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PATH-DEPENDENT VOLATILITY

JULIEN GUYON
QUANTITATIVE RESEARCH, BLOOMBERG L.P.

Abstract. So far, path-dependent volatility models have drawn little attention from both practitioners
and academics compared to local volatility and stochastic volatility models. This is unfair: in this article
we show that they combine benefits from both. Like the local volatility model, they are complete and
can fit exactly the market smile; like stochastic volatility models, they can produce rich implied volatility
dynamics. Not only that: given their huge flexibility, they can actually generate a much broader range of
spot-vol dynamics, thus possibly preventing large mispricings, and they can also capture prominent historical
patterns of volatility. We give many examples to showcase their capabilities.

1. Introduction

In the field of volatility modeling, three main families of models have been used so far in the finance
industry: constant volatility (Bachelier, 1905; Black and Scholes, 1973); local volatility (LV) (Dupire, 1994
[4]); and stochastic volatility (SV) (Hull and White, 1987 [17]; Heston, 1993 [13]; Bergomi, 2005 [1]; among
many others). The first two families of models are complete: since the asset price is driven by a single
Brownian motion, say W , every payoff admits a unique self-financing replicating portfolio consisting of
cash and the underlying asset, so its price is uniquely defined as the initial value of the replicating portfolio,
independently of utilities or preferences. Unlike the constant volatility models, the LV model is flexible enough
to fit any arbitrage-free surface of implied volatilities (henceforth, ‘smile’)—but then no more flexibility is
left. Calibrating to the market smile is useful when one sells an exotic option whose risk is well mitigated by
trading vanilla options—then the model correctly prices the hedging instruments at inception.

For their part, SV models are incomplete: the volatility is driven by one or several extra Brownian motions,
not perfectly correlated with W , and as a result perfect replication and price uniqueness are lost. Modifying
the drift of the SV leaves the model arbitrage-free, but changes option prices. Several concepts have been
suggested to define the price of an option in incomplete models, including super-replication, indifference
pricing, quantile hedging, and minimum variance hedging; for a review of these, see e.g. [10].

The main reason to consider SV models is to gain control on key risk factors like volatility of volatility (‘vol
of vol’), forward skew, and spot-vol correlation. For instance, using a very large mean reversion together with
a large vol of vol and a very negative spot-vol correlation, one can generate an almost flat implied volatility
surface, together with very negative short term forward skews. If an LV model were used to match this
smile, the LV surface would be almost flat as well, producing vanishing forward skew. As a result, cliquets
of forward starting call spreads would be much cheaper in the LV model. This is still true even if the smile
is not flat: LV models typically underprice these options—we say, underprice the forward skew. As for the
vol of vol, controling it avoids mispricing options on realized variance, or forward starting calls, for instance.
To sum up, SV models generate joint dynamics of the asset and its implied volatilities (spot-vol dynamics
henceforth) that are much richer than the LV ones.

To allow SV models to perfectly calibrate to the market smile, one can use mixed stochastic local volatility
(SLV) models, i.e., multiply the SV by an LV (the so-called ‘leverage function’) which is fitted to the smile
using the particle method; see [9]. This modifies the spot-vol dynamics, but rather slightly: usually the
leverage function, seen as a function of the asset price, becomes flatter and flatter as time t grows, so the
SLV dynamics become closer and closer to pure SV ones as time passes, and the model still generates large
vol of vol and large forward skew, except maybe close to t = 0.
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At this point a natural question arises: can we build complete models that have all the nice properties of
SLV models, namely, rich spot-vol dynamics, and calibration to the market smile? For instance, can we build
a complete model that is calibrated to a flat smile, and yet produces very negative short term forward skews?
It is tempting but wrong to quickly answer ‘no’, by arguing that the only complete model calibrated to the
smile is the LV model. This is not true: in this article, we will show that path-dependent volatility (PDV)
models, which are complete, can produce rich spot-vol dynamics and, furthermore, can be perfectly calibrated
to the market smile. The two main benefits of model completeness are price uniqueness and parsimony: due
to the causal link in the model between today’s asset price movements and future volatility, delta-hedging
perfectly replicates the latter—and any payoff; and even if perfect delta-hedging is deemed unrealistic, it is
remarkable that so many popular properties of SLV models can be captured using a single Brownian motion.
Not only that: we will see that thanks to their huge flexibility, PDV models can generate spot-vol dynamics
that are not attainable by SLV models. Section 2 introduces the class of PDV models. Then in Section 3 we
explain how we calibrate them to the market smile, before we investigate and illustrate with many numerical
examples how to pick a particular PDV in Sections 4 and 5.

2. Path-dependent volatility models

PDV models are those models where the instantaneous volatility σt depends on the path followed by the
asset price so far:

dSt
St

= σ(t, (Su, u ≤ t)) dWt

where, for simplicity, we have taken zero interest rates, repo, and dividends. In practice, the volatility
σt ≡ σ(t, St, Xt) will often be assumed to depend on the path only through the current value St and a finite
set Xt of path-dependent variables, which may include for example running or moving averages, maximums
or minimums, realized variances, etc.

PDV models have been widely overlooked, compared to LV and SV models. The most famous PDV
models are probably the ARCH model by Engle [5] and its descendants GARCH [2], NGARCH, IGARCH,
etc. But these are discrete-time models which are hardly used in the derivatives industry. The two other
main contributions so far are due to Hobson and Rogers [15] and Bergomi [1]. The discrete setting version
of Bergomi’s SV model is actually a mixed SV-PDV model in which, given a realization of the variance swap
volatility at time Ti = i∆ for maturity Ti+1,

√
ξiTi

, the (continuous time) volatility of the underlying on

[Ti, Ti+1] is path-dependent: it reads σ(St/STi
), where σ is calibrated to both ξiTi

and a desired value of
the forward at-the-money (ATM) skew for maturity ∆. By restriking S at Ti, the distribution of STi+1

/STi

is made independent of STi
, which allows to decouple the short term forward skew and the spot/volatility

correlation.
By contrast, the Hobson-Rogers model is a pure PDV model in which the volatility σt = σ(Xt) is a

deterministic function of Xt = (X1
t , . . . , X

n
t ), where the Xm

t are exponentially weighted moments of all the
past log increments of the asset price:

Xm
t =

ˆ t

−∞
λe−λ(t−u)

(
ln
St
Su

)m
du

Consider the case where n = 1: then the authors stipulate that the volatility depends only on the offset
X1
t = lnSt −

´ t
−∞ λe−λ(t−u) lnSu du, which is the difference between the current log price and a weighted

average of past log prices: the volatility is completely determined by the local trend of the asset price over a
period of order 1/λ years (e.g., 1 month if λ = 12). As we will see in Section 5, this is supported by empirical
studies. Here the choice of an infinite time window and exponential weights is only guided by computational
convenience: it ensures that (St, Xt) is a Markovian process, so the time-t price of a European payoff of the
type g(ST , XT )—in particular the price of a vanilla option—reads u(t, St, Xt) where u is the solution to a
second order parabolic partial differential equation. Note in particular that the implied volatilities at time 0
in the model depend not only on the strike, maturity, and S0, but also on all the past asset prices through
X0.

At this point four natural questions arise:
(1) Can we specify σ(·) and λ so as to exactly fit the market smile? [19, 6] only gave approximate

calibration results.
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(2) Does the calibrated model have desired dynamics of implied volatility, such as large negative short
term forward skew for instance?

(3) In the definition of Xt, can we use general weights and a finite time window [t − ∆, t] instead of
(−∞, t], so that the volatility truly depends only a limited portion of the past, e.g., the previous
month? The generalization in [7] is very partial as it requires positive weights on [0, t].

(4) Much more importantly: how do we generalize to other choices of Xt? The generalization in [16],
where the volatility depends on a particular modified version of the offset X1

t , is also very partial.
In this article we solve all these questions at a time: first we choose any set of path-dependent variablesXt and
any function σ(t, S,X) so that the PDV model with σt = σ(t, St, Xt) has desired spot-vol dynamics and/or
captures historical features of volatility, and then we define a new PDV model by multiplying σ(t, S,X) by
a leverage function l(t, S) and we perfectly calibrate l to the market smile of S using the particle method.
When we do not calibrate to the smile (l ≡ 1), we speak of ‘pure’ PDV.1 Usually, multiplying the pure PDV
σ(t, St, Xt) by the calibrated leverage function distorts only slightly the spot-vol dynamics since leverage
functions typically flatten over time (see Figure 4.3). This way we mimic SLV models, with the pure PDV
σ(t, St, Xt) playing the role of the SV, but we stay in the world of complete models.

Actually, the same program can be run by choosing two functions a(t, S,X) and b(t, S,X) instead of only
one function σ(t, S,X), and then defining σ2

t = a(t, St, Xt) + b(t, St, Xt)l(t, St). The case where b ≡ 1 is the
complete analogue of incomplete additive SLV models, where the instantaneous variance is the sum of an SV
and an LV.

3. Smile calibration of path-dependent volatility models

Before investigating how to choose X and σ(t, S,X), let us explain how, given such a choice, we can
uniquely build the leverage function l(t, S) such that the PDV model

(3.1)
dSt
St

= σ(t, St, Xt)l(t, St) dWt

fits exactly the market smile of S. From Itô-Tanaka’s formula—or, in this deterministic interest rate frame-
work, from Gyöngy’s theorem—we know that Model (3.1) is exactly calibrated to the market smile of S if
and only if

(3.2) EQ[σ(t, St, Xt)
2|St]l(t, St)2 = σ2

Dup(t, St)

where Q denotes the unique risk-neutral measure and σDup the Dupire LV. As a consequence, the calibrated
model satisfies the nonlinear McKean stochastic differential equation

(3.3)
dSt
St

=
σ(t, St, Xt)√

EQ[σ(t, St, Xt)2|St]
σDup(t, St) dWt

The particle method (see [9]) is a very efficient and elegant Monte Carlo method that computes the above
conditional expectation, hence the leverage function l(t, S) = σDup(t, S)/

√
EQ[σ(t, St, Xt)2|St = S], on the

go while simulating the paths.
Note that for many choices of Xt it should be possible in theory to choose a PDV σ(t,Xt) with no explicit

dependence on St such that the smile calibration condition EQ[σ(t,Xt)
2|St] = σ2

Dup(t, St) is satisfied—there
are enough degrees of freedom in σ to handle the double infinity of constraints indexed by (t, S). However
so far we do not know how to build such σ. Multiplying a given σ(t,X) by a leverage function l(t, S) allows
us to build a calibrating PDV σ(t,X)l(t, S), but to the expense of introducing an explicit dependence on S.

In a recent paper [3] Brunick and Shreve have shown how, under very mild assumptions, given a general
Itô process dSt = σtSt dWt and a special type of path-dependent variable X, one can build a PDV σ(t, St, Xt)
such that, for each t, the joint distribution of (St, Xt) is the same in both models. A solution is shown to
be σ(t, St, Xt)

2 = EQ[σ2
t |St, Xt]. However, only X’s satisfying a type of Markov property are admissible.

For instance, running averages and running minimums/maximums are admissible, but a moving average is
not; instead, one must pick Xt = (Su, t − ∆ ≤ u ≤ t), where ∆ is the length of the moving time window.
If X is admissible, and if a formula is available to compute σ(t, St, Xt) from market prices of options, the

1Alternatively, to mimick the SV/SLV classification, we could speak of path-dependent local volatility (PDLV) for the
calibrated model (3.1), and reserve the use of ‘PDV’ for the cases where l ≡ 1. However, this is ambiguous, as a PDLV can be
seen as a PDV, since σ(t, S,X)l(t, S) ≡ Σ(t, S,X) is a function of the asset path.
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Xt σ(S,X) producing large forward skew σ(S,X) producing U-shaped forward smile
St−∆ 1 σ1{ S

X≤1} + σ1{ S
X>1} 4 σ1{| SX−1|>κσ0

√
∆} + σ1{| SX−1|≤κσ0

√
∆}

S
∆

t 2 as above 5 as above
(m∆

t ,M
∆
t ) 3 σ1{ S−m

M−m≤
1
2} + σ1{ S−m

M−m> 1
2} 6 σ1{M

m−1>κσ0

√
∆} + σ1{M

m−1≤κσ0

√
∆}

Table 1. Examples of PDV functions that generate a large negative short term forward
skew even when calibrated to a flat surface of implied volatilities.

Brunick-Shreve result, combined with the particle method, allows us to calibrate a diffusive model to those
market prices. Henry-Labordère [12] has given an example of such formula where Xt is the running maximum
Mt, using barrier option payoffs (ST −K)+1MT>B .

Note that, by taking Xt to be the whole path of S itself up to time t, the Brunick-Shreve result shows
that the price process produced by any SV/SLV model has the same distribution, as a process, as a PDV
model. This means that there always exists a PDV model that produces exactly the same prices of, not only
vanilla options, but all options, including path-dependent, exotic options. It then comes as no surprise that
PDV models can reproduce popular SLV spot-vol dynamics (see Section 4). All of them can actually be
reproduced by PDV models.

Now the crucial question is: How to choose a particular PDV? There are two main possible goals: (1) to
generate desired spot-vol dynamics, and/or (2) to capture historical features of volatility. These two goals
are not antagonist: it might very well happen, and it is desirable, that a given choice of a PDV fulfills both
objectives at a time. The next two sections investigate these two objectives.

4. Choose a particular PDV to generate desired spot-vol dynamics

Can we choose a PDV σ(t, S,X) that generates, for instance, large negative short term forward skews, even
when it is calibrated to a flat smile? Of course the flat smile case is unrealistic, but it helps understand the
decoupling of the spot smile and the forward smile. Using an analogy with SLV models, we need σ(t, St, Xt)
to be negatively correlated with St. Obviously this may be achieved by picking a decreasing function σ of
S alone, but in view of (3.3), after ‘decorating’ the model with a leverage function and calibrating it to the
smile, this would bring us back to the pure LV model. Therefore what we actually need is

√
η(t, St, Xt) to

be negatively correlated with St, where

η(t, S,X) ≡ σ(t, S,X)2

EQ[σ(t, St, Xt)2|St = S]

denotes what we call the ‘path-dependent to local variance ratio’ (PDLVR). The PDLVR, or alternatively its
conditional variance

D(t, S) = Var(η(t, St, Xt)|St = S) = E[(η(t, St, Xt)− 1)2|St = S]

measure the deviation from LV, which is characterized by η ≡ 1, or D ≡ 0. Note that the PDLVR itself
is uncorrelated with the asset price, since EQ[η(t, St, Xt)|St = S] ≡ 1. For its square root to be negatively
correlated with St, σ(t, St, Xt) must be negatively correlated to St, but not perfectly: good PDV candidates
must satisfy that the correlation between St and σ(t, St, Xt) is more around, say, −50% than around −1%
or −99%. We call ‘moderate correlation’ this property that, for the calibrated PDV model to produce large
negative short term forward skews, the levels of the asset price and the PDV must be negatively correlated,
but not too much. Note that for all usual SLV models, the levels of the asset price and the SV are moderately
negatively correlated, even if their increments are extremely negatively correlated, due to the presence of
mean reversion in the SV.

Three adequate simple choices of PDV are listed in Table 1 (Examples 1–3), where

S
∆

t =

´∆

0
wτSt−τ dτ´∆

0
wτ dτ

, m∆
t = inf

t−∆≤u≤t
Su, and M∆

t = sup
t−∆≤u≤t

Su

respectively denote a weighted moving average, minimum, and maximum of the asset price over the previous
∆ years. (Note that, in our numerical experiments, wτ ≡ 1, and, as a simplifying assumption, we use
min(∆, t) instead of ∆ so the option prices do not depend on the asset prices for t < 0.) Let us first look
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at Example 1: The PDV takes two values σ < σ, depending on whether St is larger or smaller than St−∆.
Comparing with SV models, the spread σ − σ mainly plays the part of the vol of vol: we need it to be large
enough to generate large negative short term forward skew. The length ∆ of the time window plays the role
of spot-vol correlation because when ∆ is very small, the volatility σ(St, Xt) is almost independent of St, as
in this case the fact that St is small or large gives almost no information on St/St−∆, whereas when ∆ is
large enough, if St is small, it makes it more likely that St be smaller than St−∆, which creates a negative
spot-vol correlation. However, if ∆ is too large, for instance if the time window is the full interval [0, t], then
the volatility depends only on S and we are back to the LV model. The ‘correlation’ parameter ∆ must not
be too small nor too large, which illustrates the moderate correlation property. But somehow ∆ also plays
the part of mean reversion in the sense that the smaller ∆, the more ergodic the volatility, hence the flatter
the forward smile; therefore a small ∆ and a large mean-reversion have analogous effects (see [8]). Example
2 is very similar to Example 1, with St−∆ replaced by a moving average S

∆

t , which makes more financial
sense—why put all the weight wτ on τ = ∆? As for Example 3, it uses the fact that St−m∆

t

M∆
t −m∆

t
is positively

correlated with St, and the larger ∆, the larger the correlation.

Figure 4.1 compares the prices of forward starting ATM call spreads and digital calls in different models:
LV, the PDV models of Examples 1–3 (with their leverage function l calibrated to a flat 20% smile), and the
corresponding pure PDV models. It proves that PDV models can be calibrated to a flat smile and generate
highly skewed forward implied volatilities. Note that for month #1, the call spread (resp. the digital call)
is actually not forward starting: it is a vanilla option, and since the LV and the three PDV models are all
calibrated to the same smile, the four prices coincide. As the forward starting date increases, the PDV price
gets closer to the pure PDV price, a sign that the leverage function l is flattening around 1. This is confirmed
by Figure 4.3 (top left), where we have graphed the leverage function surface l(t, S) of Example 3 (the graphs
for Examples 1 and 2 are very similar). In this pedagogic example of a flat smile, l somehow fights against
the pure PDV so as to fit the flat smile: it increases with the asset price, sharply for small t. It modifies the
model dynamics in the short term. Yet Figure 4.1 shows that, even in this quite extreme toy case, the impact
of l on the forward skew vanishes quickly. In realistic cases, it is likely that l be almost flat, or generate
a skew in the same direction as the pure PDV model, like for SLV models (see Figure 5.4). Note that the
values of σ and σ were chosen so that the smiles of the pure PDV models take values around the flat inputed
smile (see Figure 4.2, right).

We can use the calibrated SLV model where the SV is modeled as the exponential of an Ornstein-Uhlenbeck
process to reproduce the prices of call spreads and digital calls of Example 2 in Figure 4.1. One must then
use a very large vol of vol, beyond 550%, together with an extreme spot-vol correlation (say, −99%). This
is because we need a huge positive return in volatility when asset returns are negative. But (a) this creates
numerical problems, and (b) a very large mean reversion above 20 is then somehow artificially needed to
keep the volatility within a reasonable range. By comparison PDV models, which can directly relate the
asset returns to the volatility levels, look much more handy and can more naturally generate large negative
forward skews.

Obviously one can generate positive skews by exchanging σ and σ in the definition of the PDV. Also, one
may use smoothed versions of the PDV by replacing the Heaviside function by 1

2 (1 + tanh(λx)) for instance.
However, the fact that in Examples 1–3 the instantaneous volatility is a jump process is not problematic: no
one has ever seen such quantity—it may actually not exist. Figure 5.1 shows that a two-state instantaneous
volatility can accurately capture historically observed patterns of short term ATM implied volatilities.

Now, what if we want a PDV model calibrated to a flat smile and yet that generates pronounced U-shaped
short term forward smiles? Inspired again by known results on SLV models, we need

√
η(t, St, Xt) to be

highly volatile and uncorrelated with St. However, this is not sufficient: we also need that
√
η(t, St, Xt) be

not ergodic—at least at the scale of the maturity τ of the forward smile considered, e.g., τ = 1/12 (1 month).
This means that if we used Examples 1–3 of Table 1, we would need to choose ∆ ≈ τ or ∆� τ . Now, ∆ ≈ τ
implies that

√
η(t, St, Xt) is correlated with St; and if ∆ is too large, then

√
η(t, St, Xt) is almost constant,

hence not volatile. In both cases this will fail to produce a U-shaped forward smile, so we must turn to new
PDVs. Examples 4–6 in Table 1 are natural candidates, for which the volatility is large if and only if so are
recent asset returns (up or down). The corresponding prices of forward starting butterfly spreads are shown
in Figure 4.2 (left). These models produce vanishing ATM forward skew. The leverage function of Example
6 is reported in Figure 4.3 (top right); those of Examples 4 and 5 are similar.
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Figure 4.1. Prices in volatility points of forward starting call spreads HCS
i ≡ (STi/STi−1 −

K1)+ − (STi
/STi−1

− K2)+ (left) and prices in percent of forward starting digital calls
1{STi

/STi−1
> 1} (right) for LV, the PDV examples 1–3 of Table 1 (with their lever-

age function l), and their pure PDV counterparts; Ti − Ti−1 = 1 month; K1 = 95%,
K2 = 105%. On the x-axis, i is the month number. σ = 8%, σ = 32%, ∆ = 1
month. The LV and PDV models are calibrated to a flat smile (20%). For each model,
the price in volatility points of the forward starting call spread is 100 times the value of
∆σ such that EQ[HCS

i ] = CBS(K1, σ
ATM
i + ∆σ

2 ) − CBS(K2, σ
ATM
i − ∆σ

2 ), where σATM
i is

the forward starting one-month ATM implied volatility in the corresponding model, i.e.,
EQ[(STi/STi−1 − 1)+] = CBS(1, σATM

i ); CBS(K,σ) denotes the Black-Scholes price of a call
with S0 = 1, r = q = 0, and T = 1 month.

Figure 4.2. Left: Prices in volatility points of forward starting butterfly spreads HB
i ≡

(STi/STi−1 −K1)+ + (STi/STi−1 −K3)+−2(STi/STi−1 −K2)+ for LV, the PDV examples 4–
6 of Table 1 (with their leverage function l), and their pure PDV counterparts; Ti−Ti−1 = 1
month; K1 = 95%, K2 = 100%, K3 = 105%. On the x-axis, i is the month number. σ = 10%
(resp. 9%, 8%), σ = 50% (resp. 45%, 40%), κ = 1 (resp. 0.35, 1.2) for Example 4 (resp.
5, 6); σ0 = 20%, ∆ = 1 month. The LV and PDV models are calibrated to a flat smile
(20%). For each example, the values of σ and σ are chosen so that the smile of the pure
PDV model takes values around this flat smile (see right graph). For each model, the price
in volatility points of the forward starting butterfly spread is 100 times the value of ∆σ
such that EQ[HB

i ] = CBS(K1, σ
ATM
i + ∆σ) +CBS(K3, σ

ATM
i + ∆σ)−2CBS(K2, σ

ATM
i ); σATM

i

is the forward starting one-month ATM implied volatility in the corresponding model, i.e.,
EQ[(STi

/STi−1
− 1)+] = CBS(1, σATM

i ).
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Figure 4.3. Leverage function l(t, S) in the PDV models of Examples 3 (top left), 6 (top
right), 7 (bottom left) and 8 (bottom right). Same parameter values as in Figure 4.2 for
Examples 3 and 6. For Example 7: ∆ = 1 week, σ = 10%, σ = 40%, σ0 = 20%. For Example
8: ∆ = 1 week, α = 0.008, β = 0.8. The models are calibrated to a flat smile (20%).

So far, we have shown that PDV models can do as well as SLV models—and even better than SLV models,
considering the unreasonably high levels of the corresponding vol of vol—to reproduce popular properties of
the smile dynamics, while staying calibrated to a smile, with the advantage that they are complete and more
parsimonious. But PDV models can do much more than that: they have so many degrees of freedom—the
path-dependent variables X, and the function σ(t, S,X)—that they can generate spot-vol dynamics that are
not attainable by SLV models. For example, imagine that a sophisticated client—a hedge fund at the cutting
hedge of innovation for instance—asks a quote on the conditional variance swap with payoff

(4.1) HT =

n−1∑
i=1

r2
i+11{ri≤0} ≈

ˆ T

0

σ2
t 1{ St

St−∆
≤1

} dt, ri =
Sti − Sti−1

Sti−1

, ∆ = ti − ti−1 = 1 day

Then, in the SLV model, for a given risk-neutral probability Q,

EQ
[
σ2
t 1{ St

St−∆
≤1

}∣∣∣∣St] ≈ EQ [σ2
t

∣∣St]EQ
[

1{ St
St−∆

≤1
}∣∣∣∣St] ≈ 1

2
σ2

Dup(t, St)

since, given the asset price, the volatility level is almost independent of the sign of the past daily asset return,
and the SLV model is calibrated to the market smile. Thus both the SLV price and the LV price are very
close to the variance swap price halved:

SLV price ≈ LV price ≈ 1

2

ˆ T

0

EQ [σ2
Dup(t, St)

]
dt =

1

2
var swap price
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whatever the choice of Q. However, if a hedge fund requests such a quote, it is probably because they
observed that the historical time series of this asset price shows that r2

i+1 is large when ri ≤ 0, and small
otherwise, expect this to continue, and try to statistically arbitrage a counterparty. All the common models
that are used in the industry today would fail to capture this risk, but the PDV model of Example 1, with
∆ = ti − ti−1 = 1 day, grasps it very well, since precisely σ(ti, Sti , Sti−1

) is high (σ) when ri ≤ 0, and low
(σ) otherwise. As ∆ is small, EQ [σ(ti, Sti , Sti−1

)2 |Sti
]
≈ σ2+σ2

2 is almost constant, so

PDV price ≈
ˆ T

0

EQ

[
σ2

σ2+σ2

2

σ2
Dup(t, St)1{ St

St−∆
≤1

}
]
dt ≈ σ2

σ2 + σ2
var swap price

which, for reasonable values of (σ, σ), e.g., (10%, 40%), is close to the (unconditional) variance swap price,
i.e., twice the SLV price and twice the LV price. In such a case, an investment bank equipped with PDV
may avoid a large mispricing. Note that for the pure PDV model,

pure PDV price ≈
ˆ T

0

EQ
[
σ21{ St

St−∆
≤1

}] dt ≈ σ2T

2
≈ σ2

σ2 + σ2
pure PDV var swap price

5. Choose a particular PDV to capture historical patterns of volatility

With so many degrees of freedom, PDV models can easily capture historical properties of volatility. This
means that, like the local correlation models presented in [11], PDV models are flexible enough to reconcile
implied calibration (e.g., calibration to the market smile) with historical calibration (calibration from his-
torical time series of asset prices): one chooses a PDV σ(t, S,X) from the observation of the time series,
e.g., one observed that the short term ATM volatility is a certain function of St/S

∆

t , then multiplies it by
a leverage function l(t, S) and eventually calibrates l to the market smile using the particle method. Often,
the leverage function flattens over time so the calibrated model still has the desired property, except maybe
close to t = 0. By construction, PDV models are flexible enough to capture any path-dependency of the
volatility. For a given choice of PDV, what remains to be numerically checked is how much and how long the
smile calibration distorts the link between past prices and current instantaneous volatility, and whether the
model produces reasonable dynamics of implied volatility.

For instance, Examples 1–3 above relate the level of volatility to recent relative changes (returns) in the
asset price, allowing volatility to rise very quickly (from, say, 10% to 20%, a 100% return) in periods when the
asset price goes down, regardless of the price level—a pattern which is obvious on S&P 500 data (see Figure
5.1, left). Actually, the two basic quantities that possess a natural scale are the level of volatility and the
relative changes in the asset price so we believe that a good model should relate these two quantities. In this
respect, the LV model, which links the level of volatility to the level of the asset price, does not make much
financial sense—so well designed PDV models need not be recalibrated as often as the LV model. SV models,
which connect the change in volatility to the relative change in the asset price, do not make much more
sense: only unreasonable levels of vol of vol allow large movements (e.g., a 100% return) of instantaneous
volatility, and therefore a large mean-reversion is artificially added to keep volatility within its natural range.
By contrast PDV models can easily capture such large changes in volatility. Examples 1–6 are extreme cases,
where the instantaneous volatility jumps from σ to σ or conversely; in practice smoothed versions may make
more financial sense.

Another obvious pattern visible on Figure 5.1 (left) is the boundedness of volatility paths: the one-month
ATM implied volatility path stays away from zero and does not take extreme values. This is easily enforced
in PDV models, but is not always the case for popular SV models such as the Heston model, in which a large
proportion of volatility paths get close to zero, while others may take very high values, if the Feller condition
is not satisfied. Enforcing bounded volatility also prevents potential problems of loss of asset martingality.

The dependency assumptions of Examples 1–3 can be tested on historical data. From Figure 5.1 (left), it
is clear that for the S&P 500, the level of volatility is not determined by the level of the asset price, but by
the recent changes in the asset price: spikes in the one-month ATM implied volatility correspond to those
periods where the asset price is below its moving average, creating volatility clustering.

To reproduce Figure 5.1 (left), we used the actual S&P 500 time series and generated the one-month
ATM implied volatility path using the pure PDV model of Example 2, with σ = 8%, σ = 21%, and ∆ = 1
month (see Figure 5.1, right). The similarity with the actual volatility path is striking. Even though the
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Figure 5.1. Left: Historical time series of the S&P 500 (white), its 10 day moving average
(green), and a short-dated ATM implied volatility (T ≈ 1 month), from March 18, 2013
to March 18, 2014. Copyright 2014 Bloomberg Finance L.P. Right: the one-month ATM
implied volatility is built using the actual time series of the S&P 500 (white) and the pure
PDV model of Example 2, with σ = 8%, σ = 21%, and ∆ = 1 month.

Figure 5.2. Sample paths of the S&P 500 (white), its 10 day moving average (green), and
the one-month ATM implied volatility using the PDV model of Example 2, calibrated to the
smile of the S&P 500 on March 18, 2013, with σ = 10%, σ = 22%, and ∆ = 1 month.

(unobservable) instantaneous volatility takes only two values, 8% and 21%, the one-month ATM implied
volatility, which is an average of future instantaneous volatilities, varies continuously, with spikes when the
market is locally bearish. In Figure 5.2 we pick σ = 10% and σ = 22% and calibrate the leverage function to
the smile of the S&P 500 as of March 18, 2013, the first day of the one-year time window of Figure 5.1 (left).
The implied and local volatility surfaces are reported in Figure 5.3. Calibrating to the smile hardly affects
the spot-vol dynamics: the leverage function (Figure 5.4, left) distorts only slightly the causal link between
asset returns and volatility, mostly just after the calibration date. In contrast with the pure PDV model, it
also makes it possible for the implied volatility to lie below σ or above σ. Note that the pure PDV smile is
flatter than the market smile (Figure 5.4, right): part of the smile is produced by the pure PDV, and the
rest by the leverage function l. On this data, the shape of l is inverted at very short maturities, for which
the ATM market skew is smaller (in absolute value) than the ATM skew of the pure PDV model.

With such parameter values, the PDV model of Example 2 captures what we believe is a major pattern of
the historical joint behaviour of the S&P 500 and its short term implied volatilities. But what about pricing?
Here, the volatility interval [σ, σ] is not as wide as in Figure 4.1, so we expect forward starting call spreads
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Figure 5.3. Surfaces of implied volatility (left) and local volatility (right) of the S&P 500
as of March 18, 2013.

Figure 5.4. Left: leverage function l(t, S) for the PDV model of Example 2, with σ = 10%,
σ = 22%, and ∆ = 1 month, calibrated to the smile of the S&P 500 as of March 18, 2013.
Right: Market, PDV, and pure PDV implied volatilities at maturity (T = 1). S0 = 1552.

and digital calls to be cheaper. It is indeed the case. However, the PDV forward skew is still sizeably larger
(around 5 volatility points larger, for the 95%-105% skew) than the LV forward skew (see Figure 5.5).

The fact that volatility depends on recent asset returns is also supported by other statistical analyses
[19, 7]. Other empirical studies show that the volatility may depend on recent realized volatility. So far, only
the ARCH (Engle, 1982) and GARCH (Bollersev, 1986) models, which are popular among econometricians,
could capture this. These models are particularly appreciated for capturing tail heaviness, volatility clustering
and dependence without correlation, like Examples 1–6 above. Our approach generalizes them by defining
local ARCH models, in which (a) the ARCH volatility is multiplied by a leverage function in order to fit a
smile, and (b) the function σ(X) is arbitrary:

dSt
St

= σ(Xt)l(t, St) dWt, Xt =
∑

t−∆<ti≤t

r2
i , ri =

Sti − Sti−1

Sti−1

For example, if we choose σ(t,X) = σ if X ≤ σ0 and σ otherwise for a given σ0 (Example 7), then we get the
leverage function l(t, S) of Figure 4.3 (bottom left), vanishing ATM forward skew (because the inputed smile
is flat and the ARCH volatility depends only on squared returns), and values of forward starting butterfly
spreads around 2.4 points of volatility (to be compared with the values in Figure 4.2). To mimic ARCH
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Figure 5.5. Prices in volatility points of forward starting call spreads HCS
i ≡ (STi/STi−1 −

K1)+ − (STi
/STi−1

− K2)+ (left) and prices in percent of forward starting digital calls
1{STi

/STi−1
> 1} (right) for LV, the PDV example 2 of Table 1 (with its leverage func-

tion l), and its pure PDV counterpart; Ti − Ti−1 = 1 month; K1 = 95%, K2 = 105%. On
the x-axis, i is the month number. σ = 10%, σ = 22%, ∆ = 1 month. The LV and PDV
models are calibrated to the smile of the S&P 500 as of March 18, 2013. For each model, the
price in volatility points of the forward starting call spread is 100 times the value of ∆σ such
that EQ[HCS

i ] = CBS(K1, σ
ATM
i + ∆σ

2 )−CBS(K2, σ
ATM
i − ∆σ

2 ); σATM
i is the forward starting

one-month ATM implied volatility in the corresponding model, i.e., EQ[(STi/STi−1 − 1)+] =

CBS(1, σATM
i ).

models, we can choose σ(X)2 = α + βX with α > 0, β < 1 (Example 8); we then get a much flatter pure
PDV smile and a much flatter leverage function l (see Figures 4.2 and 4.3, bottom right), vanishing ATM
forward skew, and values of forward starting butterfly spreads around 0.7 point of volatility. Obviously if
needed one can weight the squared returns in the above definition of X. To generalize GARCH processes,
one can include past values of σ(Xti) in the definition of X. For a modification of GARCH processes that
captures assymetry in returns and a suggestion of a continuous-time limit, see [14]. A continuous-time version
of the GARCH model, driven by a Lévy process, was proposed by Klüppelberg, Lindner and Maller [18].

6. Generalizations

It is easy to generalize to path-dependent interest rates and dividend yield. From Proposition 12.8 in [10]
(page 377), the (complete) model

dSt
St

= (rt − qt) dt+ σtl(t, St) dWt

where rt ≡ r(t, (Su, u ≤ t)), qt ≡ q(t, (Su, u ≤ t)) and σt ≡ σ(t, (Su, u ≤ t)) are path-dependent, is calibrated
to the market smile of S if and only if for all (t,K)
(6.1)

l(t,K)2E[D0tσ
2
t |St = K]

E[D0t|St = K]
= σDup(t,K)2−

E
[
D0t

(
rt − qt − (r0

t − q0
t )
)

1St>K

]
1
2K∂

2
KC(t,K)

+
E
[
D0t

(
qt − q0

t

)
(St −K)

+
]

1
2K

2∂2
KC(t,K)

where D0t = exp
(
−
´ t

0
rsds

)
is the discount factor, r0

t and q0
t are deterministic rates and repos, and

σDup(t,K)2 =
∂tC(t,K) + (r0

t − q0
t )K∂KC(t,K) + q0

t C(t,K)
1
2K

2∂2
KC(t,K)

is the Dupire LV, with C(t,K) the market price of the call option on S with strike K and maturity t. Hence
the particle method can be used to calibrate l. Condition (6.1) is actually valid even if rt, qt and σt are
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also driven by Brownian motions other than W , allowing us to define stochastic path-dependent volatility
(SPDV) models that are calibrated to the market smile—but then we loose completeness.

7. Conclusion

In this article we have shown that path-dependent volatility models are excellent candidates to challenge
the duopoly of local volatility and stochastic volatility which has dominated option pricing over the last 20
years. They indeed combine benefits from both LV and SV: like the LV model they are complete and can fit
the market smile, so all derivatives have a unique price consistent with today’s prices of vanilla options; and
like SV models they can produce rich spot-vol dynamics, such as large negative short term forward skews,
large forward smile curvatures, or large vols of vol—but in a more parsimonious way, since no extra Brownian
motion is needed. Thanks to their huge flexibility—one may choose any set of path-dependent variables X
and any PDV σ(t, S,X)—PDV models actually span a much broader range of spot-vol dynamics than SV
models, possibly preventing large mispricings, and they can also capture important historical features of asset
prices and volatilities, such as volatility levels depending on recent asset returns, tail heaviness, volatility
clustering, and dependence without correlation.

In practice, the particle method is so simple and efficient that the smile calibration is not a problem:
efforts can be concentrated on the choice of a convenient PDV, depending on the market and derivative under
consideration. To this end, we hope that the examples we showcased will serve as a helpful guide. Beyond the
ability to produce desired spot-vol dynamics and capture spot-vol historical patterns, an important criterion
to assess the quality of a PDV model should be its hedging performance on backtests, a task we leave for
future work.

Acknowledgements. I am grateful to Lorenzo Bergomi, Sylvain Corlay, Stéphane Crapanzano, Bruno
Dupire, Pierre Henry-Labordère, Bryan Liang, and two anonymous referees for their valuable feedback. I
also thank one of the two referees for pointing out reference [3] to me, and Paul Embrechts for reference [18].

References

[1] Bergomi, L.: Smile dynamics II, Risk, October, 2005.
[2] Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31:307-327, 1986.
[3] Brunick, G. and Shreve, S.: Mimicking an Itô process by a solution of a stochastic differential equation, Ann. Appl. Prob.,

23(4):1584–1628, 2013.
[4] Dupire, B.: Pricing with a smile, Risk, January, 1994.
[5] Engle, R.: Autoregressive conditional heteroscedasticity with estimates of variance of United Kingdom inflation, Econo-

metrica 50:987-1008, 1982.
[6] Figà-Talamanca, G. and Guerra, M.L.: Fitting prices with a complete model, J. Bank. Finance 30(1), 247–258, 2006.
[7] Foschi, P. and Pascucci, A.: Path dependent volatility, Decisions Econ. Finan., 2007.
[8] Fouque, J.-P., Papanicolaou, G. and Sircar, R.: Derivatives in financial markets with stochastic volatility, Cambridge

University Press, 2000.
[9] Guyon, J. and Henry-Labordère, P.: Being particular about calibration, Risk, January, 2012.

[10] Guyon, J. and Henry-Labordère, P.: Nonlinear option pricing, Chapman & Hall/CRC Financial Mathematics Series, 2013.
[11] Guyon, J.: Local correlation families, Risk, February, 2014.
[12] Henry-Labordère, P.: Dupire-like formulas for path-dependent options, private communication.
[13] Heston, S.: A closed-form solution for options with stochastic volatility with applications to bond and currency options,

The Review of Financial Studies, 6(2):327–343, 1993.
[14] Heston, S. and Nandi, S.: Preference-free option pricing with path-dependent volatility: a closed-form approach, working

paper from Federal Reserve Bank of Atlanta, 1998.
[15] Hobson, D. G. and Rogers, L.C.G.: Complete models with stochastic volatility, Mathematical Finance 8 (1), 27–48, 1998.
[16] Hubalek, F., Teichmann, J. and Tompkins, R.: Flexible complete models with stochastic volatility generalising Hobson-

Rogers, working paper, 2004.
[17] Hull, J. and White, A.: The pricing of options with stochastic volatilities, The Journal of Finance, 42(2):281–300, 1987.
[18] Klüppelberg, C., Lindner, A. and Maller, R.: A continuous time GARCH process driven by a Lévy process: stationarity

and second order behaviour, J. Appl. Probab., 41(3):601–622, 2004.
[19] Platania, A. and Rogers, L.C.G.: Putting the Hobson-Rogers model to the test, working paper, 2003.

Quantitative Research, Bloomberg L.P., 731 Lexington Avenue, New York, NY 10022, USA.

Electronic copy available at: https://ssrn.com/abstract=2425048


