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Abstract

One of the most successful approaches to option hedging with trans-
action costs is the utility based approach, pioneered by Hodges and
Neuberger (1989). Judging against the best possible tradeoff between
the risk and the costs of a hedging strategy, this approach seems to
achieve excellent empirical performance. However, this approach has
one major drawback that prevents the broad application of this ap-
proach in practice: the lack of a closed-form solution. Since the knowl-
edge of the optimal hedging strategy is of great practical significance,
in this paper we suggest and implement two methods for finding the
optimal hedging strategy with transaction costs. The first method is
the approximation of the utility based hedging strategy which yields a
closed-form solution. The second method is the optimization of the pa-
rameters of the hedging strategy in some risk-return space. We provide
an empirical testing of our hedging strategies against the asymptotic
and some other well-known strategies and find that our strategies out-
performs all the others.
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1 Introduction

One of the most successful approaches to option hedging with transaction
costs is the utility based approach, pioneered by Hodges and Neuberger
(1989). Judging against the best possible tradeoff between the risk and the
costs of a hedging strategy, the utility based approach seems to achieve ex-
cellent empirical performance (see Mohamed (1994), Clewlow and Hodges
(1997), Martellini and Priaulet (2002), and Zakamouline (2005)). However,
this approach has one major drawback that prevents the broad application of
this approach in practice: the lack of a closed-form solution. Therefore, the
solution must be computed numerically. The numerical algorithm is cum-
bersome to implement and the calculation of the optimal hedging strategy
is time consuming.

According to the utility based approach, the qualitative description of
the optimal hedging strategy is as follows: do nothing when the hedge ratio
lies within a so-called “no transaction region” and rehedge to the nearest
boundary of the no transaction region as soon as the hedge ratio moves out
of the no transaction region.

Since there are no explicit solutions for the utility based hedging with
transaction costs and the numerical methods are computationally hard, for
practical applications it is of major importance to use other alternatives.
One of such alternatives is to obtain an asymptotic solution. In asymptotic
analysis one studies the solution to a problem when some parameters in the
problem assume large or small values.

Whalley and Wilmott (1997) were the first to provide an asymptotic
analysis of the model of Hodges and Neuberger (1989) assuming that trans-
action costs are small. Barles and Soner (1998) performed an alternative
asymptotic analysis of the same model assuming that both the transaction
costs and the hedger’s risk tolerance are small. However, the results of Bar-
les and Soner are quite different from those of Whalley and Wilmott. While
Whalley and Wilmott derive only an optimal form of the hedging band-
width which is centered around the Black-Scholes delta, Barles and Soner
show that the optimal hedging strategy has two key elements: a particu-
lar form of the hedging bandwidth and a volatility adjustment. The latter
means that the middle of the hedging bandwidth does not coincide with the
Black-Scholes delta. Since practitioners often use asymptotic solutions in
option hedging, the two different results of asymptotic analysis are, at least,
confusing.

In this paper we present a detailed study of the exact (numerically cal-
culated) utility based hedging strategy and its comparison with the two
asymptotic strategies. We document the fact that the Barles and Soner
result is closer to reality than that of Whalley and Wilmott. The compari-
son of the performance of an asymptotic strategy against the exact strategy
reveals another fact that under realistic model parameters an asymptotic
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strategy performs noticeably worse than that obtained from the exact nu-
merical solution. The explanation lies in the fact that, when some of the
model parameters are neither very small nor very large, an asymptotic so-
lution provides not quite accurate results. In particular, as compared to the
exact numerical solution, under realistic parameters the size of the hedging
bandwidth and the volatility adjustment obtained from asymptotic analysis
are overvalued. What is more important, an asymptotic solution showed to
be unable to sustain a correct interrelationship between the size of the hedg-
ing bandwidth and the volatility adjustment. The significance of the correct
interrelationship could hardly be overemphasized: Our empirical testing of
the hedging strategies reveals that either undervaluation or overvaluation of
the volatility adjustment (with respect to the size of the hedging bandwidth)
results in a drastic deterioration of the performance of a hedging strategy.

Since the knowledge of the optimal hedging strategy is of great practical
significance, in this paper we suggest and implement two methods for finding
the optimal hedging strategy with transaction costs. The first method is an
approximation of the utility based hedging strategy. Under approximation
we mean the following: We have a slow and cumbersome way to compute
the optimal hedging policy with transaction costs and want to replace it
with simple and efficient approximating function(s). To do this, we first
specify a flexible functional form of the optimal hedging policy. Then, given
a functional form, the parameters are chosen in order to provide the best
fit to the exact numerical solution. This second stage is known as “model
calibration”.

We implement the approximation of the optimal hedging strategy with
transaction costs for a short European call option. Despite the simplicity
of our approximating functions and straightforwardness of finding the best
fit parameters, our approximation strategy showed to be very effective with
the performance close to the exact strategy. We provide an empirical testing
of our approximation strategy against the asymptotic and some other well-
known strategies within unified mean-variance and mean-VaR frameworks
and show that our strategy outperforms all the others.

Despite the impressive results, the approximation method does retain
the major drawback we would like to get rid off: To implement the ap-
proximation for another type of a European option one needs to start with
the numerical calculations of the optimal hedging strategy for a large set of
the model parameters. Again, since the numerical algorithm is cumbersome
to implement, the approximation methodology is unlikely to be commonly
used by the practitioners. To overcome the drawback of the approximation
method we suggest an optimization method in a risk-return space. This
method have a great advantage over the approximation method in that one
does not need to implement the numerical calculations of the optimal hedg-
ing strategy. Instead, the optimization method is based on simulations,
which are much easier to implement. However, this method heavily relies
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on the qualitative knowledge of the form of the optimal strategy which is
obtained using the asymptotic and approximation methods.

The reader should be reminded that our paper concerns only with the
optimal hedging a single (plain vanilla) European option. To be more spe-
cific, our methods are currently limited to hedging a European option whose
gamma does not change sign. This limitation is due to the fact that the
volatility adjustment varies according to whether the option gamma is posi-
tive or negative. The optimal hedging strategy is presented by the example
of hedging a short European call option. We conjecture that our risk-return
optimization method could be extended for a portfolio of options using the
result of Hoggard, Whalley, and Wilmott (1994) which extends the method
of Leland (1985).

2 The Option Hedging Problem and First Solu-
tions

We consider a continuous time economy with one risk-free and one risky
asset, which pays no dividends. We will refer to the risky asset as the stock,
and assume that the price of the stock, St, evolves according to a diffusion
process given by

dSt = µStdt + σStdWt,

where µ and σ are, respectively, the mean and volatility of the stock return
per unit of time, and Wt is a standard Brownian motion. The risk-free asset,
commonly referred to as the bond or bank account, pays a constant interest
rate of r ≥ 0. We assume that a purchase or sale of δ shares of the stock
incurs transaction costs λ|δ|S proportional to the transaction (λ ≥ 0).

We consider hedging a short European call option with maturity T and
strike price K. We denote the value of the option at time t as V (t, St). The
terminal payoff of the option one wishes to hedge is given by

V (T, ST ) = max{ST −K, 0} = (ST −K)+.

When a hedger writes a call option, he receives the value of the option
V (t, St) and sets up a hedging portfolio by buying ∆ shares of the stock and
putting V (t, St)−∆(1 + λ)St in the bank account. As time goes, the writer
rebalances the hedging portfolio according to some prescribed rule/strategy.

When a market is friction-free (λ = 0), Black and Scholes (1973) showed
that it is possible to replicate the payoff of an option by constructing a self-
financing dynamic trading strategy consisting of the risk-free asset and the
stock. As a consequence, the absence of arbitrage dictates that the option
price be equal to the cost of setting up the replicating portfolio. According
to the Black-Scholes model, the price of a European call option is given by

V (t, St) = StN(d1)−Ke−r(T−t)N(d2), (1)
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where

d1 =
log

(
S
K

)
+ (r + 1

2σ2)(T − t)
σ
√

T − t
, (2)

d2 = d1 − σ
√

T − t,

and N(·) is the cumulative probability distribution function of a normal
variable with mean 0 and variance 1. The Black-Scholes hedging strategy
consists in holding ∆ (delta) shares of the stock and some amount in the
bank account, where

∆ =
∂V

∂S
= N(d1). (3)

It should be emphasized that the Black-Scholes hedging is a dynamic repli-
cation policy where the trading in the underlying stock has to be done con-
tinuously. In the presence of transaction costs in capital markets the absence
of arbitrage argument is no longer valid, since perfect hedging is impossi-
ble. Due to the infinite variation of the geometric Brownian motion, the
continuous replication policy mandated by the Black-Scholes model incurs
an infinite amount of transaction costs over any trading interval no matter
how small it might be. How should one hedge an option in the market with
transaction costs?

One of the simplest and most straightforward hedging strategies in the
presence of transaction costs is to rehedge in the underlying stock at fixed
regular intervals. One would simply implement the delta hedging accord-
ing to the Black-Scholes strategy, but in discrete time. More formally,
the time interval [t, T ] is subdivided into n fixed regular intervals δt, such
that δt = T−t

n . The hedging proceeds as follows: at time t the writer
of an option receives V and constructs a hedging portfolio by purchasing
∆(t) = N(d1(t, St)) shares of the stock and putting V − ∆(t)(1 + λ)St

into the bank account. At time t + δt, an additional number of shares
of the stock is bought or sold in order to have the target hedge ratio
∆(t + δt) = N(d1(t + δt, St+δt)). At the same time, the bank account is
adjusted by

[
∆(t + δt)−∆(t)−

∣∣∆(t + δt)−∆(t)
∣∣λ

]
St+δt .

Then the hedging is repeated in the same manner at all subsequent times
t + iδt, i = 2, 3, . . ..

The choice of the number of hedging intervals, n, is somewhat unclear.
Obviously, when n is small, the volume of transaction costs is also small,
but the variance of the replication error is large. An increase in n reduces
the variance of the replication error at the expense of increasing the volume
of transaction costs. Moreover, as δt → 0, the volume of transaction costs
approach infinity.

A variety of methods have been suggested to deal with the problem of op-
tion pricing and hedging with transaction costs. Leland (1985) was the first
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to initiate this stream of research. He adopted the rehedging at fixed reg-
ular intervals and proposed a modified Black-Scholes strategy that permits
the replication of a short option position with finite volume of transaction
costs no matter how small the rehedging interval is. The hedging strategy
is adjusted by using a modified volatility in the Black-Scholes formula as
given below (for a short option position)

σ2
m = σ2

(
1 +

√(
8

πδt

)
λ

σ

)
. (4)

Using the Leland’s method one hedges an option with the delta of the mod-
ified price calculated in accordance with pricing formula (1), but with ad-
justed volatility. In other words, the Leland’s hedge ratio is given by

∆ =
∂V (σm)

∂S
= N(d1(σm)). (5)

It could be easily checked that as δt → 0, the modified volatility becomes
unbounded and the Leland’s hedge amounts to the super-replicating strategy
where a single share of the stock is held to hedge the option.

The intuition behind the Leland’s volatility adjustment is not so easy
to interpret. For a short option position the Leland’s volatility adjustment
makes the option delta a flatter function of the underlying asset. Thus,
this reduces the sensitivity of the option delta to the underlying asset price.
Recall that the sensitivity of the option delta to the underlying asset price
is knows as option gamma

Γ =
∂∆
∂S

=
∂2V

∂S2
=

N ′(d1)
Sσ
√

T − t
. (6)

It seems to be quite intuitive that the Leland’s volatility adjustment de-
creases the option gamma in order to decrease the amount of hedging trans-
action costs (since we expect to transact more in regions where the option
gamma is high). However, for a long option position the Leland’s volatility
adjustment is counter-intuitive, since it makes the option delta a steeper
function of the underlying asset. This follows from the fact that for a long
option position the adjusted volatility is given by

σ2
m = σ2

(
1−

√(
8

πδt

)
λ

σ

)
. (7)

Note that when δt → 0 the Leland’s approach for hedging a long option
position is not well-posed as the adjusted volatility becomes negative.
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3 The Utility Based Hedging

Since the initiative work of Leland, there has been proposed a variety of al-
ternative approaches to option pricing and hedging with transaction costs.
A great deal of them are concerned with the “financial engineering” problem
of either replicating or super-replicating the option payoff. These approaches
are mainly preference-free models where rehedging occurs at some discrete
time intervals whether or not it is optimal in any sense. However, common
sense tells us that an “optimal” hedging policy should achieve the best pos-
sible tradeoff between the risk and the costs of replication. Recognizing the
fact that risk preferences differ among the individuals, the following conclu-
sion becomes obvious: in pricing and hedging options one must consider the
hedger’s attitude toward risk.

In modern finance it is customary to describe risk preferences by a utility
function. The expected utility theory maintains that individuals behave as if
they were maximizing the expectation of some utility function of the possible
outcomes. Hodges and Neuberger (1989) pioneered the option pricing and
hedging approach based on this theory. The key idea behind the utility
based approach is the indifference argument: The so-called “reservation”
price of an option is defined as the amount of money that makes the hedger
indifferent, in terms of expected utility, between trading in the market with
and without writing the option. In many respects such an option price is
determined in a similar manner to a certainty equivalent within the expected
utility framework, which is a well grounded pricing principle in economics.
The difference in the two trading strategies, with and without the option, is
interpreted as “hedging” the option.

The starting point for the utility based option pricing and hedging ap-
proach is to consider the optimal portfolio selection problem of the hedger
who faces transaction costs and maximizes expected utility of his terminal
wealth. The hedger has a finite horizon [t, T ] and it is assumed1 that there
are no transaction costs at terminal time T . The hedger has the amount
xt in the bank account, and yt shares of the stock at time t. We define the
value function of the hedger with no option liability as

J0(t, xt, yt, St) = maxEt[U(xT + yT ST )], (8)

where U(z) is the hedger’s utility function. Similarly, the value function of
the hedger with option liability is defined by

Jw(t, xt, yt, St) = maxEt[U(xT + yT ST − (ST −K)+)]. (9)

Finally, the option price is defined as the compensation p such that

Jw(t, xt + p, yt, St) = J0(t, xt, yt, St). (10)
1This assumption is made for simplicity. In practice, there are two types of option

settlements: either asset or cash. The type of option settlement affects, to some extent,
the option price and hedging strategy.
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The solutions to problems (8), (9), and (10) provide the unique option price
and, above all, the optimal hedging strategy. Unfortunately, there are no
closed-form solutions to all these problems. As a result, the solutions have
to be obtained by numerical methods. The existence and uniqueness of
the solutions were rigorously proved by Davis, Panas, and Zariphopoulou
(1993). For implementations of numerical algorithms, the interested reader
can consult Davis and Panas (1994) and Clewlow and Hodges (1997).

It is usually assumed that the hedger has the negative exponential utility
function

U(z) = − exp(−γz); γ > 0,

where γ is a measure of the hedger’s (absolute) risk aversion. This choice of
the utility function satisfies two very desirable properties: (i) the hedger’s
strategy does not depend on his holdings in the bank account, (ii) the com-
putational effort needed to solve the problem is low. This particular choice
of utility function might seem restrictive. However, as it was conjectured
by Davis et al. (1993) and showed in Andersen and Damgaard (1999), an
option price is approximately invariant to the specific form of the hedger’s
utility function, and mainly only the level of absolute risk aversion plays an
important role.

The numerical calculations show that when the hedger’s risk aversion is
rather low, the hedger implements mainly a so-called “static” hedge, which
consists in buying ∆ shares of the stock at time t and holding them until the
option maturity T . When the hedger’s risk aversion increases, he starts to
rebalance the hedging portfolio in between (t, T ). Recall that in the frame-
work of the utility based hedging approach the option hedging strategy is
defined as the difference, ∆(τ) = yw(τ)− y0(τ), between the hedger’s opti-
mal trading strategies with and without option liability. When the hedger’s
risk aversion is moderate, it is impossible to give a concise description of the
optimal hedging strategy. However, when the hedger’s risk aversion is rather
high (or, equivalently, µ = r), then we can assume that y0(τ) ≡ 0 and the
optimal hedging strategy can be conveniently described as ∆(τ) = yw(τ). It
is important now to note that in the rest of the paper we assume that either
the hedger’s risk aversion is rather high or µ = r.

Now we turn to the analysis of the nature of the optimal hedging policy.
The numerical calculations show (see Figure 1) that the optimal hedge ratio
∆ is constrained to evolve between two boundaries, ∆l and ∆u, such that
∆l < ∆u. As long as the hedge lies within these two boundaries, ∆l ≤ ∆ ≤
∆u, no rebalancing of the hedging portfolio takes place. That is why the
region between the two boundaries is commonly called the no transaction
region. As soon as the hedge ratio goes out of the no transaction region, a
rebalancing occurs in order to bring the hedge to the nearest boundary of
the no transaction region. In other words, if ∆ moves below ∆l, one should
immediately transact to bring it back to ∆l. Similarly, if ∆ moves above
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Figure 1: Optimal hedging strategy versus the Black-Scholes delta for the following
model parameters: γ = 0.25, λ = 0.01, St = K = 100, σ = 0.25, µ = r = 0.05, and
T − t = 0.5.

∆u, a rebalancing trade occurs to bring it back to ∆u.
Despite a sound economical appeal of the utility based option hedging

approach, it does have a number of disadvantages: the model is cumbersome
to implement and the numerical computations are time consuming. One
commonly used simplification of the optimal hedging strategy is known as
the delta tolerance strategy. This strategy prescribes to rehedge when the
hedge ratio moves outside of the prescribed tolerance from the corresponding
Black-Scholes delta. More formally, the boundaries of the no transaction
region are defined by

∆ =
∂V

∂S
±H, (11)

where ∂V
∂S is the Black-Scholes hedge, and H is a given constant tolerance.

The intuition behind this strategy is pretty obvious: The parameter H is
a proxy for the measure of risk of the hedging portfolio. More risk averse
hedgers would choose a low H, while more risk tolerant hedgers will accept
a higher value for H.

Since there are no explicit solutions for the utility based hedging model
with transaction costs and the numerical methods are computationally hard,
for practical applications it is of major importance to use other alternatives.
One of such alternatives is to obtain an asymptotic solution. In asymptotic
analysis one studies the solution to a problem when some parameters in the
problem assume large or small values.

Whalley and Wilmott (1997) were the first to provide an asymptotic
analysis of the model of Hodges and Neuberger (1989) assuming that trans-
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Figure 2: The form of the optimal hedging bandwidth (∆u−∆l)S, obtained using
the exact numerics, versus the option gamma for γ = 0.1 and the rest of the model
parameters as in Figure 1.

action costs are small. They showed that the boundaries of the no transac-
tion region are given by

∆ =
∂V

∂S
±Hww =

∂V

∂S
±

(
3
2

e−r(T−t)λSΓ2

γ

) 1
3

, (12)

where, again, ∂V
∂S is the Black-Scholes hedge.

It is easy to see that the optimal hedging bandwidth is not constant,
but depends in a natural way on a number of parameters. As λ → 0,
the optimal hedge approaches the Black-Scholes hedge. As γ increases, the
hedging bandwidth decreases in order to decrease the risk of the hedging
portfolio. The dependence of the hedging bandwidth on the option gamma
is also natural, as we expect to rehedge more often in regions with high
gamma. Moreover, it agrees quite well with the results of exact numerical
computations, see Figure 2.

Barles and Soner (1998) performed an alternative asymptotic analysis of
the same model assuming that both the transaction costs and the hedger’s
risk tolerance are small. They found that the optimal hedging strategy is to
keep the hedge ratio inside the no transaction region given by

∆ =
∂V (σm)

∂S
±Hbs =

∂V (σm)
∂S

± 1
λγS

g
(
λ2γS2Γ

)
, (13)

where ∂V (σm)
∂S is the Black-Scholes hedge with an adjusted volatility given

by
σ2

m = σ2(1 + Σbs) = σ2
(
1 + f

(
er(T−t)λ2γS2Γ

))
. (14)
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The function f(z) is the unique solution of the nonlinear initial value prob-
lem

df(z)
dz

=
f(z) + 1

2
√

zf(z)− z
, z 6= 0, f(0) = 0,

and the function g(z) is defined by

g(z) =
√

zf(z)− z.

For z > 0 the function f(z) is a concave increasing function.
The Barles and Soner volatility adjustment works similarly to the Le-

land’s volatility adjustment: for a short option position the adjusted volatil-
ity is greater than the original volatility. Note that the Barles and Soner
volatility adjustment depends on the option gamma. This agrees quite well
with the results of exact numerical computations: Note first that, as it is
clearly seen from Figure 1, the middle of the optimal hedging bandwidth
does not coincide2 with the Black-Scholes hedge. The picture becomes even
more obvious if we increase the hedger’s risk aversion. We then convert the
middle of the hedging bandwidth to a corresponding volatility adjustment3

that is depicted in Figure 3.
Note in addition that the asymptotic analysis of Barles and Soner cor-

rectly predicts that volatility adjustment increases when either the level of
transaction costs or the hedger’s risk aversion increases. The comparative
statics for the Barles and Soner optimal hedging bandwidth is similar to
that of the Whalley and Wilmott one: the hedging bandwidth increases
when either the level of the transaction costs, the hedger’s risk tolerance, or
the option gamma increases.

Recall that in asymptotic analysis one studies the limiting behavior of
the optimal hedging policy as one or several parameters of the problem
approach zero. Even though asymptotic analysis can reveal the underlying
structure of the solution, under realistic parameters this method provide not
quite accurate results. Our comparison of the performance of an asymptotic
strategy against the exact strategy reveals that under realistic model param-
eters an asymptotic strategy performs noticeably worse than that obtained
from the exact numerical solution. The explanation lies in the fact that,
when some of the model parameters are neither very small nor very large,
an asymptotic solution provides not quite accurate results. In particular,
as compared to the exact numerical solution, under realistic parameters the
size of the hedging bandwidth and the volatility adjustment obtained from
asymptotic analysis are overvalued. What is more important, an asymptotic
solution showed to be unable to sustain a correct interrelationship between

2This was first observed by Hodges and Neuberger (1989) and emphasized by Clewlow
and Hodges (1997) using the results of Monte Carlo simulations.

3The procedure to do it will be described in the subsequent section.
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Figure 3: The form of the optimal volatility adjustment σ2
m − σ2, obtained using

the exact numerics, versus the option gamma for the same model parameters as in
Figure 1.

the size of the hedging bandwidth and the volatility adjustment. The signif-
icance of the correct interrelationship could hardly be overemphasized: Our
empirical testing of the hedging strategies (see Section 4) reveals that either
undervaluation or overvaluation of the volatility adjustment (with respect
to the size of the hedging bandwidth) results in a drastic deterioration of
the performance of a hedging strategy.

In the conclusion of this section we would like to summarize the stylized
facts about the optimal hedging policy and suggest a general specification of
the optimal hedging policy. The careful visual inspection of the numerically
calculated optimal hedging policy together with the insights from asymp-
totic analysis advocate for the following general specification of the optimal
hedging strategy

∆ =
∂V (σm)

∂S
± (Hw + H0), (15)

where σm is the adjusted volatility given by

σ2
m = σ2 (1 + Hσ) . (16)

The term Hw is closely related to Hww in the Whalley and Wilmott hedging
strategy (see equation (12)) and to Hbs in the Barles and Soner hedging
strategy (see equation (13)). The main feature of Hw is that this term
depends on the option gamma. Note that the option gamma approaches
zero as the option goes farther either out-of-the-money (S → 0) or in-the-
money (S → ∞). This means that the size of the no transaction region in
an asymptotic strategy also approaches zero. On the contrary, the exact
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numerics show that, when the option gamma goes to zero, the size of the
no transaction region times the stock price approaches a constant value4,
see Figure 2. It turns out that this constant value is actually the size of the
no-transaction region in the model without option liability. To reflect this
feature of the optimal hedging policy we introduced the term H0. Finally,
Hσ is closely related to Σbs in the Barles and Soner volatility adjustment
(see equation (14)) which depends on the option gamma.

4 The Approximation Method

Recall that in asymptotic analysis one studies the solution to a problem when
some parameters in the problem assume large or small values. Our empirical
testing showed that the performance of an asymptotic strategy is noticeably
worse than that of the exact strategy when some of the model parameters
are neither very small nor very large. Consequently, for practical applica-
tions it makes sense to use alternatives to the asymptotic analysis. One of
such alternatives is the approximation method. The general description of
the approximation technique we employ can be found in, for example, Judd
(1998) Chapter 6. Under approximation we mean the following: We have
a rather slow and cumbersome way to compute the optimal hedging pol-
icy with transaction costs and want to replace it with simple and efficient
approximating function(s). To do this, we first specify a flexible functional
form of the optimal hedging policy. Then, given a functional form, the pa-
rameters are chosen to provide the best fit to the exact numerical solution.
This second stage is known as “model calibration”.

Specifying the right type of functional form of an approximating function
is an art rather than science. Our type of specification is based on the
detailed graphical inspection of the hedging policy, the comparative statics
analysis of the exact numerical solution, and on the results of the asymptotic
analysis. Our conclusion is that the following general form is a reasonable
specification of an approximating function for the optimal hedging policy

ĥ(z1, . . . , zn) = α
k∏

i=1

ϕi(z1, . . . , zn)βi , (17)

where z1, . . . , zn are the model parameters, ϕ1(·), . . . , ϕk(·) are appropriately
selected basis functions, and α, β1, . . . , βk are parameters to be chosen in
order to achieve the best fit. Some of the basis function are fairly simple
and have the following form

ϕi(z1, . . . , zn)βi = zβi
j .

4This feature of the optimal hedging strategy is important when the hedger’s risk
aversion is not very high. However, when the hedger’s risk aversion is very high, we can
ignore this term.
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Observe that after the linearizing log-log transformation of (17) it takes
the form

log(ĥ(z1, . . . , zn)) = log(α) +
k∑

i=1

βi log(ϕi(z1, . . . , zn)).

We denote the true value of the unknown function at point (zj
1, . . . , z

j
n)

by h(zj
1, . . . , z

j
n). This value is obtained from exact numerical computations.

We measure the goodness of fit using the L2 norm. This largely amounts
to using the techniques of ordinary linear regression after the log-log trans-
formation. That is, we find the parameters α, β1, . . . , βk by solving the
problem

min
α,β1,...,βk

m∑

j=1

(
log(h(zj

1, . . . , z
j
n))− log(α)−

k∑

i=1

βi log(ϕi(z
j
1, . . . , z

j
n))

)2

,

where m is the number of different data points.
Our study shows (we refer the reader to Zakamouline (2004) for the

analysis and the detailed description of the approximation methodology)
that the following model parameters z1, . . . , zn are to be expected in a rea-
sonable explicit formula for the optimal hedging strategy: the product γS,
the quotient S

K , the risk-free rate of return r, the volatility σ, the time to
maturity T − t, and the level of transaction costs λ. There is no good rea-
son to believe that a simple functional specification like (17) can produce a
decent approximation for all possible sets of model parameters. However,
such a functional form yields quite a nice fit to a true function over some
narrow intervals of parameters. We restrict our attention to the follow-
ing intervals of the realistic model parameters: r ∈ [0, 0.1], σ ∈ [0.1, 0.4],
T − t ∈ [0, 1.5], λ ∈ [0.001, 0.02]. The hedger’s risk aversion γ is largely
unknown. Consequently, for a fixed S we want the interval for γ to be as
wide as possible. Note that an “exact” solution computed numerically is
subject to some discretization error ε. This error does not allow us to carry
on the measurements of the volatility adjustment with sufficient precision
when γS is very low, and the measurements of the hedging bandwidth when
γS is very high. As a result, our model calibration is limited to the interval
γ ∈ [0.05, 15] when S = 100. Nevertheless, the results of our empirical test-
ing presented in the subsequent section show that our approximation can be
“extrapolated” to a wider range for γ.

We assume the following functional form of the approximating function
for H0

H0 = ασβ1λβ2(γS)β3(T − t)β4 . (18)

The functional form of the approximating functions for Hw and Hσ is as-
sumed to be as follows

Hw = Hσ = ασβ1λβ2(γS)β3
(
N ′(d1)

)β4 e−β5r(T−t)(T − t)β6 , (19)
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where d1 is defined by (2) with the original volatility σ.
The two bandwidths H0 and Hw are computed in accordance with the

following procedure: for some fixed set of parameters T − t, r, σ, λ, γS, S
K we

calculate numerically the upper yu
0 and the lower yl

0 boundaries of the no
transaction region without option liability, and the upper yu

w and the lower
yl

w boundaries of the no transaction region with option liability. Then

H0 =
yu
0 − yl

0

2
,

Hw =
yu

w − yl
w

2
−H0.

The volatility adjustment function Hσ is computed as follows: After the
following transformation of equation (16)

log
(

σ2
m

σ2
− 1

)
= log (Hσ)

it takes a linear form where the unknown parameters α and βi can be esti-
mated using ordinary regression. The adjusted volatility σm is measured in
accordance with the following procedure: for some fixed set of parameters
T − t, r, σ, λ, γS, S

K we calculate numerically the upper yu
w and the lower yl

w

boundaries of the hedging bandwidth with option liability. According to
equation (15), the middle of the hedging bandwidth is given by

yu
w + yl

w

2
=

∂V (σm)
∂S

= N(d1(σm)).

Consequently, the value of d1(σm) can be calculated as

d1(σm) = N−1

(
yu

w + yl
w

2

)
,

where N−1(·) is the inverse of the cumulative normal distribution function.
From the other side, d1(σm) is defined in accordance with equation (2).
Therefore, to find the unknown σm we need to solve the following quadratic
equation

1
2
(T − t)σ2

m −
√

T − t d1(σm)σm + log
(

S

K

)
+ r(T − t) = 0.

The general idea for estimating the parameters α, β1, . . . , βk is as follows:
One first localizes the problem on the bounded space (Z1

min, Z1
max) × . . . ×

(Zn
min, Zn

max) for the model parameters z1, . . . , zn. Then one defines a grid
on this space. That is, every interval (Zi

min, Zi
max) of the model parameter

zi is divided into M regularly spaced values. For every possible combina-
tion of model parameters zj

1, . . . , z
j
n, the true value of unknown function
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h(zj
1, . . . , z

j
n) is obtained from exact numerical computations. Finally, one

runs some algorithm (in our case it is the linear regression) to find the best
fit parameters.

The results of our estimation of the best-fit parameters for H0, Hw, and
Hσ, after rounding off the values of parameters α and βi and keeping the
most significant of them, give the following approximating functions

H0 =
λ

γSσ2(T − t)
, (20)

Hw = 1.08
λ0.31

σ0.25

(
Γ
γ

)0.5

, (21)

Hσ = 6.85
λ0.78

σ0.25

(
γS2Γ

)0.15
. (22)

Note that for Hw and Hσ we have gathered together some terms to show
the dependence on the option gamma.

5 The Simulation Analysis

In this section we present an empirical testing of our approximation strategy
against the asymptotic and some other well-known strategies. In order to
compare the performance of different hedging strategies we need to choose
a suitable unified risk-return framework. The expected replication error
seems to be the only sensible candidate for the return measure. As for
the risk measure, there are many metrics of risk. In the context of option
hedging, the two following metrics are most popular: the variance and the
value-at-risk (VaR) of the replication error. Since some practitioners prefer
one metric to another, we have chosen to employ both of them. That is,
we evaluate the performance of the different hedging strategies within both
the mean-variance and mean-VaR frameworks. The reader is reminded that
neither of the two frameworks favors a priory any one hedging strategy.

We provide an empirical testing of our approximation strategy against
the Black-Scholes, Leland, delta tolerance, Whalley and Wilmott, Barles
and Soner strategies, and a so-called asset tolerance strategy5. The latter
strategy prescribes rehedging to the Black-Scholes delta when the percentage
change in the value of the underlying asset exceeds the prescribed tolerance.
More formally, the series of stopping times is recursively given by

τ1 = 0, τi+1 = inf
{

t > τi :
∣∣∣S(t)− S(τi)

S(τi)

∣∣∣ > h

}
, i = 1, 2, . . . ,

where h is a given constant percentage. The intuition behind this strategy
is similar to that of the delta tolerance strategy.

5This is the model of Henrotte (1993).
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The different hedging strategies were simulated and the results are pre-
sented below. The option was a 1 year short European call with St = K =
100, the volatility σ = 0.25, and the drift µ = r = 0.05. The proportional
transaction costs were λ = 0.01. The simulation proceeds as follows: At the
beginning, the writer of a European call option receives the Black-Scholes
value of the option and sets up a replicating portfolio. The underlying path
of the stock is simulated according to

S(t + δt) = S(t) exp
(

(µ− 1
2
σ2)δt + σ

√
δt ε

)
,

where ε is a normally distributed variable with mean 0 and variance 1. At
each δt a check is made to see if the option needs to be rehedged. If so, the
rebalancing trade is performed and transaction costs are drawn from the
bank account. Finally, at expiration, we compute the replication error, that
is, the cash value of the replicating portfolio minus the due exercise pay-
ment. For the Black-Scholes and Leland strategies, we vary the parameter
δt (rehedging interval). For the other strategies, each path consists of 250
equally spaced trading dates over the life of the option. In a utility based
strategy we vary the risk aversion parameter γ in [0.01, 50]. In both the
delta tolerance and the asset tolerance strategies, H and h take values in
[0.01, 0.35]. For each value of the parameter of a hedging strategy we gen-
erate 100,000 paths and compute the following statistics of the replication
error: the mean, variance, and VaR at a 95% confidence level (the latter
is defined as the loss that is expected to be exceeded with a probability of
5 %). Hence, for a given parameter value, the results of simulations can
be represented by a point in a risk-return space. By varying the value of
the parameter of a hedging strategy, we span all the possible combinations
of risk and return. Thus, the obtained curve for a given strategy can be
intuitively interpreted as the tradeoff between the risk and the costs of a
hedging strategy.

Figures 4 and 5 summarize the results of simulations. In the both risk-
return frameworks our approximation strategy outperforms all the others.
We would like to point out the reasons why our approximation strategy is
better than the two strategies obtained via asymptotic analysis: Neither of
the two asymptotic strategies has the hedging bandwidth H0. Consequently,
both deep in-the-money and out-of-the-money options, irrespective of the
hedger’s risk aversion, are hedged with almost zero bandwidth. This is
clearly suboptimal and explains why our approximation strategy is better
for a hedger with a low risk aversion.

For a hedger with high risk aversion it is very important to hedge with
optimal volatility adjustment. The delta tolerance, asset tolerance, and
Whalley and Wilmott strategies have no volatility adjustment. Recall that
as γ increases, the hedging bandwidth decreases in order to decrease the
risk of the hedging portfolio. Without volatility adjustment, any strategy
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Figure 4: Comparison of hedging strategies in the mean-variance framework.
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converges to the Black-Scholes strategy. That is, in the limit, the amount
of transaction costs tends to infinity. On the contrary, in the correct utility
based strategy, as γ increases, the decrease in the size of the hedging band-
width is largely compensated by the increase in the volatility adjustment.
Roughly speaking, in the limit as γ →∞ the utility based strategy tends to
the Leland’s strategy where the rehedging interval approaches zero.

Despite the presence of the volatility adjustment, the Barles and Soner
strategy performs worse than the Whalley and Wilmott strategy when we
consider a highly risk averse hedger. The reason is that under realistic model
parameters the Barles and Soner strategy tends to overvalue the volatility
adjustment with respect to the size of the hedging bandwidth. That is, the
Barles and Soner strategy showed to be unable to sustain a correct inter-
relationship between the size of the hedging bandwidth and the volatility
adjustment. Our simulations show that either undervaluation or overvalu-
ation of the volatility adjustment results in a drastic deterioration of the
performance of a hedging strategy.

In addition, we have carried on similar simulations for different values
of r, µ, σ, T − t, and λ. Due to the space limitations, the results of these
simulations are not presented. Qualitatively, the relative performance of
different hedging strategies remains the same as that in Figures 4 and 5.
Needless to say that the relative advantage of our approximation strat-
egy over the asymptotic strategies decreases when the level of transaction
costs decreases. When λ < 0.001, our approximation strategy and both the
asymptotic strategies produce practically identical results in the given range
of parameter γ.

It is important to note that the assumption µ = r is not very essential
for the results of simulations and is made solely for simplicity. Our study
shows that an increase in µ with respect to r results in some decrease in the
advantage of the approximation strategy over the Leland and Black-Scholes
strategies for the values of the risk aversion parameter close to the lower end
of the chosen interval. The other important remark is that, according to our
simulation analysis, the assumption on the absence of transaction costs at
terminal time T is not very essential either. If we include transaction costs
at T and conduct a similar simulation analysis, we will get essentially the
same pictures as those on Figures 4 and 5 with the only difference: all the
curves experience an (approximately) equal shift below from their original
positions.
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6 Dwelling on the Results

The approximation methodology presented in Section 4 produces quite an
impressive result as applied to the problem of finding a closed-form expres-
sions for the optimal hedging strategy for a short European call option.
However, to arrive to this result we started with the numerical calculations
of the optimal hedging strategy for a large set of the model parameters. To
find the optimal hedging strategy for another type of a European option (for
example, a long European call), we need again to start with the numerical
computations of the optimal hedging strategy for this option. Since the nu-
merical algorithm is cumbersome to implement and the calculation of the
optimal hedging strategy is time consuming, the approximation methodol-
ogy is unlikely to be commonly used by the practitioners.

From the other side, there is great practitioner resistance to the idea
of utility theory. The most usual objections to the idea of utility theory
from a typical practitioner are the following: (i) We do not know the utility
function of a hedger, (ii) Even if we know the utility function we need to
specify somehow the risk aversion parameter of a hedger. However, the delta
tolerance hedging strategy is commonly accepted among the practitioners.

First of all we would like to convince the practitioners that the utility
based hedging is very much alike the delta tolerance hedging. Ignoring for
the moment the hedging bandwidth H0 and the volatility adjustment Hσ,
the optimal hedging strategy for a short European call option takes the form

∆ =
∂V

∂S
± 1.08

λ0.31

σ0.25

(
Γ
γ

)0.5

. (23)

If we do not know the risk aversion parameter γ, the knowledge of the rest
of the model parameters does not help us: we cannot determine the optimal
hedging bandwidth. However, what we do know in this case is that the form
of the optimal hedging strategy is given by

∆ =
∂V

∂S
± hwΓ0.5, (24)

where hw is some unknown parameter which depends on the hedger’s risk
aversion. In addition, we know that hw decreases when the hedger’s risk
aversion increases. Similarly, when the hedger’s risk aversion decreases, hw

increases. Consequently, the parameter hw is closely related to parameter
H (see equation (11)) in the delta tolerance strategy and is a proxy for the
measure of risk of the hedging portfolio. Without knowing the risk aversion
parameter of a hedger we can do the following: we provide the simulation
analysis, similarly as in Section 5, where we vary the parameter hw and span
all the possible combinations of risk and return. Then we present the results
of the simulation analysis to a particular hedger and allow him to choose the
best risk-return tradeoff according to his own preferences. This is similar to
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what some investment companies are doing when they want to reveal the
risk aversion of a prospective client: they propose him either to choose what
fraction of his wealth to invest in the risky assets by giving him a sort of
menu or to choose a fund from a list of funds reflecting their perspective
risk-return tradeoffs.

Second, in this section we would like to present the intuition behind the
other method to find the optimal hedging strategy with transaction costs.
This method have a great advantage over the approximation method in that
one does not need to implement the numerical calculations of the optimal
hedging strategy. Instead, the other method is based on simulations, which
are much easier to implement. However, this other method heavily relies on
the knowledge of the form of the optimal strategy which is obtained using
the asymptotic and approximation methods.

If we, in fact, use the hedging strategy given by (23), we will discover
that its performance is similar to that of the Whalley and Wilmott hedging
strategy given by (12). The introduction of the hedging bandwidth H0

and the volatility adjustment Hσ helps to improve the performance of the
hedging strategy given by (23). Quite generally, if we do not know the
hedger’s risk aversion, we can describe the optimal hedging strategy for a
short European call option as

∆ =
∂V (σm)

∂S
±

(
hwΓ0.5 +

h0

S(T − t)

)
,

σ2
m = σ2

(
1 + hσ

(
S2Γ

)0.15
)

.

(25)

Similarly to (24) we have introduced two parameters, h0 and hσ, which
depend on the hedger’s risk aversion: as γ increases, h0 decreases and hσ

increases.
Now we are going to present an important idea suggested by the results

of our simulation analysis: if we choose a suitable risk-return framework,
there are some optimal combinations of the triple of parameters (hw, h0, hσ)
that generate the efficient frontier. That is, suppose we do not know the
parameters (hw, h0, hσ) of the optimal hedging strategy. Using a simulation
analysis we generate points in the chosen risk-return space for every possible
combination of (hw, h0, hσ). Having fulfilled these simulations we can note
that there is an efficient frontier in the risk-return space such that one cannot
improve the risk-return tradeoff for any point belonging to this efficient
frontier. That is, any other combinations of (hw, h0, hσ) which produce
a lower risk have a lower return, or, similarly, any other combinations of
(hw, h0, hσ) which produce a higher return have a higher risk. Figure 6
illustrate the efficient frontier in some risk-return space.

Consequently, the main idea behind the other method of finding the
optimal hedging strategy is to use the simulation analysis in order to find
the efficient frontier of a hedging strategy in some risk-return space. Note
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Figure 6: Possible combinations of the risk and return of a hedging strategy
with the triple of parameters (hw, h0, hσ) and the efficient frontier.

that the general form of the optimal hedging strategy is obtained using the
asymptotic and approximation methods applied to the utility based hedging
problem. At first sight, the risk-return optimization has nothing to do with
the utility maximization. However, there is a common belief that these
two problems are, in fact, deeply interrelated. Indeed, the mean-variance
utility function presented by Markowitz was meant to reflect the risk-return
tradeoff faced by an investor.

7 The Optimization Method

The detailed study of the utility based hedging strategy for a plain vanilla
European option shows that the general description of the optimal hedging
strategy could be given by

∆ =
∂V (σm)

∂S
±

(
hw|Γ|α +

h0

S(T − t)

)
,

σ2
m = σ2

(
1 + hσsign(Γ)|S2Γ|β

)
,

(26)

where V and Γ are the value and the gamma of the option, respectively, in
a market with no transaction costs (the Black-Scholes market model). The
rational under this general description is the following: Our study shows
that the form of the optimal hedging bandwidth of any option resembles
the form of the option gamma. That is, ceteris paribus, the hedging band-
width increases when the (absolute value of the) option gamma increases.
This is also true for any portfolio of options. Moreover, when the hedger’s
risk aversion is not high, it is optimal to introduce the hedging bandwidth
H0. The latter increases when the time to maturity decreases. In addition,
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the visual observations and our approximation analysis shows that H0S is
approximately constant with respect to S. Finally, when the hedger’s risk
aversion is rather high, it is optimal to hedge with the adjusted volatility.
When the option gamma is positive, the adjusted volatility is higher than
the original volatility. On the contrary, when the option gamma is nega-
tive, the adjusted volatility is lower than the original volatility. The form
of the volatility adjustment also resembles the form of the option gamma:
the volatility is adjusted more in regions where the (absolute value of the)
option gamma is higher.

The purpose of this section is to describe our risk-return optimization
method where we search for the combinations of the triple of parameters
(hw, h0, hσ) which belong to the efficient frontier or, at least, the efficient set.
In addition, since we are intended to present a general method of finding the
optimal hedging strategy for any plain vanilla European option, we need to
specify somehow a single pair of parameters (α, β) in (26). Our study shows
that α ∈ (0.3, 0.7) and β ∈ (0, 0.3). Actually, the optimal value of α and β
depends not only on a particular type of option, but also on the hedger’s risk
aversion. This results in the fact that the comparison of the performances of
the optimal hedging strategies for different pairs of parameters (α, β) does
not reveal any substantial difference among them. Consequently, the choice
of the values of (α, β) can be made quite arbitrary, for example α = 0.5 and
β = 0. The choice β = 0 seems a bit surprising, but is completely equivalent
to the Leland’s volatility adjustment and could probably be justified by the
following: the presence of the volatility adjustment is much more important
than its (slight) dependence on the option gamma. If someone is not satisfied
with this arbitrary choice, one can always modify the optimization method
to find the optimal combinations of parameters (α, β, hw, h0, hσ). There is
no issue of principle here, just the increased computational load.

Now we turn on to the formal presentation of the optimization method in
some risk-return space. We choose some triple of parameters of the hedging
strategy, (hw, h0, hσ), perform path simulations, and estimate the return,
η = η(hw, h0, hσ), and the risk, ρ = ρ(hw, h0, hσ), associated with this par-
ticular hedging strategy. By return we mean the expected replication error.
By risk we mean some suitable risk metric, for example, the variance or
the VaR of the replication error. The hedging strategy with parameters
(h′w, h′0, h

′
σ) is considered6 to be better than the strategy with parameters

(hw, h0, hσ) if

η(h′w, h′0, h
′
σ) ≥ η(hw, h0, hσ) and ρ(h′w, h′0, h

′
σ) ≤ ρ(hw, h0, hσ). (27)

That is, if the strategy with (h′w, h′0, h
′
σ) provides either higher return with

less or equal risk, or less risk with higher or equal return than the strategy
with (hw, h0, hσ).

6Note that this is true for any risk averse hedger.
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The optimization method we propose is based on a sequential improve-
ment of the risk-return tradeoff of a hedging strategy. That is, starting
with some (hw, h0, hσ) we search for a new (h′w, h′0, h

′
σ) = (hw + ∆hw, h0 +

∆h0, hσ + ∆hσ) such that the strategy with (h′w, h′0, h
′
σ) is better than

the strategy with (hw, h0, hσ). The most general procedure for finding the
risk-return improvement step could be interpreted as finding a unit vector
u = 〈a, b, c〉 such that

Duη(hw, h0, hσ) ≥ 0, (28)

and
Duρ(hw, h0, hσ) ≤ 0, (29)

where Duη(hw, h0, hσ) and Duρ(hw, h0, hσ) are the directional derivatives
of η(hw, h0, hσ) and ρ(hw, h0, hσ), respectively, in the direction of the unit
vector u. The reader is reminded that the directional derivative of some
function f(x, y, z) in the direction of the unit vector u = 〈a, b, c〉 is defined
as

Duf(x, y, z) = lim
h→0

f(x + ha, y + hb, z + hc)− f(x, y, z)
h

= fx(x, y, z)a + fy(x, y, z)b + fz(x, y, z)c = ∇f(x, y, z)u.

Consequently, to implement an improvement step from the point (hw, h0, hσ)
we need first to find the partial derivatives of η and ρ at this point and then
to find a vector u such that both (28) and (29) are satisfied. Note that
the vector u is not unique. However, since our goal is to find the points
on the efficient frontier, the actual path from the benchmark (hw, 0, 0) to
(h′w, h′0, h

′
σ) belonging to the efficient frontier is not important, especially

since this path is, in fact, more or less short.
In a practical realization of the optimization method the algorithm based

on the partial derivatives is very time consuming, since in order to calculate
a partial derivative with high precision we need to simulate a great number
of stock paths. Below we describe the algorithm based on the implemen-
tation of an improvement step with respect to (hw, h0) and a consequent
improvement step with respect to (hw, hσ).

The starting point for our optimization method is the risk-return trade-
off given by the benchmark strategy (hw, 0, 0). The introduction of h0

and hσ helps to improve the risk-return tradeoff of the benchmark strat-
egy. It is important to note that both h0 and hσ are positive. Sup-
pose that some (hw, h0, hσ) is an improvement of the benchmark strat-
egy. We denote by A the point in the risk-return space with coordinates
(ρ(hw, h0, hσ), η(hw, h0, hσ)) (see Figure 7). The further improvement of
the risk-return tradeoff by means of (∆hw, ∆h0) consists in the further in-
crease of h0 by some ∆h0. We denote by B the point in the risk-return
space with coordinates (ρ(hw, h0 + ∆h0, hσ), η(hw, h0 + ∆h0, hσ)). Since
by increasing h0 we increase the total hedging bandwidth, the strategy
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(hw, h0 + ∆h0, hσ) has a higher return and a higher risk than the strat-
egy (hw, h0, hσ). To decrease the risk (and the return at the same time)
as compared to the strategy (hw, h0 + ∆h0, hσ) we need now to decrease
the hedging bandwidth Hw. This is achieved by decreasing hw by some
∆hw. We try to find the size of ∆hw such that a point C with coordi-
nates (ρ(hw −∆hw, h0 + ∆h0, hσ), η(hw −∆hw, h0 + ∆h0, hσ)) has a better
risk-return tradeoff than the original point A. However, this is not always
possible. If, for example, the transition between B and C goes along the line
(B, C ′) (see Figure 7), then the improvement step by (∆hw, ∆h0) is feasible.
Otherwise, if the transition between B and C goes along the line (B,C ′′),
it is not possible to improve the risk-return tradeoff by (∆hw, ∆h0).
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Figure 7: Illustration of the improvement step by means of (∆hw,∆h0).

Now we turn on to the description of the improvement step by means of
(∆hw,∆hσ). As before, we denote by A the point in the risk-return space
with coordinates (ρ(hw, h0, hσ), η(hw, h0, hσ)) (see Figure 8). The improve-
ment of the risk-return tradeoff by means of (∆hw,∆hσ) consists in the
increase of hσ by some ∆hσ. We denote by B the point in the risk-return
space with coordinates (ρ(hw, h0, hσ + ∆hσ), η(hw, h0, hσ + ∆hσ)). This im-
provement step might be possible if ρ(hw, h0, hσ + ∆hσ) < ρ(hw, h0, hσ).
That is, if the increase of hσ decreases the risk. If it is so, there are
two typical situations: if the option gamma is positive, a new strategy
(ρ(hw, h0, hσ + ∆hσ), η(hw, h0, hσ + ∆hσ)) has also a higher return. This
situation is illustrated by the point B′. If the option gamma is negative,
a new strategy with a lower risk has also a lower return. This situation is
illustrated by the point B′′. In the latter case to increase the return (and
the risk at the same time) as compared to the strategy (hw, h0, hσ + ∆hσ)
we need now to increase the hedging bandwidth Hw. This is achieved by
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increasing hw by some ∆hw. We try to find the size of ∆hw such that a point
C with coordinates (ρ(hw +∆hw, h0, hσ +∆hσ), η(hw +∆hw, h0, hσ +∆hσ))
has a better risk-return tradeoff than the original point A. Again, this is
not always possible. If, for example, the transition between B′′ and C goes
along the line (B′′, C ′) (again, see Figure 8), then the improvement step by
(∆hw,∆hσ) is feasible. Otherwise, if the transition between B′′ and C goes
along the line (B′′, C ′′), it is not possible to improve the risk-return tradeoff
by (∆hw, ∆hσ). If it is not possible to implement the improvement step by
either (∆hw, ∆h0) or (∆hw,∆hσ), it means that A belongs to the efficient
frontier.
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Figure 8: Illustration of the improvement step by means of (∆hw, ∆hσ).

Finally we present the results (see Figures 9 and 10) of our risk-return
optimization of the hedging strategy for a short European call option in
the mean-variance and the mean-VaR frameworks. The option parameters
were the same as in Section 5. We varied the parameter hw of the hedging
strategy in [0.025, 2.5]. We used fixed steps for ∆h0 and ∆hσ and adaptive
steps for ∆hw. To implement the optimization and compute the risk and
return of the hedging strategy with higher precision we generated 400,000
paths for each triple of parameters (hw, h0, hσ).

The optimized strategy is compared against the approximation strategy
and the benchmark strategy (i.e., the strategy with h0 = hσ = 0). The
risk-return tradeoff of the Leland strategy is also presented as a standard
benchmark for comparison. It is interesting to note that irrespective of
the chosen risk metric the optimization in either the mean-variance or the
mean-VaR framework produces similar results to those of the approximation
strategy. However, a closer look at the optimal values of h0 and hσ reveals
that for the same value of hw the optimization in the mean-VaR framework
gives a slightly higher value of hσ than the optimization in the mean-variance
framework. Nevertheless, it is difficult to notice any substantial difference
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Figure 9: Comparison of hedging strategies in the mean-variance framework.

in the optimized and the approximation strategy in Figure 10.

27



-3.5

-3

-2.5

-2

-1.5

-1

-0.5

3.5 4 4.5 5 5.5 6 6.5 7 7.5

M
ea

n 
of

 R
ep

lic
at

io
n 

E
rr

or

VaR of Replication Error

Optimization
Approximation

Benchmark
Leland

Figure 10: Comparison of hedging strategies in the mean-VaR framework.
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