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Abstract

Most existing hedging approaches are based on neutralizingrisk exposures defined under a pre-specified

model. This paper proposes a new, simple, and robust hedgingapproach based on the affinity of the

derivative contracts. As a result, the strategy does not depend on assumptions on the underlying risk dy-

namics. Simulation analysis under commonly proposed security price dynamics shows that the hedging

performance of our methodology based on a static position ofthree options compares favorably against

the dynamic delta hedging strategy with daily rebalancing.A historical hedging exercise on S&P 500

index option further highlights the superior performance of our strategy.
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Give me a lever long enough and a fulcrum on which to place it, and I shall move the world.

— Archimedes, Mathematician and inventor of ancient Greece, 287-212BC

1. Introduction

In hedging derivatives risk, many think like Archimedes, bymaking strong, idealistic assumptions on both

the security dynamics and the trading environment. For example, Black and Scholes (1973) and Merton

(1973) introduce the concept of dynamic hedging by assumingthat the underlying security follows a one-

factor diffusion process and that one can rebalance the hedge portfolio continuously without incurring any

transaction cost. Since then, the idea of dynamic hedging has been extended to multi-factor continuous

dynamics based on continuous rebalancing of a portfolio that includes both the underlying security and

a finite number of derivative securities. The hedging ratiosdepend on the particular assumptions on the

underlying dynamics. Carr and Wu (2002) propose a static hedging strategy on vanilla options by assuming

that the underlying security follows a one-factor Markovian process and that one can deploy an infinite

number of short-term options across the whole continuum of strikes.

In reality, transaction cost is a fact of life, under which both continuous rebalancing and transacting

on a continuum of options lead to immediate financial ruin. One must therefore discretize the rebalancing

frequency under the dynamic hedging approach and discretize the strike continuum under the static hedging

application to balance hedging errors with transaction costs.1 Even more problematic, however, is the fact

that one does not know the exact dynamics of the underlying security and thus cannot fully quantify the

exposures to each risk source. To the extent that the model ismisspecified, hedging errors can result from

either mis-calculating the hedging ratios or missing some risk sources all together. For example, most

dynamic hedging approaches leave the risk of discontinuousprice movements of random sizes unhedged.

Furthermore, both the dynamic delta hedging under the Black-Merton-Scholes (BMS) model and the static

hedging strategy proposed by Carr and Wu (2002) leave volatility risks unhedged.

1Under the Black-Merton-Scholes model environment, the dependence of the delta hedging error on the discretization step has
been studied extensively in, for example, Boyle and Emanuel(1980), Bhattacharya (1980), Figlewski (1989), Galai (1983), Leland
(1985), and Toft (1996).

1



Practitioners often perform various ad hoc adjustments to bridge the gap between idealistic theories and

reality. For example, due to transaction cost, continuous rebalancing is often reduced to rebalancing daily

for stock price exposures and opportunistically for volatility exposures. Furthermore, due to uncertainty in

the underlying dynamics, risk exposures are often computedusing the Black-Merton-Scholes (BMS) model,

but risks are managed far beyond the delta risk, even though delta risk is the only risk source under the BMS

model. The vega of the derivative portfolio, i.e., the portfolio’s exposure to volatility risk, is also closely

monitored and managed. In addition, vega risks at differentsegments of the implied volatility surface

are often managed separately, implicitly recognizing thatvolatility risk may have multiple dimensions of

variation that can affect different segments of the impliedvolatility surface differently.2 Such practices may

seem inconsistent with the underlying models used for computing the risk exposures, but they provide a

simple, albeit primitive, mechanism to defend against model uncertainty and against shocks from possibly

multiple, unmodeled risk sources.

In the presence of such uncertainties, the safest way to hedge the risk of a derivative position is to use

nearby, similar contracts, which share similar risk characteristics regardless of the underlying dynamics,

rather than using vastly different contracts while relyingon a model to compute the risk exposure and the

hedging ratio. In this paper, we formalize this intuitive idea and derive a hedging strategy not based on

risk exposures defined in a model, but based on similarities in observable contract characteristics. To make

our idea operational, we focus on European options on the same underlying security and define contract

similarities based on their distance in strike and time to maturity.

We start with a short position in a target option contract, and propose to hedge the target position with

three nearby option contracts. One can in theory choose moreoption contracts to form a more accurate hedge

portfolio, but transaction cost concerns motivate us to focus on a small number. The strikes and maturities of

the three hedging options can be flexibly chosen to balance between contract availability, transaction cost,

and hedging effectiveness. We focus on a strike-maturity triangle formulation in which a center strike is

placed at one maturity and two outside strikes are placed at another maturity. We perform Taylor series

2As a concrete example, a long five-year straddle might be neutralized by a short four-year straddle, but may not be neutralized
by a one-month straddle position. Vegas at different segments of the implied volatility surface are often regarded as exposures to
different risk sources.
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expansions on both the target and the hedging options along the strike and maturity dimension around a

common strike and maturity reference point, and we choose the hedging portfolio weights to match the

different expansion terms in the target option and the hedging portfolio.

The simple maturity-strike triangle becomes a very effective hedge of the target option for several rea-

sons. First, we Taylor expand along the strike dimension to the second order, and we link the second-

order strike derivative (butterfly spreads) to the first-order maturity derivative (calendar spreads) via the

local volatility definition of Dupire (1994). While Dupire first proposes the concept of local volatility in

a one-factor diffusion setting, the notion of local volatility is well-defined under a much more general set-

ting. Rather than regarding it as a model assumption, we use the local volatility to define the empirically

observed relation between butterfly spreads and calendar spreads, without assuming anything about the un-

derlying price dynamics. Through this linkage, we are able to achieve second-order accuracy with merely

three options to match coefficients on three terms: the option value, the first strike derivative, and the first

maturity derivative at the reference strike and maturity point.

Second, we show that our portfolio formulation allows a partial cancelation of the higher-order terms

in the Taylor expansions of the target and hedge options, thus making the hedging errors smaller than the

expansion errors of each target or hedge option. Furthermore, when multiple strikes are available, we can

match higher-order terms between the target option and the triangle hedge portfolio through appropriate

choice of the strike choice for the hedge triangle.

Most importantly, the formulation of our hedging portfoliois completely independent of any assump-

tions on the underlying risk dynamics. We choose the hedgingoption maturities and strikes to balance con-

tract availability, transaction cost, and hedging effectiveness, and we derive the hedging portfolio weights

based on observed option prices, from which we estimate a local volatility at the reference strike and matu-

rity point, while making no assumptions on the underlying risk dynamics and/or the risk exposures of each

contract.

Through extensive Monte Carlo analysis on commonly used stock price dynamics, we show that our

static hedge portfolio with three options can perform much better than dynamic hedge with the underlying
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futures in all model environments. The simulation exercisealso illustrates how one can choose the maturity

and strike spacing for the hedging portfolio to further reduce hedging errors. Applying the strategy to

S&P 500 index options in a historical test also shows that we can form many maturity-strike triangles from

the available option contracts that outperform delta hedging with daily rebalancing. Thus, under practical

scenarios, the triangle is simple and flexible for actual implementation, and robust to dynamics variations.

The option pricing literature mostly starts with a fundamental backward partial differential equation

(PDE), which defines the value of a derivative contract basedon the relations between the exposures of the

contract to various risk sources. For example, under the Black-Scholes-Merton model and assuming zero

rates, the theta (time derivative) of an option is linearly related to the delta (stock price derivative) and dollar

gamma (second stock price derivative) of the option. In the presence of stochastic volatility, vega (volatility

derivative), vanna (cross derivative of volatility and price), and volga (second volatility derivative) also

come into the backward PDE. Such backward equations define how the risk sensitivities of the derivative

contracts link to each other and form the basis for risk-exposure-based hedging approaches. By contrast, our

hedging result is built on the forward PDE that relates option derivatives against maturities and strike prices.

By exploiting the forward equation, we can match more terms with fewer options. Even if the dynamics

underlying the original forward PDE of Dupire (1994) does not hold, we can still use it as a definition for

local volatility, through which the maturity derivative and second-strike derivative are linked. To the extend

this linkage (and hence the local volatility) is stable overtime, better static hedging performance can be

achieved by matching second-order strike derivatives.

Since we kept our portfolio weights fixed over the life of the hedging exercise, our hedging approach

is the most closely related to the static hedging proposed byCarr and Wu (2002), who use a continuum

of short-term options to completely span the risk of a long-term option under the assumption of a one-

factor Markovian setting. Since using a continuum of options is not feasible in practice, they also propose

a quadrature method to approximate the continuum with a small number of options. We show that their

three-strike approximation coincides with a degenerate special case of our maturity-strike triangle, in which

all three options in the hedge portfolio lie on one maturity.
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In other related literature, the effective hedging of derivative securities has been applied not only for risk

management, but also for option valuation and model verification (Bates (2003)). Bakshi, Cao, and Chen

(1997), Bakshi and Kapadia (2003), and Dumas, Fleming, and Whaley (1998) use hedging performance to

test different option pricing models. Kennedy, Forsyth, and Vetzal (2006) and Kennedy, Forsyth, and Vetzal

(2009) sets up a dynamic programming problem in minimizing the hedging errors under jump diffusion

frameworks and in the presence of transaction cost. The ideaof static spanning, on the other hand, started

with the classic works by Breeden and Litzenberger (1978), Ross (1976), Green and Jarrow (1987), and

Nachman (1988). These authors show that a path-independentpayoff can be hedged using a portfolio

of standard options maturing with the claim. More recently,Carr and Chou (1997) considers the static

hedging of barrier options and Carr and Madan (1998) proposes a static spanning relation for a general

payoff function by a portfolio of bond, forward, European options maturing at the same maturity with the

payoff function. Starting with such a spanning relation, Takahashi and Yamazaki (2009a,b) propose a static

hedging relation for a target instrument that has a known value function.

The remainder of the paper is organized as follows. The next section defines the hedging procedure, and

derives the optimal weights for the maturity-strike triangle hedging portfolio. Section 3 provides a numerical

study on the effectiveness of the hedging strategy and how the effectiveness varies across different maturity

combinations and strike spacing choices. Section 4 appliesthe hedging strategy to a long history of S&P

500 index options. Section 5 concludes.

2. A New Theoretical Framework for Hedging with Nearby Contracts

To make the idea concrete, we start at timet with a unit short position in a European call option with strike

K and expiryT, and we consider hedging this option position by using a small number (three, to be exact)

of European call options at nearby strikes and maturities. When necessary, put-call parity can be applied

to switch call options to put options. In the absence of transaction cost, one can in principle form a hedge

portfolio with more options to achieve better hedging performance; nevertheless, practical transaction cost

concerns motivate us to limit to three options in forming thehedge portfolio.
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2.1. Assumptions and notations

We useC(K,T) to denote the time-t value of a call option at strikeK and expiryT. To avoid notational

clustering, we assume zero rates and suppress the dependence of the call option value on calendar timet,

the spot priceS, and other potential risk sources, as long as no confusion shall occur.

Given observed option prices across different strikes and maturities, we define the local volatility surface,

σ(K,T), via the Dupire (1994) equation in terms of the partial derivatives of the option values against strike

and maturity,

σ2(K,T) ≡ 2CT(K,T)

K2CKK(K,T)
, (1)

whereCT denotes the first partial derivative of the call option valuewith respect to maturity andCKK denotes

the second partial derivative with respect to strike. Dupire first derives the forward PDE in a one-factor

diffusion setting; however, the notion of local volatilityas defined in equation (1) is well-posed under a

much more general setting. In particular, the existence of apositive and finite local volatility surface can be

used as a condition to exclude arbitrage opportunities.

In practice, only a finite number of option prices are observable across a discrete number of strikes

and maturities. Thus, one needs to perform interpolation and extrapolation over the finite observations to

evaluate the maturity and strike derivatives to arrive at the local volatility estimates. When options are quoted

in BMS implied volatilities, one can also compute the local volatility directly from the interpolated implied

volatility surface, e.g., Coleman, Li, and Verma (1998), Lee (2005), and Gatheral (2006). We assume that

one can perform reasonably stable interpolation and extrapolation on observed option prices or implied

volatilities to obtain finite and positive estimates of local volatilities at strikes and maturities of interest. We

make no assumptions on the underlying security price or volatility dynamics.

2.2. Hedging with a maturity-strike triangle triangle

We propose a strategy to hedge the risk of the target optionC(K,T) with three nearby options. In principle,

the three option contracts can all have different strikes and maturities. Since often fewer maturities are
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available in practice, we focus on amaturity-strike triangle formulation, where the three options have

three different strikesKd < Kc < Ku but two different maturities, with the center strikeKc at one maturityTc

and the two outside strikes(Kd,Ku) at another maturityTo. There is no particular restriction on the order of

the three maturitiesTc,To,T, but practically it is likely that one chooses more liquid shorter-term options to

hedge the possibly less liquid longer-term option, that is,Tc,To < T. Furthermore, it is natural to choose the

hedge option strikes around the target option strikeKd < K < Ku, with possiblyKc = K whenK is available

atTc.

The hedging strategy that we propose does not rely on matching the risk exposures of the hedging port-

folio with that of the target option because risk exposure calculations depend on the particular specification

of the underlying security price and volatility dynamics. Instead, our strategy is based on the affinity of the

triangle hedge portfolio to the target option in terms of their strikes and maturities.

Given the layout of the maturity-strike triangle, we derivethe hedge portfolio weights through the fol-

lowing procedure. First, we perform Taylor expansions on both the target option and the hedge portfolio

along the maturity and strike dimensions around a common reference point,(K,To),

C(K,T) ≈ C(K,To)+CT(K,To)(T −To), (2)

C(Kd,To) ≈ C(K,To)+CK(K,To)(Kd −K)+
1
2
CKK(K,To)(Kd −K)2, (3)

C(Ku,To) ≈ C(K,To)+CK(K,To)(Ku−K)+
1
2
CKK(K,To)(Ku−K)2, (4)

C(Kc,Tc) ≈ C(K,To)+CK(K,To)(Kc−K)+CT(K,To)(Tc−To)+
1
2
CKK(K,To)(Kc−K)2. (5)

We expand the options along the maturity dimension to the first order and along the strike dimension to

the second order. The expansion generate four termsC(K,To), CK(K,To), CKK(K,To), andCT(K,To). Un-

fortunately, we cannot use a portfolio of three options to match four expansion terms. Fortunately, we can

replace the second strike derivativeCKK(K,To) with the first maturity derivativeCT(K,To) via the local

volatility definition in equation (1),

CKK(K,To) =
2

σ(K,To)2K2CT(K,To). (6)
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With this replacement, we can choose the portfolio weights(wd,wc,wu) for the three options at strikes

(Kd,Kc,Ku) to match the coefficients on the three terms between the target option expansion and the hedge

portfolio expansion: the option valueC(K,To), the first-order strike derivativeCK(K,To), and the first-order

maturity derivativeC(T(K,To).

Matching the coefficients onC(K,To), we have

1 = wd +wu+wc, (7)

which says that the sum of the hedge portfolio weights is equal to the target option weight. Matching the

coefficients onCK(K,To), we have,

0 = wd(Kd −K)+wu(Ku−K)+wc(Kc−K). (8)

Plugging the weight condition in (7) to (8), we have,

K = wdKd +wuKu+wcKc, (9)

which says that the weighted average of the chosen strikes inthe hedge portfolio should be equal to the

target strike. Finally, matching the coefficients onCT(K,To) and normalizing both sides by (T −To), we

have

1 = ∑
j

w j
(K j −K)2

σ2 (K,To)K2(T −To)
−wc

To−Tc

T −To
, j = d,u,c. (10)

We can solve for the three portfolio weights from the three conditions (7), (9), and (10).

Now, we introduce a standardized measure of strike spacing around the target strike point,

d j ≡
(K j −K)

Kσ(K,To)
√

T −To
, j = d,c,u. (11)

Intuitively, the standardized spacing measured j approximates the number of standard deviations that the
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security price needs to move from(To,K j) to (T,K). We also define a relative maturity spacing measure,

α ≡ To−Tc

T −To
, (12)

which measures the relative distance between the two maturities in the hedge triangle to the distance between

the target option maturity and the reference hedge maturityTo. The third condition in (10) can be written in

terms of the standardized strike spacingd j and maturity spacingα,

1 = wdd2
d +wud2

u +wc(d
2
c −α). (13)

The following proposal summarizes the results on the maturity-strike triangle hedge portfolio.

Proposition 1 To hedge the risk of a target option at(K,T), we propose to form a hedge portfolio with

three options forming a maturity-strike triangle, in whichthe three options are placed at three strikes Kd <

Kc < Ku) and two maturities with(Kd,Ku) at To and Kc at Tc. The portfolio weights can be chosen to match

the maturity and strike expansions of the triangle with thatof the target option,
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. (14)

An important observation from the proposition is that the portfolio weights only depend on the relative

strike and maturity spacing of the hedge and target options,but do not explicitly depend on the calendar

time or the spot price level. In this sense, the hedge portfolio is static. One caveat is that we use the local

volatility σ(K,To) to standardize the strike spacing in (11). To the extent thatthe local volatility is varying

over time, so is the standardized strike spacing for a fixed set of option contracts. The portfolio weights can

vary as a result. In application, we assume that the relationbetweenCT andCKK is stable over time, and

treat the hedge portfolio as an approximate, static portfolio.
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The proposal imposes little constraints on the strike and maturity choice in the triangle. In what follows,

we consider several interesting special cases of the general proposal.

2.2.1. Symmetric triangles

If we place the center strike at the target option strikeKc = K and choose equal spacing for the two outer

strikes, Ku −K = K −Kd, we obtain a symmetric (isosceles) triangle. In this case,dc = 0 and we let

d = |du| = |dd| denotes the standardized equal distance from the two outer strikes to the center. The result

becomes particularly simple.

Proposition 2 When the maturity-strike triangle is symmetric around the target strike, with Kc = K and

Ku−K = K−Kd, the portfolio weights are given as a function of the standardized strike spacing d= |du|=

|dd| and relative maturity distanceα,

wc =
d2−1
d2 + α

, wd = wu =
1
2
(1−wc). (15)

Proof. From the first and second conditions in (7) and (9), we can infer that symmetric strike choice leads to

symmetric portfolio weightswd = wu = 1−wc. Plugging in the symmetric weight condition into the third

condition in (13), we can solve for the center strike weight as in (15).

The isosceles triangle has its peak at maturityTc and its base at maturityTo. Depending on the ranking of

the three maturities(Tc,To,T), the triangle can be formed in a number of ways. For practicalconsiderations,

we focus on the cases in which the maturity of the target option T is longer than the maturities (To,Tc) of the

hedging options in the triangle. With this constraint, the triangle can be formed with either (i)Tc < To < T

and thusα > 0, where the triangle points to the shorter maturity, or (ii)To < Tc < T and thus−1 < α < 0,

where the triangle points to the longer maturity. As the relative maturity distanceα takes on different

ranges of values in the two cases, the portfolio weights alsoshow different behaviors as a function of the

standardized strike spacingd. With positiveα in the first case, the portfolio weight on the center strike (wc)

increases monotonically with the strike spacing from−1/α atd = 0 to 1 asd approaches infinity. When the
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three maturities are equally spaced and henceα = 1, the portfolio weight on the center strike varies from

−100% to 100% as the strike spacing increases from zero to infinity.

In the second case in which the center strike maturity is longer than the maturity of the outer strikes

(To < Tc < T) and thus the relative maturity distanceα becomes negative, the portfolio weightwc has a

singularity atd2 + α = 0. The center strike weightwc approaches positive infinity asd2 ↑ −α and negative

infinity asd2 ↓ −α.

In both cases, as long as the strikes are spaced one standard deviation away (d > 1), the portfolio

weights on all three points of the triangle are positive, andthe weight on the center strike increases with

increasing strike spacing for the two outside strikes. Figure 1 plots the center strike weightwc as a function

of the standardized strike spacingd in both cases with the assumption of equal spacing between the three

maturities, and thusα = 1 for the first case andα = −1/2 for the second case. The solid line shows the

monotonic and slow increase of the center strike weight from−100% to 100% as a function of the strike

spacingd. The dashed line reveals the singularity atd =
√

1/2. Whend > 1, both cases generate positive

weights on the center strike and the two outside strikes.

[Figure 1 about here.]

2.2.2. A degenerating line of three strikes at one maturity

The hedge remains well-defined when the maturity-strike triangle degenerates into a line of three strikes as

the two maturities shrink to oneTo = Tc. In this case, we label the maturity of the options in the hedging

portfolio asTh. With symmetric strike placement, the portfolio weight on the center strike option increases

with strike spacing.

Proposition 3 When the symmetric maturity-strike triangle degenerates into a line of three strikes sym-

metrically placed around the target strike, the hedge portfolio weights are reduced to be a function of the
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standardized strike spacing only,

wc = 1− 1
d2 , wd = wu =

1
2
(1−wc). (16)

When we approximate the target option with three strikes at one maturityTh, the approximation is

analogous to a trinomial tree, and the weight on the center strike increases with the strike spacing. When

the outer strikes are about one standard deviation away fromthe centerd = 1, the center weight is zero and

the trinomial tree degenerates into a binomial tree. When the strikes are spaced more than one standard

deviation away, the weights on all three strikes become positive. For example, at two standard deviation

strike spacingd = 2, the center strike takes a weight of3
4, and the weights on the two outer strikes are1

8

each. The three strikes take on equal weight of1
3 each when the strike spacing isd =

√

3/2.

Under a one-factor Markovian setting, Carr and Wu (2003) (henceforth CW) derives a static hedging

strategy for a vanilla optionC(K,T) using a continuum of options at at a shorter maturityTh < T. Different

from our approximations based on Taylor series expansions,the CW static hedge is an exact relation if (i)

the underlying security price dynamics is known, (ii) the security price dynamics is one-factor Markovian,

and (iii) a continuum of options are available at a shorter maturity to form the hedging portfolio. However,

none of the three conditions are likely to hold in reality. Investors do not know the true underlying price

dynamics. The dynamics are unlikely to be one-factor Markovian because stochastic volatilities for most

securities, with independent variations, are well-documented. Finally, option contracts are available only at

a finite number of strikes. Furthermore, to minimize transaction costs, one can only use a small number of

options to form the hedge portfolio. CW propose a discrete-strike implementation procedure in which the

strikes and portfolio weights are chosen based on a Gauss-Hermite quadrature approximation of the integral

in the theoretical relation. In particular, given the quadrature points and weights (x j ,ω j ) and with zero rates,

the strikes and portfolio weights are given as,

K j = Ke
√

2xj σ
√

(T−Th)− 1
2σ2(T−Th), w j = ω j/

√
π, (17)
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whereσ denotes a volatility estimate for the underlying security return. If we ignore the convexity term and

the difference between percentage returns and log returns,our standardized strike spacing measured j relates

approximately to the quadrature point byd j ≈
√

2x j . In the three-strike case, the quadrature points are given

as(0,±
√

3/2), corresponding to a standardized strike spacing ofd ≈
√

3. The quadrature weight for the

center point is2
3

√
π, corresponding to a portfolio weight for the center strike of 2/3, exactly the same as

implied by equation (16) in our Proposition 3,wc = 1−1/d2 = 2/3. Therefore, the CW three-strike discrete

implementation coincides with a very special example of ourdegenerate case of a line of three strikes, with

the strike spacing being pre-set according to the quadrature rule. Our approach is much more general. It

allows the allocation of the three strikes at two arbitrary maturities; the strike spacing is not pre-determined,

but can be chosen with flexibility to balance contract availability, transaction cost, and hedging performance;

and finally, the hedge portfolio formulation is independentof any dynamics assumptions.

2.2.3. A degenerating line of two maturities at one strike

When all three strikes in the hedge portfolio coincide with the target strikeKu = Kd = Kc = K, the maturity-

strike triangle further degenerates into a line of two contracts at two maturities. If we retain the notation of

Tc andTo, with no particular ranking, the portfolio weights are determined purely by the relative maturity

distanceα.

Proposition 4 When the symmetric maturity-strike triangle degenerates into a line of two option contracts

at two maturities (Tc,To) and the same strike K, the hedge portfolio weights are reduced to a function of the

relative maturity spacingα only,

wc = − 1
α

, wo = 1+
1
α

. (18)

When the target option maturityT is either longer or shorter than both maturities in the hedgeportfolio,

the portfolio always contains a short position in the shorter maturity and a long, levered position in the

longer maturity. On the other hand, if the target option maturity is sandwiched by the two maturities in the

hedge portfolio, the portfolio weights are positive for both options.
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While our focus is on the maturity-strike triangle, the two degenerate lines illustrate the generality of

our proposal as it includes the CW static hedging as a very special case, and it allows investors to trade both

the implied volatility smile and the term structure, eithertogether or separately, while managing their risk

exposures.

2.3. From expansion errors to hedging errors

Our hedging portfolio weights are derived by matching the corresponding terms in the Taylor expansions of

the target option and the hedge portfolio. The expansion error on each option contract increases with the

distance between the contract’s strike and maturity and thereference strike and maturity expansion point. In

practice, strikes are often available at a fine grid, but maturities tend to be more sparse. Thus, the expansion

errors along the maturity dimension can be large. However, we show in this section that the expansion error

of the hedged portfolio can be much smaller than the average expansion error of the individual contracts

due to cancelation. We illustrate this point through two angles. First, we show that although the expansion

error on each option contract depends on the reference pointaround which the expansion is performed, the

portfolio weights for the hedge triangle do not explicitly depend on the particular choice of the expansion

reference point. Second, we perform the Taylor expansion toa higher order and show how the leading-term

expansion error on the target options cancels with the leading-term expansion error on the hedge portfolio.

We further show how one can maximize the cancelation via appropriate choice of the strike spacing in the

hedge portfolio.

2.3.1. Independence of portfolio weights on the expansion reference point

In deriving our portfolio weights, we expand both the targetoption and the hedge options around a common

strike and maturity reference point (K,To). This reference point is a convenient choice because with this

reference point, we only need to perform maturity expansionfor the target option and the hedge option at

the center strike whenKc = K, and we only need to perform strike expansion on the two hedgeoptions at

the outside strikes. Choosing other expansion points wouldlead to more terms. However, the following
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proposition shows that the particular choice of the reference point is not important for computing the hedge

portfolio weights.

Proposition 5 When the local volatility is flat across strikes and maturities, the portfolio weights do not

depend on the reference maturity and strike point, around which the Taylor expansion is performed.

Proof. Let (Km,Tm) be an arbitrary strike-maturity reference point, with which we perform the Taylor

expansion on the target and hedge options:

C(K,T) ≈ C+CK (K −Km)+CT (T −Tm)+
1
2

CKK (K−Km)2 ,

C(Ku,To) ≈ C+CK (Ku−Km)+CT (To−Tm)+
1
2

CKK (Ko−Km)2 ,

C(Ku,To) ≈ C+CK (Kd −Km)+CT (To−Tm)+
1
2
CKK (Ko−Km)2 ,

C(Kc,Tc) ≈ C+CK (Kc−Km)+CT (Tc−Tm)+
1
2
CKK (Kc−Km)2 ,

where the termC, CK , CT , andCKK are all evaluated at the reference point(Km,Tm) and we hide the depen-

dence to reduce notation clustering. Matching the option levelC term, we have 1= wu+wd +wc as before.

Matching theCK term, we have

(K−Km) = wu (Ku−Km)+wd (Kd −Km)+wc(Kc−Km) , (19)

which in combination with the first condition leads to,

K = wuKu+wdKd +wcKc. (20)

Thus, neither the first nor the second condition depends on the reference point choice(Km,Tm).

Matching theCT andCKK term, we have

CT (T −Tm)+
1
2
CKK (K−Km)2 = ∑

j

w jCT (Tj −Tm)+
1
2

CKK (K j −Km)2 , (21)
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with j = u,d,c. We see that theTm terms cancel out. Furthermore, if we writeK j −Km = (K j −K)+

(K −Km) and expand the(K j −Km)2 terms, the condition in (21) simplifies to

CTT = ∑
j

w jCTTj +
1
2
CKK (K j −K)2 , (22)

which does not has any explicit dependence on the reference point (Km,Tm). Therefore, the portfolio weights

do not have explicit dependence on the reference point for the Taylor expansion.

An implicit dependence arise when we convertCKK into CT via the local volatility definition. Since the

local volatility is evaluated at the reference point(Km,Tm), portfolio weights depend on the reference point

to the extent that the local volatility is strike and maturity dependent. When the local volatility surface is

flat, the portfolio weights are completely independent of the reference point choice.

The expansion error on each option contract depends obviously on the reference point. The closer the

reference point is to the strike and maturity of the contract, the smaller the expansion error is. Yet, the

above proposition shows that the hedge portfolio weights are quite robust with respect to the reference point

choice. In particular, with a flat local volatility surface,the portfolio weights and hence the hedging errors

are independent of the reference point that we choose for theexpansion.

2.3.2. Leading-term expansion errors in target and hedge options

To analyze how the expansion errors cancel between target and hedge options, we expand each option

contract to a higher order and analyze the behavior of the leading-term expansion error. To reduce notation

clustering, we use (K,To) as the reference point for the expansion, we hide the explicit dependence on the

reference point in the notation, and we focus on the symmetric maturity-strike triangle for the analysis, with
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∆K = Ku−K = K−Kd and∆T = T −To. The expansions become,

C(K,T) ≈ C+CT∆T +
1
2
CTT (∆T)2 , (23)

C(Ku,To) ≈ C+CK∆K +
1
2
CKK (∆K)2 +

1
6

CKKK (∆K)3 +
1
24

CKKKK (∆K)4 , (24)

C(Kd,To) ≈ C−CK∆K +
1
2
CKK (∆K)2− 1

6
CKKK (∆K)3 +

1
24

CKKKK (∆K)4 , (25)

C(K,Tc) ≈ C−CTα∆T +
1
2

CTTα2 (∆T)2 . (26)

From the above expansions, we can see that when∆K = 0, the leading-term expansion error in the target

option is 1
2CTT (∆T)2, which partially cancels with the leading-term expansion error in the hedge portfolio,

wcα2 1
2CTT (∆T)2, when the portfolio weight on the center strike is positive.

When∆K > 0, additional expansion errors are introduced in the hedge portfolio in terms of theCKKKK

term. These additional expansion errors can be used to further cancel out the errors on theCTT terms. To

link these higher-order terms, we further differentiate the forward PDE with respective toT,

CTT = 1
2σ2K2(CT)KK + 1

2σ2
TK2CKK ,

= 1
4σ4K4CKKKK +

(

1
2σ2σ2

KK4 + σ4K3
)

CKKK

+
(

1
2

(

σ4 + σ2
T

)

K2 + σ2σ2
KK3 + 1

4σ2σKKK4
)

CKK ,

(27)

whereσ2
T , σ2

K , andσ2
KK denote the partial derivatives of the local varianceσ2, which are all zero in the case

of a flat local volatility surface. To remove theCKKK term in equation (27), we assume thatS= K and link

CKKK toCKK according to the BMS model,CKKK ≈−3
2

CKK
K . Then, we have

CTT ≈ a2CKK +
1
4

σ4K4CKKKK , (28)

with a2 =
(

1
2σ2

T −σ4
)

K2 + 1
4σ2σ2

KK3 + 1
4σ2σ2

KKK4.

Now, we can use the forward PDE and equation (28) to convert theCT andCTT terms in the expansions
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(23) to (26) toCKK andCKKKK terms,

C(K,T) ≈ C+
1
2

σ2K2CKK∆T +
1
2

a2CKK +
1
8

σ4K4CKKKK (∆T)2 , (29)

C(Ku,To) ≈ C+CK∆K +
1
2
CKK (∆K)2 +

1
6

CKKK (∆K)3 +
1
24

CKKKK (∆K)4 , (30)

C(Kd,To) ≈ C−CK∆K +
1
2
CKK (∆K)2− 1

6
CKKK (∆K)3 +

1
24

CKKKK (∆K)4 , (31)

C(K,Tc) ≈ C−α
1
2

σ2K2CKK (∆T)+
1
2

a2CKK + α21
8

σ4K4CKKKK (∆T)2 . (32)

The terms onC andCK remain the same as before, from which we obtainwu +wd +wc = 1 andwu = wd =

(1−wc)/2. Matching theCKK terms, we have,

1+
a2∆T
σ2K2 = (1−wc)d2−αwc

(

1−α
a2

σ2K2∆T
)

,

from which we can solve forwc,

wc =
d2−1+h

d2 + α+ σ2h
, (33)

where

h = − a2

σ2K2∆T =

(

σ4− 1
2

σ2
T

σ2 − 1
4

σ2
KK− 1

4
σ2

KKK2
)

∆T, (34)

which is a function of the local volatility level, its slope along the term structure and strike dimension,

its curvature along the strike dimension, and the maturity-distance between the target option and the hedge

options for the two outside strikes. Thus, by matching higher-order terms, the portfolio weights are modified

by the higher-order termh. When the local volatility is flat across strike and maturity, h = σ4T becomes a

very small term and can be safely ignored. When the local volatility surface is heavily skewed across strike

or is having a steep term structure, the adjustment can become significant.

Finally, if we are free to choose the strike spacing, we can also match the higher-order termCKKKK term

by setting,

wc =
d4−3

d4−3α2 . (35)
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Combining (33) and (35), we can solve the standardized strike spacing that matches the higher-order term,

d2 =
3

2(1−h(1−α))

(

1−α+

√

(1−α)2 +
4
3

α(1−h(1−α))

)

, (36)

which is a function of the relative maturity spacingα and the termh, which is proportional to the maturity

spacing∆T.

When we ignore the higher-order termh and setα = 0 and hence all three strikes in the hedge portfo-

lio fall on the same maturity, we haved2 = 3, the same as the result from the Hermite-Gauss quadrature

approximation in Carr and Wu (2002). Therefore, in the senseof matching leading-term expansion errors,

the quadrature strike choice is optimal. On the other hand, when the three maturities are equally spaced

T −To = To−Tc and henceα = 1, we haved2 =
√

3.

It is important to realize that the optimal strike spacing in(36) is derived under strong assumptions to

remove theCKKK term, and thus shall not be taken literally. Nevertheless, the derivation shows the potential

of further reducing the hedging error by appropriate strikespacing choice.

To show the prospect of the expansion error cancelation, Figure 2 plots the leading-term expansion error

of the hedged portfolio as a function of the standardized strike spacing measured. The plots are computed

from the Black-Scholes model withσ = 0.25, zero rates, and with the maturity choices (Tc,To,T) being one,

two, and six months, respectively. The three lines represent three different target option strikes atK = $90

(dashed line), $100 (solid line), and $110 (dash-dotted line), relative to a normalized spot price level of

$100. The plots highlight the prospect of choosing strike spacing judiciously to eliminate the leading-term

expansion errors of the hedged portfolio.

[Figure 2 about here.]
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3. Numerical Experiments Based on Commonly Specified Dynamics

We gauge the performance of our proposed hedging strategy under several commonly specified security

price dynamics. First, we analyze how the strike spacing choice affects the hedging performance under each

strategy. Then, we compare the hedging performance of the different strategies with one another and with

daily delta hedging with the underlying futures.

3.1. Data-generating processes

We consider four data generating processes: the Black-Scholes model (BS), the Merton (1976) jump-

diffusion model (MJ), the Heston (1993) stochastic volatility model (HV), and the jump-diffusion stochastic

volatility model of Huang and Wu (2004) (HW). The time-series stock price dynamics are governed by the

following stochastic differential equations,

BS: dSt/St = µdt+ σdWt ,

MJ: dSt/St = µdt+ σdWt +
∫

R0(ex−1)(ν(dx,dt)−λn(x)dxdt) , n(x) = 1√
2πvj

exp
(

− (x−µj )
2

2vj

)

,

HV: dSt/St = µdt+
√

vtdWt ,

HW: dSt/St = µdt+
√

vtdWt +
∫

R0 (ν(dx,dt)−vt λ0n(x)dxdt) ,

dvt = κ(θ−vt)dt−ω√vtdZt , E [dZtdWt ] = ρdt,

(37)

whereWt denotes a standard Brownian motion in all four models. The MJmodel also incorporates a com-

pound Poisson jump component, where we useν(dx,dt) to denote the counting measure for the jumps,R
0

to denote the real line excluding zero, andλn(x)dxdt to be the compensator, withλ measuring the mean

jump intensity or arrival rate,n(x) denotes a normal probability density function capturing the jump size

distribution in log return conditional on a jump occurring.Under the Heston (HV) model,Zt denotes an-

other standard Brownian motion that governs the randomnessof the instantaneous variance rate. The two

Brownian motions have an instantaneous correlation ofρ. The HW model combines HV with MJ and al-

lows the jump arrival rate to be proportional to the instantaneous variance rate,λt = λ0vt . The HW model

is labeled as MJDSV3 in Huang and Wu (2004), who show that the model performs better in pricing S&P
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500 index options than does a similar model with constant jump arrival rate proposed by Bates (1996) and

Bakshi, Cao, and Chen (1997).

The four processes are carefully chosen for our analysis. The BS and MJ models serve as static pure

diffusion and jump-diffusion benchmarks, respectively, whereas the HV and HW models allow stochastic

volatility for the two benchmarks. Option prices under the BS model can be readily computed using the

analytical Black-Scholes option pricing formula. Under the MJ model, option prices can be computed as

a Poisson-probability weighted sum of the Black-Scholes formulae. For HV and HW, option prices are

computed numerically through fast Fourier inversion of theanalytical return characteristic function.

To simulate the data-generating processes and price options on each simulated path, we need to choose

appropriate values for the model parameters. To make the analysis comparable to our historical analysis on

the S&P 500 index (SPX) options in the next section, we set theparameter values to those calibrated to the

SPX options market. Specifically, we perform daily calibration of the HV model and the HW model on SPX

options from January 1996 to March 2009, and use the sample averages of the daily parameter estimates

for the simulation analysis. The parameters for the BS modeland the MJ model are adopted directly from

the corresponding parameters from the HV and HW models, respectively, with the constant volatility level

set to its long-run mean estimate. Table 1 reports the parameter values used in our analysis. Estimating

the HV model generates an average long-run mean volatility of
√

θ = 22.77%, an average instantaneous

volatility rate level of
√

vt = 18.64%. The difference between the two implies an average upward sloping

implied volatility term structure. The average mean-reversion coefficient is atκ = 3.7863, corresponding

roughly to quarterly frequency (1/κ). The average volatility of volatility coefficient estimate is quite large

at ω = 0.9095, which contributes to the curvature of the implied volatility smile. Finally, the average

correlation between return and return variance is stronglynegative atρ = −0.6824, consistent with the

strongly negatively skew observed in the implied volatility smile on SPX options.

By adding a jump component in the HW model, the average long-run mean volatility of the diffu-

sion component becomes lower at
√

θ = 18.69% because the jump component also contributes to the total

volatility level, which is at
√

θ(1+ λ0(µ2
j + σ2

j )) = 22.44%, very close to the HV estimate. The average
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jump frequency isλ0θ = 0.4995, about one jump every two years. Conditional on a jump occurring, the

average jump size in return isµj = −10.21%, with a standard deviation ofσ j = 14.32%. The large neg-

ative jump size contributes to short-term implied volatility skews in the SPX options, and the jump size

uncertainty (σ j ) adds curvature to the skew. With the jump component, both the mean-reversion coefficient

and the volatility of volatility coefficient average lower at κ = 1.8766 andω = 0.3811, respectively. The

return-volatility correlation remains strongly negativeat ρ = −0.7564.

The daily calibration on SPX options generates parameter estimates under the risk-neutral measure.

To obtain the corresponding values for the statistical process, we assume zero risk premiums by setting

µ = r −q, and use the same set of parameters both for simulating the sample paths and for option pricing.

During this sample period, the S&P 500 index started at 617.7, went over 1500 in year 2000 and 2007, but

ended the sample at 822.92. The average ex-dividend return on the index over the sample period is 2.17%.

The interest rates (r) and dividend yields (q) underlying the option contracts average at 4.17% and 2.58%,

which we use as constants for the simulation and option pricing.

3.2. Monte Carlo procedures

In each simulation, we generate a time series of daily underlying security prices according to an Euler

approximation of the respective data generating process. The starting value for the stock price is normalized

to $100, and the starting values of the instantaneous variance rates for the HV and HW models are also fixed

to the average values in Table 1. We consider a hedging horizon of one month and simulate paths over this

period. We assume that there are 21 business days in a month. To be consistent with the historical analysis

in the next section, we think of the simulation as starting ona Wednesday and ending on a Thursday four

weeks later, spanning a total of 21 week days and 29 actual days. The security price moves according to the

data-generating processes in equation (37) only on week days.

Figure 3 plots the 1,000 simulated sample paths for the security price under each of the four model

environments. The pure diffusive models BS and HV generate mostly small price movements, whereas

large discontinuous movements are apparent under the MJ andHW model environments.
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[Figure 3 about here.]

The HV and HW models also generate stochastic volatility. Weplot the corresponding simulated sample

paths for the instantaneous return volatility,
√

vt , in Figure 4. Given the large volatility of volatility coef-

ficient under the HV model, several volatility sample paths hit the lower bound of zero. By incorporating

jumps in the security price dynamics, the estimated stochastic volatility dynamics under HW model look

more well-behaved.

[Figure 4 about here.]

At each week day, we compute the relevant option prices basedon the realizations of the security price

and the instantaneous variance rate, as well as the model dynamics. We monitor the hedging error (profit

and loss) at each week day based on the simulated security price and the option prices. The hedging error

at each datet, et , is defined as the difference between the value of the hedge portfolio and the value of the

target call option being hedged,

et =
3

∑
j=1

w jCt(K j ,Tj)−Ct(K,T). (38)

Since the portfolio is derived using Taylor expansion, the initial values of the hedging portfolio and the

target option may not be exactly the same. We remove this initial value mismatch through a proportional

scaling of the three portfolio weights.

We hold this portfolio statically for one month and investigate the hedging error during the process and,

in particular, at the end of one month. Our portfolio weightsare stable over time as they depend mainly on

the structural features of the option contracts such as the strike price and the relative expiration distanceα.

To the extent that the local volatility estimates vary over time, the standardization (d) of the strike spacing

varies accordingly and so should be the portfolio weights. Nevertheless, we regard these variations as small

and hold the portfolio weights fixed for the whole month whileinvestigating its hedging performance.

We assume that option contracts are available at a finite number of strikes and maturities. That is, these
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contracts can be traded at observable market prices. We exclude bid-ask spreads from our analysis. The

target option choice and hedging portfolio formulation areall from this pool of available option contracts.

To compute the portfolio weights, we estimate the local volatility by interpolating the implied volatility

surface constructed from the finite number of option observations.

At the start of each simulation, we assume that options are available at maturities of one, two, three, six,

and 12 months, and that option strikes are centered around the normalized spot price of $100, and spaced

at intervals of $1, $1.5, $2, $2.5, and $3 for the five maturities, respectively. The assumed strike spacing

increase with maturities match the behavior of SPX options market, where the strike spacing averages from

$10 to $30 on an underlying index level of about $1,000.

We set the target option strike at the centerK = 100, and consider three types of maturity-strike place-

ments for the hedge portfolio: (A) Symmetric maturity-strike triangles pointing to short maturity, with

Tc < To < T, (B) symmetric maturity-strike triangles pointing to longmaturity, withTo < Tc < T, and (C)

a line of three strikes at the same maturity (Th < T). Figure 5 plots schematically the maturity-strike place-

ment for each type. Within each type, we form ten distinct target-hedge maturity combinations out of the

five available maturities. For each maturity combination, we also have many flexible choices on the strike

spacing. Through this extensive simulation exercise, we strive to gain a better understanding on the depen-

dence of the hedging performance on maturity-strike placement patterns, target-hedge maturity distances,

and strike spacing.

[Figure 5 about here.]

3.3. Optimal strike spacing choice

For each maturity combination under each of the three maturity-strike placement types (A), (B), and (C), we

analyze the effect of strike spacing on the hedging performance, through which we determine the optimal

strike spacing choice. Given the potential instability of the portfolio weight whend < 1, we start at an outer

strike choice close tod = 1 and then progressively move to the next available strike further away fromK. We
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perform the simulation for each strike spacing choice and record the hedging errors from 1,000 simulations.

We measure the hedging performance by comparing the terminal root mean squared hedging error (RMSE)

at the end of the one-month hedging exercise.

Figures 6-8 plot the terminal RMSE as a function of standardized strike spacingd under each maturity

combination and each underlying dynamics for the three maturity-strike placement types (A), (B), and (C),

respectively. Each figure is for one type. In each figure, eachrow represents one model environment, which

contains ten lines grouped into three panels, with each linerepresenting one particular maturity combination.

The legend shows the combination of maturities in months in the sequence of (Tc,To,T) in cases (A) and

(B), and (Th,T) in case (C).

[Figure 6 about here.]

Figure 6 represents the type of the maturity-strike triangle pointing to the shorter maturity. The maturity

combinations in each panel are ranked according to the relative maturity spacing measureα from high to

low for the solid line, dashed line, dash-dotted line, and inthe right panel, the dot-cross line. The three lines

in the left panels all use one- and two-month options to form the triangle to hedge three-, six-, and 12-month

options, respectively. The relative maturity spacing measureα is at one (solid line), 0.25 (dashed line), and

0.10 (dash-dotted line), respectively. Under all four models, the solid line reaches the minimum RMSE at a

narrower strike spacingd than the other two lines with lowerα. We label the standardized strike spacing at

the lowest RMSE as the optimal strike spacing,d∗.

The three lines in the middle panels all use one-month optionat the center strike and either three- or

six-month options at the outer strikes to hedge six- or 12-month options. The relative maturity spacing is

at 5/6 (solid line), 2/3 (dashed line), and 2/9 (dash-dotted line), respectively. The four lines in the right

panels use two-, three-, and six-month options to hedge six-and 12-month options, the relative maturity

spacing is at 2/3 (solid line), 1/2 (dashed line), 1/3 (dash-dotted line), and 1/9 (dot-cross line). Under BS

and MJ models, the optimal strike spacing shows a clear increasing pattern asα declines, but there are some

exceptions to this pattern under the HV and HW models.
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Figure 7 represents the case of the maturity-strike Isosceles triangle pointing to the longer maturity. The

allocation of each line corresponds to that in Figure 6, except with a switch betweenTc andTo. As a result

of the switch, the relative maturity spacing measuresα are all negative, and the ranking from solid to dotted

lines is from low (more negative) to high (less negative)α. The ranking of the optimal strike spacing across

different lines also switch, with the solid lines (with morenegativeα) showing wider optimal strike spacing

and the dotted lines (with less negativeα) showing narrower optimal strike spacing. This ranking pattern

stays reasonably consistent across all four models.

[Figure 7 about here.]

Figure 8 represents the degenerate case, in which all three strikes in the hedge portfolio fall on one

maturity. In this case,α = 0 for all hedge-target maturity combinations and hence it isno longer the relevant

measure for comparison. The left panels contain four lines with the hedge options at one month and the

target options at increasingly longer maturities from one month (solid line) to three (dashed line), six (dash-

dotted line), and 12 months (dot-cross line). The optimal strike spacing decreases as the distance between

the two maturities widen. The middle panels contain three lines with the hedge options all at two-month

maturity and the target options at increasingly longer maturities of three (solid line), six (dashed line), and 12

months (dash-dotted line). Again, the optimal strike spacing d∗ declines as the maturity distance increases.

The right panel groups the remaining three lines with hedge options at three or six months and target options

at six or 12 months. The distance between the target and hedgeoption maturity seems to play the same role

as before in determining the optimal strike spacing.

[Figure 8 about here.]

Recall that the CW three-strike static strategy belongs to this degenerating case of three strikes on one

maturity, except that the strike spacing in the CW strategy is pre-determined by the quadrature rule to be

d =
√

3. However, the simulation exercises in Figure 8 show thatd =
√

3 is rarely the optimal choice

that generates the lowest root mean squared hedging error. In particular, under most simulated maturity
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combinations for all four models, the optimal strike spacing is lower than the CW choice. Thus, even in this

degenerating case, we can outperform the CW strategy easilyvia better choice of strike spacing.

Table 2 summarizes the optimal strike choice (the standardized strike spacingd∗ and the dollar strike

difference), the corresponding portfolio weight on the center strike (wc), and the associated hedging per-

formance (RMSE at the end of one month) under each of the 30 scenarios and for each of the four model

environments. To quantify the observed dependence of the optimal strike spacing on the relative maturity

spacing, we aggregate the results from all 30 maturity combinations under each model environment and

perform the following regression analysis,

d∗ = a+bα+c(To/T)+e, (39)

whereα captures the relative spacing between the two hedge maturities and(To/T) capture the relative spac-

ing between the target and the hedge options. The choice of the explanatory variables is largely motivated

by our leading-term hedging error analysis in Section 2.3 and our observations of the simulation results in

Figures 6-8. The regression results are summarized in Table3. The regression explains about 90% of the

variation under the BS model, 95% under the MJ model, but are lower at about 70% when the volatility

is stochastic under HV and HW. Under all four model environments, the dependence of the optimal strike

spacing on the two explanatory variables is similar. The optimal strike spacing declines with increasing

relative maturity spacing between the hedge options (α), and it also declines with increasing relative matu-

rity spacing between the hedge and the target options (To/T). As the ratio becomes smaller and hence the

distance becomes larger, the optimal strike spacing becomes smaller. The standard errors of the coefficients

also become larger in the presence of stochastic volatility. These estimated relations can guide our strike

space in practical applications.

3.4. Hedging performance comparisons

To understand how the hedging performance varies across different maturity-strike scenarios, Figure 9 plots

the root mean squared hedging error as a function of a maturity distance measure (T/Th) between the target
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and the hedge options. For hedge portfolios spanning two maturities, Th represents the weighted average

maturity of the hedge portfolio. The plots show that as the target option becomes further away from the

hedge options, the hedging error increases. The solid line represents a nonparametric fitting of the increasing

relation, which highlights the virtue of hedging with “nearby” contracts. The increasing relations are quite

clear under the BS and MJ environment, but become much noisier in the presence of stochastic volatility

under the HV and HW model environments. The hedging errors are also larger in the presence of stochastic

volatility.

[Figure 9 about here.]

To gauge the relative effectiveness of our proposed hedgingstrategies, we also compare their perfor-

mance to the performance of delta hedging using the underlying futures with daily rebalancing frequency.

Delta hedging with daily frequency represents the common practice of the industry. Following each simu-

lated sample path, we compute the Black-Scholes delta of theoption at its current implied volatility level

at each date and rebalance the futures position accordingly. In principle, one can compute the delta based

on the underlying security price dynamics. Yet, since investors do not know the exact dynamics for the

underlying, we follow the common industry practice by usingthe Black-Scholes formula to compute the

delta at the observed implied volatility level of the option. The hedging error at each datet can be computed

as,

et = Bt−1e
rh + ∆t−1(Ft −Ft−1)−C(St , t;K,T), (40)

where∆t denotes the delta of the target call option with respect to the futures price at timet, h denotes the

daily time interval between stock trades, andBt denotes the time-t balance in the money market account.

The balance includes the receipts from selling the target call option, less the cost of initiating and possibly

changing the hedge portfolio.

Table 4 reports the root mean squared hedging error after onemonth of daily delta hedging on four

different target options under the four different model environments. The delta hedging works remarkably
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well under the Black-Scholes environment, with RMSE ranging from 0.08 to 0.21, but the hedging error

increases by several folds once we include jumps and stochastic volatilities in the dynamics. For all models,

the hedging error tends to be larger on shorter-term contracts given the higher gamma on these options.

Comparing the delta hedging performance in Table 4 with thatfrom our static three-strike portfolios in

Figure 9, we observe that under the BS model, to outperform delta hedging on the two-month option (with

RMSE of 0.21), we need a maturity ratioT/Th less than six times for our three-strike strategy. For example,

a line of three strikes at one month will perform dramatically better by generating an RMSE of 0.04. To beat

the delta hedging performance on the three-month option with RMSE at 0.17, any strategies withT/Th less

than five will surface. For example, the maturity-strike triangle with center strike at one-month and outer

strikes at two-month maturity generates an RMSE of merely 0.02. Beating the delta-hedging performance

on the 6-month option at RMSE of 0.12 and the performance on 12-month option at RMSE of 0.08 become

harder as we need further reduce the target-hedge maturity distanceT/Th to be within three or two. For

example, using a two-month option at the center strike and two three-month options at the outer strike to

hedge the six-month option generates an RMSE of 0.05; using athree-month option at center strike and

two six-month options at the two outer strikes to hedge the 12-month option also generates an RMSE of

0.05. These examples show that under the BS model environment, our static strategy with three options

can outperform the delta-hedging if we choose the hedge option maturities not too far away from the target

option maturity.

When we allow jumps in the security price dynamics under the MJ model, the delta-hedging perfor-

mance deteriorates dramatically. The RMSE is between 0.43 to 0.86. In this case, any of the 30 simulated

maturity-strike combinations can outperform the delta-hedging strategy, even when the target option matu-

rity is 12 times as large as the hedge option maturity. The maximum RMSE from the 30 combinations is

0.25, when we hedge the 12-month option with three one-monthoptions.

In the presence of stochastic volatility under HV, the deltahedging performance also deteriorates dra-

matically. The RMSE is between 0.68 to 0.95. By contrast, theworst performing combination out of our

30 simulated case has an RMSE of 0.59 from the line of three strikes at one-month maturity to hedge the
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six-month option.

The delta-hedging performance further deteriorates when we incorporate both stochastic volatility and

discontinuous price movements in HW, the RMSE is between 0.86 and 1.08. By contrast, the largest root

mean squared hedging error from our three-strike static hedge combinations is 0.54, again from the line of

three strikes at one-month maturity to hedge the six-month option.

To visualize the performance difference under different model environments, Figure 10 plots the the

simulated sample paths of the hedging errors on the 12-monthoption hedged with (i) daily delta hedging

with the underlying futures and (ii) the maturity-strike triangle with the center strike at two-month maturity

and the outer strikes at one-month maturity. The delta hedging of the 12-month option generates the best

delta-hedging performance among the four candidate targetoptions. On the other hand, the chosen triangle

is the farthest away from the target option in terms of maturity distance. Thus, we are comparing the best

scenario from the delta hedging with the worst scenario froma maturity-strike triangle.

[Figure 10 about here.]

Under the BS model environment, the delta hedging generatessmaller average hedging errors with

an RMSE of 0.08 whereas the RMSE from the triangle is 0.21. Delta-hedging of a short option position

remains short in gamma and as such, the hedging error distribution is negatively skewed: One loses money

whenever there is big movements. By contrast, the triangle generates positive skewness in the hedging error

distribution. By long the triangle, the hedged portfolio has turned positive in gamma instead.

Under the MJ model environment, whenever the underlying security price experiences a large jump of

either direction, the delta-hedged portfolio experience alarge negative error. The hedging error is strongly

negatively skewed, and the hedging loss can be as high as $6. By contrast, the original receipt from the

sale of the 12-month target option is only 9.18.3 On the other hand, the triangle hedges both the small and

large moves well and generate a reasonably symmetric hedging error distribution, as the hedging errors are

constrained on either side. The maximum loss is less than $0.4 whereas the maximum gain is less than $0.7.

3The initial value of the 12-month target option is 9.55 underthe BS model, 8.38 under the HV model, and 8.30 under the HW
model.
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The terminal RMSE is 0.43 from delta hedging versus 0.16 fromthe triangle.

Under the HV model environment, the terminal RMSE is 0.68 from delta hedging versus 0.26 from the

triangle. In particular, the hedging error from the triangle hedge grows more slowly than that from the delta

hedge, especially at the first two weeks.

Under the HW model environment that includes both jumps and stochastic volatility, it is the jumps that

generate the largest hedging errors for delta hedging. By contrast, the triangle hedge remains stable in this

environment. The terminal RMSE is 0.86 for delta hedging versus 0.41 for the triangle.

Figure 11 compares the cumulation of the RMSE over time for the two strategies, with the solid line

for the maturity-strike triangle and the dashed line for thedelta hedging. To ease the comparison, we use

the same scale for all four panels. The comparison reveals two major points. First, the triangle generates

higher RMSE’s than the delta-hedging under the BS environment, but performs better in all other model

environments. Second, the delta hedging generates very small RMSE under the BS model, but the error

increases drastically in the presence of jump and/or stochastic volatility. The terminal RMSE increases by

over 10 times from 0.08 to 0.86 as the model environment switches from BS to HW. By contrast, the triangle

hedge performance is much less sensitive to variations in the model environment. The terminal RMSE stays

within a narrow range from 0.16 to 0.41 as the environment changes.

[Figure 11 about here.]

These simulation exercises show that our proposed three-strike static hedge dominates the daily rebal-

ancing delta hedging in terms of the root mean squared hedging errors. Furthermore, although our hedge

portfolios are derived using Taylor expansions of nearby option contracts, due to the expansion error cance-

lation between the target option and the hedge portfolio, the strategy works well even when target option is

far away from the hedge portfolio. In particular, even when the target option maturity is over ten times longer

than the average maturity of the hedge portfolio, the hedging performance remains better than the perfor-

mance from the delta hedging benchmark, especially when theunderlying dynamics include the commonly

observed features such as discontinuous price movements and stochastic volatility.
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Finally, since our strategy allows extremely flexible choices in both strikes and maturities, market makers

can use our proposal to judge and act on incoming order flows bybalancing the transaction benefit with

hedging efficiency. Risk managers can also judiciously choose option contracts to balance the risk of the

option portfolio while minimizing transaction cost.

4. A Historical Hedging Exercise on S&P 500 Index Options

In this section, we investigate the historical performanceof our strategies in hedging the sale of S&P 500

index options. We obtain data on S&P 500 index (SPX) options from January 1996 to March 2009. These

options are standard European options on the spot index and are listed at the Chicago Board of Options

Exchange (CBOE). The data set includes, among other information, the closing quotes on each options

contract. Our hedging exercises are based on the mid option price quotes.

Our historical analysis on SPX options is in parallel with the simulation exercise in the previous section.

Over our sample period, we identify 158 starting dates from January 17, 1996 to February 18, 2009, when

there are options expiring exactly 30 days after. Since the S&P 500 index options expire on the Saturday

following the third Friday and the terminal payoff is computed based on the opening price on that Friday

morning, trades and quotes on the expiring options effectively stop on the preceding Thursday, and our cho-

sen starting dates in each month all fall on a Wednesday. At each starting date, we form hedging portfolios

and hold the portfolios statically for 30 days. We compute summary statistics on the hedging errors based

on the 158 repeated exercises. The hedging errors from all exercises are normalized to be in percentages of

the index level at the start of the exercise.

From each starting date, options are always available at one-month maturity (31 days) by design. Two-

month options are also available for all starting dates, butthe maturity availability after the two-month ma-

turity varies across starting dates. For our hedging exercise, we classify options into four maturity groups:

(i) one-month options (31 days), (ii) two-month options (59or 66 days), (iii) options with maturities three

to five months (87-157 days), and (iv) options with maturities around one year (276-402 days). For conve-

nience, we refer to the latter two groups as four-month and 12-month options, respectively. Based on the
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four maturities groups, we can form 14 target-hedge portfolio maturity combinations, with four satisfying

To < Tc < T, four satisfyingTc < To < T, and the remaining six satisfyingTc = To < T.

In each of the 14 combinations, we choose the target option strike close to the spot level. To choose

the strike spacing for the hedging portfolio, we use the regression results in Table 3 under the HW model to

estimate the optimal strike spacingd∗ as a function ofα andTo/T. Choosingd∗ based on the simulation

results from the other three models generates similar results. Givend∗, we compute∆K and the portfolio

weight based on the local volatility estimateσ(K,To) and the maturity placementα. Then, we choose the

three available strikes for the hedging portfolio that are closest to the projected optimal strike spacing.

Figure 12 plots the terminal root mean squared hedging errorfrom the 14 different maturity-strike com-

binations. The hedging errors are larger than the four simulated cases in Figure 9 due to constraints on strike

availability and the possibility that the SPX index dynamics are more complicated than those simulated. For

comparison, we also perform the delta hedging with the underlying futures with daily rebalancing. The root

mean squared hedging errors on two-, four-, and 12-month options are 0.63, 0.63, and 0.66, respectively.

Of the 14 maturity combinations for our static strategy, only three generate root mean squared errors larger

than 0.63. In particular, our static strategy performs better as long as the target option maturity is less than

five times the average hedge option maturity.

[Figure 12 about here.]

We follow both strategies for 29 actual days, running from the starting date to the Thursday of the fourth

following week, the last day of trading for the one-month options used in the static hedge. Figure 13 plots

the sample paths of the hedging errors from selected strategies. The three panels on the left side are from

maturity-strike triangles hedging from top to bottom two-,four-, and 12-month options. The three panels on

the right side are from daily delta hedging of the same targetoption. The hedging errors from the triangles

are visibly smaller over the whole sample paths than that from the daily delta hedge.

[Figure 13 about here.]
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5. Concluding Remarks

Most existing hedging methodologies are based on neutralizing risk exposures defined under a pre-specified

model. In this paper, we propose a new hedging approach basedon the affinity of the derivative contracts.

As a result, the formulation of the hedging strategy does notdepend on the assumptions on the underlying

risk dynamics, but only depend on the strike and maturity of the option contracts available for forming the

hedge portfolio. In hedging a target option, we focus on hedge portfolios of three options at three different

strikes and two different maturities that form a stable maturity-strike triangle, and we derive the portfolio

weights for the hedge portfolio as a function of the strike and maturity spacing of the triangle relative to the

target option. Numerical analysis under commonly proposedsecurity price dynamics shows that the hedging

performance of our methodology based on static positions ofthree options compares favorably against the

dynamic delta hedging strategy with daily rebalancing. In particular, when many strikes are available for

forming the hedging portfolio, we can choose the strike spacing judiciously to further optimize the hedging

performance, making the strategy work well even when the maturities of the target and hedge options are far

apart. A historical hedging exercise on S&P 500 index optionfurther highlights the superior performance

of our strategies.
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Table 1
Model parameters used in the simulation analysis

Model
√

θ λ0 µj σ j
√

vt κ ω ρ

BS 0.2277 — — — — — — —
MJ 0.1869 14.30 -0.1021 0.1432 — — — —
HV 0.2277 — — — 0.1864 3.7863 0.9095 -0.6824
HW 0.1869 14.30 -0.1021 0.1432 0.1650 1.8766 0.3811 -0.7564
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Table 2
Hedging performance at different maturity-strike placements and model environments
Entries report the root mean squared hedging error (RMSE) after one month under different scenarios, with the strike spacing chosen to minimize the RMSE.
The table also reports the strike spacing (d∗ and∆K) and the center strike weight (wc) for each corresponding hedging portfolio.

Maturity\Model BS MJ HV HW
Tc To T d∗ ∆K wc RMSE d∗ ∆K wc RMSE d∗ ∆K wc RMSE d∗ ∆K wc RMSE

1 2 3 1.14 7.5 0.13 0.02 1.16 7.0 0.15 0.05 0.67 3.5 -0.38 0.22 0.66 3.5 -0.40 0.18
1 2 6 1.29 17.0 0.35 0.13 1.29 15.5 0.35 0.14 1.29 13.5 0.35 0.521.17 12.5 0.23 0.49
1 2 12 1.27 26.5 0.36 0.29 1.24 23.5 0.32 0.23 1.24 20.5 0.33 0.45 1.19 20.0 0.27 0.50
1 3 6 1.14 13.0 0.15 0.06 1.18 12.5 0.19 0.10 1.08 10.0 0.09 0.400.95 9.0 -0.06 0.37
1 3 12 1.27 25.0 0.33 0.23 1.26 23.0 0.32 0.22 1.25 20.0 0.31 0.41 1.19 19.5 0.25 0.48
1 6 12 1.09 17.5 0.09 0.07 1.15 17.5 0.15 0.11 1.25 17.5 0.24 0.33 1.10 15.5 0.10 0.36
2 3 6 1.36 15.5 0.39 0.05 1.42 15.0 0.43 0.07 1.84 17.0 0.64 0.250.69 6.5 -0.66 0.37
2 3 12 1.42 28.0 0.48 0.17 1.36 25.0 0.44 0.15 1.44 23.0 0.49 0.23 1.37 22.5 0.44 0.39
2 6 12 1.21 19.5 0.22 0.06 1.21 18.5 0.22 0.09 1.61 22.5 0.49 0.21 1.35 19.0 0.33 0.33
3 6 12 1.27 20.5 0.29 0.05 1.35 20.5 0.35 0.08 1.76 24.5 0.58 0.15 1.64 23.0 0.53 0.26

2 1 3 1.77 16.5 0.81 0.04 1.72 14.5 0.80 0.04 2.25 16.5 0.89 0.181.83 13.5 0.82 0.18
2 1 6 1.56 23.0 0.64 0.12 1.47 19.5 0.59 0.10 1.72 20.0 0.71 0.301.50 17.5 0.61 0.39
2 1 12 1.47 32.0 0.56 0.21 1.34 26.5 0.47 0.16 1.42 24.5 0.53 0.26 1.33 23.0 0.46 0.41
3 1 6 1.70 25.0 0.76 0.08 1.58 21.0 0.71 0.06 1.81 21.0 0.79 0.161.71 20.0 0.76 0.25
3 1 12 1.56 34.0 0.64 0.16 1.44 28.5 0.57 0.12 1.48 25.5 0.59 0.16 1.44 25.0 0.57 0.31
6 1 12 1.79 39.0 0.80 0.07 1.60 31.5 0.74 0.06 1.54 26.5 0.71 0.06 1.62 28.0 0.75 0.13
3 2 6 1.71 22.5 0.72 0.06 1.62 19.5 0.68 0.06 1.87 19.5 0.77 0.151.78 19.0 0.74 0.25
3 2 12 1.59 33.0 0.63 0.14 1.42 27.0 0.53 0.12 1.46 24.0 0.55 0.15 1.45 24.5 0.55 0.31
6 2 12 1.78 37.0 0.78 0.07 1.63 31.0 0.73 0.06 1.58 26.0 0.71 0.05 1.69 28.5 0.76 0.13
6 3 12 1.80 35.5 0.77 0.06 1.64 30.0 0.72 0.06 1.62 26.0 0.71 0.05 1.74 28.5 0.75 0.12

1 1 2 1.52 10.0 0.57 0.04 1.51 9.0 0.56 0.07 1.83 9.5 0.70 0.42 1.53 8.0 0.57 0.26
1 1 3 1.45 13.5 0.53 0.10 1.43 12.0 0.51 0.11 1.63 12.0 0.63 0.551.35 10.0 0.45 0.40
1 1 6 1.36 20.0 0.46 0.21 1.32 17.5 0.42 0.18 1.42 16.5 0.50 0.591.24 14.5 0.35 0.54
1 1 12 1.33 29.0 0.43 0.32 1.24 24.5 0.35 0.25 1.28 22.0 0.39 0.47 1.15 20.0 0.25 0.53
2 2 3 1.52 10.0 0.57 0.01 1.66 10.0 0.64 0.03 2.69 14.0 0.86 0.172.06 11.0 0.76 0.17
2 2 6 1.52 20.0 0.57 0.09 1.45 17.5 0.53 0.09 1.73 18.0 0.66 0.291.55 16.5 0.58 0.37
2 2 12 1.44 30.0 0.52 0.19 1.37 26.0 0.46 0.15 1.46 24.0 0.53 0.25 1.33 22.5 0.44 0.40
3 3 6 1.58 18.0 0.60 0.04 1.61 17.0 0.61 0.05 2.00 18.5 0.75 0.131.90 18.0 0.72 0.23
3 3 12 1.55 30.5 0.58 0.13 1.47 27.0 0.54 0.12 1.53 24.5 0.57 0.14 1.52 25.0 0.57 0.30
6 6 12 1.65 26.5 0.63 0.04 1.64 25.0 0.63 0.05 1.90 26.5 0.72 0.09 1.99 28.0 0.75 0.11
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Table 3
Relating optimal strike spacing to relative maturity spacing among hedge and target options
Entries in panel A report results from the following regression

d∗ = a+bα+c(To/T)+e,

where the optimal strike spacing (d∗) is related to the relative maturity spacing between the hedge options
α and the relative maturity spacing between the hedge and target options(To/T) under each model environ-
ment. In parentheses are standard errors of the parameter estimates. The last column reports the R-squares
of the regressions.

Model a b c R2

BS 1.3843 ( 0.0292 ) -0.6210 ( 0.0423 ) 0.3899 ( 0.0890 ) 0.8981
MJ 1.2383 ( 0.0168 ) -0.5661 ( 0.0244 ) 0.6976 ( 0.0513 ) 0.9491
HV 1.0495 ( 0.0837 ) -1.0712 ( 0.1212 ) 1.9006 ( 0.2549 ) 0.7430
HW 1.1082 ( 0.0886 ) -0.9661 ( 0.1283 ) 1.2072 ( 0.2697 ) 0.6623

Table 4
Performance of delta hedging with daily rebalance
Entries report the root mean squared hedging error after onemonth from delta hedging with the underlying
futures on four different target options with daily rebalancing under different model environments.

T BS MJ HV HW

2 0.21 0.85 0.88 1.08
3 0.17 0.76 0.95 1.07
6 0.12 0.60 0.89 1.02

12 0.08 0.43 0.68 0.86
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Figure 1. Portfolio weight in the maturity-strike triangle as a funct ion of strike spacing.
Lines show the portfolio weight on the center strike (wc) in the symmetric maturity-strike triangle as a
function of the standardized strike spacing measured for two maturity rankings: (i)Tc < To < T (solid line)
and (ii)To < Tc < T (dashed line). The plots are generated with equal spacing between the three maturities:
α = 1 for the solid line andα = −1/2 for the dashed line.
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Figure 2. Expansion error as a function of strike spacing for several target strikes.
Each curve represents the leading-term hedging error as a function ofd, where we assume a Black-Scholes
model withσ = 0.25, zero rates, and the maturities (Tc,To,T) at one, two, and six months, respectively. The
three lines represent target option strikes atK = $90 (dashed line), $100 (solid line), and $110 (dash-dotted
line), respectively, relative to a normalized spot level of$100.
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Figure 3. Simulated sample paths for the security price under different models.
Lines represent the simulated sample paths for the securityprice under different model environments.
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and HW (right panel) model, respectively.
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A. Symmetric triangle pointing to short maturity
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B. Symmetric triangle pointing to long maturity
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Figure 5. Schematic placements of three options to hedge a target option.
The target option at strikeK and maturityT is denoted as a double-layer diamond. The three hedging options
at strikesKd < K < Ku are denoted in circles are lined by a solid line, where the center strike maturity is
denotedTc and the outer strike maturity is denoted asTo. When all three options in the hedge portfolio are
at one maturity, it is denoted asTh.
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Figure 6. Effects of maturity and strike spacing on hedging performance whenTc < To < T.
Each row represents one model, which contains ten lines grouped into three panels, with each line repre-
senting one particular maturity combination (Tc,To,T) shown in the legend. The maturity combinations in
each panel are ranked according to the relative maturity spacing measureα from high to low for the solid
line, dashed line, dash-dotted line, and in the right panels, the dot-cross line.
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Figure 7. Effects of maturity and strike spacing on hedging performance whenTo < Tc < T.
Each row represents one model, which contains ten lines grouped into three panels, with each line repre-
senting one particular maturity combination (Tc,To,T) shown in the legend. The maturity combinations in
each panel are ranked according to the relative maturity spacing measureα from high to low for the solid
line, dashed line, dash-dotted line, and in the right panels, the dot-cross line.
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Figure 8. Effects of maturity and strike spacing on hedging performance whenTc = To < T.
Each row represents one model, which contains ten lines grouped into three panels, with each line repre-
senting one particular maturity combination of hedge-target options (Th,T) shown in the legend.
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Figure 9. Dependence of hedging performance on target/hedge maturity difference T/Th.
We measure the maturity distance as the ratio of the target option maturity to the average maturity of options
in the hedge portfolio (T/Th), and we plot the root mean squared hedging error at optimal strike spacing as a
function of this maturity ratio. The circles represent maturity-strike triangles withTc < To < T; the diamonds
represent maturity-strike triangles withTo < Tc < T; and the squares represent the hedge portfolios of three
strikes at one maturityTh < T. Each panel is for one underlying model.
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Model Delta Hedging Maturity-Strike Triangle
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Figure 10. Comparing the simulated sample paths for the hedging errors.
Lines represent the simulated sample paths for the hedging errors under the HW model environment from
daily delta hedging with the underlying futures in the left panel and static hedging with the maturity-strike
triangle with center strike at one month and outer strikes attwo months.
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Figure 11. Comparing the cumulation of root mean squared hedging errors over time.
The solid lines denote the RMSE from the maturity-strike triangle hedge at different days forward. The
dashed lines denotes the RMSE from daily delta hedge.
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Figure 12. Dependence of hedging performance on target/hedge maturity difference T/Th.
We measure the maturity distance as the ratio of the target option maturity to the average maturity of options
in the hedge portfolio (T/Th), and we plot the root mean squared hedging error on the SPX options as a
function of this maturity ratio. The circles represent maturity-strike triangles withTc < To < T; the diamonds
represent maturity-strike triangles withTo < Tc < T; and the squares represent the hedge portfolios of three
strikes at one maturityTh < T.
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Maturity-strike triangle Delta hedge
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Figure 13. Comparing the hedging error sample paths on S&P 500 index options.
Lines represent the sample paths for the hedging errors on S&P 500 index options from maturity-strike
triangles (left side) and delta hedge (right side). The three numbers on top of each panel on the left side
represent the three maturities (Tc,To,T) for the static portfolios.
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