
variates.

ρ CMC CMCAV Length Reduction

−1 [0.1641, 0.1671] [0.1641, 0.1671] 1.00
−0.5 [0.2064, 0.2130] [0.2083, 0.2114] 2.13
0 [0.2458, 0.2544] [0.2484, 0.2517] 2.61
0.5 [0.2861, 0.2964] [0.2888, 0.2920] 3.22
1 [0.3295, 0.3412] [0.3322, 0.3351] 4.03

The table also underlines that while the use of antithetic variates helps

to reduce variance, it typically does not lead to a dramatic variance reduc-

tion. Its main advantage lies in the simplicity of its application. Thus, it

is still worth using antithetic variates for radially symmetric copulas.

7.2.3 Control Variates

The main idea of control variates consists in finding a random variable Y

for which we know E [Y] and which is perfectly positively correlated with

3Fρ denotes the distribution function of the N2(0,Σ)-distribution, where Σ is a 2 × 2
correlation matrix with off-diagonal entry ρ, and Φ−1 denote the quantile functions of
the univariate standard normal distribution.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 259

The Monte Carlo Method 259

X , i.e. Corr(X,Y) ≈ 1. Then, using the relations

E [X] = E [X − Y] + E [Y] , (7.9)

Var(X)−Var(X − Y) = 2Cov(X,Y)−Var(Y) (7.10)

motivates the introduction of the control variate Monte Carlo estimator

(CVMC)

E [X] ≈ 1

n

n∑
i=1

(Xi − Yi) + E [Y] =: X̄(Y)
n .

In particular, Equation (7.10) shows that CVMC has a lower variance than

CMC if the correlation between X and Y is sufficiently high. Given a

candidate Y for a control variate, one can even construct an optimal control

variate c∗ Y out of it.

Theorem 7.3 (Optimal Control Variate Multiplier)

For given real-valued random variables X and Y , the CVMC X̄c∗ Y
n , with

c∗ =
σX Y

σ2
Y

and σX Y := Cov(X,Y), has the smallest variance for all CVMC of the

form X̄c Y
n with c ∈ R. The use of X̄c∗ Y

n leads to a variance reduction of

the estimator of

Var(X̄n)− Var(X̄c∗ Y
n)

Var(X̄n)
= ρ2X,c∗Y (7.11)

with ρX,Y = Corr(X,Y).

Remark 7.5 (Control Variates)

(1) The proof of Theorem 7.3 simply consists of the explicit calculation

of Var(X̄c Y
n), followed by minimizing the resulting concave, quadratic

function in c.

(2) Equation (7.11) clearly highlights that we can obtain a significant rela-

tive variance reduction by CVMC only for high values of ρ2X,c∗ Y .

(3) As in general the (exact) value of σX Y is unknown, it has to be esti-

mated and iteratively updated during the Monte Carlo simulation pro-

cedure.

(4) Finding a good control variate typically requires good intuition. There

is no general algorithm for constructing it.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 260

260 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

(5) One can combine the control variate method with antithetic variates,

which often results in a higher variance reduction. One can also use

a multiple control variate approach, i.e. one can use more than one

control variate. An application in a multidimensional setting is the

unconditional mean control variate approach as described in Korn et

al. (2010, p. 75).

Algorithm 7.3 (Monte Carlo Method with Control Variate)

Let sampleDISTR X return a random number from the distribution of X.

Let Y be the control variate.

FUNCTION CVMC (integer: n)

FOR i = 1, . . . , n

Set Xi := sampleDISTR X; Yi := sampleDISTR Y

END FOR

RETURN X̄(Y)
n =

1

n

n∑
i=1

(Xi − Yi) + E [Y]

We highlight the use and the performance of the control variate method in

a copula framework via the following application.

7.2.4 Approximation via a Simpler Dependence Structure

Let us consider a situation where we want to calculate the expectation of

a function of random variables E [f (X1, . . . , Xd)], where the dependence

structure is given by a copula C, i.e. we have as the distribution function

of (X1, . . . , Xd)

F (x1, . . . , xd) = C
(
F1(x1), . . . , Fd(xd)

)
.

There are now various possibilities for a control variate approach. An

obvious candidate is to use random variables Y1, . . . , Yd with the same

marginal distributions as the original X-variables that are related by a sim-

pler copula function C̃, in the sense that we can calculate the expectation

E [f (Y1, . . . , Yd)] explicitly.

Of course it depends on all the input factors, distributions, and the

function f how the copula used for the control variate is chosen. A first

try can always be the independence copula, but in some applications one

might have even better candidates. We illustrate the approach with a toy

example where we consider

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 261

The Monte Carlo Method 261

(1) univariate marginal laws X1 ∼ Bin (1, p1), X2 ∼ Bin (1, p2), and pi ∈
[0, 1], and

(2) dependence structure CGauss
ρ (u1, u2) = Fρ

(
Φ−1 (u1) ,Φ

−1 (u2)
)
, for

ui ∈ [0, 1], i.e. the two-dimensional Gaussian copula with correlation

ρ ∈ [−1, 1].
Our aim is to compute

E [X1 ·X2] = P (X1 = 1, X2 = 1) .

This example can be motivated as the calculation of the probability of

a joint default of two bonds of two countries which are politically and/or

economically related. It can thus be an ingredient in the price calculation of

a suitably constructed credit derivative. As control variate we use (Y1, Y2)

with independent components, in particular

(1) Y1 = X1 which can thus be reused for the control variate,

(2) C̃(u1, u2) = u1 · u2 for ui ∈ [0, 1].

The numerical results for n = 10 000 in Table 7.2 show that we can achieve

the highest variance reduction, measured in terms of the reduction of length

of the confidence interval for E [X1 ·X2], when we have p1 = p2 = 0.5 and

ρ ≈ 0. Indeed, for ρ = 0 we can obviously reduce the variance completely.

In contrast, for ρ ≈ 1 we achieve nearly no variance reduction by our control

variate approach. Furthermore, for ρ ≈ −1, the use of the independence

copula as control variate even leads to a wider confidence interval, however,

still containing the true value. The corresponding optimal multiplier c∗ =

0.075 underlines the fact that the chosen control variate is not really suitable

for variance reduction purposes. Further, we see in Table 7.2 that for

smaller values of the (marginal) success probabilities, the independence

copula as the control variate dependence structure becomes less and less

attractive, which is also in line with our intuition as then the value 1 is very

unlikely to be observed jointly. In all examples, the different MC estimators

are comparable with regard to their accuracy.

For p1 = p2 = 0.25, ρ = −0.99, the exact value of the joint probabil-

ity is so small, approximately 0.00000032, that CMC typically leads to a

confidence interval that only contains 0, as no joint value of 1 is observed

in the sample. Although CVMC then still provides a confidence interval of

[−0.0036, 0.0058], which can easily be improved by replacing the left border

with 0, we cannot use CVMCopt as the covariance estimator then typically

also suggests an optimal value of 0.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 262

262 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Table 7.2 Probability of joint success of dependent bivariate Bernoulli variables.

p1, p2 ρ CMC CVMC CVMCopt c∗

0.50, 0.50 0.01 [0.2465, 0.2635] [0.2509, 0.2525] [0.2509, 0.2525] 0.999
0.30 [0.2938, 0.3118] [0.2952, 0.3038] [0.2955, 0.3039] 0.940
0.90 [0.4267, 0.4461] [0.4255, 0.4407] [0.4265, 0.4411] 0.778
−0.99 [0.0204, 0.0264] [0.0119, 0.0283] [0.0203, 0.0260] 0.075

0.25, 0.25 0.01 [0.0579, 0.0675] [0.0631, 0.0645] [0.0631, 0.0645] 0.999
0.30 [0.0851, 0.0963] [0.0885, 0.0951] [0.0884, 0.0951] 0.954
0.90 [0.1864, 0.2020] [0.1886, 0.2020] [0.1885, 0.2018] 0.852

7.2.5 Importance Sampling

Importance sampling is usually considered to be the most effective variance

reduction method when it can be applied. However, it requires more tech-

nical work than the application of the two previous methods. The main

idea can be demonstrated via the following example, where we assume that

the bivariate random vector (X,Y) has a joint density g (x, y). We want

to estimate E [f (X,Y)]. A typical situation where importance sampling is

needed occurs when f(x, y) is very big only for values of (x, y) that are very

unlikely under the distribution with density g (x, y). As an example, think

of joint large values of a bivariate normal distribution. A related univari-

ate example is given in Korn et al. (2010, Example 3.23, p. 91ff). Thus,

sampling under the original distribution might not yield a single value of

(x, y) with a large value of f(x, y). Hence, the resulting CMC estimator

significantly underestimates E [f (X,Y)].

The importance sampling solution to this problem is to sample under

a new density g̃ (x, y), which puts more probability mass on the important

values (x, y), i.e. those where f(x, y) is big. This, of course, has to be

coupled with a suitable transformation of the criterion function f(x, y).

For this, look at the following relation where we assume that g̃ (x, y) is

strictly positive:

E [f (X,Y)] =

∫
f (x, y) g (x, y) dxdy

=

∫
f (x, y) g (x, y)

g̃ (x, y)
g̃ (x, y) dxdy

= Ẽ

[
f (X,Y) g (X,Y)

g̃ (X,Y)

]
.

Here, Ẽ[.] denotes the expectation with respect to the density g̃(x, y). A

similar transformation applies for discrete distributions. In both situations

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 263

The Monte Carlo Method 263

the importance sampling distribution must have a support that contains

that of the original distribution to avoid a division by 0, i.e. we need an

absolutely continuous change of measure.

For a general multivariate random vector X with density g(x), the

importance sampling Monte Carlo estimator (ISMC) based on the sample

X1, . . . ,Xn from g̃ is given by

E [f (X)] ≈ 1

n

n∑
i=1

f (Xi) g (Xi)

g̃ (Xi)
=: f̄

(g̃)
imp (X) .

The main problem with importance sampling is finding an appropriate im-

portance sampling density g̃(x, y). In the situation of the (multivariate)

normal distribution, this is often achieved by either a shift of the mean to

the appropriate region or by spreading out the distribution via an appro-

priate scaling of the covariance matrix.

Algorithm 7.4 (MCM with Importance Sampling)

Let sampleDISTRg return a random number from the distribution with

density g. Let g̃ be a density function with supp(g) ⊂ supp(g̃).
FUNCTION CVMC (integer: n)

FOR i = 1, . . . , n

Set Xi := sampleDISTRg̃

END FOR

RETURN f̄
(g̃)
imp (X) =

1

n

n∑
i=1

f (Xi) g (Xi)

g̃ (Xi)

As already stated, the algorithm works in exactly the same way for a dis-

crete distribution if g(x) denotes the probability function and g̃(x) the

importance sampling probability function. As a special example we con-

sider the situation of the dependent bivariate Bernoulli variables from the

control variate section.

7.2.6 Importance Sampling via Increasing the Dependence

Let us again assume

(1) marginal laws X ∼ Bin (1, p1), Y ∼ Bin (1, p2), and pi ∈ [0, 1], and

(2) dependence structure CGauss
ρ (u1, u2) = Fρ

(
Φ−1 (u1) ,Φ

−1 (u2)
)

for

ui ∈ [0, 1], i.e. the dependence structure is given by the two-dimensional

Gaussian copula with correlation ρ ∈ [−1, 1].

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 264

264 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Our aim is to compute

E
[
f(X,Y)

]
:= 10 000 · E[X · Y] = 10 000 · P(X = 1, Y = 1).

As in the control variate example, we can imagine the situation of a specially

designed credit derivative. Here, one only receives a payment if the two

credits jointly default or are both paid back in full.

In line with the motivating remarks, we should switch to a distribu-

tion which puts more emphasis on the diagonal, i.e. which increases the

probabilities of X and Y attaining the same values. We will do this by

imitating the scaling approach in the univariate normal distribution set-

ting. More precisely, we are going to increase the dependency between the

two random variables via choosing the correlation factor ρ in the Gaussian

copula to be as big as possible. As we have to restrict ourselves to an

absolutely continuous change of measure, we always choose ρ = 0.999 and

take the corresponding joint distribution of the two Bernoulli variables as

the importance sampling distribution. The effect of this choice on the joint

distribution and also the improvement of the Monte Carlo estimation using

importance sampling are reported in Table 7.3. To demonstrate the power

of importance sampling we have chosen to use only n = 1 000 samples.

In the case of symmetric marginal success probabilities (i.e. p1 = p2 =

0.5), note that the biggest variance reduction is obtained for the case of ρ =

−0.99, i.e. the negatively correlated situation which is least favorable for

the expected payoff. However, even in the situation of ρ = 0.9, importance

sampling reduces the length of the confidence interval by a factor bigger

than 3.

In the case of highly asymmetric success probabilities (i.e. 1 − p1 =

p2 = 0.9), the effect of importance sampling is mostly negligible concerning

the length of the confidence intervals. However, the importance sampling

estimator (given by the mean of the confidence interval) is typically closer to

the true value than the CMC estimator. Again, the biggest gain is realized

for the negatively correlated situation.

In Table 7.4, we illustrate the effect of importance sampling in this situ-

ation also by comparing the original (true) distribution with the importance

sampling distribution which tries to put as much probability mass on the

important values as possible. As for given marginal success probabilities p1,

p2, the importance sampling probabilities pimp
ii , i = 0, 1, are the same, inde-

pendent of the correlation parameter ρ of the Gaussian copula. We always

state the importance sampling probabilities only once per example. It can

clearly be seen that the variance reduction, and thus the advantage, of the

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 265

The Monte Carlo Method 265

Table 7.3 Confidence interval for the expected loss for two de-
pendent Bernoulli variables (rounded to integers).

p1, p2 ρ Exact Value CMC MCimp

0.50, 0.50 0.01 5032 [4970, 5590] [4989, 5066]
0.30 5970 [5980, 6580] [5920, 6011]
0.90 8564 [8523, 8937] [8492, 8623]
−0.99 451 [400, 680] [447, 454]

0.10, 0.90 0.01 181 [170, 219] [163, 209]
0.30 194 [183, 233] [173, 224]
0.90 200 [182, 232] [181, 231]
−0.99 198 [113, 287] [179, 229]

importance sampling method is bigger, the more the importance sampling

distribution differs from the true distribution.

Table 7.4 Joint probability and importance sampling
probability distributions for two dependent Bernoulli vari-
ables (rounded to four digits).

p1, p2 ρ p00 p01 p10 p11
last line pimp

00 pimp
01 pimp

10 pimp
11

0.50, 0.50 0.01 0.2516 0.2484 0.2484 0.2516
0.30 0.2985 0.2015 0.2015 0.2985
0.90 0.4282 0.0718 0.0718 0.4282
−0.99 0.0225 0.4775 0.4775 0.0225

imp. prob. 0.999 0.4929 0.0071 0.0071 0.4929

0.10, 0.90 0.01 0.0903 0.8097 0.0097 0.0903
−0.99 0.0099 0.8901 0.0901 0.0099

imp. prob. 0.999 0.1000 0.8000 0.0000 0.1000

One might also think of situations where it is more suitable to keep the

dependence structure between the two Bernoulli variables and to change

the individual success probabilities pi, i = 1, 2, instead.

7.2.7 Further Comments on Variance Reduction Methods

For further variance reduction methods (such as conditional sampling,

stratified sampling, or weighted Monte Carlo), we refer the reader to Korn

et al. (2010, Chapter 3) or to Glasserman (2004). Often, these methods are

very close to (or even specialized versions of) the three main variance reduc-

tion methods we have presented. As the Monte Carlo method tends to be

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 266

266 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

very slow but is often the only numerical method that is easily usable in a

multidimensional setting, one should always try to speed it up (or increase

its accuracy) via variance reduction. However, if one is only interested in

one particular expected value E[X], then one should also keep in mind that

the time needed to create a particularly smart variance reduction method

can easily be much longer than the time needed to run a crude Monte Carlo

simulation with a sufficiently high number of samples n.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 267

Chapter 8

Further Copula Families with Known
Extendible Subclass

One of this book’s central themes is the presentation of copula families

for which the extendible subfamily can be described in convenient form.

Knowledge about the stochastic model behind the extendible subfamily is

of particular use for the derivation of efficient simulation algorithms, since

sampling can be carried out along the associated latent one-factor model.

For the families in earlier chapters the extendible subfamily has been inves-

tigated in quite some detail (e.g. Sections 2.2 and 3.3). In particular, the

dependence-inducing latent factor behind the extendible Marshall–Olkin

family of copulas was found to be a (possibly killed) Lévy subordinator. The

present chapter presents two copula families that are both superclasses of

the Marshall–Olkin family, and for which the extendible subfamilies have

been investigated recently. Being generalizations of the Marshall–Olkin

family of copulas, the respective extendible subfamilies are associated with

stochastic processes that generalize the concept of a Lévy subordinator.

Section 8.1 generalizes the canonical construction of the Marshall–Olkin

distribution, that is based on exponential arrival times of exogenous shocks

affecting the initially functioning components in a system. If the expo-

nential distribution of the arrival times is generalized to arbitrary distri-

butions on [0,∞) ∪ {∞}, one considers a generalized family of exogenous

shock models. Interestingly, the Lévy subordinator as dependence-inducing

factor of the extendible Marshall–Olkin family is then generalized to a so-

called additive subordinator, cf. Section 8.1.1. Furthermore, we present two

particular examples of additive subordinators (which are not Lévy subor-

dinators) that give rise to quite interesting copula families. Section 8.1.1.1

presents the so-called Dirichlet copula as the only radially symmetric cop-

ula within the family of survival copulas of exogenous shock models. Sec-

tion 8.1.1.2 presents a similar characterization of univariate probability

267

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 268

268 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

transforms via copulas as Kimberling’s theorem for Archimedean copulas

(cf. Theorem 2.2): the Laplace transforms of so-called self-decomposable

probability distributions on (0,∞) are in one-to-one correspondence with

a family of copulas resulting from an exogenous shock model based on so-

called Sato subordinators.

Section 8.2 considers the family of extreme-value copulas, which has

already been mentioned briefly in Section 1.2.5. As the name suggests,

this family of copulas is of great importance in the context of extreme-

value theory, with the Marshall–Olkin copula family being one of its promi-

nent representatives. However, the family of extreme-value copulas is much

richer than the Marshall–Olkin family. In particular, the latter is a finite-

parametric family, while the former is infinite-parametric. Moreover, the

family of extreme-value copulas has absolutely continuous members, which

is important for some applications. Section 8.2 shows that the extendible

subfamily of extreme-value copulas stands in one-to-one correspondence

with so-called strong IDT subordinators, which is another concept gener-

alizing Lévy subordinators. Based on this result, we are able to construct

low-parametric families of extreme-value copulas in arbitrary dimension

that can be simulated efficiently, namely by mimicking the canonical one-

factor construction along suitable strong IDT subordinators. Furthermore,

it is shown how to generalize this approach to non-exchangeable extreme-

value copulas as well.

8.1 Exogenous Shock Models

We reconsider the definition of a random vector (X1, . . . , Xd) along the

canonical stochastic model associated with a Marshall–Olkin distribution,

namely

Xk := min
{
EI | I ⊂ {1, . . . , d}, k ∈ I

}
, k = 1, . . . , d, (8.1)

where all EI are independent and follow exponential distributions. The

components Xk also have exponential distributions, and the survival copula

of (X1, . . . , Xd) was the main subject of study in Chapter 3. In particu-

lar, it has been shown that in the exchangeable case this survival copula

necessarily takes the form

C(u1, . . . , ud) =

d∏
k=1

u
ak−1

(k) ,

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 269

Further Copula Families with Known Extendible Subclass 269

where (a0, . . . , ad−1) is a d-monotone sequence with a0 = 1. From a purely

algebraic perspective, it appears natural to generalize this family of ex-

changeable copulas to

C(u1, . . . , ud) =

d∏
k=1

gk
(
u(k)
)
, (8.2)

with initially arbitrary functions gk. Of course, for C to be a proper copula,

the functions gk need to satisfy certain requirements. For example, g1(u) =

u by the uniform marginals property. Consequently, the first analytical

question to answer is: Which functions gk are allowed? Second, and even

more insightful, it turns out that each such copula arises as survival copula

in an exogenous shock model of the form (8.1), only with the arrival times

EI possibly having distributions other than exponential. Essentially, this is

the content of the following theorem that goes back to Mai et al. (2016a).

Theorem 8.1 (Analytical Characterization of exShock Copulas)

The d-dimensional function C in (8.2) is a copula if and only if g1(u) = u

and for each m = 1, . . . , d the function

Hm(u) :=

m−1∏
i=0

g
(−1)i (m−1

i)
d−m+1+i (u), u ∈ (0, 1],

is strictly positive, continuous, and non-decreasing with Hm(1) = 1.

In this case, the functions Hm, m = 1, . . . , d, can be extended continu-

ously to [0, 1], i.e. their limit at zero exists from the right, and they represent

distribution functions of random variables taking values in [0, 1]. The cop-

ula C is the distribution function of the random vector (U1, . . . , Ud) defined

by

Uk := max
{
ZI | I ⊂ {1, . . . , d}, k ∈ I

}
, k = 1, . . . , d, (8.3)

where the random variables ZI , ∅ �= I ⊂ {1, . . . , d}, are independent with

distribution given by ZI ∼ H|I|, with |I| denoting the cardinality of I.

Proof. Sufficiency of the statement follows from a straightforward, yet

tedious, computation. Assuming that the functions Hm satisfy the stated

conditions, it is clear that they represent distribution functions of random

variables on [0, 1], as claimed. Consequently, the stochastic model (8.3)

is well-defined and we may simply check that the distribution function of

(U1, . . . , Ud) equals C. To this end, we observe

P(U1 ≤ u1, . . . , Ud ≤ ud) =
∏

∅�=I⊂{1,...,d}
P
(
ZI ≤ min{uk : k ∈ I}). (8.4)

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 270

270 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

There are d− k choose m− 1 subsets I with cardinality |I| = m such that

min{u� : � ∈ I} = u(k) for k = 1, . . . , d−m+ 1, so that (8.4) equals

=

d∏
m=1

d−m+1∏
k=1

P(Z{1,...,m} ≤ u(k))(
d−k
m−1) =

d∏
m=1

d−m+1∏
k=1

H
(d−k
m−1)

m

(
u(k)
)

=
d∏

m=1

d−m+1∏
k=1

m−1∏
i=0

g
(−1)i (m−1

i) (d−k
m−1)

d−m+1+i

(
u(k)
)

(∗)
=

d∏
k=1

d∏
n=k

g
∑d+1−k

m=d+1−n(−1)m−1+n−d (m−1
m−1+n−d) (

d−k
m−1)

n

(
u(k)
) (∗∗)

=

d∏
k=1

gk
(
u(k)
)
.

First of all, we used ZI
d
= Z{1,...,|I|} ∼ H|I|. Equality (∗) is derived by

grouping all gd−m+1+i with d−m+ 1 + i = n, i.e. i = m− 1 + n− d, and
Equality (∗∗) relies on the observation

d+1−k∑
m=d+1−n

(−1)m−1+n−d

(
m− 1

m− 1 + n− d
)(

d− k
m− 1

)
= �{n=k}.

Necessity of the statement relies on a rather technical proof. The inter-

ested reader is referred to Mai et al. (2016a) for details. �

How is the stochastic model (8.3) of (U1, . . . , Ud) in Theorem 8.1, in-

volving maxima, related to the exogenous shock model (8.1) of (X1, . . . , Xd),

involving minima? Let F̄ : [0,∞) → [0, 1] denote an arbitrary, univariate

survival function, which is continuous and strictly decreasing, and F̄−1 its

inverse, e.g. F̄ (x) = exp(−x) and F̄−1(y) = − log(y). The random variables

ZI in the stochastic model (8.3) take values in [0, 1], so that the transformed

random variables EI := F̄−1(ZI) take values in [0,∞]. Indeed, if we define

(X1, . . . , Xd) via (8.1) with this special choice of random variables EI , we

observe that

Xk = min
{
F̄−1(ZI) | k ∈ I

}
= F̄−1

(
max{ZI | k ∈ I}

)
= F̄−1(Uk),

for k = 1, . . . , d. Conversely, starting from the stochastic model (8.1) of

(X1, . . . , Xd) with given random variables EI , whose distribution function

is assumed to be continuous and strictly increasing on (0,∞) (possibly

with an atom/jump at ∞), we may define random variables ZI := F̄ (EI)

– satisfying the conditions in the statement of Theorem 8.1 with F̄ the

survival function of X1 – and obtain

Uk = max
{
F̄ (EI) | k ∈ I

}
= F̄
(
min{EI | k ∈ I}

)
= F̄ (Xk).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 271

Further Copula Families with Known Extendible Subclass 271

This computation shows that every random vector (X1, . . . , Xd) that is

defined along an exogenous shock model of the form (8.1) has the survival

copula C in (8.2), because (U1, . . . , Ud) and (X1, . . . , Xd) are related by the

component-wise strictly decreasing and continuous transformation F̄ .

Example 8.1 (Marshall–Olkin Case)

Let us postulate that gk(u) = uak−1 for k = 1, . . . , d with a se-

quence (a0, . . . , ad−1) of real numbers. From Section 3.2.1 we know that

(a0, . . . , ad−1) must be a d-monotone sequence with a0 = 1 in order for C

in (8.2) to be a proper copula. How is this d-monotonicity condition hidden

in the condition of Theorem 8.1? The functions Hm are given by

Hm(u) = u
∑m−1

i=0 ad−m+i (−1)i (m−1
i) = u(−1)m−1 ∆m−1ad−m , m = 1, . . . , d.

While continuity, strict positivity on (0, 1], and the condition Hm(1) = 1

are obviously satisfied, non-decreasingness of all functions Hm is equivalent

to the condition that the exponents are non-negative, i.e.

(−1)m−1 ∆m−1ad−m ≥ 0, for all m = 1, . . . , d, (8.5)

which is equivalent to d-monotonicity1.

Remark 8.1 (Analytical Characterization)

The characterization of Theorem 8.1 is useful, since it is related to a

stochastic model. The reference Mai et al. (2016a) furthermore shows an

alternative characterization, which is purely analytical. It is used later in

the proof of Theorem 8.4. It states that the function in (8.2) is a copula if

and only if g1(u) = u, g2(1) = . . . = gd(1) = 1, and

j∑
i=0

(−1)i
(
j

i

) i∏
�=1

g�+k(u)

j∏
�=i+1

g�+k(v) ≥ 0,

for all 0 < u < v ≤ 1, k ∈ N0, j ∈ N, with k + j ≤ d.

8.1.1 Extendible Exogenous Shock Models

Let Λ = {Λt}t≥0 be an additive subordinator with associated family of

Bernstein functions {Ψt}t≥0, see Definition A.8, and limt↗∞ Λt = ∞ a.s.

Furthermore, let {Ek}k∈N denote a list of i.i.d. unit exponential random

1That a d-monotone sequence (a0, . . . , ad−1) satisfies (8.5) is obvious. That (8.5) al-
ready implies d-monotonicity is an easy exercise we leave for the interested reader, see
also Mai and Scherer (2009a, Lemma 2.5).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 272

272 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

variables, independent of Λ. Let us study the distribution of {Xk}k∈N,

where

Xk := inf{t > 0 : Λt > Ek}, k ∈ N. (8.6)

For each k ∈ N, we observe

F̄ (t) := P(Xk > t) = P(Λt ≤ Ek) = E
[
e−Λt

]
= e−Ψt(1), t ≥ 0.

Due to the stochastic continuity of Λ, t �→ Ψt(1) is continuous, and so is

the survival function F̄ . Consequently, there is a unique survival copula C

of (X1, . . . , Xd). We wish to compute the latter. To this end, we observe

that

P(X1 > t1, . . . , Xd > td)

= E
[
e−

∑d
k=1 Λtk

]
= E
[
e
−∑d

k=1(d−k+1)(Λt(k)
−Λt(k−1)

)
]

=
d∏

k=1

e
−[Ψt(k)

−Ψt(k−1)
](d−k+1)

=
d∏

k=1

e
−Ψt(k)

(d−k+1)+Ψt(k−1)
(d−k+1)

=

d∏
k=1

e
−Ψt(k)

(d−k+1)+Ψt(k)
(d−k)

, t0 := 0. (8.7)

Consequently, by Sklar’s theorem for survival copulas (cf. Theorem 1.3),

the unique survival copula C of (X1, . . . , Xd) is given by

C(u1, . . . , ud) = P
(
X1 > F̄−1(u1), . . . , Xd > F̄−1(ud)

)
=

d∏
k=1

exp
(
−ΨF̄−1(u(k))

(k) + ΨF̄−1(u(k))
(k − 1)

)
,

since the function F̄−1 is non-increasing, implying F̄−1(u(1)) ≥ . . . ≥
F̄−1(u(d)). Summarizing, we have proved the following result.

Theorem 8.2 (Families of Extendible exShock Copulas)

The survival copula of (X1, . . . , Xd), which is defined via (8.6), has the

form (8.2) with

gk(u) := exp
(
−ΨF̄−1(u)(k) + ΨF̄−1(u)(k − 1)

)
, k = 1, . . . , d,

where F̄ (t) := exp
(−Ψt(1)

)
, t ≥ 0.

Example 8.2 (Marshall–Olkin Case)

If Λ is chosen as a Lévy subordinator, Ψt = tΨ1 for all t ≥ 0. Con-

sequently, F̄ (t) = exp
(− Ψ1(1) t

)
corresponds to an exponential survival

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 273

Further Copula Families with Known Extendible Subclass 273

function with rate Ψ1(1). Its inverse is given by F̄−1(u) = − log(u)/Ψ1(1),

so that the functions gk for k = 1, . . . , d are given by

gk(u) = exp
(
−Ψ− log(u)

Ψ1(1)

(k) + Ψ− log(u)
Ψ1(1)

(k − 1)
)

= exp
(log(u)
Ψ1(1)

Ψ1(k)− log(u)

Ψ1(1)
Ψ1(k − 1)

)
= u

Ψ1(k)

Ψ1(1)
−Ψ1(k−1)

Ψ1(1) .

The sequence {Ψ1(k)−Ψ1(k− 1)}k∈N is completely monotone, since Ψ1 is

a Bernstein function. Dividing the whole sequence by Ψ1(1) corresponds to

a normalization that guarantees g1(u) = u.

8.1.1.1 The Dirichlet Copula

In some applications, radial symmetry is a desired property. We are going

to investigate when the d-dimensional copula (8.2) is radially symmetric.

According to Definition 1.8 and Equation (1.10), radial symmetry implies

for ordered arguments 0 ≤ u1 ≤ u2 ≤ . . . ≤ ud ≤ 1 that

u1

d∏
k=2

gk
(
uk
)
= C(u1, . . . , ud) = Ĉ(u1, . . . , ud)

= 1 +
d∑

k=1

(−1)k
∑

1≤j1<...<jk≤d

(1− ujk)
k∏

i=2

gi
(
1− ujk−i+1

)
. (8.8)

Applying the mixed derivative operator ∂
∂u1

∂
∂u2

. . . ∂
∂ud

on both sides of

the last equation, all summands on the right-hand side disappear, except

for one, yielding the equation

d∏
k=2

g
′
k(uk) =

d∏
i=2

g
′
i(1− ud−i+1), (8.9)

which holds for all (u1, . . . , ud) with 0 < u1 < . . . < ud < 1. In the

case d = 2, we obtain g
′
2(u2) = g

′
2(1 − u1) for all 0 < u1 < u2 < 1,

which implies that g
′
2 is a constant and g2 a linear function. Inductively,

in arbitrary dimension d, radial symmetry by definition obviously implies

that the lower-dimensional marginal copulas are radially symmetric as well.

Hence, inductively we may assume that g2, . . . , gd−1 are linear functions,

and conclude from (8.9) that g
′
d is constant as well, i.e. gd is also linear,

see Mai et al. (2016b) for details. Consequently, we have shown that a

necessary condition for a copula from (8.2) to be radially symmetric is that

all functions gk are linear functions. Since it is also clear that gk(1) = 1

for all k by Theorem 8.1, we may write gk(u) = (1 − gk(0))u + gk(0), so

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 274

274 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

that the copula is parameterized by the values g2(0), . . . , gd(0). Evaluating

Equation (8.8) in u = u1 = u2 = . . . = ud, we obtain

d∏
k=1

gk(u) = 1 +

d∑
k=1

(−1)k
(
d

k

) k∏
i=1

gi(1− u).

Differentiating both sides with respect to u gives the following equation for

all u ∈ (0, 1):

d∑
k=1

g
′
k(u)

d∏
j=1

j �=k

gj(u) =

d∑
k=1

(−1)k+1

(
d

k

) k∑
i=1

g
′
i(1− u)

k∏
j=1

j �=i

gj(1− u).

By Theorem 8.1 we are allowed to consider the limit of the last equation

for u↘ 0, which gives (using g1(0) = 0, gk(1) = 1, and g
′
k(u) ≡ 1− gk(0))

d∏
j=2

gj(0) =

d∑
k=1

(−1)k+1

(
d

k

) k∑
i=1

(1 − gi(0)). (8.10)

Denote θ := g2(0). By Theorem 8.1, we know θ ∈ [0, 1]. For d = 3,

Equation (8.10) implies g3(0) = 2 θ/(1 + θ). Inductively2, one can show

that gk(0) = (k− 1) θ/(1+ (k− 2) θ) for k = 2, . . . , d. Concluding, we have

proved the necessity part of the following theorem.

Theorem 8.3 (Radial Symmetry of exShock Copulas)

The function in Equation (8.2) is a radially symmetric copula if and only

if g1(u) = u and

gk(u) =
(1− θ)u+ (k − 1) θ

1 + (k − 2) θ
, k = 2, . . . , d,

for some parameter θ ∈ [0, 1].

Proof. Necessity has already been proved above. In order to prove suffi-

ciency, we try to represent the copula in the context of Theorem 8.2, i.e. we

try to find an additive subordinator generating the claimed functions gk.

Indeed, this is possible as follows. For θ ∈ {0, 1}, the statement is obvious,

since θ = 0 yields the independence copula C and θ = 1 the comonotonic-

ity copula M . For θ ∈ (0, 1) let c(θ) := 1/θ − 1 ∈ (0,∞) and consider an

arbitrary, continuous (univariate) distribution function G : R→ [0, 1]. Due

to continuity, the support of dG is an interval, which we denote by [t0, t1],

2See Mai et al. (2016b) for details.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 275

Further Copula Families with Known Extendible Subclass 275

possibly with t0 = −∞ and/or t1 = ∞. We define a family of Bernstein

functions {Ψt(.; θ)}t∈(t0,t1) via the Lévy–Khinchin representation

Ψt(x; θ) :=

∫ ∞

0

(
1− e−xv

) e−v c(θ) (1−G(t)) − e−v c(θ)

v
(
1− e−v

) dv, x ≥ 0.

It is not difficult to check that for each 0 ≤ t0 < s ≤ t < t1 the function

Ψt(x; θ) −Ψs(x; θ) =∫ ∞

0

(
1− e−x v

) e−v c(θ) (1−G(t)) − e−v c(θ) (1−G(s))

v
(
1− e−v

) dv, x ≥ 0,

is again a Bernstein function, so that there exists a unique, non-decreasing,

right-continuous stochastic process Λ = {Λt}t∈[t0,t1] with independent in-

crements, Λt0 = 0 and limt↗∞ Λt =∞, such that

E
[
e−xΛt

]
= e−Ψt(x;θ), t ∈ (t0, t1), x ≥ 0.

If we choose G such that t0 = 0 and t1 = ∞, we may plug this additive

subordinator into the stochastic model of Theorem 8.2 and observe that

the resulting copula is precisely of the claimed form. In order to see this,

we simply have to observe for k ∈ N that

Ψt(k; θ) =

∫ ∞

0

1− e−k v

1− e−v

e−v c(θ) (1−G(t)) − e−v c(θ)

v
dv

=

k−1∑
i=0

∫ ∞

0

e−v (i+c(θ) (1−G(t))) − e−v (i+c(θ))

v
dv

= log
(k−1∏

i=0

c(θ) + i

c(θ) (1 −G(t)) + i

)
,

where the last equality relies on the Frullani integral formula, cf. Tricomi

(1951). Furthermore, F̄ (t) := exp
(− Ψt(1; θ)

)
= 1−G(t). Plugging these

expressions into the statement of Theorem 8.2, we observe for k ≥ 2 that

gk(u; θ) = exp
(
−ΨF̄−1(u)(k; θ) + ΨF̄−1(u)(k − 1; θ)

)
= exp

(
− log

(k−1∏
i=0

c(θ) + i

c(θ)u+ i

)
+ log

(k−2∏
i=0

c(θ) + i

c(θ)u+ i

))

=
c(θ)u+ k − 1

c(θ) + k − 1
=

(1− θ)u + (k − 1) θ

1 + (k − 2) θ
.

Finally, one needs to check that the copula associated with these linear

functions gk is radially symmetric, which is done in Remark 8.2 below. �

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 276

276 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Theorem 8.3 filters out a one-parametric family of radially symmetric cop-

ulas, where the parameter θ ∈ [0, 1] interpolates between the independence

copula (for θ = 0) and the comonotonicity copula (for θ = 1). The nomen-

clature in the following definition is explained below.

Definition 8.1 (Dirichlet Copula)

With a parameter θ ∈ [0, 1], the d-dimensional copula

Cθ(u1, . . . , ud) = u(1)

d∏
k=2

(1− θ)u(k) + (k − 1) θ

1 + (k − 2) θ
, u1, . . . , ud ∈ [0, 1],

of Theorem 8.3 is called Dirichlet copula.

Where does the nomenclature Dirichlet copula come from? It follows

from general results in Ferguson (1974) that the stochastic process {1 −
exp(−Λt)}t∈(t0,t1), that is a transformation of the additive process just

introduced in the proof of Theorem 8.3, is a so-called Dirichlet process.

The latter has the characterizing property that for an arbitrary partition

t0 = s0 < s1 < . . . < s� = t1 of [t0, t1] the random vector(
e−Λs0 − e−Λs1 , . . . , e−Λs�−1 − e−Λs�

)
has a Dirichlet distribution with parameter vector c(θ)

(
G(s1) −

G(s0), . . . , G(s�) − G(s�−1)
)
. The Dirichlet distribution with parameter

vector (a1, . . . , a�) ∈ [0,∞)�, not all components equal to zero, is defined

as the probability law of the random vector(E1∑�
k=1Ek

, . . . ,
E�∑�

k=1Ek

)
,

where Ek ≡ 0 for ak = 0, and Ek ∼ Γ(ak, 1) for those k with ak > 0, all

Ek stochastically independent. Furthermore, Ferguson (1973) implies that

the induced infinite exchangeable sequence of random variables {Xk}k∈N in

Theorem 8.2 may be simulated very efficiently according to the following

accurate simulation algorithm, having efficiency O(d log(d)).

Algorithm 8.1 (Sampling from the Dirichlet Copula)

If θ ∈ {0, 1} sample from Cθ ∈ {Π,M}. If not, proceed as follows.

(1) Generate X1 ∼ G.
(2) For k = 2, . . . , d, perform the following steps to simulate Xk:

– Simulate a discrete random variable N with distribution given by

P(N = i) =
1

c(θ) + k − 1
, i = 1, . . . , k − 1,

P(N = k) =
c(θ)

c(θ) + k − 1
.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 277

Further Copula Families with Known Extendible Subclass 277

– If N equals k, simulate Xk ∼ G, otherwise set Xk := XN .

If G is the distribution function of U [0, 1], the samples (X1, . . . , Xd) have

joint distribution function Cθ. If not, then the samples have copula Cθ and

each univariate marginal distribution function equals G.

Remark 8.2 (Cθ is Radially Symmetric)

It remains to prove that Cθ is radially symmetric, which we have postponed

in the proof of Theorem 8.3 to the present remark. To this end, consider

the additive subordinator from the proof of Theorem 8.3 with G(t) = t,

0 = t0 ≤ t ≤ t1 = 1. The Dirichlet process

Ft := 1− e−Λt , 0 ≤ t ≤ 1,

is non-decreasing and right-continuous with F0 = 0, F1 = 1, and E[Ft] =

t. Consequently, it may serve as a random distribution function, from

which we can draw conditionally i.i.d. random variables {Uk}k∈N with Uk ∼
U [0, 1]. On the one hand,

P
(1
2
− U1 ≤ u1, . . . , 1

2
− Ud ≤ ud

)
= P
(
U1 ≥ 1

2
− u1, . . . , Ud ≥ 1

2
− ud
)

= E
[(
1− F(1

2−u1

)
−
)
. . .
(
1− F(1

2−ud

)
−
)]

= E
[(
1− F 1

2−u1

)
. . .
(
1− F 1

2−ud

)]
, (8.11)

where the last equality follows from the fact that t �→ Ft has no jumps at

fixed time points by stochastic continuity of additive subordinators. On the

other hand,

P
(
U1 − 1

2
≤ u1, . . . , Ud − 1

2
≤ ud
)
= E
[
F 1

2+u1
. . . F 1

2+ud

]
. (8.12)

Radial symmetry means that the expressions in (8.11) and (8.12) are iden-

tical. To this end, it is sufficient to prove that {Ft}t∈[0,1]
d
= {1−F1−t}t∈[0,1].

However, the aforementioned relation of the Dirichlet process to the Dirich-

let distribution implies for arbitrary 0 < t1 < t2 < . . . < t� < 1 that the two

random vectors (Ft1 , Ft2 − Ft1 , . . . , Ft� − Ft�−1
) and (1 − F1−t1 ,−F1−t2 +

F1−t1 , . . . ,−F1−t� + F1−t�−1
, F1−t�) have the same (Dirichlet) distribution.

Consequently, the cumulative sums of both vectors are equal in distribu-

tion as well, verifying {Ft}t∈[0,1]
d
= {1 − F1−t}t∈[0,1], and, hence, radial

symmetry.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 278

278 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

To gain a deeper understanding of Dirchlet copulas, we exemplarily inves-

tigate the bivariate case d = 2 in more detail. To this end, notice that the

bivariate Dirichlet copula takes the form

Cθ(u1, u2) = min{u1, u2}
(
(1− θ) max{u1, u2}+ θ

)
= θ min{u1, u2}+ (1− θ)u1 u2, u1, u2 ∈ [0, 1].

This copula is radially symmetric and exchangeable, its scatter plots exhibit

symmetries with respect to both the diagonal and the counterdiagonal of

the unit square [0, 1]2, and it can be interpreted as the convex combination

of comonotonicity and independence. These properties make it natural

to extend the parameter space to θ ∈ [−1, 1] according to the following

generalized definition:

Cθ(u1, u2) := (8.13)

min{u1, u2}

(
(1− θ) max{u1, u2}+ θ

)
, if θ ∈ [0, 1]

u1 −min{u1, 1− u2}
(
(1 + θ) max{u1, 1− u2} − θ

)︸ ︷︷ ︸
−θ max{u1+u2−1,0}+(1+θ)u1 u2

, if θ ∈ [−1, 0) .

The logic behind this generalization is that if (U1, U2) ∼ C(u1, u2), then

(U1, 1 − U2) ∼ u1 − C(u1, 1 − u2). Due to the aforementioned symme-

tries in case of the Dirichlet copula, for θ ∈ [0, 1] the copulas Cθ(u1, u2)

and C̃θ(u1, u2) := u1 − Cθ(u1, 1 − u2) are both exchangeable and radially

symmetric, with C0 = C̃0 = Π. For θ ↗ 1, Cθ approaches the upper

Fréchet–Hoeffding bound M , whereas C̃θ approaches the lower Fréchet–

Hoeffding bound W . Consequently, the generalized definition (8.13) of the

bivariate Dirichlet copula provides a family of radially symmetric and ex-

changeable copulas that interpolates the full range of dependence from the

lower Fréchet–Hoeffding bound (for θ = −1) to the upper Fréchet–Hoeffding
bound (for θ = 1). The best-known bivariate copula sharing these proper-

ties is the bivariate Gaussian copula, which is a somehow complementary

object. The stochastic model Y = g(X) for some increasing (decreasing)

function g is obtained by the comonotonicity copulaM (countermonotonic-

ity copula W) for (X,Y). If we wish to model “symmetric noise” around

the functional relationship Y = g(X), we might do this by changing the

comonotonicity (countermonotonicity) copula to a Gaussian copula with

parameter close to 1 (close to −1). Intuitively, almost all samples will

violate the relationship Y = g(X) but all violations remain within a sym-

metric region around this relation whose size is controlled by the Gaussian

copula parameter. Compared to Gaussian copulas, Dirichlet copulas do

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 279

Further Copula Families with Known Extendible Subclass 279

not generate symmetric noise, but somehow the complete opposite, namely

“symmetric outliers”. Intuitively, most samples will satisfy the base case

relation Y = g(X) but a small set of samples, whose size is controlled by

θ, violates this relation dramatically.

8.1.1.2 Sato-Frailty Copulas

We now apply the stochastic construction of Theorem 8.2 with a special

family of additive subordinators, which are defined as follows.

Definition 8.2 (Sato Subordinator)

An additive subordinator Λ = {Λt}t≥0 is called Sato subordinator if it is

self-similar, i.e. for any a > 0 there exists b = b(a) such that

{Xa t}t≥0
d
= {bXt}t≥0.

If Λ is a Sato subordinator, it is well-known that there exists a number

H > 0, called the self-similarity index, such that b(a) = aH , see Sato (1999,

Theorem 13.11, p. 73). Furthermore, there is an interesting link between

Sato subordinators and the following family of distributions.

Definition 8.3 (Self-Decomposable Distribution)

A (real-valued) random variable X is called self-decomposable if for any

c ∈ (0, 1) there is an independent random variable Y = Yc such that

X
d
= cX + Y.

In other words, a self-decomposable random variable can be decomposed

(in distribution) into the sum of an arbitrary fraction of itself and an inde-

pendent random variable.

Example 8.3 (The Gamma Distribution is Self-Decomposable)

Consider X ∼ Γ(β, η) with β, η > 0. Its Laplace transform is ϕ(x) =

(η/(η + x))β , x ≥ 0. We consider the function

Ψ(x) := −xϕ
′
(x)

ϕ(x)
= β

x

η + x
= β
(
1− E

[
e−x J

])
, x ≥ 0,

where J ∼ Exp(η). According to Formula (A.7), Ψ is the Laplace exponent

of a compound Poisson subordinator with zero drift, intensity β, and jumps

with Exp(η)-distribution. Denote by Λ = {Λt}t≥0 such a compound Poisson

subordinator, independently of X. For given c ∈ (0, 1), we consider the

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 280

280 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

random variable

Yc : = c

∫ − log(c)

0

et dΛt

= c lim
n→∞

n∑
i=1

e−
log(c) (i−1)

n

(
Λ− log(c) i

n
− Λ− log(c) (i−1)

n

)
,

where the last equality just gives the explicit pathwise expression of the

Riemann–Stieltjes integral with respect to the non-decreasing function t �→
Λt for the sake of clarity. Using the stationarity and independence of in-

crements of Λ as well as the bounded convergence theorem in the second

equality below, we compute the Laplace transform of cX + Yc, which is

E
[
e−u (cX+Yc)

]
= ϕ(c u)E

[
exp
(
− lim

n→∞

n∑
i=1

u c e−
log(c) (i−1)

n

(
Λ− log(c) i

n

− Λ− log(c) (i−1)
n

))]

= ϕ(c u) lim
n→∞

n∏
i=1

E
[
exp
(
− u c e− log(c) (i−1)

n Λ− log(c)
n

)]

= ϕ(c u) lim
n→∞

n∏
i=1

exp
(log(c)

n
Ψ
(
u c e−

log(c) (i−1)
n

))

= ϕ(c u) exp
(
− lim

n→∞

n∑
i=1

− log(c)

n
Ψ
(
u c e−

log(c) (i−1)
n

))

= ϕ(c u) exp
(
−
∫ − log(c)

0

Ψ
(
u c et

)
dt
)

= ϕ(c u) exp
(∫ − log(c)

0

u c et
ϕ

′(
u c et

)
ϕ
(
u c et

) dt
)

= ϕ(c u) exp
(∫ u

c u

ϕ
′
(x)

ϕ(x)
dx
)
= ϕ(c u)

ϕ(u)

ϕ(c u)
= ϕ(u) = E

[
e−uX

]
.

This shows X
d
= cX + Yc, hence self-decomposability. Notice that the con-

struction of Yc in this example via Lévy subordinators works for an arbi-

trary self-decomposable probability law on [0,∞), since one can generally

show for the Laplace transform ϕ of a self-decomposable law that the func-

tion Ψ(x) := xϕ
′
(x)/ϕ(x) is the Laplace exponent of a Lévy subordinator,

see Steutel and van Harn (2003, p. 224 ff.) for details.

Self-decomposable distributions arise naturally in the context of Sato sub-

ordinators, as the following lemma shows.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 281

Further Copula Families with Known Extendible Subclass 281

Lemma 8.1 (Self-Decomposability and Sato Subordinators)

If Λ = {Λt}t≥0 is a Sato subordinator, then for each t ≥ 0 the ran-

dom variable Λt is self-decomposable. Conversely, if X is a non-negative,

self-decomposable random variable, and H > 0, then there exists a Sato

subordinator Λ = {Λt}t≥0 with self-similarity index H, which is uniquely

determined in law, such that Λ1
d
= X.

Proof. See Sato (1999, Theorem 16.1, p. 99) or Jeanblanc et al. (2002).

We provide a sketch of the proof to gain understanding about Sato subor-

dinators. Throughout, we denote the Laplace transform of X by ϕ.

In generalization of the Gamma-distribution case in Example 8.3, one

can show that the function Ψ(x) := xϕ
′
(x)/ϕ(x) is the Laplace exponent of

a Lévy subordinator L = {Lt}t≥0, cf. Steutel and van Harn (2003, Theorem

2.9, p. 229). Based on this associated Lévy subordinator and the constant

H > 0, we define

Λt :=

{∫∞
log(1/t) e

−sH dL
(−)
s , if 0 ≤ t ≤ 1∫∞

0 e−sH dL
(−)
s +

∫ log(t)
0 esH dL

(+)
s , if t ≥ 1

,

where L(−) and L(+) denote two independent copies of {LtH}t≥0, and the

integrals are defined pathwise like in Example 8.3. Obviously, Λ has non-

negative, independent increments, so it is an additive subordinator, whose

associated family of Bernstein functions we denote by {Ψt}t≥0, as usual.

Furthermore, a lengthy computation analogous to the one in Example 8.3

shows that

e−Ψt(u) = E
[
e−uΛt

]
= ϕ
(
u tH
)
, u, t ≥ 0. (8.14)

From this, it follows that Λ is self-similar, which is shown in the sequel.

Let d ∈ N and 0 ≤ t1, . . . , td < ∞ be arbitrary and denote their ordered

list by 0 ≤ t(1) ≤ t(2) ≤ . . . ≤ t(d). Then, by steps related to those

that led to Equation (8.7) in the proof of Theorem 8.2, we see that for

a > 0, v1, . . . , vd ∈ N0, and t̃k := t1, for k = 1, . . . , v1, t̃k := t2, for k =

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 282

282 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

v1+1, . . . , v1+v2, until t̃k := td, for k = v1+ . . .+vd−1+1, . . . , v1+ . . .+vd,

E
[
e−

∑d
k=1 vk Λa tk

]
= E
[
e−

∑v1+...+vd
k=1

Λa t̃k

]
(8.7)
=

v1+...+vd∏
k=1

e
−Ψa t̃(k)

(
v1+...+vd−k+1

)
+Ψa t(k)

(
v1+...+vd−k

)

(8.14)
=

v1+...+vd∏
k=1

ϕ
(
(v1 + . . .+ vd − k + 1) (a t̃(k))

H
)

ϕ
(
(v1 + . . .+ vd − k) (a t̃(k))H

)
=

v1+...+vd∏
k=1

ϕ
(
aH (v1 + . . .+ vd − k + 1) t̃H(k)

)
ϕ
(
aH (v1 + . . .+ vd − k) t̃H(k)

)
(8.14)
=

v1+...+vd∏
k=1

e
−Ψt̃(k)

(
aH (v1+...+vd−k+1)

)
e
−Ψt̃(k)

(
aH (v1+...+vd−k)

)
(8.7)
= E

[
e−

∑d
k=1 aH vk Λtk

]
.

Since the (multivariate) Laplace transform on Nd
0 already specifies the

Laplace transform3 on Rd
+, we obtain the results also for v1, . . . , vd ∈ Rd

+,

and, consequently (Λa t1 , . . . ,Λa td)
d
=
(
aH Λt1 , . . . , a

H Λtd

)
, proving self-

similarity of Λ. Consequently, for self-decomposable, non-negative X we

have found a Sato subordinator satisfying Λ1
d
= X .

Conversely, let Λ be a Sato subordinator with self-similarity indexH > 0

and denote X := Λ1. We prove self-decomposability of X . To this end, fix

c ∈ (0, 1). Using the self-similarity, we observe

E
[
exp
(
−uΛc1/H

)]
= E
[
exp
(
−u cΛ1

)]
= E
[
exp
(
−u cX

)]
, u ≥ 0.

In particular, c1/H < 1 and

X=Λ1=Λc1/H +
(
Λ1 − Λc1/H

)︸ ︷︷ ︸
=:Yc

d
= cX + Yc,

where X and Yc on the right-hand side are independent by the independent

increments of Λ. �

Lemma 8.1 implies that the probability law of a Sato subordinator Λ is fully

specified by its self-similarity index H and the probability law of Λ1, which

is self-decomposable. Furthermore, the probability law of Λ1 is fully speci-

fied by its Laplace transform ϕ(x) := E
[
exp(−xΛ1)

]
, x ≥ 0. Consequently,

3By the Stone–Weierstrass theorem, d-variate polynomials are dense in the set of con-
tinuous d-variate functions on [0, 1]d.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 283

Further Copula Families with Known Extendible Subclass 283

the pair (H,ϕ) determines the probability law of the Sato subordinator Λ.

Let us now apply the construction of Theorem 8.2 with a Sato subordinator

Λ whose probability law is described by (H,ϕ). Self-similarity implies

E
[
exp
(
−xΛt

)]
= E
[
exp
(
−x tH Λ1

)]
= ϕ
(
x tH
)
, t, x ≥ 0.

Consequently, the required quantities for the application of Theorem 8.2

read

Ψt(x) = − log
(
ϕ
(
x tH
))
,

F̄ (t) = e−Ψt(1) = E
[
exp
(−Λt

)]
= ϕ
(
tH
)
, F̄−1(u) =

(
ϕ−1(u)

) 1
H ,

gk(u) = exp
(
−ΨF̄−1(u)(k) + ΨF̄−1(u)(k − 1)

)
=

ϕ
(
k ϕ−1(u)

)
ϕ
(
(k − 1)ϕ−1(u)

) .
The self-similarity index H cancels out in the computation of gk, so that the

resulting copula is parameterized solely in terms of the Laplace transform

ϕ of the self-decomposable random variable Λ1. Summarizing, if ϕ equals

the Laplace transform of any self-decomposable probability distribution on

the positive half-axis, by Theorem 8.2 the function

Cϕ(u1, . . . , ud) = u(1)

d∏
k=2

ϕ
(
k ϕ−1(u(k))

)
ϕ
(
(k − 1)ϕ−1(u(k))

) (8.15)

defines a copula in arbitrary dimension d ≥ 2. Recalling Kimberlings the-

orem 2.2 for Archimedean copulas, it is a natural question whether the

converse is also true. If Cϕ in (8.15) is a copula in any dimension d ≥ 2,

does this imply that ϕ needs to be the Laplace transform of a non-negative,

self-decomposable probability distribution? The answer is affirmative and

stated in the following theorem.

Theorem 8.4 (Copula-Characterization of Self-Decomp. Laws)

The d-variate function (8.15) defines a copula for each d ≥ 2 if and only if

ϕ is the Laplace transform of some non-negative, self-decomposable random

variable.

Proof. Sufficiency has already been demonstrated using Theorem 8.2.

Necessity can be verified as follows. If Cϕ is a copula, Remark 8.1 implies

that

ϕ
(
(k + j)ϕ−1(v)

)
ϕ
(
k ϕ−1(u)

) j∑
i=0

(−1)i
(
j

i

)
ϕ
(
(k + i)ϕ−1(u)

)
ϕ
(
(k + i)ϕ−1(v)

) ≥ 0,

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 284

284 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

for all 0 < u < v < 1 and j ∈ N, k ∈ N0. Since ∞ > ϕ−1(u) > ϕ−1(v) ≥ 0

we conclude for arbitrary ∞ > b > a ≥ 0 that

j∑
i=0

(−1)i
(
j

i

)
ϕ
(
(k + i) b

)
ϕ
(
(k + i) a

) ≥ 0. (8.16)

Now choose c ∈ [0, 1), q > 0, and set b := q, 0 ≤ a := c q < b.

(8.16) implies by definition of complete monotonicity that the sequence

{ϕ(k q)/ϕ(k c q)}k∈N0 is completely monotone. Since q was arbitrary, one

may conclude that the function x �→ ϕ(x)/ϕ(c x) is completely monotone4.

By Bernstein’s theorem 2.1, there exists a positive random variable Yc such

that

ϕ(x)

ϕ(c x)
= E
[
e−xYc

]
. (8.17)

In particular,X := Y0 is a random variable with Laplace transform ϕ, which

already shows that ϕ is a Laplace transform. Furthermore, for c ∈ (0, 1)

let X and Yc be defined stochastically independent on the same probability

space and observe

E
[
e−xX

]
= ϕ(x)

(8.17)
= E

[
e−xYc

]
ϕ(c x)

= E
[
e−xYc

]
E
[
e−x cX

]
= E
[
e−x (cX+Yc)

]
,

showing that X
d
= cX + Yc, which implies self-decomposability of X . �

We end this section with a one-parametric example.

Example 8.4 (A Copula Based on the Γ-Distribution)

Example 8.3 shows that the Gamma distribution is self-decomposable. The

random variable X ∼ Γ(β, 1) has Laplace transform ϕ(x) = (1 + x)−β ,

x ≥ 0, so that Theorem 8.4 leads to the one-parametric copula-family

Cβ(u1, . . . , ud) =

(
d∏

k=1

1 + (k − 1) (u
− 1

β

(k) − 1)

1 + k (u
− 1

β

(k) − 1)

)β

.

Simulating a Sato-subordinator is more involved than simulating a Lévy-

subordinator. A simulation strategy for the former class of processes is

stated in Mai et al. (2016c).

4See Mai et al. (2016c, Lemma 3.1) for details.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 285

Further Copula Families with Known Extendible Subclass 285

8.2 Extreme-Value Copulas

Recall from Section 1.2.5 that a copula C(u1, . . . , ud) is called extreme-value

copula if it satisfies

C(u1, . . . , ud)
t = C

(
ut1, . . . , u

t
d

)
, for all t ≥ 0.

It has already been explained in Section 1.2.5 that extreme-value copulas

are popular not only due to their dominant position in multivariate extreme-

value theory, but also due to their analytical tractability. In particular, the

Pickands dependence function5

P (t1, . . . , td) := − log
(
C
(
e−t1 , . . . , e−td

))
, t1, . . . , td ≥ 0,

from Theorem 1.5 is homogeneous of order one, i.e.

P (γ t1, . . . , γ td) = γ P (t1, . . . , td), γ > 0, t1, . . . , td ≥ 0.

Ressel (2013) explains how this analytical property gives rise to an integral

representation of P , see Theorem 1.5. In this section we focus on a third

aspect of extreme-value copulas that makes them a quite interesting object

to study and establishes a convenient point of view for the purpose of de-

termining their extendible subfamily: their link to multivariate exponential

distributions.

The normal distribution is the best-studied and most frequently applied

parametric family of probability distributions – for numerous reasons, see

Mai and Scherer (2014b, Chapter 4.1) for a discussion. Furthermore, there

is a unified theory that treats the univariate and multivariate case alike,

building heavily upon the apparatus of linear algebra. However, when mod-

eling random future time points – for example lifetimes or future time points

at which special events take place – the normal distribution is not always

the most intuitive model, simply because a future time point cannot be

negative, i.e. required is a probability law on the positive half-axis. The

commanding parametric model in such situations is the exponential dis-

tribution. Unlike in the case of normal distributions, however, there exist

different concepts6 of multivariate exponential distributions, one popular

among them being the Marshall–Olkin distribution, cf. Chapter 3.

Another popular and more general concept of multivariate exponen-

tial distributions is the one of min-stable multivariate exponentials, see

Esary and Marshall (1974). It generalizes the min-stability property of the

5Sometimes also called stable tail dependence function.
6Early contributions include Gumbel (1960a,b).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 286

286 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

univariate exponential distribution to the multivariate case. The classical

min-stability property of the exponential law states that if X1, . . . , Xd are

independent exponential random variables, then min{X1, . . . , Xd} is also

exponential. The following definition more generally takes into account the

case of dependent exponential random variables.

Definition 8.4 (Min-Stable Multiv. Exponential Distribution)

A random vector (X1, . . . , Xd) taking values in [0,∞)d is said to

follow a min-stable multivariate exponential distribution (MSMVE) if

min{c1X1, . . . , cdXd} has a (univariate) exponential distribution for all

c1, . . . , cd ∈ (0,∞], with at least one ck <∞.

Decomposing a min-stable multivariate exponential distribution into copula

and marginals, obviously all marginal laws must be (univariate) exponen-

tials. Furthermore, it turns out that their survival copula needs to be an

extreme-value copula.

Lemma 8.2 (Extreme-Value Copulas and MSMVEs)

A random vector (X1, . . . , Xd) has a min-stable multivariate exponential

distribution if and only if Xk ∼ Exp(λk) for some λk > 0, k = 1, . . . , d,

and the unique survival copula of (X1, . . . , Xd) is an extreme-value copula.

Proof. Throughout the proof, we apply the conventions exp(−∞) := 0,

1/∞ := 0, and 1/0 := ∞. We first prove sufficiency. Let (X1, . . . , Xd)

be a random vector with survival copula C, which is an extreme-value

copula, and with univariate exponential marginals, say Xk ∼ Exp(λk).

Furthermore choose c1, . . . , cd ∈ (0,∞] arbitrary with at least one ck <∞.

It follows that

P
(
min{c1X1, . . . , cdXd} > t

)
= P
(
X1 >

t

c1
, . . . , Xd >

t

cd

)
= C
(
e
−λ1

t
c1 , . . . , e

−λd
t
cd

)
= C
(
e
−λ1

c1 , . . . , e
−λd

cd

)t
= e

−P
(

λ1
c1

,...,
λd
cd

)
t
,

hence min{c1X1, . . . , cdXd} ∼ Exp
(
P (λ1/c1, . . . , λd/cd)

)
. For necessity,

we first observe (by definition) that the marginals must be exponential, say

with rates λ1, . . . , λd. By Sklar’s theorem for survival copulas (cf. Theo-

rem 1.3), the unique survival copula is given by

C(u1, . . . , ud) = P
(
X1 > − log(u1)

λ1
, . . . , Xd > − log(ud)

λd

)
.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 287

Further Copula Families with Known Extendible Subclass 287

The associated Pickands dependence function is hence given by

P (t1, . . . , td) = − log
(
C
(
e−t1 , . . . , e−td

))
= − log

(
P
(
X1 >

t1
λ1
, . . . , Xd >

td
λd

))
.

It remains to verify that this function is homogeneous of order one. To this

end, let γ > 0 and check

P (γ t1, . . . , γ td) = − log
(
P
(λ1
t1
X1 > γ, . . . ,

λd
td
Xd > γ

))
= − log

(
min
{λ1
t1
X1, . . . ,

λd
td
Xd

}
> γ
)

= − log
(
e
−c
(

λ1
t1

,...,
λd
td

)
γ
)
= γ c

(λ1
t1
, . . . ,

λd
td

)
,

where c
(
c1, . . . , cd

)
denotes the exponential rate of min{c1X1, . . . , cdXd}.

However, the same computation with γ = 1 shows that

c
(λ1
t1
, . . . ,

λd
td

)
= P (t1, . . . , td),

which proves that P is homogeneous of order one, hence C must be an

extreme-value copula. �

Lemma 8.2 constitutes that a study of extreme-value copulas is more or less

equivalent to a study of min-stable multivariate exponential distributions

(modulo the exponential margins). In the sequel, we are going to answer

the question: When is a min-stable multivariate exponential distribution

(an extreme-value copula) extendible? To this end, it is useful to briefly re-

call the family of Marshall–Olkin distributions. Obviously, Marshall–Olkin

distributions are MSMVEs, and by Section 3.3 we know that the latent fac-

tor behind extendible Marshall–Olkin distributions is a Lévy subordinator.

Consequently, extendibility of MSMVEs requires a concept of stochastic

processes generalizing Lévy subordinators. The following theorem from

Mai and Scherer (2014a) reveals a deep connection between extreme-value

copulas and strong IDT subordinators, see Appendix A.4.2 for an introduc-

tion of the latter.

Theorem 8.5 (Extendible EVCs)

Let C : [0, 1]d → [0, 1]. The following statements are equivalent:

(1) C is an extendible extreme-value copula.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 288

288 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

(2) For arbitrary u1, . . . , ud ∈ (0, 1] we have

C(u1, . . . , ud) = E
[
e−

∑d
k=1 Λ− log(uk)

]
,

where Λ = {Λt}t≥0 is a strong IDT subordinator whose associated

Bernstein function Ψ satisfies Ψ(1) = 1.

Proof. We first proof (2) ⇒ (1). Let Λ be a strong IDT subordinator

whose associated Bernstein function Ψ satisfies Ψ(1) = 1. Furthermore,

let E1, E2, . . . be a list of i.i.d. random variables with E1 ∼ Exp(1), inde-

pendent of Λ. We consider the exchangeable sequence of random variables

{Xk}k∈N defined by

Xk := inf{t > 0 : Λt > Ek}, k ∈ N.
Obviously, the survival copula C of (X1, . . . , Xd) is extendible. Further-

more, it is observed that

P(Xk > t) = P(Λt < Ek) = E
[
e−Λt

]
= e−tΨ(1) = e−t, t ≥ 0,

so that Xk ∼ Exp(1) for each k ∈ N. Sklar’s theorem for survival copulas

(cf. Theorem 1.3) implies that the survival copula C is given by

C(u1, . . . , ud) = P
(
X1 > − log(u1), . . . , Xd > − log(ud)

)
= P(Λ− log(u1) < E1, . . . ,Λ− log(ud) < Ed)

= E
[
e−

∑d
k=1 Λ− log(uk)

]
. (8.18)

Consequently, C is an extendible copula, and left to verify is the extreme-

value property. By Lemma A.7, the process
{∑d

k=1 Λ−t log(uk)

}
t≥0

is

strong IDT. In particular, there exists an associated Bernstein function,

say Ψu1,...,ud
, such that

E
[
e−x

∑d
k=1 Λ−t log(uk)

]
= e−tΨu1,...,ud

(x).

This implies for t > 0 together with Equation (8.18) that

C
(
ut1, . . . , u

t
d

)
= e−tΨu1,...,ud

(1) =
(
e−Ψu1,...,ud

(1)
)t

= C(u1, . . . , ud)
t,

finishing the statement (2) ⇒ (1).

For the reverse implication (1) ⇒ (2) we consider an exchangeable se-

quence of random variables {Uk}k∈N with (U1, . . . , Ud) ∼ C. Furthermore,

we transform this sequence (strictly decreasing) via Xk := − log(Uk) to

an exchangeable sequence {Xk}k∈N of unit exponential random variables.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 289

Further Copula Families with Known Extendible Subclass 289

De Finetti’s theorem (cf. Theorem 1.4) implies the existence of a random

distribution function {Ft}t≥0 such that

P(Xk ≤ t | {Ft}t≥0) = Ft, t ≥ 0.

We define the stochastic process Λt := − log(1 − Ft), t ≥ 0. By the condi-

tional independence structure,

C
(
e−t1 , . . . , e−td

)
= P(X1 > t1, . . . , Xd > td)

= E
[
P(X1 > t1, . . . , Xd > td | {Ft}t≥0)

]
= E
[d∏
k=1

P(Xk > tk | {Ft}t≥0)
]
= E
[d∏
k=1

(1− Ftk)
]

= E
[
e−

∑d
k=1 Λtk

]
.

Plugging in tk := − log(uk) in the last equation, it is observed that the claim

boils down to the verification of the strong IDT property for Λ. To this

end, it is useful to note that the derivation up to here has been independent

of the dimension d. We need to show that

(Λt1 , . . . ,Λtd)
d
=
(n∑

i=1

Λ
(i)
t1/n

, . . . ,

n∑
i=1

Λ
(i)
td/n

)
, ∀ t1, . . . , td ≥ 0, d ∈ N,

where Λ(i) are independent copies of Λ. We fix d ∈ N and t1, . . . , td ≥ 0. By

uniqueness of the multivariate Laplace transform, it suffices to show that

E
[
e−

∑d
k=1 vk Λtk

]
= E
[
e
−∑d

k=1 vk
∑n

i=1 Λ
(i)

tk/n
]
, ∀ v1, . . . , vd ≥ 0, d ∈ N.

First, let v1, . . . , vd ∈ N0. Then

E
[
e−

∑d
k=1 vk Λtk

]
= E
[
exp
(
−

d∑
k=1

Λtk + . . .+ Λtk︸ ︷︷ ︸
vk times

)]

= C
(
e−t1 , . . . , e−t1︸ ︷︷ ︸

vk times

, . . . , e−td , . . . , e−td︸ ︷︷ ︸
vk times

)
(∗)
= C
(
e−t1/n, . . . , e−t1/n, . . . , e−td/n, . . . , e−td/n

)n
= E
[
e−

∑d
k=1 Λtk/n+...+Λtk/n

]n
= E
[
e−

∑d
k=1 vk Λtk/n

]n (∗∗)
= E
[
e−

∑d
k=1 vk

∑n
i=1 Λ

(i)
tk

]
,

where (∗) follows from the extreme-value property and (∗∗) exploits that

the Λ(i), i ∈ N, are i.i.d.

The case of arbitrary v1, . . . , vd ≥ 0 follows from the fact that the mul-

tivariate Laplace transform is determined by the values on Nd
0. This, in

turn, uses that the d-variate polynomials are dense in the set of continuous

d-variate functions on [0, 1]d, by the theorem of Stone–Weierstrass. �

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 290

290 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

The following corollary restates Theorem 8.5 in the language of MSMVEs

rather than extreme-value copulas.

Corollary 8.1 (Extendible MSMVEs)

The following statements are equivalent.

(1) (X1, . . . , Xd) has an extendible min-stable multivariate exponential dis-

tribution.

(2) For arbitrary x1, . . . , xd ∈ [0,∞) we have

P(X1 > x1, . . . , Xd > xd) = E
[
e−

∑d
k=1 Λxk

]
,

where Λ = {Λt}t≥0 is a strong IDT subordinator.

Theorem 8.5 is useful for the construction of parametric families of extreme-

value copulas. It should also be mentioned that path-wise properties of the

IDT subordinator used in the construction translate into stylized prop-

erties of the resulting multivariate distribution. Most obvious, jumps of

Λ translate into a singular component of (X1, . . . , Xd). Furthermore, the

first-passage time construction in the proof of Theorem 8.5 implies an effi-

cient simulation algorithm, provided a simulation algorithm for the associ-

ated strong IDT subordinator is known. In order to demonstrate this, we

present two explicit examples in Lemma 8.3 below. This result is based on

the following strong IDT subordinators7.

Example 8.5 (Families of Strong IDT Subordinators)

Let L = {Lt}t≥0 be a classical Lévy subordinator with Laplace exponent

ΨL, which is assumed to have the Lévy–Khinchin representation

ΨL(x) = µL x+

∫ ∞

0

(
1− e−x t

)
νL(dt), x ≥ 0,

with a drift µL ≥ 0 and a Lévy measure νL.

(1) The stochastic process

Λt :=

{
0 , if t = 0
1
t

∫ t
0 Ls ds , if t > 0

, t ≥ 0,

is a strong IDT subordinator with associated Bernstein function

Ψ(x) =

∫ 1

0

ΨL

(
x (1− s)) ds

=
µL

2
x+

∫ ∞

0

(
1− e−x t

) (∫ ∞

t

νL(du)

u

)
dt, x ≥ 0.

7The proof that the processes in Example 8.5 are strong IDT subordinators, and a
study of their probabilistic properties, is found in Bernhart et al. (2015).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 291

Further Copula Families with Known Extendible Subclass 291

(2) The stochastic process

Λt :=

∫ t

0

Ls

s
ds, t ≥ 0,

is a strong IDT subordinator with associated Bernstein function

Ψ(x) = µL x+

∫ ∞

0

s x

s x+ 1
νL(ds), x ≥ 0.

The two strong IDT subordinators from Example 8.5 can be plugged into

Theorem 8.5 to obtain explicit formulas for the associated extreme-value

copulas in terms of their Pickands dependence function.

Lemma 8.3 (Examples for Extendible Extreme-Value Copulas)

We denote by t(1) ≤ t(2) ≤ . . . ≤ t(d) the ordered list of the numbers

t1, . . . , td ∈ (0,∞).

(1) Let Ψ be a Bernstein function with drift µ ≥ 0 and Lévy measure

ν(dt) = g(t) dt with a non-increasing function g, satisfying Ψ(1) = 1.

Then the function P (t1, . . . , td) :=

dΨ(d)∑d
j=1

1
t(j)

−
d−1∑
i=1

(
d− i+ 1∑d

j=i
1

t(j)

− d− i∑d
j=i+1

1
t(j)

)
Ψ
(
d− i−

d∑
j=i+1

t(i)

t(j)

)
is the Pickands dependence function of an extendible extreme-value cop-

ula. Furthermore, there exists a unique Lévy subordinator L = {Lt}t≥0

such that Ψ equals the Bernstein function associated with the strong

IDT subordinator Λ of Example 8.5(1) and the extreme-value copula

associated with the Pickands dependence function P is the one obtained

like in Theorem 8.5 from Λ.

(2) Let Ψ be a Bernstein function with drift µ ≥ 0 and Lévy measure

ν(dt) = g(t) dt with a completely monotone function g, satisfying

Ψ(1) = 1. Then there is a unique Lévy subordinator L = {Lt}t≥0

such that Ψ equals the Bernstein function associated with the strong

IDT subordinator of Example 8.5(2). We denote the Lévy measure of

L by νL. The function P (t1, . . . , td) :=

d∑
i=1

t(i)

(
µ+

∫ ∞

0

(d∏
j=i+1

t(i)

t(j)

)u νL(du)

u
(
1
u + d− i+ 1

) (
1
u + d− i)

)

is the Pickands dependence function of the extendible extreme-value

copula which is obtained like in Theorem 8.5 from the additive subor-

dinator Λ of Example 8.5(2).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 292

292 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Proof. See Bernhart et al. (2015). �
The list of concrete parametric families of extreme-value copulas that can be

obtained from Lemma 8.3 is huge. Even better, as the proof of Theorem 8.5

shows, a simulation algorithm for the associated extreme-value copulas can

be built along the stochastic model

Uk := exp
(
− inf{t > 0 : Λt > Ek}

)
, k = 1, . . . , d, (8.19)

where E1, . . . , Ed is an i.i.d. list of unit exponentials, independent of Λ. In

order to implement this algorithm, required is to be able to simulate the

associated Lévy subordinator L = {Lt}t≥0 from which Λ is constructed.

This is possible in many cases. We provide a concrete example in the

sequel.

Example 8.6 (An Example for Lemma 8.3)

Let Ψ(x) = (1 + a)x/(x + a) for some a > 0, which corresponds to zero

drift µ = 0 and Lévy measure ν(dt) = (1 + a) a exp(−a t) dt. Obviously,

the function g(t) = (1 + a) a exp(−a t) is completely monotone, and in

particular non-increasing, so it satisfies the hypotheses of both cases (1)

and (2) of Lemma 8.3. However, the driving Lévy subordinator L, as well

as the resulting extreme-value copula, is different in both cases. Considering

case (1) first, L is a compound Poisson process with intensity 1 + a and

jumps following a Γ(2, a)-distribution. This implies that

Λt =
1

t

∫ t

0

Ls ds =

∫ t

0

(
1− s

t

)
dLs =

∑
τi≤t

Ji

(
1− τi

t

)
, t ≥ 0,

where τ1, τ2, . . . is the increasing sequence of jump times of a Poisson pro-

cess with intensity 1 + a and J1, J2, . . . is an independent sequence of i.i.d.

Γ(2, a)-distributed random variables. The associated Pickands dependence

function is given by

P (t1, . . . , td) =
d2 (1 + a)

(d+ a)
∑d

j=1
1

t(j)

−
d−1∑
i=1

(
d− i+ 1∑d

j=i
1

t(j)

− d− i∑d
j=i+1

1
t(j)

)
(1 + a)

(
d− i −∑d

j=i+1
t(i)
t(j)

)
a+ d− i−∑d

j=i+1
t(i)
t(j)

.

In case (2), L is a compound Poisson process with intensity (1 + a) and

jumps of deterministic height 1/a. This implies that

Λt =

∫ t

0

Ls

s
ds =

∫ t

0

log
(t
s

)
dLs =

1

a

∑
τi≤t

log
(t
τi

)
, t ≥ 0,

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 293

Further Copula Families with Known Extendible Subclass 293

where τ1, τ2, . . . is the increasing sequence of jump times of a Poisson process

with intensity 1+ a. The associated Pickands dependence function is given

by

P (t1, . . . , td) =

d∑
i=1

t(i)

(d∏
j=i+1

x(i)

x(j)

) 1
a a (a+ 1)

(a+ d− i+ 1) (a+ d− i) .

A simulation of samples from both associated one-parametric extreme-value

copulas is straightforward along the stochastic model (8.19).

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 8.1 Scatterplots of the two examples from Lemma 8.3 / Example 8.6, with
1 500 simulations in both cases. The case of Lemma 8.3(1) is displayed on the left,
Lemma 8.3(2) on the right, in both cases we used a = 2.

8.2.1 Multivariate Distributions with Exponential Minima

In addition to the family of min-stable multivariate exponential distribu-

tions as defined in Definition 8.4, the reference Esary and Marshall (1974)

also studies the family of distributions with exponential minima, which is

defined as follows.

Definition 8.5 (Distributions with Exponential Minima)

A random vector (X1, . . . , Xd) taking values in [0,∞)d is said to follow

a distribution with exponential minima (EM) if min{Xi1 , . . . , Xik} has a

(univariate) exponential distribution for arbitrary 1 ≤ i1 < . . . < ik ≤ d.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 294

294 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Obviously, the family of distributions with exponential minima contains the

family of min-stable multivariate exponential distributions. One can further

show that it is a strictly bigger class, i.e. there exist members in EM that are

not contained in MSMVE, cf. Esary and Marshall (1974, p. 87) or Mai and

Scherer (2014a, Example 5.1). Summarizing, the family of Marshall–Olkin

distributions of Chapter 3 is properly contained in the MSMVE family,

which is properly contained in the EM family, see Figure 8.2.1. Whereas

the survival copulas of Marshall–Olkin and MSMVE distributions are well-

studied, the survival copulas of the family EM are not. Nevertheless, we

decided to include this short paragraph on EM here, and also the following

lemma, because it completes the picture. For background on weak IDT

subordinators, see Appendix A.4.2.

Lemma 8.4 (Extendible EMs)

The following statements are equivalent.

(1) (X1, . . . , Xd) has an extendible distribution with exponential minima.

(2) For arbitrary x1, . . . , xd ∈ [0,∞) we have

P(X1 > x1, . . . , Xd > xd) = E
[
e−

∑d
k=1 Λxk

]
,

where Λ = {Λt}t≥0 is a weak IDT subordinator.

Proof. See Mai and Scherer (2014a). �

Figure 8.2.1 visualizes the presented relations between families of ex-

tendible multivariate exponential distributions and their associated latent

factor processes.

8.2.2 Hierarchical (H-extendible) Extreme-Value Copulas

Analogous to Section 3.2.4 in the case of Marshall–Olkin distributions, it

is possible to work with multiple latent factor processes in order to gener-

ate non-exchangeable extreme-value copulas as well. The concept of strong

IDT subordinators is well-suited for that purpose as the following theorem

shows. More results on the topic are provided in Mai (2014). Clearly,

Lemma 8.5 also applies to a Marshall–Olkin/Lévy setup as a specific ex-

ample.

Lemma 8.5 (Multi-Factor Extreme-Value Copulas)

Consider a probability space (Ω,F ,P) supporting n + 1 ∈ N independent,

non-decreasing strong IDT processes Λ̃(i) = {Λ̃(i)
t }t≥0, i = 0, . . . , n, and an

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 295

Further Copula Families with Known Extendible Subclass 295

Exponential Minima

MSMVE

Marshall–Olkin

weak IDT subordinator

strong IDT subordinator

killed Lévy

subordinator

Fig. 8.2 Whenever a representative Λ = {Λt}t≥0 of a class of processes on the
right-hand side is applied in Algorithm 1.3 as random distribution function Fx :=
1− exp(−Λx), x ≥ 0, the result is a vector (X1, . . . , Xd) with corresponding distribution
from the left-hand side of this Venn diagram.

independent i.i.d. sequence E1, . . . , Ed of exponential random variables with

unit mean. We denote by Ψi the Bernstein function associated with Λ̃(i),

i.e.

E
[
e−x Λ̃

(i)
t

]
= e−tΨi(x), t, x ≥ 0.

Moreover, let A = (ai,j) ∈ Rd×(n+1) be an arbitrary matrix with non-

negative entries and at least one positive entry per row. We define the

vector-valued stochastic process

Λt =

Λ
(1)
t

Λ
(2)
t
...

Λ
(d)
t

 := A ·

Λ̃
(0)
t

Λ̃
(1)
t
...

Λ̃
(n)
t

 =

a1,0 Λ̃

(0)
t + . . .+ a1,n Λ̃

(n)
t

a2,0 Λ̃
(0)
t + . . .+ a2,n Λ̃

(n)
t

...
...

ad,0 Λ̃
(0)
t + . . .+ ad,n Λ̃

(n)
t

 .

The random vector (X1, . . . , Xd) defined via

Xk := inf{t > 0 : Λ
(k)
t > Ek}, k = 1, . . . , d,

has an MSMVE law. Consequently, its survival copula is an extreme-value

copula and the marginal distributions are given by

Xk ∼ Exp
(n∑

i=0

Ψi(ak,i)
)
, k = 1, . . . , d.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 296

296 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Proof. Fix t > 0, k ∈ {1, . . . , d}, a subset of indices 1 ≤ i1 < . . . < ik ≤
d, and let ∞ > c1, . . . , ck > 0 be constants. We observe that

P
(
min{c1Xi1 , . . . , ckXik} > t

)
= P
(
Λ
(ij)

t/cj
< Eij , j = 1, . . . , k

)
= E
[
exp
(
−

k∑
j=1

Λ
(ij)

t/cj

)]

= E
[
exp
(
−

n∑
�=0

k∑
j=1

aij ,� Λ̃
(�)
t/cj

)]
.

It follows from Lemma A.7 that the processes
{∑k

j=1 aij ,� Λ̃
(�)
t/cj

}
t≥0

are

independent, strong IDT processes, � = 0, . . . , n. Hence, their sum is a

weak IDT process by Mai and Scherer (2014a, Lemma 4.1(b)) and it follows

the existence of a Bernstein function Ψ such that

P
(
min{c1Xi1 , . . . , ckXik} > t

)
= e−tΨ(1),

implying that min{c1Xi1 , . . . , ckXik} is exponential with rate Ψ(1), and

(X1, . . . , Xd) has an MSMVE law. In order to compute the exponential

rate of Xj, it suffices to repeat the computation above with k = 1, i1 = j,

and c1 = 1. �

It is an interesting open question to investigate how large the subclass of

MSMVE is, which is obtained via the construction in Lemma 8.5. The

random vectors constructed in Lemma 8.5 are h-extendible8 if the matrix

A is of a special form. For example, assume a partition d1 + . . .+ dJ of the

dimension into J groups and set n := J . We interpret the factor Λ̃(0) as the

global factor and the factors Λ̃(j), j = 1, . . . , J , as group-specific factors.

If k ∈ {1, . . . , d} is an index of group j, then the k-th row of A must be

defined as

(ak,0, . . . , ak,J) = (1, 0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0),

i.e. a loading vector which loads the global factor Λ̃(0) and the j-th group-

specific factor Λ̃(j). This produces an h-extendible structure with two levels

of hierarchy. Deeper levels can be produced in a similar manner. For the

sake of notational simplicity, let us proceed with the example of two levels.

8See Definition 1.11.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 297

Further Copula Families with Known Extendible Subclass 297

In this case, the vector-valued process Λ looks as follows:

Λt =

Λ̃
(1)
t + Λ̃

(0)
t

...

Λ̃
(1)
t + Λ̃

(0)
t

Λ̃
(2)
t + Λ̃

(0)
t

...

...

Λ̃
(J)
t + Λ̃

(0)
t

...

Λ̃
(J)
t + Λ̃

(0)
t

=

Λ̃
(0)
t
...

Λ̃
(0)
t

Λ̃
(0)
t
...
...

Λ̃
(0)
t
...

Λ̃
(0)
t

︸ ︷︷ ︸
=:Λ(0)

+

Λ̃
(1)
t
...

Λ̃
(1)
t

0
...
...

0
...

0

︸ ︷︷ ︸
=:Λ(1)

+ . . .+

0
...

0

0
...
...

Λ̃
(J)
t
...

Λ̃
(J)
t

︸ ︷︷ ︸
=:Λ(J)

.

In particular, it equals the sum of independent processes, say

Λ̃(0), Λ̃(1), . . . , Λ̃(J), whose non-zero components are identical.

Lemma 8.6 (H-Extendible MSMVEs)

Let (X1, . . . , Xd) be the vector defined in Lemma 8.5 from the process

Λ of the construction above. Let the random vectors (Y
(0)
1 , . . . , Y

(0)
d),

(Y
(1)
1 , . . . , Y

(1)
d), . . ., (Y

(J)
1 , . . . , Y

(J)
d) be defined from independent copies

of the stochastic processes Λ̃(0), Λ̃(1), . . . , Λ̃(J) as follows:

Y
(0)
k := inf{t > 0 : Λ̃

(0)
t > E

(0)
k }, k = 1, . . . , d,

Y
(j)
k :=

{
∞, if {Λ̃(j)

t }t≥0 �= 0

inf{t > 0 : Λ̃
(j)
t > E

(j)
k }, else

,

where E
(j)
k are i.i.d. unit exponentials, j = 0, 1, . . . , J , k = 1, . . . , d. Then

(X1, . . . , Xd)
d
=
(

min
j=0,...,J

{
Y

(j)
1

}
, . . . , min

j=0,...,J

{
Y

(j)
d

})
. (8.20)

Proof. Let s1, . . . , sd ≥ 0. For the sake of notational simplicity we denote

I(1) := {1, . . . , d1}, I(j) := {d1 + . . .+ dj−1 + 1, . . . , d1 + . . .+ dj}, j ≥ 2,

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 298

298 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

the set of indices corresponding to group j = 1, . . . , J , and compute

P
(
X1 > s1, . . . , Xd > sd

)
= P
(J⋂

j=1

⋂
k∈I(j)

{
inf{t > 0 : Λ̃

(j)
t + Λ̃

(0)
t > Ek} > sk

})

= P
(J⋂

j=1

⋂
k∈I(j)

{
Λ̃(j)
sk

+ Λ̃(0)
sk
≤ Ek

})
= E
[J∏
j=1

∏
k∈I(j)

e−(Λ̃(j)
sk

+Λ̃(0)
sk

)
]

= E
[d∏
k=1

e−Λ̃(0)
sk

] J∏
j=1

E
[∏
k∈I(j)

e−Λ̃(j)
sk

]

= P
(d⋂
k=1

{
Λ̃(0)
sk ≤ E

(0)
k

}) J∏
j=1

P
(⋂
k∈I(j)

{
Λ̃(j)
sk ≤ E

(j)
k

})

= P
((J⋂

j=1

⋂
k∈I(j)

{
Λ̃(j)
sk
≤ E(j)

k

})
∩
(d⋂

k=1

{
Λ̃(0)
sk
≤ E(0)

k

}))

= P
((J⋂

j=1

⋂
k∈I(j)

{
inf{t : Λ̃(j)

t > E
(j)
k } > sk

})
∩

(d⋂
k=1

{
inf{t : Λ̃(0)

t > E
(0)
k } > sk

}))

= P
(J⋂

j=1

⋂
k∈I(j)

{
min
{
inf{t : Λ̃(j)

t > E
(j)
k }, inf{t : Λ̃(0)

t > E
(0)
k }
}
> sk

})

= P
(

min
j=0,...,J

{
Y

(j)
1

}
> s1, . . . , min

j=0,...,J

{
Y

(j)
d

}
> sd

)
.

�

The finite components of the random vectors (Y
(j)
1 , . . . , Y

(j)
d) are condi-

tionally i.i.d., i.e. are constructed from homogeneous mixture models in

the spirit of de Finetti’s theorem (cf. Theorem 1.4). Hence, the stochastic

model (8.20) relies solely on the computation of componentwise minima of

otherwise conditionally i.i.d. random vectors. We have seen earlier that

each conditionally i.i.d. random vector arises from a strong IDT subordi-

nator, which is {Λ̃(j)
t }t≥0 for the j-th group. In other words, the operation

“addition of independent strong IDT subordinators” in the canonical con-

struction corresponds to the operation “componentwise minima” on the

level of the associated MSMVEs. This indicates why h-extendibility is a

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 299

Further Copula Families with Known Extendible Subclass 299

nice feature, in particular with regards to simulation. Sampling these mod-

els is accomplished easily by the minimum operation, once the extendible

building blocks can be simulated.

Another possibility to construct inhomogeneous models is to start with

inhomogeneous trigger rates Ek ∼ Exp(λk), for k = 1, . . . , d. This is

possible for the mixture models leading to Marshall–Olkin distributions,

additive mixtures, and mixtures with IDT subordinators. As an example,

this is demonstrated for the Marshall–Olkin case in Engel et al. (2017).

b2530 International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd 6 01-Sep-16 11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 301

Appendix A

Supplemental Material

A.1 Validating a Sampling Algorithm

After one has implemented some sampling algorithm for U =

(U1, . . . , Ud) ∼ C, one is well advised to carefully review its accuracy. As-

sume we have simulated a sequence U (1), . . . ,U (n) of independent random

vectors with a distribution function given by the copula C. A check of the

validity of the sampling scheme might include the following steps:

(1) Univariate marginals: C being a copula, each univariate marginal

law must be uniform on [0, 1]. Considering this, one starts by checking

the range of U
(l)
k , k = 1, . . . , d, l = 1, . . . , n; all entries must be within

[0, 1]. The case U
(l)
k ∈ {0, 1} is already suspicious and indicates numer-

ical problems. Next, we check if the univariate marginals k = 1, . . . , d

are truly uniform on [0, 1]. For this, we might use standard tests such

as the Kolmogorov–Smirnov test, which is provided in most statistical

software packages. Alternatively, a simple box plot of U
(l)
k , l = 1, . . . , n,

applied to all univariate marginals k = 1, . . . , d, also helps to identify

misspecified univariate marginals.

(2) Stylized facts of C: To visualize if the sample corresponds to the cop-

ula C, one might draw scatterplots of various two- or three-dimensional

marginals. These scatterplots allow one to visualize the stylized prop-

erties of the simulated copula, so one can compare these with the prop-

erties of the copula C. Properties that are sometimes easy to detect are

(a) the location of mass as a subset of [0, 1]d, (b) a singular component,

(c) positive upper- and lower-tail dependence, (d) exchangeability, and

(e) radial symmetry.

(3) Measures of dependence: Often, one knows the theoretical value of

measures of dependence of C such as Kendall’s tau or Spearman’s rho.

301

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 302

302 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

One can then compute the corresponding empirical versions of these

measures of dependence from the sample; the values should be “about

the same”. Often, these measures of dependence even have a known

(asymptotic) distribution, which allows us to construct tests to clarify

what “about the same” means. The same holds for empirical moments

or in general functions of the dependence structure.

(4) Parameter sensitivity: It is often the case that the strength of depen-

dence of a copula is monotone in a parameter θ. Simulating the copula

with different parameters should provide evidence of this fact. More-

over, we sometimes know limiting cases for the parameters, where the

copula might converge, e.g., to the independence copula. This should

also be reflected in empirical measures of dependence and scatterplots

when the parameter is moved to a known limit.

(5) The diagonal: A test based on the diagonal section of the copula can

be constructed from the observation

P(U1 ≤ u, . . . , Ud ≤ u) = C(u, . . . , u) = P
(

max
k=1,...,d

{Uk} ≤ u
)
.

Note that u �→ C(u, . . . , u), u ∈ [0, 1], is the (univariate) distribution

function of max{U1, . . . , Ud}, so tests for the respective univariate dis-

tribution can be applied.

(6) Parameter range: Some algorithms are vulnerable to numerical er-

rors when the parameter becomes extreme (in the sense that the pa-

rameter tends to some limit of its range). Also, it is possible that the

speed of the algorithm drops significantly for extreme parameters. In

this regard, one is well advised to carefully examine such behavior (and

to suitably restrict the parameter range) before one uses the sampling

scheme as a black box within some more complex algorithm.

A.2 Introduction to Lévy Subordinators

Lévy processes are continuous-time equivalents of discrete-time random

walks. The increments of a Lévy process are stationary and do not de-

pend on the past, not even on the current value of the process. Stochastic

processes of this type are used as building blocks for probabilistic models

in many applications, e.g. in financial engineering. Prominent examples of

Lévy processes are Brownian motion and the Poisson process. If a Lévy

process has almost surely non-decreasing paths, it is called a Lévy subordi-

nator. For background on Lévy processes beyond this introduction we refer

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 303

Supplemental Material 303

the reader to the textbooks by Bertoin (1996, 1999), Sato (1999), Schoutens

(2003), Applebaum (2004), Cont and Tankov (2004), and Schilling et al.

(2010).

Definition A.6 (Classical Lévy Subordinator)

A [0,∞)-valued stochastic process Λ = {Λt}t≥0 on a probability space

(Ω,F ,P) is a classical Lévy subordinator if it is a non-decreasing Lévy

process, i.e. Λ0 = 0 holds P-almost surely, Λ has càdlàg paths,9 and the

following conditions are satisfied:

(1) Λ is stochastically continuous, i.e.

∀t ≥ 0, ∀ε > 0, it holds that lim
h↓0
P
(|Λt+h − Λt| ≥ ε

)
= 0.

(2) Λ has independent increments, i.e. for all 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn the

random variables Λt0 −Λ0,Λt1 −Λt0 , . . . ,Λtn −Λtn−1 are stochastically

independent.

(3) Λ has stationary increments, i.e. the law of Λt+h − Λt is independent

of t ≥ 0 for each h ≥ 0, i.e. Λt+h − Λt
d
= Λh.

(4) t �→ Λt is almost surely non-decreasing.

It is important to note that condition (1) in the above definition does not

imply that Λ has continuous paths. It basically means that the jump times

of paths of Λ are not allowed to be deterministic, i.e. not known in advance.

The simplest example of a classical Lévy subordinator is a (homogeneous)

Poisson process , denoted N = {Nt}t≥0. It can be constructed as follows.

On a probability space (Ω,F ,P) let {Ei}i∈N be a sequence of i.i.d. random

variables (interpreted as waiting times) with E1 ∼ Exp(β) for a parameter

β > 0. Then, N is defined via

Nt :=

∞∑
n=1

�{E1+...+En≤t}, t ≥ 0. (A.1)

Thus, a path of N starts at N0 = 0, remains there until time E1, and then

jumps to 1. It remains in state 1 until time E1 + E2 and then jumps to

2, and so on. Thus, the state space of N is N0. The fact that N has i.i.d.

increments originates from the lack of memory property of the exponential

distribution of the random variables {Ei}i∈N. The parameter β is called the

intensity of the Poisson processN . The name is justified by the fact thatNt

9Càdlàg is the abbreviation of “continue à droite, limite à gauche”, which is French for
“right-continuous with left limits”. This means that P-almost surely lims↑t Λs exists for
t > 0 and lims↓t Λs = Λt for t ≥ 0.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 304

304 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

is Poi(β t)-distributed for all t > 0 (see Cont and Tankov (2004, Proposition

2.12, p. 48)). For our purpose it is convenient to extend Definition A.6 to

include the (absorbing) state infinity as a possible value for Λt, t > 0.

Definition A.7 (Lévy Subordinator)

A [0,∞) ∪ {∞}-valued stochastic process Λ = {Λt}t≥0 is called a Lévy

subordinator if it is defined for t ≥ 0 by Λt := Λ̃t+∞·�{Nt≥1}, where Λ̃ =

{Λ̃t}t≥0 is a classical ([0,∞)-valued) Lévy subordinator and N = {Nt}t≥0

is an independent Poisson process. The intensity of the Poisson process N

is called the killing rate of Λ. As a convention, it is allowed to be 0, in

which case we mean that Λ = Λ̃.

In the literature, e.g. in Applebaum (2004) and Bertoin (1996), a process Λ

according to Definition A.7 is sometimes called a killed subordinator.10 This

emphasizes the intuitive interpretation that the process is “killed” when it

jumps to infinity, since it is absorbed by this state due to its non-decreasing

paths. Adding the state infinity, sometimes called the cemetery state, leads

to a compactification of the state space [0,∞). Such an analytical technique

is useful for including “marginal cases” in derivations. Due to such technical

reasons, by the term “Lévy subordinator” we always refer to the extended

Definition A.7, which includes the case of a classical Lévy subordinator.

Lévy processes are most easily treated by means of their characteristic

function. Due to positiveness in the case of a Lévy subordinator, i.e. a

non-decreasing Lévy process, it is even more convenient to consider the

(existing) Laplace transform. The analytical form of the Laplace transform

is nowadays known as the Lévy–Khinchin representation (see TheoremA.6).

It relies on the fact that for each t > 0 the distribution of Λt, Λ being a

classical Lévy subordinator, is infinitely divisible. More precisely, Definition

A.6 implies for all n ∈ N and t > 0 that

Λt =
(
Λ t

n
− Λ 0

n

)
+
(
Λ 2 t

n
− Λ t

n

)
+ . . .+

(
Λn t

n
− Λ (n−1) t

n

)
d
= Λ

(1)
t
n

+ Λ
(2)
t
n

+ . . .+ Λ
(n)
t
n

,

where Λ(i), for i ∈ N, are i.i.d. copies of Λ, i.e. the random variable Λt can

be represented in distribution as the sum of n i.i.d. random variables for

each n ∈ N, a distributional property called “infinite divisibility” (see Sato

(1999) and Applebaum (2004) for further details). Conversely, there exists

a classical Lévy subordinator Λ such that Λ1 is distributed according to
10This name is not used by all authors; we use the terminology of Bertoin (1999) who
omits the term “killed”.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 305

Supplemental Material 305

any given infinitely divisible distribution on [0,∞). This correspondence

allows us to transfer results about infinitely divisible distributions to Lévy

processes. For instance, Theorem A.6 characterizes a Lévy subordinator by

means of a constant µ ≥ 0 and a measure ν on (0,∞].

Theorem A.6 (Lévy (1934), Khinchin (1937))

The Laplace transforms of a Lévy subordinator Λ on a probability space

(Ω,F ,P) admit the functional form

E[e−xΛt] = e−tΨ(x), x ≥ 0, t ≥ 0, (A.2)

where the function Ψ : [0,∞)→ [0,∞) is called the Laplace exponent of Λ.

Moreover, there is a unique non-negative drift µ ≥ 0 and a unique positive

measure ν on (0,∞], called the Lévy measure of Λ, such that

Ψ(x) = µx+

∫
(0,∞]

(1− e−t x) ν(dt), x ≥ 0. (A.3)

The Lévy measure ν satisfies the conditions∫
(0,1]

t ν(dt) <∞, ν
(
(ε,∞]

)
<∞, for all ε > 0. (A.4)

Conversely, given a drift µ ≥ 0 and a measure ν on (0,∞] satisfying (A.4),

there exists a Lévy subordinator with drift µ and Lévy measure ν. Thus, the

distributional properties of a Lévy subordinator are completely characterized

by its so-called characteristics (µ, ν).

Proof. Originally due to Lévy (1934), Khinchin (1937), and Khinchin

(1938). A sketch of the proof can be found in Bertoin (1999). �

Remark A.3 (Mass at Infinity)

The right-hand side of Equation (A.3) is a short-hand notation for

Ψ(x) = µx+

∫
(0,∞)

(1− e−t x) ν(dt) + �{x>0} ν({∞}), x ≥ 0. (A.5)

It is justified by using the conventions 0 · ∞ = 0 and exp(−∞) = 0, which

imply that Ψ(0) = 0 even though one might have ν({∞}) > 0. Positive

mass of ν at ∞ introduces a discontinuity of Ψ at 0. However, Ψ is smooth

on (0,∞). It is a so-called Bernstein function, i.e. Ψ is infinitely often

differentiable on (0,∞) and the first derivative Ψ(1) is completely monotone,

i.e. (−1)k Ψ(k) ≥ 0 for all k ∈ N (see, e.g., Applebaum (2004, Theorem

1.3.23(2), p. 52)). The number ν({∞}) ∈ [0,∞) is precisely the killing rate.

Hence, in the case of a classical Lévy subordinator it holds that ν({∞}) = 0

and thus the last term �{x>0} ν({∞}) in (A.5) vanishes.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 306

306 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Example A.7 (Characteristics of a Poisson Process)

On a probability space (Ω,F ,P), consider a homogeneous Poisson process

N = {Nt}t≥0 with intensity β > 0, as defined in (A.1). Then for each t > 0

the random variable Nt is Poi(β t)-distributed, i.e. the Laplace transform

of Nt is computed as

E
[
e−xNt

]
=

∞∑
k=0

e−xk (β t)k

k!
e−β t = e−t β (1−e−x), x ≥ 0.

Thus, the Laplace exponent of N is Ψ(x) = β
(
1− exp(−x)), x ≥ 0. Obvi-

ously, N has zero drift µ = 0 and the Lévy measure ν is a one-point mass

concentrated at 1. More precisely, ν(B) = β �{1∈B}, for B ∈ B
(
(0,∞]

)
.

Intuitively, for any Borel set B ∈ B((0,∞]
)
the value ν(B) corresponds to

the expected number of jumps of Λ within one unit of time whose size is in

B, i.e.

ν(B) = E
[∣∣∣{t ∈ (0, 1] : ∆Λt := Λt − lim

s↑t
Λs ∈ B

}∣∣∣] (A.6)

(see, e.g., Cont and Tankov (2004, Definition 3.4, p. 76)). Hence, ν bears

information about the size and frequency of the jumps of Λ. Finally, new

Lévy subordinators can be constructed from known ones by the idea of

subordination: given two independent Lévy subordinators Λ(1) and Λ(2),

the process

Λt := Λ
(2)

Λ
(1)
t

, t ≥ 0,

is again a Lévy subordinator (see, e.g., Bertoin (1999, Proposition 8.6)).

One can even compute its characteristics, a result which is due to Huff

(1969). The original idea of subordination of a process is due to Bochner

(1955). Moreover, it is an easy exercise to check that the sum of two

independent Lévy subordinators is again a Lévy subordinator. Thus, it is

theoretically possible to construct a huge repertoire of parametric families

of Lévy subordinators from known ones. This fact is used to construct

hierarchical Archimedean copulas in Section 2.4 and Lévy-frailty copulas

in Section 3.3.

Four of the most popular Lévy subordinators are introduced in the

sequel.

A.2.1 Compound Poisson Subordinator

Consider a probability space (Ω,F ,P) on which {Ji}i∈N are i.i.d. non-

negative random variables and N = {Nt}t≥0 is an independent Poisson

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 307

Supplemental Material 307

0 2 4 6 8 10

0
2

4
6

8

Time t

(t
)

(C
om

po
un

d
P

oi
ss

on
 w

ith
 D

rif
t)

0 2 4 6 8 10

0
5

10
15

20

Time t

(t
)

(C
om

po
un

d
P

oi
ss

on
 w

ith
 D

rif
t)

Fig. A.1 Simulated paths of a compound Poisson process with drift and Exp(η)-
distributed jump sizes. In the graph on the left the jump intensity is β = 1, the drift
µ = 0.2, and η = 2. The parameters in the graph on the right are (µ, η, β) = (0.2, 4, 8).
Both paths are simulated up to time T = 10.

process with intensity β > 0. With a non-negative drift µ ≥ 0 defining

Λt := µ t+

Nt∑
i=1

Ji, t ≥ 0,

it follows from Cont and Tankov (2004, Proposition 3.3, p. 71) that Λ =

{Λt}t≥0 is a Lévy subordinator, called a compound Poisson subordinator

(with drift if µ �= 0). Furthermore it follows from Cont and Tankov (2004,

Proposition 3.5, p. 75) that the Lévy measure ν of Λ has the special form

ν(B) = β P(J1 ∈ B), B ∈ B((0,∞)
)
.

This implies that the Laplace exponent Ψ of Λ is given by

Ψ(x) = µx+ β
(
1− E

[
e−x J1

])
, x ≥ 0. (A.7)

Intuitively, Λ grows linearly with constant drift µ, it jumps whenever the

Poisson process N jumps, and the ith jump has random jump size Ji. Thus,

in a bounded time interval [s, t], for 0 ≤ s < t <∞, compound Poisson sub-

ordinators (with drift) almost surely exhibit only finitely many jumps. More

precisely, the number of jumps of Λ in [s, t] is Poi
(
β (t − s))-distributed.

A typical path of such a stochastic process is illustrated in Figure A.1. It

is worth mentioning that a Lévy subordinator is of the compound Poisson

type (possibly with drift) if and only if it has almost surely finitely many

jumps on any bounded time interval. Compound Poisson subordinators are

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 308

308 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

thus said to be finite activity processes . Analytically, a Lévy subordinator

with Lévy measure ν is of the compound Poisson type if and only if there

is an ε > 0 such that ν
(
(0, ε)

)
< ∞. This follows more or less from (A.4)

and (A.6).

Remark A.4 (Compound Poisson Approximation)

In some sense, an arbitrary Lévy subordinator can be approximated ar-

bitrarily close in distribution by a compound Poisson subordinator. Since

compound Poisson subordinators can in principle be sampled accurately,

such an approximation implies approximate sampling schemes for arbitrary

Lévy subordinators (see Damien et al. (1995) for details).

A.2.2 Gamma Subordinator

Following Schoutens (2003, p. 52), a Lévy subordinator Λ is called Gamma

subordinator , if it has zero drift and its Lévy measure ν, parameterized

by (β, η) ∈ (0,∞)2, is absolutely continuous with respect to the Lebesgue

measure on (0,∞) and has the special form

ν(dt) = β e−η t 1

t
�{t>0} dt.

It is easy to check that the measure ν defined in this way satisfies (A.4) and

hence defines a Lévy subordinator. It is possible to compute the Laplace ex-

ponent Ψ in closed form. Following Tricomi (1951), for continuous functions

f : (0,∞) → R with existing limits limt↓0 f(t) ∈ R and limt→∞ f(t) ∈ R,
the so-called Frullani theorem states that∫

(0,∞)

(
f(a t)− f(b t)) 1

t
dt =

(
lim
t↓0

f(t)− lim
t→∞ f(t)

)
log
(b
a

)
.

In particular, the function f(t) := exp(−t) is admissible in this formula and

with a := η and b := η + x one may deduce

Ψ(x) =

∫
(0,∞)

(
1− e−x t

)
β e−η t 1

t
dt = β log

(
1 +

x

η

)
.

Therefore, the Lévy–Khinchin representation implies that the random vari-

able Λt has Laplace transform

E[e−xΛt] = e−t β log
(
1+ x

η

)
=
(
1 +

x

η

)−β t

, x > 0, t > 0.

This is known to be the Laplace transform of a Gamma distribution, which

explains the name of the process Λ. More precisely, for t > 0 we have

Λt ∼ Γ(β t, η). Note that for each ε > 0 it holds that ν
(
(0, ε)

)
= ∞,

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 309

Supplemental Material 309

0 2 4 6 8 10

0
5

10
15

20
25

Time t

(t
)

(G
am

m
a)

0 2 4 6 8 10

0
5

10
15

Time t

(t
)

(G
am

m
a)

Fig. A.2 Simulated paths of a Gamma subordinator. Parameters used are (η, β) =
(2, 4.725) (left) and (η, β) = (1, 2) (right). Both paths are simulated up to time T = 10
using n = 1000 grid points.

meaning that a Gamma subordinator jumps almost surely infinitely often

in a finite time interval. Lévy subordinators with this property are thus

said to exhibit infinite activity. A typical path of a Gamma subordinator

is illustrated in Figure A.2. Due to the infinite activity, simulating a path

of {Λt}t∈[0,T] is impossible without discretization bias. The simulation is

accomplished by defining a grid 0 < T/n < T 2/n < . . . < T (n− 1)/n < T

and accumulating i.i.d. random variables which are Γ(β T/n, η)-distributed.

A.2.3 Inverse Gaussian Subordinator

A Lévy subordinator Λ is called an inverse Gaussian subordinator , if it has

zero drift and its Lévy measure ν, parameterized by (β, η) ∈ (0,∞)2, is

absolutely continuous with respect to the Lebesgue measure on (0,∞) and

has the form

ν(dt) =
1√
2 π

β

t
3
2

e−
1
2 η2 t

�{t>0} dt.

For each t > 0 it is well known that Λt ∼ IG(β t, η) (see Seshadri (1993)

for a proof and further results). The Laplace exponent of Λ is given by

Ψ(x) = β
(√

2 x+ η2 − η), x ≥ 0. (A.8)

The name “inverse Gaussian” stems from the fact that Λ may be con-

structed as

Λt := inf
{
s > 0 : η s+Xs = β t

}
,

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 310

310 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

0 2 4 6 8 10

0
5

10
15

20
25

Time t

(t
)

(I
nv

er
se

 G
au

ss
ia

n)

0 2 4 6 8 10

0
5

10
15

20

Time t

(t
)

(I
nv

er
se

 G
au

ss
ia

n)
Fig. A.3 Simulated paths of an inverse Gaussian subordinator. The parameters are
(η, β) = (2, 4.725) (left) and (η, β) = (1, 2) (right). Both paths are simulated up to time
T = 10 using n = 1000 grid points.

where X = {Xt}t≥0 is a standard Brownian motion on a probability space

(Ω,F ,P). Thus, Λt can be interpreted as the first hitting-time of the level

β t of a Brownian motion with drift. The resulting relation to the normal

distribution justifies the wording. Moreover, Shuster (1968) shows how to

express the distribution function of Λt in terms of the standard normal

distribution function Φ: for all t > 0, x ≥ 0 it holds that

P(Λt ≤ x) = Φ
(
η
√
x− β t√

x

)
+ e2 β t η Φ

(
− η√x− β t√

x

)
,

Φ(x) =

∫ x

−∞

1√
2 π

e−
s2

2 ds.

Like the Gamma subordinator, an inverse Gaussian subordinator exhibits

infinite activity, since ν
(
(0, ε)

)
= ∞ for each ε > 0. Figure A.3 illustrates

typical paths of such a process. The sampling is done similarly as in the

case of a Gamma subordinator.

A.2.4 Stable Subordinator

A Lévy subordinator Λ is called an α-stable subordinator with parameter

α ∈ (0, 1), if it has zero drift µ = 0 and its Lévy measure ν is absolutely

continuous with respect to the Lebesgue measure and is defined via

ν(dt) =
α

Γ(1− α)
1

t1+α
�{t>0} dt.

One immediately checks that ν
(
(0, ε)

)
=∞ for ε > 0. Hence, Λ is another

example of an infinite activity process. It can be verified by an application

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 311

Supplemental Material 311

of Fubini’s theorem (see, e.g., Applebaum (2004, p. 69)) that the Laplace

exponent of Λ is given by Ψ(x) = xα, x ≥ 0. Therefore, it holds for each

t > 0 that t−1/α Λt ∼ S(α). The density fΛt of Λt is not known in closed

form,11 but Nolan (1997) uses Fourier inversion techniques to compute a

numerically convenient form, which is given by

fΛt(x) = t−
1
α fΛ1

(
t−

1
α x
)
,

where

fΛ1(x) = �{x>0}
α
(
x
γ

) 1
α−1

γ π (1− α)
∫ π

2

−π
2

gα(u) e
−
(

x
γ

) α
α−1 gα(u) du,

gα(u) =
(
cos
(π α

2

)) 1
α−1

(
cosu

sin
(
α
(
π
2 + u

))) α
α−1 cos

(
π
2 α+ (α− 1)u

)
cosu

,

γ =
(
cos
(π α

2

)) 1
α

. (A.9)

An α-stable subordinator has a heavy-tailed distribution. For instance, it

is shown in Wolfe (1975) that

E[Λβ
t] =

 t

β
α

Γ

(
1− β

α

)
Γ(1−β) , β ∈ (0, α)

∞ , β ≥ α
, t > 0.

In particular, such distributions are standard examples for random vari-

ables without an existing first moment. This property, together with the

convenient functional form of the Laplace exponent, makes this process

interesting in many applications. Typical paths of an α-stable subordina-

tor are illustrated in Figure A.4. The sampling is again accomplished by

accumulating n i.i.d. random variables whose distribution equals that of

Λ1/n
d
= n−1/α S(α).

A.3 Scale Mixtures of Marshall–Olkin Copulas

In this section we briefly introduce a stochastic model, originally due to Mai

et al. (2013), that combines the representation of extendible Archimedean

copulas with the one of Lévy-frailty copulas (see Sections 2.2 and 3.3).

The result is a parametric subfamily of copulas known as scale mixtures

of Marshall–Olkin copulas (for background on the latter, see Li (2009),

a recent reference is Charpentier et al. (2014)). Recall from Section 2.2

11Except for α = 1/2 (see, e.g., Applebaum (2004, p. 50)).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 312

312 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

0 2 4 6 8 10

0
2

4
6

8
10

12

Time t

(t
)

(
−

st
ab

le
)

0 2 4 6 8 10

0
5

10
15

20
25

30

Time t

(t
)

(
−

st
ab

le
)

Fig. A.4 Simulated paths of an α-stable subordinator with α = 0.5 (left) and α = 0.8
(right). Both paths are simulated up to time T = 10 using n = 1000 grid points.

that extendible Archimedean copulas are constructed via a conditionally

i.i.d. model with some positive random variable M as the common factor.

Closely related, Lévy-frailty copulas are constructed in Section 3.3 from a

random distribution function driven by a Lévy subordinator. Combining

both, we consider some probability space (Ω,F ,P) on which we define

(U1, . . . , Ud) :=(
ϕ
(
inf
{
t > 0 : ΛM t > E1

})
, . . . , ϕ

(
inf
{
t > 0 : ΛM t > Ed

}))
,

where Λ = {Λt}t≥0 is a Lévy subordinator with Laplace exponent Ψ sat-

isfying Ψ(1) = 1, M is a positive random variable with Laplace transform

ϕ, and E1, . . . , Ed is a list of i.i.d. unit exponentials. These building blocks

are stochastically independent. It is shown in Mai et al. (2013) that the

distribution function of (U1, . . . , Ud) is precisely the copula

Cϕ,Ψ(u1, . . . , ud) := ϕ
(d∑

i=1

ϕ−1(u(i))
(
Ψ(i)−Ψ(i− 1)

))
, (A.10)

where u(1) ≤ . . . ≤ u(d) is the ordered list of u1, . . . , ud ∈ [0, 1]d. It is

easy to observe that the model (and the copula) reduces to the respective

building blocks/models in Algorithms 2.1 and 3.6 when Λt = t is chosen

as a degenerate subordinator with Ψ(x) = x or when M is chosen to be a

constant.

The random vector (U1, . . . , Ud) inherits the statistical properties from

its building blocks and is therefore quite flexible. For instance, the tail

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 313

Supplemental Material 313

dependence coefficients are given by

UTDCϕ,Ψ = Ψ(2) lim
x↑∞

ϕ′(Ψ(2)x
)

ϕ′(x)
,

LTDCϕ,Ψ = 2−Ψ(2) lim
x↓0

ϕ′(Ψ(2)x
)

ϕ′(x)
(see Bernhart et al. (2013)). The probabilities P(U1 = . . . = Uk), k =

2, . . . , d, are precisely the same as in the case of a Lévy-frailty copula, i.e.

P(U1 = . . . = Uk) =

∑k
i=0

(
k
i

)
(−1)i+1Ψ(i)

Ψ(k)
, k = 2, . . . , d.

It is interesting to note that the random scaling in time byM overcomes the

time-homogeneous increments of the Lévy subordinator and the resulting

model no longer exhibits the lack of memory property. This might be

desirable in real-world situations (e.g. multivariate default models) where

the lack of memory property of the Lévy-frailty model is not realistic. An

h-extendible variant of this dependence structure is proposed in Mai and

Scherer (2012) and analyzed in Bernhart et al. (2013). Sampling such

random variables is possible by suitably including M into the sampling

algorithm of the Lévy-frailty copula.

Example A.8 (Archimedean Copula with Armageddon Shock)

A parametric copula is obtained when an Archimedean model, constructed

from a positive random variable M with Laplace transform ϕ and a list

E1, . . . , Ed of independent unit exponentials, is mixed with a Lévy subordi-

nator that increases linearly with drift α ∈ [0, 1) and suddenly jumps to ∞,

i.e. its Lévy measure is ν({∞}) = (1−α), ν((0,∞)) = 0. The subordinator

is thus given by

Λt = α t+∞ · �{t≥E}, t ≥ 0,

where E is an exponential random variable with intensity parameter 1−α.
The resulting copula of

(U1, . . . , Ud) :=(
ϕ
(
inf
{
t > 0 : ΛM t > E1

})
, . . . , ϕ

(
inf
{
t > 0 : ΛM t > Ed

}))
,

interpolates between the comonotonicity copula and the chosen Archimedean

copula and is given by

Cϕ,Ψ(u1, . . . , ud) = ϕ
((

1− α)ϕ−1(u(1)) + α

d∑
i=1

ϕ−1(ui)
)
,

where u1, . . . , ud ∈ [0, 1] and Ψ denotes the Laplace exponent of Λ.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 314

314 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Proof. We find for x > 0

E
[
e−xΛt

]
= E
[
e−xα t−x∞ �{t≥E}

]
= e−xα t

(
0 · P(t ≥ E) + 1 · P(t < E)

)
= e−t (αx+(1−α)) = e−tΨ(x),

and Ψ(0) = 0. We observe that Ψ(1) = 1 and ν({∞}) = limx↘0 Ψ(x) =

1 − α �= Ψ(0) = 0 (the discontinuity of Ψ at 0 corresponds to the atom

ν({∞}) = 1−α). Next, we note that Ψ(1)−Ψ(0) = 1 and Ψ(i)−Ψ(i−1) = α

for i ≥ 2. Hence, for u1, . . . , ud ∈ [0, 1]

Cϕ,Ψ(u1, . . . , ud) = ϕ
(d∑

i=1

ϕ−1(u(i))
(
Ψ(i)−Ψ(i− 1)

))

= ϕ
(
ϕ−1(u(1)) + α

d∑
i=2

ϕ−1(u(i))
)

= ϕ
((

1− α)ϕ−1(u(1)) + α

d∑
i=1

ϕ−1(u(i))
)
,

the ordering can be dropped in the sum. �
Observe that (condition on Λ and M to obtain the last equation)

P(U1 ≤ u1, . . . , Ud ≤ ud)
= P
(
inf
{
t ≥ 0 : ΛM t ≥ Ek

} ≥ ϕ−1(uk), k = 1, . . . , d
)

= P
(
ΛM ϕ−1(uk) ≤ Ek, k = 1, . . . , d

)
= E
[d∏
k=1

e
−ΛM ϕ−1(uk)

]
. (A.11)

Concerning sampling, using the mixture model language of Algorithm 1.3

in Section 1.2.3, we obtain from Equation (A.11) that conditioned on

σ({Λt}t≥0,M) = σ(E,M), U1, . . . , Ud are i.i.d. with random distribution

function

Fx = exp(−ΛM ϕ−1(x)) = exp
(− αM ϕ−1(x) −∞�{M ϕ−1(x)≥E}

)
= exp

(− αM ϕ−1(x)
)
�{x≥ϕ(E/M)}, x ∈ [0, 1].

Given M and E, the quantile of this distribution function is given by

F−1
y = inf{x ∈ [0, 1] : Fx ≥ y}

=

{
ϕ(E/M) : y ∈ (0, e−αE)

ϕ
(− log(y)/(αM)

)
: y ∈ [e−αE , 1)

}
, y ∈ (0, 1).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 315

Supplemental Material 315

This suggests the following convenient sampling scheme:

Algorithm A.2 (Archimedean Copulas with Armageddon Shock)

(1) Sample independent E ∼ Exp(1− α), M , and V1, . . . , Vd
i.i.d.∼ U [0, 1].

(2) Return (U1, . . . , Ud), where Uk := F−1
Vk

, k = 1, . . . , d.

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. A.5 Scatterplot of 2 500 samples from a Clayton copula (see Equation (2.11)) with
Armageddon shock with parameters ϑ = 2 and α = 0.9 (left), 0.5 (middle), and 0.1
(right). Note that the dependence interpolates between the classical Clayton copula and
the comonotonicity copula.

A.4 Generalizations of Lévy Subordinators

As a main result of Section 3.3 we have worked out a correspondence be-

tween Lévy subordinators and Marshall–Olkin copulas. In order to derive

similar links between superclasses of the Marshall–Olkin law in Chapter 8,

we need to consider suitable extensions of Lévy subordinators. This is done

below.

A.4.1 Additive Subordinators

The following family of stochastic processes is a superclass of classical Lévy

subordinators, when dropping their stationarity of increments assumption.

Definition A.8 (Additive Subordinator)

A [0,∞)-valued stochastic process Λ = {Λt}t≥0 on a probability space

(Ω,F ,P) is called an additive subordinator if Λ0 = 0 holds P-almost surely,

Λ has càdlàg paths, and the following conditions are satisfied:

(1) Λ is stochastically continuous, cf. Definition A.6.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 316

316 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

(2) Λ has independent increments, cf. Definition A.6.

(3) t �→ Λt is almost surely non-decreasing.

A classical Lévy subordinator Λ = {Λt}t≥0 by definition is an additive

subordinator with the additional property that its increments are not only

independent but also stationary. This implies that the probability law of a

classical Lévy subordinator is fully specified by the probability law of the

single random variable Λ1. Since the latter is fully specified by a single

Bernstein function Ψ according to the Lévy–Khinchin theorem A.6, the

probability law of Λ is fully determined by Ψ. Now if Λ = {Λt}t≥0 is

an arbitrary additive subordinator, the probability law of Λ is no longer

determined by a single Bernstein function. However, it is still true that

the probability distribution of the random variable Λt is infinitely divisi-

ble for each t ≥ 0. Consequently, by the Lévy–Khinchin theorem A.6 the

probability law of Λt for arbitrary t ≥ 0 is uniquely determined by a Bern-

stein function Ψt : [0,∞)→ [0,∞). The defining properties of an additive

subordinator further imply that the family of Bernstein functions {Ψt}t≥0

satisfies the following conditions:

(1) Ψ0(x) = 0 for all x ≥ 0.

(2) Ψt −Ψs is a Bernstein function for all 0 ≤ s ≤ t.
(3) For all 0 ≤ s ≤ t it holds that

E
[
e−x (Λt−Λs)

]
= e−

(
Ψt(x)−Ψs(x)

)
, x ≥ 0.

Conversely, it can be shown that for any family of Bernstein functions

{Ψt}t≥0, which satisfies properties (1) and (2) above, there exists an addi-

tive subordinator Λ such that property (3) holds, and Λ is uniquely deter-

mined in distribution, cf. Sato (1999, p. 47 ff.). Consequently, the family

of Bernstein functions {Ψt}t≥0 uniquely determines the law of the addi-

tive subordinator Λ. In the special case of a classical Lévy subordinator,

we have Ψt = tΨ1, which follows easily from the stationary increments

assumption.

A.4.2 IDT Subordinators

Recall that for two stochastic processes A = {At} and B = {Bt} equal-

ity in distribution means that the random vectors (At1 , . . . , Atd) and

(Bt1 , . . . , Btd) are equal in distribution for arbitrary t1, . . . , td and d ∈ N.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 317

Supplemental Material 317

Definition A.9 (Strong IDT Subordinator)

We call a non-decreasing, càdlàg stochastic process Λ = {Λt}t≥0 with

Λ0 = 0 a subordinator which is strongly infinitely divisible with respect to

time (strong IDT subordinator) if it satisfies the distributional equality

{Λt}t≥0
d
=
{
Λ
(1)
t
n

+ . . .+ Λ
(n)
t
n

}
t≥0

,

where Λ(k), k ∈ N, are independent copies of Λ, and n ∈ N is arbitrary.

Obviously, Lévy subordinators are strong IDT subordinators. There also

exist, however, processes with dependent increments that are strong IDT.

Example A.9 (A non-Lévy strong IDT Subordinator)

Let M ∼ S(α) and consider Λt := M t1/α for some α ∈ (0, 1]. Denoting

by M (k), k ∈ N, independent copies of M , we observe that

M (1)
(t
n

)1/α
+ . . .+M (n)

(t
n

)1/α
=
(
n− 1

α

n∑
k=1

M (k)
)
t1/α

d
=M t1/α,

where the equality in distribution follows from the stability property of S(α).
Since the time t enters the definition of Λ in a deterministic fashion, this

already proves that Λ is a strong IDT subordinator.

Further examples of strong IDT subordinators can be found in Mansuy

(2005); Es-Sebaiy and Ouknine (2008); Hakassou and Ouknine (2012); Mai

and Scherer (2014a). The following lemma states a useful property of strong

IDT subordinators.

Lemma A.7 (Strong IDT Sub. form a Cone in Time and Space)

Let Λ = {Λt}t≥0 be a strong IDT subordinator, m ∈ N, and aj, bj > 0

constants, j = 1, . . . ,m. Then the process
{
a1 Λb1 t + . . .+ am Λbm t

}
t≥0

is

also strong IDT.

Proof. Consider n ∈ N independent copies of the stochastic process Λ,

denoted Λ(i), i = 1, . . . , n. The following observation is needed:

(∗) If A = {At}t≥0 and B = {Bt}t≥0 are arbitrary stochastic

processes with {At}t≥0
d
= {Bt}t≥0, it follows that

{
a1Ab1 t +

. . . + amAbm t

}
t≥0

d
=
{
a1Bb1 t + . . . + amBbm t

}
t≥0

, as will be

shown in the sequel: fixing some d ∈ N and t1, t2, . . . , td ≥
0, the random vectors (Ab1 t1 , . . . , Ab1 td , Ab2 t1 , . . . , Abm td) and

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 318

318 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

(Bb1 t1 , . . . , Bb1 td , Bb2 t1 , . . . , Bbm td) have the same distribution by as-

sumption. Hence,(m∑
j=1

aj Abj t1 , . . . ,

m∑
j=1

aj Abj td

)
d
=
(m∑

j=1

aj Bbj t1 , . . . ,

m∑
j=1

aj Bbj td

)
,

since these random vectors arise by applying the same measur-

able functional to (Ab1 t1 , . . . , Ab1 td , Xb2 t1 , . . . , Abm td), respectively

(Bb1 t1 , . . . , Bb1 td , Bb2 t1 , . . . , Bbm td). This proves the claim.

Defining At := Λt and Bt :=
∑n

i=1 Λ
(i)
t/n, t ≥ 0, it follows from the strong

IDT property that {At}t≥0
d
= {Bt}t≥0. Hence,{ n∑

i=1

m∑
j=1

aj Λ
(i)
bj t/n

}
t≥0

=
{ m∑

j=1

aj

n∑
i=1

Λ
(i)
bj t/n

}
t≥0

d
=
{ m∑

j=1

aj Λbj t

}
t≥0

,

where the equality in distribution follows from (∗) above and the first equal-

ity is trivial. On the left-hand side of the last equation one sees n indepen-

dent copies of the process
{
a1 Λb1 t+ . . .+amΛbm t

}
t≥0

, time-changed with

t �→ t/n. Hence, the strong IDT property of
{
a1 Λb1 t + . . .+ am Λbm t

}
t≥0

is established. �

It is useful to point out that each strong IDT subordinator Λ = {Λt}t≥0 is

associated with a Bernstein function Ψ that satisfies

E
[
e−uΛt

]
= e−tΨ(u), u, t ≥ 0. (A.12)

However, unlike in the case of Lévy subordinators, two different strong

IDT subordinators might share the exactly same Bernstein function. The

following definition introduces a further generalization of strong IDT sub-

ordinators by only requiring the defining equality in distribution for fixed

time points.

Definition A.10 (Weak IDT Subordinators)

We call a non-decreasing, càdlàg stochastic process Λ = {Λt}t≥0 with

Λ0 = 0 a subordinator which is weakly infinitely divisible with respect

to time (weak IDT subordinator) if it satisfies for each fixed t ≥ 0 the

distributional equality

Λt
d
= Λ

(1)
t
n

+ . . .+ Λ
(n)
t
n

,

where Λ(k), k ∈ N, are independent copies of Λ, and n ∈ N is arbitrary.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 319

Supplemental Material 319

Like Lévy subordinators and strong IDT subordinators, also with each

weak IDT subordinator Λ = {Λt}t≥0 is associated a unique Bernstein func-

tion Ψ such that (A.12) holds. Standard arguments from the theory of

infinite divisibility, such as Sato (1999, Theorem 7.10, p. 35), imply that a

non-decreasing stochastic process Λ = {Λt}t≥0 with Λ0 = 0 is a weak IDT

subordinator if and only if there exists a Bernstein function Ψ such that

(A.12) holds. Consequently, weak IDT subordinators are the biggest family

of processes whose marginal distributions agree with those of a Lévy sub-

ordinator. An example for a weak IDT subordinator Λ that is not strong

IDT, admittedly appearing somewhat pathological, is given as follows.

Example A.10 (A proper weak IDT Subordinator)

Let Λ̃ be the strong IDT subordinator of Example A.9 with α ∈ (0, 1), and

let Λ̂ be an independent α-stable Lévy subordinator. Notice that both pro-

cesses have the same associated Bernstein function Ψ(x) = xα, which char-

acterizes their marginal distributions. With a Bernoulli-distributed random

variable Z ∼ Bin(1, p) for p ∈ (0, 1), independent of (Λ̃, Λ̂), we consider

the stochastic process Λ = {Λt}t≥0 defined by

Λt :=

{
Λ̃t , if Z = 0

Λ̂t , if Z = 1
.

A simple computation shows that

E
[
e−xΛt

]
= (1 − p)E

[
e−x Λ̃t

]
+ pE

[
e−x Λ̂t

]
= (1 − p) e−tΨ(x) + p e−tΨ(x) = e−tΨ(x),

showing that Λ is weak IDT. Intuitively, the coin flip Z decides whether

Λ is the strong IDT subordinator of Example A.9 (with continuous paths)

or a stable Lévy subordinator (with discontinuous paths). This makes clear

that Λ is not strong IDT, since for two independent copies Λ(1) and Λ(2) of

Λ we observe

P
(
t �→ Λt is continuous

)
= 1− p
�= (1 − p)2 = P

(
t �→ Λ

(1)
t
2

+ Λ
(2)
t
2

is continuous
)
.

A.5 Further Reading

With this book, we aimed at providing a probabilistic treatment of high-

dimensional copulas with a specific focus on efficient sampling routines.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 320

320 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Clearly, focusing on these aspects made it necessary to disregard other ma-

terial that might also be interesting for the reader. Concerning the general

theory of copulas, we have significantly been influenced by the monographs

by Joe (1997) and Nelsen (2006). These were used as primary references

for proofs that we had to omit to save space. Joe (1997) gives a very com-

prehensive treatment of various aspects of “dependence modeling”; with

a strong focus on statistical issues and applications. Also, it contains a

huge battery of parametric families of multivariate models/copulas. Nelsen

(2006) mostly uses analytical techniques; his book is a very popular text-

book on copulas. Another classical book is that by Schweizer and Sklar

(1983). A recent book on copulas is Durante and Sempi (2015), providing

a well written introduction to the foundation of copula theory, including

historical excursions, with an emphasis on the analytic viewpoint towards

copula theory.

Readers particularly interested in elliptical (and related) distributions

are referred to Fang et al. (1990). Our exposition of exchangeable

Archimedean copulas is based on the work by McNeil and Nešlehová (2009).

More on the efficient sampling of Archimedean copulas is presented in the

research papers of M. Hofert and A. McNeil. A recent book on pair cop-

ulas is by Kurowicka and Joe (2011). Since the first edition of this book,

considerable attention has been devoted to pair-copula constructions. This

includes new theoretical results, new statistical applications, and new nu-

merical solutions. A good survey of this field (and other areas of multivari-

ate statistical modeling alike) is Joe (2014). Classical papers on estimation

are those by Genest et al. (1995) and Joe and Xu (1996). Dependence or-

derings are discussed in the work by Müller and Stoyan (2002). Finally, a

classical treatment of exchangeable and extendible random vectors is given

by Aldous (1985).

Concerning applications in the financial industry, a famous book on

risk management with a large section on copulas is that by McNeil et al.

(2005), this has been significantly updated in its second version McNeil et

al. (2015). Copula methods for financial applications are also presented

in Cherubini et al. (2004), Cherubini et al. (2012), and Mai and Scherer

(2014b). The popularity of copulas in credit risk applications originates

to a large extent from the respective chapter in the book by Schönbucher

(2003). More on Monte Carlo techniques (with applications in finance and

insurance) can be found in the books by Glasserman (2004) and Korn et

al. (2010). A very popular treatment of univariate sampling techniques is

given by Devroye (1986).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 321

Supplemental Material 321

Still trending is the use of statistical software, particularly R, let us

exemplarily mention the popular packages copula and VineCopula. Both

contain well written introductions with many examples that help to get fa-

miliar with the functionality. Finally, an interesting resource for copula lit-

erature is the new journal Dependence Modeling, published by De Gruyter.

In particular, it features a semi-annual interview series that emphasizes on

the history of dependence modeling.

b2530 International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd 6 01-Sep-16 11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 323

Bibliography

K. Aas, C. Czado, A. Frigessi, H. Bakken, Pair-copula constructions of multiple
dependence, Insurance: Mathematics and Economics 44(2) (2009) pp. 182–
198.

M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover, New
York (1972).

D.J. Aldous, Exchangeability and related topics, École d’Été de Probabilités
de Saint-Flour XIII-1983. Lecture Notes in Mathematics 1117, Springer,
Berlin (1985) pp. 1–198.

M. Ali, N. Mikhail, M. Haq, A class of bivariate distributions including the bi-
variate logistic, Journal of Multivariate Analysis 8 (1978) pp. 405–412.

C. Alsina, M.J. Frank, B. Schweizer, Associative Functions: Triangular Norms
and Copulas, World Scientific, Hackensack (2006).

D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University
Press, Cambridge (2004).

E. Arjas, T. Lehtonen, Approximating many server queues by means of sin-
gle server queues, Mathematics of Operations Research 3 (1978) pp. 205–
223.

B.C. Arnold, A characterization of the exponential distribution by multivariate
geometric compounding, Sankhyā: The Indian Journal of Statistics 37(1)
(1975) pp. 164–173.

R.W. Bailey, Polar generation of random variates with the t-distribution, Math-
ematics of Computation 62 (1994) pp. 779–781.

R.E. Barlow, F. Proschan, Statistical Theory of Reliability and Life Testing, Holt,
Rinehart and Winston, New York (1975).

O.E. Barndorff-Nielsen, N. Shephard, Normal modified stable processes, Theory
of Probability and Mathematical Statistics 65 (2001) pp. 1–19.

Basel Committee on Banking Supervision, Supervisory framework for the use of
“backtesting” in conjunction with the internal models approach to market
risk capital requirements, available at www.bis.org (1996).

Basel Committee on Banking Supervision, Internal coverage of capital measure-
ment and capital standards: A revised framework, comprehensive version,
available at www.bis.org (2006).

323

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 324

324 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

J.D. Beasley, S.G. Springer, Algorithm AS 111: The percentage points of the
normal distribution, Applied Statistics 26(1) (1977) pp. 118–121.

T. Bedford, R.M. Cooke, Probability density decomposition for conditionally de-
pendent random variables modeled by vines, Annals of Mathematics and
Artificial Intelligence 32 (2001a) pp. 245–268.

T. Bedford, R.M. Cooke, Monte Carlo simulation of vine dependent random vari-
ables for applications in uncertainty analysis, Proceedings of ESREL2001,
Turin, Italy (2001b).

T. Bedford, R.M. Cooke, Vines: A new graphical model for dependent random
variables, Annals of Statistics 30(4) (2002) pp. 1031–1068.

J. Beirlant, Y. Goegebeur, J. Segers, J. Teugels, Statistics of Extremes: The-
ory and Applications, Wiley Series in Probability and Statistics, Wiley,
Chichester (2004).

D. Berg, K. Aas, Models for construction of multivariate dependence, European
Journal of Finance 15(7/8) (2009) pp. 639–659.

G. Bernhart, M. Escobar, J.-F. Mai, M. Scherer, Default models based on scale
mixtures of Marshall–Olkin copulas: properties and applications, Metrika
76(2) (2013) 179–203.

G. Bernhart, J.-F. Mai, M. Scherer, On the construction of low-parametric fami-
lies of min-stable multivariate exponential distributions in large dimensions,
Dependence Modeling 3 (2015) pp. 29–46.

S. Bernstein, Sur les fonctions absolument monotones, Acta Mathematica 52(1)
(1929) pp. 1–66.

J. Bertoin, Lévy Processes, Cambridge University Press, Cambridge (1996).
J. Bertoin, Subordinators: Examples and Applications, École d’Été de Prob-

abilités de Saint-Flour XXVII-1997. Lecture Notes in Mathematics 1717
Springer, Berlin (1999) pp. 1–91.

P. Billingsley, Probability and Measure, Wiley Series in Probability and Statistics,
Wiley, New York (1995).

S. Bochner, Harmonic Analysis and the Theory of Probability, University of
California Press, Berkeley (1955).

L. Bondesson, On simulation from infinitely divisible distributions, Advances in
Applied Probability 14 (1982) pp. 855–869.

E. Brechmann, Truncated and simplified regular vines and their applications,
Diploma thesis, Technische Universität München (2010).

S. Cambanis, S. Hung, G. Simons, On the theory of elliptically contoured distri-
butions, Journal of Multivariate Analysis 11 (1981) pp. 368–385.

B. Candelon, G. Colletaz, C. Hurlin, S. Tokpavi, Backtesting Value at Risk: A
GMM duration-based test, Journal of Financial Econometrics 9(2) (2011)
pp. 314–343.

J.M. Chambers, C.L. Mallows, B.W. Stuck, A method for simulating stable ran-
dom variables, Journal of the American Statistical Association 71 (1976)
pp. 340–344.

A. Charpentier, J. Segers, Tails of multivariate Archimedean copulas, Journal of
Multivariate Analysis 100(7) (2009) pp. 1521–1537.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 325

Bibliography 325

A. Charpentier, A.L. Fougères, C. Genest, J. Nešlehová, Multivariate Archimax
copulas, Journal of Multivariate Analysis 126 (2014) pp. 118–136.

U. Cherubini, E. Luciano, W. Vecchiato, Copula Methods in Finance, John Wiley
and Sons, London (2004).

U. Cherubini, S. Romagnoli, Computing the volume of n-dimensional copulas,
Applied Mathematical Finance 16(4) (2009) pp. 307–314.

U. Cherubini, F. Gobbi, S. Mulinacci, S. Romagnoli, Dynamic Copula Methods
in Finance, John Wiley and Sons, London (2012).

P. Christoffersen, D. Pelletier, Backtesting Value at Risk: A duration-based ap-
proach, Journal of Financial Econometrics 2(1) (2004) pp. 84–108.

D.G. Clayton, A model for association in bivariate life tables and its application
in epidemiological studies of family tendency in chronic disease incidence,
Biometrika 65 (1978) pp. 141–151.

R. Cont, P. Tankov, Financial Modelling with Jump Processes, Chapman and
Hall/CRC Financial Mathematics Series, Boca Raton, Florida (2004).

R.D. Cook, M.E. Johnson, A family of distributions for modelling non-elliptically
symmetric multivariate data, Journal of the Royal Statistical Society: Series
B 43 (1981) pp. 210–218.

R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth, On the Lam-
bert W function, Advances in Computational Mathematics 5 (1996) pp.
329–359.

C. Czado, T. Schmidt, Mathematische Statistik, Springer, Berlin (2011).
P. Damien, P.M. Laud, A.F.M. Smith, Approximate random variate generation

from infinitely divisible distributions with applications to Bayesian infer-
ence, Journal of the Royal Statistical Society 57(3) (1995) pp. 547–563.

W.F. Darsow, B. Nguyen, E.T. Olsen, Copulas and Markov processes, Illinois
Journal of Mathematics 36(4) (1992) pp. 600–642.

S. Daul, E. De Giorgi, F. Lindskog, A.J. McNeil, The grouped t-copula with an
application to credit risk, Risk 16(11) (2003) pp. 73–76.

H.A. David, H.N. Nagaraja, Order Statistics, Wiley Series in Probability and
Statistics, Wiley, New York (1970).

B. de Finetti, La prévision: ses lois logiques, ses sources subjectives, Annales de
l’Institut Henri Poincaré 7 (1937) pp. 1–68.

M. DeGroot, Optimal Statistical Decisions, John Wiley and Sons, New York
(2004).

L. de Haan, S.I. Resnick, Limit theory for multivariate sample extremes,
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 40(4)
(1977) pp. 317–337.

H. Dette, W.J. Studden, The Theory of Canonical Moments with Applications
in Statistics, Probability, and Analysis, Wiley Series in Probability and
Statistics, Wiley, New York (1997).

L. Devroye, Non-uniform Random Variate Generation, Springer, New York
(1986).

J. Dißmann, Statistical inference for regular vines and application, Diploma the-
sis, Technische Universität München (2010).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 326

326 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

F. Durante, Construction of non-exchangeable bivariate distribution functions,
Statistical Papers 50(2) (2009) pp. 383–391.

F. Durante, C. Sempi, Principles of Copula Theory, CRC Press (2015).
Y. Elouerkhaoui, Pricing and hedging in a dynamic credit model, International

Journal of Theoretical and Applied Finance 10(04) (2007) pp. 703–731.
P. Embrechts, F. Lindskog, A.J. McNeil, Modelling dependence with copulas and

applications to risk management, in Handbook of Heavy Tailed Distributions
in Finance, ed. S. Rachev, Elsevier/North-Holland, Amsterdam (2003) pp.
329–384.

J. Engel, M. Scherer, L. Spiegelberg, One-factor Lévy-frailty copulas with inho-
mogeneous trigger rates, in Soft Methods for Data Science, Springer Inter-
national Publishing pp. 205–212 (2017).

K. Es-Sebaiy, Y. Ouknine, How rich is the class of processes which are infinitely
divisible with respect to time, Statistics and Probability Letters 78(5) (2008)
pp. 537–547.

J.D. Esary, A.W. Marshall, Multivariate distributions with exponential mini-
mums, Annals of Statistics 2 (1974) pp. 84–98.

L. Fahrmeir, A. Hamerle, Multivariate statistische Verfahren, de Gruyter, Berlin
(1984).

M. Falk, J. Hüsler, R.-D. Reiss, Laws of Small Numbers: Extremes and Rare
Events, Birkhäuser, Basel-Boston-Berlin (2004).

K.-T. Fang, S. Kotz, K.-W. Ng, Symmetric Multivariate and Related Distribu-
tions, Chapman and Hall, London (1990).

W. Feller, An Introduction to Probability Theory and its Applications, Volume II,
second edition, John Wiley and Sons, New York (1966).

T.S. Ferguson, A Bayesian analysis of some nonparametric problems, Annals of
Statistics 1 (1973) pp. 209–230.

T.S. Ferguson, Prior distributions on spaces of probability measures, Annals of
Statistics 2 (1974) pp. 615–629.

G. Fishman, Monte Carlo: Concepts, Algorithms and Applications, Springer, New
York (1996).

G. Frahm, On the extremal dependence coefficient of multivariate distributions,
Statistics and Probability Letters 76(14) (2006) pp. 1470–1481.

M.J. Frank, On the simultaneous association of F (x, y) and x + y − F (x, y),
Aequationes Math 21 (1979) pp. 37–38.

M. Fréchet, Les tableaux de corrélation dont les marges et des bornes sont
données, Annales de l’Université de Lyon, Sciences Mathématiques et As-
tronomie 20 (1957) pp. 13–31.

J. Galambos, S. Kotz, Characterizations of Probability Distributions, Lecture
Notes in Mathematics (Volume 675), Springer, Berlin (1978).

C. Genest, K. Ghoudi, L.-P. Rivest, A semiparametric estimation procedure of
dependence parameters in multivariate families of distributions, Biometrika
82(3) (1995) pp. 543–552.

C. Genest, R.J. MacKay, Copules archimédiennes et familles de lois bidimen-
sionnelles dont les marges sont données, Canadian Journal of Statistics 14
(1986) pp. 145–159.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 327

Bibliography 327

C. Genest, J. Nešlehová, A primer on copulas for count data, Astin Bulletin 37(2)
(2007) pp. 475–515.

C. Genest, L.-P. Rivest, A characterization of Gumbel’s family of ex-
treme value distributions, Statistics and Probability Letters 8 (1989) pp.
207–211.

K. Giesecke, A simple exponential model for dependent defaults, Journal of Fixed
Income 13(3) (2003) pp. 74–83.

P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer, New
York (2004).

A. Gnedin, J. Pitman, Moments of convex distribution functions and completely
alternating sequences, in Probability and Statistics: Essays in Honor of
David A. Freedman, Vol. 2, ed., D. Nolan, T. Speed, Institute of Mathe-
matical Statistics, Beachwood, Ohio (2008) pp. 30–41.

G.H. Golub, C.F. van Loan, Matrix Computations, John Hopkins University
Press, Baltimore, Maryland (1989).

E.J. Gumbel, Distributions des valeurs extrêmes en plusiers dimensions, Pub-
lications de l’Institut de Statistique de l’Université de Paris 9 (1960a)
pp. 171–173.

E.J. Gumbel, Bivariate exponential distributions, Journal of the American Sta-
tistical Association 55(292) (1960b) pp. 698–707.

M. Haas, New methods in backtesting, Financial Engineering Research Center
Caesar, Bonn (2001).

I.H. Haff, K. Aas, A. Frigessi, On the simplified pair-copula construction: Sim-
ply useful or too simplistic?, Journal of Multivariate Analysis 101 (2010)
pp. 1296–1310.

A. Hakassou, Y. Ouknine, A contribution to the study of IDT processes, working
paper (2012).

C. Hastings, Approximations for Digital Computers, Princeton University Press,
Princeton, New Jersey (1955).

F. Hausdorff, Summationsmethoden und Momentfolgen I, Mathematische
Zeitschrift 9(3–4) (1921) pp. 74–109.

F. Hausdorff, Momentenprobleme für ein endliches Intervall, Mathematische
Zeitschrift 16 (1923) pp. 220–248.

C. Hering, M. Hofert, J.-F. Mai, M. Scherer, Constructing hierarchical
Archimedean copulas with Lévy subordinators, Journal of Multivariate
Analysis 101(6) (2010) pp. 1428–1433.

C. Hering, J.-F. Mai, Moment-based estimation of extendible Marshall–Olkin
distributions, Metrika 75 pp. 601–620 (2012).

M. Hofert, Sampling Archimedean copulas, Computational Statistics and Data
Analysis 52 (2008) pp. 5163–5174.

M. Hofert, Sampling nested Archimedean copulas with applications to CDO pric-
ing, Dissertation Universität Ulm (2010).

M. Hofert, Efficiently sampling Archimedean copulas, Computational Statistics
& Data Analysis 55 (2011) pp. 57–70.

M. Hofert, Sampling exponentially tilted stable distributions, forthcoming in
ACM Transactions on Modeling and Computer Simulation (2012).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 328

328 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

M. Hofert, M. Mächler, Nested Archimedean copulas meet R: The nacopula pack-
age, Journal of Statistical Software 39 (2011) pp. 1–20.

M. Hofert, M. Mächler, A.J. McNeil, Likelihood inference for Archimedean cop-
ulas, Journal of Multivariate Analysis 110 (2012) pp. 133–150.

M. Hofmann, C. Czado, Assessing the VaR of a portfolio using D-vine copula
based multivariate GARCH models, working paper (2010).

B.W. Huff, The strict subordination of a differential process, Sankhya: The Indian
Journal of Statistics, Series A 31(4) (1969) pp. 403–412.

N. Jacob, R.L. Schilling, Function spaces as Dirichlet spaces (about a paper by
Maz’ya and Nagel), Journal for Analysis and its Applications 24(1) (2005)
pp. 3–28.

M. Jeanblanc, J. Pitman, M. Yor, Self-similar processes with independent incre-
ments associated with Lévy and Bessel processes, Stochastic Processes and
their Applications 100 (2002) pp. 223–231.

H. Joe, Parametric families of multivariate distributions with given margins, Jour-
nal of Multivariate Analysis 46 (1993) pp. 262–282.

H. Joe, Families of m-variate distributions with given margins and m(m − 1)/2
bivariate dependence parameters, in Distributions with Fixed Marginals and
Related Topics, ed. L. Rüschendorf, B. Schweizer, M.D. Taylor, IMS, Seat-
tle, Washington (1996).

H. Joe, Multivariate Models and Dependence Concepts, Chapman and Hall/CRC,
London (1997).

H. Joe, Dependence Modeling with Copulas, CRC Press, London (2014).
H. Joe, H. Li, A.K. Nikoloulopoulos, Tail dependence functions and vine copulas,

Journal of Multivariate Analysis 101 (2010) pp. 252–270.
H. Joe, J.J. Xu, The estimation method of inference functions of margins for mul-

tivariate models, Technical Report 166, Dep. of Statistics, Univ. of British
Columbia (1996).

S. Karlin, L.S. Shapley, Geometry of Moment Spaces, Memoirs of the Ameri-
can Mathematical Society, Vol. 12, American Mathematical Society, Prov-
idence, RI (1953).

A. Kemp, Efficient generation of logarithmically distributed pseudo-random vari-
ables, Journal of the Royal Statistical Society: Series C (Applied Statistics)
30(3) (1981) pp. 249–253.

A. Khinchin, Zur Theorie der unbeschränkt teilbaren Verteilungsgesetze, Matem-
aticheskii Sbornik 44(1) (1937) pp. 79–119.

A. Khinchin, Limit Laws for Sums of Independent Random Variables, ONTI,
Moscow-Leningrad (1938).

A. Khoudraji, Contributions à l’etude des copules et à la modélisation des valeurs
extrêmes bivariées, PhD thesis, Université de Laval, Québec (1995).

G. Kim, M.J. Silvapulle, P. Silvapulle, Comparison of semiparametric and para-
metric methods for estimating copulas, Computational Statistics and Data
Analysis 51(6) (2007) pp. 2836–2850.

C.H. Kimberling, A probabilistic interpretation of complete monotonicity, Aequa-
tiones Mathematicae 10 (1974) pp. 152–164.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 329

Bibliography 329

G. Kimeldorf, A.R. Sampson, Uniform representations of bivariate distributions,
Communications in Statistics 4 (1975) pp. 617–627.

D.E. Knuth, The Art of Computer Programming, Volume 2 (Seminumerical Al-
gorithms), 3rd edition, Addison-Wesley, Reading, Massachusetts (1998).

R. Korn, E. Korn, G. Kroisandt, Monte Carlo Methods and Models in Finance
and Insurance, Chapman and Hall/CRC, London (2010).

P. Kupiec, Techniques for verifying the accuracy of risk management models,
Journal of Derivatives 3 (1995) pp. 73–84.

D. Kurowicka, Some results for different strategies to choose optimal vine trun-
cation based on wind speed data, conference presentation, 3rd Vine Copula
Workshop, Oslo (2009).

D. Kurowicka, R.M. Cooke, Sampling algorithms for generating joint uniform
distributions using the vine-copula method, Computational Statistics and
Data Analysis 51 (2007) pp. 2889–2906.

D. Kurowicka, R. Joe, Dependence Modeling: Vine Copula Handbook, World Sci-
entific, Singapore (2011).

P. L’Ecuyer, Uniform random number generation, Annals of Operations Research,
53 (1994) pp. 77–120.

P. L’Ecuyer, Good parameters and implementations for combined multiple re-
cursive random number generators, Operations Research 47(1) (1999) pp.
159–164.

P. L’Ecuyer, R. Simard, TestU01: A software library in ANSI C for empirical
testing of random number generators, available at
http://www.iro.umontreal.ca/∼lecuyer (2002).

P. L’Ecuyer, F. Panneton, M. Matsumoto, Improved long-period generators based
on linear recurrences modulo 2, ACM Transactions on Mathematical Soft-
ware 32(1) (2006) pp. 1–16.

M. Larsson, J. Nešlehová, Extremal behaviour of Archimedean copulas, Advances
in Applied Probability 43 (2011) pp. 195–216.

P. Lévy, Théorie de l’addition des variables aléatoires, second edition (first edition
1934), Gauthier-Villars, Paris (1954).

H. Li, Tail dependence comparison of survival Marshall–Olkin copulas, Method-
ology and Computing in Applied Probability 10(1) (2008) pp. 39–54.

H. Li, Orthant tail dependence of multivariate extreme value distributions, Jour-
nal of Multivariate Analysis 100(1) (2009) pp. 243–256.

X. Li, P. Mikusinski, H. Sherwood, M.D. Taylor, Some integration-by-parts for-
mulas involving 2-copulas, in Distributions with given Marginals and Sta-
tistical Modelling, ed. C.M. Cuadras, J. Fortiana, J.A. Lallena Rodriguez,
Kluwer, Dordrecht (2002) pp. 153–159.

E. Liebscher, Construction of asymmetric multivariate copulas, Journal of Mul-
tivariate Analysis 99(10) (2008) pp. 2234–2250.

F. Lindskog, A.J. McNeil, Common Poisson shock models: Applications to insur-
ance and credit risk modelling, Astin Bulletin 33(2) (2003) pp. 209–238.

F. Lindskog, A. McNeil, U. Schmock, Kendall’s tau for elliptical distributions, in
Credit Risk, Physica-Verlag HD (2003) pp. 149–156.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 330

330 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

C.H. Ling, Representation of associative functions, Publication Mathematicae De-
brecen 12 (1965) pp. 189–212.

Y. Liu, R. Luger, Efficient estimation of copula-GARCH models, Computational
Statistics and Data Analysis 53(6) (2009) pp. 2284–2297.

J.-F. Mai, Extendibility of Marshall–Olkin distributions via Lévy subordinators
and an application to portfolio credit risk, Dissertation, Technische Univer-
sität München, available at
https://mediatum2.ub.tum.de/node?id=969547 (2010).

J.-F. Mai, Multivariate exponential distributions with latent factor structure and
related topics, Habilitation thesis, Technische Universität München, avail-
able at https://mediatum.ub.tum.de/node?id=1236170 (2014).

J.-F. Mai, M. Scherer, Lévy-frailty copulas, Journal of Multivariate Analysis
100(7) (2009a) pp. 1567–1585.

J.-F. Mai, M. Scherer, Efficiently sampling exchangeable Cuadras-Augé copulas
in high dimensions, Information Sciences 179 (2009b) pp. 2872–2877.

J.-F. Mai, M. Scherer, The Pickands representation of survival Marshall–Olkin
copulas, Statistics and Probability Letters 80(5–6) (2010) pp. 357–360.

J.-F. Mai, M. Scherer, Reparameterizing Marshall–Olkin copulas with applica-
tions to sampling, Journal of Statistical Computation and Simulation 81(1)
(2011a) pp. 59–78.

J.-F. Mai, M. Scherer, Bivariate extreme-value copulas with discrete Pickands
dependence measure, Extremes 14(3) (2011b) pp. 311–324.

J.-F. Mai, M. Scherer, H-extendible copulas, Journal of Multivariate Analysis,
110 pp. 151–160 (2012).

J.-F. Mai, M. Scherer, Sampling exchangeable and hierarchical Marshall–Olkin
distributions, Communications in Statistics – Theory and Methods 42(4)
(2013a) pp. 619–632.

J.-F. Mai, M. Scherer, Extendibility of Marshall–Olkin distributions and in-
verse Pascal triangles, Brazilian Journal of Probability and Statistics 27(3)
(2013b) pp. 310–321.

J.-F. Mai, M. Scherer, Characterization of extendible distributions with exponen-
tial minima via processes that are infinitely divisible with respect to time,
Extremes 17 (2014a) pp. 77–95.

J.-F. Mai, M. Scherer, Financial engineering with copulas explained, Palgrave
Macmillan, UK (2014b).

J.-F. Mai, M. Scherer, R. Zagst, CIID frailty models and implied copulas, in Cop-
ulae in Mathematical and Quantitative Finance, Springer Berlin Heidelberg
(2013) pp. 201–230.

J.-F. Mai, S. Schenk, M. Scherer, Exchangeable exogenous shock models,
Bernoulli 22 pp. 1278–1299 (2016a).

J.-F. Mai, S. Schenk, M. Scherer, Analyzing model robustness via a distortion of
the stochastic root: a Dirichlet prior approach, Statistics and Risk Modeling
32 (2016b) pp. 177–195.

J.-F. Mai, S. Schenk, M. Scherer, Two novel characterizations of self-
decomposability on the positive half-axis, Journal of Theoretical Probability,
forthcoming (2016c).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 331

Bibliography 331

R. Mansuy, On processes which are infinitely divisible with respect to time, work-
ing paper (2005).

K.V. Mardia, Multivariate Pareto distributions, The Annals of Mathematical
Statistics 33 (1962) pp. 1008–1015.

G. Marsaglia, Choosing a point from the surface of a sphere, The Annals of
Mathematical Statistics 43(2) (1972) pp. 645–646.

G. Marsaglia, The Marsaglia random number CD-ROM including the Diehard
battery of tests of randomness, available at http://stat.fsu.edu/pub/diehard
(1996).

G. Marsaglia, Xorshift RNGs, Journal of Statistical Software 8(14) (2003)
pp. 1–6.

G. Marsaglia, Evaluating the normal distribution, Journal of Statistical Software
11(4) (2004) pp. 1–11.

A.W. Marshall, Copulas, marginals and joint distributions, in Distributions
with fixed marginals and related topics, ed. L. Rüschendorf, B. Schweizer,
M.D. Taylor, Hayward, CA Institute of Mathematical Statistics (1996)
pp. 213–222.

A.W. Marshall, I. Olkin, A multivariate exponential distribution, Journal of the
American Statistical Association 62(317) (1967) pp. 30–44.

A.W. Marshall, I. Olkin, Families of multivariate distributions, Journal of the
American Statistical Association 83(403) (1988) pp. 834–841.

M. Matsumoto, T. Nishimura, Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator, ACM Transactions on
Modeling and Computer Simulation 8(1) (1998) pp. 3–30.

M. Matsumoto, M. Saito, SIMD-oriented fast Mersenne twister: A 128-bit pseu-
dorandom number generator, inMonte Carlo and Quasi-Monte Carlo Meth-
ods 2006, ed. A. Keller, S. Heinrich, H. Niederreiter, Springer, Berlin (2008)
pp. 607–622.

A.J. McNeil, Sampling nested Archimedean copulas, Journal of Statistical Com-
putation and Simulation 78(6) (2008) pp. 567–581.

A.J. McNeil, R. Frey, P. Embrechts, Quantitative Risk Management, Princeton
University Press, Princeton, New Jersey (2005).

A.J. McNeil, R. Frey, P. Embrechts, Quantitative Risk Management: Concepts,
Techniques and Tools, Princeton University Press, Princeton, New Jersey
(2015).

A.J. McNeil, J. Nešlehová, Multivariate Archimedean copulas, d-monotone func-
tions and l1-norm symmetric distributions, Annals of Statistics 37(5B)
(2009) pp. 3059–3097.

A.J. McNeil, J. Nešlehová, From Archimedean to Liouville copulas, Journal of
Multivariate Analysis 101(8) pp. 1772–1790.

N. Metropolis, S. Ulam, The Monte Carlo method, Journal of the American
Statistical Association 44 (1949) pp. 335–341.

J.R. Michael, W.R. Schucany, R.W. Haas, Generating random variates us-
ing transformations with multiple roots, The American Statistician 30(2)
(1976) pp. 88–90.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 332

332 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

P. Mikusinski, H. Sherwood, M. Taylor, The Fréchet bounds revisited, Real Anal-
ysis Exchange 17 (1992) pp. 759–764.

D.S. Moore, M.C. Spruill, Unified large-sample theory of general chi-squared
statistics for tests of fit, Annals of Statistics 3(3) (1975) pp. 599–616.

O. Morales-Nápoles, Counting vines, in Dependence modeling: Vine copula hand-
book, ed. D. Kurowicka, H. Joe, World Scientific, Singapore (2010).

B. Moro, The full Monte, Risk Magazine 8(2) (1995) pp. 57–58.
R. Moynihan, On τT semigroups of probability distribution functions II, Aequa-

tiones Mathematicae 17 (1978) pp. 19–40.
A. Müller, D. Stoyan, Comparison Methods for Stochastic Models and Risks, Wi-

ley, Chichester (2002).
M.E. Muller, A note on a method for generating points uniformly on N-

dimensional spheres, Communications of the ACM 2 (1959) pp. 19–20.
C.H. Müntz, Über den Approximationssatz von Weierstrass, Festschrift H.A.

Schwarz (1914) pp. 303–312.
National Institute of Standards and Technology, USA, available at

http://csrc.nist.gov/rng.
R.B. Nelsen, Dependence and order in families of Archimedean copulas, Journal

of Multivariate Analysis 60(1) (1997) pp. 111–122.
R.B. Nelsen, An Introduction to Copulas, second edition, Springer, New York

(2006).
J. von Neumann, Various techniques used in connection with random digits, in

Monte Carlo Method, ed. A.S. Householder, G.E. Forsythe, H.H. Germond,
National Bureau of Standard Series, Vol. 12, US Government Printing Of-
fice, Washington, DC (1951) pp. 36–38.

J.P. Nolan, Numerical calculation of stable densities and distribution func-
tions, Communications in Statistics: Stochastic Models 13(4) (1997) pp.
759–774.

G.L. O’Brien, The comparison method for stochastic processes, Annals of Prob-
ability 3 (1975) pp. 80–88.

D. Oakes, Multivariate survival distributions, Journal of Nonparametric Statistics
3(3-4) (1994) pp. 343–354.

F. Oberhettinger, L. Badii, Tables of Laplace Transforms, Springer, Berlin (1973).
A.J. Patton, Estimation of multivariate models for time series of possibly different

lengths, Journal of Applied Econometrics 21(2) (2006) pp. 147–173.
W.R. Pestman, Mathematical Statistics, de Gruyter, Berlin (1998).
J. Pickands, Multivariate extreme value distributions, Proceedings of the 43rd

Session ISI, Buenos Aires (1981) pp. 859–878.
A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integraly i Rjady (Integrals and

Series), Nauka, Moskow (1981).
S.I. Resnick, Extreme Values, Regular Variation and Point Processes, Springer,

Berlin (1987).
P. Ressel, Monotonicity properties of multivariate distribution and survival func-

tions with an application to Lévy-frailty copulas, Journal of Multivariate
Analysis 102(3) (2011) pp. 393–404.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 333

Bibliography 333

P. Ressel, Homogeneous distributions and a spectral representation of classical
mean values and stable tail dependence functions, Journal of Multivariate
Analysis 117 (2013) pp. 246–256.

M.L. Rizzo, Statistical Computing with R, Chapman and Hall, London (2007).
C. Ruiz-Rivas, C.M. Cuadras, Inference properties of a one-parameter curved

exponential family of distributions with given marginals, Journal of Multi-
variate Analysis 27(2) (1988) pp. 447–456.

L. Rüschendorf, Stochastically ordered distributions and monotonicity of the OC-
function of sequential probability ratio tests, Mathematische Operations-
forschung und Statistik Series Statistics 12(3) (1981) pp. 327–338.

L. Rüschendorf, On the distributional transform, Sklar’s theorem, and the em-
pirical copula process, Journal of Statistical Planning and Inference 139
(2009) pp. 3921–3927.

G. Samoronitska, M.S. Taqqu, Stable non-Gaussian Random Processes: Stochas-
tic Models with Infinite Variance, CRC Press, Boca Raton, Florida (1994).

K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Uni-
versity Press, Cambridge (1999).

M. Scarsini, On measures of concordance, Stochastica 8 (1984) pp. 201–218.
U. Schepsmeier, Maximum likelihood estimation of C-vine pair-copula construc-

tions based on bivariate copulas from different families, Diploma thesis,
Technische Universität München (2010).

R.L. Schilling, R. Song, Z. Vondracek, Bernstein Functions, De Gruyter, Berlin
(2010).

F. Schmid, R. Schmidt, Bootstrapping Spearman’s multivariate rho, Proceedings
in Computational Statistics, ed. A. Rizzi, M. Vichi, Springer, Heidelberg
(2006) pp. 759–766.

F. Schmid, R. Schmidt, Multivariate conditional versions of Spearman’s rho and
related measures of tail dependence, Journal of Multivariate Analysis 98(6)
(2007a) pp. 1123–1140.

F. Schmid, R. Schmidt, Nonparametric inference on multivariate versions of
Blomqvist’s beta and related measures of tail dependence, Metrika 66(3)
(2007b) pp. 323–354.

R. Schmidt, Tail dependence for elliptically contoured distributions, Mathematical
Methods of Operations Research 55 (2002) pp. 301–327.

V. Schmitz, Revealing the dependence structure between X(1) and X(n), Journal
of Statistical Planning and Inference 123 (2004) pp. 41–47.

I.J. Schoenberg, Metric spaces and positive definite functions, Transactions of the
American Mathematical Society 44 (1938) pp. 522–536.

P.J. Schönbucher, Credit Derivatives Pricing Models, Wiley, New York (2003).
U. Schöning, Algorithmik, Spektrum Akademischer Verlag GmbH, Heidelberg

(2001).
W. Schoutens, Lévy Processes in Finance: Pricing Financial Derivatives, Wiley

Series in Probability and Statistics, Wiley, Chichester (2003).
B. Schweizer, A. Sklar, Associative functions and abstract semigroups, Publica-

tiones Mathematicae Debrecen 10 (1963) pp. 69–81.

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 334

334 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North-Holland/Elsevier, New
York (1983).

V. Seshadri, The Inverse Gaussian Distribution: A Case Study in Exponential
Families, Oxford University Press, New York (1993).

J. Shuster, On the Inverse Gaussian distribution, Journal of the American Sta-
tistical Association 63(324) (1968) pp. 1514–1516.

A. Sklar, Fonctions de répartition à n dimensions et leurs marges, Publications
de l’Institut de Statistique de L’Université de Paris 8 (1959) pp. 229–231.

F.W. Steutel, K. van Harn, Infinite divisibility of probability distributions on the
real line, CRC Press (2003).

O. Szász, Über die Approximation stetiger Funktionen durch lineare Aggregate
von Potenzen, Mathematische Annalen 77(4) (1916) pp. 482–496.

K. Takahasi, Note on the multivariate Burr’s distribution, Annals of the Institute
of Statistical Mathematics 17 (1965) pp. 257–260.

F.G. Tricomi, On the theorem of Frullani, American Mathematical Monthly 58(3)
(1951) pp. 158–164.

R. Weron, On the Chambers-Mallows-Stuck method for simulating skewed stable
random variables, Statistics and Probability Letters 28 (1996) pp. 165–171.

D.V. Widder, The Laplace Transform, second edition, Princeton University Press,
Princeton, New Jersey (1946).

R.E. Williamson, Multiply monotone functions and their Laplace transforms,
Duke Mathematical Journal 23(2) (1956) pp. 189–207.

V. Witkovský, Computing the distribution of a linear combination of inverted
gamma variables, Kybernetika 37(1) (2001) pp. 79–90.

S.J. Wolfe, On moments of probability distribution functions, Lecture Notes in
Mathematics, Vol. 457, Springer, Berlin (1975) pp. 306–316.

E.F. Wolff, N-dimensional measures of dependence, Stochastica 4(3) (1980) pp.
175–188.

G.U. Yule, M.G. Kendall, An Introduction to the Theory of Statistics, 14th edi-
tion, Charles Griffin and Company, London (1965).

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 335

Index

BC2 copula, 25, 56
α-stable distribution, 3
α-stable subordinator, 310
χ2-distribution, 2
d-increasingness, 7
d-monotone generator, 83
d-monotonicity of sequences, 127
h-function, 203
i-margin, 5

acceptance-rejection method, 235
additive subordinator, 315
algorithm for computing

binary representations, 109
crude Monte Carlo, 254
Monte Carlo (antithetic), 256
Monte Carlo (control variates), 260
Monte Carlo (import. sampl.), 263
regular vine matrices, 198
tree sequences of R-vines, 200

algorithm for sampling
t-copulas, 183
acceptance-rejection method, 236
Archim. copulas w. shock, 315
asymmetric Archim. copulas, 100
bivariate Archimedean copulas, 98,

99
C-vine copulas, 211
conditional sampling, 23
CPP Lévy-frailty copulas, 151
D-vine copulas, 213
elliptical distributions, 179

exchangeable Archim. copulas, 85
exchangeable MO copulas, 135
extendible Archim. copulas, 61
Gaussian copulas, 182
h-extendible LFCs, 155
heterogeneous mixture models, 49
hierarchical Archim. copulas, 93
homogeneous mixture models, 42
inversion method, 235
Joe’s familie, 71
Lévy-frailty copulas, 150
Marshall–Olkin copulas, 107, 114
R-vine copulas, 216
RVs with finite range, 116
survival copulas Ĉ, 21
uniformly on the d-sphere, 180
univariate t, 244
univariate binomial, 248
univariate chi-square, 243, 244
univariate discrete, 247
univariate gamma, 242, 243
univariate inverse Gaussian, 245
univariate normal, 240
univariate Poisson, 248, 249
univariate stable, 246
univariate tilted stable, 246

Ali–Mikhail–Haq copula, 70
antithetic Monte Carlo estimator, 255
antithetic variates

confidence interval, 257
Monte Carlo estimator, 255

Archimedean copula, 59, 205

335

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 336

336 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

Archimedean generator, 62

Bernstein’s theorem, 64
binary representation, 107
binomial distribution, 3
body of a function, 236

C-vine, 196
characteristic generator, 163
chi-square-distributed RNs, 243
class eMO, 125
Clayton copula, 72
comonotonicity copula, 5, 29
completely monotone, 63
completely monotone sequence, 140
compound Poisson process, 306
compound Poisson subordinator, 151
concordance measure, 28
conditional densities, 186
conditional sampling method, 23
control variate, 259
copula, 4

definition, 4
countermonotonicity copula, 6, 29
Cuadras–Augé copula, 125

bivariate, 35
multivariate, 149

D-vine, 196
de Finetti’s theorem, 44
difference operator, 127
Dirichlet copula, 276
Dirichlet distribution, 276
discretely distributed RNs, 247
distribution function, 4
distributions with exponential

minima, 293

elliptical copula, 174
Erlang distribution, 77
exchangeability, 39
exchangeable Archimedean copula, 76
exogenous shock model, 268
exponential distribution, 2

multivariate, 104
exponential minima (EM), 293

exponentially distributed RNs, 235
extendibility, 43
extendible exShock copulas, 272
exterior power family, 69
extremal dependence, 33
extreme-value copula, 52, 285

finite activity, 307
Fréchet–Hoeffding bounds, 11
Frank copula, 70, 206

Gamma distribution, 2
Gamma subordinator, 308
Gamma-distributed RNs, 240
Gaussian copula, 18, 204, 218
generalized inverse, 14
geometric distribution, 4
groundedness, 7
Gumbel copula, 73, 206

h-extendible copula, 49
h-extendible extreme-value copulas,

294
H-extendible MSMVE, 297
Hankel determinant, 68, 143
Hausdorff’s moment problem, 141
heterogeneous mixture model, 48
hierarchical model, 49
homogeneous mixture models, 41

importance sampling, 262
independence copula, 5, 29
infinite activity, 309
infinitely divisible, 304
inner power family, 69
interior power family, 69
inverse Gaussian distribution, 3
inverse Gaussian subordinator, 309
inverse Gaussian-distributed RNs,

245
inverse Pascal triangle, 129
inverse transform. method, 256
inverse transformation method, 234
inversion method, 234

Joe copula, 71

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 337

Index 337

Kendall’s tau, 30
Khoudraji transformation, 99
Kimberling’s theorem, 64

Lévy measure, 305
Lévy subordinator

classical, 303
killed, 304

Lévy–Khinchin theorem, 305
Lévy-frailty copula, 146
lack of memory property, 102
Laplace exponent, 146, 305
Liouville copula, 100
Liouville distributions, 100
lognormal distribution, 2
lower-tail dependence, 33

Maresias copula, 45
Marshall–Olkin copula, 106

scale mixture, 311
Marshall–Olkin distribution, 104

bivariate, 103
min-stability, 102, 285

multivariate, 138
mixtures of normal distributions, 165
Monte Carlo method, 251

control variate, 259
crude Monte Carlo estimator, 251
importance sampling, 262
variance reduction, 254
variance reduction methods, 254

MSMVE, 286
MTCJ copula, 72
multiv. geometric compounding, 110
multivariate quantile transform, 25

non-strict generator, 62
normal distribution, 2, 238

multivariate, 170

orthogonal matrix, 161
outer power family, 69

pair copula constructions, 185
Pareto distribution, 3
partial correlation, 220

period, 233
Pickands dependence function, 54,

285
Pickands representation, 53
Poisson distribution, 3
Poisson process

construction, 303
intensity, 303

Poisson-distributed RNs, 248
positive orthant dependency, 47
principle of inclusion and exclusion, 6
proper d-monotone sequence, 142
pseudorandom numbers, 231

R-vine, 191
tree sequence, 193

radially symmetric, 37, 273
random numbers, 231

t-distributed, 244
acceptance-rejection method, 235
chi-square-distributed, 243
discretely distributed, 247
exponentially distributed, 235
Gamma distributed, 240
inverse Gaussian, 245
inverse transformation method, 234
inversion method, 234
normally distributed, 238
output space, 233
period, 233
Poisson distributed, 248
seed, 232
squeeze function, 237
stable distributed, 246
state space, 232
transition function, 232

regular vine, 191
copula, 195
matrix, 197

regular vine distribution, 194
rotated copula, 207

Sato subordinator, 279
scatterplot, 157
seed, 232
self-decomposable distribution, 279

May 17, 2017 16:28 Simulating Copulas - 9in x 6in b2921-Main page 338

338 Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications

self-similarity index, 279
singular component, 13
Sklar’s theorem, 16
Spearman’s rho, 31

multivariate, 33
spherical distribution, 161
squeeze function, 237
stable distributed rns, 246
strict generator, 62
strong IDT subordinator, 317
Student’s t-copula, 177, 218
Student’s t-distribution, 3, 244

multivariate, 172
survival copula, 19
survival function, 18, 19

tail dependence, 33

uniform distribution, 2
upper-extremal dependence, 35
upper-tail dependence, 33

variance reduction methods, 254

weak IDT subordinator, 318
Williamson d-transform, 82

	Series Page
	Title Page
	Copyright
	Dedication
	Preface
	Contents
	1 Introduction
	1.1 Copulas
	1.1.1 Analytical Properties
	1.1.2 Sklar’s Theorem and Survival Copulas
	1.1.3 General Sampling Methodology in Low Dimensions
	1.1.4 Graphical Visualization
	1.1.5 Concordance Measures
	1.1.6 Measures of Extremal Dependence

	1.2 General Classifications of Copulas
	1.2.1 Radial Symmetry
	1.2.2 Exchangeability
	1.2.3 Homogeneous Mixture Models
	1.2.4 Heterogeneous Mixture Models/Hierarchical Models
	1.2.5 Extreme-Value Copulas

	2 Archimedean Copulas
	2.1 Motivation
	2.2 Extendible Archimedean Copulas
	2.2.1 Kimberling’s Result and Bernstein’s Theorem
	2.2.2 Properties of Extendible Archimedean Copulas
	2.2.3 Constructing Multi-Parametric Families
	2.2.4 Parametric Families

	2.3 Exchangeable Archimedean Copulas
	2.3.1 Constructing Exchangeable Archimedean Copulas
	2.3.2 Sampling Exchangeable Archimedean Copulas
	2.3.3 Properties of Exchangeable Archimedean Copulas

	2.4 Hierarchical (H-Extendible) Archimedean Copulas
	2.4.1 Compatibility of Generators
	2.4.2 Probabilistic Construction and Sampling
	2.4.3 Properties
	2.4.4 Examples

	2.5 Other Topics Related to Archimedean Copulas
	2.5.1 Simulating from the Generator
	2.5.2 Asymmetrizing Archimedean Copulas

	3 Marshall–Olkin Copulas
	3.1 The General Marshall–Olkin Copula
	3.1.1 Canonical Construction of the MO Distribution
	3.1.2 Alternative Construction of the MO Distribution
	3.1.3 Properties of Marshall–Olkin Copulas

	3.2 The Exchangeable Case
	3.2.1 Reparameterizing Marshall–Olkin Copulas
	3.2.2 The Inverse Pascal Triangle
	3.2.3 Efficiently Sampling eMO
	3.2.4 Hierarchical Extensions

	3.3 The Extendible Case
	3.3.1 Precise Formulation and Proof of Theorem 3.1
	3.3.2 Proof of Theorem 3.2
	3.3.3 Efficient Simulation of L´evy-Frailty Copulas
	3.3.4 Hierarchical (H-Extendible) Lévy-Frailty Copulas

	4 Elliptical Copulas
	4.1 Spherical Distributions
	4.2 Elliptical Distributions
	4.3 Parametric Families of Elliptical Distributions
	4.4 Elliptical Copulas
	4.5 Parametric Families of Elliptical Copulas
	4.6 Sampling Algorithms
	4.6.1 A Generic Sampling Scheme
	4.6.2 Sampling Important Parametric Families

	5 Pair Copula Constructions
	5.1 Introduction to Pair Copula Constructions
	5.2 Copula Construction by Regular Vine Trees
	5.2.1 Regular Vines
	5.2.2 Regular Vine Matrices

	5.3 Simulation from Regular Vine Distributions
	5.3.1 h-Functions for Bivariate Copulas and Their Rotated Versions
	5.3.2 The Sampling Algorithms

	5.4 Dependence Properties
	5.5 Application
	5.5.1 Time Series Model for Each Margin
	5.5.2 Parameter Estimation
	5.5.3 Forecasting Value at Risk
	5.5.4 Backtesting Value at Risk
	5.5.5 Backtest Results

	6 Sampling Univariate Random Variables
	6.1 General Aspects of Generating Random Variables
	6.2 Generating Uniformly Distributed Random Variables
	6.2.1 Quality Criteria for RNG
	6.2.2 Common Causes of Trouble

	6.3 The Inversion Method
	6.4 Generating Exponentially Distributed Random Numbers
	6.5 Acceptance-Rejection Method
	6.6 Generating Normally Distributed Random Numbers
	6.6.1 Calculating the Cumulative Normal
	6.6.2 Generating Normally Distributed Random Numbers via Inversion
	6.6.3 Generating Normal Random Numbers with Polar Methods

	6.7 Generating Lognormal Random Numbers
	6.8 Generating Gamma-Distributed Random Numbers
	6.8.1 Generating Gamma-Distributed RNs with β > 1
	6.8.2 Generating Gamma-Distributed RNs with β < 1
	6.8.3 Relations to Other Distributions

	6.9 Generating Chi-Square-Distributed RNs
	6.10 Generating t-Distributed Random Numbers
	6.11 Generating Pareto-Distributed Random Numbers
	6.12 Generating Inverse Gaussian-Distributed Random Numbers
	6.13 Generating Stable-Distributed Random Numbers
	6.14 Generating Discretely Distributed Random Numbers
	6.14.1 Generating Random Numbers with Geometric and Binomial Distribution
	6.14.2 Generating Poisson-Distributed Random Numbers

	7 The Monte Carlo Method
	7.1 First Aspects of the Monte Carlo Method
	7.2 Variance Reduction Methods
	7.2.1 Antithetic Variates
	7.2.2 Antithetic Variates for Radially Symmetric Copulas
	7.2.3 Control Variates
	7.2.4 Approximation via a Simpler Dependence Structure
	7.2.5 Importance Sampling
	7.2.6 Importance Sampling via Increasing the Dependence
	7.2.7 Further Comments on Variance Reduction Methods

	8 Further Copula Families with Known Extendible Subclass
	8.1 Exogenous Shock Models
	8.1.1 Extendible Exogenous Shock Models

	8.2 Extreme-Value Copulas
	8.2.1 Multivariate Distributions with Exponential Minima
	8.2.2 Hierarchical (H-extendible) Extreme-Value Copulas

	Appendix A: Supplemental Material
	Bibliography
	Index

