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Abstract

Most existing hedging approaches are based on neutratizikngxposures defined under a pre-specified
model. This paper proposes a new, simple, and robust hedgipgach based on the affinity of the
derivative contracts. As a result, the strategy does natmidpn assumptions on the underlying risk dy-
namics. Simulation analysis under commonly proposed ggqurice dynamics shows that the hedging
performance of our methodology based on a static positidhree options compares favorably against
the dynamic delta hedging strategy with daily rebalancifichistorical hedging exercise on S&P 500

index option further highlights the superior performanteur strategy.
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Give me a lever long enough and a fulcrum on which to placentd, lsshall move the world.

— Archimedes, Mathematician and inventor of ancient Gre8é-212BC

1. Introduction

In hedging derivatives risk, many think like Archimedes,rbgking strong, idealistic assumptions on both
the security dynamics and the trading environment. For @kanBlack and Scholes (1973) and Merton
(1973) introduce the concept of dynamic hedging by assuitinagthe underlying security follows a one-
factor diffusion process and that one can rebalance theehgaolgfolio continuously without incurring any
transaction cost. Since then, the idea of dynamic hedgisgbkan extended to multi-factor continuous
dynamics based on continuous rebalancing of a portfolit ittdudes both the underlying security and
a finite number of derivative securities. The hedging ratlepend on the particular assumptions on the
underlying dynamics. Carr and Wu (2002) propose a statigihgdstrategy on vanilla options by assuming
that the underlying security follows a one-factor Markaevigrocess and that one can deploy an infinite

number of short-term options across the whole continuuntrides.

In reality, transaction cost is a fact of life, under whichttb@ontinuous rebalancing and transacting
on a continuum of options lead to immediate financial ruine @rust therefore discretize the rebalancing
frequency under the dynamic hedging approach and disertézstrike continuum under the static hedging
application to balance hedging errors with transactionsﬂ)Even more problematic, however, is the fact
that one does not know the exact dynamics of the underlyiogrig and thus cannot fully quantify the
exposures to each risk source. To the extent that the modeb#pecified, hedging errors can result from
either mis-calculating the hedging ratios or missing sorsk sources all together. For example, most
dynamic hedging approaches leave the risk of discontinpoige movements of random sizes unhedged.
Furthermore, both the dynamic delta hedging under the Bldekon-Scholes (BMS) model and the static

hedging strategy proposed by Carr and Wu (2002) leave lrglaisks unhedged.

1Under the Black-Merton-Scholes model environment, theeddpnce of the delta hedging error on the discretizatigntsis
been studied extensively in, for example, Boyle and Emafii@80), Bhattacharya (1980), Figlewski (1989), Galai @9&eland
(1985), and Toft (1996).
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Practitioners often perform various ad hoc adjustmentsitlyb the gap between idealistic theories and
reality. For example, due to transaction cost, continuebslancing is often reduced to rebalancing daily
for stock price exposures and opportunistically for vditstexposures. Furthermore, due to uncertainty in
the underlying dynamics, risk exposures are often compugatd) the Black-Merton-Scholes (BMS) model,
but risks are managed far beyond the delta risk, even thoeltg rikk is the only risk source under the BMS
model. The vega of the derivative portfolio, i.e., the palitf's exposure to volatility risk, is also closely
monitored and managed. In addition, vega risks at diffessgiments of the implied volatility surface
are often managed separately, implicitly recognizing thwéatility risk may have multiple dimensions of
variation that can affect different segments of the impliettility surface differentIH Such practices may
seem inconsistent with the underlying models used for caoimgpuhe risk exposures, but they provide a
simple, albeit primitive, mechanism to defend against rhadeertainty and against shocks from possibly

multiple, unmodeled risk sources.

In the presence of such uncertainties, the safest way tcehtbegrisk of a derivative position is to use
nearby, similar contracts, which share similar risk chimagtics regardless of the underlying dynamics,
rather than using vastly different contracts while relyorga model to compute the risk exposure and the
hedging ratio. In this paper, we formalize this intuitivee&dand derive a hedging strategy not based on
risk exposures defined in a model, but based on similartiebservable contract characteristics. To make
our idea operational, we focus on European options on the sarderlying security and define contract

similarities based on their distance in strike and time teumity.

We start with a short position in a target option contractf propose to hedge the target position with
three nearby option contracts. One can in theory choose opbien contracts to form a more accurate hedge
portfolio, but transaction cost concerns motivate us toi$aan a small number. The strikes and maturities of
the three hedging options can be flexibly chosen to balantweelea contract availability, transaction cost,
and hedging effectiveness. We focus on a strike-maturigydgte formulation in which a center strike is

placed at one maturity and two outside strikes are places@har maturity. We perform Taylor series

2As a concrete example, a long five-year straddle might baalieid by a short four-year straddle, but may not be nenéal
by a one-month straddle position. Vegas at different se¢grafithe implied volatility surface are often regarded asosures to
different risk sources.



expansions on both the target and the hedging options alangttike and maturity dimension around a
common strike and maturity reference point, and we chooséhdluging portfolio weights to match the

different expansion terms in the target option and the meggortfolio.

The simple maturity-strike triangle becomes a very effectiedge of the target option for several rea-
sons. First, we Taylor expand along the strike dimensiorhéosecond order, and we link the second-
order strike derivative (butterfly spreads) to the firstesrchaturity derivative (calendar spreads) via the
local volatility definition of Dupire (1994). While Dupirerfit proposes the concept of local volatility in
a one-factor diffusion setting, the notion of local voliggilis well-defined under a much more general set-
ting. Rather than regarding it as a model assumption, wehgsétal volatility to define the empirically
observed relation between butterfly spreads and calendsadgy without assuming anything about the un-
derlying price dynamics. Through this linkage, we are abladhieve second-order accuracy with merely
three options to match coefficients on three terms: the opigdue, the first strike derivative, and the first

maturity derivative at the reference strike and maturitynpo

Second, we show that our portfolio formulation allows a jpatancelation of the higher-order terms
in the Taylor expansions of the target and hedge options, rtieking the hedging errors smaller than the
expansion errors of each target or hedge option. Furthesmdren multiple strikes are available, we can
match higher-order terms between the target option andridregte hedge portfolio through appropriate

choice of the strike choice for the hedge triangle.

Most importantly, the formulation of our hedging portfoli® completely independent of any assump-
tions on the underlying risk dynamics. We choose the hedgjtipn maturities and strikes to balance con-
tract availability, transaction cost, and hedging effemiess, and we derive the hedging portfolio weights
based on observed option prices, from which we estimateah Votatility at the reference strike and matu-
rity point, while making no assumptions on the underlyirgk ilynamics and/or the risk exposures of each

contract.

Through extensive Monte Carlo analysis on commonly useckgboice dynamics, we show that our

static hedge portfolio with three options can perform muetids than dynamic hedge with the underlying



futures in all model environments. The simulation exereise illustrates how one can choose the maturity
and strike spacing for the hedging portfolio to further reglinedging errors. Applying the strategy to
S&P 500 index options in a historical test also shows thataveform many maturity-strike triangles from
the available option contracts that outperform delta heglgiith daily rebalancing. Thus, under practical

scenarios, the triangle is simple and flexible for actuallemgntation, and robust to dynamics variations.

The option pricing literature mostly starts with a fundama¢rbackward partial differential equation
(PDE), which defines the value of a derivative contract basethe relations between the exposures of the
contract to various risk sources. For example, under thekB&choles-Merton model and assuming zero
rates, the theta (time derivative) of an option is lineaélated to the delta (stock price derivative) and dollar
gamma (second stock price derivative) of the option. In tlesgnce of stochastic volatility, vega (volatility
derivative), vanna (cross derivative of volatility andqga), and volga (second volatility derivative) also
come into the backward PDE. Such backward equations defwweh®risk sensitivities of the derivative
contracts link to each other and form the basis for risk-exype-based hedging approaches. By contrast, our
hedging result is built on the forward PDE that relates aptierivatives against maturities and strike prices.
By exploiting the forward equation, we can match more ternth ¥ewer options. Even if the dynamics
underlying the original forward PDE of Dupire (1994) does hold, we can still use it as a definition for
local volatility, through which the maturity derivative dusecond-strike derivative are linked. To the extend
this linkage (and hence the local volatility) is stable otiare, better static hedging performance can be

achieved by matching second-order strike derivatives.

Since we kept our portfolio weights fixed over the life of thedging exercise, our hedging approach
is the most closely related to the static hedging propose@doy and Wu (2002), who use a continuum
of short-term options to completely span the risk of a lomgrt option under the assumption of a one-
factor Markovian setting. Since using a continuum of ogignnot feasible in practice, they also propose
a quadrature method to approximate the continuum with alsmatber of options. We show that their
three-strike approximation coincides with a degenerageigpcase of our maturity-strike triangle, in which

all three options in the hedge portfolio lie on one maturity.



In other related literature, the effective hedging of datiixe securities has been applied not only for risk
management, but also for option valuation and model vetifingBates (2003)). Bakshi, Cao, and Chen
(1997), Bakshi and Kapadia (2003), and Dumas, Fleming, ahdl®y (1998) use hedging performance to
test different option pricing models. Kennedy, Forsyth] &ktzal (2006) and Kennedy, Forsyth, and Vetzal
(2009) sets up a dynamic programming problem in minimizimg hedging errors under jump diffusion
frameworks and in the presence of transaction cost. Thedfistatic spanning, on the other hand, started
with the classic works by Breeden and Litzenberger (19785sR1976), Green and Jarrow (1987), and
Nachman (1988). These authors show that a path-indepeipdgoff can be hedged using a portfolio
of standard options maturing with the claim. More recenfiarr and Chou (1997) considers the static
hedging of barrier options and Carr and Madan (1998) prapasstatic spanning relation for a general
payoff function by a portfolio of bond, forward, Europeantiops maturing at the same maturity with the
payoff function. Starting with such a spanning relationkal@ashi and Yamazaki (2009a,b) propose a static

hedging relation for a target instrument that has a knowaesainction.

The remainder of the paper is organized as follows. The mtion defines the hedging procedure, and
derives the optimal weights for the maturity-strike trilnlgedging portfolio. Sectidd 3 provides a numerical
study on the effectiveness of the hedging strategy and hewftbctiveness varies across different maturity
combinations and strike spacing choices. Sedtion 4 apfiiesedging strategy to a long history of S&P

500 index options. Sectidd 5 concludes.

2. A New Theoretical Framework for Hedging with Nearby Contracts

To make the idea concrete, we start at tinvath a unit short position in a European call option with lgri

K and expiryT, and we consider hedging this option position by using alsmahber (three, to be exact)
of European call options at nearby strikes and maturitiefieMhecessary, put-call parity can be applied
to switch call options to put options. In the absence of tatisn cost, one can in principle form a hedge
portfolio with more options to achieve better hedging perfance; nevertheless, practical transaction cost

concerns motivate us to limit to three options in forming tieelge portfolio.



2.1. Assumptions and notations

We useC(K,T) to denote the time¢-value of a call option at strik& and expiryT. To avoid notational
clustering, we assume zero rates and suppress the depermfethe call option value on calendar tirhe

the spot prices, and other potential risk sources, as long as no confusiath @tcur.

Given observed option prices across different strikes aattinties, we define the local volatility surface,
o(K,T), via the Dupire (1994) equation in terms of the partial derixes of the option values against strike

and maturity,
2CT (KvT)

2
KT)= 01
oK) = g KTy

(1)

whereCt denotes the first partial derivative of the call option vahith respect to maturity anGxk denotes
the second partial derivative with respect to strike. Deipirst derives the forward PDE in a one-factor
diffusion setting; however, the notion of local volatiligs defined in equatioml(1) is well-posed under a
much more general setting. In particular, the existencepafsitive and finite local volatility surface can be

used as a condition to exclude arbitrage opportunities.

In practice, only a finite number of option prices are obdelevaacross a discrete number of strikes
and maturities. Thus, one needs to perform interpolati@heattrapolation over the finite observations to
evaluate the maturity and strike derivatives to arrive aldical volatility estimates. When options are quoted
in BMS implied volatilities, one can also compute the localiatility directly from the interpolated implied
volatility surface, e.g., Coleman, Li, and Verma (1998)el(2005), and Gatheral (2006). We assume that
one can perform reasonably stable interpolation and extatipn on observed option prices or implied
volatilities to obtain finite and positive estimates of lbealatilities at strikes and maturities of interest. We

make no assumptions on the underlying security price ottilipladynamics.

2.2. Hedging with a maturity-strike triangle triangle

We propose a strategy to hedge the risk of the target otin T) with three nearby options. In principle,

the three option contracts can all have different strikes maturities. Since often fewer maturities are



available in practice, we focus onraaturity-strike triangle formulation, where the three options have
three different strike&y < K¢ < K, but two different maturities, with the center striKg at one maturityl;
and the two outside strikd&q, K,) at another maturitfl,. There is no particular restriction on the order of
the three maturitie3c, To, T, but practically it is likely that one chooses more liquicbgler-term options to
hedge the possibly less liquid longer-term option, thatdsl, < T. Furthermore, it is natural to choose the
hedge option strikes around the target option stiiec K < K, with possiblyK. = K whenK is available

atTe.

The hedging strategy that we propose does not rely on matthérisk exposures of the hedging port-
folio with that of the target option because risk exposutewtations depend on the particular specification
of the underlying security price and volatility dynamicastead, our strategy is based on the affinity of the

triangle hedge portfolio to the target option in terms ofrtls&rikes and maturities.

Given the layout of the maturity-strike triangle, we deritae hedge portfolio weights through the fol-
lowing procedure. First, we perform Taylor expansions othlibe target option and the hedge portfolio

along the maturity and strike dimensions around a commarer€e point(K, Ty),

C(K,T) ~~ C(K,To) -I-CT(K,TO)(T —TO), (2)
C(KaTo) = C(K,To) + (K, To) (Ka —K) + 2Cix (K, To) (Ka — K2 )
C(KU,TO) ~ C(K,To)—I—CK(K,TO)(KU—K)—|—%CKK(K,TO)(KU—K)2, (4)

CKe,Te) ~ C(K,To)+Ck(K,To)(Ke—K)+Cr(K,To)(Te — To) + %CKK(K,TO)(KC— K)2.  (5)

We expand the options along the maturity dimension to thédirder and along the strike dimension to
the second order. The expansion generate four t&KsT,), Ck (K, To), Ckk (K, To), andCr (K, Ty). Un-
fortunately, we cannot use a portfolio of three options tdamdour expansion terms. Fortunately, we can
replace the second strike derivati@rk (K, T,) with the first maturity derivativeCr (K, T,) via the local

volatility definition in equation[{1),

2

Gl = sk ke

Cr(K,To). (6)



With this replacement, we can choose the portfolio weidktg w;,w,) for the three options at strikes
(Kqg, Ke, Ky) to match the coefficients on the three terms between thettagiion expansion and the hedge
portfolio expansion: the option val@&K, T,), the first-order strike derivative (K, T,), and the first-order

maturity derivativeC(T (K, To).

Matching the coefficients 0G(K, T,), we have
1= Wg + Wy + W, (7)

which says that the sum of the hedge portfolio weights is lefquthe target option weight. Matching the

coefficients orCg (K, To), we have,
0 = wg(Kg — K) +Wy(Ky — K) +we(Ke — K). (8)
Plugging the weight condition inX7) tbl(8), we have,
K = wyKqg + wWyKy 4+ WK, (9)

which says that the weighted average of the chosen strikbdeeitnedge portfolio should be equal to the
target strike. Finally, matching the coefficients Gp(K,T,) and normalizing both sides byl - To), we

have
(Kj —K)? T,—Te

1=)» w; — W,
2R TRAT—Ty) T -7,

j=d,u,c. (20)
We can solve for the three portfolio weights from the threeditions [7), [9), and (10).
Now, we introduce a standardized measure of strike spacowqd the target strike point,

(Kj—=K)

d, =
T KoK To)VT—To’

j=d,c,u. (1))

Intuitively, the standardized spacing measdyeapproximates the number of standard deviations that the



security price needs to move froff,, Kj) to (T,K). We also define a relative maturity spacing measure,

To—Te (12)

which measures the relative distance between the two rtiafuin the hedge triangle to the distance between
the target option maturity and the reference hedge mattyity he third condition in[(1I0) can be written in

terms of the standardized strike spacthgand maturity spacing,

1 = wgd3 +wyd? + we(dZ — a). (13)

The following proposal summarizes the results on the mgtstiike triangle hedge portfolio.

Proposition 1 To hedge the risk of a target option &, T), we propose to form a hedge portfolio with
three options forming a maturity-strike triangle, in whittte three options are placed at three strikesK
Ke < Ky) and two maturities with{Kq, Ky) at T, and K; at Te. The portfolio weights can be chosen to match

the maturity and strike expansions of the triangle with thiathe target option,

-1

Wy 1 1 1 1
We | = | Ko Ko Ky K |- (14)
Wy d2 d2-a da 1

An important observation from the proposition is that thetfotio weights only depend on the relative
strike and maturity spacing of the hedge and target optibatsdo not explicitly depend on the calendar
time or the spot price level. In this sense, the hedge patisistatic. One caveat is that we use the local
volatility o(K,T,) to standardize the strike spacinglinl(11). To the extentttfetocal volatility is varying
over time, so is the standardized strike spacing for a fixedfsaption contracts. The portfolio weights can
vary as a result. In application, we assume that the reldt@iweenCy andCgy is stable over time, and

treat the hedge portfolio as an approximate, static paotfol



The proposal imposes little constraints on the strike anintyachoice in the triangle. In what follows,

we consider several interesting special cases of the depref@osal.

2.2.1. Symmetric triangles

If we place the center strike at the target option stilke= K and choose equal spacing for the two outer
strikes, K, — K = K — Kg, we obtain a symmetric (isosceles) triangle. In this caker: 0 and we let
d = |dy| = |dg| denotes the standardized equal distance from the two duitegssto the center. The result

becomes patrticularly simple.

Proposition 2 When the maturity-strike triangle is symmetric around takgét strike, with K = K and
Ku—K =K —Kqy, the portfolio weights are given as a function of the staddaad strike spacing & |dy| =

|dq| and relative maturity distance,

(1—w). (15)

Proof. From the first and second conditionsl[ih (7) and (9), we cam thf& symmetric strike choice leads to
symmetric portfolio weightsvy = w, = 1 —w,. Plugging in the symmetric weight condition into the third

condition in [13), we can solve for the center strike weighira(15). m

The isosceles triangle has its peak at matukitsind its base at maturifly. Depending on the ranking of
the three maturitie§T;, To, T ), the triangle can be formed in a number of ways. For practicasiderations,
we focus on the cases in which the maturity of the target affics longer than the maturitied{, T¢) of the
hedging options in the triangle. With this constraint, thartgle can be formed with either I < To < T
and thusa > 0, where the triangle points to the shorter maturity, orfgix T < T and thus—-1 < a < 0,
where the triangle points to the longer maturity. As thetietamaturity distancen takes on different
ranges of values in the two cases, the portfolio weights steav different behaviors as a function of the
standardized strike spacimgy With positivea in the first case, the portfolio weight on the center strikg)

increases monotonically with the strike spacing frettya atd = 0 to 1 asd approaches infinity. When the

10



three maturities are equally spaced and hameel, the portfolio weight on the center strike varies from

—100% to 100% as the strike spacing increases from zero tatynfin

In the second case in which the center strike maturity iséortijan the maturity of the outer strikes
(To < Tc < T) and thus the relative maturity distanaebecomes negative, the portfolio weiglt has a
singularity atd® 4+ a = 0. The center strike weigh, approaches positive infinity @ 7 —a and negative

infinity asd? | —a.

In both cases, as long as the strikes are spaced one starelaatioh away d > 1), the portfolio
weights on all three points of the triangle are positive, Hrelweight on the center strike increases with
increasing strike spacing for the two outside strikes. féflliplots the center strike weight as a function
of the standardized strike spacidgn both cases with the assumption of equal spacing betweeththe
maturities, and thust = 1 for the first case and = —1/2 for the second case. The solid line shows the
monotonic and slow increase of the center strike weight freb®0% to 100% as a function of the strike
spacingd. The dashed line reveals the singularitydat \/m Whend > 1, both cases generate positive

weights on the center strike and the two outside strikes.

[Figure 1 about here.]

2.2.2. A degenerating line of three strikes at one maturity

The hedge remains well-defined when the maturity-strikngie degenerates into a line of three strikes as
the two maturities shrink to on&, = T. In this case, we label the maturity of the options in the lieglg
portfolio asT,,. With symmetric strike placement, the portfolio weight twe tenter strike option increases

with strike spacing.

Proposition 3 When the symmetric maturity-strike triangle degeneratts & line of three strikes sym-

metrically placed around the target strike, the hedge pdidfweights are reduced to be a function of the

11



standardized strike spacing only,

1
We=1- Wd:Wuzé(l—Wc). (16)

1
d?2’
When we approximate the target option with three strikesnat imaturity T, the approximation is
analogous to a trinomial tree, and the weight on the centikeshcreases with the strike spacing. When

the outer strikes are about one standard deviation awaytieroentedd = 1, the center weight is zero and
the trinomial tree degenerates into a binomial tree. Whensttikes are spaced more than one standard
deviation away, the weights on all three strikes becometigesiFor example, at two standard deviation
strike spacingd = 2, the center strike takes a weight %;fand the weights on the two outer strikes ére

each. The three strikes take on equal Weigh§ ehch when the strike spacingds= /3/2.

Under a one-factor Markovian setting, Carr and Wu (2003h¢kbéorth CW) derives a static hedging
strategy for a vanilla optio@(K, T) using a continuum of options at at a shorter matufFity< T. Different
from our approximations based on Taylor series expanstbasCW static hedge is an exact relation if (i)
the underlying security price dynamics is known, (ii) thewsi#ty price dynamics is one-factor Markovian,
and (iii) a continuum of options are available at a shortetunity to form the hedging portfolio. However,
none of the three conditions are likely to hold in realityvdators do not know the true underlying price
dynamics. The dynamics are unlikely to be one-factor Maikowecause stochastic volatilities for most
securities, with independent variations, are well-docot@é. Finally, option contracts are available only at
a finite number of strikes. Furthermore, to minimize tratisaccosts, one can only use a small number of
options to form the hedge portfolio. CW propose a discréikesimplementation procedure in which the
strikes and portfolio weights are chosen based on a Gausaitdajuadrature approximation of the integral
in the theoretical relation. In particular, given the quedre points and weights;( w;) and with zero rates,

the strikes and portfolio weights are given as,

KJ _ Ke\fZXJ‘G\/(T—Th)—%cz(T—Th)7 wj = (‘DJ/\/ﬁ:7 (17)

12



whereo denotes a volatility estimate for the underlying securgiurn. If we ignore the convexity term and
the difference between percentage returns and log retomnstandardized strike spacing measijreslates
approximately to the quadrature pointdy~ \/F, . In the three-strike case, the quadrature points are given
as(O,i\/ﬁ), corresponding to a standardized strike spacingd =f/3. The quadrature weight for the
center point i%\/ﬁ, corresponding to a portfolio weight for the center strife2¢3, exactly the same as
implied by equation(16) in our Propositibh\8; = 1—1/d? = 2/3. Therefore, the CW three-strike discrete
implementation coincides with a very special example ofdrgenerate case of a line of three strikes, with
the strike spacing being pre-set according to the quadratie. Our approach is much more general. It
allows the allocation of the three strikes at two arbitragtumities; the strike spacing is not pre-determined,
but can be chosen with flexibility to balance contract atily, transaction cost, and hedging performance;

and finally, the hedge portfolio formulation is independehany dynamics assumptions.

2.2.3. A degenerating line of two maturities at one strike

When all three strikes in the hedge portfolio coincide wiitl target strikdk, = Kq = K. = K, the maturity-
strike triangle further degenerates into a line of two cacts at two maturities. If we retain the notation of
T, and Ty, with no particular ranking, the portfolio weights are deted purely by the relative maturity

distancea.

Proposition 4 When the symmetric maturity-strike triangle degeneratés a line of two option contracts
at two maturities (g, To) and the same strike K, the hedge portfolio weights are redue a function of the
relative maturity spacingt only,

1 1
C a7 (0] +G ( )

When the target option maturifly is either longer or shorter than both maturities in the hqugéolio,
the portfolio always contains a short position in the shontaturity and a long, levered position in the
longer maturity. On the other hand, if the target option migtus sandwiched by the two maturities in the

hedge portfolio, the portfolio weights are positive for boiptions.

13



While our focus is on the maturity-strike triangle, the twegdnerate lines illustrate the generality of
our proposal as it includes the CW static hedging as a vemiapEase, and it allows investors to trade both
the implied volatility smile and the term structure, eithegether or separately, while managing their risk

exposures.

2.3. From expansion errors to hedging errors

Our hedging portfolio weights are derived by matching theesponding terms in the Taylor expansions of
the target option and the hedge portfolio. The expansioor @m each option contract increases with the
distance between the contract’s strike and maturity andeteeence strike and maturity expansion point. In
practice, strikes are often available at a fine grid, but nité#a tend to be more sparse. Thus, the expansion
errors along the maturity dimension can be large. Howevershow in this section that the expansion error
of the hedged portfolio can be much smaller than the averggansion error of the individual contracts
due to cancelation. We illustrate this point through twolasgFirst, we show that although the expansion
error on each option contract depends on the reference gainhd which the expansion is performed, the
portfolio weights for the hedge triangle do not explicitlggknd on the particular choice of the expansion
reference point. Second, we perform the Taylor expansi@nhigher order and show how the leading-term
expansion error on the target options cancels with the gaidirm expansion error on the hedge portfolio.
We further show how one can maximize the cancelation viaggte choice of the strike spacing in the

hedge portfolio.

2.3.1. Independence of portfolio weights on the expansiorference point

In deriving our portfolio weights, we expand both the targietion and the hedge options around a common
strike and maturity reference poir (T,). This reference point is a convenient choice because Whigh t
reference point, we only need to perform maturity expangiorihe target option and the hedge option at
the center strike wheK. = K, and we only need to perform strike expansion on the two heggiens at

the outside strikes. Choosing other expansion points wiaald to more terms. However, the following

14



proposition shows that the particular choice of the refeeguoint is not important for computing the hedge

portfolio weights.

Proposition 5 When the local volatility is flat across strikes and matesti the portfolio weights do not

depend on the reference maturity and strike point, aroungtivtihe Taylor expansion is performed.

Proof. Let (Km, Tm) be an arbitrary strike-maturity reference point, with whiwe perform the Taylor

expansion on the target and hedge options:

C(K,T)

Q

1
C+Cxk (K — Km) +Cr (T —Tm)+§cKK(K—Km)2,

1

1
C(KuTo) = C+Cx (Kg—Km) +Cr (To—Tm) + 5Ckx (Ko~ Km)?,

1

where the ternt, Cx, Cy, andCkk are all evaluated at the reference pdiKt,, Try) and we hide the depen-
dence to reduce notation clustering. Matching the optigal lg term, we have = w, + wgy + W, as before.

Matching theCyk term, we have
(K — Km) = Wy (Ky— Kim) +Wg (Kg — Kim) +We (Ke — Kiy) , (19)
which in combination with the first condition leads to,
K = wyKy +wgKg + weKe. (20)

Thus, neither the first nor the second condition dependserefierence point choidgKm, T).

Matching theCy andCky term, we have

1 1
Cr (T = Tin) + 5Ckk (K — Km)® ZWJCT o)+ 5Cx (Kj = Kim)?, (21)
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with j = u,d,c. We see that thd, terms cancel out. Furthermore, if we writg — Ky, = (K; —K) +

(K —Km) and expand théK; — Km)? terms, the condition ifi{21) simplifies to
1 2
CT= szCTTj + ECKK (Kj — K) , (22)
]

which does not has any explicit dependence on the referemoe(Km, Tm). Therefore, the portfolio weights

do not have explicit dependence on the reference point éofdylor expansion.

An implicit dependence arise when we conv@gk into Cr via the local volatility definition. Since the
local volatility is evaluated at the reference padiKt,, T, portfolio weights depend on the reference point
to the extent that the local volatility is strike and matyritependent. When the local volatility surface is

flat, the portfolio weights are completely independent eftdference point choicea

The expansion error on each option contract depends ollyionghe reference point. The closer the
reference point is to the strike and maturity of the conjrémt smaller the expansion error is. Yet, the
above proposition shows that the hedge portfolio weighegjaite robust with respect to the reference point
choice. In particular, with a flat local volatility surfacie portfolio weights and hence the hedging errors

are independent of the reference point that we choose faxgbansion.

2.3.2. Leading-term expansion errors in target and hedge djpns

To analyze how the expansion errors cancel between targeheaige options, we expand each option
contract to a higher order and analyze the behavior of ttdigeaerm expansion error. To reduce notation
clustering, we usel(, T,) as the reference point for the expansion, we hide the éxdikpendence on the

reference point in the notation, and we focus on the symmetaiturity-strike triangle for the analysis, with
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AK = K, — K =K =Ky andAT =T — T,. The expansions become,

1
C(K.T) ~ C+CrAT+3Crr (AT)?, (23)
1 > 1 3 1 4
C (KU,TO) ~ C+CkAK + ECKK (AK) + ECKKK (AK) + ﬂCKKKK (AK) , (24)
1 1 1
C (Kd,TO) ~ C—-CkAK+ ECKK (AK)Z — ECKKK (AK)3 + ZlCKKKK (AK)4, (25)
C(K,T.) ~ C—CroAT+ %CTTGZ (AT)?. (26)

From the above expansions, we can see that witken- 0, the leading-term expansion error in the target
option is%CTT (AT)Z, which partially cancels with the leading-term expansiaomin the hedge portfolio,

WCO(Z%CTT (AT)Z, when the portfolio weight on the center strike is positive.

WhenAK > 0, additional expansion errors are introduced in the hedgeqgtio in terms of theCxkkk
term. These additional expansion errors can be used taefucdmcel out the errors on tlg+ terms. To

link these higher-order terms, we further differentiate fibrward PDE with respective b,

CTT — %0-2}<2 (CT)KK + %O-'ZFKZCKK,
= %10-4K4CKKKK + (%0'20'% K4 + 0'4K3) Ckkk (27)

+ (3 (0% +02) K2+ 0203 K3+ 3020k K*) Ckk

whereg?, 0%, andoZ, denote the partial derivatives of the local variam@ewhich are all zero in the case
of a flat local volatility surface. To remove ti&kk term in equation(27), we assume tiSat K and link

Crkik to Ckk according to the BMS modeCykk =~ —3 . Then, we have
1 4.4
Cr1 =~ aCxk + 2° K*Ckkkk (28)

with &, = (30% — 0%) K2+ 20203 K3 + 20207 K*.

Now, we can use the forward PDE and equation (28) to convefEthandCy 1 terms in the expansions
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(23) to [26) toCkk andCkkkxk terms,

C(K,T) ~ C+ %GZKZCKKAT + %achK + %04K4CKKKK (AT)?, (29)
C(Ky,To) ~ C+CkAK+ %CKK (BK)? + %CKKK (AK)3+ 2—140KKKK (BK)*, (30)
C(Kgq,To) ~ C—CkAK+ %CKK (AK)? — :—éCKKK (AK)3+ 2—140KKKK (BK)*, (31)

C(K,T) ~ C— a%oszcKK (AT) + %aZCKK + az:—go“K”'CKKKK (AT)?. (32)

The terms o€ andCx remain the same as before, from which we obWin- wyg +w, = 1 andw, = wy =

(1—wc) /2. Matching theCxk terms, we have,

1+ ?;22—?; = (1—we)d? — aw (1— G%AT) ,
from which we can solve fo,,
We = olSI 2+_al++ogh’ (33)
where
h= —%AT - (04— éz—i - %oﬁK - %oﬁKK2> AT, (34)

which is a function of the local volatility level, its slopdoag the term structure and strike dimension,
its curvature along the strike dimension, and the matutisyance between the target option and the hedge
options for the two outside strikes. Thus, by matching higirder terms, the portfolio weights are modified
by the higher-order terh. When the local volatility is flat across strike and matyrity= o*T becomes a
very small term and can be safely ignored. When the localiigtasurface is heavily skewed across strike

or is having a steep term structure, the adjustment can kesagnificant.

Finally, if we are free to choose the strike spacing, we caa alatch the higher-order tel@xkxk term

by setting,
d*—3

We= @@ 3az’

(39)
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Combining [3B) and (35), we can solve the standardizedesslacing that matches the higher-order term,

dzzm (1—ot+\/(1—0‘)2+gd(l—h(l—0())>7 (36)

which is a function of the relative maturity spaciogand the ternh, which is proportional to the maturity

spacingAT.

When we ignore the higher-order telmand setn = 0 and hence all three strikes in the hedge portfo-
lio fall on the same maturity, we haw® = 3, the same as the result from the Hermite-Gauss quadrature
approximation in Carr and Wu (2002). Therefore, in the safsaatching leading-term expansion errors,
the quadrature strike choice is optimal. On the other harignwthe three maturities are equally spaced

T—T,=T,— T and hencex = 1, we haved? = /3.

It is important to realize that the optimal strike spacing38) is derived under strong assumptions to
remove theCkkk term, and thus shall not be taken literally. Nevertheldss derivation shows the potential

of further reducing the hedging error by appropriate stsiiacing choice.

To show the prospect of the expansion error cancelationrél@ plots the leading-term expansion error
of the hedged portfolio as a function of the standardizeilesspacing measum. The plots are computed
from the Black-Scholes model with= 0.25, zero rates, and with the maturity choic&s (o, T) being one,
two, and six months, respectively. The three lines reptebeee different target option strikes kat= $90
(dashed line), $100 (solid line), and $110 (dash-dotted)/inelative to a normalized spot price level of
$100. The plots highlight the prospect of choosing strikecgm judiciously to eliminate the leading-term

expansion errors of the hedged portfolio.

[Figure 2 about here.]
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3. Numerical Experiments Based on Commonly Specified Dynarcs

We gauge the performance of our proposed hedging stratedgr weveral commonly specified security
price dynamics. First, we analyze how the strike spacingceraffects the hedging performance under each
strategy. Then, we compare the hedging performance of ffexatit strategies with one another and with

daily delta hedging with the underlying futures.

3.1. Data-generating processes

We consider four data generating processes: the Blackik&cmodel (BS), the Merton (1976) jump-
diffusion model (MJ), the Heston (1993) stochastic valgtinodel (HV), and the jump-diffusion stochastic
volatility model of Huang and Wu (2004) (HW). The time-sars&ock price dynamics are governed by the

following stochastic differential equations,

BS: d§/S = pdt+odW,

MI: dS/S = Hdt+OdW -+ fpo(e— 1) (v(dxdt) —An()dxelt),  n(x) = —A—exp(—~FE).,
HV: dS/§ = pdt+ /WmdW,

HW: dS/S = pdt+ /%AW + fro (v(dxdt) —wAon(x)dxdy),

dé = K(B—w)dt—w,/4dZ, E[dZdW]=pdt,
(37)

whereW denotes a standard Brownian motion in all four models. Tharddel also incorporates a com-
pound Poisson jump component, where we wgkx, dt) to denote the counting measure for the junip$,

to denote the real line excluding zero, ak{x)dxdt to be the compensator, with measuring the mean
jump intensity or arrival raten(x) denotes a normal probability density function capturing jimp size
distribution in log return conditional on a jump occurringnder the Heston (HV) modeZ; denotes an-
other standard Brownian motion that governs the randomofege instantaneous variance rate. The two
Brownian motions have an instantaneous correlatiop. ofhe HW model combines HV with MJ and al-
lows the jump arrival rate to be proportional to the instaetaus variance ratd; = Agv;. The HW model

is labeled as MJDSV3 in Huang and Wu (2004), who show that théeinperforms better in pricing S&P
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500 index options than does a similar model with constanpjamival rate proposed by Bates (1996) and

Bakshi, Cao, and Chen (1997).

The four processes are carefully chosen for our analysie B and MJ models serve as static pure
diffusion and jump-diffusion benchmarks, respectivelj)ereas the HV and HW models allow stochastic
volatility for the two benchmarks. Option prices under th® Biodel can be readily computed using the
analytical Black-Scholes option pricing formula. Undee tdJ model, option prices can be computed as
a Poisson-probability weighted sum of the Black-Scholemtdae. For HV and HW, option prices are

computed numerically through fast Fourier inversion ofdhalytical return characteristic function.

To simulate the data-generating processes and price spiioeach simulated path, we need to choose
appropriate values for the model parameters. To make tHgsésmaomparable to our historical analysis on
the S&P 500 index (SPX) options in the next section, we sep#tameter values to those calibrated to the
SPX options market. Specifically, we perform daily calimatof the HV model and the HW model on SPX
options from January 1996 to March 2009, and use the samplages of the daily parameter estimates
for the simulation analysis. The parameters for the BS madédlthe MJ model are adopted directly from
the corresponding parameters from the HV and HW modelseotisply, with the constant volatility level
set to its long-run mean estimate. Table 1 reports the paesmalues used in our analysis. Estimating
the HV model generates an average long-run mean volatility®= 22.77%, an average instantaneous
volatility rate level of,/\y = 18.64%. The difference between the two implies an average upslaping
implied volatility term structure. The average mean-rei@r coefficient is ak = 3.7863, corresponding
roughly to quarterly frequency (k). The average volatility of volatility coefficient estingais quite large
at w = 0.9095, which contributes to the curvature of the implied tilitg smile. Finally, the average
correlation between return and return variance is stronglyative aijp = —0.6824, consistent with the

strongly negatively skew observed in the implied volatismile on SPX options.

By adding a jump component in the HW model, the average longmean volatility of the diffu-

sion component becomes lower\d@ = 18.69% because the jump component also contributes to the total

volatility level, which is at\/e(1+)\o(u12+012)) = 22.44%, very close to the HV estimate. The average
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jump frequency is\g8 = 0.4995, about one jump every two years. Conditional on a junquming, the
average jump size in return j§ = —10.21%, with a standard deviation of; = 14.32%. The large neg-
ative jump size contributes to short-term implied volatilskews in the SPX options, and the jump size
uncertainty ¢;) adds curvature to the skew. With the jump component, batmtean-reversion coefficient
and the volatility of volatility coefficient average lower a= 1.8766 andw = 0.3811, respectively. The

return-volatility correlation remains strongly negatagp = —0.7564.

The daily calibration on SPX options generates parametana&®s under the risk-neutral measure.
To obtain the corresponding values for the statistical ggec we assume zero risk premiums by setting
M =r —q, and use the same set of parameters both for simulating thplsgaths and for option pricing.
During this sample period, the S&P 500 index started at §1vent over 1500 in year 2000 and 2007, but
ended the sample at 822.92. The average ex-dividend retuttmedndex over the sample period is 2.17%.
The interest rateg’) and dividend yieldsd) underlying the option contracts average at 4.17% and 2.58%

which we use as constants for the simulation and optionrici

3.2. Monte Carlo procedures

In each simulation, we generate a time series of daily upiterlsecurity prices according to an Euler

approximation of the respective data generating procdss sfarting value for the stock price is normalized
to $100, and the starting values of the instantaneous @iadaies for the HV and HW models are also fixed
to the average values in Talgle 1. We consider a hedging modzone month and simulate paths over this
period. We assume that there are 21 business days in a mantie donsistent with the historical analysis

in the next section, we think of the simulation as startingadiWednesday and ending on a Thursday four
weeks later, spanning a total of 21 week days and 29 actual dée security price moves according to the

data-generating processes in equation (37) only on week day

Figure[3 plots the 1,000 simulated sample paths for the ggquice under each of the four model
environments. The pure diffusive models BS and HV generaistljn small price movements, whereas

large discontinuous movements are apparent under the Mdahohodel environments.
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[Figure 3 about here.]

The HV and HW models also generate stochastic volatility.plwethe corresponding simulated sample
paths for the instantaneous return volatilityt, in Figure[4. Given the large volatility of volatility coef-
ficient under the HV model, several volatility sample pathigte lower bound of zero. By incorporating
jumps in the security price dynamics, the estimated stdicheslatility dynamics under HW model look

more well-behaved.
[Figure 4 about here.]

At each week day, we compute the relevant option prices basdide realizations of the security price
and the instantaneous variance rate, as well as the modehdgs We monitor the hedging error (profit
and loss) at each week day based on the simulated secuttyqd the option prices. The hedging error
at each datg, g, is defined as the difference between the value of the hedg®lpmand the value of the

target call option being hedged,
3
a = ijQ(Kj,Tj)—Q(K,T). (38)
=1

Since the portfolio is derived using Taylor expansion, thigidl values of the hedging portfolio and the
target option may not be exactly the same. We remove thiglinglue mismatch through a proportional

scaling of the three portfolio weights.

We hold this portfolio statically for one month and investig the hedging error during the process and,
in particular, at the end of one month. Our portfolio weighits stable over time as they depend mainly on
the structural features of the option contracts such astilike price and the relative expiration distarme
To the extent that the local volatility estimates vary overe, the standardizatiord) of the strike spacing
varies accordingly and so should be the portfolio weighisveMtheless, we regard these variations as small

and hold the portfolio weights fixed for the whole month whiteestigating its hedging performance.

We assume that option contracts are available at a finite auoflstrikes and maturities. That is, these
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contracts can be traded at observable market prices. Wadexblid-ask spreads from our analysis. The
target option choice and hedging portfolio formulation allefrom this pool of available option contracts.
To compute the portfolio weights, we estimate the local tilitha by interpolating the implied volatility

surface constructed from the finite number of option obgEms.

At the start of each simulation, we assume that options aitaéle at maturities of one, two, three, six,
and 12 months, and that option strikes are centered aroendatimalized spot price of $100, and spaced
at intervals of $1, $1.5, $2, $2.5, and $3 for the five mawsitirespectively. The assumed strike spacing
increase with maturities match the behavior of SPX optioasket, where the strike spacing averages from

$10 to $30 on an underlying index level of about $1,000.

We set the target option strike at the cerfe 100, and consider three types of maturity-strike place-
ments for the hedge portfolio: (A) Symmetric maturitydetritriangles pointing to short maturity, with
T. < To < T, (B) symmetric maturity-strike triangles pointing to lontaturity, withT, < T, < T, and (C)

a line of three strikes at the same maturity € T). Figure5 plots schematically the maturity-strike place-
ment for each type. Within each type, we form ten distinggetsthedge maturity combinations out of the

five available maturities. For each maturity combinatior, also have many flexible choices on the strike
spacing. Through this extensive simulation exercise, weesto gain a better understanding on the depen-
dence of the hedging performance on maturity-strike placgmatterns, target-hedge maturity distances,

and strike spacing.

[Figure 5 about here.]

3.3. Optimal strike spacing choice

For each maturity combination under each of the three ntgtsiiike placement types (A), (B), and (C), we
analyze the effect of strike spacing on the hedging perfaomathrough which we determine the optimal
strike spacing choice. Given the potential instabilityla# portfolio weight wheml < 1, we start at an outer

strike choice close td = 1 and then progressively move to the next available strikbéu away fronK. We
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perform the simulation for each strike spacing choice andneethe hedging errors from 1,000 simulations.
We measure the hedging performance by comparing the tdrmoimtamean squared hedging error (RMSE)

at the end of the one-month hedging exercise.

Figured @-8 plot the terminal RMSE as a function of standadlistrike spacing under each maturity
combination and each underlying dynamics for the three ntgtsirike placement types (A), (B), and (C),
respectively. Each figure is for one type. In each figure, eastrepresents one model environment, which
contains ten lines grouped into three panels, with eachdipeesenting one particular maturity combination.
The legend shows the combination of maturities in monthsignsequence ofT{, Ty, T) in cases (A) and

(B), and {T},, T) in case (C).

[Figure 6 about here.]

Figurel6 represents the type of the maturity-strike triarmglinting to the shorter maturity. The maturity
combinations in each panel are ranked according to theuelataturity spacing measucefrom high to
low for the solid line, dashed line, dash-dotted line, antharight panel, the dot-cross line. The three lines
in the left panels all use one- and two-month options to fdrettiangle to hedge three-, six-, and 12-month
options, respectively. The relative maturity spacing meag is at one (solid line), 0.25 (dashed line), and
0.10 (dash-dotted line), respectively. Under all four misdie solid line reaches the minimum RMSE at a
narrower strike spacind than the other two lines with lower. We label the standardized strike spacing at

the lowest RMSE as the optimal strike spacidg,

The three lines in the middle panels all use one-month ogtahe center strike and either three- or
six-month options at the outer strikes to hedge six- or 12dim@ptions. The relative maturity spacing is
at 5/6 (solid line), 23 (dashed line), and/® (dash-dotted line), respectively. The four lines in thghti
panels use two-, three-, and six-month options to hedgeasid-12-month options, the relative maturity
spacing is at 23 (solid line), %/2 (dashed line), A3 (dash-dotted line), and/@ (dot-cross line). Under BS
and MJ models, the optimal strike spacing shows a clearasang pattern ag declines, but there are some

exceptions to this pattern under the HV and HW models.
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FigurelT represents the case of the maturity-strike Isesdghngle pointing to the longer maturity. The
allocation of each line corresponds to that in Figdre 6, pixaath a switch betweeii, andT,. As a result
of the switch, the relative maturity spacing measurese all negative, and the ranking from solid to dotted
lines is from low (more negative) to high (less negatiwe) he ranking of the optimal strike spacing across
different lines also switch, with the solid lines (with maregativea) showing wider optimal strike spacing
and the dotted lines (with less negatig showing narrower optimal strike spacing. This rankingexat

stays reasonably consistent across all four models.

[Figure 7 about here.]

Figure[8 represents the degenerate case, in which all timigessin the hedge portfolio fall on one
maturity. In this casey = 0 for all hedge-target maturity combinations and hencenbitonger the relevant
measure for comparison. The left panels contain four lingls the hedge options at one month and the
target options at increasingly longer maturities from ormth (solid line) to three (dashed line), six (dash-
dotted line), and 12 months (dot-cross line). The optimakestspacing decreases as the distance between
the two maturities widen. The middle panels contain threesliwith the hedge options all at two-month
maturity and the target options at increasingly longer mii#s of three (solid line), six (dashed line), and 12
months (dash-dotted line). Again, the optimal strike spad* declines as the maturity distance increases.
The right panel groups the remaining three lines with hegig®is at three or six months and target options
at six or 12 months. The distance between the target and logdige maturity seems to play the same role

as before in determining the optimal strike spacing.

[Figure 8 about here.]

Recall that the CW three-strike static strategy belongsitodegenerating case of three strikes on one
maturity, except that the strike spacing in the CW strategpre-determined by the quadrature rule to be
d = /3. However, the simulation exercises in Figliie 8 show that /3 is rarely the optimal choice

that generates the lowest root mean squared hedging errgrarticular, under most simulated maturity
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combinations for all four models, the optimal strike spgamlower than the CW choice. Thus, even in this

degenerating case, we can outperform the CW strategy ed@sibetter choice of strike spacing.

Table[2 summarizes the optimal strike choice (the stanzeddstrike spacing* and the dollar strike
difference), the corresponding portfolio weight on theteerstrike (vc), and the associated hedging per-
formance (RMSE at the end of one month) under each of the 3tagos and for each of the four model
environments. To quantify the observed dependence of thmalpstrike spacing on the relative maturity
spacing, we aggregate the results from all 30 maturity coatlins under each model environment and

perform the following regression analysis,

d*=a+ba+c(T,/T)+e (39)

wherea captures the relative spacing between the two hedge mesuaitd( T, /T) capture the relative spac-
ing between the target and the hedge options. The choiceaxplanatory variables is largely motivated
by our leading-term hedging error analysis in Secfion 2@ @ur observations of the simulation results in
Figured @-8. The regression results are summarized in Bablde regression explains about 90% of the
variation under the BS model, 95% under the MJ model, but@xed at about 70% when the volatility
is stochastic under HV and HW. Under all four model environtagthe dependence of the optimal strike
spacing on the two explanatory variables is similar. Thenogit strike spacing declines with increasing
relative maturity spacing between the hedge option)sgnd it also declines with increasing relative matu-
rity spacing between the hedge and the target opti@)sT(. As the ratio becomes smaller and hence the
distance becomes larger, the optimal strike spacing beesmaller. The standard errors of the coefficients
also become larger in the presence of stochastic volatilityese estimated relations can guide our strike

space in practical applications.

3.4. Hedging performance comparisons

To understand how the hedging performance varies acrdssatif maturity-strike scenarios, Figlde 9 plots

the root mean squared hedging error as a function of a matlistance measurd (T,) between the target
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and the hedge options. For hedge portfolios spanning twairntias, Ty, represents the weighted average
maturity of the hedge portfolio. The plots show that as thgafoption becomes further away from the
hedge options, the hedging error increases. The soliddim@sents a nonparametric fitting of the increasing
relation, which highlights the virtue of hedging with “negf contracts. The increasing relations are quite
clear under the BS and MJ environment, but become much ndistbe presence of stochastic volatility
under the HV and HW model environments. The hedging err@siso larger in the presence of stochastic

volatility.

[Figure 9 about here.]

To gauge the relative effectiveness of our proposed hedgliragegies, we also compare their perfor-
mance to the performance of delta hedging using the underiytures with daily rebalancing frequency.
Delta hedging with daily frequency represents the commawtpre of the industry. Following each simu-
lated sample path, we compute the Black-Scholes delta dfjitien at its current implied volatility level
at each date and rebalance the futures position accorditrglyrinciple, one can compute the delta based
on the underlying security price dynamics. Yet, since itmssdo not know the exact dynamics for the
underlying, we follow the common industry practice by usthg Black-Scholes formula to compute the
delta at the observed implied volatility level of the optidrne hedging error at each datean be computed

as,

a = Ba€"+4M 1(R—FR_1)—C(S,LK,T), (40)

where/; denotes the delta of the target call option with respecteditures price at timg h denotes the
daily time interval between stock trades, @gddenotes the timé-balance in the money market account.
The balance includes the receipts from selling the targebption, less the cost of initiating and possibly

changing the hedge portfolio.

Table[4 reports the root mean squared hedging error aftemmmeh of daily delta hedging on four

different target options under the four different modelimmwments. The delta hedging works remarkably
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well under the Black-Scholes environment, with RMSE ragdgiom 0.08 to 0.21, but the hedging error
increases by several folds once we include jumps and stidckafatilities in the dynamics. For all models,

the hedging error tends to be larger on shorter-term cdstgigen the higher gamma on these options.

Comparing the delta hedging performance in Table 4 withftioaih our static three-strike portfolios in
Figure[9, we observe that under the BS model, to outperfoita dedging on the two-month option (with
RMSE of 0.21), we need a maturity raffg’' T, less than six times for our three-strike strategy. For examp
a line of three strikes at one month will perform dramaticaktter by generating an RMSE of 0.04. To beat
the delta hedging performance on the three-month optiom RMSE at 0.17, any strategies with' T, less
than five will surface. For example, the maturity-strikeutigle with center strike at one-month and outer
strikes at two-month maturity generates an RMSE of merd)2.0Beating the delta-hedging performance
on the 6-month option at RMSE of 0.12 and the performance emd2th option at RMSE of 0.08 become
harder as we need further reduce the target-hedge matistgndeT /T, to be within three or two. For
example, using a two-month option at the center strike amdthree-month options at the outer strike to
hedge the six-month option generates an RMSE of 0.05; usthgea-month option at center strike and
two six-month options at the two outer strikes to hedge thenddth option also generates an RMSE of
0.05. These examples show that under the BS model envirdnmnstatic strategy with three options
can outperform the delta-hedging if we choose the hedgerptiaturities not too far away from the target

option maturity.

When we allow jumps in the security price dynamics under therivbdel, the delta-hedging perfor-
mance deteriorates dramatically. The RMSE is between 0.4386. In this case, any of the 30 simulated
maturity-strike combinations can outperform the deltdgieg strategy, even when the target option matu-
rity is 12 times as large as the hedge option maturity. Theimmax RMSE from the 30 combinations is

0.25, when we hedge the 12-month option with three one-mayptilbons.

In the presence of stochastic volatility under HV, the dakaging performance also deteriorates dra-
matically. The RMSE is between 0.68 to 0.95. By contrastwibest performing combination out of our

30 simulated case has an RMSE of 0.59 from the line of thrédeestat one-month maturity to hedge the
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six-month option.

The delta-hedging performance further deteriorates whemwaorporate both stochastic volatility and
discontinuous price movements in HW, the RMSE is betwee artl 1.08. By contrast, the largest root
mean squared hedging error from our three-strike statigdnedmbinations is 0.54, again from the line of

three strikes at one-month maturity to hedge the six-moptioo.

To visualize the performance difference under differentdeti@nvironments, Figulde 110 plots the the
simulated sample paths of the hedging errors on the 12-mapttbn hedged with (i) daily delta hedging
with the underlying futures and (ii) the maturity-strikéatrgle with the center strike at two-month maturity
and the outer strikes at one-month maturity. The delta imgdgf the 12-month option generates the best
delta-hedging performance among the four candidate tapj&ins. On the other hand, the chosen triangle
is the farthest away from the target option in terms of matutistance. Thus, we are comparing the best

scenario from the delta hedging with the worst scenario faomaturity-strike triangle.
[Figure 10 about here.]

Under the BS model environment, the delta hedging genesmtedler average hedging errors with
an RMSE of 0.08 whereas the RMSE from the triangle is 0.21taEfddging of a short option position
remains short in gamma and as such, the hedging error didbribis negatively skewed: One loses money
whenever there is big movements. By contrast, the triangheates positive skewness in the hedging error

distribution. By long the triangle, the hedged portfolicsharned positive in gamma instead.

Under the MJ model environment, whenever the underlyingrigcprice experiences a large jump of
either direction, the delta-hedged portfolio experiendarge negative error. The hedging error is strongly
negatively skewed, and the hedging loss can be as high asyb6orBrast, the original receipt from the
sale of the 12-month target option is only 9gta)n the other hand, the triangle hedges both the small and
large moves well and generate a reasonably symmetric fgpégiar distribution, as the hedging errors are

constrained on either side. The maximum loss is less thahiiereas the maximum gain is less than $0.7.

3The initial value of the 12-month target option is 9.55 unither BS model, 8.38 under the HV model, and 8.30 under the HW
model.
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The terminal RMSE is 0.43 from delta hedging versus 0.16 filwertriangle.

Under the HV model environment, the terminal RMSE is 0.68aelta hedging versus 0.26 from the
triangle. In particular, the hedging error from the trismgkdge grows more slowly than that from the delta

hedge, especially at the first two weeks.

Under the HW model environment that includes both jumps #ochastic volatility, it is the jumps that
generate the largest hedging errors for delta hedging. Bir&st, the triangle hedge remains stable in this

environment. The terminal RMSE is 0.86 for delta hedginguer0.41 for the triangle.

Figure[11 compares the cumulation of the RMSE over time fertiho strategies, with the solid line
for the maturity-strike triangle and the dashed line for ded¢ta hedging. To ease the comparison, we use
the same scale for all four panels. The comparison revealsrajor points. First, the triangle generates
higher RMSE’s than the delta-hedging under the BS enviroyrimut performs better in all other model
environments. Second, the delta hedging generates verly BRM&E under the BS model, but the error
increases drastically in the presence of jump and/or stticheolatility. The terminal RMSE increases by
over 10 times from 0.08 to 0.86 as the model environment kestdrom BS to HW. By contrast, the triangle
hedge performance is much less sensitive to variationsimitdel environment. The terminal RMSE stays

within a narrow range from 0.16 to 0.41 as the environmenhgés.

[Figure 11 about here.]

These simulation exercises show that our proposed thn&e-static hedge dominates the daily rebal-
ancing delta hedging in terms of the root mean squared hgdgiors. Furthermore, although our hedge
portfolios are derived using Taylor expansions of nearltjooontracts, due to the expansion error cance-
lation between the target option and the hedge portfolie® strategy works well even when target option is
far away from the hedge portfolio. In particular, even wheatarget option maturity is over ten times longer
than the average maturity of the hedge portfolio, the heglgerformance remains better than the perfor-
mance from the delta hedging benchmark, especially wheurtterlying dynamics include the commonly

observed features such as discontinuous price movememhtg@ehastic volatility.
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Finally, since our strategy allows extremely flexible clesiin both strikes and maturities, market makers
can use our proposal to judge and act on incoming order flowsalancing the transaction benefit with
hedging efficiency. Risk managers can also judiciously shamption contracts to balance the risk of the

option portfolio while minimizing transaction cost.

4. A Historical Hedging Exercise on S&P 500 Index Options

In this section, we investigate the historical performaateur strategies in hedging the sale of S&P 500
index options. We obtain data on S&P 500 index (SPX) optioosflanuary 1996 to March 2009. These
options are standard European options on the spot indexraniised at the Chicago Board of Options
Exchange (CBOE). The data set includes, among other intmmathe closing quotes on each options

contract. Our hedging exercises are based on the mid optios guotes.

Our historical analysis on SPX options is in parallel wite #imulation exercise in the previous section.
Over our sample period, we identify 158 starting dates framuary 17, 1996 to February 18, 2009, when
there are options expiring exactly 30 days after. Since &R S00 index options expire on the Saturday
following the third Friday and the terminal payoff is comgdtbased on the opening price on that Friday
morning, trades and quotes on the expiring options effelgtistop on the preceding Thursday, and our cho-
sen starting dates in each month all fall on a Wednesday. &t starting date, we form hedging portfolios
and hold the portfolios statically for 30 days. We computmsiary statistics on the hedging errors based
on the 158 repeated exercises. The hedging errors fromeaitises are normalized to be in percentages of

the index level at the start of the exercise.

From each starting date, options are always available atmmmh maturity (31 days) by design. Two-
month options are also available for all starting datesthreiimaturity availability after the two-month ma-
turity varies across starting dates. For our hedging esereve classify options into four maturity groups:
(i) one-month options (31 days), (ii) two-month options (%66 days), (iii) options with maturities three
to five months (87-157 days), and (iv) options with matusiggound one year (276-402 days). For conve-

nience, we refer to the latter two groups as four-month anth@fth options, respectively. Based on the
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four maturities groups, we can form 14 target-hedge paatilaturity combinations, with four satisfying

To < Te < T, four satisfyingT, < T, < T, and the remaining six satisfyiny = T, < T.

In each of the 14 combinations, we choose the target optitte stlose to the spot level. To choose
the strike spacing for the hedging portfolio, we use theasgjon results in Tablé 3 under the HW model to
estimate the optimal strike spacidg as a function ofx andT,/T. Choosingd* based on the simulation
results from the other three models generates similartees@ivend*, we computeAK and the portfolio
weight based on the local volatility estimaiéK, To) and the maturity placement Then, we choose the

three available strikes for the hedging portfolio that dosest to the projected optimal strike spacing.

Figure[12 plots the terminal root mean squared hedging &owor the 14 different maturity-strike com-
binations. The hedging errors are larger than the four sitadicases in Figuié 9 due to constraints on strike
availability and the possibility that the SPX index dynasice more complicated than those simulated. For
comparison, we also perform the delta hedging with the uyidegrfutures with daily rebalancing. The root
mean squared hedging errors on two-, four-, and 12-montlrapare 0.63, 0.63, and 0.66, respectively.
Of the 14 maturity combinations for our static strategyydhkee generate root mean squared errors larger
than 0.63. In particular, our static strategy performsdredt long as the target option maturity is less than

five times the average hedge option maturity.

[Figure 12 about here.]

We follow both strategies for 29 actual days, running fromgtarting date to the Thursday of the fourth
following week, the last day of trading for the one-monthiops used in the static hedge. Figlre 13 plots
the sample paths of the hedging errors from selected sieategihe three panels on the left side are from
maturity-strike triangles hedging from top to bottom twieur-, and 12-month options. The three panels on
the right side are from daily delta hedging of the same tawgébn. The hedging errors from the triangles

are visibly smaller over the whole sample paths than that fitee daily delta hedge.

[Figure 13 about here.]
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5. Concluding Remarks

Most existing hedging methodologies are based on neutrglisk exposures defined under a pre-specified
model. In this paper, we propose a new hedging approach loestek affinity of the derivative contracts.
As a result, the formulation of the hedging strategy doesdepend on the assumptions on the underlying
risk dynamics, but only depend on the strike and maturityhefdption contracts available for forming the
hedge portfolio. In hedging a target option, we focus on kegglgrtfolios of three options at three different
strikes and two different maturities that form a stable mpstrike triangle, and we derive the portfolio
weights for the hedge portfolio as a function of the strikd araturity spacing of the triangle relative to the
target option. Numerical analysis under commonly propesedirity price dynamics shows that the hedging
performance of our methodology based on static positiorieree options compares favorably against the
dynamic delta hedging strategy with daily rebalancing. drtipular, when many strikes are available for
forming the hedging portfolio, we can choose the strike sppgudiciously to further optimize the hedging
performance, making the strategy work well even when theiritigs of the target and hedge options are far
apart. A historical hedging exercise on S&P 500 index opfiother highlights the superior performance

of our strategies.
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Table 1

Model parameters used in the simulation analysis

Model V0 Ao Hj o] Vi K 0 p
BS 02277  — — — — — — —

MJ 0.1869 14.30 -0.1021 0.1432 — — — —

HV 0.2277 — — — 0.1864 3.7863 0.9095 -0.6824
HW 0.1869 14.30 -0.1021 0.1432 0.1650 1.8766 0.3811 -0.7564
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Table 2

Hedging performance at different maturity-strike placements and model environments
Entries report the root mean squared hedging error (RMSE) ahe month under different scenarios, with the strikesgachosen to minimize the RMSE.
The table also reports the strike spacidf§ &andAK) and the center strike weightf) for each corresponding hedging portfolio.

Maturity\Model BS MJ HV HW
T To T d* AK  w. RMSE d AK w; RMSE d  AK w. RMSE d  AK w. RMSE

3 114 75 0.13 0.02 116 7.0 0.15 0.05 0.67 35 -0.38 0.22 66 0.3.5 -0.40 0.18
6 129 17.0 0.35 0.13 129 155 0.35 0.14 1.29 135 0.35 0.522.17 125 0.23 0.49
12 1.27 26.5 0.36 0.29 1.24 235 0.32 0.23 124 205 033 504119 200 0.27 0.50
6 1.14 13.0 0.15 0.06 1.18 125 0.19 0.10 1.08 10.0 0.09 0.4®m.95 9.0 -0.06 0.37
12 1.27 25.0 0.33 0.23 126 23.0 0.32 0.22 125 200 031 104119 195 0.25 0.48
12 1.09 175 0.09 0.07 1.15 175 0.15 0.11 125 175 024 3 03110 155 0.10 0.36
6 1.36 155 0.39 0.05 1.42 15.0 0.43 0.07 1.84 17.0 0.64 0.29.69 6.5 -0.66 0.37
12 1.42 28.0 0.48 0.17 1.36 25.0 0.44 0.15 144 230 049 302137 225 044 0.39
12 1.21 195 0.22 0.06 1.21 185 0.22 0.09 161 225 049 102135 19.0 0.33 0.33
12 1.27 205 0.29 0.05 135 205 0.35 0.08 176 245 058 501164 23.0 0.53 0.26

3 1.77 165 0.81 0.04 1.72 145 0.80 0.04 225 165 0.89 0.18..83 135 0.82 0.18
6 156 23.0 0.64 0.12 1.47 195 0.59 0.10 1.72 20.0 0.71 0.3@.50 175 0.61 0.39
12 1.47 32.0 0.56 0.21 134 265 047 0.16 142 245 053 6 02133 23.0 0.46 0.41
6 1.70 25.0 0.76 0.08 158 210 0.71 0.06 1.81 21.0 0.79 0.161.71 20.0 0.76 0.25
12 1.56 34.0 0.64 0.16 1.44 285 0.57 0.12 1.48 255 0.59 0.1144 250 0.57 0.31
12 1.79 39.0 0.80 0.07 160 315 0.74 0.06 154 265 071 6 00162 28.0 0.75 0.13
6 1.71 225 0.72 0.06 162 195 0.68 0.06 1.87 195 0.77 0.15..78 19.0 0.74 0.25
12 159 33.0 0.63 0.14 142 27.0 0.583 0.12 146 24.0 0.55 0.1145 245 0.55 0.31
12 1.78 37.0 0.78 0.07 1.63 31.0 0.73 0.06 158 26.0 071 500169 285 0.76 0.13
12 1.80 355 0.77 0.06 1.64 30.0 0.72 0.06 162 260 071 500174 285 0.75 0.12

(o2}

(&)

2 152 10.0 0.57 0.04 151 9.0 0.56 0.07 183 95 0.70 0.42 53 1.8.0 0.57 0.26
3 1.45 135 0.53 0.10 143 120 0.51 0.11 1.63 12.0 0.63 0.581.35 10.0 0.45 0.40
6 1.36 20.0 0.46 0.21 1.32 175 042 0.18 142 165 0.50 0.59.24 145 0.35 0.54
12 1.33 29.0 0.43 0.32 124 245 0.35 0.25 128 220 039 7 04115 20.0 0.25 0.53
3 152 10.0 0.57 0.01 1.66 10.0 0.64 0.03 269 140 0.86 0.12.06 11.0 0.76 0.17
6 152 20.0 0.57 0.09 145 175 0.53 0.09 1.73 18.0 0.66 0.291.55 16.5 0.58 0.37
12 1.44 30.0 0.52 0.19 1.37 26.0 0.46 0.15 146 240 053 502133 225 0.44 0.40
6 158 18.0 0.60 0.04 161 17.0 0.61 0.05 200 185 0.75 0.131.90 18.0 0.72 0.23
12 1.55 30.5 0.58 0.13 147 27.0 0.54 0.12 153 245 057 401152 250 0.57 0.30
12 1.65 26.5 0.63 0.04 1.64 25.0 0.63 0.05 190 265 0.72 9 00199 28.0 0.75 0.11
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Table 3
Relating optimal strike spacing to relative maturity spacing among hedge and target options
Entries in panel A report results from the following regiess

d*=a+ba+c(Ty/T)+e

where the optimal strike spacing*] is related to the relative maturity spacing between thegbaiptions

a and the relative maturity spacing between the hedge anettapgions(T,/T) under each model environ-
ment. In parentheses are standard errors of the paraméteates. The last column reports the R-squares
of the regressions.

Model a b c R

BS 1.3843  (0.0292) .0.6210  (0.0423) 0.3899 (0.0890) 0.8981

MJ 1.2383  (0.0168) -0.5661 (0.0244) 0.6976 (0.0513) 0.9491

HV 1.0495 (0.0837) 1.0712  (0.1212) 1.9006 (0.2549) 0.7430

HW  1.1082 (0.0886) -0.9661 (0.1283) 1.2072 (0.2697) 0.6623
Table 4

Performance of delta hedging with daily rebalance
Entries report the root mean squared hedging error aftemmmh from delta hedging with the underlying
futures on four different target options with daily rebaleng under different model environments.

T BS MJ HV HW
2 0.21 0.85 0.88 1.08
3 0.17 0.76 0.95 1.07
6 0.12 0.60 0.89 1.02
12 0.08 0.43 0.68 0.86
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Figure 1. Portfolio weight in the maturity-strike triangle as a function of strike spacing.

Lines show the portfolio weight on the center strike.) in the symmetric maturity-strike triangle as a
function of the standardized strike spacing measii@ two maturity rankings: (il < T, < T (solid line)
and (ii) To < T; < T (dashed line). The plots are generated with equal spacimwgebe the three maturities:
a =1 for the solid line andi = —1/2 for the dashed line.
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Figure 2. Expansion error as a function of strike spacing for several &rget strikes.

Each curve represents the leading-term hedging error asxdn ofd, where we assume a Black-Scholes
model witho = 0.25, zero rates, and the maturitids,(To, T) at one, two, and six months, respectively. The
three lines represent target option strike&K at $90 (dashed line), $100 (solid line), and $110 (dash-dotted
line), respectively, relative to a normalized spot leve$b00.
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Figure 3. Simulated sample paths for the security price under differat models.
Lines represent the simulated sample paths for the seqritty under different model environments.
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A. Symmetric triangle pointing to short maturity

Kuf
[<5)
= K[
w
R e T
t To To T
Maturity
B. Symmetric triangle pointing to long maturity
Kuf
2
£ «l
wn
Kdf
t To Tc T
Maturity
C. Aline of three strikes at one maturity
Kuf @
<) ) S~
= Kk} P = 3
n _-"
t Th T

Maturity

Figure 5. Schematic placements of three options to hedge a target opti.

The target option at strikié and maturityT is denoted as a double-layer diamond. The three hedgingrpti
at strikesKq < K < K, are denoted in circles are lined by a solid line, where théeresirike maturity is
denotedT and the outer strike maturity is denotedTgs When all three options in the hedge portfolio are

at one maturity, it is denoted ds.
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Figure 6. Effects of maturity and strike spacing on hedging performarce whenT, < T, < T.
Each row represents one model, which contains ten linegpgrbinto three panels, with each line repre-
senting one particular maturity combinatioR,(To, T) shown in the legend. The maturity combinations in
each panel are ranked according to the relative maturitgisganeasure from high to low for the solid

line, dashed line, dash-dotted line, and in the right panie¢ésdot-cross line.
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Figure 7. Effects of maturity and strike spacing on hedging performarce whenT, < T, < T.
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each panel are ranked according to the relative maturitgisganeasure from high to low for the solid

line, dashed line, dash-dotted line, and in the right panie¢ésdot-cross line.
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Figure 8. Effects of maturity and strike spacing on hedging performarce whenT. =To < T.
Each row represents one model, which contains ten linegpgrbinto three panels, with each line repre-
senting one particular maturity combination of hedgedtaptions Ty, T) shown in the legend.
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Figure 9. Dependence of hedging performance on target/hedge matuyidifference T /Tj,.

We measure the maturity distance as the ratio of the targstromaturity to the average maturity of options

in the hedge portfolio/Ty), and we plot the root mean squared hedging error at optitrilke Spacing as a
function of this maturity ratio. The circles represent migustrike triangles withl. < Ty < T; the diamonds
represent maturity-strike triangles with < T < T; and the squares represent the hedge portfolios of three
strikes at one maturity,, < T. Each panel is for one underlying model.
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Figure 10. Comparing the simulated sample paths for the hedging errors

Lines represent the simulated sample paths for the hedgingseinder the HW model environment from
daily delta hedging with the underlying futures ifbthe ledinel and static hedging with the maturity-strike
triangle with center strike at one month and outer strikesvatmonths.
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Figure 11. Comparing the cumulation of root mean squared hedging erros over time.
The solid lines denote the RMSE from the maturity-strikarigle hedge at different days forward. The
dashed lines denotes the RMSE from daily delta hedge.
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Figure 12. Dependence of hedging performance on target/hedge matuyidifference T /Th.

We measure the maturity distance as the ratio of the targstromaturity to the average maturity of options

in the hedge portfolio/Th), and we plot the root mean squared hedging error on the SEXnspas a
function of this maturity ratio. The circles represent miggustrike triangles withl. < Ty < T; the diamonds
represent maturity-strike triangles with < Tc < T; and the squares represent the hedge portfolios of three
strikes at one maturity, < T.
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Figure 13. Comparing the hedging error sample paths on S&P 500 index opns.

Lines represent the sample paths for the hedging errors dn =& index options from maturity-strike
triangles (left side) and delta hedge (right side). Theahrmembers on top of each panel on the left side
represent the three maturiti€g,(To, T) for the static portfolios.
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