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Abstract

This dissertation demonstrates that there is high revenue potential in us-
ing limit order book imbalance as a state variable in an algorithmic trading
strategy. Beginning with the hypothesis that imbalance of bid/ask order
volumes is an indicator for future price changes, exploratory data analysis
suggests that modelling the joint distribution of imbalance and observed
price changes as a continuous-time Markov chain presents a monetizable
opportunity. The arbitrage problem is then formalized mathematically as
a stochastic optimal control problem using limit orders and market orders
with the aim of maximizing terminal wealth. The problem is solved in both
continuous and discrete time using the dynamic programming principle,
which produces both conditions for market order execution, as well as limit
order posting depths, as functions of time, inventory, and imbalance. The
optimal controls are calibrated and backtested on historical NASDAQ ITCH
data, which produces consistent and substantial revenue.
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1
Introduction

With the introduction of mathematical models, participation in financial markets evolved
from an art to a science. Beginning with Harry Markowitz’s modern portfolio the-
ory, moving through the capital asset pricing model and the Black-Scholes option pric-
ing model, modern finance is now replete with models for pricing derivatives, credit
scores, and costs of capital; what was once speculation is now calculation. Crucially,
models lead to algorithms, which remove human error and add the ability to digest
large sets of data.

The process of running computer algorithms to execute orders on an electronic ex-
change such as NASDAQ is known as algorithmic trading. Speed of execution is typ-
ically crucial, often requiring running the algorithms on servers directly wired to the
exchange, known as colocation. Closely related is high-frequency trading, which refers
simply to the timescale, generally milliseconds, on which the algorithms submit or-
ders. In theory, high-frequency trading is encompassed by algorithmic trading, while
not all algorithmic trading need be high frequency; in practice, the two terms are often
used interchangeably.

The particular algorithms used in algorithmic trading vary greatly across the different
types of strategies employed. Non-revenue-generating algorithmic trading is gener-
ally aimed at transaction cost reduction, with the primary theoretical papers on the
subject being due to Bertsimas and Lo (1998) and Almgren and Chriss (2001). When
an institutional investor wishes to buy or sell a large quantity of shares, the aim of the
trader is to obtain the best possible price compared with some benchmark (often taken
to be the midprice at the time of initiating the strategy). Here the term ‘large’ is used
relative to the liquidity of the stock - either in comparison to the average size of trades
for the given stock, or to the available quantity to be bought/sold at the best listed
price. The goal of the algorithmic trading strategy is then to split the large order into
smaller pieces and execute them on an algorithmically determined schedule, balancing
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the total time for execution with the volatility of the price the trader will receive.

Conversely, an example of algorithmic trading that capitalises on arbitrage opportu-
nities to generate revenue is cross-exchange arbitrage, which uses simple, low-latency
algorithms to profit from price discrepancies of a single stock dual-listed on two ex-
changes. The server running the algorithm is co-located at one of the exchanges, al-
gorithm latency is on the order of microseconds, and the limiting reagent is the time
taken for information to travel to and from the other exchange. In the case of Chicago
and New York, for example, information can make the trip in 6 milliseconds via opti-
cal fibres that send information at about half the speed of light. For this reason, agents
are now paying for access to a system of ground satellites that has been set up to re-
lay information between the two exchanges via microwaves, shaving latency down to
4 milliseconds (Laughlin et al., 2014). Another class of strategies for generating rev-
enue using algorithmic trading are statistical arbitrage strategies, which use complex
algorithms to profit from observed statistical patterns of a single stock on a single ex-
change. In statistical arbitrage, the aim is to exploit predictable statistical patterns in
the available data provided by the exchange, such as predicting stock price movements
from prices observed thus far. This method too requires colocation, and operates on
the scale of milliseconds. It is this type of high-frequency trading that is explored in
this dissertation.

As part of the Dodd-Frank Act of 2010, the Volcker Rule has banned US banks from
making certain speculative investments and, in so doing, effectively curbed their pro-
prietary high frequency trading activity. Nevertheless, as they are still required to pro-
vide liquidity to markets via market-making (simultaneously quoting both buy and sell
prices on a range of financial instruments), banks use algorithmic trading to determine
the bid/ask bands they will send to exchanges. Exploiting arbitrage opportunities
using high frequency trading remains unrestricted for hedge funds, and notably has
been used by Renaissance Technologies LLC’s flagship Medallion fund to generate an
average 71.8 percent annual return, before fees, from 1994 through mid-2014 (Rubin
and Collins, 2015). However, as it remains exclusive to only Renaissance employees
and family members, it serves instead as a reminder of the revenue potential of high
frequency algorithmic trading.
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1.1 The Limit-Order Book

A limit order is an instruction submitted by an agent to buy or sell up to a specified
quantity or volume of a financial instrument, and at a specified price. A limit-order
book (LOB) is the accumulated list of such orders sent to a given exchange, where each
order is accompanied by a timestamp and an anonymous key that uniquely identifies
the agent. The exchange runs a trade-matching engine that uses the LOB to pair buy
and sell requests that concur on price, even if only for partial volume. Orders remain
in effect until they are modified, cancelled, or fully filled (Kyle, 1989).

The unfilled or partially filled orders accumulate in the limit-order book and provide
liquidity to the market. At any given time, the structure of the LOB can be visualised
as in Figure 1.1. As new limit orders arrive, they are compared with existing opposing
orders in the book in search of a match and, if so, existing orders are filled (alternatively
referred to as lifted) according to a first-in-first-out priority queue for each price level.
The price levels can also be referred to by their depth, where the best bid and ask prices
are called at-the-touch and have a depth of zero, and depth increases in either direction
according to the absolute price difference from the at-the-touch depths; the buy limit
order at $28.92 is at a depth of $0.02. Market orders extend the idea of limit orders by
specifying only the volume, and accept the best possible price currently available in
the LOB; whereas limit orders are free to post, modify, and cancel (as an incentive for
providing liquidity), a fee is charged for executing a market order.

In the literature, LOBs are generally modelled in one of two ways: either by an economics-
based approach or a physics-based approach (Gould et al., 2013). The economics-based
approaches are trader-centric, assume perfect rationality, view order flow as static, and
seek to understand trader strategies, in particular through game-style theories. By con-
trast, the physics-based approach, with which we are more concerned here, assumes
zero-intelligence, provides simplified conceptual models of the evolution of the book,
and is concerned with the search for statistical regularity. The dynamics of the book,
namely order arrivals and cancellations, are governed by stochastic processes of vary-
ing complexity, from particles on a one-dimensional price lattice (Bak et al., 1997) to
independent Poisson processes governing the arrival, modification, and cancellation
of orders (Cont et al., 2010). An excellent literature survey on LOB modelling can be
found in Gould et al. (2013).
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28.90 28.91 28.92 28.93 28.94 28.95 28.96 28.97 28.98 28.99 29.00 29.01

Bid-Ask
Spread

A market order to sell
two shares arrives, and
matches with the first
two limit orders in the

queue at the best price.

A limit order to
sell one share
at 28.97 arrives,
and is added to
the back of the
queue.

Bid (buy) LO

Ask (sell) LO

Figure 1.1: Structure and mechanics of the limit-order book, adapted from Booth
(2015). Each block represents an order, of varying volumes, submitted by various
agents participating in the market.
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1.2 ITCH Data Set

The underlying data that will be used in this work to generate imbalance and price
change timeseries comes from the NASDAQ Historical TotalView-ITCH. ITCH1 is a
direct data-feed protocol that makes it possible for those with a paid subscription to
track the status of every order from arrival until cancellation or execution. The Histor-
ical TotalView is simply a historical record of the events in the live feed. In the data
used in this work, timestamps are provided to 1 millisecond, though newer versions of
the feed offer nanosecond precision. Our data has been converted to MATLAB format;
below, the structure of the event feed is described in detail (retaining only relevant
fields):

Time Order ID Event Volume Price

...
...

...
...

...
39960699 72408630 66 100 1107000
39960710 72408630 68 100 1107000

...
...

...
...

...

Time: Order arrival time in milliseconds from midnight.
Order ID: Unique order reference number.
Event: Event type:

66 – Add buy order
83 – Add sell order
69 – Execute outstanding order in part
67 – Cancel outstanding order in part
70 – Execute outstanding order in full
68 – Delete outstanding order in full
88 – Bulk volume for the cross event
84 – Execute non-displayed order

Volume: Number of shares.
Price: Dollar price times 10,000.

1Remarkably, according to a representative of the NASDAQ, ‘ITCH’ does not stand for anything.
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Thus, in the above example, we have a buy order arriving at 11:06am for 100 shares
at $100.70, and being cancelled 11 milliseconds later. From this feed we are able to
reconstruct the entire limit-order book at any point in time, which amounts to being
able to generate a plot as in Figure 1.1 detailing the exact liquidity available at each
order depth.

1.3 Order Imbalance

A core component of this dissertation is limit-order book imbalance. Imbalance is a ratio
of limit order volumes between the bid and ask side, and in the work that follows is
calculated as

I(t) =
Vbid(t)−Vask(t)
Vbid(t) + Vask(t)

(1.1)

where I(t) ∈ [−1, 1], and both Vbid and Vask are computed as the weighted average
volumes at the three lowest depths having non-zero volume, using exponentially de-
creasing weights. As a sample calculation, the imbalance of the sample LOB presented
in Figure 1.1 (prior to order arrivals) would be

Vbid = weight(28.94) · volume(28.94)

+ weight(28.93) · volume(28.93)

+ weight(28.92) · volume(28.92)

= e−0.5(0) · 5 + e−0.5(1) · 6 + e−0.5(2) · 3
= 1.0000 · 5 + 0.6065 · 6 + 0.3679 · 3
= 9.7428

Vask = 4.9488

I(t) =
9.7428− 4.9488
9.7428 + 4.9488

= 0.3263

In the figure we see that there are more limit orders on the bid side than on the ask, and
the above value confirms that there is a medium imbalance in favour of the bid side.
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1.4 Roadmap

Our objective in this dissertation is to use limit order book imbalance as a state variable
in an algorithmic trading strategy, and to demonstrate that an effective statistical arbi-
trage strategy can be constructed around it. Our novel approach is to model imbalance
and price change with a joint distribution, and to solve the resulting stochastic optimal
control problem independently in both continuous time and discrete time.

The remainder of this dissertation is structured as follows:

Chapter 2 begins with the hypothesis that imbalance of bid/ask order volumes is an
indicator for future price changes, and explores the possibility of constructing naive
trading strategies using the statistical properties arising from modelling imbalance as a
continuous time Markov chain; a basic understanding of probability theory is required.

Chapter 3 casts the same statistical arbitrage problem into a stochastic optimal con-
trol framework, and solves it in both continuous and discrete time; familiarity with
stochastic calculus and dynamic programming is assumed.

Chapter 4 presents calibrations of the optimal controls and explores their dynamics.
In-sample and out-of-sample backtests are conducted on historical ITCH data, which
show a 877% return on investment over 2014.

Chapter 5 concludes the dissertation by restating the primary backtesting results in the
context of operational costs, and summarizes the key assumptions and simplifications
that have been made. The conclusions are intended as considerations for future work
on this topic.
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2
Exploratory Data Analysis

In this chapter we explore the possibility of constructing naive trading strategies from
the statistical properties that emerge from our model of the limit-order book imbalance.
The strategies will be tested on the stocks listed in Table 2.1. The chosen stocks are a
good sample group of the population of stocks listed on the NASDAQ in that they
span the spectrum of low liquidity to high liquidity stocks.

Table 2.1: List of stocks used in the exploratory data analysis, along with the daily
average trading volume of each.

Ticker Company Average Daily Volume

FARO FARO Technologies Inc. 200,000
MMM 3M Company 2,000,000
NTAP NetApp, Inc. 4,000,000
ORCL Oracle Corporation 15,000,000
INTC Intel Corporation 30,000,000

2.1 Modelling Imbalance:

Continuous Time Markov Chain

The aim of this research project is to use the LOB volume imbalance I(t) in an algo-
rithmic trading application; hence, a suitable choice of model for I(t) must be made.
Rather than modelling imbalance directly as a real-valued process, an alternative ap-
proach, and that which is used herein, is to discretise the imbalance value I(t) into
subintervals, or bins, and fit the resulting process to a continuous-time Markov chain.

The following definitions and properties are adapted from Takahara (2014):
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Definition 1. A continuous-time stochastic process {X(t) | t ≥ 0} with finite or countable
state space K, so that X(t) ∈ K, is called a continuous-time Markov chain (CTMC) if it has
the Markov property, namely, that

P [X(t) = j | X(s) = i, X(tn−1) = in−1, . . . , X(t1) = i1] = P [X(t) = j | X(s) = i] (2.1)

where for any integer n ≥ 1, 0 ≤ t1 ≤ · · · ≤ tn−1 ≤ s ≤ t is any nondecreasing sequence of
n + 1 times, and i1, . . . , in−1, i, j ∈ K are any n + 1 states.

Definition 2. A continuous-time Markov chain {X(t) | t ≥ 0} is time homogeneous if for
any s ≤ t and any states i, j ∈ K,

P [X(t) = j | X(s) = i] = P [X(t− s) = j | X(0) = i] (2.2)

Properties of a CTMC. Let {X(t) | t ≥ 0} be a time-homogeneous CTMC. Its key defining
quantities are

1. the transition rates qij, which specify the rate at which X jumps from state i to j;

2. the conditional transition probabilities pij, which specify the probability with which
X transitions to state j conditional on leaving state i;

3. the holding times vi, where upon entering state i, the amount of time that X will
spend in state i prior to transitioning is exponentially distributed with rate vi.

These quantities are related by

vi = ∑
j∈S
j 6=i

qij (2.3)

qij = vi · pij (2.4)

pij =
qij

vi
(2.5)

Definition 3. A continuous-time Markov chain {X(t) | t ≥ 0} has an infinitesimal gener-
ator matrixG, whose entries are

gij =

qij, i 6= j

−vi, i = j
(2.6)
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If X(t) has transition probabilities Pij(t) = P [X(t) = j | X(0) = i] and matrix P (t) =

{Pij(t)}, then P (t) andG are related by

Ṗ (t) = GP (t) (2.7)

P (t) = eGt (2.8)

Conditional on X(t) = k, we assume the arrival of buy and sell market orders follow
independent Poisson processes with intensities λ±k , where λ+

k (λ−k ) is the rate of arrivals
of market buys (respectively, sells). Such processes are called Markov-modulated Poisson
processes, as the Poisson intensities are themselves stochastic processes determined by
the state of the Markov chain. Thus, a timeline of observations of arrivals of buy/sell
market orders and of regime switches might look as in Figure 2.1.

In the sections that follow, we derive maximum likelihood estimations for the param-
eters of the CTMC, and evaluate the fit of the model to the data.

2.2 Maximum Likelihood Estimate

of a Markov-Modulated Poisson Process

2.2.1 Infinitesimal Generator Matrix

Let G be the generator matrix for a CTMC X(t) with finite-dimensional state space
K. From observations, e.g., the fictional events in the timeline given in Figure 2.1, we

time
τ1 τ2 τ3 τ4

buy
b1

s2
sell

buy
b3

s4
sell

s5
sell

b6

buy
b7b8

buy
b9

s10
sell

buy
b11

s12
sell

regime i regime j regime i regime k

Figure 2.1: Hypothetical timeline of market orders arriving during changing order
imbalance regimes. The τ nodes represent regime switch times, and appear in un-
equally spaced intervals. Regime i occurs twice, and market order arrivals behave
similarly in both instances.
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want to estimate the entries ofG. As the holding time in a given state i has probability
density function f (t; vi) = vie−vit, the likelihood function (allowing for repetition of
terms) is therefore

L(G) = (vie−vi(τ2−τ1)pij)(vje−vj(τ3−τ2)pji)(vie−vi(τ4−τ3)pik) . . . (2.9)

=
K

∏
i=1

∏
i 6=j

(vi pij)
Nij(T)e−vi Hi(T) (2.10)

=
K

∏
i=1

∏
i 6=j

(qij)
Nij(T)e−vi Hi(T) (2.11)

where Nij(T) is the number of transitions from regime i to j up to time T, and Hi(T) is
the holding time in regime i up to time T. Therefore, the log-likelihood becomes

lnL(G) =
K

∑
i=1

∑
i 6=j

[
Nij(T) ln(qij)− viHi(T)

]
(2.12)

=
K

∑
i=1

∑
i 6=j

[
Nij(T) ln(qij)−

(
∑
i 6=k

qikHi(T)

)]
(2.13)

To get a maximum likelihood estimate q̂ij for transition rates and therefore the matrix
G, we take the partial derivative of lnL(G) and set it equal to zero:

∂ lnL(G)

∂q̂ij
=

Nij(T)
qij

− Hi(T) = 0 (2.14)

Solving gives

q̂ij =
Nij(T)
Hi(T)

(2.15)

as the maximum likelihood estimate. This has the simple and intuitive interpretation
that the estimated rate of transition from state i to j is equal to the number of transitions
from i to j divided by the total time spent in i.

2.2.2 Arrival Rates

Now we want to derive an estimate for the intensity of the Poisson process of market
order arrivals conditional on being in state k. We’ll look at just the buy market orders
for some regime k, as the sell case is identical. Let the buy market order arrival times be
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indexed by bi. Since we’re assuming that the arrival process is Poisson with the same
intensity throughout trials, we can consider the interarrival time of events conditional
on being in state k. The maximum likelihood derivation then follows just as it did for
the generator matrix.

L(λ+
k ; b1, . . . , bN) =

N

∏
i=2

λ+
k e−λ+

k (bi−bi−1) (2.16)

= (λ+
k )

N+
k (T)e−λ+

k Hk(T) (2.17)

where N+
k (T) is the number of market order arrivals in regime k up to time T, and

Hk(T) is the holding time in regime k up to time T. Therefore, the log-likelihood be-
comes:

lnL(λ+
k ) = N+

k (T) ln(λ+
k )− λ+

k Hk(T) (2.18)

By setting the partial derivative of lnL with respect to λ+
k equal to zero, we get that

the maximum likelihood estimate for λ̂+
k is:

∂ lnL
∂λ+

k
=

N+
k (T)

λ̂+
k
− Hk(T) = 0 (2.19)

Solving gives

λ̂+
k =

N+
k (T)

Hk(T)
(2.20)

as the maximum likelihood estimate. Again this has the intuitive interpretation that the
estimated rate of arrivals while in state k is equal to the number of observed arrivals
while in k divided by the total time spent in k.

2.3 Two-Dimensional CTMC

Next we consider a CTMC Z(t) that jointly models the imbalance bin ρ(t) and the price
change ∆S(t). The raw imbalance timeseries is very erratic, so to smooth it we take the
time-weighted average of imbalance over the past time inteval ∆tI . We compute price
change as the sign of the change in midprice of the future time interval ∆tS. These time
intervals are illustrated in Figure 2.2.

12



time
t− ∆tI t t + ∆tS

ρ(t) is the imbalance bin of the
time-weighted average of I(t)
over this past interval.

∆S(t) is the sign of the mid-
price change over this future
interval.

Figure 2.2: Time intervals for time-weighted averaging of imbalance and for price
change.

Thus, the CTMC models the joint distribution (ρ(t), ∆S(t)) where

ρ(t) ∈ {1, 2, . . . , #bins}

is the bin corresponding to imbalance averaged over the interval [t− ∆tI , t], and

∆S(t) = sgn(S(t + ∆tS)− S(t)) ∈ {−1, 0, 1}

For simplicity of computation, the pair (ρ(t), ∆S(t)) is then reduced into one dimen-
sion with a simple encoding function ϕ. An example of this reduction using three bins
is presented in Table 2.2.

Table 2.2: ϕ(ρ(t), S(t)): One-dimensional encoding of two-dimensional CTMC.

Z(t) Bin ρ(t) ∆S(t) Z(t) Bin ρ(t) ∆S(t) Z(t) Bin ρ(t) ∆S(t)

1 Bin 1 −1 4 Bin 1 0 7 Bin 1 +1
2 Bin 2 −1 5 Bin 2 0 8 Bin 2 +1
3 Bin 3 −1 6 Bin 3 0 9 Bin 3 +1

2.3.1 Cross-Validation

We cross-validate the CTMC calibration by means of a time-homogeneity test simi-
lar to that done in Tan and Yılmaz (2002). The homogeneity hypothesis is given by
(Weißbach and Walter, 2010)

H0 = ∀i, j ∈ S : ∃qij ∈ R+ : qij(t) ≡ qij ∀t ∈ [0, T] (2.21)
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whereas the alternative hypothesis states that transition rates/probabilities are time-
dependent. To test the hypothesis, we fix ∆tI = ∆tS at some value, choose a number
of imbalance bins, and calculate the maximum likelihood estimate of the infinitesimal
generator matrix G on the full timeseries using (2.15). For a chosen error threshold ε,
we use the relationship in (2.8) to calculate the number of timesteps nconv of size ∆tI

such that
||P ((nconv + 1)∆tI)−P (nconv∆tI) || < ε (2.22)

This value nconv determines the size of the cross-validation timewindow into which to
partition the full timeseries, yielding K equal subintervals of length nconv. For each “re-
moved series” k ∈ {1, . . . , K}, we recalibrate a CTMC generator matrixGk. Finally, we
test whether the one-step transition probabilities pk

ij contained in Pk (∆tI) are statisti-
cally different from those of the full period. For comparison, we also partitioned the
timeseries into 8, 4, and 2 equal intervals. The asymptotically equivalent test statistic
to the likelihood ratio test statistic is

D = −2 ln(L) = 2 ∑
k

∑
i,j

nk
i,j

[
ln(pk

ij)− ln(pij)
]

(2.23)

where nk
ij is the number of observed transitions from state i to j in subinterval k. This

test statistic has a χ2 distribution with (K− 1)(3 · #bins)(3 · #bins− 1) degrees of freedom.
The tests were run for each ticker for each trading day of 2013, and averaged over the
year. Table 2.3 shows the p-value scores for the tests. Considering the standard cut-
off p-value of 0.05, the cross-validation results show a strong case for the rejection of
the homogeneity hypothesis. However, using a nonhomogeneous model falls outside
of the scope of this research project, and instead suggests possible extensions to this
research wherein the trading day is broken down into subintervals to better account
for fluctuations and patterns in trading activity; perhaps early morning, mid-day, and
final hour of trading. The severity of proceeding with the homogeneity hypothesis is
not known a priori, and may instead emerge with the backtesting results done later in
this chapter and in Chapter 4.

2.4 Predicting Future Price Changes

It is crucial to note that the value ∆S(t) contains the price change from time t over the
future ∆tS seconds. Hence in real-time one cannot know the state of the Markov chain.
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Table 2.3: χ2-test p-values for testing the time homogeneity hypothesis. Tests were
run for each ticker for each trading day of 2013, and averaged over the year. For
calculating nconv, the converge error threshold was ε = 1× 10−10.

subintervals subintervals

∆tI nconv K 8 4 2 nconv K 8 4 2

FARO ORCL

#bins = 3
100ms 4933 0.000 0.000 0.000 0.003 1803 0.000 0.000 0.000 0.000

1000ms 727 0.000 0.002 0.001 0.005 303 0.000 0.000 0.000 0.001
10000ms 149 0.000 0.005 0.010 0.017 84 0.000 0.007 0.005 0.010

#bins = 5
100ms 6450 0.000 0.001 0.002 0.004 2503 0.000 0.000 0.000 0.000

1000ms 941 0.000 0.001 0.003 0.006 404 0.000 0.001 0.002 0.003
10000ms 187 0.000 0.000 0.000 0.005 103 0.000 0.000 0.001 0.009

NTAP INTC

#bins = 3
100ms 1320 0.000 0.000 0.000 0.000 2545 0.000 0.000 0.000 0.001

1000ms 237 0.000 0.000 0.000 0.000 408 0.000 0.001 0.001 0.002
10000ms 72 0.000 0.006 0.003 0.007 105 0.000 0.004 0.006 0.009

#bins = 5
100ms 1777 0.000 0.000 0.000 0.000 3498 0.000 0.001 0.001 0.001

1000ms 308 0.000 0.001 0.000 0.001 771 0.000 0.001 0.002 0.002
10000ms 87 0.000 0.000 0.002 0.010 133 0.000 0.000 0.000 0.007
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However, the analytic results do prove enlightening: from the resulting timeseries we
estimate a generator matrix G, and transform it into a one-step transition probability
matrix P = eG∆tI . The entries of P are the conditional probabilities

Pij = P
[

ϕ(ρ[t−∆tI ,t], ∆S[t,t+∆tS]
) = j | ϕ(ρ[t−2∆tI ,t−∆tI ], ∆S[t−∆tI ,t]) = i

]
(2.24)

which can be expressed semantically as

Pij = P
[
ϕ(ρcurr, ∆Sfuture) = j | ϕ(ρprev, ∆Scurr) = i

]
(2.25)

Since we can easily decode the one-dimensional Markov state back into two dimen-
sions, we can think of P as being four-dimensional and rewrite its entries as

= P
[
ρcurr = i, ∆Sfuture = j | ρprev = k, ∆Scurr = m

]
(2.26)

= P [ρcurr = i, ∆Sfuture = j | B] (2.27)

where we are using the shorthand B = (ρprev = k, ∆Scurr = m) to represent the states
in the previous timestep. Applying Bayes’ Rule,

P [∆Sfuture = j | B, ρcurr = i] =
P [ρcurr = i, ∆Sfuture = j | B]

P [ρcurr = i | B]
(2.28)

where the right-hand-side numerator is each individual entry of the one-step probabil-
ity matrix P , and the denominator can be computed from P by

P [ρcurr = i | B] = ∑
j

P [ρcurr = i, ∆Sfuture = j | B] (2.29)

The left-hand-side value in (2.28) is the probability of seeing a given price change over
the immediate future time interval conditional on past imbalances and the most recent
price change, and therefore allows us to predict future price moves. We’ll denote byQ
the matrix containing all values given by (2.28).

TheQmatrix in Table 2.4 was obtained using data for MMM from 2013-05-15, averaging
imbalance and price change timewindows ∆tI = ∆tS = 1000ms, and K = 3 imbalance
bins.

The three middle rows of Table 2.4 contain the majority of values > 0.5, showing that in
most cases we are expecting no price change. The only other cases in which the proba-
bility of a price change is greater than 0.5 show evidence of momentum; for example, the
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value in row 1, column 1 can be interpreted as: if ρprev = ρcurr = 1 and previously we
saw a downward price change, then we expect to again see a downward price change.
The boldface diagonal values in the table lend themselves to the empirical conclusion

P
[
∆Sfuture = ∆Scurr | ρcurr = ρprev

]
> 0.5 (2.30)

2.5 Naive Trading Strategies

Using the key insight drawn from (2.30), we implemented several naive trading strate-
gies, descriptions of which follow:

Naive Trading Strategy. This strategy seeks to profit from expected price changes
by using market orders. Using the conditional probabilities obtained from Q, we will
execute a buy (respectively sell) market order if the probability of an upward (respec-
tively downward) price change is > 0.5. Pseudocode for this strategy is given in Al-
gorithm 1. In lines 4-6 we are forecasting a downward price move, and therefore sell
one share with a market order at the best bid price. In lines 7-9, we are forecasting an
upward price move, and buy one share with a market order at the best ask price. In
lines 12-16 we have reached the end of the trading day, and liquidate our position at
the at-the-touch price.
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Algorithm 1 Naive Trading Strategy

1: cash = 0
2: asset = 0
3: for t = 2 : length(timeseries) do
4: if P

[
∆S f uture < 0 | ρcurr, ρprev, ∆Scurr

]
> 0.5 then

5: cash += BidPrice(t)
6: asset −= 1
7: else if P

[
∆S f uture > 0 | ρcurr, ρprev, ∆Scurr

]
> 0.5 then

8: cash −= AskPrice(t)
9: asset += 1

10: end if
11: end for
12: if asset > 0 then
13: cash += asset× BidPrice(EndOfDay)
14: else if asset < 0 then
15: cash += asset× AskPrice(EndOfDay)
16: end if

Table 2.4: The Q matrix: conditional probabilities of future price changes, condi-
tioned on current imbalance, current price change, and previous imbalance.

∆Scurr < 0 ∆Scurr = 0 ∆Scurr > 0

ρcurr = 1 2 3 1 2 3 1 2 3

∆Sfuture < 0
ρprev = 1 0.53 0.15 0.12 0.05 0.10 0.14 0.08 0.13 0.14
ρprev = 2 0.10 0.58 0.14 0.07 0.04 0.10 0.13 0.06 0.12
ρprev = 3 0.08 0.12 0.52 0.09 0.06 0.03 0.11 0.10 0.05

∆Sfuture = 0
ρprev = 1 0.41 0.75 0.78 0.91 0.84 0.79 0.42 0.79 0.77
ρprev = 2 0.79 0.36 0.71 0.83 0.92 0.82 0.75 0.37 0.78
ρprev = 3 0.79 0.74 0.40 0.81 0.83 0.91 0.70 0.76 0.39

∆Sfuture > 0
ρprev = 1 0.06 0.10 0.09 0.04 0.06 0.07 0.50 0.09 0.09
ρprev = 2 0.10 0.06 0.15 0.10 0.04 0.08 0.12 0.57 0.10
ρprev = 3 0.13 0.14 0.08 0.10 0.11 0.05 0.19 0.14 0.56
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Naive+ Trading Strategy. This strategy seeks to profit from no expected changes in
price by using limit orders. If no change in midprice is expected then we’ll post buy
and sell limit orders at the touch. For every market order that arrives, we’ll assume that
our limit order is always filled, following which we will immediately repost whichever
limit order was filled. Pseudocode for this strategy is given in Algorithm 2. In lines
11-13, since a sell market order is arriving, our buy limit order is being filled and we
are paying the bid price.

Algorithm 2 Naive+ Trading Strategy

1: cash = 0
2: asset = 0
3: for t = 2 : length(timeseries) do
4: if P

[
∆Scurr = 0 | ρcurr, ρprev, ∆Sprev

]
> 0.5 then

5: LOposted = True
6: else
7: LOposted = False
8: end if
9: if LOposted then

10: for MO ∈ ArrivedMarketOrders(t, t + 1) do
11: if MO == Sell then
12: cash −= BidPrice(t)
13: asset += 1
14: else if MO == Buy then
15: cash += AskPrice(t)
16: asset −= 1
17: end if
18: end for
19: end if
20: end for
21: if asset > 0 then
22: cash += asset× BidPrice(EndOfDay)
23: else if asset < 0 then
24: cash += asset× AskPrice(EndOfDay)
25: end if

Naive++ Trading Strategy. Like the Naive strategy, this strategy seeks to profit from
expected price changes, but using limit orders (and therefore buying/selling at better
prices). If we expect a downward (respectively upward) price change then we’ll post
an at-the-touch sell (respectively buy) limit order, which may be lifted by an agent who
is executing a market order going against the price change momentum.
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2.6 Calibration and Backtesting

Backtesting these naive trading strategies required a choice of parameters for the price
change observation period ∆tS, the imbalance averaging period ∆tI , and the number
of imbalance bins #bins. We used a brute force calibration technique that, for each ticker
and each day, traversed the potential parameter space searching for the highest num-
ber of timesteps at which (2.30) could be used. We found that #bins = 4 provided the
highest expected number of trades for most tickers. However, as we were using per-
centile bins symmetric around zero, we wanted to have #bins as an odd number such
that all behaviour around zero imbalance was treated equally; thus all backtesting was
done with either #bins = 3 or #bins = 5. Additionally, we found empirically that calibra-
tion always yielded ∆tS = ∆tI , so this was taken as a given. The backtest for each ticker
then consisted of first calibrating the value ∆tI from the first day of data by maximizing
the intraday risk-adjusted return (average of returns divided by standard deviation of
returns), then using the calibrated parameters to backtest the entire year.

2.7 Conclusions from the Naive Trading Strategies

Figure 2.3 plots the average daily performance of the naive strategies for four stocks
listed on the NASDAQ. The performance is normalized via division by the initial stock
price on each trading day. The Naive strategy lost revenue on average, the Naive+
strategy (at-the-touch limit orders when no change was expected) generated revenue
on average, and the Naive++ strategy (using limit orders to adversely select agents
that traded against the price change momentum) neither profited nor lost on average.

Why is the Naive strategy producing, on average, normalized losses? On calibra-
tion, we see that our intraday risk-adjusted return is about 0.02 when we choose our
optimal parameters, so at the very least on the calibration date the strategy produces
positive returns. The remainder of the calendar days are out-of-sample to the cali-
bration, meaning the parameters are not specifically tuned to that data, and thus the
parameters are (likely) not optimal. This adds evidence to rejecting the time homo-
geneity assumption, and in particular suggests that not every day can be modelled by
the same Markov chain. The problem may be exaggerated by the fact that we are cali-
brating on the first trading day of the calendar year, when we might expect reduced, or
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Figure 2.3: Comparison of Naive (black), Naive+ (dark gray), and Naive++ (light
gray) trading strategies. Plotted are normalized book values, averaged across the
trading year, between 0930h (market open) and 1600h (market close). Book value is
the sum of cash and market value of assets. Each day begins with zero book value,
and all book values are normalized by dividing by the stock price at the start of each
trading day.
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at least nonrepresentative, trading activity. Further, we are using midprices to obtain
the Q probability matrix while ignoring the bid-ask spread. Thus predicting a “price
change” may be insufficient when considering a monetisable opportunity as we won’t
be able to profit off a predicted increase followed by a predicted decrease unless the
interim mid-price move is greater than the bid-ask spread (assuming constant spread);
this flaw affects trading on FARO in particular, which has a spread of about 15 cents.

Why do the Naive+ and Naive++ strategies outperform the Naive strategy? This is
particularly interesting since the probabilities are being obtained from the same matrix.
The obvious difference between the successful and unsuccessful strategies is that the
former (a) uses limit orders, and (b) executes when we predict a zero change, whereas
the latter (a) uses market orders, and (b) executes when we predict nonzero changes.

In (a), the difference between limit orders and market orders leads to a different trans-
action price being used: a stock purchase with a limit order is executed at the bid price,
while a purchase with a market order is at the ask price. Since the asset is marked-to-
market at the more conservative price, and the mid price doesn’t move as a result of
the transaction, then a limit order purchases the share for the same value at which it is
marked-to-market, whereas a market order ‘crosses the spread’ and loses value.

In (b), executing when predicting nonzero changes seems to be the largest flaw in the
Naive strategy, to which there are two factors. One, we are not predicting the mag-
nitude of the price change, only whether it is zero or non-zero. Two, from the prob-
abilities presented above, we will only predict a price change if we’ve already seen a price
change. Thus we’re effectively reacting too late. Table 2.5 presents a hypothetical series
of events demonstrating the adverse effects of this flaw. Since the strategy is reacting
to an already observed price change, the adverse effect would be exacerbated if the ini-
tial price change at timestep 4 were larger. All these considerations suggest potential
modifications to the strategies.
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Table 2.5: Hypothetical timeline of adverse selection with market orders.

t I(t) Bid/Ask Prediction Action Inv P&L

0 1 9.99/10.01 P[∆Sfuture = 0] > 0.5 None 0 0
1 1 10.00/10.02 P[∆Sfuture > 0] > 0.5 BUY @ 10.02 1 -0.02
2 0 10.01/10.03 P[∆Sfuture = 0] > 0.5 None 1 -0.01
3 -1 10.01/10.03 P[∆Sfuture = 0] > 0.5 None 1 -0.01
4 -1 10.00/10.02 P[∆Sfuture < 0] > 0.5 SELL @ 10.00 0 -0.02
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3
Maximizing Wealth via Continuous-Time
Stochastic Control

Leveraging the insights gained from the exploratory data analysis in the previous
chapter, we turn our attention now to casting the statistical arbitrage problem into a
mathematical framework. With our underlying process of interest being a Markov
chain, the problem lends itself naturally to being considered in the context of stochas-
tic optimal control. Stochastic control problems are common in finance, where many
of the underlying processes have a random nature; the goal is to maximize the expec-
tation of some target function, representing profit, by converging on a set of optimal
controls that drive the dynamics of the stochastic system to whichever state attains that
maximum expectation. [Of course, the problem can conversely be aimed at minimizing
expected cost.]

The principal tool in stochastic optimal control is the dynamic programming principle.
Under the requisite conditions, the principle allows the optimal controls to be solved
from the terminal timestep backward, one step at a time, rather than attempting to
simultaneously solve for the controls over the entire time horizon. In most cases, where
an analytic solution does not exist, this produces a lookup table for the optimal control
conditional on all state variables.

Because a continuous-time Markov chain has a so-called embedded discrete-time Markov
chain, we are able to consider the stochastic control problem in both continuous time
and discrete time, and an interesting byproduct of the analysis will be in considering
how the emerging dynamics differ.

For all the analysis that follows, we fix a filtered probability space (Ω,F , {Ft}0≤t≤T, P)

satisfying the usual conditions of being complete (F0 contains all ω such that P(ω) =

0) and right-continuous (Ft = Ft+ :=
⋂

s>t Fs).
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3.1 System Description

In order to set up the optimization problem we require an aforementioned ‘profit’ func-
tion, and a description of the stochastic system which we are attempting to control.
Below, we identify and describe the variables that will be used in the analysis that
follows.

Imbalance Averaging Time ∆tI

A constant, specifying the time window over which the imbalance ratio I(t) (1.1)
will be averaged.

Price Change Time ∆tS

A constant, specifying the time window over which price changes will be com-
puted.

Number of Imbalance Bins #bins

A constant, specifying the number of bins (spaced by percentiles, symmetric
around zero) into which I(t) will be sorted.

Imbalance ρt

The finite, discrete stochastic process that results from sorting I(t) into the imbal-
ance bins {1, . . . , #bins}, and which evolves in accordance with the CTMC Z.

Midprice St

A stochastic process that evolves in accordance with the CTMC Z.

Midprice Change ∆St = sgn(St − St−∆tS)

Imbalance & Midprice Change Zt = (ρt, ∆St)

A continuous-time Markov chain with generatorG.

Bid-Ask Half-Spread ξ

As a modelling assumption, this is taken to be a constant. 2ξ is equal to the best
ask price minus the best bid price.

Midprice Change when ∆S 6= 0 {η0,z, η1,z, . . . } ∼ Fz
Independent, identically-distributed random variables, where the distribution is
dependent on the Markov chain state. These variables represent the sign and mag-
nitude of the midprice change when such a change occurs.

Other Agent Market Orders K±t
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Poisson processes with rate µ±(Zt). K+ represents the arrival of another agent’s
buy market order.

Our Limit Order Posting Depth δ±t
One of the F -predictable processes that we will control. The value of δ+ dictates
how deep on the buy side we will post our buy limit order; if δ+ = 0 then we are
posting at-the-touch.

Our Limit Order Fill Count L±t
counting processes (not Poisson) satisfying the relationship that if at time t we
have a limit order posted at a depth δt, then our fill probability is e−κδt conditional
on the arrival of a matching market order; namely:

P[dL±t = 1 | dK∓t = 1] = e−κδ±t (3.1)

Note that L−, our sell limit order being filled, depends on K+, an external buy
order arriving. To determine the value of the constant κ, we consider the average
volume available at the first few depths in relation to the distribution of volumes
of incoming market orders; κ can then be fitted to satisfy the relation.

Our Market Orders M±t
Our other controlled process. M+ represents our executing a buy market order. In
executing market orders, we assume that the volume of the order is small enough
to achieve the best bid/ask price.

Our Market Order Execution Times τ± = {τ±k : k = 1, . . . }
An increasing sequence of F -stopping times, representing the time at which we
execute market orders.

Cash Xτ ,δ
t

A stochastic variable representing our cash, initially zero, that evolves according
to

dXτ ,δ
t = (St + ξ + δ−t )dL−t︸ ︷︷ ︸

sell limit order

− (St − ξ − δ+t )dL+
t︸ ︷︷ ︸

buy limit order

+ (St − ξ)dM−t︸ ︷︷ ︸
sell market order

− (St + ξ)dM+
t︸ ︷︷ ︸

buy market order

(3.2)

Inventory Qτ ,δ
t
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A stochastic process representing our assets, initially zero, that satisfies

Qτ ,δ
0 = 0, Qτ ,δ

t = L+
t + M+

t − L−t −M−t (3.3)

We define a new variable for our net present value (NPV) at time t, call it Wτ ,δ
t , and

hence Wτ ,δ
T at terminal time T is our ‘terminal wealth.’ It is the norm in high-frequency

algorithmic trading to finish each trading day with zero inventory in order to avoid
overnight positional risk, and thus we assume that at the terminal time T we will sub-
mit a market order (of a possibly large volume) to liquidate remaining stock. Here we
do not assume that we can receive the best bid/ask price. Instead, the price achieved
will be S− ξ sgn Q− αQ, where ξ sgn Q represents crossing the spread in the direction
of trading, and α is a penalty constant so that αQ represents receiving a worse price
linearly in Q due to walking the book. Hence, Wτ ,δ

t satisfies:

Wτ ,δ
t = Xτ ,δ

t︸︷︷︸
cash

+ Qτ ,δ
t

(
St − ξ sgn(Qτ ,δ

t )
)

︸ ︷︷ ︸
book value of assets

− α
(

Qτ ,δ
t

)2

︸ ︷︷ ︸
liquidation penalty

(3.4)

The set of admissible trading strategies is the product of the set T of all F -stopping
times, with the set A of all F -predictable, bounded-from-below depths δ. Informally,
this has the intuitive interpretation that for any time τ ∈ T , one can recognize when
one is at τ without any knowledge of the future. Compare ‘the time at which I have
won the lottery’ with ‘the time at which one week later I will have won the lottery’;
the former is a stopping time while the latter is not. Likewise, δ being F -predictable
implies that it cannot ‘see into the future’ and is measurable with respect to the infor-
mation at an earlier time; by being bounded from below, the infimum of the set exists.
We will only consider δ with the lower bound δ± ≥ 0, since at δ = 0 our fill probability
is e−κδ = 1, so we cannot increase the chance of our limit order being filled by posting
any lower than at-the-touch; doing so would only diminish our profit.

To derive an optimal trading strategy via dynamic programming, we will measure the
performance of our controls τ , δ according to a performance criterion function Hτ ,δ that
maximizes terminal wealth. As a shorthand, we will write our conditional expectation
as Et,x,s,z,q [·] = E

[
· |Xδ

t− = x, Sδ
t− = s, Zt− = z, Qδ

t− = q
]
. With the above notation, the
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performance criteria function can be written

Hτ ,δ(t, x, s, z, q) = Et,x,s,z,q

[
Wτ ,δ

T

]
(3.5)

The value function, in turn, is given by

H(t, x, s, z, q) = sup
τ∈T[t,T]

sup
δ∈A[t,T]

Hτ ,δ(t, x, s, z, q) (3.6)

where the subscript [t, T] on the sets of admissible strategies means that we are con-
sidering strategies only from the time t, at which the function is being evaluated, to
maturity T.

3.2 Dynamic Programming

The following theorems establish the dynamic programming method we will use to
solve this type of problem:

Theorem 4. Dynamic Programming Principle for Optimal Stopping and Control.
(Cartea et al., 2015) If an agent’s performance criterion function for a given admissible control
u and admissible stopping time τ are given by

Hτ,u(t,x) = Et,x[G(Xuτ )]

and the value function is

H(t,x) = sup
τ∈T[t,T]

sup
u∈A[t,T]

Hτ,u(t,x)

then the value function satisfies the Dynamic Programming Principle

H(t,x) = sup
τ∈T[t,T]

sup
u∈A[t,T]

Et,x [G(Xuτ )1τ<θ + H(θ, Xuθ )1τ≥θ] (3.7)

for all (t,x) ∈ [0, T]×Rm and all stopping times θ ≤ T.
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The function 1 in the above definition is the indicator function, defined by

1A =

1, if A holds;

0, otherwise
(3.8)

Theorem 5. Dynamic Programming Equation for Optimal Stopping and Control.
(Cartea et al., 2015) Assume that the value function H(t,x) is once differentiable in t, all
second-order derivatives in x exist, and that G : Rm → R is continuous. Then H solves the
quasi-variational inequality

max

{
∂tH + sup

u∈At

Lut H ; G− H

}
= 0 (3.9)

on D, where D = [0, T]×Rm.

The quasi-variational inequality in (3.9) can be interpreted as follows: the max operator
is choosing between posting limit orders or executing market orders; the second term,
G−H, is the stopping region and represents the value derived from executing a market
order; and the first term is the continuation region, representing the value of posting
limit orders.

3.3 Maximizing Terminal Wealth

In this section we solve the dynamic programming equation (DPE) that results from
using the maximal terminal wealth performance criterion. We’ll solve for dH inside
the continuation region, and hence dM± = 0, in order to then extract out the infinites-
imal generator. We’ll make use of the shorthand notations H(·) = H(t, x, s, z, q) and
∂x = ∂

∂x .

dH(t, x, s, z, q) = ∑
i

∂xi H dxi (3.10)
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= ∂tH dt + e−κδ−[H(t, x + (s + ξ + δ−), s, z, q− 1)− H(·)
]

dK+︸ ︷︷ ︸
probability of our sell limit order being filled, times the change in value

+ e−κδ+
[
H(t, x− (s− ξ − δ+), s, z, q + 1)− H(·)

]
dK−︸ ︷︷ ︸

probability of our buy limit order being filled, times the change in value

+ ∑
j

E
[
H(t, x, s + η0,j, j, q)− H(·)

]
dZz,j︸ ︷︷ ︸

change in value resulting from a CTMC state switch

(3.11)

where the first equality is the total differential of H, and the second equality is from
applying Itô’s formula for Poisson processes and Markov chains to write the differen-
tial of H as the sum of increments in H whenever jumps in the respective processes
arrive. The summation index j is over the possible two-dimensional Markov states.
The three processes K+, K−, and Z account for all the changes in H due to changes in
any of the state variables. Z accounts for changes in z and s, and because we are in
the continuation region and therefore not executing market orders, K± accounts for all
changes in x and q.

We substitute in the identities relating each process to its corresponding compensated
process, each of which is a continuous-time martingale (informally, the expectation of
a future value is equal to the present value). For Poisson processes we have (Cartea
et al., 2015)

dK± = dK̃± + µ±(z)dt (3.12)

while for the Markov chain, this is (Kurtz, 2004)

dZz,j = dZ̃z,j + Gz,j dt (3.13)
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= ∂tH dt +
{

µ+(z)e−κδ−[H(t, x + (s + ξ + δ−), s, z, q− 1)− H(·)
]

+ µ−(z)e−κδ+
[
H(t, x− (s− ξ − δ+), s, z, q + 1)− H(·)

]
+ ∑

j
Gz,jE

[
H(t, x, s + η0,j, j, q)− H(·)

]}
dt

+ e−κδ−[H(t, x + (s + ξ + δ−), s, z, q− 1)− H(·)
]

dK̃+

+ e−κδ+
[
H(t, x− (s− ξ − δ+), s, z, q + 1)− H(·)

]
dK̃−

+ ∑
j

E
[
H(t, x, s + η0,j, j, q)− H(·)

]
dZ̃z,j

(3.14)

from which we can see that the infinitesimal generator is given by

Lδ
t H = µ+(z)e−κδ−[H(t, x + (s + ξ + δ−), s, z, q− 1)− H(·)

]
+ µ−(z)e−κδ+

[
H(t, x− (s− ξ − δ+), s, z, q + 1)− H(·)

]
+ ∑

j
Gz,jE

[
H(t, x, s + η0,j, j, q)− H(·)

] (3.15)

Now, our DPE has the form

0 = max
{

∂tH + sup
u∈At

Lut H ; H(t, x− (s + ξ), s, z, q + 1)− H(·) ;

H(t, x + (s− ξ), s, z, q− 1)− H(·)
} (3.16)

with boundary conditions

H(T, x, s, z, q) = x + q(s− ξ sgn(q))− αq2 (3.17)

H(t, x, s, z, 0) = x (3.18)

The three terms over which we are maximizing represent the continuation regions and
stopping regions of the optimization problem. The first term, the continuation region,
represents the limit order controls; the second and third terms, each a stopping region,
represent the value gain from executing a buy market order and a sell market order,
respectively.

We introduce the ansatz H(·) = x + q(s − ξ sgn(q)) + h(t, z, q). The first two terms
are the wealth plus book value of assets, hence a mark-to-market of the current po-
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sition, whereas the h(t, z, q) captures value due to the optimal trading strategy. The
corresponding boundary conditions on h are

h(T, z, q) = −αq2 (3.19)

h(t, z, 0) = 0 (3.20)

Substituting this ansatz into (3.15), we get:

Lδ
t H = µ+(z)e−κδ−[δ− + ξ[1 + sgn(q− 1) + q(sgn(q)− sgn(q− 1))]

+ h(t, z, q− 1)− h(t, z, q)
]

+ µ−(z)e−κδ+
[
δ+ + ξ[1− sgn(q + 1) + q(sgn(q)− sgn(q + 1))]

+ h(t, z, q + 1)− h(t, z, q)
]

+ ∑
j

Gz,j
[
qE[η0,j] + h(t, j, q)− h(t, z, q)

]
(3.21)

We can further simplify the factors of ξ; for example, in the case of the δ+ term, we can
write

1− sgn(q + 1) + q(sgn(q)− sgn(q + 1)) = 1− (−1q≤−2 + 1q≥0) + 1q=−1

= 1 + (1q≤−1 − 1q≥0)

= 2 · 1q≤−1

This gives us the simplified infinitesimal generator term

Lδ
t H = µ+(z)e−κδ−[δ− + 2ξ · 1q≥1 + h(t, z, q− 1)− h(t, z, q)

]
+ µ−(z)e−κδ+

[
δ+ + 2ξ · 1q≤−1 + h(t, z, q + 1)− h(t, z, q)

]
+ ∑

j
Gz,j

[
qE[η0,j] + h(t, j, q)− h(t, z, q)

] (3.22)

In the DPE, the first term requires finding the supremum over all δ± of the infinitesi-
mal generator. For this we can set the partial derivatives with respect to both δ+ and
δ− equal to zero to solve for the optimal posting depth, which we denote with a super-
script asterisk. For δ+ we get:

0 = ∂δ+

[
e−κδ+

∗[
δ+
∗
+ 2ξ · 1q≤−1 + h(t, z, q + 1)− h(t, z, q)

]]
(3.23)

= −κe−κδ+
∗[

δ+
∗
+ 2ξ · 1q≤−1 + h(t, z, q + 1)− h(t, z, q)

]
+ e−κδ+

∗
(3.24)
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= e−κδ+
[
−κ
(
δ+
∗
+ 2ξ · 1q≤−1 + h(t, z, q + 1)− h(t, z, q)

)
+ 1
]

(3.25)

Since e−κδ+
∗
> 0, the term inside the square braces must be equal to zero:

0 = −κ
(
δ+
∗
+ 2ξ · 1q≤−1 + h(t, z, q + 1)− h(t, z, q)

)
+ 1 (3.26)

δ+
∗
=

1
κ
− 2ξ · 1q≤−1 − h(t, z, q + 1) + h(t, z, q) (3.27)

Recalling that our optimal posting depths are to be non-negative, we thus find that the
optimal buy limit order posting depth can be written in feedback form as

δ+
∗
= max

{
0 ;

1
κ
− 2ξ · 1q≤−1 − h(t, z, q + 1) + h(t, z, q)

}
(3.28)

We can follow similar steps to solve for the optimal sell limit order posting depth

δ−∗ = max
{

0 ;
1
κ
− 2ξ · 1q≥1 − h(t, z, q− 1) + h(t, z, q)

}
(3.29)

Turning our attention to the stopping regions of the DPE, we can use the ansatz to
simplify the expressions:

H(t, x− (s + ξ), s, z, q + 1)− H(·)
= x− s− ξ + (q + 1)(s− ξ sgn(q + 1)) + h(t, z, q + 1)

−
[
x + q(s− ξ sgn(q)) + h(t, z, q)

] (3.30)

= −ξ
[
(q + 1) sgn(q + 1)− q sgn(q) + 1

]
+ h(t, z, q + 1)− h(t, z, q) (3.31)

= −2ξ · 1q≥0 + h(t, z, q + 1)− h(t, z, q) (3.32)

and similarly,

H(t, x + (s− ξ), s, z, q− 1)− H(·) = −2ξ · 1q≤0 + h(t, z, q− 1)− h(t, z, q) (3.33)
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Substituting all these results and simplifications into the DPE, we find that h satisfies

0 = max
{

∂th + µ+(z)e−κδ−∗
(

δ−∗ + 2ξ · 1q≥1 + h(t, z, q− 1)− h(t, z, q)
)

+ µ−(z)e−κδ+
∗ (

δ+
∗
+ 2ξ · 1q≤−1 + h(t, z, q + 1)− h(t, z, q)

)
+ ∑

j
Gz,j

[
qlE

[
η0,j
]
+ h(t, j, q)− h(t, z, q)

]
;

− 2ξ · 1q≥0 + h(t, z, q + 1)− h(t, z, q) ;

− 2ξ · 1q≤0 + h(t, z, q− 1)− h(t, z, q)
}

(3.34)

3.4 Interpreting the DPE

Looking at the simplified feedback form in the stopping region, we see that a buy
market order will be executed at time τ+

q whenever

h(τ+
q , z, q + 1)− h(τ+

q , z, q) = 2ξ · 1q≥0 (3.35)

and a sell market order whenever

h(τ+
q , z, q− 1)− h(τ+

q , z, q) = 2ξ · 1q≤0 (3.36)

Consider than when our inventory is positive, we can purchase a stock at s + ξ, but it
will be marked-to-market at s− ξ, resulting in a value difference of 2ξ. With negative
inventory, we will still purchase at sξ , but will now also value at s+ ξ because our over-
all position is still negative, producing no value difference. In particular, with negative
inventory, we will execute a buy market order so long as it does not change our value
function; and with zero or positive inventory, only if it increases the value function
by the value of the spread. The opposite holds for sell market orders. Together, these
indicate a penchant for using market orders to drive inventory levels back toward zero
when it has no effect on value, and using them to gain extra value only when the ex-
pected gain is equal to the size of the spread. This is reminiscent of what we saw in the
exploratory data analysis: if a stock is worth S, we can purchase it at S + ξ and imme-
diately be able to sell it at S− ξ, at a loss of 2ξ; this was the most significant source of
loss in the naive trading market order strategy. Hence we need to expect our value to
increase by at least 2ξ when executing market orders for gain.
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The variational inequality in (3.34) yields that while in the continuation region, we
instead have

h(τ+
q , z, q + 1)− h(τ+

q , z, q) ≤ 2ξ · 1q≥0 (3.37)

h(τ+
q , z, q− 1)− h(τ+

q , z, q) ≤ 2ξ · 1q≤0 (3.38)

Taken together, these inequalities yield

−2ξ · 1q≥0 ≤ h(t, z, q)− h(t, z, q + 1) ≤ 2ξ · 1q≤−1 (3.39)

−2ξ · 1q≤0 ≤ h(t, z, q)− h(t, z, q− 1) ≤ 2ξ · 1q≥1 (3.40)

or alternatively,

h(t, z, q)

sell if =
↓
≤ h(t, z, q + 1)

buy if =
↓
≤ h(t, z, q) + 2ξ, q ≥ 0 (3.41)

h(t, z, q) ≤
↑

buy if =

h(t, z, q− 1) ≤
↑

sell if =

h(t, z, q) + 2ξ, q ≤ 0 (3.42)

Recalling the boundary condition h(t, z, 0) = 0, (3.41) and (3.42) tell us that the function
h is non-negative everywhere. Furthermore, noting the feedback form of our optimal
buy limit order depth given in (3.28), together with the inequalities in (3.39) and (3.39),
we obtain bounds on our posting depths given by

δ+
∗
=

1
κ
− 2ξ · 1q≤−1 − h(t, z, q + 1) + h(t, z, q) (3.43)

≥ 1
κ
− 2ξ · 1q≤−1 − 2ξ · 1q≥0 (3.44)

=
1
κ
− 2ξ (3.45)

and

δ+
∗ ≤ 1

κ
− 2ξ · 1q≤−1 + 2ξ · 1q≤−1 (3.46)

=
1
κ

(3.47)
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Combined with the identical conditions on the sell depth, we have the conditions

1
κ
− 2ξ ≤ δ±∗ ≤ 1

κ
(3.48)

A possible interpretation of the unexpected upper bound on the posting depth is that
if the calculated buy (respectively sell) depth is ‘sufficiently’ large so as to indicate
a disposition against buying (respectively selling), then it is actually optimal to sell
(respectively buy) instead.

Combining (3.28) and (3.35), we know that if δ+ is determined by its feedback form
rather than being floored at zero, then a buy market order is executed if and only if

−2ξ · 1q≥0 = h(t, z, q)− h(t, z, q + 1) (3.49)

= δ+
∗ − 1

κ
+ 2ξ · 1q≤−1 (3.50)

−2ξ, q ≥ 0

0, q < 0

 =


δ+
∗ − 1

κ
, q ≥ 0

δ+
∗ − 1

κ
+ 2ξ, q < 0

(3.51)

δ+
∗
=


1
κ
− 2ξ, q ≥ 0

1
κ
− 2ξ, q < 0

(3.52)

δ+
∗
=

1
κ
− 2ξ (3.53)

An identical derivation holds for sell market orders. In the next chapter on results, this
equality will allow us to gauge the market order behaviour by viewing only the limit
order posting depths.

To solve for our ansatz h, we can use any finite differences method (Coleman and
Jarrow, 1998) to numerically solve the quasi-variational inequality in (3.34). Since we
know that at the terminal time we have h(T, z, q) = −αq2, we can work backward in
small time increments of ε, and use a forward approximation for the time derivative,
given by ∂th(s) = h(s+ε)−h(s)

ε . This will also require bounding the inventory levels
at arbitrary ‘large enough’ levels at which the behaviour of the function is seen to
stabilize. Empirically, we found that |q| ≤ 20 was sufficient.
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4
Maximizing Wealth via Discrete-Time Stochas-
tic Control

4.1 System Description

We now consider the same optimization problem but in discrete time, and we will
attempt to reuse the same variable definitions and notation where it makes sense;
namely, the constants ∆tI , ∆tS, #bins, ξ are defined as before. We will be analysing
the embedded discrete time Markov chain, which for any time interval of size ∆t
can be obtained from the CTMC by considering the transition probability matrix ob-
tained by P = eG∆t. We have derived the below results with the consideration that
∆t = ∆tI = ∆tS = 1000ms, though this is not strictly necessary. For convenience, we
re-list in discrete-time form the processes we will consider for this control problem:

Imbalance ρk

The finite, discrete stochastic process that results from sorting the imbalance ratio
I(t) into {1, . . . , #bins}, and which evolves in accordance with the Markov chain z.

Midprice Sk

A stochastic process that evolves in accordance with the Markov chain z.

Midprice Change ∆Sk = sgn(Sk − Sk−1)

Imbalance & Midprice Change zk = (ρk, ∆Sk)

A discrete-time 2-dimensional time-homogeneous Markov chain with transition
probabilities Pij.

Midprice Change when ∆S 6= 0 {η0,z, η1,z, . . . } ∼ Fz
Independent, identically-distributed random variables, where the distribution is
dependent on the Markov chain state. This is the price change that accompanies a
change in Markov chain state.
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Other Agent Market Orders K±k
The sum of the Poisson process with rate µ±(zk) over the past time interval ∆t.
This allows us to consider a continuous time process in discrete time by looking
at how many arrivals there were since the previous timestep. K+ represents the
arrival of other agents’ buy market orders.

Our Limit Order Posting Depth δ±k
One of the F -predictable processes that we will control. The value of δ+ dictates
how deep on the buy side we will post our buy limit order - if δ+ = 0 then we are
posting at-the-touch.

Our Limit Order fill count L±k
A binary random processes (not Poisson) identifying whether our buy (L+) or sell
(L−) limit orders were filled. This process is considered in greater detail later in
this section.

Our Market Orders M±k
Our other controlled process. M+ represents our executing a buy market order. In
executing market orders, we assume that the volume of the order is small enough
to achieve the best bid/ask price, and not walk the book.

Cash Xτ ,δ
k

A stochastic variable representing our cash, initially zero.

Inventory Qτ ,δ
k

A stochastic process representing our assets, initially zero.

As per a typical discrete-time stochastic control problem, we will consider the follow-
ing state, control, and random vectors:
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State ~xk =


xk

sk

zk

qk


cash
stock price
Markov chain state, as above
inventory

Control ~uk =


δ+k
δ−k
M+

k
M−k


bid posting depth
ask posting depth
buy market order - binary control
sell market order - binary control

Random ~wk =

K+
k

K−k
ωk

 other agent buy market orders
other agent sell market orders
random variable uniformly distributed on [0,1]

Following Kwong (2015), we’ll write the evolution of the Markov chain as a function
of the current state and a uniformly distributed random variable ω:

zk+1 = T(zk, ωk) =
|Γ|
∑
i=0

i · 1
ωk∈

(
∑i−1

j=0 Pzk ,j,∑i
j=0 Pzk ,j

] (4.1)

Hence, Zk+1 is assigned to the value i for which ωk is in the indicated interval of prob-
abilities.

Our Markovian state evolution function f , given by ~xk+1 = f (~xk,~uk, ~wk), can be writ-
ten explicitly as

xk+1

sk+1

zk+1

qk+1

 =


xk

sk + ηk+1,T(zk,ωk)

T(zk, ωk)

qk

+


sk + ξ + δ−k

0
0
−1

 L−k +


−(sk − ξ − δ+k )

0
0
1

 L+
k (4.2)

The cash process at a subsequent timestep is equal to the cash at the previous step, plus
the profits and costs of executing market and/or limit orders. At time k, if the agent
posts a sell limit order that gets filled “between timesteps” k and k + 1 (depending on
the binary random variable L−k , itself depending on the binary random variable K+

k ),
the revenue depends on the stock price at k. This is consistent with reality as with
backtesting: while we are choosing to model the posting depth, in reality a submitted
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limit order has a specific price specified - thus once the order is submitted at k, the
potential cash received is fixed.

Our impulse control at every time step is given by
xk

sk

zk

qk

 =


xk

sk

zk

qk

+


sk − ξ

0
0
−1

M−k +


−(sk + ξ)

0
0
1

M+
k (4.3)

Our market orders assume immediate execution, and are assumed to be sufficiently
small in volume so as to not affect order imbalance or the midprice.

4.2 Dynamic Programming

The system formulation allows both continuous and impulse control to mimic what
was done in the continuous time section, though in discrete time there is no a priori
distinction between the two (Bensoussan, 2008). The following theorem shows that
in this case a quasi-variational inequality formulation does exist, and that it is equiv-
alent to the standard dynamic programming formulation. The result is a simplified
expression that mirrors the continuous time analysis.

Theorem 6. Dynamic Programming with Impulse Control in Discrete Time. (Ben-
soussan, 2008) Consider a controlled Markov Chain with state space X = Rd, transition prob-
ability π(x, v, dη), and positive, bounded, uniformly continuous cost function l(x, v).

Introduce an impulse control w. Define the extended cost function by l(x, v, w) = l(x +

w, v) + c(w), the extended transition probability by π(x, v, w, dη) = π(x + w, v, dη) with
the associated operator Φv,w f (x) =

∫
Rd f (η)π(x, v, w, dη) = Φv f (x + w).

Consider a decision rule V, W with associated probability PV,W,x on Ω,A for which y1 = x
a.s. Consider the pay-off function

Jx(V, W) = EV,W,x

[
∞

∑
n=1

αn−1l(yn, vn, wn)

]
(4.4)
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and the corresponding Bellman equation

u(x) = inf
v∈U
w≥0

[l(x + w, v) + c(w) + αΦvu(x + w)] (4.5)

Assume:

1. ΦVφv(x) is continuous in v, x if φv(x) = φ(x, v) is uniformly continuous and bounded
in x, v;

2. c(w) = K1w=0 + c0(w), c0(0) = 0, c0(w)→ ∞ as |w| → ∞,
c0(w) is sub-linear positive continuous;

3. U is compact.

Then there exists a unique, positive, bounded solution of (4.5) belonging to the space of uni-
formly continuous and bounded functions. Further, this solution is identical to that of

u(x) = min
{

K + inf
w≥0

[c0(w) + u(x + w)] ; inf
v∈U

[l(x, v) + αΦvu(x)]
}

(4.6)

4.3 Maximizing Terminal Wealth

Following the dynamic programming with impulse control programme, we introduce
the value function Vδ±

k . Here, as in the continuous-time formulation, our objective is
to maximize the terminal wealth performance criteria given by

Vδ±
k (x, s, z, q) = Ek,x,s,z,q

[
Wδ±

T

]
(4.7)

= Ek,x,s,z,q

[
Xδ±

T + Qδ±
T (ST − ξ sgn(Qδ±

T ))− α(Qδ±
T )

2
]

(4.8)

where, as before, the notation Ek,x,s,z,q[ · ] represents the conditional expectation

E[ · | Xk = x, Sk = s,Zk = z, Qk = q]

In this case, our dynamic programming equations (DPEs) are given by

VT(x, s, z, q) = x + q(s− ξ sgn(q))− αq2 (4.9)
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Vk(x, s, z, q) = max
{

sup
δ±

{
Ew [Vk+1( f ((x, s, z, q),u, wk)]

}
;

Vk(x + sk − ξ, sk, zk, qk − 1) ;

Vk(x− sk − ξ, sk, zk, qk + 1)
} (4.10)

where expectation is with respect to the random vector wk. Note that in this formula-
tion we do not have per stage costs, as the cost of execution is bundled into the state
x. Nevertheless, it is rather immediate that the execution costs could be disentangled
from the system state and seen to satisfy the theorem assumptions. Hypothetically
we could add the fourth case where M+ = M− = 1, though a quick substitution
shows that it is always strictly 2ξ less in value than the case of only limit orders, where
M+ = M− = 0. This should be evident, as buying and selling with market orders in a
single timestep yields a guaranteed loss as the agent is forced to cross the spread.

To simplify the DPEs, we introduce a now familiar ansatz:

Vk(x, s, z, q) = x + q(s− ξ sgn(q)) + hk(z, q) (4.11)

with boundary condition hk(z, 0) = 0 and terminal condition hT(z, q) = −αq2. Substi-
tuting this ansatz into (4.10), we obtain

0 = max
{

sup
δ±

{
Ew [Vk+1( f ((x, s, z, q),u, wk)]−Vk(x, s, z, q)

}
;

Vk(x + sk − ξ, sk, zk, qk − 1)−Vk(x, s, z, q) ;

Vk(x− sk − ξ, sk, zk, qk + 1)−Vk(x, s, z, q)
} (4.12)

0 = max
{

sup
δ±

{
Ew
[
(s + ξ + δ−)L−k − (s− ξ − δ+)L+

k

+ (L+
k − L−k )

(
s + η0,T(z,ω) − ξ sgn(q + L+

k − L−k )
)

+ q
(

η0,T(z,ω) − ξ
(
sgn(q + L+

k − L−k )− sgn(q)
))

+ hk+1(T(z, ω), q + L+
k − L−k )− hk(z, q)

]}
;

− 2ξ · 1q≥0 + hk(z, q + 1) ;

− 2ξ · 1q≤0 + hk(z, q− 1)
}

(4.13)

42



We’ll begin by concentrating on the first term in the quasi-variational inequality. Thus,
we want to solve

sup
δ±

{
Ew

[
(s + ξ + δ−)L−k − (s− ξ − δ+)L+

k

+ (L+
k − L−k )

(
s + η0,T(z,ω) − ξ sgn(q + L+

k − L−k )
)

+ q
(

η0,T(z,ω) − ξ
(
sgn(q + L+

k − L−k )− sgn(q)
))

+ hk+1(T(z, ω), q + L+
k − L−k )− hk(z, q)

]}
(4.14)

As other agents’ market orders as Poisson distributed, we have that

P[K+
k = 0] =

e−µ+(z)∆t(µ+(z)∆t)0

0!
= e−µ+(z)∆t (4.15)

and so the probability of seeing some positive number of market orders is

P[K+
k > 0] = 1− e−µ+(z)∆t (4.16)

Now we make the simplified assumption that the aggregate of the orders walks the
limit order book to a depth of pk, and if pk > δ−, then our sell limit order is lifted. As
in the continuous time section, we will assume that the probability of our order being
lifted is e−κδ− . Thus we have the following preliminary results:

P[L−k = 1|K+
k > 0] = e−κδ− (4.17)

P[L−k = 0|K+
k > 0] = 1− e−κδ− (4.18)

E[L−k ] = P[L−k = 1|K+
k > 0] ·P[K+

k > 0] (4.19)

= (1− e−µ+(z)∆t)e−κδ− (4.20)

For ease of notation, we’ll write the probability of the L−k = 1 event as p(δ−). This
gives us the additional results:

P[L−k = 1] = p(δ−) = E[L−k ] (4.21)

P[L−k = 0] = 1− p(δ−) (4.22)

∂δ−P[L−k = 1] = −κp(δ−) (4.23)

∂δ−P[L−k = 0] = κp(δ−) (4.24)
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Let’s pre-compute some of the terms that we’ll encounter in the supremum, namely
the expectations of the random variables. To each we will assign an upper-case Greek
letter as shorthand, as will be evident from the analysis.

E[sgn(q + L+
k − L−k )] = P[L−k = 1] ·P[L+

k = 1] · sgn(q)

+ P[L−k = 1] ·P[L+
k = 0] · sgn(q− 1)

+ P[L−k = 0] ·P[L+
k = 1] · sgn(q + 1)

+ P[L−k = 0] ·P[L+
k = 0] · sgn(q)

(4.25)

= p(δ−)p(δ+) sgn(q)

+ p(δ−)(1− p(δ+)) sgn(q− 1)

+ (1− p(δ−))p(δ+) sgn(q + 1)

+ (1− p(δ−))(1− p(δ+)) sgn(q)

(4.26)

= sgn(q)
[
1− p(δ+)− p(δ−) + 2p(δ+)p(δ−)

]
+ sgn(q− 1)

[
p(δ−)− p(δ+)p(δ−)

]
+ sgn(q + 1)

[
p(δ+)− p(δ+)p(δ−)

] (4.27)

=



1 q ≥ 2

1− p(δ−)(1− p(δ+)) q = 1

p(δ+)− p(δ−) q = 0

−
[
1− p(δ+)(1− p(δ−))

]
q = −1

−1 q ≤ −2

(4.28)

= Φ(q, δ+, δ−) (4.29)

Similarly:

E[L+
k sgn(q + L+

k − L−k )] = P[L−k = 1] ·P[L+
k = 1] · sgn(q)

+ P[L−k = 1] ·P[L+
k = 0] · 0 sgn(q− 1)

+ P[L−k = 0] ·P[L+
k = 1] · sgn(q + 1)

+ P[L−k = 0] ·P[L+
k = 0] · 0 sgn(q)

(4.30)

= p(δ+)
[
p(δ−) sgn(q) + (1− p(δ−) sgn(q + 1)

]
(4.31)
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= p(δ+)



1 q ≥ 2

1 q = 1

(1− p(δ−)) q = 0

−p(δ−) q = −1

−1 q ≤ −2

(4.32)

= p(δ+)Ψ(q, δ−) (4.33)

and

E[L−k sgn(q + L+
k − L−k )] = p(δ−)

[
p(δ+) sgn(q) + (1− p(δ+)) sgn(q− 1)

]
(4.34)

= p(δ−)



1 q ≥ 2

p(δ+) q = 1

−(1− p(δ+)) q = 0

−1 q = −1

−1 q ≤ −2

(4.35)

= p(δ−)Υ(q, δ+) (4.36)

We’ll also require the partial derivatives of these expectations, which we can easily
compute. Below we’ll use the simplified notation Φ+ to denote the function closely
associated with the partial derivative of Φ with respect to δ+.

∂δ−E[sgn(q + L+
k − L−k )] = ∂δ−Φ(q, δ+, δ−) = κp(δ−)



0 q ≥ 2

(1− p(δ+)) q = 1

1 q = 0

p(δ+) q = −1

0 q ≤ −2

(4.37)

= κp(δ−)Φ−(q, δ+) (4.38)
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∂δ+E[sgn(q + L+
k − L−k )] = ∂δ+Φ(q, δ+, δ−) = κp(δ+)



0 q ≥ 2

−p(δ−) q = 1

−1 q = 0

−(1− p(δ−)) q = −1

0 q ≤ −2

(4.39)

= κp(δ+)Φ+(q, δ−) (4.40)

∂δ−E[L+
k sgn(q + L+

k − L−k )] = ∂δ− p(δ+)Ψ(q, δ−) = κp(δ+)p(δ−)



0 q ≥ 2

0 q = 1

1 q = 0

1 q = −1

0 q ≤ −2

(4.41)

= κp(δ+)p(δ−)Ψ−(q) (4.42)

∂δ+E[L+
k sgn(q + L+

k − L−k )] = ∂δ+ p(δ+)Ψ(q, δ−) = −κp(δ+)Ψ(q, δ−) (4.43)

∂δ−E[L−k sgn(q + L+
k − L−k )] = ∂δ− p(δ−)Υ(q, δ+) = −κp(δ−)Υ(q, δ+) (4.44)

∂δ+E[L−k sgn(q + L+
k − L−k )] = ∂δ+ p(δ−)Υ(q, δ+) = κp(δ+)p(δ−)



0 q ≥ 2

−1 q = 1

−1 q = 0

0 q = −1

0 q ≤ −2

(4.45)

= κp(δ+)p(δ−)Υ+(q) (4.46)

Recalling that we have P the transition matrix for the Markov Chain Z, with Pz,j =

P[Zk+1 = j|Zk = z], then we can also write:

E[hk+1(T(z, ω), q + L+
k − L−k )] = ∑

j
Pz,j

[
hk+1(j, q)

[
1− p(δ+)− p(δ−) + 2p(δ+)p(δ−)

]
+ hk+1(j, q− 1)

[
p(δ−)− p(δ+)p(δ−)

]
+ hk+1(j, q + 1)

[
p(δ+)− p(δ+)p(δ−)

]]
(4.47)

46



and its partial derivatives as

∂δ−E[hk+1(T(z, ω), q + L+
k − L−k )] = ∑

j
Pz,j

[
hk+1(j, q)

[
κp(δ−)− 2κp(δ+)p(δ−)

]
+ hk+1(j, q− 1)

[
−κp(δ−) + κp(δ+)p(δ−)

]
+ hk+1(j, q + 1)

[
κp(δ+)p(δ−)

]]
(4.48)

= κp(δ−)∑
j
Pz,j

[
hk+1(j, q)

[
1− 2p(δ+)

]
+ hk+1(j, q− 1)

[
−1 + p(δ+)

]
+ hk+1(j, q + 1)

[
p(δ+)

]]
(4.49)

∂δ+E[hk+1(T(z, ω), q + L+
k − L−k )] = κp(δ+)∑

j
Pz,j

[
hk+1(j, q)

[
1− 2p(δ−)

]
+ hk+1(j, q− 1)

[
p(δ−)

]
+ hk+1(j, q + 1)

[
−1 + p(δ−)

]]
(4.50)

Now we tackle solving the supremum in (4.14) and thus finding the optimal posting
depths, again denoted by a subscript asterisk. First we consider the first-order condi-
tion on δ−, namely that the partial derivative with respect to it must be equal to zero.

0 = ∂δ−

{
(s + ξ + δ−∗)E[L−k ]− (s− ξ − δ+)E[L+

k ]

+ E[L+
k ]
(

s + E[η0,T(z,ω)]
)
− ξE

[
L+

k sgn(q + L+
k − L−k )

]
−E[L−k ]

(
s + E[η0,T(z,ω)]

)
+ ξE

[
L−k sgn(q + L+

k − L−k )
]

+ qE[η0,T(z,ω)]− qξE[sgn(q + L+
k − L−k )] + qξ sgn(q)

+ E
[
hk+1(T(z, ω), q + L+

k − L−k )
]
− hk(z, q)

}
(4.51)
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= ∂δ−

{
(s + ξ + δ−∗)E[L−k ]− ξE

[
L+

k sgn(q + L+
k − L−k )

]
−E[L−k ]

(
s + E[η0,T(z,ω)]

)
+ ξE

[
L−k sgn(q + L+

k − L−k )
]

− qξE[sgn(q + L+
k − L−k )] + E

[
hk+1(T(z, ω), q + L+

k − L−k )
]} (4.52)

= p(δ−∗)− κp(δ−∗)(s + ξ + δ−∗)− ξκp(δ+)p(δ−∗)Ψ−(q)

+ κp(δ−∗)
(

s + E[η0,T(z,ω)]
)
− ξκp(δ−∗)Υ(q, δ+)− qξκp(δ−∗)Φ−(q, δ+)

+ κp(δ−∗)∑
j
Pz,j

[
hk+1(j, q)

[
1− 2p(δ+)

]
+ hk+1(j, q− 1)

[
−1 + p(δ+)

]
+ hk+1(j, q + 1)

[
p(δ+)

]]
(4.53)

Dividing through by κp(δ−∗), which is nonzero, and re-arranging, we find that the
optimal sell posting depth is given by

δ−∗ =
1
κ
+ E[η0,T(z,ω)]− ξ

(
1 + p(δ+)Ψ−(q) + Υ(q, δ+) + qΦ−(q, δ+)

)
+ ∑

j
Pz,j

[
hk+1(j, q)

[
1− 2p(δ+)

]
+ hk+1(j, q− 1)

[
−1 + p(δ+)

]
+ hk+1(j, q + 1)

[
p(δ+)

]]
(4.54)

=
1
κ
+ E[η0,T(z,ω)]− 2ξ

(
1q≥1 + p(δ+)1q=0

)
+ ∑

j
Pz,j

[
hk+1(j, q)

[
1− 2p(δ+)

]
+ hk+1(j, q− 1)

[
−1 + p(δ+)

]
+ hk+1(j, q + 1)

[
p(δ+)

]]
(4.55)

Recalling that we want δ± ≥ 0, we find:

δ−∗ = max
{

0 ;
1
κ
+ E[η0,T(z,ω)]− 2ξ1q≥1 + ∑

j
Pz,j

[
hk+1(j, q)− hk+1(j, q− 1)

]
− p(δ+)

(
2ξ1q=0 −∑

j
Pz,j

[
hk+1(j, q− 1) + hk+1(j, q + 1)− 2hk+1(j, q)

])}
(4.56)
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And similarly, the optimal buy posting depth is given by:

δ+
∗
= max

{
0 ;

1
κ
−E[η0,T(z,ω)]− 2ξ1q≤−1 + ∑

j
Pz,j

[
hk+1(j, q)− hk+1(j, q + 1)

]
− p(δ−)

(
2ξ1q=0 −∑

j
Pz,j

[
hk+1(j, q− 1) + hk+1(j, q + 1)− 2hk+1(j, q)

])}
(4.57)

For ease of notation we’ll write ℵ(q) = ∑j Pz,j [hk+1(j, q− 1) + hk+1(j, q + 1)− 2hk+1(j, q)].
Now, assuming we behave optimally on both the buy and sell sides simultaneously,
we can substitute (4.57) into (4.56), while evaluating both at δ+

∗ and δ−∗ to obtain the
optimal posting depth in feedback form:

δ−∗ = max
{

0 ;
1
κ
+ E[η0,T(z,ω)]− 2ξ1q≥1 + ∑

j
Pz,j

[
hk+1(j, q)− hk+1(j, q− 1)

]
− (1− eµ−(z)∆t)e−κ max

{
0 ; 1

κ−E[η0,T(z,ω)]−2ξ1q≤−1+∑j Pz,j

[
hk+1(j,q)−hk+1(j,q+1)

]
−(1−eµ+(z)∆t)e−κδ−∗(2ξ1q=0−ℵ(q))

} (
2ξ1q=0 − ℵ(q)

)}
(4.58)

This equation will need to be solved numerically due to the difficulty in isolating δ−∗

on one side of the equality. Once a solution has been obtained, the value can be substi-
tuted back into (4.57) to solve for δ+

∗.

4.4 Simplifying and Interpreting the DPE

We now turn to simplifying the DPE in (4.13) by substituting in the optimal posting
depths as written in recursive form: (4.57) and (4.56). In doing so we see a incredi-
ble amount of cancellation and simplification, and we obtain the rather elegant, and
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surprisingly simple form of the DPE:

hk(z, q) = max
{

qE[η0,T(z,ω)] +
1
κ
(p(δ+∗) + p(δ−∗)) + ∑

j
Pz,jhk+1(j, q)

+ p(δ+∗)p(δ−∗)∑
j
Pz,j [hk+1(j, q− 1) + hk+1(j, q + 1)− 2hk+1(j, q)] ;

− 2ξ · 1q≥0 + hk(z, q + 1) ;

− 2ξ · 1q≤0 + hk(z, q− 1)
}

(4.59)

As was the case in continuous time, (4.59) yields that whilst in the continuation region,
we have

hk(z, q) ≤ hk(z, q + 1)− 2ξ · 1q≥0 (4.60)

hk(z, q) ≤ hk(z, q− 1)− 2ξ · 1q≤0 (4.61)

And these inequalities again give us

−2ξ · 1q≥0 ≤ hk(z, q)− hk(z, q + 1) ≤ 2ξ · 1q≤−1 (4.62)

−2ξ · 1q≤0 ≤ hk(z, q)− hk(z, q− 1) ≤ 2ξ · 1q≥1 (4.63)

hk(z, q)

sell if =
↓
≤ hk(z, q + 1)

buy if =
↓
≤ hk(z, q) + 2ξ, q ≥ 0 (4.64)

hk(z, q) ≤
↑

buy if =

hk(z, q− 1) ≤
↑

sell if =

hk(z, q) + 2ξ, q ≤ 0 (4.65)

Recalling the boundary condition hk(z, 0) = 0, (4.64) and (4.65) tell us that the function
h is non-negative everywhere.

At terminal time T, we liquidate our position at a cost of (s− xi sgn(q)− αq) per share,
whereas at T − 1, we can liquidate at the regular cost of (s− ξ sgn(q). It is thus never
optimal to wait until maturity to liquidate the position, and instead we force liquida-
tion one step earlier by setting h(T− 1, z, q) = 0 ∀q. This allows us to effectively ignore
the terminal condition, and avoids a contradiction with the finding that h ≥ 0.

We now have an explicit means of numerically solving for the optimal posting depths.
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Since we know the function h at the terminal timesteps T and T − 1, we can take one
step back to T − 2 and solve for both the optimal posting depths. With these values
we are then able to calculate the value function hT−2 using (4.59), and in doing so
determine whether to execute market orders in addition to posting limit orders. This
process then repeats for each step backward.
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5
Results

In this chapter we explore the dynamics of the continuous time and discrete time mod-
els, and perform in-sample and out-of-sample backtests to compare the performance
of the continuous and discrete time solutions to the stochastic optimal control prob-
lem. As a reminder, the dataset over which we calibrate and backtest is the NASDAQ
Historical TotalView-ITCH, timestamped to the millisecond, and the backtests are con-
ducted on the stock tickers listed in Table 5.1.

Table 5.1: List of stocks used in this chapter for stochastic optimal control backtesting,
along with the daily average trading volume of each. The chosen stocks are a good
sample group of the population of stocks listed on the NASDAQ in that they span the
spectrum of low liquidity to high liquidity stocks.

Ticker Company Average Daily Volume

FARO FARO Technologies Inc. 200,000
NTAP NetApp, Inc. 4,000,000
ORCL Oracle Corporation 15,000,000
INTC Intel Corporation 30,000,000
AAPL Apple Inc. 50,000,000

5.1 Calibration

All tests in this chapter were run using the global set of parameters found in Table 5.2.
For each calibration, we then computed the remaining parameters using the formulae
in Table 5.3.

In addition, ξ was computed as half of the simple average of the bid-ask spread ob-
served during the trading day, rounded to the nearest half-cent; and the imbalance
bins ρ were calculated as to partition the interval [−1, 1] into percentile bins symmetric
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Table 5.2: List of global parameters used in this chapter for backtesting.

Parameter Value Description

∆tS 1000ms time window for computing price change
∆tI 1000ms time window for averaging order imbalance
#bins 5 number of imbalance bins

κ 100 fill probability constant

Table 5.3: Reference list of calculated parameter formulae for backtesting.

Parameter Equation Description

G (2.15) infinitesimal generator matrix
P (2.8) transition probability matrix
µ± (2.20) market order arrival intensities

around zero, where the percentile interval was 100/#bins.

As mentioned in Chapter 2, the exploratory data analysis done on the data made use
of an unorthodox Markov chain, where its state at time t was actually not determinable
at time t because the price change ∆S(t) was computed over the future time interval
∆tS. (See Section 2.3.) In the optimal stochastic control formulations, the Markov chain
was defined instead such the price change was computed over the past interval ∆tS.
However, it is of interest to explore what results would be obtained if the calibration
were still done using the non F -predictable method. A justification for doing so is
that in a given Markov state Z, there is a state-dependent arrival rate of price updates,
and there is a state-dependent distribution of jumps when a price update occurs. So
although the price change is measured over the future when calibrating, this really is
a way of getting at the state-dependence of those price changes. In the following tests,
this calibration method is denoted ‘with nFPC’, standing for ‘with non-F -predictable
calibration’.

5.2 Dynamics of the Optimal Posting Depths

In Chapters 3 and 4 we derived optimal stochastic controls for the same terminal
wealth performance criterion in both continuous and discrete time, which yielded dif-
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ferent formulae for the optimal limit order posting depths. In this section we explore
the divergence in the resulting dynamics as obtained in an in-sample backtest on INTC,
calibrating on amalgamated data for the entire 2013 trading year. The dynamics of δ±

were obtained using a time-to-maturity of 600 seconds to best depict the behaviour
as we approached the end of day trading; as the time-to-maturity horizon increases
further, the postings depths tend to stabilize.

From the depth plots we can see that a symmetry that has emerged between δ+ and
δ− in ‘opposite’ Markov states, where Z = (−1,−1) is opposite Z = (+1,+1), and
Z = (0, 0) is opposite itself. Therefore, compare Figure 5.1 with Figure 5.6, Figure 5.2
with Figure 5.5, and Figure 5.3 with Figure 5.4. Thus, we focus the discussion here on
the behaviour of δ+.

As expected, the plots all have a lower bound of δ+ = 0. In this calibration we have
the fixed parameter κ = 100 and the calibrated parameter ξ = 0.005. From (3.53), we
thus know that a necessary but not sufficient condition for a buy market order to be
executed is δ+ = 1

κ − 2ξ = 0. With respect to the upper bound, both continuous time
calibrations respect the 1

κ = 0.1 bound derived in (3.48). However, no such bound
was found analytically in the discrete time case; indeed, we see in Figure 5.1 that the
discrete time upper bound does exceed this threshold. Nevertheless, it is interesting
that the discrete depths still are bounded, and that in Figure 5.2 and Figure 5.3 the same
1
κ upper bound is respected even in the absence of such an analytic result.

Each of the plots display consistent behaviour with respect to changes in the inventory
level q. Posting depths increase and converge as q increases from -20 to 0 (light green to
purple), and again increase and converge as inventory increases from 0 to 20. However,
there is a discontinuity at zero inventory; for example, in Figure 5.2, posting depths
jump down from 0.01 at q = −1 to 0 at q = 1.

Comparing the two calibration methods, wee see that the regular calibration remains
stable for longer as time approaches maturity, showing considerable variation only at
400 seconds, whereas the nFPC calibration does so at about 200 seconds. Further, reg-
ular calibration results in posting depths that are concentrated slightly closer around
the convergence levels. Otherwise, within both continuous and discrete time, the
nFPC calibration produces near-identical results compared with the regular calibra-
tion method.

Comparing continuous time with discrete time, we see a very large divergence in be-
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Figure 5.1: Optimal buy depths δ+ for Markov state Z = (ρ = −1, ∆S = −1), imply-
ing heavy imbalance in favor of sell pressure, and having previously seen a down-
ward price change. We expect the midprice to fall.
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Figure 5.2: Optimal buy depths δ+ for Markov state Z = (ρ = 0, ∆S = 0), implying
neutral imbalance and no previous price change. We expect no change in midprice.
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Figure 5.3: Optimal buy depths δ+ for Markov state Z = (ρ = +1, ∆S = +1), imply-
ing heavy imbalance in favor of buy pressure, and having previously seen an upward
price change. We expect the midprice to rise.
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haviour. In Figure 5.1, the continuous control produces posting depths concentrated
around zero, which suggests that acquiring stock is optimal, whereas the discrete con-
trol is posting substantially deeper into the limit order book to avoid purchasing. In
Figure 5.2 we see near-identical model behaviour. Since the majority of the day is
spent in a Markov state for which ∆S = 0, as seen here, any similarities or correlations
in backtesting performance can likely be attributed to the similar behaviour observed
in this Markov state. (Recall that ρ, by contrast, is computed via evenly spaced per-
centiles symmetric around zero, so that time spent in each imbalance state is evenly
distributed.) In Figure 5.3 the two models display near opposite behaviours to one
another, mirroring what was seen in Figure 5.1. Here the discrete model is posting at
depths near zero, mimicking the behaviour of the Naive++ strategy by suggesting that
purchasing is optimal, while the continuous model is posting deeper into the book to
avoid purchasing.

The continuous-time parameters in Figure 5.1, Figure 5.3, Figure 5.4, and Figure 5.6
display spikes at the terminal time. A possible reason for this occurrence is a so-called
face-lift, wherein the left-limit of the solution differs from the terminal condition. In this
case, we have the terminal condition that h is equal to −αq2, whereas at all other times
h is strictly non-negative. It is precisely this difference that may result in the observed
spike. As it is actually optimal to liquidate the position prior to reaching the terminal
time (so as to avoid the terminal penalty), we would expect that any implementation
would avoid posting orders at the instantaneous moment of the terminal time, if not
earlier.

Finally, we note that we see relative stability in the posting depths at a time horizon of
600 seconds. This is consistent with the findings in Table 2.3, where we saw that the
transition probability matrix P (t) converged for INTC to an error threshold of 10−10

within 771 timesteps of 1 second each.
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Figure 5.4: Optimal sell depths δ− for Markov state Z = (ρ = −1, ∆S = −1), imply-
ing heavy imbalance in favor of sell pressure, and having previously seen a down-
ward price change. We expect the midprice to fall.
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Figure 5.5: Optimal sell depths δ− for Markov state Z = (ρ = 0, ∆S = 0), implying
neutral imbalance and no previous price change. We expect no change in midprice.
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Figure 5.6: Optimal sell depths δ− for Markov state Z = (ρ = +1, ∆S = +1), imply-
ing heavy imbalance in favor of buy pressure, and having previously seen an upward
price change. We expect the midprice to rise.
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5.2.1 Comparing Optimal Control Performance

In Figure 5.7a we plot the normalized profit and loss (P&L) for the four strategies,
calibrated and backtested using data for ORCL on an arbitrary single day (2013-05-15).
The performance plots display similarities in trajectory, as well as in the distinct spikes
between 13 h and 14.5 h. Nevertheless the correlation of arithmetic returns, Table 5.4,
shows that the strategies’ returns were uncorrelated. Indeed, while the overall paths
are similar, on close inspection the individual returns do show differing behaviour.

Table 5.4: Correlation matrix of returns for the four stochastic optimal control meth-
ods, showing they are uncorrelated.

Continuous Continuous
with nFPC

Discrete Discrete
with nFPC

Continuous 1.0000
Continuous with nFPC -0.0109 1.0000

Discrete -0.0120 0.0122 1.0000
Discrete with nFPC -0.0015 0.0034 -0.0165 1.0000

We find instead that the returns are cointegrated. On running the Engle-Granger coin-
tegration test (Engle and Granger, 1987) with statistics computed using an augmented
Dickey-Fuller test of residuals (Dickey and Fuller, 1979), the τ-test and z-test both re-
turned p-values of 0.001, thus rejecting the null hypothesis of no cointegration. The
cointegration relation plotted in Figure 5.8 displays stationarity, thus confirming the
existence of a cointegration relation. This result allows us to conclude that although
the optimal controls formulae and calibrations are different, there is a a fundamental
similarity in the behaviour of the backtested strategies.
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Figure 5.7: Comparison of the four stochastic optimal control methods.
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Figure 5.8: Cointegration relation of the four stochastic control methods.

From the inventory plot in Figure 5.7b we see that the strategies avoid maintaining
zero inventory. This is not surprising: in both the discrete and continuous cases we
found that the value function ansatz h(t, z, q) was nonnegative, and was equal to zero
at zero inventory. The interpretation is that there is no added value to having zero
inventory, whereas nonzero inventory can at worst have zero value. Thus it is always
profitable, from a value-function standpoint, to have non-zero inventory. Further, we
see that the strategies rarely cross the zero-inventory barrier. This is likely attributed to
the backtesting algorithm itself, which gives priority to executing buy market orders
above sell market orders. It is likely that once the strategy enters either positive or
negative inventory, the ansatz function h rarely produces the circumstances to cross the
inventory sign barrier, perhaps by virtue of the non-linear mark-to-market behaviour
on either side of zero inventory.

Table 5.5: Number of trades comparison of the four stochastic control methods.

Market Orders Limit Orders

Continuous 536 1280
Continuous with nFPC 1010 1306

Discrete 559 1285
Discrete with nFPC 523 1287

Concerning trade execution, the number of executed market orders and filled limit
orders generated by each strategy are presented in Table 5.5. The surge in market
orders seen for the Continuous with nFPC strategy can be explained by the difference
in the δ± plots. As mentioned already, from the stochastic analysis chapter, we know
that if q < 0 and δ+ = 0, or if q > 0 and δ+ = 1/κ, then we execute a buy MO.
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Likewise, if q < 0 and δ− = 1/κ, or if q > 0 and δ− = 0, then we execute a sell
MO. In Figure 5.1 we see that we have δ+ = 0 for almost all inventory values, and
in Figure 5.3 we have δ+ = 1/κ for almost all inventory values. This tells us that
when the Markov chain state is in one of the non-neutral states, the Continuous with
nFPC strategy will execute market orders when possible, as it expects prices to move
in the corresponding direction. Regarding overall number of trades, recall that the cost
of market order execution was not included in the stochastic control problem. Thus,
actual performance would have been negatively affected in proportion to the number
of market orders listed.

To better see how the strategies differ in behaviour, in the figures that follow we show
a short sample path on a fine timescale spanning about 2 minutes. In Figure 5.9 we
plot the midprice path (black line), the optimal posting depths on either side of the real
bid/ask prices (gray lines), our execution of market orders (dark blue and dark green),
and track incoming external market orders (light blue and light green) that either fill
our limit orders (solid lines) or do not (dashed lines). Figure 5.10 plots just the optimal
depths as they react to the changing Markov state, allowing a better comparison of the
behaviours, as well as highlighting the almost-symmetric behaviour between δ+ and
δ−. The left and right columns of Figure 5.11 show the effect on P&L and inventory,
respectively.
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Figure 5.9: Sample paths of the stochastic optimal control strategies, showing price,
limit order posting depths, executed market orders, and filled limit orders.
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Figure 5.10: The optimal posting depths for each of the stochastic optimal control
strategies, isolated from the sample paths in Figure 5.9. Note the scale on the vertical
axis: the values are positive and symmetric around zero, intended to show the tandem
movements of the optimal posting depths.
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Figure 5.11: Profit and loss and inventory levels resulting from each of the stochastic
optimal control strategies, corresponding to the sample paths in Figure 5.9.
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5.3 In-Sample Backtesting

5.3.1 Same-Day Calibration

The first in-sample backtest was done using same-day calibration: calibration was run
for each ticker and each trading day of 2013, and each strategy was backtested using
the same day’s calibration. Each backtest would yield the end of day P&L, average
inventory held during the day, and the number of executed market orders and filled
limit orders. Figure 5.12 compares the day-over-day performance of the four strate-
gies, while in Table 5.6 we show performance values for several metrics of interest; in
particular, risk-adjusted return is calculated by dividing the average end-of-day return
by the standard deviation of end-of-day returns.

Since we are calibrating and backtesting using the same underlying data, the calibra-
tion should be best attuned to the price dynamics for that particular day, and hence we
expect the performance using same-day calibration to exceed that of the weekly off-
set calibration and the annual calibration (detailed in the sections that follow). Look-
ing at the % Win column in Table 5.6 we see that trading on FARO seldom produces
positive P&L. This is not surprising and was mentioned at the conclusion of the ex-
ploratory data analysis chapter: FARO is illiquid, with daily average volume of about
200,000, and its bid-ask spread is about $0.20 on average. As executing market orders
results in ‘crossing the spread’, the wide bid-ask spread makes it not profitable to exe-
cute market orders. Because our optimal strategies still force us to post limit orders at
depths between 0 and 1/κ = $0.01, the most probable occurrence is that our limit or-
ders are lifted adversely. The strategies exhibit weak regularity of profits when run on
NTAP, suggesting that its average daily volume of about 4,000,000 is at the threshold re-
quired to generate revenue. The strategies performed best when run on the stocks with
highest liquidity, ORCL and NTAP, which have average volumes around 15,000,000 and
30,000,000 respectively. Positive end of day P&L was produced more than 90% of the
time, with an average daily return between 0.1 and 0.2 times the initial stock price. The
discrete time controller on averaged outperformed its continuous time counterpart; in
particular, in the case of INTC, a risk-adjusted return of 2.5 was attained.
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Figure 5.12: End of day strategy performances: in-sample backtesting using same-
day calibration.
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Table 5.6: Averaged strategy performance results: in-sample backtesting using same-
day calibration.

Strategy Average
Return

Risk Adj
Return

# Trades Average
Inventory

% Win

FARO

Naive -0.879 -0.808 413 0.47 7%
Naive+ 0.101 0.107 213 2.45 74%

Naive++ 0.002 0.021 7 0.17 50%
Continuous -0.059 -0.551 201 0.09 18%

Discrete -0.064 -0.695 210 -0.02 8%
Continuous with nFPC -0.063 -0.571 204 0.08 14%

Discrete with nFPC -0.060 -0.662 209 -0.03 9%

NTAP

Naive -0.188 -0.316 842 -9.81 23%
Naive+ 0.388 0.169 3562 -9.73 74%

Naive++ -0.005 -0.012 157 -0.90 54%
Continuous -0.006 -0.062 2265 0.40 56%

Discrete 0.099 0.767 1872 4.74 86%
Continuous with nFPC -0.141 -0.951 2897 0.65 14%

Discrete with nFPC 0.121 0.881 1738 2.82 89%

ORCL

Naive -0.105 -0.253 484 1.40 28%
Naive+ -0.034 -0.011 4086 -55.18 61%

Naive++ 0.002 0.006 132 0.61 52%
Continuous 0.115 1.348 1874 1.94 92%

Discrete 0.135 1.620 1898 3.93 98%
Continuous with nFPC -0.010 -0.100 2455 1.32 48%

Discrete with nFPC 0.144 1.501 1759 2.85 97%

INTC

Naive -0.082 -0.228 258 -5.21 33%
Naive+ 0.365 0.134 3962 -32.50 63%

Naive++ -0.001 -0.003 74 -0.84 48%
Continuous 0.214 2.159 1577 5.17 97%

Discrete 0.232 2.528 1642 4.48 98%
Continuous with nFPC 0.114 1.218 1894 2.01 90%

Discrete with nFPC 0.226 2.202 1569 4.28 98%
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5.3.2 Week Offset Calibration

The next type of in-sample backtesting done was to calibrate for each ticker and each
trading day of 2013, and to use the results to backtest on the date given by the calibra-
tion date shifted forward 7 days. For example, the calibration obtained on Monday,
January 2, 2013 would be used to backtest on Monday, January 9, 2013. Performance
values are given in Table 5.7, and Figure 5.13 compares the day-over-day performance
of the various strategies.

Most of the observations from the previous section apply here. Chiefly, the illiquid
stock FARO produces negative P&L and the low-liquidity stock NTAP approximately
breaks even. As expected, the week offset calibration underperformed same-day cali-
bration, but remarkably the difference is very small: in the case of INTC, the discrete
time controller still generates a risk-adjusted return of approximately 2.5, and in this
case only returned negative P&L once during the trading year.

The similarity of the results can be interpreted in several ways. First, it is possible
that trading behaviour is stable across days of the week, such that substituting one
Monday for another yields a similar calibration. This is readily testable by calibrating
on a given day and backtesting on the subsequent trading day, instead of a one-week
offset. On the other hand, even with dissimilar data, it’s possible that the calculation
of δ± is stable with respect to day-over-day fluctuations of data.
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Figure 5.13: End of day strategy performances: in-sample backtesting using a one-
week offset for calibration.
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Table 5.7: Averaged strategy performance results: in-sample backtesting using a one-
week offset for calibration.

Strategy Average
Return

Risk Adj
Return

# MO # LO Average
Invntry

% Win

FARO

Naive -1.072 -0.444 435 0 1.74 8%
Naive+ 0.045 0.046 0 213 2.26 74%

Naive++ -0.003 -0.027 0 6 0.25 50%
Continuous -0.060 -0.565 53 149 0.08 20%

Discrete -0.076 -0.764 80 133 -0.07 7%
Continuous with nFPC -0.065 -0.590 56 149 0.09 17%

Discrete with nFPC -0.076 -0.778 78 133 0.07 7%

NTAP

Naive -0.303 -0.316 854 0 -10.96 20%
Naive+ 0.290 0.122 0 3537 -13.83 73%

Naive++ -0.048 -0.084 0 156 -1.79 52%
Continuous -0.016 -0.165 830 1405 0.37 52%

Discrete 0.070 0.593 460 1388 5.06 79%
Continuous with nFPC -0.156 -0.987 1506 1425 0.70 9%

Discrete with nFPC 0.091 0.656 332 1401 3.16 85%

ORCL

Naive -0.112 -0.248 492 0 3.66 28%
Naive+ 0.066 0.022 0 4049 -50.06 64%

Naive++ 0.002 0.005 0 134 0.64 49%
Continuous 0.098 1.181 545 1318 1.86 90%

Discrete 0.126 1.547 578 1310 4.01 97%
Continuous with nFPC -0.013 -0.130 1069 1365 1.39 47%

Discrete with nFPC 0.135 1.459 416 1338 3.16 96%

INTC

Naive -0.057 -0.179 274 0 -3.63 31%
Naive+ 0.375 0.138 0 3925 -25.43 65%

Naive++ 0.013 0.055 0 77 -0.47 53%
Continuous 0.202 1.995 423 1139 4.76 98%

Discrete 0.226 2.494 501 1136 4.62 99%
Continuous with nFPC 0.107 1.111 681 1187 1.64 87%

Discrete with nFPC 0.215 2.027 401 1156 3.78 99%
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5.3.3 Annual Calibration

The second type of out-of-sample backtesting done was to calibrate using data amal-
gamated from the entire 2013 trading year. This was a very rich calibration source, as
it effectively ensured that every possible state of the Markov chain would have had
sufficient observations. Further, this caused us to fix the imbalance bins ρ for the entire
year, rather than having bins (and hence what it means to be ‘heavy buy imbalance’
and ‘neutral imbalance’) vary each day. Performance values are given in Table 5.8, and
Figure 5.14 compares the day-over-day performance of the various strategies.

Here we backtest only the more liquid of the stocks, ORCL and INTC. In comparing
Table 5.8 with Table 5.7, we note some interesting observations. Again we see the
most liquid stock, INTC, posting on average the better results using the strategies, sug-
gesting that using a liquid stock is key. (INTC started the year at $21.38 and gained
21.42% over the year, while ORCL started at $34.69 and climbed 10.29%. However,
NTAP started at $34.30 and gained 19.94%, similar in performance to INTC, and yet
performed substantially worse.) Whereas we have seen thus far that the nFPC strate-
gies underperform the regular calibration, here the roles were reversed in terms of
performance, number of market orders used, and average inventory held. Across the
strategies we see stability in the number of limit orders used, which suggests that this
isn’t so much strategy dependent as it is externally dependent on outside agents sub-
mitting their market orders. In the case of ORCL we see that the continuous stochastic
control strategy was particularly susceptible to the sharp downward spikes on days
55, 100, and 119, which corresponded to large sell-offs in the market.

From the in-sample backtesting we draw several conclusions regarding the perfor-
mance of the optimal control strategies:

• average return increases as the underlying stock liquidity increases;

• average return increases as the underlying stock bid-ask spread decreases;

• average return is stable and risk-adjusted return is improved when calibrating
over a larger period of time, and is therefore preferred;

• there is no clear victor between regular calibration and the nFPC method.

75



50 100 150 200 250
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
ORCL

50 100 150 200 250
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
INTC

N
or

m
al

iz
ed

P&
L

Trading Day Number of 2013

Cts Stoch Ctrl Dscr Stoch Ctrl Cts Stoch Ctrl w nFPC Dscr Stoch Ctrl w nFPC

Figure 5.14: End of day strategy performances: in-sample backtesting on 2013 data,
using amalgamated annual 2013 data for calibration.

Table 5.8: Averaged strategy performance results: in-sample backtesting on 2013
data, using amalgamated annual 2013 data for calibration.

Strategy Average
Return

Risk Adj
Return

# MO # LO Average
Invntry

% Win

ORCL

Continuous -0.089 -0.875 1540 1383 1.19 14%
Discrete 0.140 1.596 368 1344 0.46 96%

Continuous with nFPC 0.113 1.327 476 1338 2.67 94%
Discrete with nFPC 0.118 1.735 590 1337 3.43 99%

INTC

Continuous 0.065 0.743 888 1207 1.22 84%
Discrete 0.235 2.189 380 1170 1.19 99%

Continuous with nFPC 0.209 2.030 396 1160 5.58 98%
Discrete with nFPC 0.197 2.588 576 1164 3.78 100%
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5.4 Out-of-Sample Backtesting

For out-of-sample backtesting we move to using 2014 data that has hitherto remained
untouched. We elect to test all four strategies on two stocks, INTC and AAPL, that have
average daily trading volumes of 30m and 45m respectively, and each have a typical
bid-ask spread of the minimum 1 cent. AAPL underwent a 7-for-1 stock split on 2014-
06-09, and prices are adjusted correspondingly in the underlying data; although prior
to the split the bid-ask spread was an order of magnitude greater than 1 cent, we retain
the 1 cent spread assumption on the adjusted pre-split prices to stay consistent with
what was observed after the split. Additionally, we use a sliding calibration window
of 1 month (21 trading days) and thus begin trading on the 22nd trading day of the
year.

Table 5.9 shows the results of out-of-sample backtesting. The strategies post strong
returns and risk-adjusted returns, and provide positive returns on almost every day
that was tested. The strategies were run assuming our trade volume was 1 stock for
every market order or limit order executed. Thus, to quantify these results in dollar
terms, we can do a back of the envelope calculation. For example, for the Discrete with
nFPC strategy, we assume that we trade 100 shares at a time, and multiply the average
return (0.515 and 0.764 for INTC and AAPL, respectively) by the average share price
during the year ($30 and $95, respectively) by 249 (the total number of trading days in
2014). Thus, we conclude:

Trading INTC would have generated revenue of $384,705.

Trading AAPL would have generated revenue of $1,807,200.

The capital requirements would have been the full price of the shares, $30 and $95 each,
multiplied by the maximum long/short inventory of 20× 100 shares - thus $250,000.
This represents a return on investment (ROI) of 877%.
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Figure 5.15: End of day strategy performances: out-of-sample backtesting on 2014
data, using amalgamated annual 2013 data for calibration.

Table 5.9: Averaged strategy performance results: out-of-sample backtesting on 2014
data, using amalgamated annual 2013 data for calibration.

Strategy Average
Return

Risk Adj
Return

# MO # LO Average
Invntry

% Win

INTC

Continuous 0.209 2.112 2118 1758 0.44 98%
Discrete 0.372 1.591 949 1770 -5.89 98%

Continuous with nFPC 0.483 2.364 704 1693 1.46 100%
Discrete with nFPC 0.515 2.033 490 1629 2.81 100%

AAPL

Continuous 0.378 1.571 3853 6297 -5.80 96%
Discrete 0.761 2.457 830 5566 4.05 100%

Continuous with nFPC 0.710 2.479 1276 5689 2.93 100%
Discrete with nFPC 0.764 2.442 796 5559 3.85 100%
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6
Conclusion

The backtesting results indicate that implementing the stochastic strategies on just two
stocks would have generated a 877% return on investment in 2014. In addition, how-
ever, recurring fees would have included the co-location fees of storage rental and a
cross-link to the exchange, approximately $15,000 per month, and a subscription to
the ITCH feed as well as access to NASDAQ’s order submission protocol, another
$15,000 per month. These fee approximations reduce the return on investment down
to 359%. However, considering that there are other highly liquid shares with small
bid-ask spreads listed on the NASDAQ, such as DELL and MSFT, of which some may
produce similar backtesting results, the results strongly indicate that the stochastic con-
trol strategies are monetisable.

Of course, this is a major oversimplification of reality. There are a number of assump-
tions and modelling choices that were made over the course of this research that must
first be revisited prior to attempting forward performance testing (paper trading), let
alone taking the system live. In what follows, I address what I consider to be the critical
items among the list, each of which indicate a potential future research direction.

Market order costs. Perhaps the easiest change of all, the dynamic programming
equations need to account for the fact that market order executions come with a cost
from the exchange, as they are essentially taking away liquidity. (Posting, modifying,
and cancelling limit orders are all free transactions.) Specifically, the market order cost
c would have to appear in the stopping regions/impulse controls of the DPEs. The
presumed effect would be widening the upper bound on δ± from 1/κ to 1/κ + c. This
would also presumably decrease the overall incidence of market order executions by
the strategies.
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Discrete posting depths in increments of 1 tick. Presently, the posting depths δ± are
continuous variables, and for example in Figure 5.2 were seen to be between 0 and
$0.01. In reality, one can only post orders in depth increments of 1 tick, which for
the majority of stocks is equal to $0.01. Thus, the current results would have us post
at illegal depths. This can partially be solved by rounding the results to the nearest
cent, but those rounded depths would no longer have the support of the mathematical
derivations, and would likely result in a marked decrease in revenue.

Short term price impact. In order to realize the $2 million profit, we would be exe-
cuting orders in sizes of 100 shares at a time. In the case of AAPL this would have us
trading 600k-700k shares per day. AAPL has an average daily trading volume of 50m
shares, thus we would be contributing more than 1% of daily volume. It is very likely
that due to the large quantity of shares we would be transacting each day, our trading
would have an impact on the stock price, which generally has an adverse effect on
P&L (Almgren, 2003). Modelling this price impact would be an essential component
of either generating more realistic returns, or reducing our daily number of trades.

Accounting for non-homogeneity. Currently the calibration method uses entire trad-
ing days to determine the value function H and the posting depths δ±, which them-
selves are applied over the whole trading day. However, we saw in the cross-validation
section that there are strong grounds for rejecting the time-homogeneity assumption in
the underlying data. A feasible extension would be to have independent calibrations
for the first hour of trading, last hour of trading, and mid-day trading, as the three are
known to have very distinct behaviours.

Early cut-off with optimal liquidation. As was noted in the stochastic optimal con-
trol sections, it is never optimal to wait until maturity and pay the liquidation penalty
φ per share - thus market orders were executed in bulk immediately prior with no
penalty. Thus in addition to independently calibrating the last hour of trading, we
could determine an early cut-off time, on the order of minutes, at which the wealth
maximization strategy is ended, and proceed to the end of the day with an optimal
liquidation/acquisition strategy.
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Backtesting engine: tracking LOB queue position. The backtesting engine fills our
limit orders with probability e−κδ, an assumption that was made in the stochastic op-
timal control chapter. Largely, this is because we do not presently track our position
in the limit order book queue, and this provides a workaround with some empirical
credence. Thus, at present, random numbers effectively determine whether our limit
orders get filled, and in particular, a depth of δ = 0 implies guaranteed execution.
However, as we have the ability to reconstruct the entire limit order book from the
ITCH data, we thus have all the data we need to actually track our position in the
queue, and know with certain whether our order would have been partially or fully
executed. Additionally, it’s currently implicit that at every timestep we cancel our ex-
isting order and repost, even if at the same depth; queue-tracking would force us to
make this explicit, adding the option of modifying or keeping our existing orders from
the previous timestep.

Backtesting engine: information latency. The backtesting engine allows for imme-
diate execution of market orders and posting of limit orders, which ignores the time
that a signal takes to be sent from the trading system to the exchange server. As
was mentioned in the introduction, minimizing latency is a critical consideration in
high-frequency algorithmic trading, and is the justification for the large co-location ex-
penses. Thus it is also paramount to account for its existence in the backtesting engine.
A simple 2-4ms lag in execution would realistically simulate the time taken to learn of
an event, generate a response, and have the exchange act on the response (Hasbrouck
and Saar, 2013).

Backtesting engine: algorithm latency. The historical ITCH data that was fed to the
backtesting engine had already been transformed into a reconstructed limit order book.
This process will need to be done in real-time as data comes in from the exchange
in order to be able to calculate the present Markov chain state. The latency of this
algorithm itself must also be minimized and accounted for when backtesting.
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