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Preface

This book provides a systematic study on the optimal timing of trades

in markets with mean-reverting price dynamics. We present a financial

engineering approach that distills the core mathematical questions from

different trading problems, and also incorporates the practical aspects of

trading, such as model estimation, risk premia, risk constraints, and trans-

action costs, into our analysis. Self-contained and organized, the book not

only discusses the mathematical framework and analytical results for the

financial problems, but also gives formulas and numerical tools for practical

implementation. A wide array of real-world applications are discussed, such

as pairs trading of exchange-traded funds, dynamic portfolio of futures on

commodities or volatility indices, and liquidation of options or credit risk

derivatives.

A core element of our mathematical approach is the theory of optimal

stopping. For a number of the trading problems discussed herein, the opti-

mal strategies are represented by the solutions to the corresponding optimal

single/multiple stopping problems. This also leads to the analytical and nu-

merical studies of the associated variational inequalities or free boundary

problems. We provide an overview of our methodology and chapter outlines

in the Introduction.

Our objective is to design the book so that it can be useful for doctoral

and masters students, advanced undergraduates, and researchers in finan-

cial engineering/mathematics, especially those who specialize in algorithmic

trading, or have interest in trading exchange-traded funds, commodities,

volatility, and credit risk, and related derivatives. For practitioners, we

provide formulas for instant strategy implementation, propose new trading

strategies with mathematical justification, as well as quantitative enhance-

ment for some existing heuristic trading strategies.

v
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Chapter 1

Introduction

In the financial markets, it has been widely observed that many asset prices

exhibit mean reversion, including commodities, foreign exchange rates,

volatility indices, as well as US and global equities.1 Mean-reverting pro-

cesses are also used to model the dynamics of bond prices, interest rate, and

default risk. In order to visualize a mean-reverting price path, we illustrate

in Figure 1.1(a) the historical prices of an exchange-traded fund (ETF),

the Vanguard Short-Term Bond ETF (BSV), from June 12, 2014 to June

11, 2015. This ETF is designed to track bond prices with short maturities,

and is traded liquidly on NYSE and other exchanges. As another exam-

ple, Figure 1.1(b) shows the time series of CBOE Volatility Index (VIX)

from June 12, 2014 to June 11, 2015. Although the volatility index is not

traded, investors can gain exposure to it by trading futures, options, or

exchange-traded notes (ETNs) designed to track the index.2

In industry, hedge fund managers and investors often attempt to con-

struct mean-reverting prices by simultaneously taking positions in two

highly correlated or co-moving assets. The advent of exchange-traded funds

has further facilitated this pairs trading approach since some ETFs are de-

signed to track identical or similar indexes and assets. Empirical studies

have found that the spreads between commodity ETFs, such as physical

gold and gold equity ETFs, are mean-reverting, and such price behavior

has been used for statistical arbitrage.3

1See Schwartz (1997) for commodities, Engel and Hamilton (1989); Anthony and Mac-
Donald (1998); Larsen and Sørensen (2007) for foreign exchange rates, Metcalf and
Hassett (1995); Bessembinder et al. (1995); Casassus and Collin-Dufresne (2005) for
volatility indices, and Poterba and Summers (1988); Malliaropulos and Priestley (1999);
Balvers et al. (2000); Gropp (2004) for US and global equities.
2For more details, see Section 5.6 below.
3See Triantafyllopoulos and Montana (2011); Dunis et al. (2013), and Section 2.1 below.

1
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Fig. 1.1 Historical price paths of (a) Vanguard Short-Term Bond ETF (BSV)
and (b) CBOE Volatility Index (VIX), respectively, from June 12, 2014 to June
11, 2015.

On the other hand, one important problem commonly faced by indi-

vidual and institutional investors is to determine when to open and close

a position. While observing the prevailing market prices, a speculative

investor can choose to enter the market immediately or wait for a future

opportunity. After completing the first trade, the investor will need to de-

cide when is the best to close the position. This motivates the investigation

of the optimal sequential timing of trades.

Naturally, the optimal sequence of trading times depend on the price

dynamics of the risky asset. For instance, if the price process is a super/sub-

martingale, that is, decreasing/increasing on average, then the investor who

seeks to maximize the expected liquidation value will either sell immediately

or wait forever. Such a trivial timing arises when the underlying price

follows a geometric Brownian motion (see Example 2.1 below).

In this book, we study the optimal timing of trades for assets or

portfolios that have mean-reverting dynamics. Specifically, we provide
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detailed mathematical analysis and implementation methods for various

trading problems mainly under three important mean-reverting models:

Ornstein-Uhlenbeck (OU), exponential Ornstein-Uhlenbeck (XOU), and

Cox-Ingersoll-Ross (CIR) models. Due to their tractability and inter-

pretability, these models are widely used in practice for describing and

estimating mean reversion in asset prices. Therefore, the objective of this

book is to introduce optimality criteria and discuss solution methods for an

array of trading problems, and we focus on developing optimal strategies

that maximize expected returns with controlled/limited risks.

1.1 Chapter Outline

In Chapter 2, we study the optimal timing of trades subject to transaction

costs under the OU model. We motivate through a pairs trading example

where the resulting optimized portfolio value admits an OU process. The

trading strategies are implemented for the application of trading a pair

of ETFs with similar underlying assets. Mathematically, our formulation

leads to an optimal double stopping problem that gives the optimal entry

and exit decision rules. We obtain analytic solutions for both the entry and

exit problems. In addition, we incorporate a stop-loss constraint to our

trading problem. We find that a higher stop-loss level induces the investor

to voluntarily liquidate earlier at a lower take-profit level. Moreover, the

entry region is characterized by a bounded price interval that lies strictly

above stop-loss level. In other words, it is optimal to wait if the current

price is too high or too close to the lower stop-loss level. This is intuitive

since entering the market close to stop-loss implies a high chance of exiting

at a loss afterwards. As a result, the delay region (complement of the entry

region) is disconnected. Furthermore, we show that optimal liquidation

level decreases with the stop-loss level until they coincide, in which case

immediate liquidation is optimal at all price levels.

To incorporate mean-reversion for positive price processes, one popular

choice for pricing and investment applications is the exponential OU model,

as proposed by Schwartz (1997) for commodity prices, due to its analytical

tractability. It also serves as the building block of more sophisticated mean-

reverting models. In Chapter 3, we study the optimal timing of trades

under the XOU model. We consider the optimal double stopping problem,

as well as a different but related formulation. In the second formulation,

the investor is assumed to enter and exit the market infinitely many times
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with transaction costs. This gives rise to an optimal switching problem. We

analytically derive the non-trivial entry and exit timing strategies. Under

both approaches, it is optimal to sell when the asset price is sufficiently high,

though at different levels. As for entry timing, we find that, under some

conditions, it is optimal for the investor not to enter the market at all when

facing the optimal switching problem. In this case for the investor who

has a long position, the optimal switching problem reduces into an optimal

stopping problem, where the optimal liquidation level is identical to that of

the optimal double stopping problem. Otherwise, the optimal entry timing

strategies for the double stopping and switching problem are described by

the underlying’s first passage time to an interval that lies above level zero.

In other words, the continuation region for entry is disconnected of the form

(0, A)∪ (B,+∞), with critical price levels A and B (see Theorems 3.4 and

3.7 below). This means that the investor generally enters when the price

is low, but may find it optimal to wait if the current price is too close to

zero. We find that this phenomenon is a distinct consequence due to fixed

transaction costs under the XOU model.

In Chapter 4, we turn to the trading problems when the asset follows

the CIR process. The CIR process has been widely used as the model for

interest rate, volatility, commodity, and energy prices.4 The main focus

of the chapter is the analytical derivation of the non-trivial optimal entry

and exit timing strategies and the associated value functions. Under both

double stopping and switching approaches, it is optimal to exit when the

process value is sufficiently high, though at different levels. As for entry

timing, we find the necessary and sufficient conditions whereby it is optimal

not to enter at all when facing the optimal switching problem. In this case,

the optimal switching problem in fact reduces to an optimal single stopping

problem, where the optimal stopping level is identical to that of the optimal

double stopping problem.

A typical solution approach for optimal stopping problems driven by

diffusion involves the analytical and numerical studies of the associated

free boundary problems or variational inequalities (VIs); see, for example,

Bensoussan and Lions (1982), Øksendal (2003), and Sun (1992). For our

double optimal stopping problem, this method would determine the value

functions from a pair of VIs and require regularity conditions to guarantee

that the solutions to the VIs indeed correspond to the optimal stopping

problems. As noted by Dayanik (2008), “the variational methods become

4See, for example, Cox et al. (1985); Ewald and Wang (2010); Heston (1993); Ribeiro
and Hodges (2004), among others.
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challenging when the form of the reward function and/or the dynamics

of the diffusion obscure the shape of the optimal continuation region.” In

our optimal entry timing problem, the reward function involves the value

function from the exit timing problem, which is not monotone and can be

positive and negative.

In contrast to the variational inequality approach, our proposed method-

ology for Chapters 2 to 4 applies probabilistic arguments to analytically

characterize the optimal stopping value functions as the smallest concave

majorant of the corresponding reward function. A key feature of this ap-

proach is that it allows us to directly construct the value function, without

a priori finding a candidate value function or imposing conditions on the

stopping and delay (continuation) regions, such as whether they are con-

nected or not. In other words, our method will derive the structure of the

stopping and delay regions as an output. Having solved the optimal double

stopping problem, we determine the optimal structures of the buy/sell/wait

regions. We then apply this to infer a similar solution structure for the op-

timal switching problem and verify using the variational inequalities.

Chapters 5 to 7 are dedicated to trading of financial derivatives, namely,

futures, options, and credit derivatives, respectively. Started as contracts

for the delivery of agricultural products decades ago, futures are now one of

the most common form of financial derivatives, and there are a high num-

ber of tradable commodities, including agricultural products, livestocks,

precious metals, oil and gas, as well as other underlyings such as interest

rates, currency, equity and volatility indices. Each futures contract stipu-

lates the buyer to purchase (seller to sell) a fixed quantity of a commodity

at a fixed price to be paid for on a pre-specified future date. Many fu-

tures require physical delivery of the commodity, but some, like the VIX

futures, are settled in cash. In Chapter 5, we discuss the pricing of futures,

explore the timing options embedded in futures trading, and develop op-

timal dynamic speculative strategies for market entry and exit. Focusing

on the applications to commodity and volatility futures, we analyze these

problems under mean-reverting spot price dynamics.

For decades, options have been widely used as a tool for investment

and risk management. As of 2012, the daily market notional for S&P 500

options is more than US$90 billion and the average daily volume has grown

rapidly from 119,808 in 2002 to 839,108 as of Jan 2013.5 Empirical studies

on options returns often assume that the options are held to maturity (see

5See http://www.cboe.com/micro/spx/introduction.aspx.
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Broadie et al. (2009) and references therein). In a liquid options market,

such as the S&P 500 index, VIX, or gold options markets, there is an

intrinsic timing flexibility to liquidate the position through the market prior

to expiry. This leads us to investigate the optimal time to liquidate an

option position. In Chapter 6, we propose a risk-adjusted optimal stopping

framework to address this problem for a variety of options under different

underlying price dynamics.

In addition to maximizing the expected discounted market value to be

received from option sale, we incorporate a risk penalty that accounts for

adverse price movements till the liquidation time. Specifically, we measure

the associated risk in terms of the realized shortfall of the option position,

and thus introduce the trade-off between risk and return for every liquida-

tion timing strategy. Under a general diffusion model for the underlying

stock price, we formulate an optimal stopping problem that includes an

integral penalization term. To this end, we define and apply the concept of

optimal liquidation premium which represents the additional value from op-

timally waiting to sell, as opposed to immediate liquidation. As it turns out,

it is optimal for the option holder to sell as soon as this premium vanishes.

This observation leads to a number of useful mathematical characteriza-

tions and financial interpretations of the optimal liquidation strategies for

various positions.

Lastly, in Chapter 7 we propose a new approach to tackle the optimal

liquidation problem for credit derivatives. The first step is to understand

how the market compensates investors for bearing credit risk. We examine

analytically the structure of default risk premia inferred from the mar-

ket prices of corporate bonds, credit default swaps, and multi-name credit

derivatives. We identify the risk premium components, namely, the mark-

to-market risk premium that accounts for the fluctuations in default risk,

as well as the event risk premium (or jump-to-default risk premium) that

compensates for the uncertain timing of the default event. Our approach is

to first provide a general mathematical framework for price discrepancy be-

tween the market and investors under an intensity-based credit risk model.

Then, we derive and analyze the optimal stopping problem corresponding

to the liquidation of credit derivatives under price discrepancy.

In order to measure the benefit of optimally timing to sell as opposed

to immediate liquidation, we define and quantify the so-called delayed liq-

uidation premium. We analyze the scenarios where immediate or delayed

liquidation is optimal. Moreover, through its probabilistic representation,

the delayed liquidation premium reveals the roles of risk premia in the
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liquidation timing. We investigate the investor’s liquidation timing for

various credit derivatives, including defaultable bonds, CDSs, as well as,

multi-name credit derivatives, in markets where the default intensity and

interest rate processes are mean-reverting. The impact of price discrepancy

is revealed through a series of numerical examples illustrating the trader’s

optimal liquidation strategies.

1.2 Related Studies

In the context of pairs trading, a number of studies have also consid-

ered market timing strategy with two price levels. For example, Gatev

et al. (2006) study the historical returns from the buy-low-sell-high strat-

egy where the entry/exit levels are set as ±1 standard deviation from the

long-run mean. Similarly, Avellaneda and Lee (2010) consider starting and

ending a pairs trade based on the spread’s distance from its mean. In Elliott

et al. (2005), the market entry timing is modeled by the first passage time

of an OU process, followed by an exit at a fixed finite horizon. In compar-

ison, rather than assigning ad hoc price levels or fixed trading times, our

approach in Chapter 2, adapted from Leung and Li (2015), generates the en-

try and exit thresholds as solutions of an optimal double stopping problem.

Considering an exponential OU asset price with zero log mean, Bertram

(2010) numerically computes the optimal enter and exit levels that maxi-

mize the expected return per unit time. Other timing strategies adopted

by practitioners have been discussed in Vidyamurthy (2004). Song et al.

(2009) and Song and Zhang (2013) study the optimal switching problem

with stop-loss under the OU price dynamics. In their recent book, Cartea

et al. (2015) also study the pairs trading problem that allows the investor

to enter the market by longing one asset and shorting the other, or taking

the opposite position, thus resulting in a two-sided market entry strategy.

In Chapters 3 and 4, we consider optimal double stopping and optimal

switching problems under exponential OU and CIR models with fixed trans-

action costs. These two chapters are based on Leung et al. (2015) and Leung

et al. (2014). In particular, the optimal entry timing with fixed transaction

costs is characteristically different from that with slippage (see Czichowsky

et al. (2015); Kong and Zhang (2010); Zhang and Zhang (2008)). Zervos

et al. (2013) consider an optimal switching problem with fixed transac-

tion costs under some time-homogeneous diffusions, including the GBM,

mean-reverting CEV underlying, but their results are not applicable to the

exponential OU model.
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On the other hand, the related problem of constructing portfolios and

hedging with mean-reverting asset prices has been studied. For example,

Benth and Karlsen (2005) study the utility maximization problem that in-

volves dynamically trading an exponential OU underlying asset. Jurek and

Yang (2007) analyze a finite-horizon portfolio optimization problem with

an OU asset subject to the power utility and Epstein-Zin recursive utility.

Chiu and Wong (2012) consider the dynamic trading of co-integrated assets

with a mean-variance criterion. Tourin and Yan (2013) derive the dynamic

trading strategy for two co-integrated stocks in order to maximize the ex-

pected terminal utility of wealth over a fixed horizon. They simplify the

associated Hamilton-Jacobi-Bellman equation and obtain a closed-form so-

lution. In the stochastic control approach, incorporating transaction costs

and stop-loss exit can potentially limit model tractability and is not imple-

mented in these studies.

In terms of methodology for Chapters 2–4, Dynkin and Yushkevich

(1969) analyze the concave characterization of excessive functions for a stan-

dard Brownian motion. Dayanik (2008) and Dayanik and Karatzas (2003)

apply this idea to study the optimal single stopping of a one-dimensional

diffusion. Alvarez (2003) discusses the conditions for the convexity of an r-

excessive mapping under a linear, time-homogeneous and regular diffusion

process. Menaldi et al. (1996) study an optimal starting-stopping problem

for general Markov processes, and provide the mathematical characteriza-

tion of the value functions. In this regard, we contribute to this line of

work by solving a number of optimal double stopping problems under the

OU, XOU, and CIR models, and incorporating a stop-loss exit under the

OU model.

In Chapter 5, we study the pricing and trading of futures under a mean-

reverting spot price model. This is most relevant to the futures markets

on volatility indices and commodities. For prior work on the valuation of

volatility futures and options, we refer to Grübichler and Longstaff (1996);

Lin and Chang (2009); Menćıa and Sentana (2013); Sircar and Papani-

colaou (2014); Zhang and Zhu (2006). A number of mean-reverting spot

price models have been proposed for the pricing of commodity futures; see

Schwartz (1997) and references therein. On the trading of futures, Brennan

and Schwartz (1990) and Dai et al. (2011) investigate optimal timing to cap-

ture the arbitrage opportunity embedded in the spread between the futures

and the spot prices, and model the stochastic spread by a Brownian bridge

that is pinned to level zero at maturity. Similarly, Kanamura et al. (2010)

model the spread between energy futures prices as an OU process.
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These two models can be considered as a reduced form approach whereby

the spread is modeled directly without regard to the spot price dynamics

or term structure of the futures. In contrast, we model for our trading

problems the fundamental source of randomness, that is, the spot price,

that drives all futures prices.

Our path-dependent risk penalization model in Chapter 6 can also be

viewed as an alternative way to incorporate the investor’s risk sensitivity

in option liquidation/exercise timing problems, as compared to the util-

ity maximization/indifference pricing approach (see Henderson and Hob-

son (2011); Leung and Ludkovski (2012); Leung et al. (2012)). As is well

known, the concept of risk measures based on shortfall risk has been applied

to many portfolio optimization problems; see Artzner et al. (1999); Föllmer

and Schied (2002); Föllmer and Schied (2004); İlhan et al. (2005); Rock-

afellar and Uryasev (2000), and references therein. Our model applies this

idea to options trading as a path-penalty associated with each liquidation

strategy. As a variation of the shortfall we also introduce a risk penalty

based on the quadratic variation of option price process. Through exam-

ining the optimal liquidation premium, we also compare the liquidation

strategies for calls and puts under the shortfall-based and quadratic risk

penalties. Forsyth et al. (2012) and Frei and Westray (2013) also adopt the

mean-quadratic-variation as a criterion for determining the optimal stock

trading strategy in the presence of price impact. The related work by Le-

ung and Liu (2013) that discusses the timing to sell an option under the

GBM model without any risk penalty is a special example of our model.

Our study on credit derivative liquidation timing in Chapter 7 is closest

to Leung and Ludkovski (2011), where the concept of delayed purchase pre-

mium was used to analyze the optimal timing to purchase equity European

and American options. In contrast, we adopt a multi-factor intensity-based

default risk model for single-name credit derivatives, and a self-exciting

top-down model for a credit default index swap. As a natural extension,

we also investigate the optimal timing to buy and sell a credit derivative,

with or without short-sale constraint, and provide numerical illustration of

the the optimal buy-and-sell strategy. In the related papers, Egami et al.

(2013) and Leung and Yamazaki (2013) incorporate the timing option to

terminate a credit default swap under a structural default model where the

underlying asset is driven by a Lévy process.

In Chapter 7, we also consider the connection between different risk-

neutral pricing measures (or equivalent martingale measures) in incom-

plete markets. Well-known examples of candidate pricing measures that
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are consistent with the no-arbitrage principle include the minimal martin-

gale measure (Föllmer and Schweizer (1990)), the minimal entropy martin-

gale measure (Fritelli (2000); Fujiwara and Miyahara (2003)), and the q-

optimal martingale measure (Henderson et al. (2005); Hobson (2004)). The

investor’s selection of various pricing measures may also be interpreted via

marginal utility indifference valuation; see Davis (1997); Leung and Lud-

kovski (2012); Leung et al. (2012), and references therein. For many para-

metric credit risk models, the market pricing measures and risk premia can

be calibrated given sufficient market data of credit derivatives.

In recent literature, a number of models have been proposed to incor-

porate the idea of mispricing into optimal investment. Cornell et al. (2007)

study portfolio optimization based on perceived mispricing from the in-

vestor’s strong belief in the stock price distribution. Ekström et al. (2010)

investigate the optimal liquidation of a call spread when the investor’s be-

lief on the volatility differs from the implied volatility. The problem of

timing to buy/sell European and American options has also been studied

in Leung and Ludkovski (2011, 2012). On the other hand, the problem

of optimal stock liquidation involving price impacts has been studied in

Almgren (2003); Rogers and Singh (2010); Schied and Schöneborn (2009),

among others.
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Chapter 2

Trading Under the
Ornstein-Uhlenbeck Model

Motivated by the industry practice of pairs trading, we study the optimal

timing strategies for trading a mean-reverting price spread. An optimal

double stopping problem is formulated to analyze the timing to start and

subsequently liquidate the position subject to transaction costs. Modeling

the price spread by an Ornstein-Uhlenbeck process, we apply a probabilistic

methodology and rigorously derive the optimal price intervals for market

entry and exit. A number of extensions are also considered, such as incor-

porating a stop-loss constraint, or a minimum holding period. We show

that the entry region is characterized by a bounded price interval that lies

strictly above the stop-loss level. As for the exit timing, a higher stop-

loss level always implies a lower optimal take-profit level. Both analytical

and numerical results are provided to illustrate the dependence of timing

strategies on model parameters such as transaction costs and stop-loss level.

In Section 2.1, we discuss a pairs trading example with OU price spreads,

and formulate the optimal trading problem. Our method of solution is

presented in Section 2.3. In Section 2.4, we analytically solve the optimal

double stopping problem and examine the optimal entry and exit strategies.

In Section 2.5, we study the trading problem with a stop-loss constraint. In

Section 2.6, we present a number of extensions. The proofs of all lemmas

are provided in Section 2.7.

2.1 A Pairs Trading Example

Let us discuss a pairs trading example where we model the value of the

resulting position by an OU process. The primary objective is to motivate

our trading problem, rather than proposing new estimation methodologies

or empirical studies on pairs trading. For related studies and more details,

11
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we refer to the seminal paper by Engle and Granger (1987), the books

Hamilton (1994), Tsay (2005), and references therein.

We construct a portfolio by holding α shares of a risky asset S(1) and

shorting β shares of another risky asset S(2), yielding a portfolio value

Xα,β
t = αS

(1)
t − βS

(2)
t at time t ≥ 0. The pair of assets are selected to

form a mean-reverting portfolio value. In addition, one can adjust the

strategy (α, β) to enhance the level of mean reversion. For the purpose

of testing mean reversion, only the ratio between α and β matters, so we

can keep α constant while varying β without loss of generality. For every

strategy (α, β), we observe the resulting portfolio values (xα,βi )i=0,1,...,n

realized over an n-day period. We then apply the method of maximum

likelihood estimation (MLE) to fit the observed portfolio values to an OU

process and determine the model parameters.

We fix the probability space (Ω,F ,P) with the historical probability

measure P. We consider an Ornstein-Uhlenbeck (OU) process driven by

the SDE:

dXt = µ(θ −Xt) dt+ σ dBt, (2.1)

with constants µ, σ > 0, θ ∈ R, and state space R. Here, B is a standard

Brownian motion under P. Denote by F ≡ (Ft)t≥0 the filtration generated

by X .

Under the OU model, the conditional probability density of Xti at time

ti given Xti−1 = xi−1 with time increment ∆t = ti − ti−1 is given by

fOU (xi|xi−1; θ, µ, σ) =
1√
2πσ̃2

exp

(
− (xi − xi−1e

−µ∆t − θ(1− e−µ∆t))2

2σ̃2

)
,

with the constant

σ̃2 = σ2 1− e−2µ∆t

2µ
.

Using the observed values (xα,βi )i=0,1,...,n, we maximize the average log-

likelihood defined by

�(θ, µ, σ|xα,β0 , xα,β1 , . . . , xα,βn )

:=
1

n

n∑
i=1

ln fOU
(
xα,βi |xα,βi−1; θ, µ, σ

)
= −1

2
ln(2π)− ln(σ̃)− 1

2nσ̃2

n∑
i=1

[xα,βi − xα,βi−1e
−µ∆t − θ(1− e−µ∆t)]2.

(2.2)
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To express the parameter values that maximize the average log-

likelihood in (2.2) , we define the followings:

Xx =

n∑
i=1

xα,βi−1,

Xy =

n∑
i=1

xα,βi ,

Xxx =

n∑
i=1

(xα,βi−1)
2,

Xxy =

n∑
i=1

xα,βi−1x
α,β
i ,

Xyy =
n∑
i=1

(xα,βi )2.

In turn, the optimal parameter estimates under the OU model are given

explicitly by

θ∗ =
XyXxx −XxXxy

n(Xxx −Xxy)− (X2
x −XxXy)

,

µ∗ =− 1

∆t
ln
Xxy − θ∗Xx − θ∗Xy + n(θ∗)2

Xxx − 2θ∗Xx + n(θ∗)2
,

(σ∗)2 =
2µ∗

n(1− e−2µ∗∆t)
(Xyy − 2e−µ

∗∆tXxy + e−2µ∗∆tXxx

− 2θ∗(1− e−µ
∗∆t)(Xy − e−µ

∗∆tXx) + n(θ∗)2(1− e−µ
∗∆t)2).

In turn, we denote by �̂(θ∗, µ∗, σ∗) the maximized average log-likelihood.

For any α, we choose the strategy (α, β∗), where

β∗ = argmax
β

�̂(θ∗, µ∗, σ∗|xα,β0 , xα,β1 , . . . , xα,βn ).

For example, suppose we invest A dollar(s) in asset S(1), so α = A/S
(1)
0

shares is held. At the same time, we short β = B/S
(2)
0 shares in S(2), for

B/A = 0.001, 0.002, . . . , 1. This way, the sign of the initial portfolio value

depends on the sign of the difference A−B, which is non-negative. Without

loss of generality, we set A = 1.
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Fig. 2.1 (a) Average log-likelihood plotted against the cash amount B. (b) His-
torical price paths with maximum average log-likelihood. The solid line plots the
portfolio price with longing $1 GLD and shorting $0.454 GDX, and the dashed
line plots the portfolio price with longing $1 GLD and shorting $0.493 SLV.
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In Figure 2.1, we illustrate an example based on two pairs of exchange-

traded funds (ETFs), namely, the Market Vectors Gold Miners (GDX) and

iShares Silver Trust (SLV) against the SPDR Gold Trust (GLD) respec-

tively. These three liquidly traded funds aim to track the price movements

of the NYSE Arca Gold Miners Index, silver, and gold bullion respectively.

These ETF pairs are also used in Dunis et al. (2013) and Triantafyllopoulos

and Montana (2011) for their statistical and empirical studies on ETF pairs

trading.

Using price data from August 2011 to May 2012 (n = 200, ∆t = 1/252),

we compute and plot in Figure 2.1(a) the average log-likelihood against the

cash amount B, and find that �̂ is maximized at B∗ = 0.454 (resp. 0.493)

for the GLD-GDX pair (resp. GLD-SLV pair). From this MLE-optimal B∗,

we obtain the strategy (α, β∗), where α = 1/S
(1)
0 and β∗ = B∗/S

(2)
0 . In

this example, the average log-likelihood for the GLD-SLV pair happens to

dominate that for GLD-GDX, suggesting a higher degree of fit to the OU

model. Figure 2.1(b) depicts the historical price paths with the strategy

(α, β∗).

We summarize the estimation results in Table 2.1. For each pair, we

first estimate the parameters for the OU model from empirical price data.

Then, we use the estimated parameters to simulate price paths according

the corresponding OU process. Based on these simulated OU paths, we

perform another MLE and obtain another set of OU parameters as well as

the maximum average log-likelihood �̂. For the two examples, the portfolio

consists of $1 in GLD, along with either −$0.454 in GDX, or −$0.493 in

SLV. For each pair, the second row (simulated) shows the MLE parameter

estimates based on a simulated price path corresponding to the estimated

parameters from the first row (empirical). As we can see, the two sets of

estimation outputs (the rows named “empirical” and “simulated”) are very

close, suggesting the empirical price process fits well to the OU model.

Table 2.1 MLE estimates of OU model parameters using historical
values of GLD-GDX and GLD-SLV portfolios from August 2011 to
May 2012.

Price θ̂ µ̂ σ̂ �̂

GLD-GDX
empirical 0.5388 16.6677 0.1599 3.2117
simulated 0.5425 14.3893 0.1727 3.1304

GLD-SLV
empirical 0.5680 33.4593 0.1384 3.3882
simulated 0.5629 28.8548 0.1370 3.3898
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2.2 Optimal Timing of Trades

When considering to trade in a market, every investor possesses a timing

option to trade. The investor can choose to enter the market immediately or

wait for a potentially better opportunity. This leads us to study the optimal

timing to open and subsequently close the position subject to transaction

costs, given that the asset price or portfolio value evolves according to an

OU process.

First, suppose that the investor already has an existing position whose

value process (Xt)t≥0 follows (2.1). If the position is closed at some time τ ,

then the investor will receive the value Xτ and pay a constant transaction

cost cs ∈ R. To maximize the expected discounted value, the investor solves

the optimal stopping problem

V (x) = sup
τ∈T

Ex
{
e−rτ (Xτ − cs)

}
, (2.3)

where T denotes the set of all F-stopping times, and r > 0 is the investor’s

subjective constant discount rate. We have also used the shorthand nota-

tion: Ex{·} ≡ E{·|X0 = x}.
From the investor’s viewpoint, V (x) represents the expected liquidation

value associated with X . On the other hand, the current price plus the

transaction cost constitute the total cost to enter the trade. The investor

can always choose the optimal timing to start the trade, or not to enter

at all. This leads us to analyze the entry timing inherent in the trading

problem. Precisely, we solve

J(x) = sup
ν∈T

Ex
{
e−r̂ν(V (Xν)−Xν − cb)

}
, (2.4)

with r̂ > 0, cb ∈ R. In other words, the investor seeks to maximize the

expected difference between the value function V (Xν) and the current Xν ,

minus transaction cost cb. The value function J(x) represents the maximum

expected value of the investment opportunity in the price process X , with

transaction costs cb and cs incurred, respectively, at entry and exit. Math-

ematically, embedded in the value functions is an optimal double stopping

problem.

For our analysis, the pre-entry and post-entry discount rates, r̂ and r,

can be different, as long as 0 < r̂ ≤ r. Moreover, the transaction costs cb
and cs can also differ, as long as cs + cb > 0. Furthermore, since τ = +∞
and ν = +∞ are candidate stopping times for (2.3) and (2.4) respectively,

the two value functions V (x) and J(x) are non-negative.
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As extension, we can incorporate a stop-loss level of the pairs trade, that

caps the maximum loss. In practice, the stop-loss level may be exogenously

imposed by the manager of a trading desk. In effect, if the price X ever

reaches level L prior to the investor’s voluntary liquidation time, then the

position will be closed immediately. The stop-loss signal is given by the

first passage time

τL := inf{t ≥ 0 : Xt ≤ L}.

Therefore, we determine the entry and liquidation timing from the con-

strained optimal stopping problem:

JL(x) = sup
ν∈T

Ex
{
e−r̂ν(VL(Xν)−Xν − cb)

}
, (2.5)

VL(x) = sup
τ∈T

Ex

{
e−r(τ∧τL)(Xτ∧τL − cs)

}
. (2.6)

Due to the additional timing constraint, the investor may be forced to exit

early at the stop-loss level for any given liquidation level. Hence, the stop-

loss constraint reduces the value functions, and precisely we deduce that

x− cs ≤ VL(x) ≤ V (x) and 0 ≤ JL(x) ≤ J(x). As we will show in Sections

2.4 and 2.5, the optimal timing strategies with and without stop-loss are

quite different.

Example 2.1. One well-known model for asset price is the geometric Brow-

nian motion model:

dXt = µXt dt+ σXt dBt. (2.7)

However, the optimal timing strategies for both V and J (see (2.3) and

(2.4)) with X given in (2.7) are trivial. Indeed, if µ > r, then considering

constant exercise times we have the inequality

V (x) ≥ sup
t≥0

(
Ex{e−rtXt} − e−rtc

)
≥ sup

t≥0
xe(µ−r)t − c = +∞. (2.8)

Therefore, it is optimal to take τ = +∞ and the value function is infinite.

If µ = r, then the value function is given by

V (x) = sup
t≥0

sup
τ∈T

Ex{e−r(τ∧t)(Xτ∧t − c)} = x− c inf
t≥0

inf
τ∈T

Ex{e−r(τ∧t)} = x,

where the second equality follows from the optional sampling theorem with

the fact that (e−rtXt)t≥0 is a martingale. Again, the optimal value is

achieved by choosing τ = +∞, but, in contrast to (2.8), V (x) is finite in

(2.1).



November 12, 2015 12:34 Optimal Mean Reversion Trading... b2296 page 18

18 Optimal Mean Reversion Trading

On the other hand, if µ < r, then we have

V (x) =


(

c
η−1

)1−η (
x
η

)η
if x < b∗,

x− c if x ≥ b∗,

where

η =

√
2rσ2 + (µ− 1

2σ
2)2 − (µ− 1

2σ
2)

σ2
and b∗ =

cη

η − 1
> c.

Therefore, it is optimal to liquidate as soon asX reaches level b∗ from below.

However, it is optimal not to enter, since supx∈R+
(V (x)− x− cb) ≤ 0, and

thus, J(x) = 0. Henceforth, we study the optimal stopping problems under

mean reverting dynamics.

2.3 Methodology

In this section, we disucss our method of solution. First, we denote the

infinitesimal generator of the OU process X by

L =
σ2

2

d2

dx2
+ µ(θ − x)

d

dx
, (2.9)

and recall the classical solutions of the differential equation

Lu(x) = ru(x), (2.10)

for x ∈ R, are (see e.g. p.542 of Borodin and Salminen (2002) and Prop.

2.1 of Alili et al. (2005)):

F (x) ≡ F (x; r) :=

∫ ∞

0

u
r
µ−1e

√
2µ

σ2 (x−θ)u−u2

2 du, (2.11)

G(x) ≡ G(x; r) :=

∫ ∞

0

u
r
µ−1e

√
2µ

σ2 (θ−x)u−u2

2 du. (2.12)

Direct differentiation yields that F ′(x) > 0, F ′′(x) > 0, G′(x) < 0 and

G′′(x) > 0. Hence, we observe that both F (x) and G(x) are strictly positive

and convex, and they are, respectively, strictly increasing and decreasing.

Define the first passage time of X to some level κ by τκ = inf{t ≥ 0 :

Xt = κ}. As is well known, F and G admit the probabilistic expressions

(see Itō and McKean (1965) and Rogers and Williams (2000)):

Ex{e−rτκ} =

{
F (x)
F (κ) if x ≤ κ,
G(x)
G(κ) if x ≥ κ.
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A key step of our solution method involves the transformation

ψ(x) :=
F

G
(x). (2.13)

Starting at any x ∈ R, we denote by τa ∧ τb the exit time from an interval

[a, b] with −∞ ≤ a ≤ x ≤ b ≤ +∞. With the reward function h(x) = x−cs,
we compute the corresponding expected discounted reward:

Ex{e−r(τa∧τb)h(Xτa∧τb)}
= h(a)Ex{e−rτa11{τa<τb}}+ h(b)Ex{e−rτb11{τa>τb}} (2.14)

= h(a)
F (x)G(b) − F (b)G(x)

F (a)G(b)− F (b)G(a)
+ h(b)

F (a)G(x) − F (x)G(a)

F (a)G(b)− F (b)G(a)
(2.15)

= G(x)

[
h(a)

G(a)

ψ(b)− ψ(x)

ψ(b)− ψ(a)
+
h(b)

G(b)

ψ(x) − ψ(a)

ψ(b)− ψ(a)

]
= G(ψ−1(z))

[
H(za)

zb − z

zb − za
+H(zb)

z − za
zb − za

]
, (2.16)

where za = ψ(a), zb = ψ(b), and

H(z) :=


h
G ◦ ψ−1(z) if z > 0,

lim
x→−∞

(h(x))+

G(x) if z = 0.
(2.17)

The second equality (2.15) follows from the fact that f(x) :=

Ex{e−r(τa∧τb)11{τa<τb}} is the unique solution to (2.10) with boundary con-

ditions f(a) = 1 and f(b) = 0. Similar reasoning applies to the function

g(x) := Ex{e−r(τa∧τb)11{τa>τb}} with g(a) = 0 and g(b) = 1. The last equal-

ity (2.16) transforms the problem from x coordinate to z = ψ(x) coordinate

(see (2.13)).

The candidate optimal exit interval [a∗, b∗] is determined by maximizing

the expectation in (2.14). This is equivalent to maximizing (2.16) over za
and zb in the transformed problem. This leads to

W (z) := sup
{za,zb:za≤z≤zb}

[
H(za)

zb − z

zb − za
+H(zb)

z − za
zb − za

]
. (2.18)

This is the smallest concave majorant of H . Applying the definition of W

to (2.16), we can express the maximal expected discounted reward as

G(x)W (ψ(x)) = sup
{a,b:a≤x≤b}

Ex{e−r(τa∧τb)h(Xτa∧τb)}.

Remark 2.2. If a = −∞, then we have τa = +∞ and 11{τa<τb} = 0 a.s.

In effect, this removes the lower exit level, and the corresponding expected
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discounted reward is

Ex{e−r(τa∧τb)h(Xτa∧τb)}
= Ex{e−rτah(Xτa)11{τa<τb}}+ Ex{e−rτbh(Xτb)11{τa>τb}}
= Ex{e−rτbh(Xτb)}.

Consequently, by considering interval-type strategies, we also include the

class of stopping strategies of reaching a single upper level b (see Theorem

2.6 below).

Next, we prove the optimality of the proposed stopping strategy and

provide an expression for the value function.

Theorem 2.3. The value function V (x) defined in (2.3) is given by

V (x) = G(x)W (ψ(x)), (2.19)

where G, ψ and W are defined in (2.12), (2.13) and (2.18), respectively.

Proof. Since τa ∧ τb ∈ T , we have

V (x) ≥ sup
{a,b:a≤x≤b}

Ex{e−r(τa∧τb)h(Xτa∧τb)} = G(x)W (ψ(x)).

To show the reverse inequality, we first show that

G(x)W (ψ(x)) ≥ Ex{e−r(t∧τ)G(Xt∧τ )W (ψ(Xt∧τ ))},

for τ ∈ T and t ≥ 0. The concavity ofW implies that, for any fixed z, there

exists an affine function Lz(α) := mzα + cz such that Lz(α) ≥ W (α) and

Lz(z) =W (z) at α = z, where mz and cz are both constants depending on

z. This leads to the inequality

Ex{e−r(t∧τ)G(Xt∧τ )W (ψ(Xt∧τ ))}
≤ Ex{e−r(t∧τ)G(Xt∧τ )Lψ(x)(ψ(Xt∧τ ))}
= mψ(x)Ex{e−r(t∧τ)G(Xt∧τ )ψ(Xt∧τ )} + cψ(x)Ex{e−r(t∧τ)G(Xt∧τ )}
= mψ(x)Ex{e−r(t∧τ)F (Xt∧τ )} + cψ(x)Ex{e−r(t∧τ)G(Xt∧τ )}
= mψ(x)F (x) + cψ(x)G(x) (2.20)

= G(x)Lψ(x)(ψ(x))

= G(x)W (ψ(x)), (2.21)

where (2.20) follows from the martingale property of (e−rtF (Xt))t≥0 and

(e−rtG(Xt))t≥0.
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By (2.21) and the fact that W majorizes H , it follows that

G(x)W (ψ(x)) ≥ Ex{e−r(t∧τ)G(Xt∧τ )W (ψ(Xt∧τ ))}
≥ Ex{e−r(t∧τ)G(Xt∧τ )H(ψ(Xt∧τ ))}
= Ex{e−r(t∧τ)h(Xt∧τ )}. (2.22)

Maximizing (2.22) over all τ ∈ T and t ≥ 0 yields that G(x)W (ψ(x)) ≥
V (x).

Let us emphasize that the optimal levels (a∗, b∗) may depend on the

initial value x, and can potentially coincide, or take values −∞ and +∞.

As such, the structure of the stopping and delay regions can potentially be

characterized by multiple intervals, leading to disconnected delay regions

(see Theorem 2.17 below).

We follow the procedure for Theorem 2.3 to derive the expression for

the value function J in (2.4). First, we denote F̂ (x) = F (x; r̂) and Ĝ(x) =

G(x; r̂) (see (2.11)–(2.12)), with discount rate r̂. In addition, we define the

transformation

ψ̂(x) :=
F̂

Ĝ
(x) and ĥ(x) = V (x) − x− cb. (2.23)

Using these functions, we consider the function analogous to H :

Ĥ(z) :=


ĥ
Ĝ
◦ ψ̂−1(z) if z > 0,

lim
x→−∞

(ĥ(x))+

Ĝ(x)
if z = 0.

(2.24)

Following the steps (2.14)–(2.18) with F , G, ψ, and H replaced by F̂ , Ĝ,

ψ̂, and Ĥ, respectively, we write down the smallest concave majorant Ŵ of

Ĥ , namely,

Ŵ (z) := sup
{zâ,zb̂:zâ≤z≤zb̂}

[
Ĥ(zâ)

zb̂ − z

zb̂ − zâ
+ Ĥ(zb̂)

z − zâ
zb̂ − zâ

]
.

From this, we seek to determine the candidate optimal entry interval

(zâ∗ , zb̂∗) in the z = ψ̂(x) coordinate. Following the proof of Theorem

2.3 with the new functions F̂ , Ĝ, ψ̂, Ĥ , and Ŵ , the value function of the

optimal entry timing problem admits the expression

J(x) = Ĝ(x)Ŵ (ψ̂(x)). (2.25)

An alternative way to solve for V (x) and J(x) is to look for the solutions

to the pair of variational inequalities

min{rV (x) − LV (x), V (x)− (x− cs)} = 0, (2.26)

min{r̂J(x)− LJ(x), J(x) − (V (x)− x− cb)} = 0, (2.27)
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for x ∈ R. With sufficient regularity conditions, this approach can verify

that the solutions to the VIs, V (x) and J(x), indeed correspond to the

optimal stopping problems (see, for example, Theorem 10.4.1 of Øksendal

(2003)). Nevertheless, this approach does not immediately suggest candi-

date optimal timing strategies or value functions, and typically begins with

a conjecture on the structure of the optimal stopping times, followed by

verification. In contrast, our approach allows us to directly construct the

value functions, at the cost of analyzing the properties of H ,W , Ĥ , and Ŵ .

2.4 Analytical Results

We will first study the optimal exit timing in Section 2.4.1, followed by the

optimal entry timing problem in Section 2.4.2.

2.4.1 Optimal Exit Timing

We now analyze the optimal exit timing problem (2.3) under the OU model.

First, we obtain a bound for the value function V in terms of F .

Lemma 2.4. There exists a positive constant K such that, for all x ∈ R,

0 ≤ V (x) ≤ KF (x).

In preparation for the next result, we summarize the crucial properties

of H .

Lemma 2.5. The function H is continuous on [0,+∞), twice differentiable

on (0,+∞) and possesses the following properties:

(i) H(0) = 0, and

H(z)

{
< 0 if z ∈ (0, ψ(cs)),

> 0 if z ∈ (ψ(cs),+∞).

(ii) Let x∗ be the unique solution to G(x) − (x − cs)G
′(x) = 0. Then, we

have

H(z) is strictly

{
decreasing if z ∈ (0, ψ(x∗)),

increasing if z ∈ (ψ(x∗),+∞),

and x∗ < cs ∧ L∗ with

L∗ =
µθ + rcs
µ+ r

. (2.28)
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(iii)

H(z) is

{
convex if z ∈ (0, ψ(L∗)],

concave if z ∈ [ψ(L∗),+∞).

Based on Lemma 2.5, we sketch H in Figure 2.2. The properties of H

are essential in deriving the value function and optimal liquidation level, as

we show next.

0 z

H

W

z∗ = ψ(b∗)ψ(cs)

ψ(x∗) ψ(L∗)

Fig. 2.2 Sketches of H and W . By Lemma 2.5, H is convex on the left of ψ(L∗)
and concave on the right. The smallest concave majorant W is a straight line
tangent to H at z∗ on [0, z∗), and coincides with H on [z∗,+∞).

Theorem 2.6. The optimal liquidation problem (2.3) admits the solution

V (x) =

{
(b∗ − cs)

F (x)
F (b∗) if x ∈ (−∞, b∗),

x− cs otherwise,
(2.29)

where the optimal liquidation level b∗ is found from the equation

F (b) = (b− cs)F
′(b), (2.30)

and is bounded below by L∗ ∨ cs. The corresponding optimal liquidation

time is given by

τ∗ = inf{t ≥ 0 : Xt ≥ b∗}. (2.31)

Proof. From Lemma 2.5 and the fact that H ′(z) → 0 as z → +∞ (see also

Figure 2.2), we infer that there exists a unique number z∗ > ψ(L∗)∨ψ(cs)
such that

H(z∗)

z∗
= H ′(z∗). (2.32)
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In turn, the smallest concave majorant is given by

W (z) =

{
zH(z∗)

z∗ if z < z∗,

H(z) if z ≥ z∗.
(2.33)

Substituting b∗ = ψ−1(z∗) into (2.32), we have the LHS

H(z∗)

z∗
=
H(ψ(b∗))

ψ(b∗)
=
b∗ − cs
F (b∗)

, (2.34)

and the RHS

H ′(z∗) =
G(ψ−1(z∗))− (ψ−1(z∗)− cs)G

′(ψ−1(z∗))

F ′(ψ−1(z∗))G(ψ−1(z∗))− F (ψ−1(z∗))G′(ψ−1(z∗))

=
G(b∗)− (b∗ − cs)G

′(b∗)

F ′(b∗)G(b∗)− F (b∗)G′(b∗)
.

Equivalently, we can express condition (2.32) in terms of b∗:

b∗ − cs
F (b∗)

=
G(b∗)− (b∗ − cs)G

′(b∗)

F ′(b∗)G(b∗)− F (b∗)G′(b∗)
,

which can be further simplified to

F (b∗) = (b∗ − cs)F
′(b∗).

Applying (2.34) to (2.33), we get

W (ψ(x)) =

{
ψ(x)H(z∗)

z∗ = F (x)
G(x)

b∗−cs
F (b∗) if x < b∗,

H(ψ(x)) = x−cs
G(x) if x ≥ b∗.

(2.35)

In turn, we obtain the value function V (x) by substituting (2.35) into (2.19).

Next, we examine the dependence of the investor’s optimal timing strat-

egy on the transaction cost cs.

Proposition 2.7. The value function V (x) of (2.3) is decreasing in the

transaction cost cs for every x ∈ R, and the optimal liquidation level b∗ is

increasing in cs.

Proof. For any x ∈ R and τ ∈ T , the corresponding expected discounted

reward, Ex{e−rτ(Xτ − cs)} = Ex{e−rτXτ} − cs Ex{e−rτ}, is decreasing in

cs. This implies that V (x) is also decreasing in cs. Next, we treat the

optimal threshold b∗(cs) as a function of cs, and differentiate (2.30) w.r.t.

cs to get

b∗′(cs) =
F ′(b∗)

(b∗ − cs)F ′′(b∗)
> 0.

Since F ′(x) > 0, F ′′(x) > 0 (see (2.11)), and b∗ > cs according to Theorem

2.6, we conclude that b∗ is increasing in cs.
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In other words, if the transaction cost is high, the investor would tend to

liquidate at a higher level, in order to compensate for the loss on transaction

cost.

For other parameters, such as µ and σ, the dependence of b∗ is illustrated

numerically. In Figure 2.3(a), the optimal exit level b∗ is plotted against

the speed of mean reversion µ with different long-run means θ. First, we

observe that the optimal exit level increases with the long-run mean. We

also note that b∗ is decreasing with the speed of mean reversion. This means

if the price returns to the mean faster, then the investor should liquidate

at a lower level.

In Figure 2.3(b), the optimal exit level b∗ is plotted against the volatility

parameter σ with different long-run means. It confirms that the optimal

exit level increases with the long-run mean. In addition, we observe that

the optimal exit level increases as volatility increases. The more volatile

the process is, the more probable it is to reach a level further away from

the mean, which gives us an opportunity to make a profit from liquidating

from a higher level.

2.4.2 Optimal Entry Timing

Having solved for the optimal exit timing, we now turn to the optimal entry

timing problem. In this case, the value function is

J(x) = sup
ν∈T

Ex{e−r̂ν(V (Xν)−Xν − cb)}, x ∈ R,

where V (x) is given by Theorem 2.6.

Lemma 2.8. There exists a positive constant K̂ such that, for all x ∈ R,

0 ≤ J(x) ≤ K̂Ĝ(x).

To solve for the optimal entry threshold(s), we will need several prop-

erties of Ĥ , as we summarize below.

Lemma 2.9. The function Ĥ is continuous on [0,+∞), differentiable on

(0,+∞), and twice differentiable on (0, ψ̂(b∗))∪(ψ̂(b∗),+∞), and possesses

the following properties:

(i) Ĥ(0) = 0. Let d̄ denote the unique solution to ĥ(x) = 0, then d̄ < b∗

and

Ĥ(z)

{
> 0 if z ∈ (0, ψ̂(d̄)),

< 0 if z ∈ (ψ̂(d̄),+∞).
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µ

2 4 6 8 10 12 14

b∗

0

0.1

0.2

0.3

0.4

0.5

0.6

θ = 0.3
θ = 0
θ = −0.3

(a)

σ

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

b∗

0

0.1

0.2

0.3

0.4

0.5

0.6

θ = 0.3
θ = 0
θ = −0.3

(b)

Fig. 2.3 (a) The optimal liquidation level b∗ vs speed of mean reversion µ. Pa-
rameters: σ = 0.3, r = 0.05, cs = 0.02. (b) The optimal liquidation level b∗ vs
volatility σ. Parameters: µ = 8, r = 0.05, cs = 0.02.

(ii) Ĥ(z) is strictly decreasing if z ∈ (ψ̂(b∗),+∞).

(iii) Let b denote the unique solution to (L− r̂)ĥ(x) = 0, then b < L∗ and

Ĥ(z) is

{
concave if z ∈ (0, ψ̂(b)),

convex if z ∈ (ψ̂(b),+∞).

In Figure 2.4, we give a sketch of Ĥ according to Lemma 2.9. This will

be useful for deriving the optimal entry level.
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0 z

Ĥ

Ŵ

ẑ = ψ̂(d∗)

ψ̂(d̄) ψ̂(b∗)

ψ̂(b)

Fig. 2.4 Sketches of Ĥ and Ŵ . The function Ŵ coincides with Ĥ on [0, ẑ] and
is equal to the constant Ĥ(ẑ) on (ẑ,+∞).

Theorem 2.10. The optimal entry timing problem (2.4) admits the solu-

tion

J(x) =

{
V (x)− x− cb if x ∈ (−∞, d∗],
V (d∗)−d∗−cb

Ĝ(d∗)
Ĝ(x) if x ∈ (d∗,+∞),

(2.36)

where the optimal entry level d∗ is found from the equation

Ĝ(d)(V ′(d)− 1) = Ĝ′(d)(V (d) − d− cb). (2.37)

Proof. We look for the value function of the form: J(x) = Ĝ(x)Ŵ (ψ̂(x)),

where Ŵ is the the smallest concave majorant of Ĥ . From Lemma 2.9 and

Figure 2.4, we infer that there exists a unique number ẑ < ψ̂(b∗) such that

Ĥ ′(ẑ) = 0. (2.38)

This implies that

Ŵ (z) =

{
Ĥ(z) if z ≤ ẑ,

Ĥ(ẑ) if z > ẑ.
(2.39)

Substituting d∗ = ψ̂−1(ẑ) into (2.38), we have

Ĥ ′(ẑ) =
Ĝ(d∗)(V ′(d∗)− 1)− Ĝ′(d∗)(V (d∗)− d∗ − cb)

F̂ ′(d∗)Ĝ(d∗)− F̂ (d∗)Ĝ′(d∗)
= 0,

which is equivalent to condition (2.37). Furthermore, using (2.23) and

(2.24), we get

Ĥ(ẑ) =
V (d∗)− d∗ − cb

Ĝ(d∗)
. (2.40)

To conclude, we substitute Ĥ(ẑ) of (2.40) and Ĥ(z) of (2.24) into Ŵ of

(2.39), which by (2.25) yields the value function J(x) in (2.36).
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With the analytic solutions for V and J , we can verify by direct sub-

stitution that V (x) in (2.29) and J(x) in (2.36) satisfy both (2.26) and

(2.27).

Since the optimal entry timing problem is nested with another optimal

stopping problem, the parameter dependence of the optimal entry level is

complicated. Below, we illustrate the impact of transaction cost.

Proposition 2.11. The optimal entry level d∗ of (2.4) is decreasing in the

transaction cost cb.

Proof. Considering the optimal entry level d∗ as a function of cb, we dif-

ferentiate (2.37) w.r.t. cb to get

d∗′(cb) =
−Ĝ′(d∗)

Ĝ(d∗)
[V ′′(d∗)− V (d∗)− d∗ − cb

Ĝ(d∗)
Ĝ′′(d∗)]−1. (2.41)

Since Ĝ(d∗) > 0 and Ĝ′(d∗) < 0, the sign of d∗
′
(cb) is determined by

V ′′(d∗)− V (d∗)−d∗−cb
Ĝ(d∗)

Ĝ′′(d∗). Denote f̂(x) = V (d∗)−d∗−cb
Ĝ(d∗)

Ĝ(x). Recall that

ĥ(x) = V (x)− x− cb,

J(x) =

{
ĥ(x) if x ∈ (−∞, d∗],

f̂(x) > ĥ(x) if x ∈ (d∗,+∞),

and f̂(x) smooth pastes ĥ(x) at d∗. Since both ĥ(x) and f̂(x) are positive

decreasing convex functions, it follows that ĥ′′(d∗) ≤ f̂ ′′(d∗). Observing

that ĥ′′(d∗) = V ′′(d∗) and f̂ ′′(d∗) = V (d∗)−d∗−cb
Ĝ(d∗)

Ĝ′′(d∗), we have V ′′(d∗)−
V (d∗)−d∗−cb

Ĝ(d∗)
Ĝ′′(d∗) ≤ 0. Applying this to (2.41), we conclude that d∗′(cb) ≤

0.

We numerically examine the dependence of d∗ on other parameters in

Figure 2.5. These optimal entry levels are computed with the same set of

parameters as those for the optimal exit level in Figure 2.3. Naturally, d∗

increases with the long-run mean θ. The dependence of d∗ on µ and σ is

exactly the opposite from that of b∗. For better illustration, we plot both

the optimal entry level d∗ and the optimal exit level b∗ against µ and σ in

Figure 2.6. We see that the faster the speed of mean reversion, the closer

the buy and sell levels. On the other hand, the higher the volatility, the

further apart the buy and sell levels. As we have discussed earlier, the more

likely the process reaches levels further away from the mean, the wider the

gap between buy and sell levels. In other words, when the volatility is high,
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Fig. 2.5 (a) The optimal entry level d∗ vs speed of mean reversion µ. Parameters:
σ = 0.3, r = r̂ = 0.05, cs = cb = 0.02. (b) The optimal entry level d∗ vs volatility
σ. Parameters: µ = 8, r = r̂ = 0.05, cs = cb = 0.02.

it is possible for the investor to delay both entry and exit times to seek a

wider spread.

Remark 2.12. We end this section with a special example in the OU

model with µ = 0 in (2.1). It follows that X reduces to a Brownian motion:

Xt = σBt, t ≥ 0. In this case, the optimal liquidation level b∗ for problem

(2.3) is

b∗ = cs +
σ√
2r
,

and the optimal entry level d∗ for problem (2.4) is the root to the equation(
1 +

√
r̂

r

)
e

√
2r
σ (d−cs− σ√

2r
)
=

√
2r̂

σ
(d+ cb) + 1, d ∈ (−∞, b∗).
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Fig. 2.6 (a) The optimal entry level d∗ and the optimal liquidation level b∗ vs
speed of mean reversion µ. Parameters: θ = 0, σ = 0.3, r = r̂ = 0.05, cs =
cb = 0.02. (b) The optimal entry level d∗ and the optimal liquidation level b∗ vs
volatility σ. Parameters: θ = 0, µ = 8, r = r̂ = 0.05, cs = cb = 0.02.

2.5 Incorporating Stop-Loss Exit

Now we consider the optimal entry and exit problems with a stop-loss

constraint. For convenience, we restate the value functions from (2.5) and

(2.6):

JL(x) = sup
ν∈T

Ex
{
e−r̂ν(VL(Xν)−Xν − cb)

}
, (2.42)

VL(x) = sup
τ∈T

Ex

{
e−r(τ∧τL)(Xτ∧τL − cs)

}
. (2.43)

After solving for the optimal timing strategies, we will also examine the

dependence of the optimal liquidation threshold on the stop-loss level L.
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2.5.1 Optimal Exit Timing

We first give an analytic solution to the optimal exit timing problem.

Theorem 2.13. The optimal liquidation problem (2.43) with stop-loss level

L admits the solution

VL(x) =

{
CF (x) +DG(x) if x ∈ (L, b∗L),

x− cs otherwise,
(2.44)

where

C =
(b∗L − cs)G(L)− (L − cs)G(b

∗
L)

F (b∗L)G(L)− F (L)G(b∗L)
, D=

(L− cs)F (b
∗
L)− (b∗L − cs)F (L)

F (b∗L)G(L)− F (L)G(b∗L)
.

The optimal liquidation level b∗L is found from the equation

[(L− cs)G(b)− (b− cs)G(L)]F
′(b) + [(b − cs)F (L)− (L− cs)F (b)]G

′(b)

= G(b)F (L)−G(L)F (b). (2.45)

0

ψ(L)

zL = ψ(b∗L) z

H

WL

ψ(L∗)

Fig. 2.7 Sketch of WL. On [0, ψ(L)] ∪ [zL,+∞), WL coincides with H , and over
(ψ(L), zL), WL is a straight line tangent to H at zL.

Proof. Due to the stop-loss level L, we consider the smallest concave ma-

jorant of H(z), denoted by WL(z), over the restricted domain [ψ(L),+∞)

and set WL(z) = H(z) for z ∈ [0, ψ(L)].

From Lemma 2.5 and Figure 2.7, we see that H(z) is convex over

(0, ψ(L∗)] and concave in [ψ(L∗),+∞). If L ≥ L∗, then H(z) is concave

over [ψ(L),+∞), which implies that WL(z) = H(z) for z ≥ 0, and thus
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VL(x) = x − cs for x ∈ R. On the other hand, if L < L∗, then H(z) is

convex on [ψ(L), ψ(L∗)], and concave strictly increasing on [ψ(L∗),+∞).

There exists a unique number zL > ψ(L∗) such that

H(zL)−H(ψ(L))

zL − ψ(L)
= H ′(zL). (2.46)

In turn, the smallest concave majorant admits the form:

WL(z) =

{
H(ψ(L)) + (z − ψ(L))H ′(zL) if z ∈ (ψ(L), zL),

H(z) otherwise.
(2.47)

Substituting b∗L = ψ−1(zL) into (2.46), we have from the LHS

H(zL)−H(ψ(L))

zL − ψ(L)
=
H(ψ(b∗L))−H(ψ(L))

ψ(b∗L)− ψ(L)
=

b∗L−cs
G(b∗L) −

L−cs
G(L)

F (b∗L)

G(b∗L) −
F (L)
G(L)

= C,

and the RHS

H ′(zL) =
G(ψ−1(zL))− (ψ−1(zL)− cs)G

′(ψ−1(zL))

F ′(ψ−1(zL))G(ψ−1(zL))− F (ψ−1(zL))G′(ψ−1(zL))

=
G(b∗L)− (b∗ − cs)G

′(b∗L)

F ′(b∗L)G(b
∗
L)− F (b∗L)G

′(b∗L)
.

Therefore, we can equivalently express (2.46) in terms of b∗L:

(b∗L − cs)G(L)− (L− cs)G(b
∗
L)

F (b∗L)G(L)− F (L)G(b∗L)
=

G(b∗L)− (b∗L − cs)G
′(b∗L)

F ′(b∗L)G(b
∗
L)− F (b∗L)G

′(b∗L)
,

which by rearrangement immediately simplifies to (2.45).

Furthermore, for x ∈ (L, b∗L), H
′(zL) = C implies that

WL(ψ(x)) = H(ψ(L)) + (ψ(x) − ψ(L))C.

Substituting this to VL(x) = G(x)WL(ψ(x)), the value function becomes

VL(x) = G(x)
[
H(ψ(L)) + (ψ(x) − ψ(L))C

]
= CF (x) +G(x)

[
H(ψ(L))− ψ(L)C

]
,

which resembles (2.44) after the observation that

H(ψ(L))− ψ(L)C =
L− cs
G(L)

− F (L)

G(L)

(b∗L − cs)G(L) − (L− cs)G(b
∗
L)

F (b∗L)G(L) − F (L)G(b∗L)

=
(L− cs)F (b

∗
L)− (b∗L − cs)F (L)

F (b∗L)G(L)− F (L)G(b∗L)
= D.
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We can interpret the investor’s timing strategy in terms of three price

intervals, namely, the liquidation region [b∗L,+∞), the delay region (L, b∗L),

and the stop-loss region (−∞, L]. In both liquidation and stop-loss re-

gions, the value function VL(x) = x − cs, and therefore, the investor will

immediately close out the position. From the proof of Theorem 2.13, if

L ≥ L∗ = µθ+rcs
µ+r (see (2.28)), then VL(x) = x − cs, ∀x ∈ R. In other

words, if the stop-loss level is too high, then the delay region completely

disappears, and the investor will liquidate immediately for every initial

value x ∈ R.

Corollary 2.14. If L < L∗, then there exists a unique solution b∗L ∈
(L∗,+∞) that solves (2.45). If L ≥ L∗, then VL(x) = x− cs, for x ∈ R.

The direct effect of a stop-loss exit constraint is forced liquidation when-

ever the price process reaches L before the upper liquidation level b∗L. Inter-

estingly, there is an additional indirect effect: a higher stop-loss level will

induce the investor to voluntarily liquidate earlier at a lower take-profit

level.

Proposition 2.15. The optimal liquidation level b∗L of (2.43) strictly de-

creases as the stop-loss level L increases.

Proof. Recall that zL = ψ(b∗L) and ψ is a strictly increasing function.

Therefore, it is sufficient to show that zL strictly decreases as L̃ := ψ(L)

increases. As such, we denote zL(L̃) to highlight its dependence on L̃.

Differentiating (2.46) w.r.t. L̃ gives

z′L(L̃) =
H ′(zL)−H ′(L̃)

H ′′(zL)(zL − L̃)
. (2.48)

It follows from the definitions of WL and zL that H ′(zL) > H ′(L̃) and

zL > L̃. Also, we have H ′′(z) < 0 since H is concave at zL. Applying these

to (2.48), we conclude that z′L(L̃) < 0.

Figure 2.8 illustrates the optimal exit price level b∗L as a function of

the stop-loss levels L, for different long-run means θ. When b∗L is strictly

greater than L (on the left of the straight line), the delay region is non-

empty. As L increases, b∗L strictly decreases and the two meet at L∗ (on

the straight line), and the delay region vanishes.

Also, there is an interesting connection between cases with different

long-run means and transaction costs. To this end, let us denote the value
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Fig. 2.8 The optimal exit threshold b∗L is strictly decreasing with respect to the
stop-loss level L. The straight line is where b∗L = L, and each of the three circles
locates the critical stop-loss level L∗.

function by VL(x; θ, cs) to highlight the dependence on θ and cs, and the

corresponding optimal liquidation level by b∗L(θ, cs). We find that, for any

θ1, θ2 ∈ R, c1, c2 > 0, L1 ≤ µθ1+rc1
µ+r , and L2 ≤ µθ2+rc2

µ+r , the associated value

functions and optimal liquidation levels satisfy the relationships:

VL1(x+ θ1; θ1, c1) = VL2(x+ θ2; θ2, c2), (2.49)

b∗L1
(θ1, c1)− θ1 = b∗L2

(θ2, c2)− θ2, (2.50)

as long as θ1 − θ2 = c1 − c2 = L1 −L2. These results (2.49) and (2.50) also

hold in the case without stop-loss.

2.5.2 Optimal Entry Timing

We now discuss the optimal entry timing problem JL(x) defined in (2.42).

Since supx∈R(VL(x)− x− cb) ≤ 0 implies that JL(x) = 0 for x ∈ R, we can

focus on the case with

sup
x∈R

(VL(x) − x− cb) > 0, (2.51)

and look for non-trivial optimal timing strategies.

Associated with reward function ĥL(x) := VL(x)− x− cb from entering

the market, we define the function ĤL as in (2.17) whose properties are

summarized in the following lemma.

Lemma 2.16. The function ĤL is continuous on [0,+∞), differentiable on

(0, ψ̂(L)) ∪ (ψ̂(L),+∞), twice differentiable on (0, ψ̂(L)) ∪ (ψ̂(L), ψ̂(b∗L)) ∪
(ψ̂(b∗L),+∞), and possesses the following properties:



November 12, 2015 12:34 Optimal Mean Reversion Trading... b2296 page 35

Trading Under the Ornstein-Uhlenbeck Model 35

(i) ĤL(0) = 0. ĤL(z) < 0 for z ∈ (0, ψ̂(L)] ∪ [ψ̂(b∗L),+∞).

(ii) ĤL(z) is strictly decreasing for z ∈ (0, ψ̂(L)) ∪ (ψ̂(b∗L),+∞).

(iii) There exists some constant d̄L ∈ (L, b∗L) such that (L− r̂)ĥL(d̄L) = 0,

and

ĤL(z) is

{
convex if z ∈ (0, ψ̂(L)) ∪ (ψ̂(d̄L),+∞),

concave if z ∈ (ψ̂(L), ψ̂(d̄L)).

In addition, ẑ1 ∈ (ψ̂(L), ψ̂(d̄L)), where ẑ1 := argmaxz∈[0,+∞) ĤL(z).

Theorem 2.17. The optimal entry timing problem (2.42) admits the solu-

tion

JL(x) =


PF̂ (x) if x ∈ (−∞, a∗L),

VL(x)− x− cb if x ∈ [a∗L, d
∗
L],

QĜ(x) if x ∈ (d∗L,+∞),

(2.52)

where

P =
VL(a

∗
L)− a∗L − cb

F̂ (a∗L)
, Q =

VL(d
∗
L)− d∗L − cb

Ĝ(d∗L)
.

The optimal entry time is given by

νa∗L,d∗L = inf{t ≥ 0 : Xt ∈ [a∗L, d
∗
L]}, (2.53)

where the critical levels a∗L and d∗L satisfy, respectively,

F̂ (a)(V ′
L(a)− 1) = F̂ ′(a)(VL(a)− a− cb), (2.54)

and

Ĝ(d)(V ′
L(d)− 1) = Ĝ′(d)(VL(d)− d− cb). (2.55)

Proof. We look for the value function of the form: JL(x) =

Ĝ(x)ŴL(ψ̂(x)), where ŴL is the smallest non-negative concave majorant of

ĤL. From Lemma 2.16 and the sketch of ĤL in Figure 2.9, the maximizer

of ĤL, ẑ1, satisfies

Ĥ ′
L(ẑ1) = 0. (2.56)

Also there exists a unique number ẑ0 ∈ (ψ̂(L), ẑ1) such that

ĤL(ẑ0)

ẑ0
= Ĥ ′

L(ẑ0). (2.57)
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ĤL

ŴL

ẑ0 = ψ̂(a∗L)
ẑ1 = ψ̂(d∗L)

ψ̂(L) ψ̂(b∗L)

Fig. 2.9 Sketches of ĤL and ŴL. ŴL is a straight line tangent to ĤL at ẑ0
on [0, ẑ0), coincides with ĤL on [ẑ0, ẑ1], and is equal to the constant ĤL(ẑ1) on
(ẑ1,+∞). Note that ĤL is not differentiable at ψ̂(L).

In turn, the smallest non-negative concave majorant admits the form:

ŴL(z) =


zĤ ′

L(ẑ0) if z ∈ [0, ẑ0),

ĤL(z) if z ∈ [ẑ0, ẑ1],

ĤL(ẑ1) if z ∈ (ẑ1,+∞).

Substituting a∗L = ψ̂−1(ẑ0) into (2.57), we have

ĤL(ẑ0)

ẑ0
=
VL(a

∗
L)− a∗L − cb

F̂ (a∗L)
,

Ĥ ′
L(ẑ0) =

Ĝ(a∗L)(V
′
L(a

∗
L)− 1)− Ĝ′(a∗L)(VL(a

∗
L)− a∗L − cb)

F̂ ′(a∗L)Ĝ(a∗L)− F̂ (a∗L)Ĝ
′(a∗L)

.

Equivalently, we can express condition (2.57) in terms of a∗L:

VL(a
∗
L)− a∗L − cb

F̂ (a∗L)
=
Ĝ(a∗L)(V

′
L(a

∗
L)− 1)− Ĝ′(a∗L)(VL(a

∗
L)− a∗L − cb)

F̂ ′(a∗L)Ĝ(a
∗
L)− F̂ (a∗L)Ĝ

′(a∗L)
.

Simplifying this shows that a∗L solves (2.54). Also, we can express Ĥ ′
L(ẑ0)

in terms of a∗L:

Ĥ ′
L(ẑ0) =

ĤL(ẑ0)

ẑ0
=
VL(a

∗
L)− a∗L − cb

F̂ (a∗L)
= P.

In addition, substituting d∗L = ψ̂−1(ẑ1) into (2.56), we have

Ĥ ′
L(ẑ1) =

Ĝ(d∗L)(V
′
L(d

∗
L)− 1)− Ĝ′(d∗L)(VL(d

∗
L)− d∗L − cb)

F̂ ′(d∗L)Ĝ(d
∗
L)− F̂ (d∗L)Ĝ

′(d∗L)
= 0,
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which, after a straightforward simplification, is identical to (2.55).

Also, ĤL(ẑ1) can be written as

ĤL(ẑ1) =
VL(d

∗
L)− d∗L − cb

Ĝ(d∗L)
= Q.

Substituting these to JL(x) = Ĝ(x)ŴL(ψ̂(x)), we arrive at (2.52).

Theorem 2.17 reveals that the optimal entry region is characterized by a

price interval [a∗L, d
∗
L] strictly above the stop-loss level L and strictly below

the optimal exit level b∗L. In particular, if the current asset price is between

L and a∗L, then it is optimal for the investor to wait even though the price

is low. This is intuitive because if the entry price is too close to L, then the

investor is very likely to be forced to exit at a loss afterwards. Moreover,

delaying to enter also discounts the transaction cost. As a consequence,

the investor’s delay region, where she would wait to enter the market, is

disconnected.

Figure 2.10 illustrates two simulated paths and the associated exercise

times. We have chosen L to be 2 standard deviations below the long-

run mean θ, with other parameters from our pairs trading example. By

Theorem 2.17, the investor will enter the market at νa∗L,d∗L (see (2.53)).

Since both paths start with X0 > d∗L, the investor waits to enter until the

OU path reaches d∗L from above, as indicated by ν∗d in panels (a) and (b).

After entry, Figure 2.10(a) describes the scenario where the investor exits

voluntarily at the optimal level b∗L, whereas in Figure 2.10(b) the investor

is forced to exit at the stop-loss level L. These optimal levels are calculated

from Theorems 2.13 and 2.17 based on the given estimated parameters.

Lastly, we remark that the optimal levels a∗L, d
∗
L and b∗L are outputs of

the models, depending on the parameters (µ, θ, σ) and the choice of stop-

loss level L. Recall that our model parameters are estimated based on the

likelihood maximizing portfolio discussed in Section 2.1. Other estimation

methodologies and price data can be used, and may lead to different portfo-

lio strategies (α, β) and estimated parameters values (µ, θ, σ). In turn, the

resulting optimal entry and exit thresholds may also change accordingly.
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Fig. 2.10 Simulated OU paths and exercise times. (a) The investor enters at
ν∗d = inf{t ≥ 0 : Xt ≤ d∗L} with d∗L = 0.4978, and exit at τ∗b = inf{t ≥ ν∗d : Xt ≥
b∗L} with b∗L = 0.5570. (b) The investor enters at ν∗d = inf{t ≥ 0 : Xt ≤ d∗L}
but exits at stop-loss level L = 0.4834. Parameters: θ = 0.5388, µ = 16.6677,
σ = 0.1599, r = r̂ = 0.05, and cs = cb = 0.05.
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2.5.3 Relative Stop-Loss Exit

For some investors, it may be more desirable to set the stop-loss contingent

on the entry level. In other words, if the value of X at the entry time is x,

then the investor would assign a lower stop-loss level x−�, for some constant

� > 0. Therefore, the investor faces the optimal entry timing problem

J	(x) = sup
ν∈T

Ex
{
e−r̂ν(V	(Xν)−Xν − cb)

}
,

where V	(x) := Vx−	(x) (see (2.43)) is the optimal exit timing problem with

stop-loss level x− �. The dependence of Vx−	(x) on x is significantly more

complicated than V (x) or VL(x), making the problem much less tractable.

In Figure 2.11, we illustrate numerically the optimal timing strategies.

The investor will still enter at a lower level d∗. After entry, the investor

will wait to exit at either the stop-loss level d∗ − � or an upper level b∗.

−2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

2.5

x

 

 

d∗

J�(x)
V�(x)− x− ĉ
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Fig. 2.11 (a) The optimal entry value function J�(x) dominates the reward func-
tion V�(x)− x − cb, and they coincide for x ≤ d∗. (b) For the exit problem, the
stop-loss level is d∗ − � and the optimal liquidation level is b∗.

2.5.4 Optimal Switching with Stop-Loss Exit

As an alternative to our double stopping approach to trading under mean

reversion, the optimal switching approach assumes that the investor com-

mits to an infinite number of trades prior to reaching the stop-loss level.

This problem has been studied by Song and Zhang (2013), and we summa-

rize their main result here.
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The sequential trading times are modeled by the stopping times

ν1, τ1, ν2, τ2, · · · ∈ T such that 0 ≤ ν1 ≤ τ1 ≤ ν2 ≤ τ2 ≤ · · · ≤ τL. A

share of the risky asset is bought and sold, respectively, at times νi and τi,

i ∈ N. The investor’s optimal timing to trade would depend on the initial

position. Precisely, if the investor starts with a zero position, then the first

trading decision is when to buy and the optimal switching problem is

J̃L(x) = sup
Λ0

Ex

{ ∞∑
n=1

[e−rτn(Xτn − c)− e−rνn(Xνn + c)]11{νn<τL}

}
,

with the set of admissible stopping times Λ0 = (ν1, τ1, ν2, τ2, . . . ). As in

Song and Zhang (2013), the same transactions cost, denoted by c, is in-

curred for buying and selling the asset.

On the other hand, if the investor is initially holding a share of the

asset, then the investor first determines when to sell, and subsequently

switch between buy and sell positions. This leads to the optimal switching

problem:

ṼL(x) = sup
Λ1

Ex

{
e−rτ1(Xτ1 − c)

+
∞∑
n=2

[e−rτn(Xτn − c)− e−rνn(Xνn + c)]11{νn<τL}

}
,

with Λ1 = (τ1, ν2, τ2, ν3, . . . ). Note that the first stopping time τ1 is the

time to sell the asset for the first time, and (νi, τi) are the stopping times,

respectively, for buying and selling for the ith time.

Theorem 2.18. Song and Zhang (2013) Let ã∗L, d̃
∗
L, b̃

∗
L, Ã, B̃1, B̃2, C̃1, C̃2

be solutions of the non-linear system of equations:

B̃1F (ã
∗
L) + B̃2G(ã

∗
L) = C̃1F (ã

∗
L) + C̃2G(ã

∗
L)− ã∗L − c,

B̃1F
′(ã∗L) + B̃2G

′(ã∗L) = C̃1F
′(ã∗L) + C̃2G

′(ã∗L)− 1,

ÃG(d̃∗L) = C̃1F (d̃
∗
L) + C̃2G(d̃

∗
L)− d̃∗L − c,

ÃG′(d̃∗L) = C̃1F
′(d̃∗L) + C̃2G

′(d̃∗L)− 1,

C̃1F (b̃
∗
L) + C̃2G(b̃

∗
L) = ÃG(b̃∗L) + b̃∗L − c,

C̃1F
′(b̃∗L) + C̃2G

′(b̃∗L) = ÃG′(b̃∗L) + 1,

B̃1F (L) + B̃2G(L) = 0,

C̃1F (L) + C̃2G(L) = L− c,
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and satisfy

d̃∗L ≤ µθ − rc

µ+ r
, and b̃∗L ≥ L∗ =

µθ + rc

µ+ r
,

and

|(C̃1 − B̃1F (x) + (C̃2 − B̃2G(x)− x| ≤ c on (L, ã∗L),

|C̃1F (x) + (C̃2 − Ã)G(x) − x| ≤ c on (d̃∗L, b̃
∗
L).

In addition, let

j̃L =


B̃1F (x) + B̃2G(x) if x ∈ (L, ã∗L),

C̃1F (x) + C̃2G(x) − x− c if x ∈ [ã∗L, d̃
∗
L],

ÃG(x) if x ∈ (d̃∗L,+∞),

ṽL =

{
C̃1F (x) + C̃2G(x) if x ∈ (L, d̃∗L),

ÃG(x) + x− c if x ∈ (b̃∗L,+∞),

and assume j̃L ≥ 0. Then, j̃L(x) = J̃L(x), and ṽL(x) = ṼL(x).

Moreover, (i) if the investor starts with a zero position, let Λ∗
0 =

(ν∗1 , τ
∗
1 , ν

∗
2 , τ

∗
2 , . . . ), such that the stopping times, for i ≥ 1,

ν∗1 = inf{t ≥ 0 : Xt ∈ [ã∗L, d̃
∗
L]} ∧ τL,

τ∗i = inf{t > ν∗i : Xt /∈ (L, b̃∗L)} ∧ τL,
ν∗i+1 = inf{t > τ∗i : Xt ∈ [ã∗L, d̃

∗
L]} ∧ τL.

(ii) If the investor starts with a long position, let Λ∗
1 =

(τ∗1 , ν
∗
2 , τ

∗
2 , ν

∗
3 , . . . ), such that, i ≥ 2,

τ∗1 = inf{t ≥ 0 : Xt /∈ (L, b̃∗L)} ∧ τL,
ν∗i = inf{t > τ∗i−1 : Xt ∈ [ã∗L, d̃

∗
L]} ∧ τL,

τ∗i = inf{t > ν∗i : Xt /∈ (L, b̃∗L)} ∧ τL.
Then Λ∗

0 and Λ∗
1 are optimal to cases (i) and (ii), respectively.

2.6 Further Applications

The optimal trading problem studied herein is amenable for a number of

extensions. Our model can be considered as the building block for the

problem with any finite number of sequential trades. The major challenge

lies in analyzing and computing the value functions for optimal entry and

exit, as we have done for the first ones, namely, J and V . We will conclude

by briefly discussing the incorporation of a minimum holding period or a

timing penalty.
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2.6.1 Minimum Holding Period

Another timing constraint of practical interest is the minimum holding

period. Recently, regulators and exchanges are contemplating to apply

this rule to rein in high-frequency trading. This gives rise to the need

to better understand the effect of this restriction on trading. Intuitively,

a minimum holding period always delays the liquidation timing, but how

does it influence the investor’s timing to enter the market?

Suppose that once the investor enters the position, she is only allowed

to liquidate after a pre-specified time period δ. The incorporation of a

minimum holding period leads to the constrained optimal stopping problem

V δ(x) = sup
τ≥δ

Ex{e−rτ(Xτ − cs)} = Ex{e−rδV (Xδ)},

where V (x) the unconstrained problem in (2.3) with solution given in Theo-

rem 2.6. The second equality follows from the strong Markov property of X

and the optimality of V (x). Compared to the unconstrained problem, the

optimal liquidation timing for V δ(x) is simply delayed by δ but otherwise

identical to τ∗ in (2.31). Also, by the supermartingale and non-negative

property of V (x), we see that 0 ≤ V δ(x) ≤ V (x) and V δ(x) decreases

with δ.

Turning to the optimal entry timing, the investor solves

Jδ(x) = sup
ν∈T

Ex{e−r̂ν(V δ(Xν)−Xν − cb)}. (2.58)

The following result reflects the impact of the minimum holding period.

Proposition 2.19. For every x ∈ R, we have Jδ(x) ≤ J(x) and dδ ≤ d∗.

This means that the minimum holding period leads to a lower opti-

mal entry level and lower value function as compared to the original value

function J in (2.4). Next, we present the proof.

Proof. As in Theorem 2.10, one can show that the optimal entry timing

problem (2.58) admits the solution

Jδ(x) =

V
δ(x)− x− cb if x ∈ (−∞, dδ],

V δ(dδ)−dδ−cb
Ĝ(dδ)

Ĝ(x) if x ∈ (dδ,+∞),

where the optimal entry level dδ is found from the equation

Ĝ(d)(V δ
′
(d)− 1) = Ĝ′(d)(V δ(d) − d− cb).
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To compare with the original case, we first define h2(x) = −x− cb,

Ĥδ(z) = (
V δ + h2

Ĝ
) ◦ ψ̂−1(z),

and denote Ŵ δ(z) as the smallest concave majorant of Ĥδ(z). Following

the similar proof of Theorem 2.10, we can show that

Ŵ δ(z) =

{
Ĥδ(z) if z ∈ [0, ẑδ],

Ĥδ(ẑδ) if z ∈ (ẑδ,+∞),

where ẑδ = ψ̂(dδ) satisfies Ĥδ′(ẑδ) = 0. Recall that ẑ = ψ̂(d∗) satisfies

Ĥ ′(ẑ) = 0.

To show dδ ≤ d∗, we examine the concavity of Ĥδ and Ĥ. Restating Ĥ

in (2.24) in terms of h2:

Ĥ(z) = (
V + h2

Ĝ
) ◦ ψ̂−1(z),

followed by differentiation, we have

Ĥ ′′(z) =
2

σ2Ĝ(x)(ψ̂′(x))2
(L − r̂)(V + h2)(x), z = ψ̂(x). (2.59)

Similarly, (2.59) also holds for Ĥδ with V replaced by V δ. This leads us to

analyze (L − r̂)(V + h2)(x) and (L − r̂)(V δ + h2)(x). As shown in Lemma

2.9 and Figure 2.4, Ĥ(z) is concave for z ∈ (0, ψ̂(b)), where b < L∗ satisfies

(L − r̂)(V + h2)(x) = 0, and ẑ < ψ̂(b).

Moreover, it follows from the supermartingale property of V that

Ex{e−rtV δ(Xt)} = Ex{e−r(t+δ)V (Xt+δ)} ≤ Ex{e−rδV (Xδ)} = V δ(x).

From this and Proposition 5.9 in Dayanik and Karatzas (2003), we infer

that (L − r)V δ(x) ≤ 0. In turn, for x < b, we have

(L − r̂)(V δ + h2)(x) = (L − r)V δ(x) + (r − r̂)V δ(x) + (L − r̂)h2(x)

≤ (r − r̂)V δ(x) + (L − r̂)h2(x)

≤ (r − r̂)V (x) + (L − r̂)h2(x)

= (L − r̂)(V + h2)(x),

where the last equality follows from the fact that (L − r)V (x) = 0 for

x < b∗, since W is a straight line for z ≤ ψ(b∗), and b < L∗ < b∗. Hence,

for z ∈ (0, ψ̂(b)), Ĥδ′′(z) ≤ Ĥ ′′(z) ≤ 0 and Ĥδ(z) is also concave.

Since V (x) ≥ V δ(x) ≥ 0, we have Ĥ(z) ≥ Ĥδ(z) for z ∈ (0,+∞).

Considering Ĥ(0) = Ĥδ(0) = 0 and Ĥ(0+), Ĥδ(0+) > 0, we have Ĥ ′(0+) ≥
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Ĥδ′(0+) ≥ 0. This, along with Ĥδ′′(z) ≤ Ĥ ′′(z) ≤ 0 for z ∈ (0, ψ̂(b)), imply

that Ĥ ′(z) ≥ Ĥδ′(z) for z ∈ (0, ψ̂(b)). So Ĥδ′(ẑ) ≤ Ĥ ′(ẑ) = 0. Considering

Ĥδ′(ẑδ) = 0 and the concavity of Ĥδ, we conclude that ẑδ ≤ ẑ, which by

the monotonicity of ψ̂ is equivalent to dδ ≤ d∗.

To show Jδ(x) ≤ J(x), it is equivalent to establish Ŵ δ(z) ≤ Ŵ (z) for

all z ∈ [0,∞): (i) For z ∈ [0, ẑδ], this holds since Ŵ δ(z) = Ĥδ(z), Ŵ (z) =

Ĥ(z), and Ĥδ(z) ≤ Ĥ(z). (ii) For z ∈ (ẑδ, ẑ], Ŵ δ(z) = Ĥδ(ẑδ) ≤ Ĥ(ẑδ) ≤
Ĥ(z) = Ŵ (z), where the last inequality follows from the fact that Ĥ ′(z) ≥ 0

for z ∈ (ẑδ, ẑ]. (iii) For z ∈ (ẑ,+∞), Ŵ δ(z) = Ĥδ(ẑδ) ≤ Ĥ(ẑ) = Ŵ (z).

2.6.2 Path-Dependent Risk Penalty

In addition to maximizing the expected liquidation value, a risk-sensitive

investor may be concerned about the price fluctuation over time, and there-

fore, be willing to adjust her liquidation timing depending on the path be-

havior of prices. This motivates the incorporation of a path-dependent risk

penalty up to the liquidation time τ . To illustrate this idea, we apply a

penalty term of the form Ex{
∫ τ
0
e−ruq(Xu) du}, where q(x) could be any

positive penalty function. This risk penalty only applies when the investor

is holding the position, but not before entry.

Hence, the investor solves the penalized optimal timing problems:

J q(x) = sup
ν∈T

Ex

{
e−rτ (Vq(Xν)−Xν − cb)

}
,

Vq(x) = sup
τ∈T

Ex

{
e−rτ (Xτ − cs)−

∫ τ

0

e−ruq(Xu) du

}
. (2.60)

As a special case, let q(x) ≡ q, a strictly positive constant. Then, by

computing the integral in (2.60),

Vq(x) = sup
τ∈T

Ex

{
e−rτ (Xτ − (cs −

q

r
))

}
− q

r
. (2.61)

This presents an interesting connection between the penalized problem

Vq(x) in (2.61) and the unpenalized optimal stopping problem V in (2.3).

Indeed, we observe that the penalty term amounts to reducing the transac-

tion cost cs by the positive constant qr . In other words, the optimal stopping

time τ∗q for Vq(x) is identical to the optimal stopping time τ∗ for V (x) in

(2.3) but with cs replaced by cs − q
r . Furthermore, since b∗ is increasing

in cs, a higher penalty q lowers the optimal liquidation level. As for the

entry problem J q, the solution is found from Theorem 2.10 by modifying

the transaction cost to be cb +
q
r . More sophisticated path-dependent risk
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penalties can be considered under this formulation, including those based

on the (integrated) shortfall with q(x) = ρ((m−x)+) where m is a constant

benchmark and ρ is an increasing convex loss function (see, for example,

Section 4.9 of Föllmer and Schied (2004)).

2.7 Proofs of Lemmas

In this last section, we present the proofs to a number of lemmas and

propositions regarding the properties of V , J , H and Ĥ.

Proof of Lemma 2.4 (Bounds of V )

First, observe that F (−∞) = G(+∞) = 0 and F (+∞) = G(−∞) = +∞.

The limit

lim sup
x→+∞

(h(x))+

F (x)
= lim sup

x→+∞

x− cs
F (x)

= lim sup
x→+∞

1

F ′(x)
= 0.

Therefore, there exists some x0 such that (h(x))+ < F (x) for x ∈ (x0,+∞).

As for x ≤ x0, (h(x))
+ is bounded above by the constant (x0 − cs)

+. As a

result, we can always find a constant K such that (h(x))+ ≤ KF (x) for all

x ∈ R.

By definition, the process (e−rtF (Xt))t≥0 is a martingale. This implies,

for every x ∈ R and τ ∈ T ,

KF (x) = Ex{e−rτKF (Xτ )} ≥ Ex{e−rτ(h(Xτ ))
+} ≥ Ex{e−rτh(Xτ )}.

Therefore, V (x) ≤ KF (x). Lastly, the choice of τ = +∞ as a candidate

stopping time implies that V (x) ≥ 0.

Proof of Lemma 2.5 (Properties of H)

The continuity and twice differentiability of H on (0,+∞) follow directly

from those of h, G and ψ. To show the continuity of H at 0, since H(0) =

limx→−∞
(x−cs)+
G(x) = 0, we only need to show that limy→0H(z) = 0. Note

that z = ψ(x) → 0, as x→ −∞. Therefore,

lim
z→0

H(z) = lim
x→−∞

h(x)

G(x)
= lim
x→−∞

x− cs
G(x)

= lim
x→−∞

1

G′(x)
= 0.

We conclude that H is also continuous at 0.

(i) One can show that ψ(x) ∈ (0,+∞) for x ∈ R and is a strictly increasing

function. Then property (i) follows directly from the fact that G(x) > 0.
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(ii) By the definition of H ,

H ′(z) =
1

ψ′(x)
(
h

G
)′(x) =

h′(x)G(x) − h(x)G′(x)

ψ′(x)G2(x)
, z = ψ(x).

Since both ψ′(x) and G2(x) are positive, we only need to determine the

sign of h′(x)G(x) − h(x)G′(x) = G(x) − (x− cs)G
′(x).

Define u(x) := (x− cs)− G(x)
G′(x) . Note that u(x) + cs is the intersecting

point at x axis of the tangent line of G(x), and u′(x) = G(x)G′′(x)
(G′(x))2 . Since

G(·) is a positive, strictly decreasing and convex function, u(x) is strictly

increasing and u(x) < 0 as x→ −∞. Also, note that

u(cs) = − G(cs)

G′(cs)
> 0,

u(L∗) = (L∗ − cs)−
G(x)

G′(x)
=
µ

r
(θ − L∗)− G(L∗)

G′(L∗)
= −σ

2

2r

G′′(L∗)

G′(L∗)
> 0.

Therefore, there exists a unique root x∗ that solves u(x) = 0, and x∗ <

cs ∧ L∗, such that

G(x)− (x − cs)G
′(x)

{
< 0 if x ∈ (−∞, x∗),

> 0 if x ∈ (x∗,+∞).

Thus H(z) is strictly decreasing if z ∈ (0, ψ(x∗)), and increasing otherwise.

(iii) By the definition of H ,

H ′′(z) =
2

σ2G(x)(ψ′(x))2
(L − r)h(x), z = ψ(x).

Since σ2, G(x) and (ψ′(x))2 are all positive, we only need to determine the

sign of (L − r)h(x):

(L − r)h(x) = µ(θ − x)− r(x − cs)

= (µθ + rcs)− (µ+ r)x

{
≥ 0 if x ∈ (−∞, L∗],

≤ 0 if x ∈ [L∗,+∞).

Therefore, H(z) is convex if z ∈ (0, ψ(L∗)], and concave otherwise.

Proof of Lemma 2.8 (Bounds of J)

Since F̂ (−∞) = Ĝ(+∞) = 0 and F̂ (+∞) = Ĝ(−∞) = +∞. Next, from

the limit

lim sup
x→−∞

(
ĥ(x)

)+

Ĝ(x)
= lim sup

x→−∞

ĥ(x)

Ĝ(x)
= 0,
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we see that there exists some x̂0 such that (ĥ(x))+ < Ĝ(x) for every x ∈
(−∞, x̂0). Since (ĥ(x))+ is bounded between [0, (V (x̂0) − x̂0 − cb)

+] for

x ∈ [x̂0,+∞), there exists some constant K̂ such that (ĥ(x))+ ≤ K̂Ĝ(x)

for all x ∈ R.

By the definition of Ĝ, we can write Ĝ(x) = Ex{e−r̂τ Ĝ(Xτ )} for any

τ ∈ T . This yields the inequality

K̂Ĝ(x) = Ex{e−r̂τ K̂Ĝ(Xτ )} ≥ Ex{e−r̂τ (ĥ(Xτ ))
+} ≥ Ex{e−r̂τ ĥ(Xτ )},

for every x ∈ R and every τ ∈ T . Hence, J(x) ≤ K̂Ĝ(x). Since τ = +∞ is

a candidate stopping time, we have J(x) ≥ 0.

Proof of Lemma 2.9 (Properties of Ĥ)

We first show that V (x) and ĥ(x) are twice differentiable everywhere, except

for x = b∗. Recall that

V (x) =

{
(b∗ − cs)

F (x)
F (b∗) if x ∈ (−∞, b∗),

x− cs otherwise,
and ĥ(x) = V (x) − x− cb.

Therefore, it follows from (2.30) that

V ′(x) =

{
(b∗ − cs)

F ′(x)
F (b∗) =

F ′(x)
F ′(b∗) if x ∈ (−∞, b∗),

1 if x ∈ (b∗,+∞),

which implies that V ′(b∗−) = 1 = V ′(b∗+). Therefore, V (x) is differentiable

everywhere and so is ĥ. However, V (x) is not twice differentiable since

V ′′(x) =

{
F ′′(x)
F ′(b∗) if x ∈ (−∞, b∗),

0 if x ∈ (b∗,+∞),

and V ′′(b∗−) �= V ′′(b∗+). Consequently, ĥ(x) = V (x)− x− cb is not twice

differentiable at b∗.

The twice differentiability of Ĝ and ψ̂ are straightforward. The con-

tinuity and differentiability of Ĥ on (0,+∞) and twice differentiability

on (0, ψ̂(b∗)) ∪ (ψ̂(b∗),+∞) follow directly. Observing that ĥ(x) > 0 as

x → −∞, Ĥ is also continuous at 0 by definition. We now establish the

properties of Ĥ.

(i) First we prove the value of Ĥ at 0:

Ĥ(0) = lim
x→−∞

(ĥ(x))+

Ĝ(x)
= lim sup

x→−∞

(b∗−cs)
F (b∗) F (x)− x− cb

Ĝ(x)

= lim sup
x→−∞

(b∗−cs)
F (b∗) F

′(x) − 1

Ĝ′(x)
= 0.
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Next, observe that limx→−∞ ĥ(x) = +∞ and ĥ(x) = −(cs + cb), for

x ∈ [b∗,+∞). Since F ′(x) is strictly increasing and F ′(x) > 0 for x ∈ R,

we have, for x < b∗,

ĥ′(x) = V ′(x)− 1 =
F ′(x)

F ′(b∗)
− 1 <

F ′(b∗)

F ′(b∗)
− 1 = 0,

which implies that ĥ(x) is strictly decreasing for x ∈ (−∞, b∗). Therefore,

there exists a unique solution d̄ to ĥ(x) = 0, and d̄ < b∗, such that ĥ(x) > 0

if x ∈ (−∞, d̄) and ĥ(x) < 0 if x ∈ (d̄,+∞). It is trivial that ψ̂(x) ∈ (0,+∞)

for x ∈ R and is a strictly increasing function. Therefore, along with the

fact that Ĝ(x) > 0, property (i) follows directly.

(ii) With z = ψ̂(x), for x > b∗,

Ĥ ′(z) =
1

ψ̂′(x)
(
ĥ

Ĝ
)′(x) =

1

ψ̂′(x)
(
−(cs + cb)

Ĝ(x)
)′ =

1

ψ̂′(x)

(cs + cb)Ĝ
′(x)

Ĝ2(x)
< 0,

since ψ̂′(x) > 0, Ĝ′(x) < 0, and Ĝ2(x) > 0. Therefore, Ĥ(z) is strictly

decreasing for z > ψ̂(b∗).

(iii) By the definition of Ĥ,

Ĥ ′′(z) =
2

σ2Ĝ(x)(ψ̂′(x))2
(L − r̂)ĥ(x), z = ψ̂(x).

Since σ2, Ĝ(x) and (ψ̂′(x))2 are all positive, we only need to determine the

sign of (L − r̂)ĥ(x):

(L − r̂)ĥ(x) =
1

2
σ2V ′′(x) + µ(θ − x)V ′(x) − µ(θ − x)− r̂(V (x)− x− cb)

=

{
(r − r̂)V (x) + (µ+ r̂)x− µθ + r̂cb if x < b∗,

r̂(cs + cb) > 0 if x > b∗.

To determine the sign of (L − r̂)ĥ(x) in (−∞, b∗), first note that [(L −
r̂)ĥ](x) is a strictly increasing function in (−∞, b∗), since V (x) is a strictly

increasing function and r ≥ r̂ by assumption. Next note that for x ∈
[L∗, b∗),

(L − r̂)ĥ(x) = (r − r̂)V (x) + (µ+ r̂)x− µθ + r̂cb

≥ (r − r̂)(x− cs) + (µ+ r̂)x− µθ + r̂cb

= (r + µ)x− (µθ + rcs) + r̂(cs + cb)

≥ (r + µ)L∗ − (µθ + rcs) + r̂(cs + cb) = r̂(cs + cb) > 0.

Also, note that (L− r̂)ĥ(x)→−∞ as x→−∞. Therefore, (L− r̂)ĥ(x) < 0

if x ∈ (−∞, b) and (L − r̂)ĥ(x) > 0 if x ∈ (b,+∞) with b < L∗ being the

break-even point. From this, we conclude property (iii).
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Proof of Lemma 2.16 (Properties of ĤL)

(i) The continuity of ĤL(z) on (0,+∞) is implied by the continuities of ĥL,

Ĝ and ψ̂. The continuity of ĤL(z) at 0 follows from

ĤL(0) = lim
x→−∞

(ĥL(x))
+

Ĝ(x)
= lim

x→−∞

0

Ĝ(x)
= 0,

lim
z→0

ĤL(z) = lim
x→−∞

ĥL

Ĝ
(x) = lim

x→−∞

−(cs + cb)

Ĝ(x)
= 0,

where we have used that z = ψ̂(x) → 0 as x→ −∞.

Furthermore, for x ∈ (−∞, L] ∪ [b∗L,+∞), we have VL(x) = x − cs,

and thus, ĥL(x) = −(cs + cb). Also, with the facts that ψ̂(x) is a strictly

increasing function and Ĝ(x) > 0, property (i) follows.

(ii) By the definition of ĤL, since Ĝ and ψ̂ are differentiable everywhere,

we only need to show the differentiability of VL(x). To this end, VL(x)

is differentiable at b∗L by (2.44)-(2.45), but not at L. Therefore, ĤL is

differentiable for z ∈ (0, ψ̂(L)) ∪ (ψ̂(L),+∞).

In view of the facts that Ĝ′(x) < 0, ψ̂′(x) > 0, and Ĝ2(x) > 0, we have

for x ∈ (−∞, L) ∪ [b∗L,+∞),

Ĥ ′
L(z) =

1

ψ̂′(x)
(
ĥL

Ĝ
)′(x) =

1

ψ̂′(x)
(
−(cs + cb)

Ĝ(x)
)′ =

(cs + cb)Ĝ
′(x)

ψ̂′(x)Ĝ2(x)
< 0.

Therefore, ĤL(z) is strictly decreasing for z ∈ (0, ψ̂(L)) ∪ [ψ̂(b∗L),+∞).

(iii) Both Ĝ and ψ̂ are twice differentiable everywhere, while VL(x) is twice

differentiable everywhere except at x = L and b∗L, and so is ĥL(x). There-

fore, ĤL(z) is twice differentiable on (0, ψ̂(L))∪(ψ̂(L), ψ̂(b∗L))∪(ψ̂(b∗L),+∞).

To determine the convexity/concavity of ĤL, we look at the second

order derivative:

Ĥ ′′
L(z) =

2

σ2Ĝ(x)(ψ̂′(x))2
(L − r̂)ĥL(x),

whose sign is determined by

(L − r̂)ĥL(x)

=
1

2
σ2V ′′

L (x) + µ(θ − x)V ′
L(x)− µ(θ − x) − r̂(VL(x)− x− cb)

=

{
(r − r̂)VL(x) + (µ+ r̂)x− µθ + r̂cb if x ∈ (L, b∗L),

r̂(cs + cb) > 0 if x ∈ (−∞, L) ∪ (b∗L,+∞).

This implies that ĤL is convex for z ∈ (0, ψ̂(L)) ∪ (ψ̂(b∗L),+∞).
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On the other hand, the condition supx∈R ĥL(x) > 0 implies that

sup
z∈[0,+∞)

ĤL(z) > 0.

By property (i) and twice differentiability of ĤL(z) for z ∈ (ψ̂(L), ψ̂(b∗L)),

there must exist an interval (ψ̂(aL), ψ̂(d̄L)) ⊆ (ψ̂(L), ψ̂(b∗L)) such that

ĤL(z) is concave, maximized at ẑ1 ∈ (ψ̂(aL), ψ̂(d̄L)).

Furthermore, if VL(x) is strictly increasing on (L, b∗L), then (L− r̂)ĥL(x)
is also strictly increasing. To prove this, we first recall from Lemma 2.5 that

H(z) is strictly increasing and concave on (ψ(L∗),+∞). By Proposition

2.15, we have b∗L < b∗, which implies zL < z∗, and thus, H ′(zL) > H ′(z∗).

Then, it follows from (2.32), (2.33) and (2.47) that

W ′
L(z) = H ′(zL) > H ′(z∗) =W ′(z), for z ∈ (ψ(L), zL).

Next, since

WL(z) =
VL
G

◦ ψ−1(z),

we differentiate to get

W ′
L(z) =

1

ψ′(x)
(
VL
G

)′(x) =
1

ψ′(x)
(
V ′
L(x)G(x) − VL(x)G

′(x)

G2(x)
).

The same holds for W ′(z) with V (x) replacing VL(x). As both ψ′(x)

and G2(x) are positive, W ′
L(z) > W ′(z) is equivalent to V ′

L(x)G(x) −
VL(x)G

′(x) > V ′(x)G(x) − V (x)G′(x). This implies that

V ′
L(x) − V ′(x) = −G

′(x)

G(x)
(V (x) − VL(x)) > 0,

since G(x) > 0, G′(x) < 0, and V (x) > VL(x). Recalling that V
′(x) > 0, we

have established that VL(x) is a strictly increasing function, and so is (L−
r̂)ĥL(x). As we have shown the existence of an interval (ψ̂(aL), ψ̂(d̄L)) ⊆
(ψ̂(L), ψ̂(b∗L)) over which Ĥ(z) is concave, or equivalently (L− r̂)ĥL(x) < 0

with x = ψ̂−1(z). Then by the strictly increasing property of (L− r̂)ĥL(x),
we conclude aL = L and d̄L ∈ (L, b∗L) is the unique solution to (L −
r̂)ĥL(x) = 0, and

(L − r̂)ĥL(x)

{
< 0 if x ∈ (L, d̄L),

> 0 if x ∈ (−∞, L) ∪ (d̄L, b
∗
L) ∪ (b∗L,+∞).

Hence, we conclude the convexity and concavity of the function ĤL.
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Chapter 3

Trading Under the Exponential OU
Model

Another widely used mean-reverting process is the exponential Ornstein-

Uhlenbeck (XOU) process:

ξt = eXt , t ≥ 0, (3.1)

where X is the OU process defined in (2.1). In other words, X is the

log-price of the positive XOU process ξ. In this chapter, we solve an op-

timal double stopping problem to determine the optimal times to enter

and subsequently exit the market, when prices are driven by an exponen-

tial Ornstein-Uhlenbeck process. In addition, we analyze a related optimal

switching problem that involves an infinite sequence of trades. Among our

results, we find that the investor generally enters when the price is low,

but may find it optimal to wait if the current price is sufficiently close to

zero. In other words, the continuation (waiting) region for entry is dis-

connected. Numerical results are provided to illustrate the dependence of

timing strategies on model parameters and transaction costs.

In Section 3.1, we formulate both the optimal double stopping and op-

timal switching problems. Then, we present our analytical and numerical

results in Section 3.2. The proofs of our main results are detailed in Sections

3.3 and 3.4.

3.1 Optimal Trading Problems

Given an XOU price process satisfying (3.1), we denote by F the filtration

generated by the standard Brownian motion B (see (2.1)), and T the set

of all F-stopping times.

51
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3.1.1 Optimal Double Stopping Approach

We first consider the optimal timing to sell. If the share of the asset is sold

at some time τ , then the investor will receive the value ξτ = eXτ and pay

a constant transaction cost cs > 0. To maximize the expected discounted

value, the investor solves the optimal stopping problem

V ξ(x) = sup
τ∈T

Ex
{
e−rτ(eXτ − cs)

}
, (3.2)

where r > 0 is the constant discount rate, and Ex{·} ≡ E{·|X0 = x}.
The value function V ξ(x) represents the expected liquidation value as-

sociated with ξ. On the other hand, the current price plus the transaction

cost constitute the total cost to enter the trade. Before even holding the

risky asset, the investor can always choose the optimal timing to start the

trade, or not to enter at all. This leads us to analyze the entry timing

inherent in the trading problem. Precisely, we solve

Jξ(x) = sup
ν∈T

Ex
{
e−rν(V ξ(Xν)− eXν − cb)

}
, (3.3)

with the constant transaction cost cb > 0 incurred at the time of purchase.

In other words, the trader seeks to maximize the expected difference be-

tween the value function V ξ(Xν) and the current eXν , minus transaction

cost cb. The value function Jξ(x) represents the maximum expected value

of the investment opportunity in the price process ξ, with transaction costs

cb and cs incurred, respectively, at entry and exit. For our analysis, the

transaction costs cb and cs can be different. To facilitate presentation, we

denote the functions

hξs(x) = ex − cs and hξb(x) = ex + cb. (3.4)

If it turns out that Jξ(X0) ≤ 0 for some initial value X0, then the

investor will not start to trade X . In view of Example 2.1, it is important

to identify the trivial cases under any given dynamics. Under the XOU

model, since supx∈R(V
ξ(x) − hξb(x)) ≤ 0 implies that Jξ(x) ≤ 0 for x ∈ R,

we shall therefore focus on the case with

sup
x∈R

(V ξ(x)− hξb(x)) > 0, (3.5)

and solve for the non-trivial optimal timing strategy.
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3.1.2 Optimal Switching Approach

Under the optimal switching approach, the investor is assumed to commit

to an infinite number of trades. The sequential trading times are modeled

by the stopping times ν1, τ1, ν2, τ2, · · · ∈ T such that

0 ≤ ν1 ≤ τ1 ≤ ν2 ≤ τ2 ≤ . . . .

A share of the risky asset is bought and sold, respectively, at times νi and

τi, i ∈ N. The investor’s optimal timing to trade would depend on the

initial position. Precisely, under the XOU model, if the investor starts

with a zero position, then the first trading decision is when to buy and the

corresponding optimal switching problem is

J̃ξ(x) = sup
Λ0

Ex

{ ∞∑
n=1

[e−rτnhξs(Xτn)− e−rνnhξb(Xνn)]

}
, (3.6)

with the set of admissible stopping times Λ0 = (ν1, τ1, ν2, τ2, . . . ), and the

reward functions hξs and hξb defined in (3.4). On the other hand, if the

investor is initially holding a share of the asset, then the investor first

determines when to sell and solves

Ṽ ξ(x) = sup
Λ1

Ex

{
e−rτ1hξs(Xτ1) +

∞∑
n=2

[e−rτnhξs(Xτn)− e−rνnhξb(Xνn)]

}
,

(3.7)

with Λ1 = (τ1, ν2, τ2, ν3, . . . ).

In summary, the optimal double stopping and switching problems differ

in the number of trades. Observe that any strategy for the double stopping

problems (3.2) and (3.3) are also candidate strategies for the switching

problems (3.7) and (3.6) respectively. Therefore, it follows that V ξ(x) ≤
Ṽ ξ(x) and Jξ(x) ≤ J̃ξ(x). Our objective is to derive and compare the

corresponding optimal timing strategies under these two approaches.

3.2 Summary of Analytical Results

We first summarize our analytical results and illustrate the optimal trading

strategies. The method of solutions and their proofs will be discussed in

Section 3.3. We begin with the optimal stopping problems (3.2) and (3.3)

under the XOU model.
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3.2.1 Optimal Double Stopping Problem

We now present the result for the optimal exit timing problem under the

XOU model. First, we obtain a bound for the value function V ξ.

Lemma 3.1. There exists a positive constant Kξ such that, for all x ∈ R,

0 ≤ V ξ(x) ≤ ex +Kξ.

Theorem 3.2. The optimal liquidation problem (3.2) admits the solution

V ξ(x) =

eb
ξ∗

−cs
F (bξ∗) F (x) if x < bξ∗,

ex − cs if x ≥ bξ∗,
(3.8)

where the optimal log-price level bξ∗ for liquidation is uniquely found from

the equation

ebF (b) = (eb − cs)F
′(b). (3.9)

The optimal liquidation time is given by

τξ∗ = inf{ t ≥ 0 : Xt ≥ bξ∗ } = inf{ t ≥ 0 : ξt ≥ eb
ξ∗ }.

We now turn to the optimal entry timing problem, and give a bound on

the value function Jξ.

Lemma 3.3. There exists a positive constant K̂ξ such that, for all x ∈ R,

0 ≤ Jξ(x) ≤ K̂ξ.

Theorem 3.4. Under the XOU model, the optimal entry timing problem

(3.3) admits the solution

Jξ(x) =


P ξF (x) if x ∈ (−∞, aξ∗),

V ξ(x)− (ex + cb) if x ∈ [aξ∗, dξ∗],

QξG(x) if x ∈ (dξ∗,+∞),

(3.10)

with the constants

P ξ =
V ξ(aξ∗)− (ea

ξ∗
+ cb)

F (aξ∗)
, Qξ =

V ξ(dξ∗)− (ed
ξ∗

+ cb)

G(dξ∗)
,

and the critical levels aξ∗ and dξ∗ satisfying, respectively,

F (a)(V ξ
′
(a)− ea) = F ′(a)(V ξ(a)− (ea + cb)), (3.11)

G(d)(V ξ ′(d) − ed) = G′(d)(V ξ(d)− (ed + cb)). (3.12)

The optimal entry time is given by

νaξ∗,dξ∗ := inf{t ≥ 0 : Xt ∈ [aξ∗, dξ∗]}.
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In summary, the investor should exit the market as soon as the price

reaches the upper level eb
ξ∗
. In contrast, the optimal entry timing is the

first time that the XOU price ξ enters the interval [ea
ξ∗
, ed

ξ∗
]. In other

words, it is optimal to wait if the current price ξt is too close to zero, i.e.

if ξt < ea
ξ∗
. Moreover, the interval [ea

ξ∗
, ed

ξ∗
] is contained in (0, eb

ξ∗
), and

thus, the continuation region for market entry is disconnected. One reason

for this phenomenon is that waiting to enter the market helps reduce the

effective transaction cost due to discounting. This effect outweighs the

spread in values between the value function and current asset value in this

case.

3.2.2 Optimal Switching Problem

We now turn to the optimal switching problems defined in (3.6) and (3.7)

under the XOU model. To facilitate the presentation, we denote

fs(x) := (µθ +
1

2
σ2 − r)− µx+ rcse

−x,

fb(x) := (µθ +
1

2
σ2 − r)− µx− rcbe

−x.

Applying the operator L (see (2.9)) to hξs and h
ξ
b (see (3.4)), it follows that

(L − r)hξs(x) = exfs(x) and (L − r)hξb(x) = exfb(x). Therefore, fs (resp.

fb) preserves the sign of (L− r)hξs (resp. (L− r)hξb). It can be shown that

fs(x) = 0 has a unique root, denoted by xs. However,

fb(x) = 0 (3.13)

may have no root, a single root, or two distinct roots, denoted by xb1 and

xb2, if they exist. The following observations will also be useful:

fs(x)

{
> 0 if x < xs,

< 0 if x > xs,
and fb(x)

{
< 0 if x ∈ (−∞, xb1) ∪ (xb2,+∞),

> 0 if x ∈ (xb1, xb2).

(3.14)

We first obtain bounds for the value functions J̃ξ and Ṽ ξ.

Lemma 3.5. There exists positive constants C1 and C2 such that

0 ≤ J̃ξ(x) ≤ C1,

0 ≤ Ṽ ξ(x) ≤ ex + C2.
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The optimal switching problems have two different sets of solutions de-

pending on the problem data.

Theorem 3.6. The optimal switching problem defined in (3.6)–(3.7) admits

the solution

J̃ξ(x) = 0, for x ∈ R, and Ṽ ξ(x) =

 eb
ξ∗

−cs
F (bξ∗) F (x) if x < bξ∗,

ex − cs if x ≥ bξ∗,

(3.15)

where bξ∗ satisfies (3.9), if any of the following mutually exclusive condi-

tions holds:

(i) There is no root or a single root to equation (3.13).

(ii) There are two distinct roots to (3.13). Also

∃ ã∗ ∈ (xb1, xb2) such that F (ã∗)eã
∗
= F ′(ã∗)(eã

∗
+ cb), (3.16)

and

eã
∗
+ cb

F (ã∗)
≥ eb

ξ∗ − cs
F (bξ∗)

. (3.17)

(iii) There are two distinct roots to (3.13) but (3.16) does not hold.

In Theorem 3.6, J̃ξ = 0 means that it is optimal not to enter the

market at all. On the other hand, if one starts with a unit of the underlying

asset, the optimal switching problem reduces to a problem of optimal single

stopping. Indeed, the investor will never re-enter the market after exit. This

is identical to the optimal liquidation problem (3.2) where there is only a

single (exit) trade. The optimal strategy in this case is the same as V ξ in

(3.8) – it is optimal to exit the market as soon as the log-price X reaches

the threshold bξ∗.

We also address the remaining case when none of the conditions in

Theorem 3.6 hold. As we show next, the optimal strategy will involve both

entry and exit thresholds.

Theorem 3.7. If there are two distinct roots to (3.13), xb1 and xb2, and

there exists a number ã∗ ∈ (xb1, xb2) satisfying (3.16) such that

eã
∗
+ cb

F (ã∗)
<
eb

ξ∗ − cs
F (bξ∗)

, (3.18)
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then the optimal switching problem (3.6)-(3.7) admits the solution

J̃ξ(x) =


P̃F (x) if x ∈ (−∞, ã∗),

K̃F (x) − (ex + cb) if x ∈ [ã∗, d̃∗],

Q̃G(x) if x ∈ (d̃∗,+∞),

(3.19)

Ṽ ξ(x) =

{
K̃F (x) if x ∈ (−∞, b̃∗),

Q̃G(x) + ex − cs if x ∈ [b̃∗,+∞),
(3.20)

where ã∗ satisfies (3.16), and

P̃ = K̃ − eã
∗
+ cb

F (ã∗)
,

K̃ =
ed̃

∗
G(d̃∗)− (ed̃

∗
+ cb)G

′(d̃∗)

F ′(d̃∗)G(d̃∗)− F (d̃∗)G′(d̃∗)
,

Q̃ =
ed̃

∗
F (d̃∗)− (ed̃

∗
+ cb)F

′(d̃∗)

F ′(d̃∗)G(d̃∗)− F (d̃∗)G′(d̃∗)
,

There exist unique critical levels d̃∗ and b̃∗ which are found from the non-

linear system of equations:

edG(d)− (ed + cb)G
′(d)

F ′(d)G(d) − F (d)G′(d)
=
ebG(b)− (eb − cs)G

′(b)

F ′(b)G(b)− F (b)G′(b)
, (3.21)

edF (d)− (ed + cb)F
′(d)

F ′(d)G(d) − F (d)G′(d)
=
ebF (b)− (eb − cs)F

′(b)

F ′(b)G(b)− F (b)G′(b)
. (3.22)

Moreover, the critical levels are such that d̃∗ ∈ (xb1, xb2) and b̃
∗ > xs.

The optimal strategy in Theorem 3.7 is described by the stopping times

Λ∗
0 = (ν∗1 , τ

∗
1 , ν

∗
2 , τ

∗
2 , . . . ), and Λ∗

1 = (τ∗1 , ν
∗
2 , τ

∗
2 , ν

∗
3 , . . . ), with

ν∗1 = inf{t ≥ 0 : Xt ∈ [ã∗, d̃∗]},
τ∗i = inf{t ≥ ν∗i : Xt ≥ b̃∗}, and ν∗i+1 = inf{t ≥ τ∗i : Xt ≤ d̃∗}, for i ≥ 1.

In other words, it is optimal to buy if the price is within [eã
∗
, ed̃

∗
] and then

sell when the price ξ reaches eb̃
∗
. The structure of the buy/sell regions is

similar to that in the double stopping case (see Theorems 3.2 and 3.4). In

particular, ã∗ is the same as aξ∗ in Theorem 3.4 since the equations (3.11)

and (3.16) are equivalent. The level ã∗ is only relevant to the first purchase.

Mathematically, ã∗ is determined separately from d̃∗ and b̃∗. If we start

with a zero position, then it is optimal to enter if the price ξ lies in the
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interval [eã
∗
, ed̃

∗
]. However, on all subsequent trades, we enter as soon as

the price hits ed̃
∗
from above (after exiting at eb̃

∗
previously). Hence, the

lower level ã∗ becomes irrelevant after the first entry.

Note that the conditions that differentiate Theorems 3.6 and 3.7 are

exhaustive and mutually exclusive. If the conditions in Theorem 3.6 are

violated, then the conditions in Theorem 3.7 must hold. In particular,

condition (3.16) in Theorem 3.6 holds if and only if∣∣∣∣∫ xb1

−∞
Ψ(x)exfb(x)dx

∣∣∣∣ < ∫ xb2

xb1

Ψ(x)exfb(x)dx, (3.23)

where

Ψ(x) =
2F (x)

σ2W(x)
, and W(x) = F ′(x)G(x) − F (x)G′(x) > 0. (3.24)

Inequality (3.23) can be numerically verified given the model inputs.

3.2.3 Numerical Examples

We numerically implement Theorems 3.2, 3.4, and 3.7, and illustrate the

associated entry/exit thresholds. In Figure 3.1(a), the optimal entry levels

dξ∗ and d̃∗ rise, respectively, from 0.7425 to 0.7912 and from 0.8310 to

0.8850, as the speed of mean reversion µ increases from 0.5 to 1. On the

other hand, the critical exit levels bξ∗ and b̃∗ remain relatively flat over µ.

As for the critical lower level aξ∗ from the optimal double stopping problem,

Figure 3.1(b) shows that it is decreasing in µ. The same pattern holds for

the optimal switching problem since the critical lower level ã∗ is identical

to aξ∗, as noted above.

We now look at the impact of transaction cost in Figure 3.2. On the left

panel, we observe that as the transaction cost cb increases, the gap between

the optimal switching entry and exit levels, d̃∗ and b̃∗, widens. This means

that it is optimal to delay both entry and exit. Intuitively, to counter the

fall in profit margin due to an increase in transaction cost, it is necessary

to buy at a lower price and sell at a higher price to seek a wider spread. In

comparison, the exit level bξ∗ from the double stopping problem is known

analytically to be independent of the entry cost, so it stays constant as cb
increases in the figure. In contrast, the entry level dξ∗, however, decreases

as cb increases but much less significantly than d̃∗. Figure 3.2(b) shows that

aξ∗, which is the same for both the optimal double stopping and switching

problems, increases monotonically with cb.

In both Figures 3.1 and 3.2, we can see that the interval of the entry

and exit levels, (d̃∗, b̃∗), associated with the optimal switching problem lies
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Fig. 3.1 (a) The optimal entry and exit levels vs speed of mean reversion µ.
Parameters: σ = 0.2, θ = 1, r = 0.05, cs = 0.02, cb = 0.02. (b) The critical
lower level of entry region aξ∗ decreases monotonically from -8.4452 to -9.2258
as µ increases from 0.5 to 1. Parameters: σ = 0.2, θ = 1, r = 0.05, cs = 0.02,
cb = 0.02.
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Fig. 3.2 (a) The optimal entry and exit levels vs transaction cost cb. Parameters:
µ = 0.6, σ = 0.2, θ = 1, r = 0.05, cs = 0.02. (b) The critical lower level of entry
region aξ∗ increases monotonically from -9.4228 to -6.8305 as cb increases from
0.01 to 0.1. Parameters: µ = 0.6, σ = 0.2, θ = 1, r = 0.05, cs = 0.02.
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within the corresponding interval (dξ∗, bξ∗) from the optimal double stop-

ping problem. Intuitively, with the intention to enter the market again

upon completing the current trade, the trader is more willing to enter/exit

earlier, meaning a narrowed waiting region.

Figure 3.3 shows a simulated path and the associated entry/exit levels.

As the path starts at ξ0 = 2.6011 > ed̃
∗
> ed

ξ∗
, the investor waits to enter

until the path reaches the lower level ed
ξ∗

(double stopping) or ed̃
∗
(switch-

ing) according to Theorems 3.4 and 3.7. After entry, the investor exits at

the optimal level eb
ξ∗

(double stopping) or eb̃
∗
(switching). The optimal

switching thresholds imply that the investor first enters the market on day

188 where the underlying asset price is 2.3847. In contrast, the optimal

double stopping timing yields a later entry on day 845 when the price first

reaches ed
ξ∗

= 2.1754. As for the exit timing, under the optimal switch-

ing setting, the investor exits the market earlier on day 268 at the price

eb̃
∗
= 2.8323. The double stopping timing is much later on day 1160 when

the price reaches eb
ξ∗

= 3.0988. In addition, under the optimal switching

problem, the investor executes more trades within the same time span. As

seen in the figure, the investor would have completed two ‘roundtrip’ (buy-

and-sell) trades in the market before the double stopping investor liquidates

for the first time.

3.3 Methods of Solution

We now provide detailed proofs for our analytical results in Section 3.2 be-

ginning with Theorems 3.2 and 3.4 for the optimal double stopping prob-

lems.

3.3.1 Optimal Double Stopping Problem

3.3.1.1 Optimal Exit Timing

To facilitate the presentation, we define the function Hξ associated with

the reward function hξs (see (3.4)) by following (2.17) for H (with h replaced

by hξ). We summarize the functional properties of Hξ.

Lemma 3.8. The function Hξ is continuous on [0,+∞), twice differen-

tiable on (0,+∞) and possesses the following properties:
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Fig. 3.3 A sample exponential OU path, along with entry and exit levels. Under

the double stopping setting, the investor enters at νdξ∗ = inf{t ≥ 0 : ξt ≤ ed
ξ∗

=

2.1754} with dξ∗ = 0.7772, and exit at τbξ∗ = inf{t ≥ νdξ∗ : ξt ≥ eb
ξ∗

= 3.0988}
with bξ∗ = 1.1310. The optimal switching investor enters at νd̃∗ = inf{t ≥ 0 :

ξt ≤ ed̃
∗

= 2.3888} with d̃∗ = 0.8708, and exit at τb̃∗ = inf{t ≥ νd̃∗ : ξt ≥
eb̃

∗
= 2.8323} with b̃∗ = 1.0411. The critical lower threshold of entry region is

ea
ξ∗

= 1.264 · 10−4 with aξ∗ = −8.9760 (not shown in this figure). Parameters:
µ = 0.8, σ = 0.2, θ = 1, r = 0.05, cs = 0.02, cb = 0.02.

(i) Hξ(0) = 0, and

Hξ(z)

{
< 0 if z ∈ (0, ψ(ln cs)),

> 0 if z ∈ (ψ(ln cs),+∞).

(ii) Hξ(z) is strictly increasing for z ∈ (ψ(ln cs),+∞), and Hξ ′(z) → 0

as z → +∞.

(iii)

Hξ(z) is

{
convex if z ∈ (0, ψ(xs)],

concave if z ∈ [ψ(xs),+∞).

From Lemma 3.8, we see that Hξ shares a very similar structure as H .

Using the properties of Hξ, we now solve for the optimal exit timing.
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Proof of Theorem 3.2 We look for the value function of the form:

V ξ(x) = G(x)W ξ(ψ(x)), whereW ξ is the smallest concave majorant of Hξ.

By Lemma 3.8, we deduce that Hξ is concave over [ψ(xs),+∞), strictly

positive over (ψ(ln cs),+∞), and Hξ ′(z) → 0 as z → +∞. Therefore, there

exists a unique number zξ∗ > ψ(xs) ∨ ψ(ln cs) such that

Hξ(zξ∗)

zξ∗
= Hξ ′(zξ∗). (3.25)

In turn, the smallest concave majorant of Hξ is given by

W ξ(z) =

{
zH

ξ(zξ∗)
zξ∗ if z ∈ [0, zξ∗),

Hξ(z) if z ∈ [zξ∗,+∞).

Substituting bξ∗ = ψ−1(zξ∗) into (3.25), we have

Hξ(zξ∗)

zξ∗
=
Hξ(ψ(bξ∗))

ψ(bξ∗)
=
eb

ξ∗ − cs
F (bξ∗)

,

and

Hξ ′(zξ∗) =
eψ

−1(zξ∗)G(ψ−1(zξ∗))− (eψ
−1(zξ∗) − cs)G

′(ψ−1(zξ∗))

F ′(ψ−1(zξ∗))G(ψ−1(zξ∗))− F (ψ−1(zξ∗))G′(ψ−1(zξ∗))

=
eb

ξ∗
G(bξ∗)− (eb

ξ∗ − cs)G
′(bξ∗)

F ′(bξ∗)G(bξ∗)− F (bξ∗)G′(bξ∗)
.

Equivalently, we can express (3.25) in terms of bξ∗:

eb
ξ∗ − cs
F (bξ∗)

=
eb

ξ∗
G(bξ∗)− (eb

ξ∗ − cs)G
′(bξ∗)

F ′(bξ∗)G(bξ∗)− F (bξ∗)G′(bξ∗)
,

which is equivalent to (3.9) after simplification. As a result, we have

W ξ(ψ(x)) =

ψ(x)H
ξ(zξ∗)
zξ∗ = F (x)

G(x)
eb

ξ∗
−cs

F (bξ∗) if x ∈ (−∞, bξ∗),

Hξ(ψ(x)) = ex−cs
G(x) if x ∈ [bξ∗,+∞).

In turn, the value function V ξ(x) = G(x)W ξ(ψ(x)) is given by (3.8).

3.3.1.2 Optimal Entry Timing

We can directly follow the arguments that yield Theorem 2.3, but with

the reward as ĥξ(x) = V ξ(x) − hξb(x) = V ξ(x) − (ex + cb) and define Ĥξ

analogous to H :

Ĥξ(z) :=


ĥξ

G ◦ ψ−1(z) if z > 0,

lim
x→−∞

(ĥξ(x))+

G(x) if z = 0.
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We will look for the value function with the form: Jξ(x) = G(x)Ŵ ξ(ψ(x)),

where Ŵ ξ is the smallest concave majorant of Ĥξ. The properties of Ĥξ is

given in the next lemma.

Lemma 3.9. The function Ĥξ is continuous on [0,+∞), differentiable on

(0,+∞), and twice differentiable on (0, ψ(bξ∗)) ∪ (ψ(bξ∗),+∞), and pos-

sesses the following properties:

(i) Ĥξ(0) = 0, and there exists some bξ < bξ∗ such that Ĥξ(z) < 0 for

z ∈ (0, ψ(bξ)) ∪ [ψ(bξ∗),+∞).

(ii) Ĥξ(z) is strictly decreasing for z ∈ [ψ(bξ∗),+∞).

(iii) Define the constant

xξ∗ = θ +
σ2

2µ
− r

µ
− 1.

There exist some constants xb1 and xb2, with −∞ < xb1 < xξ∗ <

xb2 < xs, that solve fb(x) = 0, such that

Ĥξ(z) is

{
convex if y ∈ (0, ψ(xb1)) ∪ (ψ(xb2),+∞)

concave if z ∈ (ψ(xb1), ψ(xb2)),

and ẑξ1 := argmaxy∈[0,+∞) Ĥ
ξ(y) ∈ (ψ(xb1), ψ(xb2)).

Figure 3.4 gives a sketch of Ĥξ according to Lemma 3.9, and illustrate

the corresponding smallest concave majorant Ŵ ξ.

0 z

Ĥξ

Ŵ ξ

ẑξ0 = ψ(aξ∗)

ẑξ1 = ψ(dξ∗)

ψ(bξ)
ψ(bξ∗)

Fig. 3.4 Sketches of Ĥξ and Ŵ ξ. The smallest concave majorant Ŵ ξ is a straight
line tangent to Ĥξ at ẑξ0 on [0, ẑξ0), coincides with Ĥξ on [ẑξ0 , ẑ

ξ
1 ], and is equal to

Ĥξ(ẑξ1) on (ẑξ1 ,+∞).
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Proof of Theorem 3.4 As in Lemma 3.9 and Figure 3.4, by the definition

of the maximizer of Ĥξ, ẑξ1 satisfies the equation

Ĥξ′(ẑξ1) = 0. (3.26)

Also there exists a unique number ẑξ0 ∈ (xb1, ẑ
ξ
1) such that

Ĥξ(ẑξ0)

ẑξ0
= Ĥξ′(ẑξ0). (3.27)

Using (3.26), (3.27) and Figure 3.4, Ŵ ξ is a straight line tangent to Ĥξ

at ẑξ0 on [0, ẑξ0), coincides with Ĥξ on [ẑξ0, ẑ
ξ
1 ], and is equal to Ĥξ(ẑξ1) on

(ẑξ1 ,+∞). As a result,

Ŵ ξ(z) =


zĤξ′(ẑξ0) if z ∈ [0, ẑξ0),

Ĥξ(z) if z ∈ [ẑξ0 , ẑ
ξ
1],

Ĥξ(ẑξ1) if z ∈ (ẑξ1 ,+∞).

Substituting aξ∗ = ψ−1(ẑξ0) into (3.27), we have

Ĥξ(ẑξ0)

ẑξ0
=
V ξ(aξ∗)− (ea

ξ∗
+ cb)

F (aξ∗)
,

and

Ĥξ′(ẑξ0) =
G(aξ∗)(V ξ

′
(aξ∗)− ea

ξ∗
)−G′(aξ∗)(V ξ(aξ∗)− (ea

ξ∗
+ cb))

F ′(aξ∗)G(aξ∗)− F (aξ∗)G′(aξ∗)
.

Equivalently, we can express condition (3.27) in terms of aξ∗:

V ξ(aξ∗)− (ea
ξ∗

+ cb)

F (aξ∗)

=
G(aξ∗)(V ξ

′
(aξ∗)− ea

ξ∗
)−G′(aξ∗)(V ξ(aξ∗)− (ea

ξ∗
+ cb))

F ′(aξ∗)G(aξ∗)− F (aξ∗)G′(aξ∗)
,

which is equivalent to (3.11) after simplification. Also, we can express

Ĥξ′(ẑξ0) in terms of aξ∗:

Ĥξ′(ẑξ0) =
Ĥξ(ẑξ0)

ẑξ0
=
V ξ(aξ∗)− (ea

ξ∗
+ cb)

F (aξ∗)
= P ξ.

In addition, substituting dξ∗ = ψ−1(ẑξ1) into (3.26), we have

G(dξ∗)(V ξ
′
(dξ∗)− ed

ξ∗
)−G′(dξ∗)(V ξ(dξ∗)− (ed

ξ∗
+ cb))

F ′(dξ∗)G(dξ∗)− F (dξ∗)G′(dξ∗)
= 0,

which can be further simplified to (3.12). Moreover, Ĥξ(ẑξ1) can be written

in terms of dξ∗:

Ĥξ(ẑξ1) =
V ξ(dξ∗)− (ed

ξ∗
+ cb)

G(dξ∗)
= Qξ.

By direct substitution of the expressions for Ŵ ξ and the associated func-

tions, we obtain the value function in (3.10).
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3.3.2 Optimal Switching Problem

Using the results derived in previous sections, we can infer the structure of

the buy and sell regions of the switching problem and then proceed to verify

its optimality. In this section, we provide detailed proofs for Theorems 3.6

and 3.7.

Proof of Theorem 3.6 (Part 1) First, with hξs(x) = ex − cs, we differ-

entiate to get (
hξs
F

)′

(x) =
(ex − cs)F

′(x) − exF (x)

F 2(x)
. (3.28)

On the other hand, by Ito’s lemma, we have

hξs(x) = Ex{e−rthξs(Xt)} − Ex

{∫ t

0

e−ru(L − r)hξs(Xu)du

}
.

Note that

Ex{e−rthξs(Xt)} = e−rt
(
e(x−θ)e

−µt+θ+σ2

4µ (1−e−2µt) − cs

)
→ 0 as t→ +∞.

This implies that

hξs(x) = −Ex

{∫ +∞

0

e−ru(L − r)hξs(Xu)du

}
= −G(x)

∫ x

−∞
Ψ(s)(L − r)hξs(s)ds

− F (x)

∫ +∞

x

Φ(s)(L − r)hξs(s)ds, (3.29)

where Ψ is defined in (3.24) and

Φ(x) :=
2G(x)

σ2W(x)
. (3.30)

The last line follows from Theorem 50.7 in Rogers and Williams (2000,

p. 293). Dividing both sides by F (x) and differentiating the RHS of (3.29),

we obtain(
hξs
F

)′

(x) = −
(
G

F

)′
(x)

∫ x

−∞
Ψ(s)(L − r)hξs(s)ds

− G

F
(x)Ψ(x)(L − r)hξs(x)− Φ(x)(L − r)hξs(x)

=
W(x)

F 2(x)

∫ x

−∞
Ψ(s)(L − r)hξs(s)ds =

W(x)

F 2(x)
q(x),
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where

q(x) :=

∫ x

−∞
Ψ(s)(L − r)hξs(s)ds.

Since W(x), F (x) > 0, we deduce that
(
hξ
s

F

)′
(x) = 0 is equivalent to q(x) =

0. Using (3.28), we now see that (3.9) is equivalent to q(b) = 0.

Next, it follows from (3.14) that

q′(x) = Ψ(x)(L − r)hξs(x)

{
> 0 if x < xs,

< 0 if x > xs.
(3.31)

This, together with the fact that limx→−∞ q(x) = 0, implies that there

exists a unique bξ∗ such that q(bξ∗) = 0 if and only if limx→+∞ q(x) < 0.

Next, we show that this inequality holds. By the definition of hξs and F ,

we have

hξs(x)

F (x)
=
ex − cs
F (x)

> 0 for x > ln cs, lim
x→+∞

hξs(x)

F (x)
= 0,(

hξs
F

)′

(x) =
W(x)

F 2(x)

∫ x

−∞
Ψ(s)(L − r)hξs(s)ds =

W(x)

F 2(x)
q(x). (3.32)

Since q is strictly decreasing in (xs,+∞), the above hold true if and only

if limx→+∞ q(x) < 0. Therefore, we conclude that there exits a unique bξ∗

such that ebF (b) = (eb − cs)F
′(b). Using (3.31), we see that

bξ∗ > xs and q(x) > 0 for all x < bξ∗. (3.33)

Observing that eb
ξ∗
, F (bξ∗), F ′(bξ∗) > 0, we can conclude that hξs(b

ξ∗) =

eb
ξ∗ − cs > 0, or equivalently bξ∗ > ln cs.

We now verify by direct substitution that Ṽ ξ(x) and J̃ξ(x) in (3.15)

satisfy the pair of variational inequalities:

min{rJ̃ξ(x) − LJ̃ξ(x), J̃ξ(x)− (Ṽ ξ(x)− hξb(x))} = 0, (3.34)

min{rṼ ξ(x) − LṼ ξ(x), Ṽ ξ(x) − (J̃ξ(x) + hξs(x))} = 0. (3.35)

First, note that J̃ξ(x) is identically 0 and thus satisfies the equality

(r − L)J̃ξ(x) = 0. (3.36)

To show that J̃ξ(x)− (Ṽ ξ(x)− hξb(x)) ≥ 0, we look at the disjoint intervals

(−∞, bξ∗) and [bξ∗,∞) separately. For x ≥ bξ∗, we have

Ṽ ξ(x)− hξb(x) = −(cb + cs),
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which implies J̃ξ(x) − (Ṽ ξ(x) − hξb(x)) = cb + cs ≥ 0. When x < bξ∗, the

inequality

J̃ξ(x)− (Ṽ ξ(x)− hξb(x)) ≥ 0

can be rewritten as

hξb(x)

F (x)
=
ex + cb
F (x)

≥ eb
ξ∗ − cs
F (bξ∗)

=
hξs(b

ξ∗)

F (bξ∗)
. (3.37)

To determine the necessary conditions for this to hold, we consider the

derivative of the LHS of (3.37):(
hξb
F

)′

(x) =
W(x)

F 2(x)

∫ x

−∞
Ψ(s)(L − r)hξb(s)ds (3.38)

=
W(x)

F 2(x)

∫ x

−∞
Ψ(s)esfb(s)ds.

If fb(x) = 0 has no roots, then (L − r)hξb(x) is negative for all x ∈ R. On

the other hand, if there is only one root x̃, then (L − r)hξb(x̃) = 0 and

(L − r)hξb(x) < 0 for all other x. In either case, hξb(x)/F (x) is a strictly

decreasing function and (3.37) is true.

Otherwise if fb(x) = 0 has two distinct roots xb1 and xb2 with xb1 < xb2,

then

(L − r)hξb(x)

{
< 0 if x ∈ (−∞, xb1) ∪ (xb2,+∞),

> 0 if x ∈ (xb1, xb2).
(3.39)

Applying (3.39) to (3.38), the derivative (hξb/F )
′(x) is negative on

(−∞, xb1) since the integrand in (3.38) is negative. Hence, hξb(x)/F (x)

is strictly decreasing on (−∞, xb1). We further note that bξ∗ > xs > xb2.

Observe that on the interval (xb1, xb2), the intergrand is positive. It is

therefore possible for (hξb/F )
′ to change sign at some x ∈ (xb1, xb2). For

this to happen, the positive part of the integral must be larger than the ab-

solute value of the negative part. In other words, (3.23) must hold. If (3.23)

holds, then there must exist some ã∗ ∈ (xb1, xb2) such that (hξb/F )
′(ã∗) = 0,

or equivalently (3.16) holds:(
hξb
F

)′

(ã∗) =
hξ

′
b (ã

∗)

F (ã∗)
− hξb(ã

∗)F ′(ã∗)

F 2(ã∗)
=

eã
∗

F (ã∗)
− (eã

∗
+ cb)F (ã

∗)′

F 2(ã∗)
.

If (3.16) holds, then we have∣∣∣∣∫ xb1

−∞
Ψ(x)exfb(x)dx

∣∣∣∣ = ∫ ã∗

xb1

Ψ(x)exfb(x)dx.
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In addition, since ∫ xb2

ã∗
Ψ(x)exfb(x)dx > 0,

it follows that ∣∣∣∣∫ xb1

−∞
Ψ(x)exfb(x)dx

∣∣∣∣ < ∫ xb2

xb1

Ψ(x)exfb(x)dx.

This establishes the equivalence between (3.16) and (3.23). Under this

condition, hξb/F is strictly decreasing on (xb1, ã
∗). Then, either it is

strictly increasing on (ã∗, bξ∗), or there exists some x̄ ∈ (xb2, b
ξ∗) such

that hξb(x)/F (x) is strictly increasing on (ã∗, x̄) and strictly decreasing on

(x̄, bξ∗). In both cases, (3.37) is true if and only if (3.17) holds.

Alternatively, if (3.23) does not hold, then by in (3.38), the integral

(hξb/F )
′ will always be negative. This means that the function hξb(x)/F (x)

is strictly decreasing for all x ∈ (−∞, bξ∗), in which case (3.37) holds.

We are thus able to show that (3.34) holds, in particular the minimum

of 0 is achieved as a result of (3.36). To prove (3.35), we go through a

similar procedure. To check that

(r − L)Ṽ ξ(x) ≥ 0

holds, we consider two cases. First when x < bξ∗, we get

(r − L)Ṽ ξ(x) = eb
ξ∗ − cs
F (bξ∗)

(r − L)F (x) = 0.

On the other hand, when x ≥ bξ∗, the inequality holds

(r − L)Ṽ ξ(x) = (r − L)hξs(x) > 0,

since bξ∗ > xs (first inequality of (3.33)).

Similarly, when x ≥ bξ∗, we have

Ṽ ξ(x)− (J̃ξ(x) + hξs(x)) = hξs(x)− hξs(x) = 0.

When x < bξ∗, the inequality holds:

Ṽ ξ(x) − (J̃ξ(x) + hξs(x)) =
hξs(b

ξ∗)

F (bξ∗)
F (x)− hξs(x) ≥ 0,

which is equivalent to
hξ
s(x)
F (x) ≤ hξ

s(b
ξ∗)

F (bξ∗) , due to (3.32) and (3.33).



November 12, 2015 12:34 Optimal Mean Reversion Trading... b2296 page 70

70 Optimal Mean Reversion Trading

Proof of Theorem 3.7 (Part 1) Define the functions

qG(x, z) =

∫ +∞

x

Φ(s)(L − r)hξb(s)ds−
∫ +∞

z

Φ(s)(L − r)hξs(s)ds,

qF (x, z) =

∫ x

−∞
Ψ(s)(L − r)hξb(s)ds −

∫ z

−∞
Ψ(s)(L − r)hξs(s)ds,

where Φ and Ψ are given in (3.30) and (3.24), respectively. We look for the

points d̃∗ < b̃∗ such that

qG(d̃
∗, b̃∗) = 0, and qF (d̃

∗, b̃∗) = 0.

This is because these two equations are equivalent to (3.21) and (3.22),

respectively.

Now we start to solve the equations by first narrowing down the range

for d̃∗ and b̃∗. Observe that

qG(x, z) =

∫ z

x

Φ(s)(L − r)hξb(s)ds+

∫ ∞

z

Φ(s)[(L − r)(hξb(s)− hξs(s)]ds

=

∫ z

x

Φ(s)(L − r)hξb(s)ds− r(cb + cs)

∫ ∞

z

Φ(s)ds

< 0, (3.40)

for all x and z such that xb2 ≤ x < z. Therefore, d̃∗ ∈ (−∞, xb2).

Since bξ∗ > xs satisfies q(b
ξ∗) = 0 and ã∗ < xb2 satisfies (3.16), we have

lim
z→+∞

qF (x, z)

=

∫ x

−∞
Ψ(s)(L − r)hξb(s)ds− q(bξ∗)−

∫ +∞

bξ∗
Ψ(s)(L − r)hξs(s)ds

> 0,

for all x ∈ (ã∗, xb2). Also, we note that

∂qF
∂z

(x, z) = −Ψ(z)(L− r)hξs(z)

{
< 0 if z < xs,

> 0 if z > xs,
(3.41)

and

qF (x, x) =

∫ x

−∞
Ψ(s)(L − r)

[
hξb(s)− hξs(s)

]
ds

= −r(cb + cs)

∫ x

−∞
Ψ(s)ds < 0. (3.42)

Then, (3.41) and (3.42) imply that there exists a unique function β :

[ã∗, xb2) �→ R s.t. β(x) > xs and

qF (x, β(x)) = 0. (3.43)
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Differentiating (3.43) with respect to x, we see that

β′(x) =
Ψ(x)(L − r)hξb(x)

Ψ(β(x))(L − r)hξs(β(x))
< 0,

for all x ∈ (xb1, xb2). In addition, by the facts that bξ∗ > xs satisfies

q(bξ∗) = 0, ã∗ satisfies (3.16), and the definition of qF , we have

β(ã∗) = bξ∗.

By (3.40), we have limx↑xb2
qG(x, β(x)) < 0. By computation, we get

that

d

dx
qG(x, β(x)) = −Φ(x)Ψ(β(x)) − Φ(β(x))Ψ(x)

Ψ(β(x))
(L − r)hξb(x)

= −Ψ(x)

[
G(x)

F (x)
− G(β(x))

F (β(x))

]
(L − r)hξb(x) < 0,

for all x ∈ (xb1, xb2). Therefore, there exists a unique d̃∗ such that

qG(d̃
∗, β(d̃∗)) = 0 if and only if

qG(ã
∗, β(ã∗)) > 0.

The above inequality holds if (3.18) holds. Indeed, direct computation

yields the equivalence:

qG(ã
∗, β(ã∗))

=

∫ +∞

ã∗
Φ(s)(L − r)hξb(s)ds−

∫ +∞

bξ∗
Φ(s)(L − r)hξs(s)ds

= −h
ξ
b(ã

∗)

F (ã∗)
− G(bξ∗)

F (bξ∗)

∫ bξ∗

−∞
Ψ(s)(L − r)hξs(s)ds−

∫ +∞

bξ∗
Φ(s)(L − r)hξs(s)ds

= −e
ã∗ + cb
F (ã∗)

+
eb

ξ∗ − cs
F (bξ∗)

.

When this solution exists, we have

d̃∗ ∈ (xb1, xb2) and b̃
∗ := β(d̃∗) > xs.

Next, we show that the functions J̃ξ and Ṽ ξ given in (3.19) and (3.20)

satisfy the pair of VIs in (3.34) and (3.35). In the same vein as the proof

for the Theorem 3.6, we show

(r − L)J̃ξ(x) ≥ 0

by examining the 3 disjoint regions on which J̃ξ(x) assume different forms.

When x < ã∗,

(r − L)J̃ξ(x) = P̃ (r − L)F (x) = 0.
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Next, when x > d̃∗,

(r − L)J̃ξ(x) = Q̃(r − L)G(x) = 0.

Finally for x ∈ [ã∗, d̃∗],

(r − L)J̃ξ(x) = (r − L)(K̃F (x)− hξb(x)) = −(r − L)hξb(x) > 0,

as a result of (3.39) since ã∗, d̃∗ ∈ (xb1, xb2).

Next, we verify that

(r − L)Ṽ ξ(x) ≥ 0.

Indeed, we have (r − L)Ṽ ξ(x) = K̃(r − L)F (x) = 0 for x < b̃∗. When

x ≥ b̃∗, we get the inequality (r − L)Ṽ ξ(x) = (r − L)(Q̃G(x) + hξs(x)) =

(r − L)hξs(x) > 0 since b̃∗ > xs and due to (3.14).

It remains to show that J̃ξ(x)−(Ṽ ξ(x)−hξb(x)) ≥ 0 and Ṽ ξ(x)−(J̃ξ(x)+

hξs(x)) ≥ 0. When x < ã∗, we have

J̃ξ(x)− (Ṽ ξ(x)− hξb(x)) = (P̃ − K̃)F (x) + (ex + cb)

= −F (x)e
ã∗ + cb
F (ã∗)

+ (ex + cb) ≥ 0.

This inequality holds since we have shown in the proof of Theorem 3.6 that
hξ
b(x)

F (x) is strictly decreasing for x < ã∗. In addition,

Ṽ ξ(x)− (J̃ξ(x) + hξs(x)) = F (x)
eã

∗
+ cb

F (ã∗)
− (ex − cs) ≥ 0,

since (3.31) (along with the ensuing explanation) implies that
hξ
s(x)
F (x) is in-

creasing for all x ≤ ã∗.

In the other region where x ∈ [ã∗, d̃∗], we have

J̃ξ(x)− (Ṽ ξ(x)− hξb(x)) = 0,

Ṽ ξ(x)− (J̃ξ(x) + hξs(x)) = hξb(x)− hξs(x) = cb + cs ≥ 0.

When x > b̃∗, it is clear that

J̃ξ(x)− (Ṽ ξ(x)− hξb(x)) = hξb(x)− hξs(x) = cb + cs ≥ 0,

Ṽ ξ(x)− (J̃ξ(x) + hξs(x)) = 0.

To establish the inequalities for x ∈ (d̃∗, b̃∗), we first denote

gJ̃ξ(x) := J̃ξ(x) − (Ṽ ξ(x) − hξb(x)) = Q̃G(x)− K̃F (x) + hξb(x)

= F (x)

∫ x

d̃∗
Φ(s)(L − r)hξb(s)ds−G(x)

∫ x

d̃∗
Ψ(s)(L − r)hξb(s)ds,

gṼ ξ(x) := Ṽ ξ(x) − (J̃ξ(x) + hξs(x)) = K̃F (x) − Q̃G(x) − hξs(x)

= F (x)

∫ b̃∗

x

Φ(s)(L − r)hξs(s)ds−G(x)

∫ b̃∗

x

Ψ(s)(L − r)hξs(s)ds.
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In turn, we compute to get

g′
J̃ξ(x) = F ′(x)

∫ x

d̃∗
Φ(s)(L − r)hξb(s)ds−G′(x)

∫ x

d̃∗
Ψ(s)(L − r)hξb(s)ds,

g′
Ṽ ξ(x) = F ′(x)

∫ b̃∗

x

Φ(s)(L − r)hξs(s)ds−G′(x)

∫ b̃∗

x

Ψ(s)(L − r)hξs(s)ds.

Recall the definition of xb2 and xs, and the fact that G′ < 0 < F ′, we

have g′
J̃ξ
(x) > 0 for x ∈ (d̃∗, xb2) and g′

Ṽ ξ
(x) < 0 for x ∈ (xs, b̃

∗). These,

together with the fact that gJ̃ξ(d̃∗) = gṼ ξ(b̃∗) = 0, imply that

gJ̃ξ(x) > 0 for x ∈ (d̃∗, xb2), and gṼ ξ(x) > 0 for x ∈ (xs, b̃
∗).

Furthermore, since we have

gJ̃ξ(b̃
∗) = cb + cs ≥ 0, gṼ ξ(d̃

∗) = cb + cs ≥ 0, (3.44)

and

(L − r)gJ̃ξ(x) = (L − r)hξb(x) < 0 for all x ∈ (xb2, b̃
∗),

(L − r)gṼ ξ(x) = −(L − r)hξs(x) < 0 for all x ∈ (d̃∗, xs). (3.45)

In view of inequalities (3.44)–(3.45), the maximum principle implies that

gJ̃ξ(x) ≥ 0 and gṼ ξ(x) ≥ 0 for all x ∈ (d̃∗, b̃∗). Hence, we conclude that

J̃(x)−(Ṽ (x)−hξb(x)) ≥ 0 and Ṽ (x)−(J̃ (x)+hξs(x)) ≥ 0 hold for x ∈ (d̃∗, b̃∗).

Proof of Theorems 3.6 and 3.7 (Part 2) We now show that the

candidate solutions in Theorems 3.6 and 3.7, denoted by j̃ξ and ṽξ, are

equal to the optimal switching value functions J̃ξ and Ṽ ξ in (3.6) and

(3.7), respectively. First, we note that j̃ξ ≤ J̃ξ and ṽξ ≤ Ṽ ξ, since J̃ξ

and Ṽ ξ dominate the expected discounted cash flow from any admissible

strategy.

Next, we show the reverse inequaities. In Part 1, we have proved that

j̃ξ and ṽξ satisfy the VIs (3.34) and (3.35). In particular, we know that

(r − L)j̃ξ ≥ 0, and (r − L)ṽξ ≥ 0. Then by Dynkin’s formula and Fatou’s

lemma, as in Øksendal (2003, p. 226), for any stopping times ζ1 and ζ2 such

that 0 ≤ ζ1 ≤ ζ2 almost surely, we have the inequalities

Ex{e−rζ1 j̃ξ(Xζ1)} ≥ Ex{e−rζ2 j̃ξ(Xζ2)}, (3.46)

Ex{e−rζ1 ṽξ(Xζ1)} ≥ Ex{e−rζ2 ṽξ(Xζ2)}. (3.47)
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For Λ0 = (ν1, τ1, ν2, τ2, . . . ), noting that ν1 ≤ τ1 almost surely, we have

j̃ξ(x) ≥ Ex{e−rν1 j̃ξ(Xν1)} (3.48)

≥ Ex{e−rν1(ṽξ(Xν1)− hξb(Xν1))} (3.49)

≥ Ex{e−rτ1 ṽξ(Xτ1)} − Ex{e−rν1hξb(Xν1)} (3.50)

≥ Ex{e−rτ1(j̃ξ(Xτ1) + hξs(Xτ1))} − Ex{e−rν1hξb(Xν1)} (3.51)

= Ex{e−rτ1 j̃ξ(Xτ1)} + Ex{e−rτ1hξs(Xτ1)− e−rν1hξb(Xν1)}, (3.52)

where (3.48) and (3.50) follow from (3.46) and (3.47) respectively. Also,

(3.49) and (3.51) follow from (3.34) and (3.35) respectively. Observe that

(3.52) is a recursion and j̃ξ(x) ≥ 0 in both Theorems 3.6 and 3.7, we obtain

j̃ξ(x) ≥ Ex

{ ∞∑
n=1

[e−rτnhξs(Xτn)− e−rνnhξb(Xνn)]

}
.

Maximizing over all Λ0 yields that j̃ξ(x) ≥ J̃ξ(x). A similar proof gives

ṽξ(x) ≥ Ṽ ξ(x).

Remark 3.10. If there is no transaction cost for entry, i.e. cb = 0, then

fb, which is now a linear function with a non-zero slope, has one root

x0. Moreover, we have fb(x) > 0 for x ∈ (−∞, x0) and fb(x) < 0 for

x ∈ (x0,+∞). This implies that the entry region must be of the form

(−∞, d0), for some number d0. Hence, the continuation region for entry is

the connected interval (d0,∞).

Remark 3.11. Let Lξ be the infinitesimal generator of the XOU process

ξ = eX , and define the function Hb(ς) := ς + cb ≡ hξb(ln ς). In other words,

we have the equivalence:

(Lξ − r)Hb(ς) ≡ (L − r)hξb(ln ς).

Referring to (3.13) and (3.14), we have either that

(Lξ − r)Hb(ς)

{
> 0 for ς ∈ (ςb1, ςb2),

< 0 for ς ∈ (0, ςb1) ∪ (ςb2,+∞),
(3.53)

where ςb1 = exb1 > 0 and ςb2 = exb2 and xb1 < xb2 are two distinct roots to

(3.13), or

(Lξ − r)Hb(ς) < 0, for ς ∈ (0, ς∗) ∪ (ς∗,+∞), (3.54)

where ς∗ = exb and xb is the single root to (3.13). In both cases, Assumption

4 of Zervos et al. (2013) is violated, and their results cannot be applied.
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Indeed, they would require that (Lξ − r)Hb(ς) is strictly negative over a

connected interval of the form (ς0,∞), for some fixed ς0 ≥ 0. However, it

is clear from (3.53) and (3.54) that such a region is disconnected.

In fact, the approach by Zervos et al. (2013) applies to the optimal

switching problems where the optimal wait-for-entry region (in log-price) is

of the form (d̃∗,∞), rather than the disconnected region (−∞, ã∗)∪(d̃∗,∞),

as in our case with an XOU underlying. Using the new inferred structure of

the wait-for-entry region, we have modified the arguments in Zervos et al.

(2013) to solve our optimal switching problem for Theorems 3.6 and 3.7.

3.4 Proofs of Lemmas

We now present detailed proofs on the properties of V ξ, Jξ, Hξ and Ĥξ.

Proof of Lemma 3.1 (Bounds of V ξ)

First, by Dynkin’s formula, we have every x ∈ R and τ ∈ T ,

Ex{e−rτeXτ } − ex = Ex

{∫ τ

0

e−rt(L − r)eXtdt

}
= Ex

{∫ τ

0

e−rteXt

(
σ2

2
+ µθ − r − µXt

)
dt

}
.

The function ex
(
σ2

2 + µθ − r − µx
)
is bounded above on R. Let M be an

upper bound, it follows that

Ex
{
e−rτeXτ

}
− ex ≤ME

{∫ τ

0

e−rtdt

}
≤ME

{∫ +∞

0

e−rtdt

}
=
M

r
:= Kξ.

Since hξs(x) = ex − cs ≤ ex, we have

Ex
{
e−rτhξs(Xτ )

}
≤ Ex

{
e−rτeXτ

}
≤ ex +Kξ.

Therefore, V ξ(x) ≤ ex +Kξ. Lastly, the choice of τ =+∞ as a candidate

stopping time implies that V ξ(x) ≥ 0.

Proof of Lemma 3.3 (Bounds of Jξ)

From the limit

lim sup
x→−∞

(ĥξ(x))+ = lim sup
x→−∞

(V ξ(x)− ex − cb)
+ = 0,
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it follows that there exists some x̂ξ0 such that (ĥξ(x))+ ≤ K̂1 for every

x ∈ (−∞, x̂ξ0) and some positive constant K̂1. Next, (ĥ
ξ(x))+ is bounded by

some positive constant K̂2 on the closed interval [x̂ξ0, b
ξ∗]. Also, (ĥξ(x))+ =

(V ξ(x)− ex− cb)
+ = (−(cs+ cb))

+ = 0 for x ≥ bξ∗. Taking K̂ξ = K̂1 ∨ K̂2,

we have (ĥξ(x))+ ≤ K̂ξ for all x ∈ R. This yields the inequality

Ex{e−rτ ĥξ(Xτ )} ≤ Ex{e−rτ(ĥξ(Xτ ))
+} ≤ Ex{e−rτK̂ξ} ≤ K̂ξ,

for every x ∈ R and every τ ∈ T . Hence, Jξ(x) ≤ K̂ξ. The admissibility of

τ = +∞ yields Jξ(x) ≥ 0.

Proof of Lemma 3.5 (Bounds of J̃ξ and Ṽ ξ)

By definition, both J̃ξ(x) and Ṽ ξ(x) are nonnegative. Using Dynkin’s for-

mula,we have

Ex
{
e−rτneXτn

}
− Ex

{
e−rνneXνn

}
= Ex

{∫ τn

νn

e−rt(L − r)eXtdt

}
= Ex

{∫ τn

νn

e−rteXt

(
σ2

2
+ µθ − r − µXt

)
dt

}
.

As we have pointed out in Section 3.4, the function ex
(
σ2

2 + µθ − r − µx
)

is bounded above on R and M is an upper bound. It follows that

Ex
{
e−rτneXτn

}
− Ex

{
e−rνneXνn

}
≤MEx

{∫ τn

νn

e−rtdt

}
.

Since ex − cs ≤ ex and ex + cb ≥ ex, we have

Ex

{ ∞∑
n=1

[e−rτnhξs(Xτn)− e−rνnhξb(Xνn)]

}

≤
∞∑
n=1

(
Ex

{
e−rτneXτn

}
− Ex

{
e−rνneXνn

})
≤

∞∑
n=1

MEx

{∫ τn

νn

e−rtdt

}
≤M

∫ ∞

0

e−rtdt =
M

r
:= C1,

which implies that 0 ≤ J̃ξ(x) ≤ C1. Similarly,

Ex

{
e−rτ1hξs(Xτ1) +

∞∑
n=2

[e−rτnhξs(Xτn)− e−rτnhξb(Xτn)]

}
≤ C1 + Ex

{
e−rτ1hξb(Xτ1)

}
.
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Letting ν1 = 0 and using Dynkin’s formula again, we have

Ex
{
e−rτ1eXτ1

}
− ex ≤ M

r
.

This implies that

Ṽ ξ(x) ≤ C1 + ex +
M

r
:= ex + C2.

Proof of Lemma 3.8 (Properties of Hξ)

The continuity and twice differentiability of Hξ on (0,+∞) follow di-

rectly from those of hξs, G and ψ. On the other hand, we have Hξ(0) :=

lim
x→−∞

(hξ
s(x))

+

G(x) = lim
x→−∞

(ex−cs)+
G(x) = lim

x→−∞
0

G(x) = 0. Hence, the continuity

of Hξ at 0 follows from

lim
z→0

Hξ(z) = lim
x→−∞

hξs(x)

G(x)
= lim

x→−∞

ex − cs
G(x)

= 0.

Next, we prove properties (i)-(iii) of Hξ.

(i) This follows trivially from the fact that ψ(x) is a strictly increasing

function and G(x) > 0.

(ii) By the definition of Hξ,

Hξ ′(z) =
1

ψ′(x)
(
hξs
G

)′(x) =
[exG(x) − (ex − cs)G

′(x)]

ψ′(x)G2(x)
, z = ψ(x).

For x ∈ (ln cs,+∞), ex−cs > 0, G′(x) < 0, so exG(x)− (ex−cs)G′(x) > 0.

Also, since both ψ′(x) and G2(x) are positive, we conclude that Hξ ′(z) > 0

for z ∈ (ψ(ln cs),+∞).

The proof of the limit of Hξ ′(z) will make use of property (iii), and is

thus deferred until after the proof of property (iii).

(iii) By differentiation, we have

Hξ ′′(z) =
2

σ2G(x)(ψ′(x))2
[(L − r)hξs](x), z = ψ(x).

Since σ2, G(x) and (ψ′(x))2 are all positive, we only need to determine the

sign of (L − r)hξs(x) = exfs(x). Hence, property (iii) follows from (3.14).

To find the limit of Hξ ′(z), we first observe that

lim
x→+∞

hξs(x)

F (x)
= 0. (3.55)
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Indeed, we have

lim
x→+∞

hξs(x)

F (x)
= lim

x→+∞

1

e−xF (x)

= lim
x→+∞

(∫ +∞

0

u
r
µ−1e

(
√

2µ

σ2 − 1
u )xu−

√
2µ

σ2 θu−u2

2 du

)−1

= lim
x→+∞

∫ √
σ2

2µ

0

u
r
µ−1e

(
√

2µ

σ2 − 1
u )xu−

√
2µ

σ2 θu−u2

2 du

+

∫ +∞
√

σ2

2µ

u
r
µ−1e

(
√

2µ

σ2 − 1
u )xu−

√
2µ

σ2 θu−u2

2 du

)−1

.

Since the first term on the RHS is non-negative and the second term is

strictly increasing and convex in x, the limit is zero.

Turning now to Hξ ′(z), we note that

Hξ ′(z) =
1

ψ′(x)
(
hξs
G

)′(x), z = ψ(x).

As we have shown, for z > ψ(ln cs) ∧ ψ(xs), Hξ ′(z) is a positive and de-

creasing function. Hence the limit exists and satisfies

lim
z→+∞

Hξ ′(z) = lim
x→+∞

1

ψ′(x)
(
hξs
G

)′(x) = c ≥ 0. (3.56)

Observe that limx→+∞
hξ
s(x)
G(x) = +∞, limx→+∞ ψ(x) = +∞, and

limx→+∞
(
h
ξ
s(x)

G(x)
)′

ψ′(x) exists, and ψ′(x) �= 0. We can apply L’Hopital’s rule

to get

lim
x→+∞

hξs(x)

F (x)
= lim
x→+∞

hξ
s(x)
G(x)

F (x)
G(x)

= lim
x→+∞

(
hξ
s(x)
G(x) )

′

ψ′(x)
= c. (3.57)

Comparing (3.55) and (3.57) implies that c = 0. From (3.56), we conclude

that limz→+∞Hξ ′(z) = 0.

Proof of Lemma 3.9 (Properties of Ĥξ)

It is straightforward to check that V ξ(x) is continuous and differentiable

everywhere, and twice differentiable everywhere except at x = bξ∗. The

same properties hold for ĥξ(x). Since both G and ψ are twice differentiable

everywhere, the continuity and differentiability of Ĥξ on (0,+∞) and twice

differentiability on (0, ψ(bξ∗)) ∪ (ψ(bξ∗),+∞) follow directly.
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To see the continuity of Ĥξ(z) at 0, note that V ξ(x) → 0 and ex → 0

as x→ −∞. Then we have

Ĥξ(0) := lim
x→−∞

(ĥξ(x))+

G(x)
= lim
x→−∞

(V ξ(x)− ex − cb)
+

G(x)
= lim
x→−∞

0

G(x)
= 0,

and limz→0 Ĥ
ξ(z) = limx→−∞

ĥξ(x)
G(x) = limx→−∞

−cb
G(x) = 0. There follows

the continuity at 0.

(i) For x ∈ [bξ∗,+∞), we have ĥξ(x) ≡ −(cs + cb) < 0 . Next, the limits

lim
x→−∞

V ξ(x) → 0 and lim
x→−∞

ex → 0 imply that lim
x→−∞

ĥξ(x) = V ξ(x) −

ex − cb → −cb < 0. Therefore, there exists some bξ such that ĥξ(x) < 0 for

x ∈ (−∞, bξ). For the non-trivial case in question, ĥξ(x) must be positive

for some x, so we must have bξ < bξ∗. To conclude, we have ĥξ(x) < 0 for

x ∈ (−∞, bξ) ∪ [bξ∗,+∞). This, along with the facts that ψ(x) ∈ (0,+∞)

is a strictly increasing function and G(x) > 0, implies property (i).

(ii) By differentiating Ĥξ(z), we get

Ĥξ′(z) =
1

ψ′(x)
(
ĥξ

G
)′(x), z = ψ(x).

To determine the sign of Ĥξ′ , we observe that, for x ≥ bξ∗,

(
ĥξ(x)

G(x)
)′ = (

−(cs + cb)

G(x)
)′ =

(cs + cb)G
′(x)

G2(x)
< 0.

Also, ψ′(x) > 0 for x ∈ R. Therefore, Ĥξ(z) is strictly decreasing for

z ≥ ψ(bξ∗).

(iii) To study the convexity/concavity, we look at the second derivative

Ĥξ′′(z) =
2

σ2G(x)(ψ′(x))2
(L − r)ĥξ(x), z = ψ(x).

Since σ2, G(x) and (ψ′(x))2 are all positive, we only need to determine the

sign of (L − r)ĥξ(x):

(L − r)ĥξ(x)

=
σ2

2
(V ξ

′′
(x)− ex) + µ(θ − x)(V ξ

′
(x) − ex)− r(V ξ(x) − ex − cb)

=

{
[µx− (µθ + σ2

2 − r)]ex + rcb if x ∈ (−∞, bξ∗),

r(cs + cb) > 0 if x ∈ (bξ∗,+∞).

which suggests that Ĥξ(z) is convex for z ∈ (ψ(bξ∗),+∞).
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Furthermore, for x ∈ (xs, b
ξ∗), we have

(L − r)ĥξ(x) = [µx− (µθ +
σ2

2
− r)]ex + rcb

= −exfs(x) + r(cs + cb) > r(cs + cb) > 0,

by the definition of xs. Therefore, Ĥ
ξ(z) is also convex on (ψ(xs), ψ(b

ξ∗)).

Thus far, we have established that Ĥξ(z) is convex on (ψ(xs),+∞).

Next, we determine the convexity of Ĥξ(z) on (0, ψ(xs)]. Denote ẑξ1 :=

argmaxz∈[0,+∞) Ĥ
ξ(z). Since supx∈R ĥ

ξ(x) > 0, we must have

Ĥξ(ẑξ1) = sup
z∈[0,+∞)

Ĥξ(z) > 0.

By its continuity and differentiability, Ĥξ must be concave at ẑξ1 . Then,

there must exist some interval (ψ(a(0)), ψ(d(0))) over which Ĥξ is concave

and ẑξ1 ∈ (ψ(a(0)), ψ(d(0))).

On the other hand, for x ∈ (−∞, xs],

((L − r)ĥξ)′(x) = [µx− (µθ +
σ2

2
− r − µ)]ex

{
< 0 if x ∈ (−∞, xξ∗),

> 0 if x ∈ (xξ∗, xs],

where xξ∗ = θ + σ2

2µ − r
µ − 1. Therefore, (L − r)ĥξ(x) is strictly decreasing

on (−∞, xξ∗), strictly increasing on (xξ∗, xs], and is strictly positive at xs
and −∞:

(L − r)ĥξ(xs) = r(cs + cb) > 0 and lim
x→−∞

(L − r)ĥξ(x) = rcb > 0.

If (L− r)ĥξ(xξ∗) = −µexξ∗
+ rcb < 0, then there exist exactly two distinct

roots to the equation (L − r)ĥξ(x) = 0, denoted as xb1 and xb2, such that

−∞ < xb1 < xξ∗ < xb2 < xs and

(L − r)ĥξ(x)

{
> 0 if x ∈ (−∞, xb1) ∪ (xb2, xs],

< 0 if x ∈ (xb1, xb2).

On the other hand, if (L−r)ĥξ(xξ∗) = −µexξ∗
+rcb ≥ 0, then (L−r)ĥξ(x) ≥

0 for all x ∈ R, and Ĥξ(z) is convex for all z, which contradicts with the

existence of a concave interval. Hence, we conclude that −µexξ∗
+ rcb < 0,

and (xb1, xb2) is the unique interval that (L − r)ĥξ(x) < 0. Consequently,

(a(0), d(0)) coincides with (xb1, xb2) and ẑξ1 ∈ (ψ(xb1), ψ(xb2)). This com-

pletes the proof.
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Chapter 4

Trading Under the CIR Model

In this chapter, we study the problem of trading under the CIR model.

We formulate an optimal double stopping problem and an optimal switch-

ing problem, and rigorously prove that the optimal starting and stopping

strategies are of threshold type.

A CIR process (Yt)t≥0 satisfies the SDE

dYt = µ(θ − Yt) dt+ σ
√
Yt dBt, (4.1)

with constants µ, θ, σ > 0. If 2µθ ≥ σ2 holds, which is often referred to as

the Feller condition (see Feller (1951)), then the level 0 is inaccessible by Y .

If the initial value Y0 > 0, then Y stays strictly positive at all times almost

surely. Nevertheless, if Y0 = 0, then Y will enter the interior of the state

space immediately and stays positive thereafter almost surely. If 2µθ < σ2,

then the level 0 is a reflecting boundary. This means that once Y reaches

0, it immediately returns to the interior of the state space and continues to

evolve. For a detailed categorization of boundaries for diffusion processes,

we refer to Chapter 2 of Borodin and Salminen (2002) and Chapter 15 of

Karlin and Taylor (1981).

The CIR conditional probability density of Yti at time ti given Yti−1 =

yi−1 with time increment ∆t = ti − ti−1 is given by

fCIR(yi|yi−1; θ, µ, σ)

=
1

σ̃2
exp

(
−yi + yi−1e

−µ∆t

σ̃2

)(
yi

yi−1e−µ∆t

) q
2

Iq

(
2

σ̃2

√
yiyi−1e−µ∆t

)
,

with the constants

σ̃2 = σ2 1− e−µ∆t

2µ
, q =

2µθ

σ2
− 1,

and Iq(z) is modified Bessel function of the first kind and of order q. See

Cox et al. (1985).

81
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Using the observed values (yi)i=0,1,...,n, the CIR model parameters can

be estimated by maximizing the average log-likelihood:

�(θ, µ, σ|y0, y1, . . . , yn) :=
1

n

n∑
i=1

ln fCIR(yi|yi−1; θ, µ, σ)

= −2 ln(σ̃)− 1

nσ̃2

n∑
i=1

(yi + yi−1e
−µ∆t)

+
1

n

n∑
i=1

(
q

2
ln

(
yi

yi−1e−µ∆t

)
+ ln Iq

(
2

σ̃2

√
yiyi−1e−µ∆t

))
.

For more details on the implementation of the maximum likelihood estima-

tion (MLE) for the CIR process, we refer to Kladivko (2007).

In Section 4.1, we formulate both the optimal starting-stopping and

optimal switching problems. Then, we present our analytical results and

numerical examples in Section 4.2. The proofs of our main results are

detailed in Section 4.3.

4.1 Optimal Trading Problems

Denote by F the filtration generated by B, and T the set of all F-stopping

times. If a decision to sell is made at some time τ ∈ T , then the amount

Yτ is received and simultaneously the constant transaction cost cs > 0 has

to be paid. On the other hand, at the time of market entry, a constant

transaction cost cb > 0 is incurred.

4.1.1 Optimal Starting-Stopping Approach

Given a CIR process, we first consider the optimal timing to stop. The

maximum expected discounted value is obtained by solving the optimal

stopping problem

V χ(y) = sup
τ∈T

Ey
{
e−rτ(Yτ − cs)

}
, (4.2)

where r > 0 is the constant discount rate, and Ey{·} ≡ E{·|Y0 = y}.
The value function V χ represents the expected value from optimally

stopping the process Y . On the other hand, the process value plus the

transaction cost constitute the total cost to start. Before even starting, one

needs to choose the optimal timing to start, or not to start at all. This

leads us to analyze the starting timing inherent in the starting-stopping (or
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double stopping) problem. Precisely, we solve

Jχ(y) = sup
ν∈T

Ey
{
e−rν(V χ(Yν)− Yν − cb)

}
, (4.3)

with the transaction cost cb incurred upon market entry. In other words, the

objective is to maximize the expected difference between the value function

V χ(Yν) and the current Yν , minus transaction cost cb. The value function

Jχ(y) represents the maximum expected value that can be gained by en-

tering and subsequently exiting, with transaction costs cb and cs incurred,

respectively, on entry and exit. For our analysis, the transaction costs cb
and cs can be different. To facilitate presentation, we denote the functions

hs(y) = y − cs, and hb(y) = y + cb. (4.4)

If it turns out that Jχ(Y0) ≤ 0 for some initial value Y0, then it is

optimal not to start at all. Therefore, it is important to identify the trivial

cases. Under the CIR model, since supy∈R+
(V χ(y) − hb(y)) ≤ 0 implies

that Jχ(y) = 0 for y ∈ R+, we shall therefore focus on the case with

sup
y∈R+

(V χ(y)− hb(y)) > 0, (4.5)

and solve for the non-trivial optimal timing strategy.

4.1.2 Optimal Switching Approach

Under the optimal switching approach, it is assumed that an infinite number

of entry and exit actions take place. The sequential entry and exit times

are modeled by the stopping times ν1, τ1, ν2, τ2, · · · ∈ T such that

0 ≤ ν1 ≤ τ1 ≤ ν2 ≤ τ2 ≤ . . . .

Entry and exit decisions are made, respectively, at times νi and τi, i ∈ N.

The optimal timing to enter or exit would depend on the initial position.

Precisely, under the CIR model, if the initial position is zero, then the first

task is to determine when to start and the corresponding optimal switching

problem is

J̃χ(y) = sup
Λ0

Ey

{ ∞∑
n=1

[e−rτnhs(Yτn)− e−rνnhb(Yνn)]

}
, (4.6)

with the set of admissible stopping times Λ0 = (ν1, τ1, ν2, τ2, . . . ), and the

reward functions hb and hs defined in (4.4). On the other hand, if we start

with a long position, then it is necessary to solve

Ṽ χ(y) = sup
Λ1

Ey

{
e−rτ1hs(Yτ1) +

∞∑
n=2

[e−rτnhs(Yτn)− e−rνnhb(Yνn)]

}
,

(4.7)

with Λ1 = (τ1, ν2, τ2, ν3, . . . ) to determine when to stop.
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In summary, the optimal starting-stopping and switching problems dif-

fer in the number of entry and exit decisions. Observe that any strategy for

the starting-stopping problem (4.2)–(4.3) is also a candidate strategy for the

switching problem (4.6)–(4.7). Therefore, it follows that V χ(y) ≤ Ṽ χ(y)

and Jχ(y) ≤ J̃χ(y). Our objective is to derive and compare the correspond-

ing optimal timing strategies under these two approaches.

4.2 Summary of Analytical Results

We first summarize our analytical results and illustrate the optimal starting

and stopping strategies. The method of solutions and their proofs will be

discussed in Section 4.3.

We consider the optimal starting-stopping problem followed by the op-

timal switching problem. First, we denote the infinitesimal generator of Y

as

Lχ =
σ2y

2

d2

dy2
+ µ(θ − y)

d

dy
,

and consider the ordinary differential equation (ODE)

Lχu(y) = ru(y), for y ∈ R+. (4.8)

To present the solutions of this ODE, we define the functions

Fχ(y) :=M(
r

µ
,
2µθ

σ2
;
2µy

σ2
), and Gχ(y) := U(

r

µ
,
2µθ

σ2
;
2µy

σ2
), (4.9)

where

M(a, b; z) =
∞∑
n=0

anz
n

bnn!
, a0 = 1, an = a(a+ 1)(a+ 2) · · · (a+ n− 1),

U(a, b; z) =
Γ(1− b)

Γ(a− b+ 1)
M(a, b; z) +

Γ(b− 1)

Γ(a)
z1−bM(a− b+ 1, 2− b; z)

are the confluent hypergeometric functions of first and second kind, also

called the Kummer’s function and Tricomi’s function, respectively (see

Chapter 13 of Abramowitz and Stegun (1965) and Chapter 9 of Lebedev

(1972)). As is well known (see Göing-Jaeschke and Yor (2003)), Fχ and

Gχ are strictly positive and, respectively, the strictly increasing and de-

creasing continuously differentiable solutions of the ODE (4.8). Also, we

remark that the discounted processes (e−rtFχ(Yt))t≥0 and (e−rtGχ(Yt))t≥0

are martingales.
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In addition, recall the reward functions defined in (4.4) and note that

(Lχ − r)hb(y)

{
> 0 if y < yb,

< 0 if y > yb,
(4.10)

and

(Lχ − r)hs(y)

{
> 0 if y < ys,

< 0 if y > ys,
(4.11)

where the critical constants yb and ys are defined by

yb :=
µθ − rcb
µ+ r

and ys :=
µθ + rcs
µ+ r

. (4.12)

Note that yb and ys depend on the parameters µ, θ and r, as well as cb and

cs respectively, but not σ.

4.2.1 Optimal Starting-Stopping Problem

We now present the results for the optimal starting-stopping problem (4.2)–

(4.3). As it turns out, the value function V χ is expressed in terms of Fχ,

and Jχ in terms of V χ and Gχ. The functions Fχ and Gχ also play a role

in determining the optimal starting and stopping thresholds.

First, we give a bound on the value function V χ in terms of Fχ(y).

Lemma 4.1. There exists a positive constant Kχ such that, for all y ≥ 0,

0 ≤ V χ(y) ≤ KχFχ(y).

Theorem 4.2. The value function for the optimal stopping problem (4.2)

is given by

V χ(y) =

{
bχ∗−cs
Fχ(bχ∗)F

χ(y) if y ∈ [0, bχ∗),

y − cs if y ∈ [bχ∗,+∞).

Here, the optimal stopping level bχ∗ ∈ (cs∨ys,∞) is found from the equation

Fχ(b) = (b− cs)F
χ′(b). (4.13)

Therefore, it is optimal to stop as soon as the process Y reaches bχ∗

from below. The stopping level bχ∗ must also be higher than the fixed cost

cs as well as the critical level ys defined in (4.12).

Now we turn to the optimal starting problem. Define the reward func-

tion

ĥχ(y) := V χ(y)− (y + cb). (4.14)
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Since Fχ, and thus V χ, are convex, so is ĥχ, we also observe that the reward

function ĥχ(y) is decreasing in y. To exclude the scenario where it is optimal

never to start, the condition stated in (4.5), namely, supy∈R+ ĥ
χ(y) > 0, is

now equivalent to

V χ(0) =
bχ∗ − cs
Fχ(bχ∗)

> cb, (4.15)

since Fχ(0) = 1.

Lemma 4.3. For all y ≥ 0, the value function satisfies the inequality 0 ≤
Jχ(y) ≤ ( bχ∗−c

Fχ(bχ∗) − cb)
+.

Theorem 4.4. The optimal starting problem (4.3) admits the solution

Jχ(y) =

{
V χ(y)− (y + cb) if y ∈ [0, dχ∗],
V χ(dχ∗)−(dχ∗+cb)

Gχ(dχ∗) Gχ(y) if y ∈ (dχ∗,+∞).

The optimal starting level dχ∗ > 0 is uniquely determined from

Gχ(d)(V χ′(d) − 1) = Gχ
′
(d)(V χ(d)− (d+ cb)). (4.16)

As a result, it is optimal to start as soon as the CIR process Y falls

below the strictly positive level dχ∗.

4.2.2 Optimal Switching Problem

Now we study the optimal switching problem under the CIR model in (4.1).

Lemma 4.5. For all y ≥ 0, the value functions J̃χ and Ṽ χ satisfy the

inequalities

0 ≤ J̃χ(y) ≤ µθ

r
,

0 ≤ Ṽ χ(y) ≤ y +
2µθ

r
.

We start by giving conditions under which it is optimal not to start ever.

Theorem 4.6. Under the CIR model, if it holds that

(i) yb ≤ 0, or

(ii) yb > 0 and cb ≥ bχ∗−cs
Fχ(bχ∗) ,
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with bχ∗ given in (4.13), then the optimal switching problem (4.6)–(4.7)

admits the solution

J̃χ(y) = 0 for y ≥ 0, (4.17)

and

Ṽ χ(y) =

{
bχ∗−cs
Fχ(bχ∗)F

χ(y) if y ∈ [0, bχ∗),

y − cs if y ∈ [bχ∗,+∞).
(4.18)

Conditions (i) and (ii) depend on problem data and can be easily veri-

fied. In particular, recall that yb is defined in (4.12) and is easy to compute,

furthermore it is independent of σ and cs. Since it is optimal to never enter,

the switching problem is equivalent to a stopping problem and the solution

in Theorem 4.6 agrees with that in Theorem 4.2. Next, we provide condi-

tions under which it is optimal to enter as soon as the CIR process reaches

some lower level.

Theorem 4.7. Under the CIR model, if

yb > 0 and cb <
bχ∗ − cs
Fχ(bχ∗)

, (4.19)

with bχ∗ given in (4.13), then the optimal switching problem (4.6)–(4.7)

admits the solution

J̃χ(y) =

{
PχFχ(y)− (y + cb) if y ∈ [0, d̃χ∗],

QχGχ(y) if y ∈ (d̃χ∗,+∞),
(4.20)

and

Ṽ χ(y) =

{
PχFχ(y) if y ∈ [0, b̃χ∗),

QχGχ(y) + (y − cs) if y ∈ [b̃χ∗,+∞),
(4.21)

where

Pχ =
Gχ(d̃χ∗)− (d̃χ∗ + cb)G

χ′(d̃χ∗)

Fχ′(d̃χ∗)Gχ(d̃χ∗)− Fχ(d̃χ∗)Gχ′(d̃χ∗)
,

Qχ =
Fχ(d̃χ∗)− (d̃χ∗ + cb)F

χ′(d̃χ∗)

Fχ′(d̃χ∗)Gχ(d̃χ∗)− Fχ(d̃χ∗)Gχ′(d̃χ∗)
.

There exist unique optimal starting and stopping levels d̃χ∗ and b̃χ∗, which

are found from the nonlinear system of equations:

Gχ(d)− (d+ cb)G
χ′(d)

Fχ′(d)Gχ(d)− Fχ(d)Gχ′(d)
=

Gχ(b)− (b− cs)G
χ′(b)

Fχ′(b)Gχ(b)− Fχ(b)Gχ′(b)
,

Fχ(d)− (d+ cb)F
χ′(d)

Fχ′(d)Gχ(d)− Fχ(d)Gχ′(d)
=

Fχ(b)− (b− cs)F
χ′(b)

Fχ′(b)Gχ(b)− Fχ(b)Gχ′(b)
.

Moreover, we have that d̃χ∗ < yb and b̃χ∗ > ys.



November 12, 2015 12:34 Optimal Mean Reversion Trading... b2296 page 88

88 Optimal Mean Reversion Trading

In this case, it is optimal to start and stop an infinite number of times

where we start as soon as the CIR process drops to d̃χ∗ and stop when the

process reaches b̃χ∗. Note that in the case of Theorem 4.6 where it is never

optimal to start, the optimal stopping level bχ∗ is the same as that of the

optimal stopping problem in Theorem 4.2. The optimal starting level ˜dχ∗,

which only arises when it is optimal to start and stop sequentially, is in

general not the same as dχ∗ in Theorem 4.4.

We conclude the section with two remarks.

Remark 4.8. Given the model parameters, in order to identify which of

Theorem 4.6 or Theorem 4.7 applies, we begin by checking whether yb ≤ 0.

If so, it is optimal not to enter. Otherwise, Theorem 4.6 still applies if

cb ≥ bχ∗−cs
Fχ(bχ∗) holds. In the other remaining case, the problem is solved as

in Theorem 4.7. In fact, the condition cb <
bχ∗−cs
Fχ(bχ∗) implies yb > 0 (see

the proof of Lemma 4.12 in the Appendix). Therefore, condition (4.19) in

Theorem 4.7 is in fact identical to (4.15) in Theorem 4.4.

Remark 4.9. To verify the optimality of the results in Theorems 4.6 and

4.7, one can show by direct substitution that the solutions (J̃χ, Ṽ χ) in

(4.17)–(4.18) and (4.20)–(4.21) satisfy the variational inequalities:

min{rJ̃χ(y)− LχJ̃χ(y), J̃χ(y)− (Ṽ χ(y)− (y + cb))} = 0,

min{rṼ χ(y)− LχṼ χ(y), Ṽ χ(y)− (J̃χ(y) + (y − cs))} = 0.

Indeed, this is the approach used by Zervos et al. (2013) for checking the

solutions of their optimal switching problems.

4.2.3 Numerical Examples

We numerically implement Theorems 4.2, 4.4, and 4.7, and illustrate the

associated starting and stopping thresholds. In Figure 4.2(a), we observe

the changes in optimal starting and stopping levels as speed of mean rever-

sion increases. Both starting levels dχ∗ and d̃χ∗ rise with µ, from 0.0964 to

0.1219 and from 0.1460 to 0.1696, respectively, as µ increases from 0.3 to

0.85. The optimal switching stopping level b̃χ∗ also increases. On the other

hand, stopping level bχ∗ for the starting-stopping problem stays relatively

constant as µ changes.

Figure 4.1 shows a simulated CIR path along with optimal entry and

exit levels for both starting-stopping and switching problems. Under the

starting-stopping problem, it is optimal to start once the process reaches

dχ∗ = 0.0373 and to stop when the process hits bχ∗ = 0.4316. For the
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switching problem, it is optimal to start once the process values hits d̃χ∗ =

0.1189 and to stop when the value of the CIR process rises to b̃χ∗ = 0.2078.

We note that both stopping levels bχ∗ and b̃χ∗ are higher than the long-run

mean θ = 0.2, and the starting levels dχ∗ and d̃χ∗ are lower than θ. The

process starts at Y0 = 0.15 > d̃χ∗, under the optimal switching setting,

the first time to enter occurs on day 8 when the process falls to 0.1172

and subsequently exits on day 935 at a level of 0.2105. For the starting-

stopping problem, entry takes place much later on day 200 when the process

hits 0.0306 and exits on day 2671 at 0.4369. Under the optimal switching

problem, two entries and two exits will be completed by the time a single

entry-exit sequence is realized for the starting-stopping problem.
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bχ∗

b̃∗

d̃∗

dχ∗

Fig. 4.1 A sample CIR path, along with starting and stopping levels. Under the
starting-stopping setting, a starting decision is made at νdχ∗ = inf{t ≥ 0 : Yt ≤
dχ∗ = 0.0373}, and a stopping decision is made at τbχ∗ = inf{t ≥ νdχ∗ : Yt ≥
bχ∗ = 0.4316}. Under the optimal switching problem, entry and exit take place
at νd̃χ∗ = inf{t ≥ 0 : Yt ≤ d̃χ∗ = 0.1189} , and τb̃χ∗ = inf{t ≥ νd̃χ∗ : Yt ≥ b̃χ∗ =
0.2078} respectively. Parameters: µ = 0.2, σ = 0.3, θ = 0.2, r = 0.05, cs = 0.001,
cb = 0.001.
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Fig. 4.2 (a) The optimal starting and stopping levels vs speed of mean reversion
µ. Parameters: σ = 0.15, θ = 0.2, r = 0.05, cs = 0.001, cb = 0.001. (b) The
optimal starting and stopping levels vs transaction cost cs. Parameters: µ = 0.6,
σ = 0.15, θ = 0.2, r = 0.05, cb = 0.001.
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In Figure 4.2(b), we see that as the stopping cost cs increases, the

increase in the optimal stopping levels is accompanied by a fall in optimal

starting levels. In particular, the stopping levels, bχ∗ and b̃χ∗ increase.

In comparison, both starting levels dχ∗ and d̃χ∗ fall. The lower starting

level and higher stopping level mean that the entry and exit times are both

delayed as a result of a higher transaction cost. Interestingly, although the

cost cs applies only when the process is stopped, it also has an impact on

the timing to start, as seen in the changes in dχ∗ and d̃χ∗ in the figure.

As shown in Figure 4.2, the continuation (waiting) region of the switch-

ing problem (d̃χ∗, b̃χ∗) lies within that of the starting-stopping problem

(dχ∗, bχ∗). The ability to enter and exit multiple times means it is possible

to earn a smaller reward on each individual start-stop sequence while maxi-

mizing aggregate return. Moreover, we observe that optimal entry and exit

levels of the starting-stopping problem is less sensitive to changes in model

parameters than the entry and exit thresholds of the switching problem.

4.3 Methods of Solution and Proofs

We now provide detailed proofs for our analytical results in Section 4.2

beginning with the optimal starting-stopping problem. Our main result

here is Theorem 4.10 which provides a mathematical characterization of the

value function, and establishes the optimality of our method of constructing

the solution.

4.3.1 Optimal Starting-Stopping Problem

We first describe the general solution procedure for the stopping problem

V χ, followed by the starting problem Jχ.

4.3.1.1 Optimal Stopping Timing

A key step of our solution method involves the transformation

φ(y) := −G
χ(y)

Fχ(y)
, y ≥ 0. (4.22)

With this, we also define the function

Hχ(z) :=


hs

Fχ ◦ φ−1(z) if z < 0,

lim
y→+∞

(hs(y))
+

Fχ(y) if z = 0,
(4.23)
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where hs is given in (4.4). We now prove the analytical form for the

value function.

Theorem 4.10. Under the CIR model, the value function V χ of (4.2) is

given by

V χ(y) = Fχ(y)Wχ(φ(y)), (4.24)

with Fχ and φ given in (4.9) and (4.22) respectively, and Wχ is the de-

creasing smallest concave majorant of Hχ in (4.23).

Proof. We first show that V χ(y) ≥ Fχ(y)Wχ(φ(y)). Start at any y ∈
[0,+∞), we consider the first stopping time of Y from an interval [a, b]

with 0 ≤ a ≤ y ≤ b ≤ +∞. We compute the corresponding expected

discounted reward

Ey{e−r(τa∧τb)hs(Yτa∧τb)}
= hs(a)Ey{e−rτa11{τa<τb}}+ hs(b)Ey{e−rτb11{τa>τb}}

= hs(a)
Fχ(y)Gχ(b)− Fχ(b)Gχ(y)

Fχ(a)Gχ(b)− Fχ(b)Gχ(a)
+ hs(b)

Fχ(a)Gχ(y)− Fχ(y)Gχ(a)

Fχ(a)Gχ(b)− Fχ(b)Gχ(a)

= Fχ(y)

[
hs(a)

Fχ(a)

φ(b)− φ(y)

φ(b)− φ(a)
+
hs(b)

Fχ(b)

φ(y)− φ(a)

φ(b)− φ(a)

]
= Fχ(φ−1(z))

[
Hχ(za)

zb − z

zb − za
+Hχ(zb)

z − za
zb − za

]
,

where za = φ(a), zb = φ(b).

Since V χ(y) ≥ sup{a,b:a≤y≤b} Ey{e−r(τa∧τb)hs(Yτa∧τb)}, we have

V χ(φ−1(z))

Fχ(φ−1(z))
≥ sup

{za,zb:za≤z≤zb}

[
Hχ(za)

zb − z

zb − za
+Hχ(zb)

z − za
zb − za

]
,

(4.25)

which implies that V χ(φ−1(z))/Fχ(φ−1(z)) dominates the concave majo-

rant of Hχ.

Under the CIR model, the class of interval-type strategies does not

include all single threshold-type strategies. In particular, the minimum

value that a can take is 0. If 2µθ < σ2, then Y can reach level 0 and

reflects. The interval-type strategy with a = 0 implies stopping the process

Y at level 0, even though it could be optimal to wait and let Y evolve.

Hence, we must also consider separately the candidate strategy of wait-

ing for Y to reach an upper level b ≥ y without a lower stopping level. The

well-known supermartingale property of (e−rtV χ(Yt))t≥0 (see Appendix D
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of Karatzas and Shreve (1998)) implies that V χ(y) ≥ Ey{e−rτV χ(Yτ )} for

τ ∈ T . Then, taking τ = τb, we have

V χ(y) ≥ Ey{e−rτbV χ(Yτb)} = V χ(b)
Fχ(y)

Fχ(b)
,

or equivalently,

V χ(φ−1(z))

Fχ(φ−1(z))
=
V χ(y)

Fχ(y)
≥ V χ(b)

Fχ(b)
=
V χ(φ−1(zb))

Fχ(φ−1(zb))
, (4.26)

which indicates that V χ(φ−1(z))/Fχ(φ−1(z)) is decreasing. By (4.25) and

(4.26), we now see that V χ(y) ≥ Fχ(y)Wχ(φ(y)), whereWχ is the decreas-

ing smallest concave majorant of Hχ.

For the reverse inequality, we first show that

Fχ(y)Wχ(φ(y)) ≥ Ey{e−r(t∧τ)Fχ(Yt∧τ )Wχ(φ(Yt∧τ ))}, (4.27)

for y ∈ [0,+∞), τ ∈ T and t ≥ 0. If the initial value y = 0, then the

decreasing property of Wχ implies the inequality

E0{e−r(t∧τ)Fχ(Yt∧τ )Wχ(φ(Yt∧τ ))} ≤ E0{e−r(t∧τ)Fχ(Yt∧τ )}Wχ(φ(0))

= Fχ(0)Wχ(φ(0)),

where the equality follows from the martingale property of (e−rtFχ(Yt))t≥0.

When y > 0, the concavity of Wχ implies that, for any fixed z, there

exists an affine function Lχz (α) := mχ
zα+ cχz such that Lχz (α) ≥Wχ(α) for

α ≥ φ(0) and Lχz (z) =Wχ(z) at α = z, with constants mχ
z and cχz . In turn,

this yields the inequality

Ey{e−r(τ0∧t∧τ)Fχ(Yτ0∧t∧τ )Wχ(φ(Yτ0∧t∧τ ))} (4.28)

≤ Ey{e−r(τ0∧t∧τ)Fχ(Yτ0∧t∧τ )L
χ
φ(y)(φ(Yτ0∧t∧τ ))}

= mχ
φ(y)Ey{e

−r(τ0∧t∧τ)Fχ(Yτ0∧t∧τ )φ(Yτ0∧t∧τ )}

+ cχφ(y)Ey{e
−r(τ0∧t∧τ)Fχ(Yτ0∧t∧τ )}

= −mχ
φ(y)Ey{e

−r(τ0∧t∧τ)Gχ(Yτ0∧t∧τ )}

+ cχφ(y)Ey{e
−r(τ0∧t∧τ)Fχ(Yτ0∧t∧τ )}

= −mχ
φ(y)G

χ(y) + cχφ(y)F
χ(y) (4.29)

= Fχ(y)Lχφ(y)(φ(y))

= Fχ(y)Wχ(φ(y)), (4.30)

where (4.29) follows from the martingale property of (e−rtFχ(Yt))t≥0 and

(e−rtGχ(Yt))t≥0. If 2µθ ≥ σ2, then τ0 = +∞ for y > 0. This immediately

reduces (4.28)–(4.30) to the desired inequality (4.27).
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On the other hand, if 2µθ < σ2, then we decompose (4.28) into two

terms:

Ey{e−r(τ0∧t∧τ)Fχ(Yτ0∧t∧τ )Wχ(φ(Yτ0∧t∧τ ))}
= Ey{e−r(t∧τ)Fχ(Yt∧τ )Wχ(φ(Yt∧τ ))11{t∧τ≤τ0}}︸ ︷︷ ︸

(I)

+ Ey{e−rτ0Fχ(Yτ0)Wχ(φ(Yτ0 ))11{t∧τ>τ0}}︸ ︷︷ ︸
(II)

.

By the optional sampling theorem and decreasing property of Wχ, the

second term satisfies

(II) =Wχ(φ(0))Ey{e−rτ0Fχ(Yτ0)11{t∧τ>τ0}}
≥Wχ(φ(0))Ey{e−r(t∧τ)Fχ(Yt∧τ )11{t∧τ>τ0}}
≥ Ey{e−r(t∧τ)Fχ(Yt∧τ )Wχ(φ(Yt∧τ ))11{t∧τ>τ0}} =: (II’). (4.31)

Combining (4.31) with (4.30), we arrive at

Fχ(y)Wχ(φ(y)) ≥ (I) + (II’) = Ey{e−r(t∧τ)Fχ(Yt∧τ )Wχ(φ(Yt∧τ ))},
for all y > 0. In all, inequality (4.27) holds for all y ∈ [0,+∞), τ ∈ T and

t ≥ 0. From (4.27) and the fact that Wχ majorizes Hχ, it follows that

Fχ(y)Wχ(φ(y)) ≥ Ey{e−r(t∧τ)Fχ(Yt∧τ )Wχ(φ(Yt∧τ ))}
≥ Ey{e−r(t∧τ)Fχ(Yt∧τ )Hχ(φ(Yt∧τ ))}
≥ Ey{e−r(t∧τ)hs(Yt∧τ )}. (4.32)

Maximizing (4.32) over all τ ∈ T and t ≥ 0 yields the reverse inequality

Fχ(y)Wχ(φ(y)) ≥ V χ(y).

In summary, we have found an expression for the value function V χ(y) in

(4.24), and proved that it is sufficient to consider only candidate stopping

times described by the first time Y reaches a single upper threshold or

exits an interval. To determine the optimal timing strategy, we need to

understand the properties of Hχ and its smallest concave majorant Wχ.

To this end, we have the following lemma.

Lemma 4.11. The function Hχ is continuous on [φ(0), 0], twice differen-

tiable on (φ(0), 0) and possesses the following properties:

(i) Hχ(0) = 0, and

Hχ(z)

{
< 0 if z ∈ [φ(0), φ(cs)),

> 0 if z ∈ (φ(cs), 0).
(4.33)
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(ii) Hχ(z) is strictly increasing for z ∈ (φ(0), φ(cs) ∨ φ(ys)).
(iii)

Hχ(z) is

{
convex if z ∈ (φ(0), φ(ys)],

concave if z ∈ [φ(ys), 0).

In Figure 4.3, we see thatHχ is first increasing then decreasing, and first

convex then concave. Using these properties, we now derive the optimal

stopping timing.

Proof of Theorem 4.2 We determine the value function in the form:

V χ(y) = Fχ(y)Wχ(φ(y)), where Wχ is the decreasing smallest concave

majorant of Hχ. By Lemma 4.11 and Figure 4.3, Hχ peaks at zχ∗ >

φ(cs) ∨ φ(ys) so that

Hχ′(zχ∗) = 0. (4.34)

In turn, the decreasing smallest concave majorant admits the form:

Wχ(z) =

{
Hχ(zχ∗) if z < zχ∗,

Hχ(z) if z ≥ zχ∗.
(4.35)

Substituting bχ∗ = φ−1(zχ∗) into (4.34), we have

Hχ′(zχ∗) =
Fχ(φ−1(zχ∗))− (φ−1(zχ∗)− cs)F

χ′(φ−1(zχ∗))

Fχ′(φ−1(zχ∗))Gχ(φ−1(zχ∗))− Fχ(φ−1(zχ∗))Gχ′(φ−1(zχ∗))

=
Fχ(bχ∗)− (bχ∗ − cs)F

χ′(bχ∗)

Fχ′(bχ∗)Gχ(bχ∗)− Fχ(bχ∗)Gχ′(bχ∗)
,

which can be further simplified to (4.13). We can express Hχ(zχ∗) in terms

of bχ∗:

Hχ(zχ∗) =
bχ∗ − cs
Fχ(bχ∗)

. (4.36)

Applying (4.36) to (4.35), we get

Wχ(φ(y)) =

{
Hχ(zχ∗) = bχ∗−cs

Fχ(bχ∗) if y < bχ∗,

Hχ(φ(y)) = y−cs
Fχ(y) if y ≥ bχ∗.

Finally, substituting this into the value function V χ(y) = Fχ(y)Wχ(φ(y)),

we conclude.
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0−∞

Hχ

Wχ

zχ∗ = φ(bχ∗)φ(ys)

φ(cs)φ(0)

(a) 2µθ < σ2

0−∞

Hχ

Wχ

zχ∗ = φ(bχ∗)φ(ys)

φ(cs)

(b) 2µθ ≥ σ2

Fig. 4.3 Sketches of Hχ and W χ. The function W χ is equal to the constant
Hχ(zχ∗) on (φ(0), zχ∗), and coincides with Hχ on [zχ∗, 0]. Note that −∞ <
φ(0)<0 if 2µθ < σ2, and φ(0)=−∞ if 2µθ ≥ σ2.

4.3.1.2 Optimal Starting Timing

We now turn to the optimal starting problem. Our methodology in Section

4.3.1.1 applies to general payoff functions, and thus can be applied to the

optimal starting problem (4.3) as well. To this end, we apply the same
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transformation (4.22) and define the function

Ĥχ(z) :=


ĥχ

Fχ ◦ φ−1(z) if z < 0,

lim
y→+∞

(ĥχ(y))+

Fχ(y) if z = 0,

where ĥχ is given in (4.14). We then follow Theorem 4.2 to determine the

value function Jχ. This amounts to finding the decreasing smallest concave

majorant Ŵχ of Ĥχ. Indeed, we can replace Hχ andWχ with Ĥχ and Ŵχ

in Theorem 4.2 and its proof. As a result, the value function of the optimal

starting timing problem must take the form

Jχ(y) = Fχ(y)Ŵχ(φ(y)).

To solve the optimal starting timing problem, we need to understand

the properties of Ĥχ.

Lemma 4.12. The function Ĥχ is continuous on [φ(0), 0], differentiable

on (φ(0), 0), and twice differentiable on (φ(0), φ(bχ∗)) ∪ (φ(bχ∗), 0), and

possesses the following properties:

(i) Ĥχ(0) = 0. Let d̄χ denote the unique solution to ĥχ(y) = 0, then

d̄χ < bχ∗ and

Ĥχ(z)

{
> 0 if z ∈ [φ(0), φ(d̄χ)),

< 0 if z ∈ (φ(d̄χ), 0).

(ii) Ĥχ(z) is strictly increasing for z > φ(bχ∗) and limz→φ(0) Ĥ
χ′
(z) = 0.

(iii)

Ĥχ(z) is

{
concave if z ∈ (φ(0), φ(yb)),

convex if z ∈ (φ(yb), 0).

By Lemma 4.12, we sketch Ĥχ in Figure 4.4.

Proof of Theorem 4.4 To determine the value function in the form:

Jχ(y) = Fχ(y)Ŵχ(φ(y)), we analyze the decreasing smallest concave ma-

jorant, Ŵχ, of Ĥχ. By Lemma 4.12 and Figure 4.3, we have Ĥχ′
(z) → 0

as z → φ(0). Therefore, there exists a unique number ẑχ ∈ (φ(0), φ(bχ∗))

such that

Ĥχ(ẑχ)

ẑχ
= Ĥχ′

(ẑχ). (4.37)
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0−∞

Ĥχ

Ŵ χ

ẑχ = φ(dχ∗)

φ(d̄χ)

φ(bχ∗)φ(yb)

φ(0)

(a) 2µθ < σ2

0−∞

Ĥχ

Ŵ χ

ẑχ = φ(dχ∗)

φ(d̄χ)

φ(bχ∗)φ(yb)

(b) 2µθ ≥ σ2

Fig. 4.4 Sketches of Ĥχ and Ŵ χ. The function Ŵ χ coincides with Ĥχ on
[φ(0), ẑχ] and is a straight line tangent to Ĥχ at ẑχ on (ẑχ, 0]. Note that
−∞<φ(0)<0 if 2µθ < σ2, and φ(0)=−∞ if 2µθ ≥ σ2.

In turn, the decreasing smallest concave majorant admits the form:

Ŵχ(z) =

{
Ĥχ(z) if z ≤ ẑχ,

z Ĥ
χ(ẑχ)
ẑχ if z > ẑχ.

(4.38)
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Substituting dχ∗ = φ−1(ẑχ) into (4.37), we have

Ĥχ(ẑχ)

ẑχ
=
Ĥχ(φ(dχ∗)

φ(dχ∗)
= −V

χ(dχ∗)− dχ∗ − cb
Gχ(dχ∗)

, (4.39)

and

Ĥχ′
(ẑχ) =

Fχ(dχ∗)(V χ′(dχ∗)− 1)− Fχ
′
(dχ∗)(V χ(dχ∗)− (dχ∗ + cb))

Fχ′(dχ∗)Gχ(dχ∗)− Fχ(dχ∗)Gχ′(dχ∗)
.

Equivalently, we can express condition (4.37) in terms of dχ∗:

− V χ(dχ∗)− (dχ∗ + cb)

Gχ(dχ∗)

=
Fχ(dχ∗)(V χ′(dχ∗)− 1)− Fχ

′
(dχ∗)(V χ(dχ∗)− (dχ∗ + cb))

Fχ′(dχ∗)Gχ(dχ∗)− Fχ(dχ∗)Gχ′(dχ∗)
,

which shows dχ∗ satisfies (4.16) after simplification.

Applying (4.39) to (4.38), we get

Wχ(φ(y)) =

{
Ĥχ(φ(y)) = V χ(y)−(y+cb)

Fχ(y) if y ∈ [0, dχ∗],

φ(y) Ĥ
χ(ẑχ)
ẑχ = V χ(dχ∗)−(dχ∗+cb)

Gχ(dχ∗)
Gχ(y)
Fχ(y) if y ∈ (dχ∗,+∞).

From this, we obtain the value function.

4.3.2 Optimal Switching Problem

Proofs of Theorems 4.6 and 4.7 Zervos et al. (2013) have studied

a similar problem of trading a mean-reverting asset with fixed transac-

tion costs, and provided detailed proofs using a variational inequalities

approach. In particular, we observe that yb and ys in (4.10) and (4.11)

play the same roles as xb and xs in Assumption 4 in Zervos et al. (2013),

respectively. However, Assumption 4 in Zervos et al. (2013) requires that

0 ≤ xb, this is not necessarily true for yb in our problem. We have checked

and realized that this assumption is not necessary for Theorem 4.6, and

that yb < 0 simply implies that there is no optimal starting level, i.e. it is

never optimal to start.

In addition, Zervos et al. (2013) assume (in their Assumption 1) that

the hitting time of level 0 is infinite with probability 1. In comparison, we

consider not only the CIR case where 0 is inaccessible, but also when the

CIR process has a reflecting boundary at 0. In fact, we find that the proofs

in Zervos et al. (2013) apply to both cases under the CIR model. Therefore,

apart from relaxation of the aforementioned assumptions, the proofs of our

Theorems 4.6 and 4.7 are the same as that of Lemmas 1 and 2 in Zervos

et al. (2013) respectively.
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4.4 Proofs of Lemmas

In this last section, we present the proofs for the properties of V χ, Jχ, Hχ

and Ĥχ.

Proof of Lemma 4.1 (Bounds of V χ)

First, the limit

lim sup
y→+∞

(hs(y))
+

Fχ(y)
= lim sup

y→+∞

y − cs
Fχ(y)

= lim sup
y→+∞

1

Fχ′(y)
= 0.

Therefore, there exists some y0 such that (hs(y))
+ < Fχ(y) for y ∈

(y0,+∞). As for y ≤ y0, (hs(y))
+ is bounded above by the constant

(y0 − cs)
+. As a result, we can always find a constant Kχ such that

(hs(y))
+ ≤ KχFχ(y) for all y ∈ R.

By definition, the process (e−rtFχ(Yt))t≥0 is a martingale. This implies,

for every y ∈ R+ and τ ∈ T ,

KχFχ(y) = Ey{e−rτKχFχ(Yτ )} ≥ Ey{e−rτ(hs(Yτ ))+} ≥ Ey{e−rτhs(Yτ )}.
Therefore, V χ(y) ≤ KχFχ(y). Lastly, the choice of τ=+∞ as a candidate

stopping time implies that V χ(y) ≥ 0.

Proof of Lemma 4.3 (Bounds of Jχ)

As we pointed out in Section 4.3.1.2 that ĥχ(y) is decreasing in y, thus so

is (ĥχ(y))+. We can conclude that (ĥχ(y))+ ≤ (V χ(0)− cb)
+ = ( b

χ∗−cs
Fχ(bχ∗) −

cb)
+. The rest of the proof is similar to that of Lemma 3.3, with K̂ changed

to ( b
χ∗−cs

Fχ(bχ∗) − cb)
+.

Proof of Lemma 4.5 (Bounds of J̃χ and Ṽ χ)

By definition, both J̃χ(y) and Ṽ χ(y) are nonnegative. Using Dynkin’s

formula, we have

Ey
{
e−rτnYτn

}
− Ey

{
e−rνnYνn

}
= Ey

{∫ τn

νn

e−rt(Lχ − r)Ytdt

}
= Ey

{∫ τn

νn

e−rt (µθ − (r + µ)Yt) dt

}
.

For y ≥ 0, the function µθ − (r + µ)y is bounded by µθ. It follows that

Ey
{
e−rτnYτn

}
− Ey

{
e−rνnYνn

}
≤ µθEy

{∫ τn

νn

e−rtdt

}
.
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Since y − cs ≤ y and y + cb ≥ y, we have

Ey

{ ∞∑
n=1

[e−rτnhs(Yτn)− e−rνnhb(Yνn)]

}

≤
∞∑
n=1

(
Ey

{
e−rτnYτn

}
− Ey

{
e−rνnYνn

})
≤

∞∑
n=1

µθEy

{∫ τn

νn

e−rtdt

}
≤ µθ

∫ ∞

0

e−rtdt =
µθ

r
.

This implies that 0 ≤ J̃χ(y) ≤ µθ
r . Similarly,

Ey

{
e−rτ1hs(Yτ1) +

∞∑
n=2

[e−rτnhs(Yτn)− e−rτnhb(Yτn)]

}

≤ µθ

r
+ Ey

{
e−rτ1hb(Yτ1)

}
.

Letting ν1 = 0 and using Dynkin’s formula again, we have

Ey
{
e−rτ1Yτ1

}
− y ≤ µθ

r
.

This implies that

Ṽ χ(y) ≤ µθ

r
+ y +

µθ

r
:= y +

2µθ

r
.

Proof of Lemma 4.11 (Properties of Hχ)

(i) First, we compute

Hχ(0) = lim
y→+∞

(hs(y))
+

Fχ(y)
= lim

y→+∞

y − cs
Fχ(x)

= lim
y→+∞

1

Fχ′(y)
= 0.

Using the facts that Fχ(y) > 0 and φ(y) is a strictly increasing function,

(4.33) follows.

(ii) We look at the first derivative of Hχ:

Hχ′(z) =
1

φ′(y)
(
hs
Fχ

)′(y) =
1

φ′(y)

Fχ(y)− (y − cs)F
χ′(y)

Fχ2(y)
, z = φ(y).

Since both φ′(y) and Fχ2(y) are positive, it remains to determine the sign of

Fχ(y)−(y−cs)Fχ′(y). Since Fχ′(y) > 0, we can equivalently check the sign

of v(y) := Fχ(y)
Fχ′(y) −(y−cs). Note that v′(y) = −Fχ(y)Fχ′′(y)

(Fχ′(y))2 < 0. Therefore,

v(y) is a strictly decreasing function. Also, it is clear that v(cs) > 0 and

v(ys) > 0. Consequently, v(y) > 0 if y < (cs ∨ ys) and hence, Hχ(z) is

strictly increasing if z ∈ (φ(0), φ(cs) ∨ φ(ys)).
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(iii) By differentiation, we have

Hχ′′
(z) =

2

σ2Fχ(y)(φ′(y))2
(Lχ − r)hs(y), z = φ(y).

Since σ2, Fχ(y) and (φ′(y))2 are all positive, the convexity/concavity of Hχ

depends on the sign of

(Lχ − r)hs(y) = µ(θ − y)− r(y − cs)

= (µθ + rcs)− (µ+ r)y

{
≥ 0 if y ∈ [0, ys],

≤ 0 if y ∈ [ys,+∞),

which implies property (iii).

Proof of Lemma 4.12 (Properties of Ĥχ)

It is straightforward to check that V χ(y) is continuous and differentiable

everywhere, and twice differentiable everywhere except at y = bχ∗, and

all these holds for ĥχ(y) = V χ(y) − (y + cb). Both Fχ and φ are twice

differentiable. In turn, the continuity and differentiability of Ĥχ on (φ(0), 0)

and twice differentiability of Ĥχ on (φ(0), φ(bχ∗)) ∪ (φ(bχ∗), 0) follow.

To show the continuity of Ĥχ at 0, we note that

Ĥχ(0) = lim
y→+∞

(ĥχ(y))+

Fχ(y)
= lim
y→+∞

0

Fχ(y)
= 0, and

lim
z→0

Ĥχ(z) = lim
y→+∞

ĥχ

Fχ
(y) = lim

y→+∞

−(cs + cb)

Fχ(y)
= 0.

From this, we conclude that Ĥχ is also continuous at 0.

(i) First, for y ∈ [bχ∗,+∞), ĥχ(y) ≡ −(cs + cb). For y ∈ (0, bχ∗), we

compute

V χ′(y) =
bχ∗ − cs
Fχ(bχ∗)

Fχ′(y) =
Fχ′(y)

Fχ′(bχ∗)
, by (4.13).

Recall that Fχ′(y) is a strictly increasing function and ĥχ(y) = V χ(y)−y−
cb. Differentiation yields

ĥχ
′
(y) = V χ′(y)− 1 =

Fχ′(y)

Fχ′(bχ∗)
− 1 <

Fχ′(bχ∗)

Fχ′(bχ∗)
− 1 = 0, y ∈ (0, bχ∗),

which implies that ĥχ(y) is strictly decreasing for y ∈ (0, bχ∗). On the other

hand, ĥχ(0) > 0 as we are considering the non-trivial case. Therefore, there

exists a unique solution d̄χ < bχ∗ to ĥχ(y) = 0, such that ĥχ(y) > 0 for

y ∈ [0, d̄χ), and ĥχ(y) < 0 for y ∈ (d̄χ,+∞).



November 12, 2015 12:34 Optimal Mean Reversion Trading... b2296 page 103

Trading Under the CIR Model 103

With Ĥχ(z) = (ĥχ/Fχ)◦φ−1(z), the above properties of ĥχ, along with

the facts that φ(y) is strictly increasing and Fχ(y) > 0, imply property (i).

(ii)With z = φ(y), for y > bχ∗, Ĥχ(z) is strictly increasing since

Ĥχ′
(z) =

1

φ′(y)
(
ĥχ

Fχ
)′(y) =

1

φ′(y)
(
−(cs + cb)

Fχ(y)
)′ =

1

φ′(y)

(cs + cb)F
χ′
(y)

Fχ2(y)
> 0.

When y → 0, because ( ĥ
χ(y)

Fχ(y))
′ is finite, but φ′(y) → +∞, we have

limz→φ(0) Ĥ
χ′
(z) = 0.

(iii) Consider the second derivative:

Ĥχ′′
(z) =

2

σ2F (y)(φ′(y))2
(Lχ − r)ĥχ(y).

The positiveness of σ2, Fχ(y) and (φ′(y))2 suggests that we inspect the sign

of (Lχ − r)ĥχ(y):

(Lχ − r)ĥχ(y)

=
1

2
σ2yV χ′′(y) + µ(θ − y)V χ′(y)− µ(θ − y)− r(V χ(y)− (y + cb))

=

{
(µ+ r)y − µθ + rcb if y < bχ∗,

r(cs + cb) > 0 if y > bχ∗.

Since µ, r > 0 by assumption, (Lχ−r)ĥχ(y) is strictly increasing on (0, bχ∗).

Next, we show that 0<yb<ys<b
χ∗. By the fact that Fχ′(0) = r

µθ and the

assumption that V χ(0) = bχ∗−cs
Fχ(bχ∗) > cb, we have

V χ′(0) =
bχ∗ − cs
Fχ(bχ∗)

Fχ′(0) =
bχ∗ − cs
Fχ(bχ∗)

r

µθ
>
rcb
µθ

.

In addition, by the convexity of V χ and V χ′(bχ∗) = 1, it follows that

rcb
µθ

< V χ′(0) < V χ′(bχ∗) = 1,

which implies µθ > rcb and hence yb > 0. By simply comparing the def-

initions of yb and ys, it is clear that yb < ys. Therefore, by observing

that (Lχ − r)ĥχ(yb) = 0, we conclude (Lχ − r)ĥχ(y) < 0 if y ∈ [0, yb),

and (Lχ − r)ĥχ(y) > 0 if y ∈ (yb,+∞). This suggests the concavity and

convexity of Ĥχ as desired.
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Chapter 5

Futures Trading Under Mean
Reversion

Futures are an integral part of the universe of derivatives. A futures is a

contract that requires the buyer to purchase (seller to sell) a fixed quantity

of an asset, such as a commodity, at a fixed price to be paid for on a pre-

specified future date. Commonly traded on exchanges, there are futures

written on various underlying assets or references, including commodities,

interest rates, equity indices, and volatility indices. Many futures stipulate

physical delivery of the underlying asset, with notable examples of agricul-

tural, energy, and metal futures. However, some, like the VIX futures, are

settled in cash.

In this chapter, we discuss the pricing and trading of futures under

mean-reverting spot price dynamics. Our objectives are to investigate the

effect of mean reversion on the return characteristics of futures and futures

portfolio, and develop dynamic speculative trading strategies. In addition,

we will apply our analytical methods to study VIX futures based exchange-

traded notes.

5.1 Futures Prices Under Mean-Reverting Spot Models

Throughout this chapter, we consider futures that are written on an asset

with mean-reverting price dynamics, and denote S as the spot price. In this

section, we discuss the pricing of futures and their term structures under

different market environments.

5.1.1 OU and CIR Spot Models

We begin with two mean-reverting models for the spot price S, namely, the

OU and CIR models. As we will see, they yield the same price function for

the futures contract.

105
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To start, suppose that the spot price evolves according to the OU model:

dSt = µ(θ − St)dt+ σdBt,

where µ, σ > 0, θ ∈ R, and B is a standard Brownian motion under the

historical measure P.

To price a futures contract, we assume that the risk-neutral dynamics

of S is of the same mean-reverting class as that of S under P. Hence, under

measure Q the spot price evolves according to

dSt = µ̃(θ̃ − St) dt+ σ dBQ
t ,

where BQ is a standard Brownian motion under Q, with constant parame-

ters µ̃, σ > 0, and θ̃ ∈ R. This is again an OU process, albeit with a different

long-run mean and speed of mean reversion. This involves a change of mea-

sure that connects the two Brownian motions, as described by

dBQ
t = dBt +

µ(θ − St)− µ̃(θ̃ − St)

σ
dt.

In this chapter, futures prices are computed the same as forward prices,

and we do not distinguish between the two prices; see Cox et al. (1981);

Brennan and Schwartz (1990). As such, the price of a futures contract with

maturity T is given by

fTt ≡ f(t, St;T ) := EQ{ST |St} = (St − θ̃)e−µ̃(T−t) + θ̃, (5.1)

for t ≤ T . Note that the futures price is a deterministic function of time

and the current spot price.

We now consider the CIR model for the spot price:

dSt = µ(θ − St)dt+ σ
√
StdBt, (5.2)

where µ, θ, σ > 0, and B is a standard Brownian motion under the historical

measure P. Under risk-neutral measure Q,

dSt = µ̃(θ̃ − St)dt+ σ
√
StdB

Q
t , (5.3)

where µ, θ > 0, and BQ is a Q-standard Brownian motion. In both SDEs,

(5.2) and (5.3), we require 2µθ ≥ σ2 and 2µ̃θ̃ ≥ σ2 (Feller condition) so

that the CIR process stays positive.

The two Brownian motions are related by

dBQ
t = dBt + λ(St)dt,

where

λ(St) =
µ(θ − St)− µ̃(θ̃ − St)

σ
√
St
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is the market price of risk. This form of risk premium preserves the CIR

model, up to different parameter values across two measures.

The CIR terminal spot price ST admits the non-central Chi-squared

distribution and is positive, whereas the OU spot price is normally dis-

tributed, and thus can be positive or negative. Nevertheless, the futures

price under the CIR model admits the same functional form as in the OU

case (see (5.1)):

fTt = (St − θ̃)e−µ̃(T−t) + θ̃, t ≤ T. (5.4)

This allows us to view the spot price as a function of the futures price:

St = (fTt − θ̃)eµ̃(T−t) + θ̃.

To understand the property of the futures prices, we differentiate (5.4)

with respect to T to get

∂fTt
∂T

= −µ̃(St − θ̃)e−µ̃(T−t). (5.5)

The derivative (in T ) is positive (resp. negative) if and only if St < θ̃ (resp.

St > θ̃). This implies that fTt is strictly increasing (resp. decreasing) in T

if and only if St < θ̃ (resp. St > θ̃).

A second differentiation of (5.5) with respect to T yields

∂2fTt
∂T 2

= µ̃2(St − θ̃)e−µ̃(T−t).

Hence, the term structure of futures contracts is upward-sloping and con-

cave if St < θ̃. On the other hand, if St > θ̃, then the term structure is

downward-slopping and convex. Both term structures are observed empir-

ically (see Figure 5.1 below).

Remark 5.1. The futures price formula (5.4) holds more generally for

other mean-reverting models with risk-neutral spot dynamics of the form:

dSt = µ̃(θ̃ − St)dt+ σ(St)dB
Q
t ,

where σ(s) is a deterministic function of the spot price s such that

EQ{
∫ T
0
σ(St)

2dt} < ∞. The OU and CIR models belong to this frame-

work.
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5.1.2 Exponential OU Spot Model

Under the exponential OU (XOU) model, the spot price follows the SDE:

dSt = µ(θ − ln(St))Stdt+ σStdBt, (5.6)

with positive parameters (µ, θ, σ), and standard Brownian motion B under

the historical measure P. For pricing futures, we assume that the risk-

neutral dynamics of S satisfies

dSt = µ̃(θ̃ − ln(St))Stdt+ σStdB
Q
t ,

where µ̃, θ̃ > 0, and BQ is a standard Brownian motion under the risk-

neutral measure Q.

For a futures contract written on S with maturity T , its price at time t

is given by

fTt = exp

(
e−µ̃(T−t) ln(St) + (1− e−µ̃(T−t))(θ̃ − σ2

2µ̃
)

+
σ2

4µ̃
(1− e−2µ̃(T−t))

)
. (5.7)

In turn, we can express the spot price in terms of the futures price:

St = exp

(
eµ̃(T−t) ln(fTt ) + (1− eµ̃(T−t))(θ̃ − σ2

2µ̃
)

+
σ2

4µ̃
(e−µ̃(T−t) − eµ̃(T−t))

)
.

Direct differentiation of fTt yields that

∂fTt
∂T

=

[
µ̃

(
θ̃ − σ2

2µ̃
− lnSt

)
e−µ̃(T−t) +

σ2

2
e−2µ̃(T−t)

]
fTt . (5.8)

Thus, fTt is strictly increasing (resp. decreasing) in T if and only if the

spot price is sufficiently low (resp. high):

lnSt ≶ θ̃ − σ2

2µ̃
(1− e−µ̃(T−t)).

Further differentiation of (5.8) gives

∂2fTt
∂T 2

=

[
µ̃2e−2µ̃(T−t)

(
θ̃ − σ2

2µ̃
− lnSt

)2
+
σ4

4
e−4µ̃(T−t) − σ2µ̃e−2µ̃(T−t)

+
(
µ̃σ2e−3µ̃(T−t) − µ̃2e−µ̃(T−t)

)(
θ̃ − σ2

2µ̃
− lnSt

)]
fTt .

Inspecting this derivative, we arrive at the following scenarios:
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(i) The term structure is downward-sloping and convex if

lnSt > θ̃ − σ2

2µ̃
(1 − e−µ̃(T−t)) +

(
e2µ̃(T−t)

4
+
σ2

2µ̃

)1
2

− eµ̃(T−t)

2
.

(ii) The term structure is downward-sloping and concave if

θ̃ − σ2

2µ̃
(1− e−µ̃(T−t)) < lnSt

< θ̃ − σ2

2µ̃
(1− e−µ̃(T−t)) +

(
e2µ̃(T−t)

4
+
σ2

2µ̃

)1
2

− eµ̃(T−t)

2
.

(iii) The term structure is upward-sloping and concave if

θ̃ − σ2

2µ̃
(1− e−µ̃(T−t))−

(
e2µ̃(T−t)

4
+
σ2

2µ̃

)1
2

− eµ̃(T−t)

2
< lnSt

< θ̃ − σ2

2µ̃
(1− e−µ̃(T−t)).

(iv) The term structure is upward-sloping and convex if

lnSt < θ̃ − σ2

2µ̃
(1 − e−µ̃(T−t))−

(
e2µ̃(T−t)

4
+
σ2

2µ̃

)1
2

− eµ̃(T−t)

2
.

Figure 5.1 displays two characteristically different term structures ob-

served in the VIX futures market. These futures, written on the CBOE

Volatility Index (VIX) are traded on the CBOE Futures Exchange. As the

VIX measures the 1-month implied volatility calculated from the prices of

S&P 500 options, VIX futures provide exposure to the market’s volatility.

We plot the VIX futures prices during the recent financial crisis on Novem-

ber 20, 2008 (left), and on a post-crisis date, July 22, 2015 (right), along

with the calibrated futures curves under the OU/CIR model and XOU

model. In the calibration, the model parameter values are chosen to min-

imize the sum of squared errors between the model and observed futures

prices.

The OU/CIR/XOU model generates a decreasing convex curve for

November 20, 2008 (left), and an increasing concave curve for July 22,

2015 (right), and they all fit the observed futures prices very well. The

former term structure starts with a very high spot price of 80.86 with a

calibrated risk-neutral long-run mean θ̃ = 40.36 under the OU/CIR model,

suggesting that the market’s expectation of falling market volaitility. In

contrast, we infer from the term structure on July 25, 2015 that the market

expects the VIX to raise from the current spot value of 12.12 to be closer

to θ̃ = 18.16.
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Fig. 5.1 (Left) VIX futures historical prices on Nov 20, 2008 with the current VIX
value at 80.86. The days to expiration range from 26 to 243 days (Dec–Jul contracts).
Calibrated parameters: µ̃ = 4.59, θ̃ = 40.36 under the CIR/OU model, or µ̃ = 3.25, θ̃ =
3.65, σ = 0.15 under the XOU model. (Right) VIX futures historical prices on Jul 22,
2015 with the current VIX value at 12.12. The days to expiration ranges from 27 days
to 237 days (Aug–Mar contracts). Calibrated parameters: µ̃ = 4.55, θ̃ = 18.16 under the
CIR/OU model, or µ̃ = 4.08, θ̃ = 3.06, σ = 1.63 under the XOU model.

5.2 Roll Yield

By design, the value of a futures contract converges to the spot price as

time approaches maturity. If the futures market is in backwardation, the

futures price increases to reach the spot price at expiry. In contrast, when

the market is in contango, the futures price tends to decrease to the spot

price. For an investor with a long futures position, the return is positive in

a backwardation market, and negative in a contango market. An investor

can long the front-month contract, then sell it at or before expiry, and

simultaneously go long the next-month contract. This rolling strategy that

involves repeatedly rolling an expiring contract into a new one is commonly

adopted during backwardation, while its opposite is often used in a contango

market. Backwardation and contango phenomena are widely observed in

the energy commodities and volatility futures markets.

As we can see, both the futures and spot prices vary over time. If

the spot price increases/decreases, the futures price will also end up

higher/lower. This leads us to consider the difference between the futures

and spot returns.1 Let 0 ≤ t1 < t2 ≤ T . We denote the roll yield over the

1Here, “return” stands for “the change in the value of an instrument or index between
two points in time, without dividing by the initial value” according to Deconstructing
Futures Returns: The Role of Roll Yield, Campbell White Paper Series, February 2014.
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period [t1, t2] associated with a single futures contract with maturity T by

R(t1, t2, T ) := (fTt2 − fTt1)− (St2 − St1). (5.9)

If t2 = T , then the roll yield reduces to the price difference (St1 − fTt1).

Next, we examine the cumulative roll yield across maturities. Denote

by T1 < T2 < T3 < . . . the maturities of futures contracts. We roll over at

every Ti by replacing the contract expiring at Ti with a new contract that

expires at Ti+1. Let i(t) := min{i : Ti−1 < t ≤ Ti}, and i(0) = 1. Then the

roll yield up to time t > T1 is

R(0, t) = (f
Ti(t)

t − f
Ti(t)

Ti(t)−1
) +

i(t)−1∑
j=2

(STj − f
Tj

Tj−1
) + (ST1 − fT1

0 )− (St − S0)

= (f
Ti(t)

t − St)− (fT1
0 − S0)︸ ︷︷ ︸

Basis Return

+

i(t)−1∑
j=1

(STj − f
Tj+1

Tj
)︸ ︷︷ ︸

Cumulative Roll Adjustment

.

The cumulative roll adjustment is related to the term structure of futures

contracts. If Ti − Ti−1 is constant, and the term structure only moves par-

allel, then the cumulative roll adjustment is simply the number of roll-over

times a constant (difference between spot and near-month futures contract).

5.2.1 OU and CIR Spot Models

Suppose the spot price under the OU or CIR model described in Section

5.1.1. At time T1, we roll over the portfolio by selling the futures contracts

with maturity T1 and buying the futures contracts with maturity T2 > T1.

Then, by the futures price formula (5.1), the conditional expected roll yield

is

E{R(t1, t2, T )|St1} = St1

(
(1− e−µ̃(T−t1))− e−µ(t2−t1)(1− e−µ̃(T−t2))

)
− θ(1− e−µ(t2−t1))(1 − e−µ̃(T−t2))

− θ̃(e−µ̃(T−t2) − e−µ̃(T−t1)).

In particular, if µ̃ = µ, then the conditional expected roll yield simplifies

to

E{R(t1, t2, T )|St1} =
(
(St1 − θ) + (θ − θ̃)e−µ(T−t2)

)(
1− e−µ(t2−t1)

)
.

From this, we see that the roll yield is positive if St1 ≥ θ ≥ θ̃. If additionally

St1 = θ = θ̃, then the conditional expected roll yield vanishes.
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Consider a longer horizon with rolling at multiple maturities, the ex-

pected roll yield is

E{R(0, t)}

= E{fTi(t)

t − St} − (fT1

0 − S0) +

i(t)−1∑
j=1

E{STj − f
Tj+1

Tj
}

= ((S0 − θ)e−µt + θ − θ̃)(e−µ̃(Ti(t)−t) − 1)− (S0 − θ̃)(e−µ̃T1 − 1)

+

i(t)−1∑
j=1

((S0 − θ)e−µTj + θ − θ̃)(1 − e−µ̃(Tj+1−Tj)).

In particular, if the maturities are separated equally, i.e. Tj+1−Tj ≡ ∆T

for all j, then we obtain a simplified expression

E{R(0, t)}
= ((S0 − θ)e−µt + θ − θ̃)(e−µ̃((i(t)−1)∆T+T1−t) − 1)

+

(
(S0 − θ)

1− e−µ(i(t)−1)∆T

1− e−µ∆T
+ (i(t)− 1)(θ − θ̃)

)
(1− e−µ̃∆T )

− (S0 − θ̃)(e−µ̃T1 − 1).

In summary, the expected roll yield depends not only on the risk-neutral

parameters µ̃ and θ̃, but also their historical counterparts. It vanishes when

S0 = θ = θ̃. This is intuitive because if the current spot price is currently at

the long-run mean, and the risk-neutral and historical measures coincide,

then the spot and futures prices have little tendency to deviate from the

long-run mean. Also, notice that neither the futures price nor the roll yield

depends on the volatility parameter σ. This is true under the OU/CIR

model, but not the exponential OU model, as we discuss next.

5.2.2 Exponential OU Dynamics

We now turn to the exponential OU spot price model discussed in Section

5.1.2. Following the futures price formula (5.7) and the roll yield definition
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(5.9), we compute explicitly the conditional expected roll yield:

E{R(t1, t2, T )|St1}

= exp

{
e−µ̃(T−t2)−µ(t2−t1) ln(St1) +

(
θ − σ2

2µ

)
(1− e−µ(t2−t1))e−µ̃(T−t2)

+
σ2

4µ
e−2µ̃(T−t2)(1 − e−2µ(t2−t1)) + (1 − e−µ̃(T−t2))(θ̃ − σ2

2µ̃
)

+
σ2

4µ̃
(1− e−2µ̃(T−t2))

}
− exp

{
e−µ̃(T−t1) ln(St1) + (1 − e−µ̃(T−t1))(θ̃ − σ2

2µ̃
)

+
σ2

4µ̃
(1− e−2µ̃(T−t1))

}
− exp

{
e−µ(t2−t1) ln(St1) + (1− e−µ(t2−t1))(θ − σ2

2µ
)

+
σ2

4µ
(1− e−2µ(t2−t1))

}
+ St1 .

Rolling over multiple futures contracts, the expected roll yield is

E{R(0, t)} = Y1(t) + Y2(t)− (fT1
0 − S0), (5.10)

where

Y1(t) = E{fTi(t)

t − St}

= exp

(
e−µ̃(Ti(t)−t)−µt ln(S0) +

(
θ − σ2

2µ

)
(1− e−µt)e−µ̃(Ti(t)−t)

+
σ2

4µ
e−2µ̃(Ti(t)−t)(1− e−2µt) + (1− e−µ̃(Ti(t)−t))(θ̃ − σ2

2µ̃
)

+
σ2

4µ̃
(1− e−2µ̃(Ti(t)−t))

)
− exp

(
e−µt ln(S0) + (1− e−µt)(θ − σ2

2µ
) +

σ2

4µ
(1− e−µt)

)
,
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and

Y2(t) =

i(t)−1∑
j=1

E{STj − f
Tj+1

Tj
}

=

i(t)−1∑
j=1

(
exp

(
e−µTj ln(S0) + (1− e−µTj )(θ − σ2

2µ
) +

σ2

4µ
(1− e−µTj )

)

− exp

(
e−µ̃(Tj+1−Tj)−µTj ln(S0) +

(
θ − σ2

2µ

)
(1− e−µTj )e−µ̃(Tj+1−Tj)

+
σ2

4µ
e−2µ̃(Tj+1−Tj)(1− e−2µTj )

+ (1− e−µ̃(Tj+1−Tj))(θ̃ − σ2

2µ̃
) +

σ2

4µ̃
(1 − e−2µ̃(Tj+1−Tj))

))
.

The explicit formula (5.10) for the expected roll yield reveals the non-

trivial dependence on the volatility parameter σ, as well as the risk-neutral

parameters (µ̃, θ̃) and historical parameters (µ, θ). It is useful for instantly

predicting the roll yield after calibrating the risk-neutral parameters from

the term structure of the futures prices, and estimating the historical pa-

rameters from past spot prices.

5.3 Futures Trading Problem

Let us consider the scenario in which an investor has a long position in a

futures contract with expiration date T . With a long position in the futures,

the investor can hold it till maturity, but can also close the position early by

taking an opposite position at the prevailing market price. At maturity, the

two opposite positions cancel each other. This motivates us to investigate

the best time to close.

If the investor selects to close the long position at time τ ≤ T , then

she will receive the market value of the futures, denoted by f(τ, Sτ ;T ),

minus the transaction cost cs ≥ 0. To maximize the expected discounted

value, evaluated under the investor’s historical probability measure P with

a constant subjective discount rate r > 0, the investor solves the optimal

stopping problem

V(t, s) = sup
τ∈Tt,T

Et,s
{
e−r(τ−t)(f(τ, Sτ ;T )− cs)

}
,

where Tt,T is the set of all stopping times, with respect to the filtra-

tion generated by S, taking values between t and T̂ , where T̂ ∈ (0, T ]
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is the trading deadline, which can equal but not exceed the futures’ matu-

rity. Throughout this chapter, we continue to use the shorthand notation

Et,s{·} ≡ E{·|St = s} to indicate the expectation taken under the historical

probability measure P.

The value function V(t, s) represents the expected liquidation value as-

sociated with the long futures position. Prior to taking the long position

in f , the investor, with zero position, can select the optimal timing to start

the trade, or not to enter at all. This leads us to analyze the timing option

inherent in the trading problem. Precisely, at time t ≤ T , the investor faces

the optimal entry timing problem

J (t, s) = sup
ν∈Tt,T

Et,s

{
e−r(ν−t)(V(ν, Sν)− (f(ν, Sν ;T ) + cb))

}
,

where cb ≥ 0 is the transaction cost, which may differ from cs. In other

words, the investor seeks to maximize the expected difference between the

value function V(ν, Sν) associated with the long position and the prevailing

futures price f(ν, Sν ;T ). The value function J (t, s) represents the maxi-

mum expected value of the trading opportunity embedded in the futures.

We refer this “long to open, short to close” strategy as the long-short strat-

egy.

Alternatively, an investor may well choose to short a futures contract

with the speculation that the futures price will fall, and then close it out

later by establishing a long position.2 Given an investor who has a unit

short position in the futures contract, the objective is to minimize the

expected discounted cost to close out this position at/before maturity. The

optimal timing strategy is determined from

U(t, s) = inf
τ∈Tt,T

Et,s

{
e−r(τ−t)(f(τ, Sτ ;T ) + cb)

}
.

As before, if the investor begins with a zero position, then she can decide

when to enter the market by solving

K(t, s) = sup
ν∈Tt,T

Et,s

{
e−r(ν−t)((f(ν, Sν ;T )− cs)− U(ν, Sν))

}
.

We call this “short to open, long to close” strategy as the short-long strat-

egy.

When an investor contemplates entering the market, she can either long

or short first. Therefore, on top of the timing option, the investor has an
2By taking a short futures position, the investor is required to sell the underlying spot

at maturity at a pre-specified price. In contrast to the short sale of a stock, a short
futures does not involve share borrowing or re-purchasing.
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additional choice between the long-short and short-long strategies. Hence,

the investor solves the market entry timing problem:

P(t, s) = sup
ς∈Tt,T

Et,s

{
e−r(ς−t)max{A(ς, Sς),B(ς, Sς)}

}
, (5.11)

with two alternative rewards upon entry defined by

A(ς, Sς) := V(ς, Sς)− (f(ς, Sς ;T ) + cb), (long − short),

B(ς, Sς) := (f(ς, Sς ;T )− cs)− U(ς, Sς) (short− long).

5.4 Variational Inequalities and Optimal Trading Strategies

In order to solve for the optimal trading strategies, we study the variational

inequalities corresponding to the value functions J , V , U , K and P . To

this end, we first define the operators:

L (1){·} := −r ·+ ∂·
∂t

+ µ̃(θ̃ − s)
∂·
∂s

+
σ2

2

∂2·
∂s2

,

L (2){·} := −r ·+ ∂·
∂t

+ µ̃(θ̃ − s)
∂·
∂s

+
σ2s

2

∂2·
∂s2

,

L (3){·} := −r ·+ ∂·
∂t

+ µ̃(θ̃ − ln s)s
∂·
∂s

+
σ2s2

2

∂2·
∂s2

,

corresponding to, respectively, the OU, CIR, and XOU models.

The optimal exit and entry problems J and V associated with the long-

short strategy are solved from the following pair of variational inequalities:

max
{
L (i)V(t, s) , (f(t, s;T )− cs)− V(t, s)

}
= 0,

max
{
L (i)J (t, s) , (V(t, s)− (f(t, s;T ) + cb))− J (t, s)

}
= 0,

for (t, s) ∈ [0, T ] × R, with i ∈ {1, 2, 3} representing the OU, CIR, or

XOU model respectively.3 Similarly, the reverse short-long strategy can be

determined by numerically solving the variational inequalities satisfied by

U and K:

min
{
L (i)U(t, s) , (f(t, s;T ) + cb)− U(t, s)

}
= 0,

max
{
L (i)K(t, s) , ((f(t, s;T )− cs)− U(t, s)) −K(t, s)

}
= 0.

3The spot price is positive, thus s ∈ R+, under the CIR and XOU models.
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As V , J , U , andK are numerically solved, they become the input to the final

problem represented by the value function P . To determine the optimal

timing to enter the futures market, we solve the variational inequality

max
{
L (i)P(t, s) , max{A(t, s),B(t, s)} − P(t, s)

}
= 0.

The optimal timing strategies are described by a series of boundaries

representing the time-varying critical spot price at which the investor should

establish a long/short futures position. In the “long to open, short to close”

trading problem, where the investor pre-commits to taking a long position

first, the market entry timing is described by the “J ” boundary in Figure

5.2(a). The subsequent timing to exit the market is represented by the “V”
boundary in Figure 5.2(a). As we can see, the investor will long the futures

when the spot price is low, and short to close the position when the spot

price is high, confirming the buy-low-sell-high intuition.

If the investor adopts the short-long strategy, by which she will first

short a futures and subsequently close out with a long position, then the

optimal market entry and exit timing strategies are represented, respec-

tively, by the “K” and “U” boundaries in Figure 5.2(c). The investor will

enter the market by shorting a futures when the spot price is sufficiently

high (at the “K” boundary), and wait to close it out when the spot price

is low. In essence, the boundaries reflect a sell-high-buy-low strategy.

When there are no transaction costs (see Figures 5.2(b) and 5.2(d)), the

waiting region shrinks for both strategies. Practically, this means that the

investor tends to enter and exit the market earlier, resulting in more rapid

trades. This is intuitive as transaction costs discourage trades, especially

near expiry.

In the market entry problem represented by P(t, s) in (5.11), the investor

decides at what spot price to open a position. The corresponding timing

strategy is illustrated by two boundaries in Figure 5.3(a). The boundary

labeled as “P = A” (resp. “P = B”) indicates the critical spot price (as a

function of time) at which the investor enters the market by taking a long

(resp. short) futures position. The area above the “P = B” boundary is

the “short-first” region, whereas the area below the “P = A” boundary

is the “long-first” region. The area between the two boundaries is the

region where the investor should wait to enter. The ordering of the regions

is intuitive – the investor should long the futures when the spot price is

currently low and short it when the spot price is high. As time approaches

maturity, the value of entering the market diminishes. The investor will

not start a long/short position unless the spot is very low/high close to
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maturity. Therefore, the waiting region expands significantly nears expiry.

The investor’s exit strategy depends on the initial entry position. If the

investor enters by taking a long position (at the “P = A” boundary), then

the optimal exit timing to close her position is represented by the upper

boundary with label “V” in Figure 5.2(a). If the investor’s initial position is

short, then the optimal time to close by going long the futures is described

by the lower boundary with label “U” in Figure 5.2(c).

Since the value function P dominates both J and K due to the addi-

tional flexibility, it is not surprising that the “P = A” boundary is lower

than the “J ” boundary, and the “P = B” boundary is higher than the “K”

boundary, as seen in Figure 5.3(b). This means that the embedded timing

option to choose between the two strategies (“long to open, short to close”

or “short to open, long to close”) induces the investor to delay market entry

to wait for better prices.

5.5 Dynamic Futures Portfolios

In addition to trading a single futures contract, one can construct a port-

folio of futures of different maturities. Let’s consider a self-financing port-

folio consists of k ≥ 2 futures with dynamically re-balanced strategies

(wit)0≤t≤Ti , i = 1, . . . , k. Also, without loss of generality, consider k fu-

tures contracts with ordered maturities T1 < T2 < · · · < Tk. For t < T1,

the portfolio value evolves according to

dVt
Vt

=

k∑
i=1

wit
dfTi
t

fTi
t

+ rdt. (5.12)

where
∑k

i=1 w
i
t = 1. In other words, witVt is the cash amount invested in

futures i (with maturity Ti) at time t.

In general, the strategy wt can depend on the history of the spot and

other sources of randomness. For our analysis and applications herein, it

is sufficient to consider Markovian strategies of the form wt = w(t, St) for

some deterministic function w(t, s). Note that futures are priced under the

risk neutral measure Q, but the investor observes the portfolio value under

the historical measure P. The evolution of V in (5.12) holds path-wise

under either measure.
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Fig. 5.2 Top: optimal boundaries for the long-short strategies (long at J first, then
close out at V) under the CIR model with and without transaction costs ((a) and (b)
respectively). Bottom: optimal boundaries for the short-long strategies (short at U
first, then close up at K) under the CIR model with and without transaction costs
((c) and (d) respectively). Parameters: T = 1/12 (1 month), Tf = 3/12 (3 months),

r = 0.05, σ = 0.25, θ = 17.5, θ̃ = 18.16, µ = 5.5, µ̃ = 4.55, cb = cs = 0.0005.
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Fig. 5.3 (a) Optimal boundaries to enter the futures market under the CIR model. In
the “Short First” (resp. “Long First”) region, the investor enters by establishing a short
(resp. long) position. (b) Display of all optimal boundaries for entering (P = B,P =
A,J ,K), and subsequently exiting the market (V and U). Parameters: T = 1/12 (1
month), Tf = 3/12 (3 months), r = 0.05, σ = 0.25, θ = 17.5, θ̃ = 18.16, µ = 5.5, µ̃ =
4.55, cb = cs = 0.0005.
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In Section 5.1, we have seen how futures prices relate to the spot prices.

One major purpose of trading futures is to gain desired exposure to under-

lying asset. As a simple example, consider a single futures contract under

the OU or CIR model. By formula (5.1) and Ito’s lemma, the dynamics of

this portfolio value is

dfTt = e−µ̃(T−t)dSt + µ̃(St − θ̃)e−µ̃(T−t)dt.

In this equation, the first term suggests that the futures always has a less

than a unit exposure to the spot, and the second represents a drift term

whose sign and magnitude depend on the relative values of the current spot

price and the risk-neutral long-run mean θ̃.

Now by dynamically trading futures of different maturities, can an in-

vestor flexibly control the exposure to the spot? Furthermore, we seek to

determine the impact of a dynamic trading strategy on the portfolio’s rate

of return and volatility.

5.5.1 Portfolio Dynamics with a CIR Spot

To fix idea, let us discuss the problem under the CIR model. In this case,

the futures price is given in (5.1). We apply the futures price formula to

(5.12), and derive the dynamics of V in as follows:

dVt
Vt

=
k∑
i=1

wit
dfTi
t

fTi
t

+ rdt

=

k∑
i=1

wit
µ̃(St − θ̃)e−µ̃(Ti−t)dt+ e−µ̃(Ti−t)dSt

(St − θ̃)e−µ̃(Ti−t) + θ̃
+ rdt

=

k∑
i=1

wit
e−µ̃(Ti−t)St

(St − θ̃)e−µ̃(Ti−t) + θ̃

dSt
St

+

k∑
i=1

wit
µ̃(St − θ̃)e−µ̃(Ti−t)

(St − θ̃)e−µ̃(Ti−t) + θ̃
dt+ rdt

=

k∑
i=1

wit
Ste

−µ̃(Ti−t)

(St − θ̃)e−µ̃(Ti−t) + θ̃

dSt
St

+ µ̃(St − θ̃)

k∑
i=1

wit
e−µ̃(Ti−t)

(St − θ̃)e−µ̃(Ti−t) + θ̃
dt+ rdt

= ω(t, St)
dSt
St

+
(
r + µ̃(1 − θ̃

St
)ω(t, St)

)
dt, (5.13)
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where we have denoted

ω(t, St) :=

k∑
i=1

wit
Ste

−µ̃(Ti−t)

(St − θ̃)e−µ̃(Ti−t) + θ̃
.

In (5.13), we have decomposed the portfolio dynamics into two parts: the

exposure to the spot and a stochastic drift term. We observe that the

magnitude of exposure is represented by the coefficient ω(t, St). In partic-

ular, when ω(t, St) > 1, the portfolio is said to have a leveraged exposure

to the spot. An inverse leverage is achieved when ω(t, St) < 1. The in-

vestor has full control of the leverage coefficient ω by selecting the portfolio

weights wi for i = 1, . . . , k. Once ω(t, s) is chosen, the stochastic drift(
r + µ̃(1− θ̃/St)ω(t, St)

)
is simultaneously set.

As an example, let’s select ω(t, St) = β. Consequently, the futures

portfolio has a constant leverage ratio β with respect to the spot.

dVt
Vt

= β
dSt
St

+
(
r + βµ̃(1 − θ̃

St
)
)
dt.

In particular, if β = 1, then the portfolio has a one-to-one exposure to the

spot, but is subject to the stochastic drift rate: r+ µ̃(1− θ̃
St
), which can be

positive or negative depending on the relative values of S and the long-run

mean θ̃. If β = 0, then we obtain a constant drift rdt, which recovers the

risk-free rate.

Moreover, we can express the value of the futures portfolio in terms of

the spot price.

Proposition 5.2. Under the CIR model, the value of a futures portfolio

with a constant leverage (β ∈ R) satisfies

Vt
V0

=

(
St
S0

)β
exp

(
(r + βµ̃)t+ β

(
1

2
σ2(1− β)− µ̃θ̃

)∫ t

0

1

Su
du

)
.

(5.14)

Proof. Using Ito’s formula and setting ω(t, St) = β in SDE (5.13), we have

d ln(Vt) =
dVt
Vt

− 1

2

(
dVt
Vt

)2
= β

dSt
St

+
(
r + βµ̃(1− θ̃

St
)
)
dt− 1

2
β2

(
dSt
St

)2
= βd ln(St) +

[
β(1− β)

σ2

2St
+

(
r + βµ̃(1− θ̃

St
)
)]
dt. (5.15)

Integrating (5.15) gives (5.14).
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From (5.14), we see that the return of the futures portfolio admits a

multiplicative decomposition in terms of two functions of the spot price

process. The first term is intuitive as it indicates that the log-return of the

futures portfolio is proportional to β times the log-return of the spot, that

is, ln(Vt/V0) = β ln(St/S0). The second term suggests a stochastic factor

that can increase or decrease the portfolio’s value. In (5.15), the sign of

the drift term depends crucially on the values of β and the ratio θ̃/St. For

example, the factor β(1 − β) is negative if β /∈ [0, 1], and (1 − θ̃/St) < 0

whenever St < θ̃.

Alternatively, one can control the drift, and obtain a stochastic leverage.

For example, setting the coefficient of dt to be a ∈ R, then the portfolio

value satisfies

dVt
Vt

=
St

µ̃(St − θ̃)
(a− r)

dSt
St

+ adt.

As a special case, if a = 0, then we have

dVt
Vt

= − r

µ̃(1 − θ̃
St
)

dSt
St

.

The resulting leverage ratio is stochastic, and is negative if St > θ̃, and

positive if St < θ̃.

5.5.2 Portfolio Dynamics with an XOU Spot

We now look at the portfolio dynamics under the exponential OU model.

With the spot price given in (5.6) and futures price in (5.7), the portfolio

value satisfies

dVt
Vt

=

k∑
i=1

wit
dfTi
t

fTi
t

+ rdt

=

k∑
i=1

wite
−µ̃(Ti−t) dSt

St
− µ̃(θ̃ − ln(St))

k∑
i=1

wite
−µ̃(Ti−t)dt+ rdt

= �(t, St)
dSt
St

+ (r + µ̃(ln(St)− θ̃)�(t, St))dt, (5.16)

where

�(t, St) :=

k∑
i=1

wite
−µ̃(Ti−t).

In (5.16), the coefficient�(t, St) represents the stochastic leverage of the

portfolio with respect to the spot. In particular, let �(t, St) be a constant
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β ∈ R. Then, the drift must be r + βµ̃(ln(St)− θ̃), which is positive when

St is sufficiently high (resp. low) for β > 0 (resp. β < 0):

St ≷ exp

(
θ̃ − r

βµ̃

)
, for β ≷ 0.

Furthermore, we can express the futures portfolio value in terms of the

spot price explicitly.

Proposition 5.3. Under the exponential OU model, the value of a futures

portfolio with a constant leverage (β ∈ R) is given by

Vt
V0

=

(
St
S0

)β
exp

(
β (1− β)

σ2

2
t+ βµ̃

[∫ t

0

(ln(Su)− θ̃)du

]
+ rt

)
.

(5.17)

Proof. We apply Ito’s formula and set the leverage �(t, St) = β in (5.16)

to get

d ln(Vt) =
dVt
Vt

− 1

2

(
dVt
Vt

)2

= βd ln(St) + β

(
σ2

2
(1− β)− µ̃(θ̃ − ln(St))

)
dt+ rdt.(5.18)

Integrating (5.18) yields (5.17).

Equivalently, we can write (5.17) in log-returns:

ln

(
Vt
V0

)
= β ln

(
St
S0

)
+ β (1− β)

σ2

2
t+ βµ̃

[ ∫ t

0

(ln(Su)− θ̃)du

]
+ rt.

From this, the portfolio’s log-return can be decomposed into two parts: β

times the spot’s log-return, and a stochastic rate whose sign depends on

the leverage factor and the difference of log-price of the spot and its log-

long-run mean. In particular, if β /∈ [0, 1], then the term β(1 − β)0.5σ2t

reduces the portfolio value, and this erosion is worse if the spot has a higher

volatility.

On the other hand, if we fix the drift of (5.16) to be a constant a ∈ R,

then the leverage coefficient must be (a− r)[µ̃(ln(St)− θ̃)]−1. In the case

with a = 0, the portfolio value satisfies

dVt
Vt

=
r

µ̃(θ̃ − ln(St))

dSt
St

.

Hence, the portfolio has a specific stochastic leverage that changes sign

depending on the relative values of θ̃ and St. In particular, a one-to-one

exposure without drift is not possible with this futures portfolio.
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Fig. 5.4 Historical price paths of CBOE Volatility Index (VIX) and iPath S&P
500 VIX Short Term Futures ETN (VXX), respectively, from June 12, 2014 to
June 11, 2015.

5.6 Application to VIX Futures & Exchange-Traded Notes

A number of VIX ETFs/ETNs are in fact VIX futures portfolios with time-

deterministic weights. For instance, the iPath S&P 500 VIX Futures ETN

(VXX) is one of the most traded ETNs. Figure 5.4 displays the time series

of the VXX, along with the VIX.

According to its prospectus, the VXX portfolio weights are of the fol-

lowing form:

w(t) =
Ti(t) − t

Ti(t) − Ti(t)−1
, (5.19)

where i(t) := min{i : Ti−1 < t ≤ Ti}. When the front-month futures

expires, the portfolio assigns all weight to the next-month futures. Figure

5.5 illustrates how the weight for each futures contract gradually decreases

from 1 to 0 over time.

Under the OU or CIR model, the portfolio dynamics can be described

by the SDE:

dVt
Vt

= w(t)
df
Ti(t)

t

f
Ti(t)

t

+ (1 − w(t))
df
Ti(t)+1

t

f
Ti(t)+1

t

+ rdt

= ω̂(t, St)
dSt
St

+
(
r + µ̃(1− θ̃

St
)ω̂(t, St)

)
dt. (5.20)
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Fig. 5.5 Time-deterministic portfolio weights, as shown in (5.19), for three futures
contracts with 30, 60, and 90 days to maturities (respectively w1, w2, and w3).

In (5.20), we have expressed the exposure to the spot in terms of

ω̂(t, St) :=
w(t)St

St + θ̃(eµ̃(Ti(t)−t) − 1)
+

(1− w(t))St

St + θ̃(eµ̃(Ti(t)+1−t) − 1)
. (5.21)

Note that although the weights w(t) is a time-deterministic strategy, the

resulting portfolio V has a stochastic leverage with respect to the spot S.

We can see it from ω̂ which is a function of the current spot price as well

as time. By inspecting (5.21), we get

0 ≤ ω̂(t, St) ≤ w(t) + (1− w(t)) = 1.

Thus, the stochastic exposure always long but is less than 1.

This portfolio only consists of long positions in the VIX futures, re-

plenished repeatedly over time. Thus its value may erode when persistent

negative roll yields are observed in the VIX futures market.

In Figure 5.6, we show the simulated paths of the futures portfolio,

along with the spot and futures prices. The spot price path is more volatile

than the VIX futures and the futures portfolio. In fact, we can see this

through the quadratic variation of the portfolio return:(
dVt
Vt

)2

=

(
w(t)

St + θ̃(eµ̃(Ti(t)−t) − 1)
+

(1− w(t))

St + θ̃(eµ̃(Ti(t)+1−t) − 1)

)2

(dSt)
2

<

(
dSt
St

)2

.
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Fig. 5.6 Simulated spot price path (solid line) under CIR model, along with the
prices of three futures contracts with maturities T1 = 30 days (circles), T2 = 60
days (dash-dot line), and T3 = 90 days (dotted line), respectively, and a futures
portfolio (dashed line) with weights in Figure 5.5. Parameters used for illus-
tration are µ = 0.24, θ = 12.90, σ = 0.29, µ̃ = 0.83, θ̃ = 22.04, and we set
S0 = V0 = 12.90.

We note that the above inequality holds regardless of the model parameters,

and thus, the roll yields of the associated futures.

The simulated VIX index in Figure 5.6 is mean-reverting, with its value

staying close to 13. However, the futures prices and portfolio value decrease

significantly over time. This is mainly due to the fact that the futures are

priced with a high long-run mean θ̃ while the historical long-run mean θ.

Consequently, the futures prices are higher than the spot price. As time

progresses, the futures prices must decrease to meet the spot price, so the

value of the long-futures portfolio also decays. Such a value erosion is also

observed empirically in the VXX prices (see Figure 5.4).
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Chapter 6

Optimal Liquidation of Options

For decades, options have been widely used as a tool for investment and risk

management. As of 2012, the daily market notional for S&P 500 options is

about US$90 billion and the average daily volume has grown rapidly from

119,808 in 2002 to 839,108 as of Jan 2013.1 Empirical studies on options

returns often assume that the options are held to maturity. For every

liquidly traded option, there is an embedded timing flexibility to liquidate

the position through the market prior to expiry. Hence, an important

question for effective risk management is: When is the best time to sell

an option? In this chapter, we propose a risk-adjusted optimal timing

framework to address this problem for a variety of options under different

underlying price dynamics.

In determining the optimal time to sell an option, we incorporate a risk

penalty that accounts for adverse price movements till the liquidation time.

For every candidate strategy, we measure the associated risk by integrat-

ing over time the realized shortfall, or more generally its transformation in

terms of a loss function, of the option position. As such, our integrated

shortfall risk penalty is path dependent and introduces the trade-off be-

tween risk and return for every liquidation timing strategy.

In Section 6.1, we formulate the optimal liquidation problem for a

generic European claim in a diffusion market. The investigation of the non-

trivial liquidation strategies involves the analytical and numerical studies of

the inhomogeneous variational inequality associated with the optimal stop-

ping problem. In Section 6.2, we study the optimal liquidation timing with

a shortfall risk penalty. The analysis with a quadratic variation risk penalty

is conducted in Section 6.3. For the variational inequalities in our liquida-

tion problems, we prove the existence and uniqueness of a strong solution

1See http://www.cboe.com/micro/spx/introduction.aspx.

129
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à la Bensoussan and Lions (1978) (see Section 6.5 below) under general

conditions applicable to both geometric Brownian motion (GBM) and ex-

ponential Ornstein-Uhlenbeck (OU) models for the underlying dynamics.

Numerical examples of the optimal liquidation strategies are provided for

stocks, calls, puts, and straddles.

6.1 Optimal Liquidation with Risk Penalty

Given a probability space (Ω,F ,P), where P is the historical probability

measure, we consider a market consisting of a risky asset S and a money

market account with a constant positive interest rate r. The risky asset

price is modeled by a positive diffusion process following the stochastic

differential equation

dSt = µ(t, St)Stdt+ σ(t, St)StdWt, S0 = s, (6.1)

where W is a standard Brownian motion under measure P and s > 0.

Here, the deterministic coefficients µ(t, s) and σ(t, s) are assumed to satisfy

standard Lipschitz and growth conditions to ensure a unique strong solution

to the SDE (see Section 5.2 of Karatzas and Shreve (1991)). We let F =

(Ft)t≥0 be the filtration generated by the Brownian motion W .

Let us consider a market-traded European option with payoff h(ST )

on expiration date T written on the underlying asset S. Given that

the Sharpe ratio λ(t, s) := µ(t,s)−r
σ(t,s) satisfies the Novikov condition:

E{exp(
∫ T
0

1
2λ

2(u, Su) du)} < ∞ (see Appendix A of Leung and Shirai

(2015)), the density process

dQ

dP

∣∣∣∣
Ft

= exp

(
−1

2

∫ t

0

λ2(u, Su) du+

∫ t

0

λ(u, Su) dWu

)
, (6.2)

for 0 ≤ t ≤ T , is a (P,F)−martingale. This defines a unique equivalent

martingale (risk-neutral) measure Q, and the market price of the option is

given by

V (t, s) = Ẽt,s

{
e−r(T−t)h(ST )

}
, (t, s) ∈ [0, T ]× R+. (6.3)

The shorthand notation Ẽt,s{·} ≡ Ẽ{·|St = s} denotes the conditional

expectation under Q. Note that the market price function V (t, s) does not

depend on the drift function µ(t, s).

Observing the stock and option price movements over time, the investor

has the timing flexibility to sell the option before expiry. While seeking to
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maximize the expected discounted market value of the option, we incorpo-

rate a risk penalty that accounts for the downside risk up to the liquidation

time. Specifically, we define the shortfall at time t by

�(t, St) = (m− V (t, St))
+,

where m > 0 is a constant benchmark set by the investor. Then, the risk

penalty is modeled as a loss function of the shortfall, denoted by ψ(�(t, St)).

Here, the loss function ψ : R+ → R is assumed to be increasing, convex,

continuously differentiable, with ψ(0) = 0 (see Section 4.9 of Föllmer and

Schied (2004)). As a result, the investor faces the penalized optimal stop-

ping problem

Jα(t, s)

= sup
τ∈Tt,T

Et,s

{
e−r(τ−t)V (τ, Sτ )− α

∫ τ

t

e−r(u−t)ψ
(
(m− V (t, St))

+
)
du

}
,

(6.4)

where α ≥ 0 is a penalization coefficient and Tt,T is the set of F-stopping

times taking values in [t, T ].

Unless otherwise noted, our analysis applies to a general loss function

ψ satisfying the conditions above. Here, let us give an example to visualize

the penalization mechanism. For instance, one can set the benchmark to be

the initial option price, and take ψ(�) = �. Then, the penalty term amounts

to accumulating the (discounted) area when the option is below its initial

cost. We illustrate this in Figure 6.1. Notice that the realized shortfall

stays flat when the option price is above the benchmark, and continues to

increase as long as the option is under water. Other viable specifications

include the power penalty ψ(�) = �p, p ≥ 1, and the exponential penalty

ψ(�) = exp(γ�)− 1, γ > 0, and more.

6.1.1 Optimal Liquidation Premium

In order to quantify the value of optimal waiting, we define the optimal

liquidation premium by the difference between the value function Jα and

the current market price of the option, namely,

Lα(t, s) := Jα(t, s)− V (t, s). (6.5)

Alternatively, the optimal liquidation premium Lα can be interpreted as the

risk-adjusted expected return from a simple buy-now-sell-later strategy.
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Fig. 6.1 The realized shortfall (dashed) based on a simulated price path (solid)
of a European call option under the GBM model, with parameters S0 = 100,
r = 0.03, µ = −0.05 and σ = 0.3, K = 100, T = 1, α = 1. The benchmark m is
the initial call option price.

Denote the discounted penalized liquidation value process by

Yu = e−ruV (u, Su)− α

∫ u

0

e−rtψ((m− V (t, St))
+)dt.

In order to guarantee the existence of an optimal stopping time to problem

(6.4), we require that E{sup0≤u≤T Yu} < ∞. For a European call option,

the option value V (t, St) is dominated by the stock price St, while the put

option price is bounded by the strike price. Consequently, for any linear

combination of calls and puts, it suffices to impose E{sup0≤u≤T Su} <

∞. We also require that P{min0≤t≤t̂ St > 0} = 1, which means that the

asset price stays strictly positive before any finite time t̂ a.s. Then by

standard optimal stopping theory, the optimal liquidation time, associated

with L(t, s), is given by

τ∗ = inf{ u ∈ [t, T ] : Lα(u, Su) = 0 }. (6.6)

In other words, it is optimal for the investor to sell the option as soon

as the optimal liquidation premium Lα vanishes, meaning that the timing

flexibility has no value. Accordingly, the investor’s optimal liquidation
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strategy can be described by the sell region S and delay region D, namely,

S = {(t, s) ∈ [0, T ]× R+ : Lα(t, s) = 0},
D = {(t, s) ∈ [0, T ]× R+ : Lα(t, s) > 0}.

Our framework can be readily applied to the reverse problem of opti-

mally timing to buy an option. This amounts to changing the sup to inf in

Lα. In this chapter, we shall focus on the liquidation problem.

Theorem 6.1. Given the underlying price dynamics in (6.1), the optimal

liquidation premium admits the probabilistic representation

Lα(t, s) = sup
τ∈Tt,T

Et,s

{∫ τ

t

e−r(u−t)Gα(u, Su) du

}
, (6.7)

where we denote

Gα(t, s) :=
(
µ(t, s)− r

)
sVs(t, s)− αψ

(
(m− V (t, s))+

)
. (6.8)

Proof. Applying Ito’s formula to the market price in (6.3), we get

Et,s

{
e−r(τ−t)V (τ, Sτ )

}
− V (t, s)

= Et,s

{∫ τ

t

e−r(u−t)
(
µ(u, Su)− r

)
SuVs(u, Su)du

}
.

Substituting this into the optimal liquidation premium in (6.5) gives

Lα(t, s) = sup
τ∈Tt,T

Et,s

{∫ τ

t

e−r(u−t)
[(
µ(u, Su)− r

)
SuVs(u, Su)

− αψ((m− V (u, Su))
+)

]
du

}
,

which resembles (6.7).

We shall call Gα(t, s) in (6.8) the drive function. We observe that it de-

pends on the Delta Vs ≡ ∂V
∂s of the option and the penalty coefficient α

reduces the drive function for every (t, s). Many properties of the optimal

liquidation premium Lα can be deduced by studying the drive function.

Proposition 6.2. Denote by t ∈ [0, T ] the current time. If the drive func-

tion Gα(u, s) is positive, ∀(u, s) ∈ [t, T ] × R+, then it is optimal to sell

at maturity, namely, τ∗ = T . In contrast, if the drive function Gα(u, s)

is negative, ∀(u, s) ∈ [t, T ] × R+, then it is optimal to sell immediately,

namely, τ∗ = t.
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Proof. We observe from the integral in (6.7) that if the drive function Gα

is positive (resp. negative), ∀(u, s) ∈ [t, T ]×R+, then we can maximize the

expectation by selecting the largest (resp. smallest) stopping time, namely,

τ∗ = T (resp. τ∗ = t).

In particular, if Vs(t, s) and (µ(t, s)−r) are of different signs ∀ (t, s), then
the drive function Gα is always negative, so it is optimal to sell immediately.

Proposition 6.2 can also be applied to the perpetual case if we set T = ∞.

In general, the delay region always contains the region where the drive

function is positive, namely,

{Gα > 0} ⊂ {Lα > 0}, (6.9)

see, for example, Prop. 2.3 of Oksendal and Sulem (2005). Intuitively, this

means that if G(t, s) > 0, then the investor should not sell immediately

since an incremental positive infinitesimal premium can be obtained by

waiting for an infinitesimally small amount of time.

In addition, we can infer from (6.7) the ordering of optimal liquidation

premium based on the drive function.

Corollary 6.3. Consider two options A and B, along with two penalty

coefficients αA and αB respectively. If the drive function of A dominates

that of B, i.e. GαA

A (t, s) ≥ GαB

B (t, s), ∀(t, s) ∈ [0, T ] × R+, then the opti-

mal liquidation premium for A, LαA

A , dominates that for B, LαB

B (t, s), i.e.

LαA

A (t, s) ≥ LαB

B (t, s), ∀(t, s) ∈ [0, T ]× R+.

The corollary allows us to compare the liquidation timing of different

penalties. For example, for 0 ≤ α1 ≤ α2, we have Gα1(t, s) ≥ Gα2(t, s) for

the same option. It follows from (6.6) and Corollary 6.3 that the optimal

liquidation time with penalty α1 is later than that with penalty α2.

In general, a variety of delay and sell regions can occur depending on the

underlying dynamics and option payoff. Next, we give sufficient conditions

so that the delay region is bounded.

Theorem 6.4. Let T < ∞ and S be time homogeneous. Then, the delay

region is bounded provided that

(i) ∃ c > 0 s.t. Gα(t, s) < c for every (t, s) ∈ [0, T ]× R+; and

(ii) there exist constants b, k > 0 such that Gα(t, s) < −b in [0, T ]× [k,∞).
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Proof. Step 1. We find a function L̂(t, s) that dominates Lα(t, s) and is

decreasing in both t and s. To this end, we define

Ĝα(s) := max{Gα(t, ξ) : (t, ξ) ∈ [0, T ]× [s,∞)},

L̂(t, s) := sup
τ∈Tt,T

Et,s

{∫ τ

t

e−r(u−t)Ĝα(Su) du,

}
.

By construction Ĝα : [0, T ] × R+ → R is constant in t and decreasing in

s. It also satisfies conditions (i) and (ii). Consequently, using the time

homogeneity of S, we have, for t > t′,

L̂(t, s) = sup
τ∈T0,T−t

E0,s

{∫ τ

0

e−ruĜα(Su) du

}
≤ sup

τ∈T0,T−t′
E0,s

{∫ τ

0

e−ruĜα(Su) du

}
= L̂(t′, s).

Hence, L̂(t, s) is decreasing in t. Moreover, since Ĝα is decreasing in s, we

have, for s′ > s,

L̂(t, s′) = sup
τ∈Tt,T

Et,s′

{∫ τ

t

e−r(u−t)Ĝα(Su) du

}
= sup

τ∈Tt,T

Et,s

{∫ τ

t

e−r(u−t)Ĝα(Su + s′ − s) du

}
≤ sup

τ∈Tt,T

Et,s

{∫ τ

t

e−r(u−t)Ĝα(Su) du

}
= L̂(t, s).

Therefore, L̂(t, s) is also decreasing in s.

Since by definition Ĝα dominates Gα, Corollary 6.3 implies that Lα(t, s)

has a bounded support as long as L̂(t, s) has a bounded support. Hence-

forth, we can assume without loss of generality that Lα is decreasing in

both variables t and s and that Gα is time homogeneous and decreasing in

s. In particular, we denote Gα(s) ≡ Gα(t, s).

Step 2. We prove that for every t > 0, there exists ŝ < ∞ such that

Lα(t, s) = 0 for every s > ŝ. Since Lα(t, s) is decreasing, it is equivalent

to show that there exists no t̂ ∈ (0, T ] s.t. Lα(t, s) > 0 for 0 ≤ t ≤ t̂ and

s ∈ R+. To this end, let us suppose that such a time t̂ exists. In other

words, τ∗ = inf{t ≤ u ≤ T : L(u, Su) = 0} > t̂.

Now, we show that this leads to a contradiction. Fix t ∈ [0, t̂). Condition

(ii) means that there exists k s.t. Gα(s) < −b < 0 in [k,∞). For s > k,

we let τk := inf{u ≥ t : Su ≤ k}. Since S has continuous paths, we have
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τk > t. Define

K(t, s) :=
c

r
Et,s

{
e−r(τk−t)11{τk≤τ∗}

}
− Et,s

{
b

∫ τ∗∧τk

t

e−r(u−t) du

}
=
c

r
Et,s

{
e−r(τk−t)11{τk≤τ∗}

}
− b

(
1− Et,s

{
e−r(τ

∗∧τk−t)
})

,

(6.10)

where c is the upper bound ofGα in condition (i). Next, taking s ↑ ∞ yields

that Pt,s(τk ≤ T ) ↓ 0, while Et,s
{
e−r(τ

∗∧τk−t)
}
< e−r(t̂−t) since τ∗ > t̂ > t

a.s. Therefore, we obtain

β(t, s) :=
cPt,s(τk ≤ τ∗)

r(1 − Et,s
{
e−r(τ∗∧τk−t)

}
)
→ 0.

As a result, for a sufficiently large s > k, we get b ≥ β(t, s), which implies

that K(t, s) ≤ 0 (see (6.10)).

Next we consider the difference

Lα(t, s)−K(t, s) ≤ Et,s

{∫ τ∗

τ∗∧τk
e−r(u−t)Gα(Su) du − c

r
e−r(τk−t)11{τk≤τ∗}

}
≤ ertEt,s

{ c
r
(e−rτ

∗∧τk − e−rτ
∗
)− c

r
e−rτk11{τ∗≤τk}

}
= −ce

rt

r
Et,s

{
e−rτ

∗
11{τk≤τ∗}

}
≤ 0.

This means that Lα(t, s) ≤ K(t, s) ≤ 0. This contradicts the assumption

Lα(t, s) > 0.

Step 3. It remains to show at time 0 that ∃ ŝ > 0 such that Lα(0, s) = 0

for every s > ŝ. Let t̂ ∈ [0, T ] and consider for every t ∈ [0, T+t̂] the optimal

stopping problem

L
α
(t, s) := sup

τ∈Tt,T+t̂

Et,s

{∫ τ

t

e−r(u−t)Gα(Su) du

}
.

The time homogeneity of S yields that L
α
(t̂, s) = Lα(0, s). Now we apply

Step 2 and conclude that there exists ŝ > 0 such that L
α
(t̂, s) = 0 for every

s > ŝ. Hence, the delay region is bounded above.

We remark that the statement and the proof of Theorem 6.4 do not

involve the properties of the loss function. In other words, as long as the

resulting drive function satisfies conditions (i) and (ii), the delay region is

bounded. We notice that if the delay region is bounded, then there exists

a constant s̄ such that {Lα > 0} ⊆ [0, T ]× (0, s̄). We will utilize Theorem

6.4 repeatedly when we discuss the liquidation strategies in subsequent

sections.
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6.2 Applications to GBM and Exponential OU Models

Henceforth, we shall investigate analytically and numerically the opti-

mal liquidation timing when S follows (i) the geometric Brownian motion

(GBM) model with µ(t, s) = µ and σ(t, s) = σ > 0, as well as (ii) the

exponential OU model with µ(t, s) = β(θ − log(s)) and σ(t, s) = σ > 0.

We will study the liquidation timing of a stock, European put and call

options. For both the GBM and exponential OU cases, the risk-neutral

measure Q is uniquely defined by (6.2), and the Novikov condition is sat-

isfied. Furthermore, the Q dynamics of S is a GBM with drift r and the

no-arbitrage prices (see 6.3) of a call and a put with strike K and maturity

T are given by

C(t, s) = sΦ(d1)−Ke−r(T−t)Φ(d2), (6.11)

P (t, s) = Ke−r(T−t)Φ(−d2)− sΦ(−d1), (6.12)

where Φ is the standard normal c.d.f. and

d1 =
log( sK ) + (r + σ2

2 )(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t.

In order to numerically compute the non-trivial liquidation strategy, we

solve the variational inequality (VI) of the form

min

{
− Lαt − µ(t, s)sLαs − σ2(t, s)s2

2
Lαss + rLα −Gα, Lα

}
= 0,

(6.13)

with terminal condition Lα(T, s) = 0 and where (t, s) ∈ [0, T )×R+. In Sec-

tion 6.5, we show that the above VI admits a unique strong solution in the

terminology of Bensoussan and Lions (1978) under conditions that include

the GBM and exponential OU cases (see Theorem 6.13). For implemen-

tation, we adopt the Crank-Nicholson scheme for the VI (7.19) on a finite

(discretized) grid D = [smin, smax]× [0, T ]. We refer to the book by Glowin-

ski (1984) for details on numerical methods for solving inhomogeneous VIs

of parabolic type.

6.2.1 Optimal Liquidation with a GBM Underlying

We begin our first series of illustrative examples under the GBM model. In

view of Proposition 6.2, we observe that, if µ ≤ r, it is never optimal to

hold a stock or a call (or in general any positive delta position) regardless

whether we introduce a risk penalty or not. On the other hand, Proposition

6.2 also implies that, if µ > r and α = 0, it is always optimal to delay.
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Fig. 6.2 The optimal liquidation boundaries (solid) and the zero contours of Gα

(dashed) of a stock (panel (a)) and a call option (panel (b)). We take T = 0.5,
r = 0.03, µ = 0.08, σ = 0.3, K = 50, α = 0.1. The loss function is given by
ψ(�) = �, with the benchmark m = 50 for the stock and m = C(0, K) for the call.
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However, with a non-zero risk penalty (α > 0), the solution can be non-

trivial. To see this, we note that the drive function associated with a call

is given by GαCall(t, s) = (µ− r)sCs − αψ((m − C(t, s))+) where C(t, s) is

the call price in (6.11). In particular, the penalty term is strictly positive

at s = 0 and decreasing, and it vanishes for large s. On the other hand,

the first term (µ − r)sCs is strictly increasing from zero at s = 0. This

implies that there exists a price level ŝ such that GαCall(t, s) is positive in

[0, T ] × [ŝ,∞). In turn, it follows from (6.9) that the sell region must be

bounded (possibly empty) and the delay region is unbounded. The same

argument applies to the case with a stock. Figure 6.2 illustrates this.

Next, we consider the liquidation of a put option. Recall the put price

P (t, s) given in (6.12). Its negative Delta implies that for µ ≥ r the drive

function GαPut(t, s) ≤ 0, ∀(t, s), meaning that it is optimal to sell immedi-

ately by Proposition 6.2. In contrast, when µ < r, the sell region is empty if

α = 0, but under risk penalization the optimal strategy may be non-trivial.

Proposition 6.5. Consider the optimal liquidation of a put under the

GBM model with µ < r and α > 0. Then, the delay region is bounded.

Furthermore, it is non-empty if m < K and ∃ t̂ ∈ [0, T ] such that

αψ′((m− P (t̂, 0))+) < r − µ.

Proof. The drive function for the put Gα ≡ GαPut(t, s) = (r−µ)sΦ(−d1)−
αψ((m − P (t, s))+) satisfies

lim
s→0

Gα(t, s) = −αψ((m−K)+) ≤ 0, (6.14)

lim
s→∞

Gα(t, s) = −αψ(m) < 0, (6.15)

∂Gα

∂s
(t, s) = [r − µ− αψ′((m− P (t, s))+)11{m>P (t,s)}]Φ(−d1)

− (r − µ)sΓ, (6.16)

where Γ = ∂2P
∂s2 ≥ 0. In turn, we fix any b̂ ∈ (0, αψ(m)) and define ψ(�) :=

min{ψ(�), b̂}. This implies the inequality

G
α
(t, s) := (r − µ)sΦ(−d1)− αψ((m− P (t, s))+) ≥ Gα(t, s).

Then by Corollary 6.3, we only need to show that G
α
satisfies the assump-

tions of Theorem 6.4. We observe that G
α
is bounded above and it follows

from (6.15) that lims→∞G
α
(t, s) → −αb̂ < 0 for every t ∈ [0, T ]. More-

over, there exists ŝ > 0 such that for every s > ŝ, ψ((m − P (t, s))+) = b̂.

Consequently, we have

∂G
α

∂t
= (µ− r)sφ(d1)

log( sK )− (r + σ2

2 )(T − t)

2σ(T − t)
3
2

≤ 0,
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for s > max{ŝ, K exp((r + σ2/2)T )} and t ∈ [0, T ]. Since G
α
(0, s) → −αb̂

as s → −∞, we can choose b ∈ (0, αb̂) such that ∃k > max{ŝ, K exp((r +

σ2/2)T )} and −b > G(0, s) > G(t, s) in [0, T ] × [k,∞). Therefore, G

satisfies the assumptions of Theorem 6.4.

Finally, suppose ∃ t̂ ∈ [0, T ] such that αψ′((m − P (t̂, 0))+) < r − µ,

where m < K. It follows from (6.14) and (6.16) that Gα(t̂, 0) = 0 and
∂Gα

∂s (t̂, 0) > 0, so that the set {Gα > 0} is non-empty. In turn, the inclusion

(6.9) implies that the delay region is also non-empty.

Remark 6.6. As an example, the delay region is empty if

αψ′((m− P (t, 0))+) ≥ r − µ > 0, ∀ t ∈ [0, T ].

Indeed, since we have Gα(t, 0) ≤ 0 and ∂Gα

∂s (t, 0) ≤ 0, ∀ t ∈ [0, T ], Gα

cannot be strictly positive. By Proposition 6.2, it is optimal to sell imme-

diately.

Proposition 6.5 is illustrated in Figure 6.3. In these examples, the delay

region is non-empty and the sell region is unbounded but may be discon-

nected (Figure 6.3 (right)). This can arise when, for example, Gα(t, 0) < 0

for every t ∈ [0, T ], but mintmaxGα(t, s) > 0. The intuition for a discon-

nected sell region is as follows. If the put is deeply in the money (i.e. when

St is close to zero), its market price has very limited room to increase since

it is bounded above Ke−r(T−t). At the same time, delaying sale further

will incur a penalty. Therefore, when the penalization coefficient α is high,

it is optimal to sell at a low stock price level. On the other hand, if the put

is deep out of the money (i.e. when St is very high), the market price and

the Delta of the put are close to zero, meaning the drive function becomes

more negative and selling immediately is optimal.

For a long position in calls and the underlying stock, or in puts, the

Delta Cs takes a constant sign. As an example of a derivative with a Delta

of non-constant sign, we consider a long straddle. This is a combination

of a call and a put with strike prices K1 ≤ K2 respectively and the same

maturity T . The payoff of a straddle is given by hSTD(ST ) := (ST −
K1)

++(K2−ST )+. The market price of a long straddle, denoted by CSTD,

is simply the sum of the respective Black-Scholes call and put prices, i.e.

CSTD(t, s) = C(t, s) + P (t, s). For simplicity, we set K1 = K2 = K.
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Fig. 6.3 The optimal liquidation boundary (solid) and the zero contour of Gα

(dashed) of a put option under GBM dynamics with the loss function ψ(�) = �.
We take m = 2K, α = 0.001 in panel (a), and m = P (0,K), α = 0.01 in panel
(b). Parameters: T = 0.5, r = 0.03, µ = 0.02, σ = 0.3, K = 50.
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Proposition 6.7. For the optimal liquidation of a long straddle position

under the GBM model, it follows that

(i) if µ = r, the delay region must be empty;

(ii) if µ > r, the delay region is unbounded;

(iii) if µ < r, the delay region is bounded.

Proof. The straddle’s drive function is GαSTD(t, s) = (µ− r)sCSTDs (t, s)−
αψ((m − CSTD(t, s))+). For µ = r, the conclusion follows immediately by

Proposition 6.2. If µ > r we simply notice that GαSTD(t, s) → ∞ as s→ ∞
for every t ∈ [0, T ], and the assertion follows from the inclusion (6.9).

Now suppose µ < r. We will show that Gα satisfies the assumptions

of Theorem 6.4. Clearly, GαSTD is bounded above. Since CSTD(t, s) → ∞
as s → ∞ for every t ∈ [0, T ], then there exists ŝ > 0 such that, for

every s > ŝ and t ∈ [0, T ], ψ((m − CSTD(t, s))+) = 0. Moreover, for

s > max{ŝ, K exp
(
(r + σ2/2)T

)
}, we have

∂Φ(d1)

∂t
= φ(d1)

log( sK )− (r + σ2

2 )(T − t)

2σ(T − t)
3
2

> 0,

and thus

∂GαSTD
∂t

(t, s) = 2(µ− r)s
∂Φ(d1)

∂t
≤ 0.

This implies GαSTD(0, s) ≥ GαSTD(t, s) for every t ∈ [0, T ]. Since

GαSTD(0, s) → −∞ as s → ∞, for a fixed b > 0 there exists kb > 0

such that GαSTD(0, s) < −b for every s ≥ kb. Therefore, setting k =

max{ŝ, K exp
(
(r + σ2/2)T

)
, kb}, we have GαSTD(t, s) ≤ GαSTD(0, s) < −b

in [0, T ]× [k,∞). Therefore, the assumptions of Theorem 6.4 are satisfied

and we conclude.

In particular, Proposition 6.7 suggests that when µ < r, the sell region

is unbounded, even if α = 0. In Figure 6.4, we illustrate the optimal

liquidation boundaries for cases (ii) and (iii). When the investor is bullish

(panel (a): µ = 0.08 > 0.03 = r), the liquidation boundary is increasing

and the delay region is on top of the sell region. Interestingly, the opposite

is observed when the investor is bearish (panel (b): µ = 0.02 < 0.03 = r).

We end this section by discussing the liquidation timing of a stock with

an infinite horizon (T = ∞). This leads to the following stationary optimal

stopping problem

L(s) = sup
τ∈T

Es

{∫ τ

0

e−ruGα(Su) du

}
. (6.17)
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Fig. 6.4 Optimal liquidation boundary and the zero contour of Gα for a straddle
under the GBM model with the loss function ψ(�) = �. We set K = 50, m =
CSTD(0,K), α = 0.1, r = 0.03, µ = 0.08 (panel (a)) and µ = 0.02 (panel (b)).

where Gα(s) = (µ − r)s − αψ((m − s)+) and T is the set of F-stopping

times taking values in [0,∞]. When µ ≤ r, selling immediately is optimal

according to Proposition 6.2, as for the case with finite maturity. As it
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turns out, the liquidation problem has the opposite trivial solution when

µ > r, that is, it is optimal to hold forever.

Proposition 6.8. If µ > r, then the value function L(s) in (6.17) is infinite

and it is optimal to never sell the stock.

Proof. Consider a candidate stopping time τ = ∞. Then, by applying

Tonelli’s theorem, we have

Es

{∫ ∞

0

e−ruGα(Su)du

}
= Es

{∫ ∞

0

e−ru(µ− r)Sudu − α

∫ ∞

0

e−ruψ((m− Su)
+)du

}
=

∫ ∞

0

e(µ−r)u(µ− r)sdu − α

∫ ∞

0

e−ruE
{
ψ((m− Su)

+)
}
du

≥
∫ ∞

0

e(µ−r)u(µ− r)sdu − α

∫ ∞

0

e−ruψ(m)du = ∞,

since µ > r and ψ is increasing. Hence, L(s) = ∞ and it is never optimal

to sell.

6.2.2 Optimal Liquidation with an Exponential OU

Underlying

In the exponential OU model, the stock price satisfies the SDE

dSt = β(θ − logSt)St dt+ σStdWt,

with θ ∈ R and β, σ > 0. Therefore, the optimal liquidation premium

L(t, s) is given by equation (6.7) with the drive function

Gα(t, s) = [β(θ − log(s)) − r]sVs(t, s)− αψ((m− V (t, s))+), (6.18)

where V (t, s) is a generic option price in (6.3).

In contrast to the GBM case, the optimal liquidation strategy can now

be non-trivial for a stock or a call when there is no penalty. More generally,

we can prove that the delay region is in fact bounded. The intuition should

be clear: when St is very high, it is expected to revert back to its long-term

mean, so that selling immediately becomes optimal.

Proposition 6.9. Under the exponential OU model, the delay region for a

call is bounded.
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Proof. The drive function GαCall for the call is given by (6.18) with

V (t, s) = C(t, s) (see (6.11) for the call price). It is bounded above, so

it satisfies condition (i) of Theorem (6.4). As is well known, the call price

satisfies ∂C(t,s)
∂t ≤ 0. In addition, β(θ − log(s)) − r ≤ 0 iff s ≥ exp(θ − r

β ),

and ∂Φ(d1)
∂t ≥ 0 for s ≥ K exp

(
(r + σ2/2)T

)
. In turn, we have

∂GαCall
∂t

(t, s) = [β(θ − log(s))− r]s
∂Φ(d1)

∂t

+ α
∂C(t, s)

∂t
ψ′((m− C(t, s))+)11{m>C(t,s)} ≤ 0,

for s > max{exp(θ − r
β ),K exp

(
(r + σ2/2)T

)
} and t ∈ [0, T ]. This

implies GαCall(0, s) ≥ GαCall(t, s). Fix b > 0. Since GαCall(0, s) →
−∞, ∃kb > 0 s.t., ∀s > kb, GαCall(0, s) < −b. Hence, if we set

k = max{exp(θ − r
β ),K exp

(
(r + σ2/2)T

)
, kb}, we are guaranteed that

GαCall(t, s) ≤ GαCall(0, s) < −b in [0, T ] × [k,∞), thus satisfying condition

(ii) of Theorem 6.4. As a result, Theorem 6.4 applies and gives the bound-

edness of the delay region for a call.

Since a stock can be viewed as a call with strike K = 0, Proposition 6.6

also applies to the optimal liquidation of a stock over a finite time horizon.

Also, we notice the delay region can be empty, and we can identify this case

by finding the maximum of the drive function. As an example, we consider

the case of the stock with penalty function ψ((m−St)
+) = (m−St)

+, and

we obtain the maximizer of Gα in different scenarios

argmaxGα =


exp(θ − 1− r−α

β ) if exp(θ − 1− r−α
β ) < m,

exp(θ − 1− r
β ) if exp(θ − 1− r

β ) > m,

m otherwise,

and the corresponding maximum values

maxGα =


(β − α)ŝ1 − α(m− s∗1) if ŝ1 < m,

βŝ2 if ŝ2 > m,

(β(θ − log(m))− r)m otherwise,

where

ŝ1 = exp(θ − 1− r − α

β
), ŝ2 = exp(θ − 1− r

β
).

Thus, the delay region is non-empty if and only if maxGα > 0.

The optimal liquidation boundary for stock is shown in Figure 6.5 for

α = 0 (panel (a)) and α > 0 (panel (b)). We notice that, in both cases,
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the optimal strategy is to sell immediately if St is high enough. Intuitively,

if St is high, it is expected to revert back to its long-term mean, so selling

immediately becomes optimal. However, if St is low, the optimal behavior

depends on the parameter α. On one hand, St is expected to increase and

thus the investor should wait to sell at a better price (Figure 6.5(b)). On

the other hand, such benefit is countered (if the penalization coefficient

is high enough) by the risk incurred from holding the position, and this

induces the investor to sell immediately. As a consequence, the sell region

is disconnected (Figure 6.5(b)).

Figure 6.6 illustrates the delay region for a call option with penalty. We

observe the interesting phenomena where the sell region is connected and

contains the nonempty delay region. If the parameter β (which measures

the speed of mean reversion) is not sufficiently high, there may be no time

for the price of the option to revert back to its long-term mean before

expiration, so that selling immediately becomes optimal close to maturity.

Proposition 6.10. For the liquidation of a put option under the exponen-

tial OU model, the delay region is bounded if and only if α > 0.

Proof. The drive function is given by

GαPut(t, s) = [r − β(θ − log(s))]sΦ(−d1)− αψ((m− P (t, s))+),

If α = 0, then we have {GαPut > 0} = {s > exp( rβ −θ)}. By (6.9), the delay

region contains this set, so it is unbounded.

Now let α > 0, and we have the limit

lim
s→∞

GαPut(t, s) = −αψ(m) < 0. (6.19)

Next, we fix any b̂ ∈ (0, αψ(m)) and define ψ(�) := min{ψ(�), b̂}. With

this, we have

G
α
(t, s) := [r − β(θ − log(s))]sΦ(−d1)− αψ

(
(m− P (t, s))+

)
≥ GαPut(t, s).

We observe that G
α
is bounded above and by (6.19) lims→∞G

α
(t, s) →

−αb̂ < 0 for every t ∈ [0, T ]. Moreover, there exists ŝ > 0 such that for

every s > ŝ, ψ((m− P (t, s))+) = b̂. As a result, we have

∂G
α

∂t
= (β(θ − log(s)) − r)sφ(d1)

log( sK − (r + σ2

2 )(T − t)

2σ(T − t)
3
2

≤ 0,

for s > max{ŝ, exp( rβ − θ),K exp((r + σ2/2)T )} and t ∈ [0, T ]. Also, we

notice that G
α
(0, s) → −αb̂ as s → −∞. This allows us to choose a

b ∈ (0, αb̂), then there exists k > max{ŝ, K exp((r + σ2/2)T )} such that
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Fig. 6.5 The liquidation boundary (solid) and the zero contour of Gα (dashed)
for a stock under exponential OU dynamics. Parameters: T = 0.5, r = 0.03,
θ = log(60), β = 4, σ = 0.3, ψ(�) = �, α = 0 (panel (a)), α = 1.5 (panel (b)).

−b > G(0, s) > G(t, s) in for (t, s) ∈ [0, T ] × [k,∞). Therefore, G satis-

fies the assumptions of Theorem 6.4. By Corollary 6.3, we conclude the

boundedness of the delay region.
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Fig. 6.6 The liquidation boundary (red solid) and the zero contour ofGα (dashed)
for a call under exponential OU dynamics. We take α = 0.2, θ = log(60), β = 4
in panel (a), and α = 0.001, θ = log(50) and β = 0.2 in panel (b), with common
parameters T = 0.5, r = 0.03, σ = 0.3, ψ(�) = �.
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Fig. 6.7 The liquidation boundary (solid) and the zero contour of Gα (dashed)
for a put option under the exponential OU model. We take α = 0 and K = 50 in
panel (a), and α = 0.01 and K = 40 in panel (b). Common parameters: T = 0.5,
r = 0.03, σ = 0.3, β = 4 and θ = log(60), ψ(�) = �.
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However, this is no longer true when we incorporate a non-zero risk

penalty which reduces the value of waiting. As a result, the holder may sell

the put at high and low stock prices. In fact, if the penalization coefficient

is large and/or when the time-to-maturity is very short, the optimal liqui-

dation premium may be zero at all stock price levels, resulting in an empty

delay region (Figure 6.7(b)).

Proposition 6.10 is illustrated in Figure 6.7. When St is low, it is ex-

pected to revert back to the (higher) long-term mean, and the put price

will decrease. This generates an incentive to sell at a low stock price level.

If α = 0, when St is high, there is no reason to sell since the put price is

very low and expected to increase. Consequently, the delay region is on top

of the sell region (Figure 6.7(a)).

6.3 Quadratic Penalty

As a variation to the shortfall-based penalty, we consider a risk penalty

based on the realized variance of the option price process from the start-

ing time up to the liquidation time. Precisely, the investor now faces the

penalized optimal stopping problem

J̃α(t, s) := sup
τ∈Tt,T

Et,s

{
e−r(τ−t)V (τ, Sτ )− α

∫ τ

t

e−r(u−t)d[V, V ]u

}
= sup
τ∈Tt,T

Et,s

{
e−r(τ−t)V (τ, Sτ )

− α

∫ τ

t

e−r(u−t)σ2(u, Su)S
2
uV

2
s (u, Su)du

}
,

where [V, V ] denotes the quadratic variation of option price process V de-

fined in (6.3). Figure 6.8 illustrates the realized quadratic penalty associ-

ated with a simulated call option price path. Compared to the shortfall

penalty in Figure 6.1, the realized quadratic penalty is increasing at all

times, even when the option price is above its initial price.

Following (6.5), we define the optimal liquidation premium by

L̃α(t, s) := J̃α(t, s) − V (t, s). Again, we shall discuss the stock or option

liquidation problems under the GBM and exponential OU models.
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Fig. 6.8 Realized quadratic penalty (dashed) based on a simulated price path
(solid) of a call under the GBM model with α = 0.05. The price path and other
parameters are the same as Figure 6.1.

6.3.1 Optimal Timing to Sell a Stock

We first consider the liquidation of a stock with the GBM dynamics in

terms of the perpetual optimal stopping problem:

L̃α(s) := sup
τ∈T

Es

{∫ τ

0

e−ruG̃α(Su) du

}
, (6.20)

with the drive function G̃α(s) := (µ − r)s − ασ2s2. If µ ≤ r, then selling

immediately is always optimal since G̃α is always negative. In contrast if

µ > r, then we obtain a non-trivial closed-form solution.

Theorem 6.11. Let µ > r. The value function L̃α(s) in (6.20) is given by

the formula

L̃α(s) =

{
(s∗)1−λ

2− λ
sλ − s+B s2

}
11{s≤ s∗}, (6.21)

where

B =
ασ2

2µ+ σ2 − r
, λ =

1

σ2

 σ2

2
− µ+

√(
σ2

2
− µ

)2

+ 2rσ2

 ,(6.22)
s∗ =

1− λ

(2− λ)B
, (6.23)
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and the stopping time τ∗ = inf{t ≥ 0 : St ≥ s∗} is optimal for (6.20).

Proof. We first show that (6.21) is the solution of

min

{
rΛ(s) − µsΛ′(s)− σ2s2

2
Λ′′(s)− G̃α(s), Λ(s)

}
= 0, s > 0,

with Λ(0) = 0. To do this, we split R+ into two regions: D1 = (0, s∗) and

D2 = [s∗,∞) with s∗ > 0 to be determined. We conjecture that Λ(s) = 0

in D2, and for s ∈ D1 Λ(s) solves

rΛ(s)− µsΛ′(s)− σ2s2

2
Λ′′(s)− G̃α(s) = 0. (6.24)

By direct substitution, the general solution to equation (6.24) is of the form

Λ(s) = C1s
λ1 + C2s

λ2 − s+Bs2,

where C1 and C2 are constants to be determined, B is specified in (6.22)

and

λk =
1

σ2

 σ2

2
− µ+ (−1)k

√(
µ− σ2

2

)2

+ 2rσ2

 , k ∈ {1, 2}.

We apply the continuity and smooth pasting conditions at s = 0 and s = s∗

to get

lim
s↓0

Λ(s) = 0 ⇒ C1 = 0,

lim
s↑s∗

Λ(s) = 0 ⇒ C2(s
∗)λ2 − s∗ +B(s∗)2 = 0, (6.25)

lim
s↑s∗

Λ′(s) = 0 ⇒ λ2C2(s
∗)λ2−1 − 1 + 2Bs∗ = 0. (6.26)

Solving the system of equations (6.25)–(6.26) gives C2 and s∗ as in (6.22)–

(6.23). One can verify by substitution that Λ(s) is indeed a classical solution

of (6.24).

By Ito’s formula and (6.24), (Λ(St))t≥0 is a (P,F)-supermartingale, so

for every F-stopping time τ and n ∈ N, we have

Λ(s) ≥ E0,s

{∫ τ∧n

0

e−ruG̃α(Su)du

}
. (6.27)

Maximizing (6.27) over τ and n yields that Λ(s) ≥ L̃α(s) for s ≥ 0. The

reverse inequality is deduced from the probabilistic representation Λ(s) =

E0,s

{∫ τ∗

0 e−ruG̃α(Su)du
}
, with the candidate stopping time τ∗ := inf{t ≥

0 : St ≥ s∗}. Hence, we conclude that Λ(s) = L̃α(s) and τ∗ is optimal.
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We see that the optimal liquidation threshold s∗ in (6.23) is non-negative

if and only if λ2 < 1, which is equivalent to the condition µ > r in Theorem

6.11. Otherwise, L̃α(s) = 0 and the optimal strategy is to sell immediately.

In Figure 6.9, we illustrate the optimal liquidation premium L̃α(s) for

various values of µ and σ. As µ increases, the optimal threshold as well

as the optimal liquidation premium (at all stock price levels) increase. On

the other hand, a higher volatility reduces the optimal liquidation premium

at every initial stock price. We also observe that L̃α(s) smooth-pastes the

level 0 at the optimal threshold s∗, as is expected from (6.25) and (6.26).

If S follows the exponential OU dynamics, the drive function for liqui-

dating a stock is

G̃α(s) = [β(θ − log(s))− r − αs]s. (6.28)

In this case, we do not have a closed-form solution. Nevertheless we observe

from (6.28) that the delay region is non-empty, namely, {L̃α > 0} ⊇ {s <
s̃}, where s̃ is determined uniquely from the equation

β(θ − log(s̃))− r − αs̃ = 0.

On the other hand, since G̃α → −∞ as s → ∞, we expect intuitively that

the investor will sell when the stock price is high.

6.3.2 Liquidation of Options

We now discuss some numerical examples to demonstrate the liquidation

strategies for European call and put options. With strike K and maturity

T , the drive functions are respectively given by

G̃αCall(t, s) = sΦ(d1)
(
µ− r − ασ2sΦ(d1)

)
, (6.29)

G̃αPut(t, s) = sΦ(−d1)
(
r − µ− ασ2sΦ(−d1)

)
. (6.30)

When µ ≤ r and α > 0, the drive function G̃αCall(t, s) is negative for all

(t, s), so it is optimal to sell the call immediately. However, when µ > r

and α > 0, we notice from (6.29) that, when the stock price is sufficiently

large (resp. small), the drive function of a call is negative (resp. positive).

Hence, as we see in Figure 6.10, it is optimal to sell the call when the

stock price is high, and the optimal liquidation boundary is lower as the

penalization coefficient increases. In contrast to the shortfall penalty, the

investor now is subject to a higher penalty when the stock price is high

under the quadratic penalty. Consequently, the sell region is now above

the delay region, as opposed to being at the bottom in the shortfall case in

Figure 6.2(b).
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Fig. 6.9 The optimal liquidation premium for a stock under the GBM model
for different values of µ and σ. In panel (a), we take r = 0.03, σ = 0.3 and
α = 0.2, and the liquidation threshold s∗ = 9.37, 7.97, 6.52 for µ = 0.09, 0.08, 0.07
respectively. In panel (b), we take r = 0.03, µ = 0.08, and α = 0.1, and the
liquidation threshold s∗ = 10.63, 7.97, 6.26 for σ = 0.25, 0.30, 0.35.
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In the put option case, we observe from (6.30) that

lim
s→0

r − µ− ασ2sΦ(−d1) = lim
s→∞

r − µ− ασ2sΦ(−d1) = r − µ.

Consequently, when µ < r and the stock price is sufficiently large or small,

the drive function is strictly positive and it is optimal to hold the position.

In contrast, the shortfall converges to ψ(m) > 0 as s increases (see (6.15)),

which means that it is optimal to sell when the stock price is high (see

Figure 6.3). We illustrate the timing strategies under quadratic penalty in

Figure 6.10 (right). As expected there is a low and a high delay regions

which are separated by a sell region in the middle. Also we notice that as

the penalization coefficient α increases, the sell region expands.

Under the exponential OU model, the drive functions for selling a call

and a put are, respectively,

G̃αCall(t, s) = sΦ(d1)
(
θ − r − β log s− ασ2sΦ(d1)

)
,

G̃αPut(t, s) = sΦ(−d1)
(
r − θ + β log s− ασ2sΦ(−d1)

)
.

In Figure 6.11, we can visualize the optimal liquidation premium L̃α(t, s)

for a call (panel (b)) and a put (panel (a)). In the call case, the delay

region, which corresponds to the area where L̃α > 0, is bounded. When s

is sufficiently high, L̃α vanishes and it is optimal to sell. This is intuitive

since lims→∞ G̃αCall(t, s) = −∞ and G̃αCall is positive for sufficiently small

s.

In contrast, the drive function for the put G̃αPut(t, s) is negative when

s < exp
(
θ−r
β

)
, for every α ≥ 0. Therefore, as Figure 6.11 indicates,

one expects the optimal liquidation premium to vanish for small s, so the

investor will sell when the put price is high. Compared to Figure 6.7 with a

shortfall penalty, the investor does not sell when the underlying stock price

is very high. This is because the drive function G̃αPut(t, s) stays positive for

large s (recall (6.9)). As time approaches maturity, the delay liquidation

premium decreases to its terminal condition of value zero.

6.4 Concluding Remarks

In summary, we have provided a flexible mathematical model for the op-

timal liquidation of option positions under a path-dependent penalty. We

have identified the situations where the optimal timing is trivial, and solved

for non-trivial liquidation strategy via variational inequality. The penalty

type as well as the penalization coefficient can give rise to very different
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liquidation timing. Our findings are useful for both individual and institu-

tional investors who use options for speculative investments or risk man-

agement purposes.
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Fig. 6.10 The liquidation boundaries for a call option (panel (a)) and a put option
(panel (b)) under the GBM mode with different values of α. Parameters: T = 0.5,
r = 0.03, σ = 0.3, K = 50, µ = 0.08 (call) and µ = 0.02 (put).



November 12, 2015 12:34 Optimal Mean Reversion Trading... b2296 page 157

Optimal Liquidation of Options 157

Fig. 6.11 The optimal liquidation premium for a call option (left) and a put
option (right) with exponential OU dynamics. We take T = 0.5, r = 0.03,
σ = 0.3, K = 50, α = 0.1, β = 4 and θ = log(60).

For future research, a natural direction is to adapt our model to the

problem of sequentially buying and selling an option. Moreover, one can

consider applying the methodology to derivatives other than equity options.

For example, the liquidation of credit derivatives with pricing measure dis-

crepancy but without risk penalty is discussed in Chapter 7. It would be

both mathematically interesting and challenging to study option liquidation

under incomplete markets. On the other hand, our model can be extended

to markets with liquidity cost and price impact (see e.g. Almgren (2003);

Lorenz and Almgren (2011); Schied and Schöneborn (2009)). Finally, the

path-dependent risk penalization can also be incorporated to dynamic port-

folio optimization problems to account for adverse performance during the

investment horizon.

6.5 Strong Solution to the Inhomogeneous Variational

Inequality

In this section, we follow the terminology and procedures in Bensoussan and

Lions (1978), and establish the existence and uniqueness of a strong solution

to the variational inequality (7.19) under conditions that are applicable to

the GBM and exponential OU models.
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6.5.1 Preliminaries

We express prices in logarithmic scale by setting Xt = log(St). Equation

(6.1) then becomes

dXt = η(t,Xt)dt+ κ(t,Xt)dWt,

for some functions κ(t, x) and η(t, x). Next, we define the operator A by

A[·] = −κ
2(t, x)

2

∂2 ·
∂x2

− η(t, x)
∂ ·
∂x

+ r ·

= − ∂ ·
∂x

(
a2(t, x)

∂ ·
∂x

)
+ a1(t, x)

∂ ·
∂x

+ r · ,

where

a1(t, x) =
1

2

∂

∂x
κ2(t, x)− η(t, x), a2(t, x) =

κ2(t, x)

2
.

In term of log-prices, we express the drive function as g(t, x) = Gα(t, ex)

and the optimal liquidation premium as u(t, x) = L(t, ex). Throughout, we

denote the domain D = [0, T ] × R. In order to solve the VI (7.19), it is

equivalent to solve the VI problem:
−∂u
∂t +A[u]− g(t, x) ≥ 0, u(t, x) ≥ 0, (t, x) ∈ D,(

−∂u
∂t +A[u]− g(t, x)

)
u = 0, (t, x) ∈ D,

u(T, x) = 0, x ∈ R.

(6.31)

We describe an appropriate class of solutions for (6.31) in a suitable

Sobolev space and prove that such a solution exists and is unique. First,

let us define, for λ(x) = exp(−n|x|), n ∈ N,

L2
λ(R) = {v |

√
λv ∈ L2(R)},

H1
λ(R) = {v ∈ L2

λ(R) |
∂v

∂x
∈ L2

λ(R)},

H1
0,λ(R) = {v ∈ H1

λ(R) | lim
|x|→∞

v(x) = 0}.

These are Hilbert spaces when endowed with the following inner products

(f, g)L2 =

∫
R

λfgdx, f, g ∈ L2
λ(R),

(f, g)H1 =

∫
R

λfgdx+

∫
R

λ
∂f

∂x

∂g

∂x
dx, f, g ∈ H1

λ(R).
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We denote by H1
c,λ(R) the set of functions w ∈ H1

λ(R) with compact

support. For u ∈ H1
0,λ(R), w ∈ H1

c,λ(R), we define the operator

Iλ(t, u, w) =
∫
R

a2(t, x)

(
λ
∂u

∂x

∂w

∂x
+ w

∂u

∂x

∂λ

∂x

)
dx

+

∫
R

a1(t, x)λ
∂u

∂x
wdx + r

∫
R

λuwdx.

We can assume without loss of generality (see Sect. 3.2.17 Bensoussan and

Lions (1978)) that Iλ is coercive on H1
c,λ(R), i.e.

Iλ(t, w, w) ≥ α||w||H1 ∀w ∈ H1
c,λ(R), α > 0.

Integrating by parts allows us to extend Iλ to a bilinear form on the whole

space H1
0,λ(R). In particular, we set

Iλ(t, u, v) =
∫
R

[
a2(t, x)λ

∂u

∂x

∂v

∂x
+ a2(t, x)

∂λ

∂x

∂u

∂x
v

]
dx

+

∫
R

(
r − 1

2

∂a1
∂x

− 1

2λ
a1
∂λ

∂x

)
λuvdx.

with u, v ∈ H1
0,λ(R).

Following Section 5.9.2 of Evans (1998) and Section 2.6 of Bensoussan

and Lions (1978), we define the space Lp(0, T ;X) consisting of all strongly

measurable functions χ : [0, T ] → X with

||χ||Lp(0,T ;X) =

(∫ T

0

||χ(t)||pX dt
)1/p

, 1 ≤ p <∞,

and for p = ∞,

||χ||L∞(0,T ;X) = ess sup
0≤t≤T

||χ(t)||X ,

For χ ∈ L1(0, T ;X), we say ν ∈ L1(0, T ;X) is the weak derivative of χ,

denoted by ν = ∂χ
∂t , if∫ T

0

∂w

∂t
χ(t)dt = −

∫ T

0

w(t)ν(t)dt, ∀w ∈ C∞
c ([0, T ]).

The Sobolev spaceH1(0, T ;X) consists of all functions χ ∈ L2(0, T ;X) such

that the weak derivative exists and belongs to L2(0, T ;X). Furthermore,

we set

||χ||H1(0,T ;X) =

(∫ T

0

||χ(t)||2X + || ∂
∂t
χ(t)||2X dt

)1/2

, (6.32)

which makes H1(0, T ;X) an Hilbert space (see Section 5.9.2 in Evans

(1998)).
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6.5.2 Main Results

Definition 6.12. A function u : D → R is a strong solution of problem

(6.31) if, ∀ v ∈ H1
λ(R), v ≥ 0 a.e., the following conditions are satisfied:
u ∈ L2(0, T ;H1

0,λ(R)),
∂u
∂t ∈ L2(0, T ;L2

λ(R)),

−
(
∂u
∂t , v − u

)
− Iλ(t;u, v − u) ≤ (g, v − u),

u ≥ 0 a.e. in D,
u(T, x) = 0, x ∈ R.

(6.33)

We shall impose the following conditions on a2, a1, g.

Assumption A. a2,
∂a2
∂t and ∂a1

∂x ∈ L∞(D); a1 and ∂a1
∂t ∈ C0(D); g ∈

H1(0, T ;L2
λ(R)).

Theorem 6.13. Under Assumption A, the variational inequality in (6.33)

has a unique strong solution.

Proof. Assumption A is equivalent to assumptions (2.223), (2.224),

(2.238), (2.239), (2.240) of Bensoussan and Lions (1978), and we also follow

their Remark 2.24 to use λ(x) = e−n|x| for some arbitrarily fixed n > 0 in

our definition of Hilbert spaces. In turn, we can apply their Theorem 2.21

and our statement follows.

Our main objective is to verify that Assumption A is satisfied for our ap-

plications so that Theorem 6.13 applies to ensure the existence of a unique

strong solution to the VI (7.19). To see this, we first write down the op-

erators associated with the log-price Xt = log(St) under the GBM and

exponential OU models, namely,

A[v] =
σ2

2

∂2v

∂x2
+ µ

∂v

∂x
, A[v] =

σ2

2

∂2v

∂x2
+ (θ̂ − βx)

∂v

∂x
.

Therefore, a2 = σ2/2 is constant and a1 is an affine function in x for both

cases, so these coefficients meet the requirements in Assumption A.

It remains to verify that the drive function g(t, x) = G(t, ex) ∈
H1(0, T ;L2

λ(R)). In view of (6.32), we want to show that there exists n > 0

such that∫ T

0

||g(t, x)||2L2
λ(R)

dt =

∫ T

0

∫
R

(
g(t, x)e−

n
2 |x|

)2

dx dt, and∫ T

0

||∂g
∂t

(t, x)||2L2
λ(R)

dt =

∫ T

0

∫
R

(
∂g

∂t
(t, x)e−

n
2 |x|

)2

dx dt
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are finite, where

g(t, x) = (r − µ(t, ex))exVs(t, e
x)− αψ((m− V (t, ex))+),

∂g

∂t
(t, x) = (r − µ(t, ex))exVts(t, e

x)

+ αψ′((m− V (t, ex))+)Vt(t, e
x)11{m>V (t,ex)}.

Here, the subscripts of V indicate the partial derivatives in t and s. Recall

the drift functions µ(t, ex) = µ under GBM and µ(t, ex) = β(θ − x) under

exponential OU models. We notice that, in both cases, the drift does not

depend on t, so we just write µ(ex). Also, we observe that ψ and ψ′ are

increasing, and ψ′(�) is bounded for any finite �. For both call and put

options, there exist positive constants h1, q1, h2, q2 such that |Vs(t, ex)| ≤
1, |Vt(t, ex)| ≤ h1e

x+ q1, |Vst(t, ex)| ≤ h2e
x+ q2. Together, these imply the

time-independent bounds for both models:

|g(t, x)| ≤ |r − µ(ex)|ex + αψ(m) = o(e2|x|),

|∂g
∂t

(t, x)| ≤ |r − µ(ex)|(h1ex + q1)e
x + αψ′(m)(h2e

x + q2) = o(e2|x|).

This implies that by choosing n > 4, we have∫ T

0

||g(t, x)||2L2
λ(R)

dt ≤
∫ T

0

∣∣∣∣|r − µ(ex)|ex + αψ(m)
∣∣∣∣2
L2

λ(R)
dt <∞,∫ T

0

||∂g
∂t

(t, x)||2L2
λ(R)

dt

≤
∫ T

0

∣∣∣∣|r − µ(ex)|(h1ex + q1)e
x + αψ′(m)(h2e

x + q2)
∣∣∣∣2
L2

λ(R)
dt <∞.

Hence, we conclude that g ∈ H1(0, T ;L2
λ(R)) for both puts and calls under

the GBM and exponential OU models, and Assumption A is satisfied.

As a final remark, Sect. 3.4 of Bensoussan and Lions (1978) also pro-

vides the probabilistic representation of the strong solution u(t, x) of the

VI (6.31), given by

u(t, x) = sup
τ∈Tt,T

Et,x

{∫ τ

t

e−r(u−t)g(u,Xu) du

}
, (6.34)

where dXu = η(u,Xu)du + κ(u,Xu)dWu and Xt = x. By the definition

L(t, ex) = u(t, x), the optimal stopping problem in (6.34) resembles that

for the optimal liquidation premium in (6.7).
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Chapter 7

Trading Credit Derivatives

In credit derivatives trading, one important question is how the market com-

pensates investors for bearing credit risk. A number of related studies have

examined analytically and empirically the structure of default risk premia

inferred from the market prices of corporate bonds, credit default swaps,

and multi-name credit derivatives.1 A major risk premium component is

the mark-to-market risk premium which accounts for the fluctuations in de-

fault risk. In addition, there is the event risk premium (or jump-to-default

risk premium) that compensates for the uncertain timing of the default

event.

When it is not possible to perfectly hedge away all risks, the market

is incomplete. In such a market, there exist many different risk-neutral

measures that yield no-arbitrage prices. From standard no-arbitrage pricing

theory, risk premia specification is inherently tied to the selection of risk-

neutral pricing measures. A typical buy-side investor (e.g. hedge fund

manager or proprietary trader) would identify trading opportunities by

looking for mispriced contracts in the market. This implies selecting a

pricing measure to reflect her view on credit risk evolution and the required

risk premia. Hence, the investor’s pricing measure may differ from that

represented by the market prices.

Price discrepancy is also important for investors with credit-sensitive

positions who may need to control risk exposure through liquidation. The

central issue lies in the timing of liquidation as investors have the option to

sell at the current market price or wait for a later opportunity. The optimal

strategy, as we will study, depends on the sources of risks, risk premia, as

well as derivative payoffs.

1See Azizpour et al. (2011); Berndt et al. (2005); Driessen (2005); Jarrow et al. (2005)
and references therein.

163
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This chapter proposes a new approach to tackle the optimal liquida-

tion problem on two fronts. First, we provide a mathematical framework

for price discrepancy between the market and investors under an intensity-

based credit risk model. Second, we analyze the optimal stopping problem

corresponding to the liquidation of credit derivatives under price discrep-

ancy.

In order to measure the benefit of optimally timing to sell as opposed

to immediate liquidation, we employ the concept of delayed liquidation pre-

mium. It turns out to be a very useful tool for analyzing the optimal

stopping problem. The intuition is that the investor should wait as long

as the delayed liquidation premium is strictly positive. Moreover, the de-

layed liquidation premium reveals the roles of risk premia in the liquidation

timing. Under a Markovian credit risk model, the optimal timing is char-

acterized by a liquidation boundary solved from a variational inequality.

For numerical illustration, we provide examples where the default intensity

and interest rate are mean-reverting.

The rest of the chapter is organized as follows. In Section 7.1, we present

the mathematical model for price discrepancy and formulate the optimal

liquidation problem under a general intensity-based credit risk model. In

Section 7.2, we study the problem within a Markovian market and charac-

terize the optimal liquidation strategy for a general defaultable claim. In

Section 7.3, we investigate the impact of pricing measure on the investor’s

liquidation timing for single-name credit derivatives, e.g. defaultable bonds

and credit default swaps (CDS). In Section 7.4, we discuss the optimal liqui-

dation of credit default index swap. In Section 7.5, we examine the optimal

buy-and-sell strategy for defaultable claims.

7.1 Problem Formulation

This section provides the mathematical formulation of price discrepancy

and the optimal liquidation of credit derivatives under an intensity-based

credit risk model. We fix a probability space (Ω,G,P), where P is the

historical measure, and denote T as the maturity of derivatives in question.

There is a stochastic risk-free interest rate process (rt)0≤t≤T . The default

arrival is described by the first jump of a doubly-stochastic Poisson process.

Precisely, assuming a default intensity process (λ̂t)0≤t≤T , we define the

default time τd by

τd = inf{t ≥ 0 :

∫ t

0

λ̂sds > E}, where E ∼ Exp (1) and E ⊥ λ̂, r.
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The associated default counting process is Nt = 11{t≥τd}. The filtration

F = (Ft)0≤t≤T is generated by r and λ̂. The full filtration G = (Gt)0≤t≤T
is defined by Gt = Ft ∨ FN

t where (FN
t )0≤t≤T is generated by N .

7.1.1 Price Discrepancy

By standard no-arbitrage pricing theory, the market price of a defaultable

claim, denoted by (Pt)0≤t≤T , is computed from a conditional expectation of

discounted payoff under the market risk-neutral (or equivalent martingale)

pricing measure Q ∼ P. In many parametric credit risk models, the market

pricing measure Q is related to the historical measure P via the default risk

premia (see Section 7.2.1 below). Throughout we assume a single historical

measure P shared by all investors , but they differ in their views on the risk

premia for various sources of risks. Also, we adopt the standard hypothesis

(H) that every F-local martingale is a G-local martingale holds under Q

(see Chapter 8 of Bielecki and Rutkowski (2002)).

We can describe a general defaultable claim by the quadruple

(Y,A,R, τd), where Y ∈ FT is the terminal payoff if the defaultable claim

survives at T , (At)0≤t≤T is an F-adapted continuous process of finite vari-

ation with A0 = 0 representing the promised dividends until maturity or

default, and (Rt)0≤t≤T is an F-predictable process representing the recovery

payoff paid at default. Similar notations are used in Bielecki et al. (2008)

where the following integrability conditions are assumed:

EQ
{∣∣e− ∫

T
0
rvdvY

∣∣} <∞, EQ
{∣∣ ∫

(0,T ]

e−
∫

u
0
rvdv(1−Nu)dAu

∣∣} <∞, and

EQ
{∣∣e− ∫ τd∧T

0 rvdvRτd∧T
∣∣} <∞.

For a defaultable claim (Y,A,R, τd), the associated cash flow process

(Dt)0≤t≤T is defined by

Dt := Y 11{τd>T}11{t≥T} +

∫
(0,t∧T ]

(1−Nu)dAu +

∫
(0,t∧T ]

RudNu. (7.1)

Then, the (cumulative) market price process (Pt)0≤t≤T is given by the

conditional expectation under the market pricing measure Q :

Pt := EQ
{∫

(0,T ]

e−
∫ u
t
rvdvdDu|Gt

}
.

One simple example is the zero-coupon zero-recovery defaultable bond

(1, 0, 0, τd), whose market price is simply Pt = EQ
{
e−

∫ T
t
rvdv11{τd>T}|Gt

}
.
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When a perfect replication is unavailable, the market is incomplete

and there exist different risk-neutral pricing measures that give different

no-arbitrage prices for the same defaultable claim. Mathematically, this

amounts to assigning a different risk-neutral pricing measure Q̃ ∼ Q ∼ P.

The investor’s reference price process (P̃t)0≤t≤T is given by the conditional

expectation under investor’s risk-neutral pricing measure Q̃ :

P̃t := EQ̃
{∫

(0,T ]

e−
∫ u
t
rvdvdDu|Gt

}
,

whose discounted price process (e−
∫

t
0
rvdvP̃t)0≤t≤T is a (Q̃,G)-martingale.

We assume that the standard hypothesis (H) also holds under Q̃.

7.1.2 Delayed Liquidation Premium

A defaultable claim holder can sell her position at the prevailing market

price. If she completely agrees with the market price, then she will be

indifferent to sell at any time. Under price discrepancy, however, there is

a timing option embedded in the optimal liquidation problem. Precisely,

in order to maximize the expected spread between the investor’s price and

the market price, the holder solves the optimal stopping problem:

Jt := ess sup
τ∈Tt,T

EQ̃
{
e−

∫
τ
t
rvdv(Pτ − P̃τ )|Gt

}
, 0 ≤ t ≤ T, (7.2)

where Tt,T is the set of G-stopping times taking values in [t, T ]. Using

repeated conditioning, we decompose (7.2) to

Jt = Vt − P̃t,

where

Vt := ess sup
τ∈Tt,T

EQ̃
{
e−

∫
τ
t
rvdvPτ |Gt

}
. (7.3)

Hence, maximizing the price spread in (7.2) is equivalent to maximizing the

expected discounted future market value Pτ under the investor’s measure

Q̃ in (7.3).

The selection of the risk-neutral pricing measure Q̃ can be based on the

investor’s hedging criterion or risk preferences. For instance, dynamic hedg-

ing under a quadratic criterion amounts to pricing under the well-known

minimal martingale measure developed by Föllmer and Schweizer (1990).

On the other hand, different risk-neutral pricing measures may also arise

from marginal utility indifference pricing. In the cases of exponential and

power utilities, this pricing mechanism will lead the investor to select the
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minimal entropy martingale measure (MEMM) (see Leung and Ludkovski

(2012)) and the q-optimal martingale measure (see Henderson et al. (2005)).

Lemma 7.1. For 0 ≤ t ≤ T , we have Vt ≥ Pt ∨ P̃t. Also, Vτd = P̃τd = Pτd
at default.

Proof. Since τ = t and τ = T are candidate liquidation times, we conclude

from (7.3) that Vt ≥ Pt ∨ P̃t. Also, we observe from (7.1) that Pt =∫
(0,τd]

e−
∫

u
t
rvdvdDu = P̃t for t ≥ τd ∧ T . This implies that

Vτd = ess sup
τ∈Tτd,T

EQ̃
{
e
−

∫ τ
τd
rvdvPτ |Gτd

}
= ess sup

τ∈Tτd,T

EQ̃
{
e
−

∫ τ
τd
rvdvP̃τ |Gτd

}
= P̃τd = Pτd . (7.4)

The last equation means that price discrepancy vanishes when the default

event is observed or when the contract expires. This is also realistic since

the market will no longer be liquid afterward.

If the defaultable claim is underpriced by the market at all times, that

is, Pt ≤ P̃t, ∀t ≤ T , then we infer from (7.2) that Jt = 0. This can be

achieved at τ∗ = T since price discrepancy must vanish at maturity, i.e.

PT = P̃T . In turn, this implies that

Vt = EQ̃
{
e−

∫ T
t
rvdvPT |Gt

}
= EQ̃

{
e−

∫ T
t
rvdvP̃T |Gt

}
= P̃t.

In this case, there is no benefit to liquidate before maturity T .

According to (7.3), the optimal liquidation timing directly depends

on the investor’s pricing measure Q̃ as well as the market pricing mea-

sure Q (via the market price P ). Specifically, we observe that the dis-

counted market price (e−
∫ t
0
rvdvPt)0≤t≤T is a (Q,G)-martingale, but gen-

erally not a (Q̃,G)-martingale. If the discounted market price is a (Q̃,G)-

supermartingale, then it is optimal to sell the claim immediately. If the

discounted market price turns out to be a (Q̃,G)-submartingale, then it

is optimal to delay the liquidation until maturity T . Besides these two

scenarios, the optimal liquidation strategy may be non-trivial.

To quantify the value of optimally waiting to sell, we define the delayed

liquidation premium:

Lt := Vt − Pt ≥ 0. (7.5)

It is often more intuitive to study the optimal liquidation timing in terms of

the premium L. Indeed, standard optimal stopping theory [Karatzas and
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Shreve (1998), Appendix D] suggests that the optimal stopping time τ∗ for

(7.3) is the first time the process V reaches the reward P , namely,

τ∗ = inf{t ≤ u ≤ T : Vu = Pu} = inf{t ≤ u ≤ T : Lu = 0}. (7.6)

The last equation, which follows directly from definition (7.5), implies that

the investor will liquidate as soon as the delayed liquidation premium van-

ishes. Moreover, we observe from (7.4) and (7.6) that τ∗ ≤ τd.

7.2 Optimal Liquidation under Markovian Credit Risk

Models

We proceed to analyze the optimal liquidation problem under a general

class of Markovian credit risk models. The description of various pricing

measures will involve the mark-to-market risk premium and event risk pre-

mium, which are crucial in the characterization of the optimal liquidation

strategy (see Theorem 7.5).

7.2.1 Pricing Measures and Default Risk Premia

We consider a n-dimensional Markovian state vector process X that drives

the interest rate rt = r(t,Xt) and default intensity λ̂t = λ̂(t,Xt) for some

positive measurable functions r(·, ·) and λ̂(·, ·). Denote by F the filtra-

tion generated by X. We also assume a Markovian payoff structure for

the defaultable claim (Y,A,R, τd) with Y = Y (XT ), At =
∫ t
0
q(u,Xu)du,

and Rt = R(t,Xt) for some measurable functions Y (·), q(·, ·), and R(·, ·)
satisfying integrability conditions (7.1.1).

Under the historical measure P, the state vector process X satisfies the

SDE

dXt = a(t,Xt)dt+Σ(t,Xt)dW
P
t ,

where WP is a m-dimensional P-Brownian motion, a is the deterministic

drift function, and Σ is the n by m deterministic volatility function.

Next, we consider the market pricing measure Q ∼ P. To this end, we

define the Radon-Nikodym density process (ZQ,P
t )0≤t≤T by

ZQ,P
t =

dQ

dP

∣∣Gt = E
(
− φQ,P ·WP

)
t
E
(
(µ− 1)MP

)
t
,
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where the Doléans-Dade exponentials are defined by

E
(
− φQ,P ·WP

)
t
:= exp

(
− 1

2

∫ t

0

||φQ,P
u ||2du−

∫ t

0

φQ,P
u ·dWP

u

)
, (7.7)

E
(
(µ− 1)MP

)
t
:= exp

(∫ t

0

log(µu−)dNu −
∫ t

0

(1−Nu)(µu − 1)λ̂udu

)
,

(7.8)

and MP
t := Nt −

∫ t
0
(1 − Nu)λ̂udu is the compensated (P,G)-martingale

associated with N . Here, (φQ,P
t )0≤t≤T and (µt)0≤t≤T are adapted processes

satisfying
∫ T
0 ||φQ,P

u ||2du < ∞, µ ≥ 0, and
∫ T
0 µuλ̂udu < ∞ (see Theorem

4.8 of Schönbucher (2003)).

The process φQ,P is commonly referred to as the mark-to-market risk

premium, which is assumed herein to be Markovian of the form φQ,P(t,Xt).

The process µ is referred to as event risk premium, which captures the

compensation from the uncertain timing of default. The Q-default intensity,

denoted by λ, is related to P-intensity via λt = µtλ̂t. Here, we also assume

µ to be Markovian of the form µ(t,Xt) = λ(t,Xt)/λ̂(t,Xt).

By multi-dimensional Girsanov Theorem, it follows that WQ
t := WP

t +∫ t
0 φ

Q,P
u du is a m-dimensional Q-Brownian motion, and MQ

t := Nt−
∫ t
0 (1−

Nu)µuλ̂udu is a (Q,G)-martingale. Consequently, the Q-dynamics of X are

given by

dXt = b(t,Xt)dt+Σ(t,Xt)dW
Q
t ,

where b(t,Xt) := a(t,Xt)− Σ(t,Xt)φ
Q,P(t,Xt).

Similarly, the investor’s pricing measure Q̃ is related to the histori-

cal measure P through the investor’s Markovian risk premium functions

φQ̃,P(t,x) and µ̃(t,x). Precisely, the measure Q̃ is defined by the density

process ZQ̃,P
t = E

(
−φQ̃,P·WP

)
t
E
(
(µ̃−1)MP

)
t
. By a change of measure, the

drift of X under Q̃ is modified to b̃(t,Xt) := a(t,Xt)−Σ(t,Xt)φ
Q̃,P(t,Xt).

Then, the EMMsQ and Q̃ are related by the Radon-Nikodym derivative:

ZQ̃,Q
t =

dQ̃

dQ

∣∣Gt = E
(
− φQ̃,Q ·WQ

)
t
E
(
(
µ̃

µ
− 1)MQ

)
t
,

where the Doléans-Dade exponentials are defined by

E
(
− φQ̃,Q ·WQ

)
t
:= exp

(
− 1

2

∫ t

0

||φQ̃,Q
u ||2du−

∫ t

0

φQ̃,Q
u ·dWQ

u

)
, (7.9)

E
(
(
µ̃

µ
− 1)MQ

)
t
:= exp

(∫ t

0

log(
µ̃u−
µu−

)dNu −
∫ t

0

(1−Nu)(
µ̃u
µu

− 1)λudu

)
.

(7.10)
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We observe that φQ̃,Q
t = φQ̃,P

t − φQ,P
t from the decomposition:

φQ̃,Q
t dt = dWQ̃

t − dWQ
t = (dWQ̃

t − dWP
t )− (dWQ

t − dWP
t )

= (φQ̃,P
t − φQ,P

t )dt. (7.11)

Therefore, we can interpret φQ̃,Q as the incremental mark-to-market risk

premium assigned by the investor relative to the market. On the other

hand, the discrepancy in event risk premia is accounted for in the second

Doléans-Dade exponential (7.10).

Example 7.2. The OU Model. Suppose (r, λ̂) = X, following the OU

dynamics:(
drt
dλ̂t

)
=

(
κ̂r(θ̂r − rt)

κ̂λ(θ̂λ − λ̂t)

)
dt+

(
σr 0

σλρ σλ
√
1− ρ2

)(
dW 1,P

t

dW 2,P
t

)
,

with constant parameters κ̂r, θ̂r, κ̂λ, θ̂λ ≥ 0. Here, κ̂r, κ̂λ parametrize the

speed of mean reversion, and θ̂r, θ̂λ represent the long-term means (see Sec-

tion 7.1 of Schönbucher (2003)). Assuming a constant event risk premium

µ by the market, the Q-intensity is specified by λt = µλ̂t and the pair (r, λ)

satisfies SDEs:(
drt
dλt

)
=

(
κr(θr − rt)

κλ(µθλ − λt)

)
dt+

(
σr 0

µσλρ µσλ
√
1− ρ2

)(
dW 1,Q

t

dW 2,Q
t

)
,

with constants κr, θr, κλ, θλ ≥ 0. Under the investor’s measure Q̃, the SDEs

for rt and λ̃t = µ̃λ̂t are of the same form with parameters κ̃r, θ̃r, κ̃λ, θ̃λ and

µ̃, and WQ is replaced by WQ̃.

Direct computation yields the relative mark-to-market risk premium:

φQ̃,Q
t =

 κr(θr−rt)−κ̃r(θ̃r−rt)
σr

1√
1−ρ2

κλ(θλ−λ̂t)−κ̃λ(θ̃λ−λ̂t)
σλ

− ρ√
1−ρ2

κr(θr−rt)−κ̃r(θ̃r−rt)
σr

 .

The upper term is the incremental risk premium for the interest rate while

the bottom term reflects the discrepancy in the default risk premia (see

(7.11)).

Example 7.3. The CIR Model. Let X = (X1, . . . , Xn)T follow the multi-

factor CIR model:2

dX i
t = κ̂i(θ̂i −X i

t)dt+ σi

√
X i
t dW

i,P
t ,

2See Section 7.2 of Schönbucher (2003) for details.
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where W i,P are mutually independent P-Brownian motions and κ̂i, θ̂i, σi ≥
0, i = 1, . . . , n satisfy Feller condition 2κ̂iθ̂i > σ2

i . The interest rate r

and historical default intensity λ̂ are non-negative linear combinations of

X i with constant weights wri , w
λ
i ≥ 0, namely, rt =

n∑
i=1

wriX
i
t and λ̂t =

n∑
i=1

wλi X
i
t . Under measure Q, X i satisfies the SDE:

dX i
t = κi(θi −X i

t)dt+ σi

√
X i
t dW

i,Q
t ,

with new mean reversion speed κi and long-run mean θi.

Under the investor’s measure Q̃, the SDE for the state vector is of the

same form with new parameters κ̃i, θ̃i. The associated relative mark-to-

market risk premium has following structure:

φQ̃,Qi,t =
κi(θi −X i

t)− κ̃i(θ̃i −X i
t)

σi
√
X i
t

.

The event risk premia (µ, µ̃) are assigned via λt = µλ̂t under Q and λ̃t = µ̃λ̂t
under Q̃ respectively.

Remark 7.4. The current framework can be readily generalized to the

situation where the investor needs to assume an alternative historical mea-

sure P̃. The resulting risk premium φQ̃,Q will have a third decomposition

component φP̃,P, reflecting the difference in historical dynamics.

For any defaultable claim (Y,A,R, τd), the ex-dividend pre-default mar-

ket price is given by

C(t,Xt) =EQ
{
e−

∫ T
t
(rv+λv)dvY (XT )

+

∫ T

t

e−
∫ u
t
(rv+λv)dv

(
λuR(u,Xu) + q(u,Xu)

)
du|Ft

}
.(7.12)

The associated cumulative price is related to the pre-default price via

Pt =(1−Nt)C(t,Xt) +

∫ t

0

(1−Nu)q(u,Xu)e
∫ t
u
rvdvdu

+

∫
(0,t]

R(u,Xu)e
∫ t
u
rvdvdNu.

The price function C(t,x) can be determined by solving the PDE:
∂C

∂t
(t,x) + Lb,λC(t,x) + λ(t,x)R(t,x) + q(t,x) = 0, (t,x)∈ [0, T )×Rn,

C(T,x) = Y (x), x ∈ Rn,

(7.13)
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where Lx is the operator defined by

Lb,λf =

n∑
i=1

bi(t,x)
∂f

∂xi
+

1

2

n∑
i,j=1

(Σ(t,x)Σ(t,x)T )ij
∂2f

∂xi∂xj

−
(
r(t,x) + λ(t,x)

)
f. (7.14)

The computation is similar for the investor’s price under Q̃.

7.2.2 Delayed Liquidation Premium and Optimal Timing

Next, we analyze the optimal liquidation problem V defined in (7.3) for the

general defaultable claim under the current Markovian setting.

Theorem 7.5. For a general defaultable claim (Y,A,R, τd) under the

Markovian credit risk model, the delayed liquidation premium admits the

probabilistic representation:

Lt = 11{t<τd} ess sup
τ∈Tt,T

EQ̃
{∫ τ

t

e−
∫

u
t
(rv+λ̃v)dvG(u,Xu)du|Ft

}
, (7.15)

where G : [0, T ]× Rn �→ R is defined by

G(t,x) = −
(
∇xC(t,x)

)T
Σ(t,x)φQ̃,Q(t,x)

+
(
R(t,x)− C(t,x)

)(
µ̃(t,x) − µ(t,x)

)
λ̂(t,x). (7.16)

If G(t,x) ≥ 0 ∀(t,x), then it is optimal to delay the liquidation till maturity

T .

If G(t,x) ≤ 0 ∀(t,x), then it is optimal to sell immediately.

Proof. First, we look at the Q̃-dynamics of discounted market price

(e−
∫

u
t
rvdvPu)t≤u≤T . Applying Corollary 2.2 of Bielecki et al. (2008), for

t ≤ u ≤ T ,

d(e−
∫ u
t
rvdvPu) = e−

∫ u
t
rvdv[(Ru − Cu)dM

Q
u + (1−Nu)(∇xCu)

TΣudW
Q
u ]

(7.17)

= e−
∫

u
t
rvdv

(
(1−Nu)G(u,Xu)du

+ (1−Nu)(∇xCu)
TΣudW

Q̃
u + (Ru − Cu)dM

Q̃
u

)
,

where G is defined in (7.16), andM Q̃ is the compensated (Q̃,G)-martingale

for N . Consequently,

Lt = ess sup
τ∈Tt,T

EQ̃
{ ∫ τ

t

(1−Nu)e
−

∫ u
t
rvdvG(u,Xu)du|Gt

}
,
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where (7.15) follows from the change of filtration technique [Bielecki and

Rutkowski (2002), §5.1.1]. If G ≥ 0, then the integrand in (7.15) is positive

a.s. and therefore the largest possible stopping time T is optimal. If G ≤ 0,

then τ∗ = t is optimal and Lt = 0 a.s.

The drift function G has two components explicitly depending on φQ̃,Q

and µ̃−µ. If φQ̃,Q(t,x) = 0 ∀(t,x), that is, the investor and market agree on

the mark-to-market risk premium, then the sign of G is solely determined

by the difference µ̃ − µ, since recovery R in general is less than the pre-

default price C. On the other hand, if µ(t,x) = µ̃(t,x) ∀(t,x), then the

second term of G vanishes but G still depends on µ through ∇xC in the

first term.

Theorem 7.5 allows us to conclude the optimal liquidation timing when

the drift function is of constant sign. In other cases, the optimal liquidation

policy may be non-trivial and needs to be numerically determined. For this

purpose, we write Lt = 11{t<τd}L̂(t,Xt), where L̂ is the (Markovian) pre-

default delayed liquidation premium defined by

L̂(t,Xt) = ess sup
τ∈Tt,T

EQ̃
{∫ τ

t

e−
∫ u
t
(rv+λ̃v)dvG(u,Xu)du|Ft

}
. (7.18)

We determine L̂ from the variational inequality :

min

(
− ∂L̂

∂t
(t,x)− Lb̃,λ̃L̂(t,x) −G(t,x), L̂(t,x)

)
= 0, (7.19)

for (t,x) ∈ [0, T ) × Rn, where Lb̃,λ̃ is defined in (7.14), and the terminal

condition is L̂(T,x) = 0, for x ∈ Rn.

The investor’s optimal timing is characterized by the sell region S and

delay region D, namely,

S = {(t,x) ∈ [0, T ]× Rn : L̂(t,x) = 0}, (7.20)

D = {(t,x) ∈ [0, T ]× Rn : L̂(t,x) > 0}. (7.21)

Also, define τ̂∗ = inf{t ≤ u ≤ T : L̂u = 0}. On {τ̂∗ ≥ τd}, liquidation
occurs at τd since Lτd = 0. On {τ̂∗ < τd}, τ̂∗ is optimal since when u < τ̂∗,

Lu = 11{u<τd}L̂u > 0 and Lτ̂∗ = 0. Incorporating the observation of τd, the

optimal stopping time is τ∗ = τ̂∗ ∧ τd.
Hence, given no default by time t and Xt = x, it is optimal to wait at

the current time t if L̂(t,x) > 0 in view of the delay region D in (7.21).

This is also intuitive as there is a strictly positive premium for delaying

liquidation. On the other hand, the sell region S must lie within the set
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G− := {(t,x) : G(t,x) ≤ 0}. To see this, we infer from (7.18) that, for

any given point (t,x) such that L̂(t,x) = 0, we must have G(t,x) ≤ 0. In

turn, the delay region D must contain the set G+ := {(t,x) : G(t,x) > 0}.
From these observations, one can obtain some insights about the sell and

delay regions by inspecting G(t,x), which is much easier to compute than

L̂(t,x). We shall illustrate this numerically below.

Lastly, let us consider a special example where the stochastic factorX is

absent from the model. With reference to (7.12), we set a constant terminal

payoff Y , and deterministic recovery R(t) and coupon rate q(t). Suppose

the investor and market perceive the same deterministic interest rate r(t),

but possibly different deterministic default intensities, respectively, λ̃(t) =

µ̃(t)λ̂(t) and λ(t) = µ(t)λ̂(t). In this case, the price function C in (7.16) will

depend only on t but not on x, and there will be no mark-to-market risk

premium. Therefore, the first term of drift function in (7.16) will vanish.

However, the second term remains due to potential discrepancy in event

risk premium, i.e. µ̃(t) �= µ(t). As a result, the drift function reduces to

G(t) = (R(t)− C(t))(µ̃(t)− µ(t))λ̂(t).

Furthermore, the absence of the stochastic factor X also trivializes the

filtration F, and leads the investor to optimize over only constant times.

The delayed liquidation premium admits the form: Lt = 11{t<τd}L̂(t), where

L̂(t) is a deterministic function given by

L̂(t) = sup
t≤t̂≤T

∫ t̂

t

e−
∫

u
t
(r(v)+λ̃(v))dvG(u)du. (7.22)

As in Theorem 7.5, if G is always positive (resp. negative) over [t, T ],

then the optimal time t̂∗ = T (resp. t̂∗ = t). Otherwise, differentiating

the integral in (7.22) implies that the deterministic candidate times also

include the roots of G(t̂) = 0. Therefore, we select among the candidate

times t, T and the roots of G to see which would yield the largest integral

value in (7.22).

7.3 Application to Single-Name Credit Derivatives

We proceed to illustrate our analysis for a number of credit derivatives, with

an emphasis on how risk premia discrepancy affects the optimal liquidation

strategies.
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7.3.1 Defaultable Bonds with Zero Recovery

Consider a defaultable zero-coupon zero-recovery bond with face value 1

and maturity T . By a change of filtration, the market price of the zero-

coupon zero-recovery bond is given by

P 0
t := EQ

{
e−

∫ T
t
rvdv11{τd>T}|Gt

}
= 11{t<τd} E

Q
{
e−

∫
T
t
(rv+λv)dv|Ft

}
= 11{t<τd}C

0(t,Xt),

where C0 denotes the market pre-default price that solves (7.13). Under

the general Markovian credit risk model in Section 7.2.1, we can apply

Theorem 7.5 with the quadruple (1, 0, 0, τd) to obtain the corresponding

drift function.

Under the OU dynamics in Section 7.2, the pre-default price function

C0(t, r, λ) is given explicitly by

C0(t, r, λ) = eA(T−t)−B(T−t)r−D(T−t)λ,

where

B(s) =
1− e−κrs

κr
, D(s) =

1− e−κλs

κλ
,

A(s) =

∫ s

0

[1
2
σ2
rB

2(z) + ρµσrσλB(z)D(z) +
1

2
µ2σ2

λD
2(z)

− κrθrB(z)− µκλθλD(z)
]
dz.

As a result, the drift function G0(t, r, λ) admits a separable form:

G0(t, r, λ) = C0(t, r, λ)

(
B(T − t)(κ̃r − κr)r +B(T − t)(κrθr − κ̃r θ̃r)

+ [D(T − t)(κ̃λ − κλ)− (
µ̃

µ
− 1)]λ+ µD(T − t)(κλθλ − κ̃λθ̃λ)

)
.

We can draw several insights on the liquidation timing from this drift

function. If the market and the investor agree on the speed of mean re-

version for interest rate, i.e. κr = κ̃r, then G0(t, r, λ)/C0(t, r, λ) is linear

in λ. Furthermore, if the slope D(T − t)(κ̃λ − κλ)− ( µ̃µ − 1) and intercept

B(T − t)(κrθr− κ̃r θ̃r)+µD(T − t)(κλθλ− κ̃λθ̃λ) are of the same sign, then

the optimal liquidation strategy must be trivial in view of Theorem 7.5.

In contrast, if the slope and intercept differ in signs, the optimal stopping

problem may be nontrivial and the sign of the slope determines qualitative

properties of optimal stopping rules. For instance, suppose the slope is
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positive. We infer that it is optimal for the holder to wait at high default

intensity where the correspondingG0 and thus delayed liquidation premium

are positive. The converse holds if the slope is negative.

If the investor disagrees with market only on event risk premium, i.e.

µ �= µ̃, then the drift function is reduced to G0(t, r, λ) = −C0(t, r, λ)( µ̃µ −
1)λ, which is of constant sign. This implies trivial strategies. If µ > µ̃, then

G0 > 0 and it is optimal to delay the liquidation until maturity. On the

other hand, if µ < µ̃, then it is optimal to sell immediately. More general

specifications of the event risk premium could depend on the state vector

and may lead to nontrivial optimal stopping rules. Disagreement on mean

level θλ has a similar effect to that of µ.

If the investor disagrees with market only on speed of mean reversion, i.e.

κλ �= κ̃λ, then G
0(t, r, λ) = C0(t, r, λ)D(T − t)

[
(κ̃λ − κλ)λ+ µθλ(κλ − κ̃λ)

]
with D(T − t) > 0 before T , where the slope and intercept differ in signs. If

κλ < κ̃λ, the slope κ̃λ − κλ is positive and it is optimal to sell immediately

at a low intensity, and thus, a high bond price. The converse holds for

κλ > κ̃λ.

We consider a numerical example where the interest rate is constant

and the market default intensity λ is chosen as the state vector X with

OU dynamics. We employ the standard implicit PSOR algorithm to solve

L̂(t, λ) through its variational inequality (7.19) over a uniform finite grid

with Neumann condition applied on the intensity boundary. The market

parameters are T = 1, µ = 2, κλ = 0.2, θλ = 0.015, r = 0.03, and σ = 0.02.3

From formula (7.3.1), we observe a one-to-one correspondence between

the market pre-default bond price C0 and its default intensity λ for any

fixed (t, r), namely,

λ =
−log(C0) +A(T − t)−B(T − t)r

D(T − t)
. (7.23)

Substituting (7.23) into (7.20) and (7.21), we can characterize the sell region

and delay region in terms of the observable pre-default market price C0.

3These values are based on the estimates in Driessen (2005); Duffee (1999).
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Fig. 7.1 Optimal liquidation boundary in terms of market pre-default bond price
under OU dynamics. We take T = 1, r = 0.03, σ = 0.02, µ = µ̃ = 2, and
θλ = θ̃λ = 0.015. Panel (a): When κλ = 0.2 < 0.3 = κ̃λ, the optimal boundary
increases from 0.958 to 1 over time. Panel (b): When κλ = 0.3 > 0.2 = κ̃λ, the
optimal boundary increases from 0.927 to 1 over time. The dashed straight line
is defined by G = 0, and we have G ≤ 0 in both sell regions.
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In Figure 7.1(a), we assume that the investor agrees with the market

on all parameters, but has a higher speed of mean reversion κ̃λ > κλ.

In this case, the investor tends to sell the bond at a high market price,

which is consistent with our previous analysis in terms of drift function.

If the bond price starts below 0.958 at time 0, the optimal liquidation

strategy for the investor is to hold and sell the bond as soon as the price

hits the optimal boundary. If the bond price starts above 0.958 at time

0, the optimal liquidation strategy is to sell immediately. In the opposite

case where κ̃λ < κλ (see Figure 7.1(b)), the optimal liquidation strategy

is reversed – it is optimal to sell at a lower boundary. In each cases, the

sell region must lie within where G is non-positive, and the straight line

defined by G = 0 can be viewed as a linear approximation of the optimal

liquidation boundary.

Under the CIR dynamics in Section 7.2, C0 admits a closed-form for-

mula:

C0(t,x) =

n∏
i=1

EQ
{
e−

∫
T
t
(wr

i +µw
λ
i )X

i
vdv|Xt = x

}
=

n∏
i=1

Ai(T − t)e−Bi(T−t)xi ,

where

Ai(s) = [
2Ξie

(Ξi+κi)s/2

(Ξi + κi)(eΞis − 1) + 2Ξi
]2κiθi/σ

2
i ,

Bi(s) =
2(eΞis − 1)(wri + µwλi )

(Ξi + κi)(eΞis − 1) + 2Ξi
, and Ξi =

√
κ2i + 2σ2

i (w
r
i + µwλi ).

As a result, the drift function is given by

G0(t,x) =
[ n∑
i=1

(
[Bi(T − t)(κ̃i − κi)− (µ̃− µ)wλi ]xi

+Bi(T − t)(κiθi − κ̃iθ̃i)
)]
C0(t,x),

which is again linear in terms of C0(t,x).

To illustrate the optimal liquidation strategy, we consider a numerical

example where interest rate is constant, X=λ, and wλ = 1
µ . The bench-

mark specifications for the market default intensity λ in the CIR dynamics

are T = 1, µ = 2, κλ = 0.2, θλ = 0.015, r = 0.03, and σ = 0.07. Like in the

OU model, we can again express the sell region and delay region in terms

of the pre-default market price C0; see Figure 7.2.
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7.3.2 Recovery of Treasury and Market Value

Extending the preceding analysis on defaultable bonds, we incorporate two

principle ways of modeling recovery: the recovery of treasury or market

value.

By the recovery of treasury, we assume that a recovery of c times the

value of the equivalent default-free bond is paid upon default. Therefore,

the market pre-default bond price function is

CRT (t,x) = (1− c)C0(t,x) + cβ(t,x),

where β(t,x) := EQ
{
e−

∫ T
t
rvdv|Xt = x

}
is the equivalent default-free bond

price. Then, applying Theorem 7.5 with the quadruple (1, 0, cβ, τd), we

obtain the corresponding drift function:

GRT (t,x) = −
(
∇xC

RT (t,x)
)T

Σ(t,x)φQ̃,Q(t,x)

+ (c− 1)
(
µ̃(t,x) − µ(t,x)

)
λ̂(t,x)C0(t,x). (7.24)

If c = 0, then CRT (t,x) = C0(t,x) and GRT in (7.24) reduces to the drift

function of the zero-recovery bond. If c = 1, then CRT (t,x) = β(t,x) is

the market price of a default-free bond, and risk premium discrepancy may

arise only from the interest rate dynamics.

Here are two examples where the drift function GRT in (7.24) can be

computed explicitly.

Example 7.6. Under OU model, CRT (t, r, λ) is computed according to

(7.3.2) with C0(t, r, λ) in (7.3.1) and β(t, r, λ) = eĀ(T−t)−B(T−t)r, where

Ā(s) =
∫ s
0

[
1
2σ

2
rB

2(z)− κrθrB(z)
]
dz and B(s) is defined in (7.3.1).

Example 7.7. Under the multi-factor CIR model, CRT (t,x) is found again

from (7.3.2), where C0(t,x) is given in (7.3.1), and β(t,x) is computed from

(7.3.1) with wλ = 0 in (7.3.1) and (7.3.1).

As for the recovery of market value, we assume that at default the

recovery is c times the pre-default value CRMV
τd− . The market pre-default

price is given by

CRMV (t,Xt) = EQ
{
e−

∫
T
t
(rv+(1−c)λv)dv|Ft

}
, 0 ≤ t ≤ T.

The corresponding drift function can be obtained by applying the quadruple

(1, 0, cCRMV , τd) to Theorem 7.5.

Example 7.8. Under the OU model in Section 7.2, the price function

CRMV (t, r, λ) is given by

CRMV (t, r, λ) = eÂ(T−t)−B(T−t)r−D̂(T−t)λ,
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where B(s) is defined in (7.3.1),

D̂(s) =
(1 − c)(1− e−κλs)

κλ
, and

Â(s) =

∫ s

0

[1
2
σ2
rB

2(z) + ρµσrσλB(z)D̂(z) +
1

2
µ2σ2

λD̂
2(z)

− κrθrB(z)− µκλθλD̂(z)
]
dz.

Example 7.9. Under the multi-factor CIR model, CRMV (t,x) admits the

same formula as (7.3.1) but with wλ replaced by (1 − c)wλ in (7.3.1) and

(7.3.1).

7.3.3 Optimal Liquidation of CDS

In this section we consider optimally liquidating a digital CDS position.

The investor is a protection buyer who pays a fixed premium to the pro-

tection seller from time 0 until default or maturity T , whichever comes

first. The premium rate pm0 , called the market spread, is specified at con-

tract inception. In return, the protection buyer will receive $1 if default

occurs at or before T . The liquidation of the CDS position at time t can be

achieved by entering a CDS contract as a protection seller with the same

credit reference and same maturity T at the prevailing market spread pmt .

By definition, the prevailing market spread pmt makes the values of two legs

equal at time t, i.e.

EQ
{∫ T

t

e−
∫ u
t
rvdvpmt 11{u<τd}du|Gt

}
= EQ

{
e−

∫ τd
t rvdv11{t<τd≤T}|Gt

}
.(7.25)

If the liquidation occurs at time t, she receives the premium at rate pmt and

pays the premium at rate pm0 until default or maturity T . If default occurs,

then the default payments from both CDS contracts will cancel. Consider-

ing the resulting expected cash flows and (7.25), the mark-to-market value

of the CDS is given by

EQ
{∫ T

t

e−
∫ u
t
rvdv(pmt − pm0 )11{u<τd}du|Gt

}
= 11{t<τd}E

Q
{∫ T

t

e−
∫

u
t
(rv+λv)dv(λu − pm0 )du|Ft

}
=: 11{t<τd}C

CDS(t,Xt). (7.26)

For CDS, we apply the quadruple (0,−pm0 , 1, τd) to Theorem 7.5 and

obtain the drift function:

GCDS(t,x) = −
(
∇xC

CDS(t,x)
)T

Σ(t,x)φQ̃,Q(t,x)

+
(
1− CCDS(t,x)

)(
µ̃(t,x) − µ(t,x)

)
λ̂(t,x). (7.27)
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If there is no discrepancy over mark-to-market risk premium, i.e.

φQ̃,Q(t,x) = 0, then the sign ofGCDS is determined by µ̃(t,x)−µ(t,x) since
CCDS ≤ 1. From this we infer that higher event risk premium (relative to

market) implies delayed liquidation.

In general, the market pre-default value CCDS can be solved by PDE

(7.13). If the state vector X admits OU or CIR dynamics, CCDS , and thus

GCDS , is given in closed form, as illustrated in the following two examples.

Example 7.10. Under the OU dynamics, the pre-default value of CDS

(see (7.26)) is given by the following integral:

CCDS(t, r, λ) =

∫ T

t

C0(t, r, λ)

[
λe−κλ(u−t) +

∫ u

t

e−κr(u−s)g(s, u)ds− pm0

]
du,

where C0(t, r, λ) ≡ C0(t, r, λ;u) is given by (7.3.1) with T = u and

g(s, u) := µκλθλ − ρµσrσλ
1− e−κr(u−s)

κr
− (µσλ)

2 1− e−κλ(u−s)

κλ
.

Example 7.11. Under the multi-factor CIR dynamics, the pre-default

value CCDS(t,x) of CDS is given by the following integral:∫ T

t

C0(t,x;u)

[ n∑
i=1

(
µwλi

(
κiθiBi(u− t) +B′

i(u− t)xi
))

− pm0

]
du,

where C0(t,x;u) is given in (7.3.1) with T = u and Bi(s) in (7.3.1).

Example 7.12. For a forward CDS with start date Ta < T , the protection

buyer pays premium at rate pa from Ta until τd or maturity T , and receives

1 if τd ∈ [Ta, T ]. By direct computation, the pre-default market value is

CCDS(t,x;T )−CCDS(t,x;Ta), t < Ta. Consequently, closed-form formulas

for the drift function are available under OU or CIR dynamics by Examples

7.10 and 7.11.

We consider a numerical example where interest rate is constant and

state vector X=λ follows the CIR dynamics. We assume that the investor

agrees with the market on all parameters except the speed of mean reversion

for default intensity. In Figure 7.3(a) with κλ = 0.2 < 0.3 = κ̃λ, the optimal

liquidation strategy is to sell as soon as the market CDS value reaches an

upper boundary. In the case with κλ = 0.3 > 0.2 = κ̃λ (see Figure 7.3 (b)),

the sell region is below the continuation region.

Remark 7.13. As a straightforward generalization under our framework,

one can replace the unit payment at default by RCDS(τd,Xτd). Then, we

can apply the quadruple (0,−pm0 , RCDS, τd) to Theorem 7.5, and obtain the

same drift function GCDS in (7.27) except with 1 replaced by RCDS(t,x).
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Fig. 7.2 Optimal liquidation boundary in terms of market pre-default bond price
under CIR dynamics. We take T = 1, r = 0.03, σ = 0.07, µ = µ̃ = 2, and
θλ = θ̃λ = 0.015. Panel (a): When κλ = 0.2 < 0.3 = κ̃λ, the optimal boundary
increases from 0.948 to 1 over time. Panel (b): When κλ = 0.3 > 0.2 = κ̃λ, the
optimal boundary increases from 0.935 to 1 over time.
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Fig. 7.3 Optimal liquidation boundary in terms of market pre-default CDS value
under CIR dynamics. We take T = 1, r = 0.03, σ = 0.07, pm0 = 0.02, µ = µ̃ = 2,
and θλ = θ̃λ = 0.015. Panel (a): When κλ = 0.2 < 0.3 = κ̃λ, liquidation occurs
at an upper boundary that decreases from 0.0172 to 0 over t ∈ [0, 1]. Panel
(b): When κλ = 0.3 > 0.2 = κ̃λ, the CDS is liquidated at a lower liquidation
boundary, which decreases from 0.00338 to 0 over time. In both cases, the dashed
line defined by G = 0 lies within the continuation region.
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7.3.4 Jump-Diffusion Default Intensity

We can extend our analysis to incorporate jumps to the stochastic state

vector. To illustrate this, suppose the default intensity and interest rate

are driven by a n-dimensional state vector X′ with the affine jump-diffusion

dynamics:

dX′
t = a(t,X′

t)dt+Σ(t,X′
t)dW

P
t + dJt,

where J = (J1, . . . , Jn)T is a vector of n independent pure jump processes

taking values in Rn. Under historical measure P, we assume Markovian

jump intensity of the form Λ̂(t,X′
t) = (Λ̂1(t,X′

t), . . . , Λ̂
n(t,X′

t))
T for J.

All random jump sizes (Y ij )ij of J are independent, and for each J i, the as-

sociated jump sizes Y i1 , Y
i
2 , . . . have a common probability density function

f̂ i.

The default intensity of defaultable security is given by λ̂(t,X′
t) for

some positive measurable function λ̂(·, ·), and the default counting process

associated with default time τd is denoted by Nt = 11{t≥τd}. We denote

(Gt)0≤t≤T to be the full filtration generated by WP,J, and τd.

We define a market pricing measure Q in terms of the mark-to-market

risk premium φQ,P and event risk premium µ, which are Markovian and sat-

isfy
∫ T
0 ||φQ,P

u ||2du <∞ and
∫ T
0 µuλ̂udu <∞. Due to the presence of J, the

market measure Q can scale the jump intensity of J by the positive Marko-

vian factors δit = δi(t,X′
t), with

∫ T
0 δiuΛ̂

i
udu < ∞ for i = 1, . . . , n. Also, Q

can transform the jump size distribution of J by a function (hi)i=1,...,n > 0

satisfying
∫∞
0
hi(y)f̂ i(y)dy = 1 for i = 1, . . . , n.

The Radon-Nikodym derivative is given by

dQ

dP

∣∣Gt = E
(
− φQ,P ·WP

)
t
E
(
(µ− 1)MP

)
t
KQ,P
t ,

where first two Doléans-Dade exponentials are defined in (7.7) and (7.8)

respectively, MP
t := Nt −

∫ t
0
(1−Nu)λ̂udu is the compensated P-martingale

associated with N , and the last term

KQ,P
t :=

n∏
i=1

[
exp

(∫ t

0

∫
Rn

(
1− δi(u,X′

u)h
i(y)

)
Λ̂i(u,X′

u)f̂
i(y)dydu

)
N

(i)
t∏

j=1

(
δi(T ij ,X

′
T i
j
)hi(Y ij )

)]
,

where T ij is the jth jump time of J i and N
(i)
t :=

∑
j≥1 11{T i

j≤t} is the

counting process associated with J i.



November 12, 2015 12:34 Optimal Mean Reversion Trading... b2296 page 185

Trading Credit Derivatives 185

By Girsanov Theorem, WQ
t := WP

t+
∫ t
0
φQ,P
u du is a Q-Brownian motion,

the jump intensity of J i under Q is Λi(t,X′
t) := δi(t,X′

t)Λ̂
i(t,X′

t), and the

jump size pdf of J i under Q is f i(y) := hi(y)f̂ i(y). The Q-dynamics of

state vector X′ is given by

dX′
t = b(t,X′

t)dt+Σ(t,X′
t)dW

Q
t + dJt.

Also incorporating the event risk premium, the Q-default intensity is

λ(t,X′
t) := µ(t,X′

t)λ̂(t,X
′
t).

Under the investor’s measure Q̃, we replace b with b̃, φQ,P with φQ̃,P,

and WQ with WQ̃ for the dynamics of X′. For each J i, the Q̃-intensity is

denoted by Λ̃i(t,X′
t) := δ̃i(t,X′

t)Λ̂
i(t,X′

t), and the jump size pdf under Q̃

is f̃ i(y) := h̃i(y)f̂ i(y). With investor’s event risk premium µ̃, the default

intensity under Q̃ is λ̃(t,X′
t) := µ̃(t,X′

t)λ̂(t,X
′
t).

The two pricing measures Q and Q̃ are related by the Radon-Nikodym

derivative:

dQ̃

dQ

∣∣Gt = E
(
− φQ̃,Q ·WQ

)
t
E
(
(
µ̃

µ
− 1)MQ

)
t
KQ̃,Q
t ,

where MQ
t := Nt −

∫ t
0(1−Nu)λudu is the compensated Q-martingale asso-

ciated with N , the first two Doléans-Dade exponentials are defined in (7.9)

and (7.10), and

KQ̃,Q
t :=

n∏
i=1

[
exp

(∫ t

0

∫
Rn

(
Λi(u,X′

u)f
i(y)− Λ̃i(u,X′

u)f̃
i(y)

)
dydu

)
N

(i)
t∏

j=1

Λ̃i(T ij ,X
′
T i
j
)f̃ i(Yi

j)

Λi(T ij ,X
′
T i
j
)f i(Yi

j)

]
.

Consequently, on top of the mark-to-market risk and event risk premia,

the investor can potentially disagree with the market over jump intensity

and jump size distribution of X′, allowing for a richer structure of price

discrepancy as well as the optimal liquidation strategy.

As in Theorem 7.5, we compute the drift function in terms of pre-default

price C and default risk premia, namely,

GJ(t,x) = −
(
∇xC(t,x)

)T
Σ(t,x)φQ̃,Q(t,x)

+ (R(t,x)− C(t,x))
(
µ̃(t,x)− µ(t,x)

)
λ̂(t,x)

+

n∑
i=1

(∫
Rn

(
C(t,x+ yei)− C(t,x)

)(
Λ̃i(t,x)f̃ i(y)− Λi(t,x)f i(y)

)
dy

)
,
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where ei := (0, . . . , 1, . . . , 0)T . We observe that the first two components

of GJ share the same functional form as G in (7.16), though the price

function C is derived from the jump-diffusion model. Even if the investor

and the market assign the same mark-to-market risk and event risk premia,

discrepancy over jump intensity and distribution will yield different liqui-

dation strategies. Under quite general affine jump-diffusion models, Duffie

et al. (2000) provide an analytical treatment of transform analysis, which

can be used for the computation of our drift function.

7.4 Optimal Liquidation of Credit Default Index Swaps

We proceed to discuss the optimal liquidation of multi-name credit deriva-

tives. In the literature, there exist many proposed models for modeling

multiple defaults and pricing multi-name credit derivatives. Within the

intensity-based framework, one popular approach is to model each default

time by the first jump of a doubly-stochastic process. The dependence

among defaults can be incorporated via some common stochastic factors.

This well-known bottom-up valuation framework has been studied in Duffie

and Garleanu (2001); Mortensen (2006), among many others.

As a popular alternative, the top-down approach describes directly the

dynamics of the cumulative credit portfolio loss, without detailed references

to the constituent single names.4 For our analysis, rather than proposing

a new multi-name credit risk model, we adopt the self-exciting top-down

model developed by Errais et al. (2010). In particular, we will focus on the

optimal liquidation of a credit default index swap.

First, we model successive default arrivals by a counting process

(Nt)0≤t≤T , and the accumulated portfolio loss by Υt = l1 + . . .+ lNt , with

each ln representing the random loss at the nth default. Under the historical

measure P, the default intensity evolves according to the jump-diffusion:

dλ̂t = κ̂(θ̂ − λ̂t)dt+ σ

√
λ̂t dW

P
t + η dΥt, (7.28)

where W P is a standard P-Brownian motion. We assume that the random

losses (ln) are independent with an identical probability density function

m̂ on (0,∞). According to the last term in (7.28), each default arrival will

increase default intensity λ̂ by the loss at default scaled by the positive

parameter η. This term captures default clustering observed in the multi-

name credit derivatives. We assume a constant risk-free interest rate r for
4Some examples of top-down models include Brigo et al. (2007); Ding et al. (2009);

Longstaff and Rajan (2008); Lopatin and Misirpashaev (2008).
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simplicity, and denote (Ht)0≤t≤T to be the full filtration generated by N ,

Υ, and W P.

The market measure Q is characterized by several key components.

First, the market’s mark-to-market risk premium is assumed to be of the

form

φQ,Pt =
κ̂(θ̂ − λ̂t)− κ(θ − λ̂t)

σ
√
λ̂t

(7.29)

such that the default intensity in (7.28) preserves mean-reverting dynamics

with different parameters κ and θ under the market measure Q. Secondly,

we assume that the Q-default intensity is λt := µλ̂t, with a positive con-

stant event risk premium. Thirdly, the distribution of random losses can

be scaled under Q. Specifically, we assume that under Q the losses (ln)

admit the pdf m(z) := h(z)m̂(z), for some strictly positive function h with∫∞
0 h(z)m̂(z)dz = 1 . Then, the Radon-Nikodym derivative associated with

Q and P is

dQ

dP

∣∣Ht = E
(
− φQ,PW P

)
t
K̂Q,P
t ,

where E
(
− φQ,PW P

)
is defined in (7.7), and

K̂Q,P
t := exp

(∫ t

0

∫ ∞

0

(
1− µh(z)

)
λ̂um̂(z)dzdu

) Nt∏
i=1

(
µh(li)

)
.

Under the market pricing measure Q, the Q-default intensity evolves ac-

cording to:

dλt = κ(µθ − λt)dt+ σ
√
µλt dW

Q
t + µη dΥt,

where WQ
t :=W P

t +
∫ t
0
φQ,Pu du is a standard Q-Brownian motion. Similarly,

we can define the investor’s pricing measure Q̃ through the investor’s mark-

to-market risk premium φQ̃,P as in (7.29) with parameters κ̃ and θ̃; default

intensity λ̃t = µ̃λ̂t with constant event risk premium µ̃; and loss scaling

function h̃ so that the loss pdf m̃(z) = h(z)m̂(z).

The credit default index swap is written on a standardized portfolio

of H reference entities, such as single-name default swaps, with same no-

tional normalized to 1 and same maturity T . The investor is a protection

buyer who pays at the premium rate pm0 in return for default payments

over (0, T ]. Here, the default payment is assumed to be paid at the time

when default occurs, and the premium payment is paid continuously with

premium notional equal to H −Nt.
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The market’s cumulative value of the credit default index swap for the

protection buyer is equal to the difference between the market values of the

default payment leg and premium leg, namely,

PCDXt = EQ
{∫

(0,T ]

e−r(u−t) dΥu |Ht

}
− EQ

{
pm0

∫
(0,T ]

e−r(u−t)(H −Nu) du |Ht

}
, t ≤ T. (7.30)

Hence, similar to (7.3), the protection buyer solves the following optimal

stopping problem:

V CDXt = ess sup
τ∈Tt,T

EQ̃
{
e−r(τ−t)PCDXτ |Ht

}
. (7.31)

The associated delayed liquidation premium is defined by

LCDXt = V CDXt − PCDXt . (7.32)

The derivation of the optimal liquidation strategy involves computing

the market’s ex-dividend value, defined by

CCDXt =EQ
{∫

(t,T ]

e−r(u−t) dΥu |Ht

}
− EQ

{
pm0

∫
(t,T ]

e−r(u−t)(H −Nu) du |Ht

}
. (7.33)

Proposition 7.14. The market’s ex-dividend value of the credit default

index swap in (7.33) can be expressed as CCDXt = CCDX(t, λt, Nt), where

CCDX(t, λ, n) = k2(t, T )λ+ k1(t, T )n+ k0(t, T ), (7.34)

for t ≤ T , with coefficients

k2(t, T ) = (cr + pm0 )

(
e−(ρ+r)(T−t)

ρ(ρ+ r)
− e−r(T−t)

ρr
+

1

r(ρ + r)

)
+
ce−r(T−t)

ρ

(
1− e−ρ(T−t)),

k1(t, T ) =
pm0

(
1− e−r(T−t))

r
,

k0(t, T ) =

(
(rc + pm0 )

[
e−r(T−t)( 1

rρ
− e−ρ(T−t)

ρ(ρ+ r)
− T − t

r
− 1

r2
)
+

ρ

r2(r + ρ)

]
+ ce−r(T−t)(e−ρ(T−t) − 1

ρ
+ T − t

))κµθ
ρ

− pm0 H

r

(
1− e−r(T−t)),

and constants

c =

∫ ∞

0

zm(z)dz, and ρ = κ− µηc. (7.35)
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Proof. Using integration by parts, we re-write the market’s ex-dividend

value as

CCDXt = e−r(T−t) EQ{ΥT |Ht} −Υt +

∫ T

t

e−r(u−t)
[
rEQ{Υu|Ht}

− pm0
(
H − EQ{Nu|Ht}

)]
du. (7.36)

Hence, the computation of CCDX involves calculating EQ{Nu | Ht} and

EQ{Υu | Ht}, u ≥ t. Since default intensity λ follows a square-root jump-

diffusion dynamics, these conditional expectation admit the closed-form

expressions:

EQ{Nu |λt = λ,Nt = n,Υt = υ} = A(t, u) + B(t, u)λ+ n, (7.37)

EQ{Υu |λt = λ,Nt = n,Υt = υ} = cA(t, u) + cB(t, u)λ+ υ, (7.38)

for t ≤ u ≤ T , where

A(t, u) =
κµθ

κ− µηc

(e−(κ−µηc)(u−t) − 1

κ− µηc
+ u− t

)
,

B(t, u) = 1

κ− µηc
(1− e−(κ−µηc)(u−t)).

Here, c is the market’s expected loss at default given in (7.35). Substituting

(7.37) and (7.38) into (7.36), we obtain the closed-form formula for market’s

ex-dividend value in (7.34).

As a result, the ex-dividend value CCDX is linear in the default in-

tensity λt and number of defaults Nt. Next, we characterize the optimal

corresponding liquidation premium and strategy.

Theorem 7.15. Under the top-down credit risk model in (7.28), the delayed

liquidation premium associated with the credit default index swap is given

by

LCDX(t, λ) = sup
τ∈Tt,T

EQ̃
{ ∫ τ

t

e−r(u−t)GCDX(u, λu)du |λt = λ
}
, (7.39)

where

GCDX(t, λ) = k2(t, T )µ(κ̃θ̃ − κθ) (7.40)

+

((
µηk2(t, T ) + 1

)
(
µ̃c̃

µ
− c) + k1(t, T )(

µ̃

µ
− 1)− k2(t, T )(κ̃− κ)

)
λ,

with c̃ :=
∫∞
0
zm̃(z)dz. If GCDX(t, λ) ≥ 0 ∀(t, λ), then it is optimal to

delay the liquidation till maturity T . If GCDX(t, λ) ≤ 0 ∀(t, λ), then it is

optimal to sell immediately.
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Proof. In view of the definition of LCDX in (7.32), we consider the dy-

namics of PCDX . First, it follows from (7.30) and (7.33) that

e−r(u−t)PCDXu = e−r(u−t)CCDXu +

∫
(0,u]

e−r(v−t)
(
dΥv − pm0 (H −Nv)dv

)
.

(7.41)

Using (7.41) and the fact that e−rtPCDXt is Q-martingale (whose SDE must

have no drift), we apply Ito’s lemma to get

e−r(τ−t)PCDXτ − PCDXt

=

∫ τ

t

e−r(u−t)
∂CCDX

∂λ
(u, λu, Nu)σ

√
µλudW

Q
u

+

[ ∑
t<u≤τ

e−r(u−t)(Υu −Υu−)−
∫ τ

t

∫ ∞

0

e−r(u−t)zm(z)λu dzdu

]

+

[ ∑
t<u≤τ

e−r(u−t)
(
CCDX(u, λu, Nu)− CCDX(u, λu−, Nu−)

)
−

∫ τ

t

∫ ∞

0

e−r(u−t)
(
CCDX(u, λu + µηz,Nu + 1)

− CCDX(u, λu, Nu)
)
m(z)λu dzdu

]
(7.42)

=

∫ τ

t

e−r(u−t)
(∂CCDX

∂λ
(u, λu, Nu)σ

√
µλudW

Q̃
u +GCDX(u, λu, Nu)du

)
+

[ ∑
t<u≤τ

e−r(u−t)(Υu −Υu−)−
∫ τ

t

∫ ∞

0

e−r(u−t)zm̃(z)λ̃u dzdu

]

+

[ ∑
t<u≤τ

e−r(u−t)
(
CCDX(u, λu, Nu)− CCDX(u, λu−, Nu−)

)
−

∫ τ

t

∫ ∞

0

e−r(u−t)
(
CCDX(u, λu + µηz,Nu + 1)

− CCDX(u, λu, Nu)
)
m̃(z)λ̃u dzdu

]
, (7.43)

for t ≤ τ ≤ T , where

GCDX(t, λ, n) :=
∂CCDX

∂λ
(t, λ, n)

(
(κ̃θ̃ − κθ)µ− (κ̃− κ)λ

)
+

∫ ∞

0

(
z + CCDX(t, λ+ µηz, n+ 1)− CCDX(t, λ, n)

)
(
µ̃

µ
m̃(z)−m(z)

)
λdz.

(7.44)
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Note that the two compensated Q-martingale terms in (7.42) account for,

respectively, losses and changes in CCDX value due to default arrivals. The

second equation (7.43) follows from change of measure from Q to Q̃.

By Proposition 7.14, the terms ∂CCDX

∂λ and CCDX(t, λ + µηz, n+ 1)−
CCDX(t, λ, n) do not depend on n. Consequently, GCDX does not depend

on n, and admits the closed-form formula (7.40) upon a substitution of

(7.34) into (7.44).

By taking the expectation on both sides of (7.43) under Q̃, the delayed

liquidation premium LCDX satisfies (7.39) and depends only on t and λ. If

GCDX ≥ 0, then the integrand in (7.39) is positive a.s. and therefore the

largest possible stopping time T is optimal. If GCDX ≤ 0, then τ∗ = t is

optimal and LCDXt = 0 a.s.

We observe that the drift function consists of two components. The

first component in (7.44) accounts for the disagreement between investor

and market on the fluctuation of market ex-dividend value, while the second

integral term reflects the disagreement on the jumps of market’s cumulative

value arising from the losses at default and the jumps in the ex-dividend

value. Even though the market’s cumulative value PCDX in (7.30) and the

optimal expected liquidation value V CDX in (7.31) are path-dependent,

both the delayed liquidation premium LCDX in (7.39) and GCDX in (7.40)

depend only on t and λ due to the special structure of CCDX given in

(7.34).

To obtain the variational inequality of LCDX , we recall that λ̃ = µ̃λ/µ

and the Q̃-dynamics of default intensity λ:

dλt = κ̃(µθ̃ − λt)dt+ σ
√
µλt dW

Q̃
t + µη dΥt.

The delayed liquidation premium LCDX(t, λ) as a function of time t and

Q-default intensity λ satisfies the variational inequality

min

(
− ∂LCDX

∂t
− κ̃(µθ̃ − λ)

∂LCDX

∂λ
− σ2µλ

2

∂LCDX

∂λ2
+ rLCDX

− µ̃λ

µ

∫ ∞

0

(
LCDX(t, λ+ µηz)− LCDX

)
m̃(z)dz −GCDX , LCDX

)
= 0,

(7.45)

for (t, λ) ∈ [0, T )× R, with terminal condition L(T, λ) = 0 for λ ∈ R.

We consider a numerical example for an index swap with constant

losses at default. In this case, the integral term in (7.45) reduces to

LCDX(t, λ + µηc) − LCDX(t, λ), where c is the constant loss. We em-

ploy the standard implicit PSOR iterative algorithm to solve LCDX by
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finite difference method with Neumann condition applied on the intensity

boundary. There exist many alternative numerical methods to solve vari-

ational inequality with an integral term.5 We opt to apply a second-order

Taylor approximation to the difference LCDX(t, λ + µηc) − LCDX(t, λ) ≈
∂λL

CDX(t, λ)µηc + 1
2∂λλL

CDX(t, λ)(µηc)2. In turn, these new partial

derivatives are incorporated in the existing partial derivatives in (7.45),

rendering the variational inequality completely linear in λ, and thus, allow-

ing for rapid computation.

We denote the investor’s sell region S and delay region D by

SCDX = {(t, λ) ∈ [0, T ]× R : LCDX(t, λ) = 0}, (7.46)

DCDX = {(t, λ) ∈ [0, T ]× R : LCDX(t, λ) > 0}.

On the other hand, we observe from (7.34) a one-to-one correspondence

between the market’s ex-dividend value CCDX of an index swap and its

default intensity λ for any fixed t < T , namely,

λ =
CCDX − k1(t, T )n− k0(t, T )

k2(t, T )
. (7.47)

Substituting (7.47) into (7.46) and (7.4), we can describe the sell region and

delay region in terms of the observable market ex-dividend value CCDX .

In Figure 7.4, we assume that the investor agrees with the market on all

parameters except the speed of mean reversion for default intensity. In the

case with κ = 0.5 < 1 = κ̃ (Figure 7.4(a)), the investor’s optimal liquidation

strategy is to sell as soon as the market ex-dividend value of index swap

CCDX reaches an upper boundary. In the case with κ = 1 > 0.5 = κ̃

(Figure 7.4(b)), the sell region is below the continuation region.

In summary, we have analyzed the optimal liquidation of a credit default

index swap under a top-down credit risk model. The selected model and

contract specification give us tractable analytical results that are amenable

for numerical computation. The top-down model implies that the underly-

ing credit portfolio can experience countably many defaults. This feature

is innocuous for a large diversified portfolio in practice since the likelihood

of total default is negligible.

5See, among others, Andersen and Andreasen (2000); d’Halluin et al. (2005)
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Fig. 7.4 Optimal liquidation boundary in terms of market ex-dividend value of
an index swap. We take T = 5, r = 0.03, H = 10, η = 0.25, σ = 0.5, c = c̃ = 0.5,
pm0 = 0.02, θ = θ̃ = 1, and µ = µ̃ = 1.1. Panel (a): When κ = 0.5 < 1 = κ̃,
liquidation occurs at an upper boundary that decreases from 3 to 0 over t ∈ [0, 5].
Panel (b): When κ = 1 > 0.5 = κ̃, the index swap is liquidated at a lower
liquidation boundary, which decreases from 1.9 to 0 over time. In both cases, the
dashed line defined by GCDX = 0 lies within the continuation region.



November 12, 2015 12:34 Optimal Mean Reversion Trading... b2296 page 194

194 Optimal Mean Reversion Trading

Our analysis here can be extended to the liquidation of a collateralized

debt obligation (CDO) contract. Consider a tranche with lower and higher

attachment points K1,K2 ∈ [0, 1] of a CDO with H names, each with a

unit notional. The tranche loss is a function of the accumulated loss Υt,

given by L̃t = (Υt−K1H)+− (Υt−K2H)+, t ∈ [0, T ]. With premium rate

pm0 , the ex-dividend market price of the CDO tranche for the protection

buyer is

CCDO(t, λt,Υt) = EQ
{∫

(t,T ]

e−r(u−t) dL̃u |Ht

}
− EQ

{
pm0

∫
(t,T ]

e−r(u−t)(H(K2 −K1)− L̃u) du |Ht

}
.

Hence, the CDO price is a function of the accumulated loss Υ, as opposed

to N in the case of CDX (see Proposition 7.14 above).

7.5 Optimal Buying and Selling

Next, we adapt our model to study the optimal buying and selling problem.

Consider an investor whose objective is to maximize the revenue through a

buy/sell transaction of a defaultable claim (Y,A,R, τd) with market price

process P in (7.1.1). The problem is studied separately under two scenar-

ios, namely, when the short sale of the defaultable claim is permitted or

prohibited. We shall analyze these problems under the Markovian credit

risk model in Section 7.2.

If the investor seeks to purchase a defaultable claim from the market,

the optimal purchase timing problem and the associated delayed purchase

premium can be defined as:

V bt = ess inf
τb∈Tt,T

EQ̃
{
e−

∫ τb

t
rvdvPτb |Gt

}
, and Lbt := Pt − V bt ≥ 0.

7.5.1 Optimal Timing with Short Sale Possibility

When short sale is permitted, there is no restriction on the ordering of

purchase time τb and sale time τs. The investor’s investment timing is

found from the optimal double-stopping problem:

Ut := ess sup
τb∈Tt,T ,τs∈Tt,T

EQ̃
{
e−

∫ τs

t
rvdvPτs − e−

∫ τb

t
rvdvPτb |Gt

}
.

Since the defaultable claim will mature at T , we interpret the choice of

τb = T or τs = T as no buy/sell transaction at T .
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In fact, we can separate U into two optimal (single) stopping problems.

Precisely, we have

Ut =
(
ess sup
τs∈Tt,T

EQ̃
{
e−

∫ τs

t
rvdvPτs |Gt

}
− Pt

)
+

(
Pt − ess inf

τb∈Tt,T

EQ̃
{
e−

∫
τb

t
rvdvPτb |Gt

})
= Lt + Lbt .

Hence, we have separated U into a sum of the delayed liquidation premium

and the delayed purchase premium. As a result, the optimal sale time τs∗

does not depend on the choice of the optimal purchase time τb∗.

The timing decision again depends crucially on the sub/super-

martingale properties of discounted market price under measure Q̃. Under

the Markovian credit risk model in Section 3, we can apply Theorem 7.5

to describe the optimal purchase and sale strategies in terms of the drift

function G(t,x) in (7.16).

Proposition 7.16. If G(t,x) ≥ 0 ∀(t,x) ∈ [0, T ]× Rn, then it is optimal

to immediately buy the defaultable claim and hold it till maturity T , i.e.

τb∗ = t and τs∗ = T are optimal for Ut. If G(t,x) ≤ 0 ∀(t,x) ∈ [0, T ]×Rn,

then it is optimal to immediately short sell the claim and maintain the

position till T , i.e. τs∗ = t and τb∗ = T are optimal for Ut.

7.5.2 Sequential Buying and Selling

Prohibiting the short sale of defaultable claims implies the ordering: τb ≤
τs ≤ T . Therefore, the investor’s value function is

Ut := ess sup
τb∈Tt,T ,τs∈T

τb,T

EQ̃
{
e−

∫
τs

t
rvdvPτs − e−

∫
τb

t
rvdvPτb |Gt

}
. (7.48)

The difference Ut − Ut ≥ 0 can be viewed as the cost of the short sale

constraint to the investor.

As in Section 7.2, we adopt the Markovian credit risk model, and derive

from the Q̃-dynamics of discounted market price in (7.17) to obtain

Ut = ess sup
τb∈Tt,T ,τs∈T

τb,T

EQ̃
{∫ τs

τb

(1 −Nu)e
−

∫ u
t
rvdvG(u,Xu)du|Gt

}
= 11{t<τd} ess sup

τb∈Tt,T ,τs∈T
τb,T

EQ̃
{ ∫ τs

τb

e−
∫

u
t
(rv+λ̃v)dvG(u,Xu)du|Ft

}
.
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Using this probabilistic representation, we immediately deduce the optimal

buy/sell strategy in the extreme cases analogues to Theorem 7.5.

Proposition 7.17. If G(t,x) ≥ 0 ∀(t,x) ∈ [0, T ]× Rn, then it is optimal

to purchase the defaultable claim immediately and hold until maturity, i.e.

τb∗ = t and τs∗ = T are optimal for Ut.

If G(t,x) ≤ 0 ∀(t,x) ∈ [0, T ]×Rn, then it is optimal to never purchase

the claim, i.e. τb∗ = τs∗ = T is optimal for Ut.

Define Û(t,Xt) as the pre-default value of Ut, satisfying Ut :=

11{t<τd}Û(t,Xt). We may view Û(t,Xt) as a sequential optimal stopping

problem.

Proposition 7.18. The value function Ut in (7.48) can be expressed in

terms of the delayed liquidation premium L̂ in (7.18). Precisely, we have

Û(t,Xt) = ess sup
τb∈Tt,T

EQ̃
{
e−

∫
τb

t
(ru+λ̃u)duL̂τb|Ft

}
. (7.49)

Proof. We note that, after any purchase time τb, the investor will face the

liquidation problem Vτb in (7.3). Then using repeated conditioning, Ut in

(7.48) satisfies

Ut =

ess sup
τb∈Tt,T ,τs∈T

τb,T

EQ̃
{(
e−

∫ τb

t
ruduEQ̃

{
e−

∫ τs

τb ruduPτs |Gτb

}
− e−

∫ τb

t
ruduPτb

)
|Gt

}
(7.50)

≤ ess sup
τb∈Tt,T

EQ̃
{
e−

∫
τb

t
rudu(Vτb − Pτb)|Gt

}
(7.51)

= ess sup
τb∈Tt,T

EQ̃
{
e−

∫ τb

t
ruduLτb |Gt

}
= 11{t<τd} ess sup

τb∈Tt,T

EQ̃
{
e−

∫
τb

t
(ru+λ̃u)duL̂τb |Ft

}
. (7.52)

On the other hand, on the RHS of (7.51) we see that Vτb =

EQ̃
{
e−

∫ τs∗
τb ruduPτs∗ |Gτb

}
, with the optimal stopping time τs∗ := inf{t ≥

τb : Vt = Pt} (see (7.6)). This is equivalent to taking the admissible stop-

ping time τs∗ for Ut in (7.48), so the reverse of inequality (7.51) also holds.

Finally, equating (7.50) and (7.52) and removing the default indicator, we

arrive at (7.49).
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According to Proposition 7.18, the investor, who anticipates to liquidate

the defaultable claim after purchase, seeks to maximize the delayed liqui-

dation premium when deciding to buy the derivative from the market. The

practical implication of representation (7.49) is that we first solve for the

pre-default delayed liquidation premium L̂(t,x) by variational inequality

(7.19). Then, using L̂(t,x) as input, we solve Û by

min

(
− ∂Û

∂t
(t,x) − Lb̃,λ̃Û(t,x), Û(t,x) − L̂(t,x)

)
= 0, (7.53)

where Lb̃,λ̃ is defined in (7.14), and the terminal condition is Û(T,x) = 0, for

x ∈ Rn. In other words, the solution for L̂(t,x) provides the investor’s opti-

mal liquidation boundary after the purchase, and the variational inequality

for U(t,x) in (7.53) gives the investor’s optimal purchase boundary.

In Figure 7.5, we show a numerical example for a defaultable zero-

coupon zero-recovery bond where interest rate is constant and λ follows

the CIR dynamics. The investor agrees with the market on all parameters

except the speed of mean reversion for default intensity. When κλ < κ̃λ,

the optimal strategy is to buy as soon as the price enters the purchase

region and subsequently sell at the (higher) optimal liquidation boundary.

When κλ > κ̃λ, the optimal liquidation boundary is below the purchase

boundary. However, it is possible that the investor buys at a lower price

and subsequently sells at a higher price since both boundaries are increas-

ing. It is also possible to buy-high-sell-low, realizing a loss on these sample

paths. On average, the optimal sequential buying and selling strategy en-

ables the investor to profit from the price discrepancy. Finally, when short

sale is allowed, the investor’s strategy follows the corresponding boundaries

without the buy-first/sell-later constraint.

7.6 Concluding Remarks

In summary, we have provided a flexible mathematical model for the op-

timal liquidation of various credit derivatives under price discrepancy. We

have identified the situations where the optimal timing is trivial and also

solved for the cases when sophisticated strategies are involved. The optimal

liquidation framework enables investors to quantify their views on default

risk, extract profit from price discrepancy, and perform more effective risk

management. Our model can also be modified and extended to incorporate

single or multiple buying and selling decisions.
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Fig. 7.5 Optimal purchase and liquidation boundaries in the CIR model. The
common parameters are T = 1, r = 0.03, σ = 0.07, µ = µ̃ = 2, and θλ = θ̃λ =
0.015. Panel (a): When κλ = 0.2 < 0.3 = κ̃λ, the short sale constraint moves the
purchase boundary higher. Both purchase boundaries, with or without short sale,
are dominated by the liquidation boundary. Panel (b): When κλ = 0.3 > 0.2 =
κ̃λ, the short sale constraint moves the purchase boundary lower. The liquidation
boundary lies below both purchase boundaries.
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For future research, a natural direction is to consider credit derivatives

trading under other default risk models. For multi-name credit derivatives,

in contrast to the top-down approach taken in Section 5, one can consider

the optimal liquidation problem under the bottom-up framework. Liqui-

dation problems are also important for derivatives portfolios in general.

To this end, the structure of dependency between multiple risk factors is

crucial in modeling price dynamics. Moreover, it is both practically and

mathematically interesting to allow for early partial/full cancellation for

credit derivatives, as is common for mortgages. On the other hand, mar-

ket participants’ pricing rules may vary due to different risk preferences.

This leads to the interesting question of how risk aversion influences their

derivatives purchase/liquidation timing.
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Göing-Jaeschke, A. and Yor, M. (2003). A survey and some generalizations of
Bessel processes, Bernoulli 9, 2, pp. 313–349.

Gropp, J. (2004). Mean reversion of industry stock returns in the US, 1926–1998,
Journal of Empirical Finance 11, 4, pp. 537–551.
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