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Abstract

We introduce the class of affine forward variance (AFV) models of
which both the conventional Heston model and the rough Heston model
are special cases. We show that AFV models can be characterized by the
affine form of their cumulant generating function, which can be obtained
as solution of a convolution Riccati equation. We further introduce the
class of affine forward order flow intensity (AFI) models, which are struc-
turally similar to AFV models, but driven by jump processes, and which
include Hawkes-type models. We show that the cumulant generating func-
tion of an AFI model satisfies a generalized convolution Riccati equation
and that a high-frequency limit of AFI models converges in distribution
to the AFV model.

Contents

1 Introduction 2

2 Affine forward variance models 2
2.1 A characterization of affine forward variance models . . . . . . . . . . 2
2.2 Two examples: Heston and rough Heston models . . . . . . . . . . . . 5
2.3 Proof of the characterization result . . . . . . . . . . . . . . . . . . . . 7

3 Affine forward order flow intensity models 10

4 High-frequency limit of the AFI model 15
4.1 A first convergence result . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 The joint moment generating function . . . . . . . . . . . . . . . . . . 18
4.3 Convergence of finite-dimensional marginal distributions . . . . . . . . 20

5 Summary and Conclusions 22

A Some results on Volterra equations with convex non-linearity 22

1



 Electronic copy available at: https://ssrn.com/abstract=3105387 

1 Introduction

The class of affine processes introduced in [DFS03], consists of all continuous-
time Markov processes taking values in Rmě0ˆRn, whose log-characteristic func-
tion depends in an affine way on the initial state vector of the process. Affine
processes have proved particularly convenient for financial modeling, typically
giving rise to models with tractable formulae for the values of financial claims;
the perennially popular Heston model [Hes93] is just one (and perhaps the most
famous) example of such a model.

In this paper, we introduce the class of affine forward variance (AFV) mod-
els of which classical Markovian affine stochastic volatility models turn out to
be a special case. By writing our model in forward variance form, we are able
to provide a unique characterization of a much wider class of affine stochastic
volatility models, which includes non-Markovian models, such as the rough Hes-
ton model of [EER16]. It will also become evident that the class of AFV models
is closely related to the affine Volterra processes introduced in the influential
paper [JLP17].

Inspired by the original derivation [EER16] of the rough Heston model as a
limit of simple pure jump models of order flow, we further introduce the class of
affine forward order flow intensity (AFI) models. These model are structurally
similar to affine forward variance models and generalize the simple order flow
model of [EER16], by allowing arbitrary order size distributions and more gen-
eral decay of the self-excitation of order flow. We define a high-frequency limit
in which such models give rise to continuous affine forward variance models. In
so doing, we generalize and simplify previous such derivations.

Our paper proceeds as follows. In Section 2, we introduce the class of affine
forward variance models and show that a forward variance model has an affine
cumulant generating function (CGF) if and only if it can be written in a very
specific form. We further show that the CGF can be obtained as the unique
global solution of a convolution Riccati equation closely related to the Volterra-
Riccati equations of [JLP17]. In Section 3, we introduce the class of AFI models,
showing that the CGF of such models solves a generalized convolution Riccati
equation. In Section 4, we show that AFI models become AFV models in
a high-frequency limit, where order arrivals are extremely frequent and order
sizes extremely small.

2 Affine forward variance models

2.1 A characterization of affine forward variance models

On a probability space pΩ,F ,Pq with right-continuous filtration pFtqtě0, follow-
ing [BG12], we consider a forward variance model of the form

dSt “ StαpVtq
´

ρdWt `
a

1´ ρ2dWK
t

¯

(2.1a)

dξtpT q “ ηtpT ;ωqdWt, t P p0, T q, (2.1b)
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where W,WK are independent Brownian motions, the Rě0-valued stochastic
process ηtpT ;ωq is progressively measurable for all T ą 0 and ξ is linked to the
instantaneous variance V by

ξtpT q “ E rVT |Fts . (2.2)

Due to the right-continuity of pFtq, we can recover Vt from ξtpT q as Vt “
limTÓt ξtpT q. The initial conditions of the forward variance model (2.1) are
the initial stock price S0 and the initial forward variance pξ0pT qTą0q. The first
equation can be written in terms of the logarithm Xt “ logSt as

dXt “ ´
αpVtq

2

2
dt` αpVtq

´

ρdWt `
a

1´ ρ2dWK
t

¯

.

We assume that P is a martingale measure for S, such that E rSts “ E
“

eXt
‰

“

S0. In particular, this implies by Jensen’s inequality that the moments E rSut s
are finite for all u P r0, 1s.

Remark 2.1. As noted earlier in [BG12], all conventional finite-dimensional
Markovian stochastic volatility models may be cast as forward variance models.

Definition 2.2. We say that the process pX, ξq has an affine cumulant gen-
erating function determined by gpt;uq, if its conditional cumulant generating
function is of the form

logE
”

eupXT´Xtq
ˇ

ˇ

ˇ
Ft

ı

“

ż T

t

gpT ´ s;uqξtpsqds. (2.3)

for all u P r0, 1s, 0 ď t ď T and gp.;uq is Rď0-valued and continuous on r0, T s
for all T ą 0 and u P r0, 1s.

Remark 2.3. Alternatively, we could consider (2.3) with imaginary parameter
u “ iz for z P R, i.e. an affine log-characteristic function as in [EER16].
However, it will turn out that restricting to real parameters greatly simplifies
the mathematical treatment.

Convolution integrals, as in the exponent of (2.3), will appear frequently in
the following calculations and so it will prove useful to introduce the convolution
operation ‹. For functions with multiple arguments or subscripts, we use the
convention that convolution acts on the first argument, excluding subscripts.
Other arguments or subscripts are passed on to the result. With this convention
(2.3) can be written succinctly as

E
”

eupXT´Xtq
ˇ

ˇ

ˇ
Ft

ı

“ exp
´

pg ‹ ξqtpT ;uq
¯

. (2.4)

We impose the following technical assumptions on the forward variance
model:

Assumption 2.4. (a) For dtb dP-almost all pt, ωq it holds that T ÞÑ ηtpT ;ωq
is right-continuous, decreasing and non-zero.
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(b) For any T ą 0 the integrability condition

ż T

0

˜

ż T

0

ηsps` r;ωq
2ds

¸1{2

dr ă 8 (2.5)

holds for almost all ω P Ω.

Note that if η decomposes as ηtpT ;ωq “ YtpωqκpT ´ tq with Yt non-negative,
then (a) is equivalent to κ being decreasing and the integrability condition (b)
is equivalent to

ż T

0

Yspωq
2ds ă 8, a.s. and

ż T

0

κprqdr ă 8,

In particular, condition (b) is weak enough to accommodate kernels κ with
integrable singularity at 0.

Theorem 2.5. Under Assumption 2.4 the model pX, ξq has an affine CGF if
and only if

αpVtq “ a
a

Vt (2.6a)

ηtpT ;ωq “
a

VtpωqκpT ´ tq (2.6b)

for some a ě 0 and a deterministic, non-negative decreasing kernel κ, which

satisfies
şT

0
κprqdr ă 8 for all T ą 0.

Moreover, gp.;uq : Rě0 Ñ Rď0 in (2.3) is the unique global solution of the
convolution Riccati equation

gpt;uq “ RV

´

u,

ż t

0

κpt´ sqgps;uqds
¯

“ RV

´

u, pκ ‹ gqpt;uq
¯

, t ě 0 (2.7)

where

RV pu,wq “
a2

2
pu2 ´ uq ` aρuw `

1

2
w2. (2.8)

Remark 2.6. Alternatively, the CGF gpt;uq can be written as

gpt;uq “ RV pu, fpt, uqq,

where fpt, uq is the unique global solution of the non-linear Volterra equation

fpt;uq “

ż t

0

κpt´ sqRV pu, fpt, sqqds. (2.9)

See Appendix 5 for further discussion of non-linear Volterra equations and for
the equivalence of equations (2.7) and (2.9).

4



Remark 2.7. Note that the instantaneous variance process Vt “ limTÓt ξtpT q of
an AFV model can be written as

Vt “ ξ0ptq `

ż t

0

κpt´ sq
a

VsdWs,

and is therefore an affine Volterra process in the sense of [JLP17]. It has been
shown in [JLP17] that under certain conditions, such processes possess an affine
log-characteristic function and that this function satisfies the nonlinear Volterra
equation (2.9). Our result imposes weaker assumptions on the kernel κ and adds
the converse direction which characterizes (2.6) as necessary and sufficient. Note
that our formulation in forward variance form avoids working directly with the
(non-semimartingale) process V and therefore simplifies many of the arguments.

2.2 Two examples: Heston and rough Heston models

Example 2.8 (The Heston model). The Heston model [Hes93] is given by

dSt “ St
a

Vt

´

ρdWt `
a

1´ ρ2dWK
t

¯

(2.10a)

dVt “ ´λpVt ´ θqdt` ζ
a

VtdWt. (2.10b)

A simple calculation shows that

ξtpT q “ E rVT |Fts “ θ
´

1´ e´λpT´tq
¯

` e´λpT´tqVt.

Hence,
dξtpT q “ ζe´λpT´tq

a

VtdWt

and it follows that the Heston model can be written as an affine forward variance
model with

αpVtq “
a

Vt, κpxq “ ζe´λx

and initial forward variance

ξ0pT q “ θ
`

1´ e´λT
˘

` e´λTV0 “ V0 ` pθ ´ V0qλ

ż T

0

κpsqds.

To obtain the Riccati ODEs for the Heston model in the usual form (see e.g.
[KR11]), let ψp.;uq be a C1-function such that

gpt;uq “
B

Bt
ψpt;uq ` λψpt;uq, and ψp0;uq “ 0.

By partial integration we obtain

pκ ‹ gqpt;uq “ ζ

ż t

0

e´λpt´sqgps;uq “ ζψpt;uq.
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Inserting into the convolution Riccati equation (2.7) yields

B

Bt
ψpt;uq “

1

2
pu2 ´ uq ` pζρu´ λqψpt;uq `

ζ2

2
ψpt;uq2, ψpt; 0q “ 0,

in accordance with [KR11]. Furthermore, it is straightforward to show that

ż T

t

gpt´ s;uqξtpsqds “ φpt, uq ` Vtψpt;uq,

with φpt, uq “ λθ
şt

0
ψps, uqds. ˛

Example 2.9 (The rough Heston model). In the rough Heston model, introduced
in [EER16], (2.10b) is replaced by

Vt “ V0 `
1

Γpαq

ż t

0

pt´ sqα´1λpθ ´ Vsqds`
ζ

Γpαq

ż t

0

pt´ sqα´1
a

VsdWs (2.11)

where α P p1{2, 1q is related to the ‘roughness’ of the paths of V . In [ER17] it
is shown that the forward variance in the rough Heston model satisfies

dξtpT q “ κpT ´ sq
a

VtdWt,

with the kernel
κpxq “ ζxα´1Eα,αp´λx

αq

and where Eα,βpxq denotes the generalized Mittag-Leffler function (cf. [EMOT81],
[Pod98, Sec. 1.2]). Thus, the rough Heston model is an affine forward variance
model in the sense of Theorem 2.5. The initial forward variance is given by (cf.
[ER17, Prop. 3.1])

ξ0pT q “ V0 ` pθ ´ V0qλ

ż T

0

κpsqds.

To obtain the fractional Riccati equation (cf. [EER16, Eq. (24)]) for the rough
Heston model set

ψpt;uq “
1

ζ
pκ ‹ gqpt;uq “

1

Γpαq

ż t

0

pt´ sqα´1Eα,αp´λpt´ sqqgps;uqds.

By [EER16, Lem. A.2] ψpt;uq satisfies

Dαψpt;uq ` λψpt;uq “ gps;uq

where Dα denotes the Riemann-Liouville fractional derivative of order α. In-
serting into the convolution Riccati equation (2.7) yields

Dαψpt;uq “
1

2
pu2 ´ uq ` pζρu´ λqψpt;uq `

ζ2

2
ψpt;uq2, ψpt; 0q “ 0,
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in accordance with [EER16, Eq (24)]. Denote by Iαf “ 1
Γpαq

ş8

0
pt´sqα´1fpsqds

the Riemann-Liouville fractional integral of order α and write 1 for the function
of constant value one. The exponent in (2.3) can be transformed as follows:

ż .

0

gpt´ s;uqξ0psqds “ V0pg ‹ 1q ` pθ ´ V0q
λ

ζ
pg ‹ κ ‹ 1q “

“ V0 ppg ´ λψq ‹ 1q ` θλ pψ ‹ 1q “

“ V0pD
αψq ‹ 1` θλ

ż .

0

ψps;uq “

“ V0I
1´αψ ` θλ

ż .

0

ψps;uq,

which is the same as [EER16, Eq (23)]. ˛

2.3 Proof of the characterization result

To prepare for the proof of Theorem 2.5, we introduce the following notation:
Given a continuous function g : Rě0 ˆ r0, 1s Ñ R, pt, uq ÞÑ gpt;uq, we set

Gt “ pg ‹ ξqtpT ;uq “

ż T

t

gpT ´ s;uqξtpsqds, (2.12)

Mt “ exp puXt `Gtq . (2.13)

If pX, ξq has an affine CGF determined by gpt;uq then it follows from (2.3)
that M is a martingale. Conversely, if M is a martingale, then (2.3) follows
by taking conditional expectations. Hence, the affine property of pX, ξq can be
characterized in terms of the martingale property of M . In order to apply Itô’s
formula to M we represent G as an Itô process. The calculation is analogous
to the drift computation in the Heath-Jarrow-Morton-model (cf. [Fil09, Ch. 6])
and uses the stochastic Fubini theorem to interchange stochastic integral and
Lebesgue integral.

Lemma 2.10. Let G be given as in (2.12) and let Assumption 2.4 hold. Then
G can be written in Itô process form as

Gt “

ż T

0

gpT ´ s;uqξ0psqds´

ż t

0

gpT ´ s;uqVsds`

ż t

0

vspT ;u, ωqdWs,

where

vtpT, u, ωq “ pg ‹ ηqtpT, u, ωq “

ż T

t

gpT ´ r;uqηtpr;ωqdr. (2.14)
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Proof. Following [Fil09, p. 94] closely, we compute

Gt “

ż T

t

gpT ´ s;uqξtpsqds “

“

ż T

t

gpT ´ s;uqξ0psqds`

ż T

t

ż t

0

gpT ´ s;uqηrps;ωqdWr ds
stoch.Fub.
“

“

ż T

t

gpT ´ s;uqξ0psqds`

ż t

0

ż T

t

gpT ´ s;uqηrps;ωqds dWr “

“

ż T

0

gpT ´ s;uqξ0psqds`

ż t

0

ż T

r

gpT ´ s;uqηrps;ωqds dWr´

´

ż t

0

gpT ´ s;uqξ0psqds´

ż t

0

ż t

r

gpT ´ s;uqηrps;ωqds dWr
stoch.Fub.
“

“

ż T

0

gpT ´ s;uqξ0psqds`

ż t

0

ż T

r

gpT ´ s;uqηrps;ωqds dWr´

´

ż t

0

gpT ´ s;uq

ˆ

ξ0psqds`

ż s

0

ηrps;ωqdWr

˙

loooooooooooooooooomoooooooooooooooooon

“Vs

ds.

To justify the application of the stochastic Fubini theorem, we use the condition
given in [Ver12, Thm. 2.2]: For r, x P r0, T s set

ψpr, x;ωq “ gpT ´ pr ` xq;uqηrpr ` x;ωq,

where we extend g by zero whenever r`x ą T . By [Ver12, Thm. 2.2] a sufficient
condition for the exchange of integrals is given by

ż T

0

˜

ż T

0

|ψpr, x;ωq|2dr

¸1{2

dx ă 8, a.s.

Since gpt;uq is continuous on r0, T s for each u P r0, 1s this integrability condition
depends only on ηrpr ` x;ωq and is implied by Assumption 2.4.

We are now prepared to prove Theorem 2.5.

Proof of Theorem 2.5. Fix pT, uq P p0,8qˆR. We apply Itô’s formula to Mt “

exp puXt `Gtq and obtain, using Lemma 2.10,

dMt

Mt
“ u dXt ` dGt `

u2

2
drX,Xst ` u drX,Gst `

1

2
drG,Gst “ (2.15)

“ loc.mg.`

`

"

1

2
pu2 ´ uqαpVtq

2 ´ gpT ´ t;uqVt ` uραpVtqvtpT ;ωq `
1

2
vtpT ;ωq2

*

dt,
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where ‘loc.mg.’ stands for the local martingale part, which we need not compute
explicitly. If pX, ξq has an affine CGF determined by gpt;uq then M is a local
martingale and all dt-terms must vanish. This implies that

1

2
pu2 ´ uqαpVtq

2 ´ gpT ´ t;uqVt ` uραpVtqvtpT ;ωq `
1

2
vtpT ;ωq2 “ 0 (2.16)

for all u P r0, 1s and for dt b dP-almost all pt, ωq P r0, T s ˆ Ω. Evaluating the
equation at three different u1, u2, u3 P R and arranging in matrix-vector-form,
we obtain

1

2

¨

˝

u2
1 ´ u1 2u1ρ 1
u2

2 ´ u2 2u2ρ 1
u2

3 ´ u3 2u3ρ 1

˛

‚

looooooooooooomooooooooooooon

:“Mpu1,u2,u3q

¨

¨

˝

αpVtq
2

αpVtqvtpT ;ωq
vtpT, ωq

2

˛

‚“

¨

˝

gpT ´ t, u1q

gpT ´ t, u2q

gpT ´ t, u3q

˛

‚Vt.

Clearly, unless ρ “ 0, we can find some pu1, u2, u3q P R3, such that Mpu1, u2, u3q

is invertible. Thus, we obtain
¨

˝

αpVtq
2

αpVtqvtpT ;ωq
vtpT ;ωq2

˛

‚“Mpu1, u2, u3q
´1

¨

˝

gpT ´ t, u1q

gpT ´ t, u2q

gpT ´ t, u3q

˛

‚Vt,

showing that all elements of the vector on the left side must in fact be linear
functions of Vt and time-homogeneous, in the sense that their time-dependency
can be reduced to dependency on the difference T ´ t. In the case ρ “ 0, this
argument can be easily adapted by omiting the middle row and column of each
vector and matrix involved.

In all cases, we deduce that αpVtq is proportional to
?
Vt and that vtpT ;ωq “

a

VtpωqrvpT ´ tq for some deterministic rvprq. But vtpT ;ωq is the convolution of
g and η in the sense of (2.14), such that also ηtpT ;ωq must decompose as

ηtpT ;ωq “
a

Vt κpT ´ tq

for some deterministic κprq. We write

pκ ‹ gqpT ;uq “

ż T

0

gpT ´ s;uqκpsqds

and, after canceling the common linear factor Vt and setting τ “ T ´ t, (2.16)
becomes

1

2
pu2 ´ uq ´ gpτ ;uq ` uρ ¨ pκ ‹ gqpτ ;uq `

1

2
pκ ‹ gqpτ ;uq2 “ 0,

which is the convolution Riccati equation (2.7). The integrability condition on
κ is implied by Assumption 2.4.

We now turn to the claim that the convolution Riccati equation (2.7) has a
unique global solution. To this end, we set Hupwq “ RV pu,wq, u P p0, 1q and
show that Hu satisfies the conditions of Corollary A.7. In particular, it is easy
to check that for all u P p0, 1q,
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• Hupwq is a finite, strictly convex function on p´8, 0s and satisfies Hup0q ă
0;

• Hupwq has a single root Hupw˚puqq “ 0 in p´8, 0s.

Thus, we conclude from Corollary A.7 the existence of a unique global solution
gpt;uq to (2.7) for all u P p0, 1q. Moreover, gpt;uq ď 0 for all pt, uq P Rě0ˆp0, 1q
by estimate (A.11). We can add the boundary cases u P t0, 1u, observing that
they yield the constant global solution gpt;uq ” 0, which must be unique by
[GLS90, Thm. 13.1.2]. We can now easily complete the proof and show the
converse direction of the theorem, by reversing the above arguments: Assume
that (2.6) holds true and let G and M be defined as in (2.12) and (2.13), with
g the solution of the Riccati equation. Applying Itô’s formula as above, we see
that in (2.15) all dt-terms vanish and conclude that Mt “ exppuXt ` Gtq is a
local martingale. From gpt, uq ď 0 it follows that M is bounded and hence a
true martingale. Thus

E
“

euXT
ˇ

ˇFt
‰

“ E rMT |Fts “Mt “ exp

˜

uXt `

ż T

t

gpT ´ s;uqξtpsqds

¸

,

(2.17)
for all u P r0, 1s showing (2.3).

3 Affine forward order flow intensity models

We now introduce a class of models for market order flow, which are structurally
similar to the forward variance models. These models consist of a log-price X
and a forward intensity process ξtpT q, which models the expectation (at time t)
of the future intensity of order flow (at time T ). The forward intensity ξtpT q has
a role similar to the forward variance, and we call the resulting model a affine
forward order flow intensity (AFI) model.1 The AFI model is driven purely by
the arrival of market orders, which are represented by two independent pure-
jump semimartingales J`t , J

´
t of finite activity and with intensity λt´. Both

processes jump only upwards and represent the arrival of buy and sell orders
respectively. For simplicity, we assume that the distribution of buy and sell
orders is the same and given by a probability measure ζpdxq on Rě0. We assume
that

ş8

0
exζpdxq ă 8; in particular, also the first moment

ş8

0
xζpdxq exists. In

addition, we assume that the order flow processes are self-exciting, in the sense
that each arriving order positively impacts the intensity process. This impact
can be asymmetric, i.e. the degree of self-excitement may be different for buy-

1The strong empirical correlation between order volume (as a proxy for intensity) and
return variance is well-documented in the literature (see e.g. [GRT92]). Therefore the parallels
between AFV and AFI models should not come as a complete surprise.
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and sell-orders. Together this leads to the specification of the AFI model as

dXt “ ´λt´mXdt` dJ
`
t ´ dJ

´
t , (3.1a)

dξtpT q “ κpT ´ tq

ˆ

1

γ`
d rJ`t `

1

γ´
d rJ´t

˙

. (3.1b)

where κ : Rě0 Ñ Rě0 is an integrable, decreasing non-zero function (‘kernel’),
γ˘ are positive constants, mX is determined by the martingale condition on
S “ eX and rJ˘t denote the compensated order flow processes, i.e. rJ˘t :“ J˘t ´

mζ

şt

0
λs´ds, where

mζ “ pγ` ` γ´q

ż 8

0

x ζpdxq.

Finally, ξtpuq is linked to λt by

ξtpuq “ E rλu|Fts . (3.2)

Since pFtqtě0 is right-continuous, we have λt “ limuÓt ξtpuq. Setting

JXt “ J`t ´ J
´
t , rJλt “

1

γ`
rJ`t `

1

γ´
rJ´t (3.3)

we can rewrite (3.1) as

dXt “ ´λt´mXdt` dJ
X
t ,

dξtpT q “ κpT ´ tqd rJλt .

Note that compensated jump processes are local martingales, such that also
ξtpuq is (at least locally) a martingale, which is consistent with (3.2).

We now discuss the jump processes and the compensators of their random
jump measures in more detail. Recall that we have assumed the same order size
distribution ζpdxq for both buy and sell orders. Hence the random jumps of J˘

are compensated by
dν˘t pdxq “ λt´ζp˘dxqdt,

where x represents jump size. While J` and J´ are independent, it is important
to note that JXt and Jλt are not. Instead, they move by simultaneous jumps.
Thus, the predictable compensator of the jump measure of pJX , Jλq is given by

dν
pX,λq
t pdx, dyq “ λt´χpdx, dyqdt, where

χpdx, dyq “
´

1txě0u1tx“γ`yuζpdxq ` 1txď0u1tx“´γ´yuζp´dxq
¯

.

Note that the measure of joint jump heights χpdx, dyq is concentrated on the
line segments x “ γ`y, px ě 0q and x “ ´γ´y, px ď 0q due to the simultaneity
of jumps. In addition, we define

ψpuq “

ż 8

0

peux ´ 1q ζpdxq (3.4)

11



and calculate
ż

RˆRě0

`

eux`wy ´ 1
˘

χpdx, dyq “ ψ
`

u` wγ`
˘

` ψ
`

´ u` wγ´
˘

.

Applying Itô’s formula for jump processes to eX it is easy to see that the mar-
tingale condition implies that

mX “ ψp1q ` ψp´1q.

The following theorem is the analogue of Theorem 2.5 and shows the structural
similarity between affine forward variance models and AFI models.

Theorem 3.1. The AFI model (3.1) has an affine CGF in the sense of Defi-
nition 2.2. Moreover, gp.;uq : Rě0 Ñ Rď0 in (2.3) is the unique global solution
of the generalized convolution Riccati equation

gpt;uq “ Rλ

´

u,

ż t

0

κpt´ sqgps;uqds
¯

“ Rλ

´

u, pκ ‹ gqpt;uq
¯

, (3.5)

where
Rλpu,wq “ ψ

`

u` wγ`
˘

` ψ
`

´ u` wγ´
˘

´ umX ´ wmζ , (3.6)

with ψ as in (3.4).

Proof. Essentially, we proceed as in the second part of the proof of Theorem 2.5.
Let G be defined as in (2.12) and set Mt “ exppuXt `Gtq. Applying the same
argument as in the proof of Lemma 2.10, but replacing Brownian motion by the
pure-jump-martingale rJX we obtain

Gt “

ż T

0

gpT ´ s;uqξ0psqds´

ż t

0

gpT ´ s;uqλs´ds`

ż t

0

vspT ;uqd rJXs ,

where

vtpT ;uq “

ż T

t

κpr ´ tqgpT ´ r;uqdr.

Applying the Itô-formula with jumps to M we obtain

Mt “M0`

ż t

0

Ms´ pudXt ` dGtq`
ÿ

0ďsďt

Ms´

`

eu∆Xs`∆Gs ´ 1´ u∆Xs ´∆Gs
˘

and compensating the jumps yields

dMt

Mt
“ loc. mg.´ λt´pumX ` vtpT ;uqmζqdt´ gpT ´ t;uqλt´dt` (3.7)

` λt´

ż

RˆRě0

´

eux`yvtpT ;uq ´ 1
¯

χpdx, dyqdt,

12



where ‘loc. mg.’ denotes a local martingale part that we need not compute
explicitly. We see that the dt-terms vanish, if

gpτ ;uq “ Rλ

´

u,

ż τ

0

κpτ ´ sqgps;uqds
¯

,

i.e. if the generalized convolution Riccati equation (3.5) has a solution for
0 ď τ ď T ´ t.

To show that there exists a unique global solution of (3.5), we set Hupwq “
Rλpu,wq, u P p0, 1q and show that Hu satisfies the conditions of Corollary A.7.
In particular, for all u P p0, 1q,

• Hupwq is a finite, strictly convex function on p´8, 0s and satisfies Hup0q ă
0;

• Hupwq has a single root Hupw˚puqq “ 0 in p´8, 0s.

Indeed, note that strict convexity is inherited from ψ, cf. (3.4). In addition,
convexity of the exponential function implies, for u P p0, 1q, that

eux “ eu¨x`p1´uq¨0 ď uex ` p1´ uqe0 ă uex ` 1,

and hence that

Hup0q “

ż 8

0

peux ´ 1´ uexq ζpdxq `

ż 8

0

`

e´ux ´ 1´ ue´x
˘

ζpdxq ă 0.

Finally, the existence of the root w˚puq follows from the fact that

lim
wÑ´8

ż 8

0

´

ep˘u`γ
˘wqx ´ 1´ γ˘wx

¯

ζpdxq “ `8,

which implies that limwÑ´8Hupwq “ `8. In summary, Hu satisfies all con-
ditions of Cor. A.7 and we conclude the existence of a unique global solution
gpt;uq of the Riccati equation for all u P p0, 1q. Moreover, gpt;uq ď 0 for
all pt, uq P Rě0 ˆ p0, 1q by estimate (A.11). We can add the boundary cases
u P t0, 1u, observing that they yield the constant global solution gpt;uq ” 0,
which must be unique by [GLS90, Thm. 13.1.2]. From (3.7) we conclude that
Mt “ exppuXt`Gtq is a local martingale. From gpt, uq ď 0 it follows that M is
bounded and hence a true martingale. By the same argument as in (2.17) this
shows the affine CGF (2.3).

Example 3.2 (The bivariate Hawkes process of [EER16]). Consider (3.1a), driven
by a bivariate Hawkes process pJ`, J´q with unit jump size (i.e., ζpdxq “
δ1pdxqq, common kernel φ, and common intensity λt, given by

λt “ µ`

ż t

0

φpt´ sq

ˆ

1

γ`
dJ`s `

1

γ´
dJ`s

˙

,
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as in [EER16, Sec. 2]. Assume that 1
γ` `

1
γ´ “ 1 and that φ satisfies the

stability condition
ş8

0
φpsqds ă 1.2 Then the kernel φ has an ‘inverse kernel’ κ

(cf. [BMM15, Def. 2]), also called ‘resolvent’ of φ (cf. [GLS90, Ch. 2], [JLP17,
Sec. 2]), which is defined as solution of the functional equation

κ ‹ φ “ κ´ φ. (3.8)

In terms of this inverse kernel κ, the Hawkes intensity λ has the martingale
representation (cf. [BMM15, Eq. (45)])

λt “ µ` µ

ż t

0

κpt´ uqdu`

ż t

0

κpt´ uqdJ̃λu ,

with J̃λ as in (3.3). Taking conditional expectations and using the martingale
property of J̃λ yields

E rλT |Fts “ µ` µ

ż T

0

κpT ´ uqdu`

ż t

0

κpT ´ uqdJ̃λu ,

and hence
dξtpT q “ dE rλT |Fts “ κpT ´ tqdJ̃λt ,

which shows that the model can be cast as AFI model with kernel κ. Denoting
by pφ, pκ the Laplace transforms of φ, κ, the resolvent equation (3.8) becomes

pκ ¨ pφ “ pκ´ pφ, (3.9)

after taking Laplace transforms. For concrete specifications of φ this allows to
find the corresponding κ. Consider, for example

φpxq “ ζe´pλ`ζqx with Laplace tf. pφpzq “
ζ

1` λ` ζ
. (3.10)

Tor this φ we obtain from (3.9) the ‘inverse kernel’

κpxq “ ζe´λx with Laplace tf. pκpzq “
ζ

1` λ
,

i.e., the kernel of the Heston model in forward variance form; see Example 2.8.
Furthermore, the Hawkes kernel

φpxq “ ζxα´1Eα,αp´pλ` ζqx
αq (3.11)

has Laplace transform pφpzq “ ζ{pzα ` λ` ζq (cf. [HMS11, Eq. (7.5)]). Thus its
resolvent is

κpxq “ ζxα´1Eα,αp´λx
αq, (3.12)

the kernel of the rough Heston model in forward variance form; see Example 2.9.

2The stability condition ensures stationarity of the process pJ`, J´q, cf. [BMM15].
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4 High-frequency limit of the AFI model

We proceed to show that the AFV model is the high-frequency limit of the AFI
model. This limit is closely related to the limits of ‘nearly unstable’ Hawkes
processes considered in [JR15, JR16, EER16], see Example 4.3 below.

4.1 A first convergence result

We introduce a small parameter ε and rescale(3.1) as

dXε
t “ ´λ

ε
t´mXdt` dJ

ε,`
t ´ dJε,´t , (4.1a)

dξεt pT q “ κεpT ´ tq

ˆ

1

γ`
d rJε,`t `

1

γ´
d rJε,´

˙

, (4.1b)

where Jε,˘ are independent pure jump semimartingales with (conditional) in-
tensity

λεt´ “
1
ελt´, ξtpT q “ E rλεT |Fts “ 1

ε ξtpT q,

and jump height distribution

ζε,˘pdxq “ ζp˘dx{
?
εq.

Thus, as ε Ó 0, the frequency of jumps increases proportional to 1{ε, while the
size of jumps shrinks proportional to

?
ε. The kernel is scaled as

κεpxq “
1

ε
κpxq,

and the initial conditions of (4.1) are given by Xε
0 “ X0 and ξε0pT q “

1
ε ξ0pT q.

Under the given scaling, the quantities from (3.4) and below transform as

ψεpuq “ ψp
?
εuq

mε
X “ ψp

?
εq ` ψp´

?
εq

mε
ζ “

?
εmζ

and we write

Rεpu,wq “ ψε
`

u` wγε,`
˘

` ψε
`

´ u` wγε,´
˘

´ umε
X ´ wm

ε
ζ .

Lemma 4.1. Given γ˘ ą 0 and the jump height distribution ζpdxq, set

|γ| “
a

pγ`q2 ` pγ´q2 c “ |γ|

d

ż 8

0

x2ζpdxq

a “

d

2

ż 8

0

x2ζpdxq, ρ “
γ` ´ γ´
?

2|γ|
.

Then

lim
εÑ0

1

ε
Rεpu,wq “

a2

2
pu2 ´ uq ` acρuw `

c2

2
w2 “ RV pu, cwq
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with RV pu,wq as in (2.8). Moreover, also the partial derivatives with respect to
u and w converge, i.e.

lim
εÑ0

1

ε

BRε

Bu
pu,wq “

BRV
Bu

pu, cwq “
a2

2
p2u´ 1q ` acρw

lim
εÑ0

1

ε

BRε

Bw
pu,wq “

BRV
Bw

pu, cwq “ cw ` aρu.

Proof. We can write

Rεpu,wq “

ż 8

0

bεpx;u,wqζpdxq (4.2)

where

bεpx;u,wq “ ´upe
?
εx ` e´

?
εxq ´ wpγ` ` γ´q

?
εx`

` exp
´

pu` wγ`q
?
εx
¯

´ 1` exp
´

p´u` wγ´q
?
εx
¯

´ 1.

Expanding in powers of
?
εx yields

bεpx;u,wq “ εx2

ˆ

pu2 ´ uq ` uwpγ` ´ γ´q `
w2

2

`

pγ`q2q ` pγ´q2
˘

˙

`Opε3{2x3q.

Hence,

lim
εÑ0

1

ε
Rεpu,wq “

ż 8

0

x2ζpdxq ¨

ˆ

u2 ´ u`
?

2|γ|ρuw `
w2

2
|γ|2

˙

“ RV pu, cwq,

where exchanging limit and integral is justified by dominated convergence and
the integrability condition

ş8

0
exζdx ă 8.

To show the convergence of partial derivatives, we take partial derivatives
in (4.2) to obtain

BRε

Bu
pu,wq “

ż 8

0

Bbε

Bu
px;u,wqζpdxq.

Since Rε is convex, its difference quotients converges monotonically, and mono-
tone convergence can be used to exchange derivative and integral. Expanding
Bbε

Bu px;u,wq in powers of
?
εx, a direct calculation yields the desired limit. The

proof for the B
Bw -derivative is analogous.

Combining Lemma 4.1 with Theorem 2.5 and 3.1 yields a first distributional
convergence result.

Proposition 4.2. Let pXε, ξεq be the rescaled AFI model (4.1). Define a, ρ, c
as in Lemma 4.1 and set κV pxq “ cκpxq. Then, for any t ě 0,

Xε
t
εÑ0
ÝÝÝÑ Xt in distribution, (4.3)

where pX, ξq is a forward variance model with parameters a and ρ, and kernel
κV .
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Proof. By Theorem 3.1, gεpt;uq in the CGF (2.3) of Xε is the unique global
solution of the generalized convolution Riccati equation (3.5) and hence satisfies

1
ε g
εpt;uq “ 1

εR
ε
´

u, κε ‹ gεpt;uq
¯

“ 1
εR

ε
´

u, κ ‹
`

1
ε g
ε
˘

pt;uq
¯

. (4.4)

Note that 1
εR

εpu,wq is jointly continuous in all variables, and by Lemma 4.1
converges to RV pu, cwq as ε Ñ 0. By Corollary A.7 (4.4) can be transformed
into a non-linear Volterra equation of type (A.6), whose solution depends jointly
continuous on pt, ε, uq by [GLS90, Thm. 13.1.1]. We conclude that 1

ε g
εpt;uq

converges, uniformly for pt, uq in compacts, to gpt;uq as ε Ñ 0, where gpt;uq is
the unique solution (cf. Theorem 2.5) of

gpt;uq “ RV

´

u, cκ ‹ gpt;uq
¯

“ RV

´

u, κV ‹ gpt;uq
¯

.

Using Theorems 2.5 and 3.1, we conclude that

E
”

euX
ε
t

ı

“ exp

ˆ

uX0 `

ż t

0

gεpt´ s;uqξε0psqds

˙

Ñ

exp

ˆ

uX0 `

ż t

0

gpt´ s;uqξ0psqds

˙

“ E
“

euXt
‰

,

as εÑ 0, i.e., the moment generating function of Xε
t converges to the moment

generating function of Xt on u P r0, 1s. By [Bil86, Prob. 30.4], convergence of
moment generating functions on a (non-empty) interval implies the convergence
in distribution in (4.12).

The following example shows that the scaling in (4.1) is related to the ‘nearly
unstable’ limit of Hawkes models in [EER16].

Example 4.3 (Nearly unstable limit of bivariate Hawkes processes). We continue
Example 3.2 and consider the bivariate Hawkes process from [EER16] with
Mittag-Leffler kernel (3.11). Introduce a small parameter ε and scale the kernel
as

φεpxq “
ζ
εx

α´1Eα,αp´pλ`
ζ
ε qx

αq.

In terms of its Laplace transform, this scaling becomes pφεpzq “ ζ{pεpzα`λq`ζq.
In particular, we have

ż 8

0

φεpxqdx “ pφp0q “
ζ

ελ` ζ
Ñ 1,

i.e. as ε Ñ 0 the stability condition of the Hawkes process approaches the
critical value 1 (hence ‘nearly unstable’). From (3.9), the Laplace transform of
the resolvent kernel κεpxq can be determined as

pκεpzq “
pφεpzq

1´ pφεpzq
“

ζ{ε

zα ` λ

17



and thus the resolvent kernel is given by

κεpxq “
ζ
εx

α´1Eα,αp´λx
αq “ 1

εκpxq.

Together with square-root scaling of the jump size we are exactly in the setting
of (4.1) and conclude from Proposition 4.2 that the (univariate) marginal distri-
butions of X converge to those of the corresponding AFV model, i.e. the rough
Heston model (cf. Example 2.9). Theorem 4.9 below strengthens this result to
convergence of all finite-dimensional marginal distributions. ˛

4.2 The joint moment generating function

In this subsection, we derive results on the joint moment generating function of
log-price and forward variance and of the finite-dimensional marginal distribu-
tions of X.

Assumption 4.4. We assume that pX, ξq is either an AFV model (2.1) or an
AFI model (3.1), and we write Rpu,wq for the corresponding function RV pu,wq
or Rλpu,wq. In addition we denote, for any u P p0, 1q, by w˚puq the unique root
where

Rpu,w˚puqq “ 0, and w˚puq ă 0.

Note that the function Rpu,wq has already been studied in the context of
affine stochastic volatility models in [KR11, Lem. 3.2ff]. In particular, we note
that Rpu,wq and w˚puq are convex functions for u P r0, 1s, w ď 0 and continu-
ously differentiable on the interior of their domain.

Proposition 4.5. Let pX, ξq be an AFV or an AFI model and let Rpu,wq and
w˚puq be defined as in Assumption 4.4. Let ∆ ą 0, T 1 “ T ` ∆, and let h
be a piecewise continuous Rď0-valued function on r0,∆s, such that w˚puq ă
ş∆

0
κp∆´ sqhpsqds. Then

E

«

exp

˜

uXT `

ż T 1

T

hpT 1 ´ sqξT psqds

¸
ˇ

ˇ

ˇ

ˇ

ˇ

Ft

ff

“

“ exp

˜

uXt `

ż T 1

t

gpT 1 ´ s;u, hqξtpsqds

¸

, (4.5)

where gp.;u, hq : Rě0 Ñ Rď0 is the unique solution of the (generalized) convo-
lution Riccati equation

gpt;u, hq “ R
´

u,

ż t

0

κpt´ sqgps;u, hqds
¯

, t P r∆,8q (4.6)

with initial condition

gpt;u, hq “ hptq, t P r0,∆q. (4.7)
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Remark 4.6. Note that the expression (4.5) for the joint moment generating
function does not correspond to the exponential-affine transform formula (4.6) of
[JLP17]. Specifically, h constant in (4.5) would give the joint moment generation

function of XT and the forward variance swap
şT 1

T
ξT psq ds. In contrast, f

constant in (4.6) of [JLP17] would give the the joint moment generation function

of XT and quadratic variation
şT

0
Vs ds.

Proof. The existence of a unique, Rď0-valued solution to (4.6) with initial con-
dition (4.7) follows from an application of Corollary A.8 with Hupwq “ Rpu,wq.
In the proofs of Theorem 2.5 and Theorem 3.1, we have already established
that Hu satisfies the necessary conditions to apply the corollary. Next, we de-

fine G∆
t “

şT 1

t
gpT 1 ´ s;u, hqξtpsqds and specialize to the forward variance case.

By Lemma 2.10, it holds that

dG∆
t “ ´gpT

1 ´ t;u, hqVtdt`

˜

ż T 1

t

gpT 1 ´ r;u, hqκpr ´ tqdr

¸

VtdWt.

Applying Itô’s formula to M∆
t “ exppuXt`G

∆
t q, as in the proof of Theorem 2.5,

we see that M∆
t is a local martingale on r0, T s if

gpT 1 ´ t;u, hq “ R

˜

u,

ż T 1

t

gpT 1 ´ r;u, hqκpr ´ tqdr

¸

.

Setting τ “ T 1 ´ t P r∆, T 1s this is exactly (4.6). We conclude that M∆
t is a

local martingale on r0, T s, and – being bounded – even a true martingale. Using
the initial condition (4.7), we observe that

E

«

exp

˜

uXT `

ż T 1

T

hpT 1 ´ sqξT psqds

¸
ˇ

ˇ

ˇ

ˇ

ˇ

Ft

ff

“ E
“

M∆
T

ˇ

ˇFt
‰

“

“Mt “ exp

˜

uXt `

ż T 1

t

gpT 1 ´ s;u, hqξtpsqds

¸

,

showing (2.3). The proof in the AFI case is analogous with the following modi-
fications: Wt has to be substituted by the pure-jump martingale J̃Xt and Vt by
the intensity λt´. Itô’s formula for jump processes can then be applied as in
the proof of Theorem 3.1.

Proposition 4.7. Let pX, ξq be an AFV or an AFI model and let Rpu,wq
and w˚puq be defined as in Assumption 4.4. Let t0 ď t1 ď ¨ ¨ ¨ tn “ T and
u “ pu0, . . . , un´1q P p0, 1q

n be such that w˚pu0q ď w˚pu2q ď ¨ ¨ ¨w˚pun´1q.
Then, for all k P t0, . . . , n´ 1u,

E
“

exp
`

ukpXtk`1
´Xtkq ` ¨ ¨ ¨ ` un´1pXT ´Xtn´1

q
˘
ˇ

ˇFtk
‰

“

“ exp

˜

ż T

tk

gkpT ´ s;uqξtkpsqds

¸

, (4.8)
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where the functions gk are recursively defined as the solutions of the convolution
Riccati equations

gkpt;uq “ R
´

uk,

ż t

0

κpt´ sqgkps;uqds
¯

, t P rT ´ tk`1, T ´ tkq (4.9)

with initial conditions

gkpt;uq “ gk`1pt;uq, t P r0, T ´ tk`1q. (4.10)

Remark 4.8. Note that for k “ n ´ 1 equation (4.9) becomes a (generalized)
convolution Riccati equation without initial condition and (4.10) becomes void
(i.e. a condition over an empty set).

Proof. We show the result by backward induction on k: For k “ n ´ 1 the
proposition is equivalent to Theorem 2.5, when pX, ξq is an AFV model, and to
Theorem 3.1, when pX, ξq is an AFI model. Setting ∆k :“ T ´ tk, we obtain
from (A.15) in Corollary A.8 that

w˚pun´1q ă

ż ∆n´1

0

κp∆n´1 ´ sqgn´1ps;uqds. (4.11)

For the induction step assume that (4.8) has been shown for a certain k and
that (4.11) holds with n´ 1 replaced by k. Writing

Zk´1 :“ exp
`

uk´1pXtk ´Xtk´1
q ` ¨ ¨ ¨ ` unpXT ´Xtn´1

q
˘

and applying the tower law of conditional expectations, we have

E
“

Zk´1|Ftk´1

‰

“ E
“

exp
`

uk´1pXtk ´Xtk´1
q
˘

¨ E rZk|Ftk s
ˇ

ˇFtk´1

‰

“

“ E

«

exp

˜

uk´1pXtk ´Xtk´1
q `

ż T

tk

gkpT ´ s;uqξtkpsqds

¸
ˇ

ˇ

ˇ

ˇ

ˇ

Ftk´1

ff

.

Since

w˚puk´1q ď w˚pukq ă

ż ∆k

0

κp∆k ´ sqgkps;uqds

we may apply Proposition 4.5 with ∆k and obtain (4.8) with gk´1 as solution
of (4.9) with initial condition (4.10). Finally, (4.11) holds with n ´ 1 replaced
by k ´ 1, using the estimate (A.15) from Corollary A.8.

4.3 Convergence of finite-dimensional marginal distribu-
tions

Theorem 4.9. Let pXε, ξεq be the rescaled AFI model (4.1), define a, ρ, c as in
Lemma 4.1 and set κV pxq “ cκpxq. Then, for any n P N and 0 “ t0 ď t1 ď
¨ ¨ ¨ tn “ T ,

`

Xε
t0 , . . . , X

ε
tn

˘ εÑ0
ÝÝÝÑ pXt0 , . . . , Xtnq in distribution, (4.12)

where pX, ξq is the AFV model with parameters a, ρ, c and kernel κV .
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Proof. By Lemma 4.1 1
εR

εpu,wq converges to RV pu, cwq and the same holds true
for the partial derivatives with respect to u and w. Therefore, by the implicit
function theorem, also wε˚puq and B

Buw
ε
˚puq converge to 1

cw˚puq and 1
cw

1
˚puq as

ε Ñ 0 for all u P p0, 1q. Moreover, since the wε˚ are convex functions of u, the
convergence is uniform on compacts (cf. [Roc70, Thm. 10.8]). The limit 1

cw˚puq
can be calculated explicitly and is given by

1
cw˚puq “

a
c

´

´ρu`
a

ρ2u2 ` pu´ u2q

¯

.

It is easy to see that w˚ is decreasing on p0, u˚q and increasing on pu˚, 1q, where

u˚ :“

#

1
2

1´|ρ|
1´ρ2 if ρ P p0, 1q

1
4 if |ρ| “ 1.

We conclude that there is N P N and a closed interval I Ă p0, u˚q with non-
empty interior, such that u ÞÑ w˚puq and u ÞÑ wε˚puq are decreasing on I for all
ε ď 1{N . Introduce the set

D :“ tu P In : u0 ě u2 ě ¨ ¨ ¨ ě un´1u Ă p0, 1q
n

and note that also D is closed with non-empty interior. In addition, wε˚pu0q ď

wε˚pu2q ď ¨ ¨ ¨wε˚pun´1q for all u “ pu0, . . . , un´1q P D and ε ď 1{N , and the
same holds for w˚. From Proposition 4.7 we conclude that the joint moment
generating function of the increments pXε

t1 ´Xε
t0 , X

ε
t2 ´Xε

t1 , . . . , X
ε
tn ´Xε

tn´1
q

is of the form

Zεpuq :“ E
”

exp
´

u0pX
ε
t1 ´X

ε
t0q ` ¨ ¨ ¨ ` un´1pX

ε
T ´X

ε
tn´1

q

¯ı

“

“ exp

˜

ż T

0

gε0pT ´ s;uqξt0psqds

¸

,

for any u P D and ε ď 1{N , where gε0 satisfies the iterated Riccati convolu-
tion equations (4.9) with Rpu,wq “ Rεpu,wq. By Corollary A.8 each of these
equations can be transformed into a non-linear Volterra equation, whose solu-
tion depends continuously on pε, t, uq by [GLS90, Thm. 13.1.1]. In addition,
Lemma 4.1 yields the convergence 1

εR
εpu,wq Ñ RV pu, cwq. Hence we conclude

– as in the proof of Proposition 4.2 – that 1
ε g
ε
0pt;uq converges, uniformly for

pt, uq in compacts, to g0pt;uq as ε Ñ 0, where g0pt;uq is the unique solution
of the iterated Riccati convolution equations (4.9) with Rpu,wq “ RV pu, cwq.
Consider now the joint moment generating function Zpuq of the increments
pXt1 ´ Xt0 , Xt2 ´ Xt1 , . . . , Xtn ´ Xtn´1

q of the AFV model with parameters
a, ρ and kernel κV “ cκ. The convergence 1

ε g
ε
0pt;uq Ñ g0pt;uq together with

Proposition 4.7 yields

Zεpuq “ exp

˜

ż T

0

gε0pT ´ sqξ
ε
0psqds

¸

Ñ exp

˜

ż T

0

g0pT ´ s;uqξ0psqds

¸

“ Zpuq
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for all u P D. By [Bil86, Thm. 29.4 and Prob. 30.4] convergence of the moment
generating function on a set with non-empty interior implies convergence in
distribution, and (4.12) follows.

5 Summary and Conclusions

Starting from a generic formulation in forward variance form of a stochastic
volatility model, we have given necessary and sufficient conditions for such a
model to have an affine cumulant generating function (CGF). In addition, we
have shown that this CGF can be expressed in terms of the unique global solu-
tion of a convolution Riccati equation. We have introduced the class of affine
forward order flow intensity (AFI) models and have shown that these model
also have an affine CGF, which can be expressed in terms of the unique global
solution of a generalized convolution Riccati equation. We have further shown
that affine forward variance models can be obtained as the high-frequency limit
of appropriately rescaled AFI models. Finally, we have computed joint moment
generating functions of the terminal log-stock price and forward variance curve
in AFV and AFI models.

A Some results on Volterra equations with con-
vex non-linearity

We show some results on Volterra equations with convex non-linearity, of the
type appearing in Theorem 2.5 and 3.1. On the non-linearity we impose the
following assumptions:

Assumption A.1. The function H : p´8, wmaxs Ñ R is continuously differ-
entiable and convex with a unique root Hpw˚q “ 0 in p´8, wmaxs. Moreover,
H 1pw˚q ă 0 and Hpwmaxq ă 0.

For a function H satisfying Assumption A.1, we set

w0 “ argminwPp´8,wmaxs
Hpwq;

if the minimum is not unique (i.e., if H has a flat part), then w0 shall denote
the leftmost minimizer. Note that either

• w0 “ wmax, in which case H is strictly decreasing on p´8, wmaxs; or

• w0 ă wmax, in which case H is strictly decreasing on p´8, w0q and in-
creasing on rw0, wmaxs.

In any case, w˚ ă w0 ď wmax holds true. Also the following definition will be
useful:
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Definition A.2. Let H be a function satisfying Assumption A.1. The decreas-
ing envelope of H is defined as

H :“

#

Hpwq, w ď w0

Hpw0q, w P rw0, wmaxs
. (A.1)

Clearly H also satisfies Assumption A.1, but is in addition decreasing and
satisfies H ď H. Both Assumption A.1 and Definition A.2 are illustrated in
Figure 1.

w

wmax = w0w∗

H1(w)

w

wmaxw0w∗

H2(w)

H2(w)

Figure 1: Illustration of two convex functions H1, H2 satisfying Assumption A.1.
While H1 is monotone decreasing, H2 is not, and its decreasing envelope H2 is
also shown.

Lemma A.3. Let H : p´8, wmaxs Ñ R be a convex function that satisfies
Assumption A.1; in particular it has a root Hpw˚q “ 0. Then

(a) For any a P pw˚, wmaxs the function

w ÞÑ Q1pw, aq “ ´

ż a

w

dζ

Hpζq
, (A.2)

maps pw˚, as onto r0,8q; is strictly decreasing, and has an inverse Q´1
1 pr, aq,

which maps r0,8q onto pw˚, as.

(b) For any a P p´8, w˚q the function

w ÞÑ Q2pw, aq “

ż w

a

dζ

Hpζq
, (A.3)

maps ra,w˚q onto r0,8q; is strictly increasing, and has an inverse Q´1
2 pr, aq,

which maps r0,8q onto ra,w˚q.

Remark A.4. Analogous to (A.2), we denote by Q1 the function

w ÞÑ Q1pw, aq “ ´

ż a

w

dζ

Hpζq
, (A.4)

where H is the decreasing envelope of H.
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Proof. To show (a), note that the integrand ´1{Hpζq is strictly positive on
pw˚, aq. It follows that Q1p., aq is strictly increasing and maps pw˚, as into
r0,8q. It remains to show that range of this map covers all of r0,8q. To this
end, observe that by convexity we have

Hpwq ě H 1pw˚qpw ´ w˚q, for all w P p´8, wmaxs, (A.5)

and H 1pw˚q ă 0. Thus, we obtain

lim
wÓw˚

Q1pw, aq “ ´

ż a

w˚

dζ

Hpζq
ě ´

1

H 1pw˚q

ż a

w˚

dζ

ζ ´ w˚
“ `8.

The proof of (b) is analogous; only the different sign of H on p´8, w˚q has to
be taken into account.

Theorem A.5. Let κ be a positive, continuous, and decreasing function in
L1pRě0q and let H be a convex function that satisfies Assumption A.1; in par-
ticular Hpw˚q “ 0 is its unique root in p´8, wmaxs. For any continuous function
a : Rě0 Ñ p´8, wmaxs consider the non-linear Volterra equation

fptq “ aptq `

ż t

0

κpt´ sqHpfpsqqds, t P Rě0. (A.6)

(a) If a is increasing with values in pw˚, w0s then (A.6) has a unique global
solution f which satisfies

w˚ ă r1ptq ď fptq ă aptq, @ t ą 0, (A.7)

where r1ptq “ Q´1
1

´

şt

0
κpsqds, ap0q

¯

and Q1 is given by (A.2).

(b) If a ” w˚ then f ” w˚ is the unique global solution of (A.6)

(c) If a is decreasing with values in p´8, w˚q then (A.6) has a unique global
solution f which satisfies

aptq ă fptq ď r2ptq ă w˚, @ t ą 0, (A.8)

where r2ptq “ Q´1
2

´

şt

0
κpsqds, ap0q

¯

and Q2 is given by (A.3).

In addition, case (a) can be extended to the following more general statement:

(a’) If a is increasing with values in pw˚, wmaxs then (A.6) has a unique global
solution f which satisfies

w˚ ă r1ptq ď fptq ă aptq, @ t ą 0, (A.9)

where r1ptq “ Q
´1

1

´

şt

0
κpsqds, ap0q

¯

and Q1 is given by (A.4).
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Remark A.6. Clearly, if H is decreasing (and hence w0 “ wmax), cases (a) and
(a’) coincide. In the general case (a) gives better bounds on f than (a’), but is
more restrictive in its assumption on the function a.

Before proving the theorem, we add two Corollaries that are used in the
proofs of Theorems 2.5, 3.1 and 4.9.

Corollary A.7. Under the assumptions of Theorem A.5, consider the non-
linear integral equation

gptq “ H

ˆ

aptq `

ż t

0

κpt´ sqgpsqds

˙

, t P Rě0. (A.10)

(a) If a is increasing with values in pw˚, w0s then (A.10) has a unique global
solution g which satisfies

Hpaptqq ă gptq ď Hpr1ptqq ă 0, @ t ą 0. (A.11)

(b) If a ” w˚ then g ” 0 is the unique global solution of (A.10).

(c) If a is decreasing with values in p´8, w˚q then (A.10) has a unique global
solution g which satisfies

0 ă gptq ď Hpr2ptqq ă Hpaptqq, @ t ą 0. (A.12)

In addition, case (a) can be extended to:

(a’) If a is increasing with values in pw˚, wmaxs then (A.10) has a unique global
solution g which satisfies

gptq ă 0, @ t ą 0. (A.13)

In any of the above cases, gptq “ Hpfptqq, where f is the solution of (A.6).

Corollary A.8. Let the assumptions of Theorem A.5 hold with wmax “ 0. Let
∆ ą 0 and let h be a piecewise continuous function from r0,∆q to Rď0. Consider
the non-linear integral equation

gptq “ H

ˆ
ż t

0

κpt´ sqgpsqds

˙

, t P r∆,8q, (A.14)

with initial condition

gptq “ hptq, t P r0,∆q.

If w˚ ă
ş∆

0
κp∆ ´ sqhpsqds, then (A.14) has a unique global solution g taking

values in Rď0, which satisfies

w˚ ă

ż t

0

κpt´ sqgpsqds for all t ě 0. (A.15)
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We start with the proof of Theorem A.5, which closely follow the account of
Lakshmikantham’s comparison method in [BS13, Sec. II.7].

Proof of Theorem A.5. Clearly, H can be extended to a continuous function on
all of R and thus it follows from [GLS90, Thm. 12.1.1] that (A.6) has a local
continuous solution f on an interval r0, Tmaxq with Tmax ą 0. In addition, Tmax

can be chosen maximal, in the sense that the solution cannot be continued
beyond r0, Tmaxq.
Case (a): By assumption, a is increasing and takes values in pw˚, w0s. Set

T˚ :“ inf tt P p0, Tmaxq : fptq “ w˚ or fptq “ apTmaxqu (A.16)

and note that T˚ ą 0. From (A.6) it is clear that

fptq “ aptq `

ż t

0

κpt´ sqHpfpsqqds ă aptq ď apTmaxq, @t P r0, T˚q, (A.17)

i.e. the lower bound w˚ in (A.16) is always hit before the upper bound apTmaxq.
In addition, using that the kernel κ is decreasing, we obtain that

fptq “ aptq `

ż t

0

κpt´ sqHpfpsqqds ď apT q `

ż t

0

κpT ´ sqHpfpsqqds :“ vpt, T q

(A.18)
for all 0 ď t ď T ď T˚. The function vpt, T q, which we have just defined,
satisfies

vpt, tq “ fptq (A.19)

vp0, T q “ apT q ě ap0q (A.20)

and the differential inequality

B

Bt
vpt, T q “ κpT ´ tqHpfptqq ě κpT ´ tqHpvpt, T qq. (A.21)

Here, where we have used (A.18) and the fact that H is decreasing on pw˚, w0s.
Together with the initial estimate (A.20), a standard comparison principle for
differential inequalities (cf. [Wal96, II.§9]) yields

vpt, T q ě rpt, T q, (A.22)

where

B

Bt
rpt, T q “ κpT ´ tqHprpt, T qq, rp0, T q “ ap0q. (A.23)

We claim that the differential equation (A.23) is solved by

rpt, T q “ Q´1
1

ˆ
ż t

0

κpT ´ sqds, ap0q

˙

. (A.24)
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Indeed, applying Q1p., ap0qq to both sides of (A.24) yields

ż t

0

κpT ´ sqds “ Q1prpt, T q, ap0qq “ ´

ż ap0q

rpt,T q

dζ

Hpζq
.

Taking B
Bt -derivatives, we obtain

κpT ´ tq “
1

Hprpt, T qq

B

Bt
rpt, T q

which is equivalent to (A.23). From (A.18), (A.19) and (A.22) we obtain the
bound

r1ptq :“ lim
TÓt

rpt, T q ď lim
TÓt

vpt, T q “ fptq (A.25)

for all t P r0, T˚q. This implies that

lim
tÑT˚

fptq ě r1pT˚q ą w˚, (A.26)

which, in light of (A.16), means that T˚ “ Tmax, i.e. we have shown the
bounds (A.7) to hold for all t P r0, Tmaxq. However, by [GLS90, Thm. 12.1.1]
limtÑTmax

|fptq| “ 8 whenever Tmax ă 8. We conclude that Tmax “ 8, and
hence that f is a global solution of (A.6). Uniqueness follows from [GLS90,
Thm. 13.1.2].
Case (b): By assumption, a ” w˚. Since Hpw˚q “ 0 it is clear that fptq ” w˚
is a global solution of (A.6). Uniqueness follows from [GLS90, Thm. 13.1.2].
Case (c): By assumption, a is decreasing and takes values in p´8, w˚s. This
case can be handled analogous to case (a) with the following adaptations: The
inequality signs in equations (A.17) – (A.22) have to be reversed. In (A.24) Q1

has to be substituted by Q2 and also in (A.25) and (A.26) the inequalities have
to be reversed.
Case (a’): The proof of Case (a) applies, except for the following modification:
(A.21) holds only when vpt, T q ď w0, since H is decreasing only on p´8, w0s.
However, when vpt, T q ą w0, we can use the trivial estimate

B

Bt
vpt, T q “ κpT ´ tqHpfptqq ě κpT ´ tqHpw0q,

which can be combined with (A.21) into

B

Bt
vpt, T q “ κpT ´ tqHpfptqq ě κpT ´ tqHpvpt, T qq,

where H is the decreasing envelope of H from Definition A.2. The remaining
proof of Case (a) applies after substituting H by H and Q1 by Q1.

Proof of Corollary A.7. Let f be the global solution of (A.6). Applying H to
both sides of (A.6), we see that gptq :“ Hpfptqq is a global solution of (A.10).
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Next, we show uniqueness. To this end, assume that rg is a local solution of
(A.10) on r0, T q, different from g and define

rfptq :“ aptq `

ż t

0

κpt´ sqrgpsqds.

Clearly, rgptq “ Hp rfptqq on r0, T q, and hence rf is a local solution of (A.6). By

[GLS90, Thm. 13.1.2], this solution is unique, and we conclude that rf “ f , and
hence also rg “ g. Finally, applying H – which is decreasing on p´8, w0s – to the
inequalities (A.7) and (A.8) yields (A.11) and (A.12). In case (a’) monotonicity
of H is lost, but Hpwq ă 0 for all w P pw˚, wmaxs yields (A.13).

Proof of Corollary A.8. Set

aptq :“

ż ∆

0

κpt`∆´ sqhpsqds

and note that a is increasing with values in pw˚, 0s. Consider the non-linear
Volterra equation

fptq “ aptq `

ż t

0

κpt´ sqHpfpsqqds, (A.27)

which has a unique global solution f by Theorem A.5.(a) or (a’). For t1 P Rě0

set

gpt1q “

#

Hpfpt1 ´∆qq, t1 P r∆,8q

hpt1q t1 P r0,∆q
.

For t1 ě ∆ we have

gpt1q “ Hpfpt1 ´∆qq “ H

˜

ż ∆

0

κpt1 ´ sqhpsqds`

ż t1

∆

κpt1 ´ sqgpsqds

¸

“

“ H

˜

ż t1

0

κpt1 ´ sqgpsqds

¸

,

showing that g is a global solution of (A.14). From cases (a) or (a’) of Theo-
rem A.5, we obtain the bound

w˚ ă fpt1 ´∆q “

ż t1

0

κpt1 ´ sqgpsqds,

as claimed. To show uniqueness, assume that rg is a solution of (A.14), different
from g. Setting

rfptq :“ aptq `

ż t

0

κpt´ sqrgps`∆q,

we see that rf is a solution of (A.27) and conclude from Theorem A.5 that rf “ f
and hence also rg “ g.
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