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ABSTRACT

Modelling the dynamics of financial markets has been an
area of active research in recent years. This paper presents
a time series analysis model which can be used to infer
patterns within financial data, in order to better understand
the dynamics of financial markets. The focus of the paper
is on finding causal and time-scale relationships between
financial time series. Wavelets are used to extract use-
ful time-scale information from financial data at different
frequencies and mutual information between time series
is used as the canonical measure of coupling. A Hid-
den Markov Independent Component Analysis (HMICA)
model is used to infer a series of hidden states and it is
shown that these hidden states are indicative of changes in
mutual information between time series at various differ-
ent time scales.

Keywords: ICA, Wavelets, Hidden Markov ICA, Fi-
nancial Time Series Analysis

1 INTRODUCTION

One of the most prominent outcomes of research carried
out in the field of financial engineering has been the devel-
opment and rapid growth of algorithmic trading strategies.
Due to the vast scale of the global financial markets and
their constant evolution, research in this sector presents
real challenges and opportunities. Algorithmic trading,
also known as black-box or technical trading, is an au-
tomated trading platform, which relies on complex math-
ematical and statistical algorithms to make online trading
decisions. Since the introduction of electronic trading in
1971, the proportion of trades that can be attributed to
algorithmic trading has steadily increased. Algorithmic
trading now accounts for over 60% of all trades taking
place on the London Stock Exchange [1]. Many of the al-
gorithmic trading engines currently in use act as a black-
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box to harness market inefficiencies in order to generate
consistent positive returns. Till recently, algorithmic trad-
ing was usually done on an hourly basis. However, due
to the easy and relatively cheap availability of high fre-
quency market data, some of the latest algorithmic trading
engines trade on a second by second or even tick by tick
basis. The time series analysis model presented in this
paper can potentially be used in the development of an
algorithmic trading strategy.

2 TIME-FREQUENCY
REPRESENTATION OF FINANCIAL

TIME SERIES

There are a variety of methods currently in use to de-
termine the time-frequency representation of a financial
time series. The Fourier Transform, Empirical Mode De-
composition and Wavelet Analysis are all popular time-
frequency analysis techniques. The method used in this
paper is the Continuous Wavelet Transform, primarily be-
cause it allows for the inclusion of a prior distribution as
its basis. Thus, prior knowledge can easily be incorpo-
rated into a trading model. Studies focusing on analysis
of financial time series using a time-scale approach show
some very promising results [5]. Therefore, there is po-
tential for significant new developments in this field, espe-
cially considering the fact that almost all asset classes in-
cluding Foreign Exchange (FX) and Equities exhibit time-
scale behaviour.

2.1 Continuous Wavelet Transform

Wavelets are functions which can be used to represent a
signal in a form which can be more easily analysed and
comprehended. Wavelets allow for the localised analy-
sis of signal components, which makes them especially
interesting for use in dealing with FX data. The Continu-
ous Wavelet Transform (CWT) is a powerful data analysis
method which can be used to analyse the properties of a
financial time series at different frequencies. The knowl-
edge gained about the trends of a time series at different
time scales can be used to develop trading models which
take advantage of recurring patterns at various different
frequencies. The CWT of a functionx(t) is given by:
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whereu is the dilation parameter, also known as the scale,
and b is the localisation parameter. The functionψ(t),
from which different dilated and translated versions are
derived is called the mother wavelet.

The Morlet wavelet is used in all the analysis pre-
sented later in this paper. Morlet is a non-orthogonal
wavelet which has both a real and a complex part. Such
wavelets are also referred to as the analytical wavelets.
Due to the complex part, Morlet wavelets can be used to
separate both the phase and amplitude parts of a signal. A
Morlet wavelet is represented by:
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3 MUTUAL INFORMATION

The Mutual Information (MI) of two signals is the canon-
ical measure of coupling between the signals. For un-
coupled signals MI is zero, whereas for coupled signals
it has a positive value. The MI between two time vary-
ing signals,x1 = x1(t) andx2 = x2(t), is given by the
Kullback-Leibler (KL) divergence [2]:

I[x1,x2] = KL(p(x1,x2) || p(x1)p(x2)) (3)

The Kullback-Leibler (KL) divergence between two de-
pendent probability density functions,p(x1) andp(x2),
is given by:

KL[p(x1) || p(x2)] =

∫

t

p(x1) log
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Therefore, the MI is represented by:

I[x1,x2] = −
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p(x1,x2) log
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4 The Wavelet-MI Algorithm

This section presents the Wavelet-MI model, which uses
the wavelet coefficients to calculate the mutual informa-
tion between two financial time series at any given time
scale. ForN time series,xt = [x1(t), x2(t), ..., xN (t)],
analysed using the CWT at scales of1 to u, the wavelet
coefficients can be combined into a single matrix,Ct =
[c1(t), c2(t), ..., cu(t)]. Thus, the set of signals,xt, can be
represented in terms of the wavelet coefficients,Ct, and
the mother waveletψt:

xt = Ctψt (6)

The CWT of a signal is given by equation 1. Equa-
tion 5 presents the MI equation. These two equa-
tions can be combined as shown in equation 7. The
Wavelet-MI algorithm computes the mutual information,

I[c1, c2], between the recovered wavelet coefficients,
c1 = c1(t), c2 = c2(t), of a multivariate time series,
x1 = x1(t),x2 = x2(t). Figure 1 shows the variation in
MI across different time scales for various currency pairs.
It is evident that MI and thus coupling between two cur-
rency pairs generally increases across time scales.

I[c1, c2] = −
∫ ∫

p(c1, c2) log

(

p(c1)p(c1)

p(c1, c2)

)

dc1dc2

(7)
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Figure 1: Mutual Information of three currency pairs,
EURUSD-GBPUSD, USDCHF-EURCHF and USDJPY-
EURJPY, at various time scales

In this paper, the method used for computing MI
is based on a data-interpolation technique known as the
Parzen-window density estimation, as discussed in [4].

5 HIDDEN MARKOV INDEPENDENT
COMPONENT ANALYSIS

5.1 Markov Model

A Markov process is a statistical process in which future
probabilities are determined by only its most recent val-
ues. Using the product rule, the joint probability of a vari-
ablex can be written as [2]:

p(x1, ..., xN ) =

N
∏

n=1

p(xn | x1, ..., xn−1) (8)

A first-order Markov model assumes that all the con-
ditional probabilities of equation 8 are dependent on only
the most recent observation and independent of all others.
Thus, a first order Markov model can be represented by:

p(x1, ..., xN ) = p(x1)

N
∏

n=2

p(xn | xn−1) (9)

which can be simplified to:

p(xn | x1, ..., xn−1) = p(xn | xn−1) (10)

which is a simplified form of a first-order Markov model.



5.2 Hidden Markov Model

A Hidden Markov Model (HMM) is a statistical model
consisting of a set of observations which are produced by
an unobservable set of latent Markov model states. It is
widely used within the speech recognition sector. Due to
its numerous advantages in inferring the hidden states of a
dynamic system, it is increasingly being used in the finan-
cial sector as well. The aim of using a HMM is to infer the
hidden states from a set of observations. Mathematically,
the model can be represented by [2]:

p(X | Z, θ) = p(z1 | π)[

N
∏

n=2

p(zn | zn−1, A)]

N
∏

m=1

p(xm | zm,B)

(11)
whereX = x1, ..., xN is the observation set,Z =
z1, ..., zN is the set of latent variables,θ = π,A,B rep-
resents the set of parameters governing the model. The
HMM is represented using Markov chains in Figure 2,
showing the hidden layer with stateszt and the observed
layer with observation setxt. Also shown in the figure is
the state transition probabilityP (z(t+ 1) | z(t)) and the
emission model probabilityP (x(t) | z(t))

 z(t) z(t+1)

 x(t)  x(t+1)

P(x(t)|z(t))

P(z(t+1)|z(t))
State Transition Probability

Emission Model Probability

Hidden Layer

Observed Layer

Figure 2: Hidden Markov Model graphical representation

5.3 Hidden Markov ICA Model

Independent Component Analysis (ICA) is a form of
blind source separation model. The Hidden Markov ICA
(HMICA) model is a Hidden Markov model with an ICA
observation model. This section presents an overview of
the HMICA model, using the set of equations detailed in
[6].

Let θ = π,A,B represent the parameters of a HMM,
whereB represents the parameters of the ICA observa-
tion model,A is the state transition matrix with entries
aij , andπ represents an initial state probability matrix.
A HMM parameterised by some vectorθ̂ = π̂, Â, B̂ can
be trained using an Expectation-Maximisation (EM) algo-
rithm as shown in [3].

Using analysis shown in [6], it can be proved that for
an observation sequencext and hidden state sequencezt,
the observation model parameters,B, can be written in
terms of an auxiliary functionQ, given by:

Q(B, B̂) =
∑

k

∑

t

γk[t] log p
θ̂
(xt | zt) (12)

whereγk[t] is the probability of being in statek. The log
likelihood of the ICA observation model, with unmixing
matrixW andM sources can be written as [6]:

log p(xt) = log |det(W)| +
M
∑

i=1

log p(ai[t]) (13)

Substituting the ICA log likelihood, equation 13, into the
HMM auxiliary function, equation 12, gives:

Qk = log |det(Wk)| + 1

γk

∑

t

γk[t]
∑

i

log p(ai[t])

(14)
The auxiliary function summed over all statesk, becomes:

Q =
∑

k

Qk (15)

The HMICA model finds the unmixing matrixWk for
statek, by minimizing the cost function given by equation
15 over all underlying parameters.

6 RESULTS

This section presents the results obtained when the
Wavelet-MI model presented in section 4 and the HMICA
model presented in section 5 are simulated in Matlab. Fig-
ure 3 presents the Viterbi diagrams and the mutual infor-
mation plots obtained by using FX data at various different
time scales.

From the plots it is evident that there are significantly
long periods of state stability. There is also some evidence
of existence of recurring patterns, which can prove ex-
tremely useful in building a trading strategy. The HMICA
code also gives the state transition matrix as an output.
The state transition matrix gives the probability of change
of state from statei to statej, i.e.:

Pi,j = P (z(t+ 1) = j | z(t) = i) (16)

The state transition probability matrix,Pi,j , can also be
written as:

Pi,j =

(

p(0 | 0) p(1 | 0)
p(0 | 1) p(1 | 1)

)

(17)

wherepj,i = p(j | i) is the transition probability from
statei to statej.

The state transition probability matrices,Pscale, for
the USDJPY-EURJPY pair at various different time scales
are given below. The Mutual Information diagrams and
Viterbi plots for the USDJPY-EURJPY currency pair at
various scales are presented in Figure 3.

P5 =

(

0.9756 0.0244
0.0207 0.9793

)

(18)

P7.5 =

(

0.9761 0.0239
0.0162 0.9838

)

(19)

P10 =

(

0.9860 0.0140
0.0479 0.9521

)

(20)
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Figure 3: Viterbi diagrams showing state transitions in theHidden layer for USDJPY-EURJPY at different time scales.
Also shown are the Mutual Information (MI) plots of the currency pairs.

P12.5 =

(

0.9915 0.0085
0.0273 0.9727

)

(21)

It is interesting to note that for significant portions of
time, the length of time for which the state stays constant
is over100 samples (50 seconds) long. These periods of
state stability are hence well-suited for placing a trade or-
der. The state transition probability matrix,Pij , can be
used to make predictions about future states. Simulations
conducted with Equities data using the models presented
in this paper also give encouraging results.

7 CONCLUSIONS

This paper presents a statistical model for analysing the
dynamics of multivariate financial time series. The CWT
is presented as a useful tool for the analysis of finan-
cial data sets at various different frequencies. HMICA
is used to extract the hidden states from multivariate fi-
nancial time series. The hidden states stay constant for
significant periods of time which is potentially useful for
building efficient trading models. It is also shown that the
hidden states are indicative of changes in mutual informa-
tion between two FX returns time series.
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