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This paper compares the effectiveness of five state-of-the-art multiobjective evolutionary algorithms
(MOEAs) together with a steady state evolutionary algorithm on the mean–variance cardinality con-
strained portfolio optimization problem (MVCCPO). The main computational challenges of the model
are due to the presence of a nonlinear objective function and the discrete constraints. The MOEAs consid-
ered are the Niched Pareto genetic algorithm 2 (NPGA2), non-dominated sorting genetic algorithm II
(NSGA-II), Pareto envelope-based selection algorithm (PESA), strength Pareto evolutionary algorithm 2
(SPEA2), and e-multiobjective evolutionary algorithm (e-MOEA). The computational comparison was per-
formed using formal metrics proposed by the evolutionary multiobjective optimization community on
publicly available data sets which contain up to 2196 assets.
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1. Introduction

A fundamental answer to the problem of portfolio selection was
given by Markowitz who introduced the mean–variance model
(Markowitz, 1952, 1990). The Markowitz model is a problem of
multiobjective nonlinear optimization where the best trade-offs
between maximizing mean and minimizing variance is sought.
This trade-offs form a special set of particular interest in portfolio
theory, which is known as the set of efficient portfolios and its im-
age in mean–variance space as the efficient frontier (Elton, Gruber,
Brown, & Goetzmann, 2007). Calculating the efficient frontier for
the Markowitz model several computationally efficient algorithms
exist, which are able to solve even large instances of the problem
with more than 2000 assets (Hirschberger, Qi, & Steuer, 2010;
Markowitz, 1987; Stein, Branke, & Schmeck, 2007).

However, through the years the Markowitz model has been ex-
panded by introducing additional real-world constraints, such as
the cardinality constraint which imposes a limit on the number
of assets in the portfolio and the quantity constraints which re-
strict the proportion of each asset in the portfolio to lie between
lower and upper bounds (Chang, Meade, & Beasley, 2000; Mitra,
Kyriakis, Lucas, & Pirbhai, 2003). This model, which we call
mean–variance cardinality constrained portfolio optimization model
(MVCCPO), presents many optimization and financial challenges
and concerns.
ll rights reserved.
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Financially the constraints reflect the real portfolio decision
making process as managers desire to hold a portfolio with a rather
small number of assets compared to those available in the financial
markets, in order to facilitate each management and to control
transaction costs. Quantity constraints are generally used in order
to avoid very small, unrealistic holdings and excessively investing
in a single asset’s risk. From the computational point of view the
constraints lead to the introduction of integer variables and trans-
form the feasible space into a non-convex region (Crama & Schyns,
2003; Jobst, Horniman, Lucas, & Mitra, 2001; Mitra et al., 2003).
The problem is transformed into a discrete multiobjective nonlin-
ear optimization problem which is computationally very difficult
to be solved; and it has been shown that belongs to the class of
NP-hard problems (Bienstock, 1995;Shaw, Liu, & Kopman, 2008).

The significance of the MVCCPO model has motivated many
researchers to investigate various algorithms from exact methods
(Bertsimas & Shioda, 2009; Bienstock, 1995; Li, Sun, & Wang,
2006; Shaw et al., 2008) to metaheuristics (Chang et al., 2000;
Crama & Schyns, 2003; Cura, 2009; Fernández & Gómez, 2007;
Maringer & Kellerer, 2003; Schaerf, 2002; Soleimani, Golmakani,
& Salimi, 2009). The two approaches have their own merits and
demerits. Depending on the input data and the constraint param-
eters, exact methods may fail to provide an optimal solution in rea-
sonable time; and the computation time grows rapidly with the
problem size. On the other hand, metaheuristics are not guaran-
teed to find the optimal solutions; however, they are able to find
a good solution (sometimes even the real optimum) within reason-
able computation time.

Recently, researchers have tried to tackle the MVCCPO problem
in its multiobjective form trying to optimize both objectives
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simultaneously using so-called multiobjective metaheuristics. The
main advantage of these methods, comparing them to single objec-
tive metaheuristics, is that they find the efficient frontier in a single
run of the algorithm. Streichert, Ulmer, and Zell (2003, 2004a,
2004b) experimented with various data structures for chromo-
some representation and crossover operators within the context
of a MOEA and show that a hybrid encoding (containing both bin-
ary and real values) is the best suited for the MVCCPO model.
Armananzas & Lozano, 2005 have compared and adapted three
optimization heuristics namely greedy local search, simulated
annealing (SA) and ant colony optimization (ACO). The results indi-
cated that ACO and SA were the best optimizers. Chiam, Tan, and
Mamum (2008) proposed an ordered based solution representa-
tion to handle quantity and cardinality constraints. Branke,
Scheckenbach, Stein, Deb, and Schmeck (2009) proposed a hybrid
algorithm combining NSGA-II with the critical line algorithm.
Skolpadungket, Dahal, and Harnpornchai (2007) have performed
an experimental study using well known MOEAs on the MVCCPO
problem and they found that SPEA2 is the best algorithm for the
metrics considered. However, they perform experiments with only
one data set containing 31 assets – an instance clearly too small
both to take into account the size of real world portfolios and the
computational behavior of algorithms as the problem size grows.
Anagnostopoulos and Mamanis (2010) and Fieldsend, Matatko,
and Peng (2004) consider another form of the MVCCPO model
where the cardinality constraint becomes an objective function
to be minimized. For the interested readers a survey of applications
of MOEAs in finance and economics and especially in portfolio
selection can be found in Schlottmann and Seese (2004), Tapia
and Coello (2007).

There are various additional studies applying metaheuristics
(either single or multiobjective) to portfolio optimization but rely
on different portfolio models usually by considering more complex
risk measures and/or additional constraints. For the sake of com-
pleteness we refer the studies of Dueck and Winker (1992), Gilli,
Këllezi, and Hysi (2006), Hochreiter (2007), Anagnostopoulos and
Mamanis (2009) and Chang, Yang, and Chang (2009). A compre-
hensive survey of metaheuristics in portfolio selection can be
found in Di Tollo and Rolli (2008).

In this study, we compare the effectiveness of the state-of-art
multiobjective evolutionary algorithms (MOEAs) on the MVCCPO
problem. On the one hand, we consider the MVCCPO as the generic
model of the discrete mean–variance portfolio selection problems.
On the other hand, the algorithms are chosen in such a way as to
capture the main MOEAs algorithmic design components as are
identified in a recent book (Coello, Lamont, & Van Veldhuizen,
2007). For comparison purposes, we also include in the study a var-
iant of the single objective evolutionary algorithm (SOEA) pro-
posed in Chang et al. (2000).

Our experimental investigation aims: (a) to answer the question
if solving the bi-objective cardinality constrained portfolio optimi-
zation problem with MOEAs provides any advantage over its single
objective counterpart which is the most often applied, (b) to com-
pare the effectiveness of the current state-of-the-art of MOEAs on
the MVCCPO model, and (c) to investigate the effectiveness of
MOEAs to solve large scale instances of the MVCCPO problem in
reasonable time. According to our knowledge, there is no other
study in literature that performs such an exhaustive computational
analysis with the state-of-art MOEAs in MVCCPO model with real-
world data from major stock markets. Furthermore, this is the first
study that gives evidence that MOEAs can actually solve large scale
instances of the MVCCPO model with more than 2000 assets in rea-
sonable time and with very good approximation.

The rest of the paper has as follows. In Section 2, the mean–
variance cardinality constrained portfolio optimization model is
described. A description and an implementation of the state of
the art MOEAs for solving the problem is presented in Section 3.
Section 4 is devoted to numerical results, and Section 5 concludes.

2. The mean–variance cardinality constrained portfolio
optimization model

In its multiobjective form, the mean–variance cardinality con-
strained portfolio optimization model (MVCCPO) is formulated as
follows (Model 1):

min qðxÞ ¼
Xn

i¼1

Xn

j¼1

xixjrij;

max lðxÞ ¼
Xn

i¼1

xili;

s:t:
Xn

i¼1

xi ¼ 1; ð1Þ

Xn

i¼1

di � K; ð2Þ

lidi � xi � uidi; i ¼ 1; . . . ;n; ð3Þ
di 2 f0;1g; i ¼ 1; . . . ;n: ð4Þ

where n is the number of assets considered for inclusion in the port-
folio; xi is the decision variable which denotes the proportion held
of asset i; li is the expected return of asset i; rij is the covariance
between the returns of assets i and j; q(x) is the variance of portfolio
x; l(x) is the expected return of portfolio x; di is a binary variable
which is 1 if an asset i = 1, . . . , n is held and 0 otherwise; K is the
maximum number of assets allowed in a portfolio; li, ui are the low-
er and upper proportion of capital invested in holding securities.

The feasible space X is defined by Eqs. (1), (2), (3), (4). Eq. (1) de-
scribes the standard budget constraint which requires that the
portfolio weights, being proportions, must sum to one. Eq. (2) de-
scribes the cardinality constraint which limits the number of secu-
rities held in the portfolio. The cardinality constraint is introduced
into the model using a binary variable d which is 1 if a security is
held and zero otherwise. The next Eq. (3) (quantity constraints)
limits the amount of capital invested in holding securities to lie be-
tween lower and upper bounds.

As the above model is a multiobjective optimization problem,
the aim is to find all non-dominated or efficient portfolios, i.e.,
every portfolio which we cannot improve upon an objective func-
tion without deteriorating another. In the particular problem at
hand we say that a portfolio x0 2 X dominates another portfolio
x 2 Xðx0 � xÞ if lðx0ÞP lðxÞ;qðx0Þ 6 qðxÞ with at least one strict
inequality. A portfolio which is not dominated by any other portfo-
lio is an efficient portfolio.

The bi-objective optimization problem (Model 1) is usually
solved with single objective solution techniques. The most popular
approach uses a trade-off coefficient k to combine the two objec-
tives into a scalar to be minimized (Model 2):

min k
Xn

i¼1

Xn

j¼1

xixjrij � ð1� kÞ
Xn

i¼1

xili

s:t: x 2 X

By repeatedly varying the parameter value k and solving a se-
quence of optimization problems (for each k) the efficient portfo-
lios from the minimum variance portfolio (k = 1) to the
maximum return portfolio (k = 0) can be found. This approach,
however, has a shortfall since it cannot find all efficient points as
shown in Chang et al. (2000).

An alternative approach is the one that tries to minimize vari-
ance while return is constrained to have a lower bound (Model 3):
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min qðxÞ
s:t: lðxÞ � d

x 2 X

with the above formulation, solving for different return levels of
d 2 ½dmin;dmax� the set of the efficient portfolios can be found.

Models 2 and 3 are used by researchers who apply single objec-
tive metaheuristics. Their main advantage is that they are reduced
to a scalar optimization problem. However, solving the MVCCPO
problem with these methods requires the repeated use of an opti-
mization technique to find one point on the efficient frontier per
run and this may be time consuming. Furthermore, a uniform set
of k parameters or return levels d does not guaranty a uniformly
distributed set of efficient points (Mukerjee, Biswas, Deb, &
Mathur, 2002). The diversity of points along the efficient frontier
is crucial for the portfolio manager since certain trade-off portfo-
lios of interest may be missed if they are concentrated in a small
area of the underlying efficient frontier.
3. The tested algorithms

In this study we compare the effectiveness of the current state
of MOEAs together with a simple steady state evolutionary algo-
rithm on the MVCCPO problem formulated in Section 2. The fol-
lowing five MOEAs are tested: Strength Pareto evolutionary
algorithm 2 (SPEA2) (Zitzler, Laumanns, & Thiele, 2001), non-
dominated sorting genetic algorithm II (NSGA-II) (Deb, Ptratap,
Agarwal, & Meyarivan, 2002), Pareto envelope-based evolutionary
algorithm (PESA) (Corne, Knowles, & Oates, 2000), Niched Pareto
genetic algorithm 2 (NPGA2) (Erikson, Mayer, & Horn, 2001),
e-multiobjective evolutionary algorithm (e-MOEA) (Hanne, 2007).
Except their popularity, these algorithms were chosen in such a
way as to represent the main algorithmic aspects proposed up to
know in the MOEA literature and are these aspects that are actually
compared.
3.1. Description of algorithms

All algorithms implemented in this study fit in some way the
general framework represented in Table 1, and apply in a different
manner the operators. One difference is that PESA and e-MOEA ap-
ply the evaluate operator after the update operator in the archive
of the next generation At+1.

All evolutionary algorithms can be seen as that they involve two
populations of individuals. The first population, usually called ar-
chive or external population in MOEAs literature, is used to retain
the ‘‘best’’ solutions found during the search; the second is the
usual population of individuals, sometimes used to simply store
the offspring population and some other times it takes part on
the reproduction process as well.

At first, the archive A0, which has a user-specified maximum
size Narc, is set to the empty set and the population B0 (of size Npop)
to a random sample of the solution space through the initialize
Table 1
Structure of evolutionary algorithms.

t = 0
(A0, B0) = initialize()
while (termination = false) do

evaluate(At, Bt)
At+1 = update(At, Bt)
Bt+1 = vary(sample(At+1))
t = t + 1

end while
return best(At, Bt)
operator. Note that in single objective evolutionary algorithm
(SOEA) the archive is the population that is randomly initialized
using this framework. At each generation the evaluate operator as-
signs fitness to individuals from both the archive and the normal
population. Here is the main difference between the SOEA and
MOEAs. The SOEA assigns fitness to individuals based on a scalar
fitness function; in our case, like the paper of Chang et al. (2000),
the fitness function is formed by the weighted sum method de-
scribed in Section 2 (Model 2). Solving for the efficient frontier
using this model requires the application of the evolutionary algo-
rithm several times in order to obtain one efficient point (portfolio)
per run.

On the other hand, MOEAs do not combine the two objectives,
rather they use the evaluate operator in such a way as to guide
the population towards non-dominated regions as well as to pre-
serve the diversity. In the following step, the archive is updated
by the ‘‘best’’ individuals based on information from both the ar-
chive A and the normal population B. In this way elitism is ensured.
The update operator may be deterministic as well as stochastic. The
sample and vary operators specify the particular selection and
reproduction scheme and are the same as in traditional evolution-
ary algorithms. At the last stage the ‘‘best’’ solutions from the ar-
chive and the final offspring population is returned by the
algorithm.

As discussed above, the main difference among the algorithms
lies in their fitness assignment technique (evaluate operator). In
MOEAs, the evaluate operator should serve two goals: population
convergence towards the efficient frontier and preservation of
diversity of solutions along the efficient frontier. Both goals are
achieved by assigning a rank and a density value to every solution.
All MOEAs give first priority to non-dominance and second priority
to diversity. However, the particular method each MOEA employs
for achieving the two fundamental goals differs. Methods for con-
vergence towards the efficient frontier and diversity preservation
have been summarized in the recent book of Coello et al. (2007,
Chapter 2, pp. 79–85).

3.1.1. Non-dominated Sorting Genetic Algorithm II (NSGA-II)
To guide the individuals towards the efficient frontier, NSGA-II

adopts the dominance depth method which classifies the solutions
in several layers based on which front an individual is located. To
preserve the diversity of solutions a crowding mechanism is em-
ployed which calculates the volume of the hyper-rectangle defined
by the two nearest neighbors. Based on these values update opera-
tor returns the best Narc individuals from the union of the archive
and the population. Individuals with the lower rank have the prior-
ity to survive. If a number of solutions that have the same rank
does not all fit the archive, then the less crowded individuals from
the particular rank are selected to enter the archive.

3.1.2. Strength Pareto evolutionary algorithm 2 (SPEA2)
SPEA2 emphasizes non-dominated individuals by using a fine-

grained technique, which combines the dominance count and
dominance rank method. Each individual is given a raw fitness va-
lue based on the number of individuals it dominates and is domi-
nated by. The density information is incorporated by adding to the
raw fitness a value that is equal to the inverse of the k-th smallest
Euclidean distance (measured in objective space) to the k-th near-
est neighbor plus two. Next, the update operator returns all non-
dominated individuals from the combined set A [ B. However,
there are two possibilities with this process. Either the individuals
returned by the update operator exceeds the maximum archive
size Narc or they are not enough. In the later case the best domi-
nated solutions according to their fitness values are selected. In
the former case, a truncate operator is applied that recursively de-
letes surplus solutions based on the nearest neighbor Euclidean
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distance. At each stage, if there is more than one solution with the
same minimum distance, the decision is done considering the sec-
ond nearest neighbor and so forth.
3.1.3. Niched Pareto genetic algorithm 2 (NPGA2)
The third tested algorithm is the Niched Pareto genetic algo-

rithm 2 proposed by Erikson et al. (2001). Its initial version has
been proposed in Horn, Nafpliotis, and Goldberg (1994). The addi-
tional component we have added in NPGA2 is the elitist update
operator in order to ensure a fair comparison with the other strat-
egies. Note that elitism plays an important role in MOEAs and its
inclusion is crucial to achieve good convergence and diversity
characteristics towards the exact efficient frontier (Laumanns,
Zitzler, & Thiele, 2000). Furthermore, in order not to destroy
NPGA’s characteristics the update operator is a stochastic strategy
based on tournament selections. First the algorithm assigns rank
on every individual in the combined population A [ B based on
the number of individuals a solution is dominated by (dominance
rank method). For preserving diversity a niche count is calculated
for each competitor i using the following equation:

mi ¼

P
j2Atþ1

1� dij

rsh

� �
if dij < rsh;

0 if dij � rsh;

8><
>:

where dij is the distance between competitor i and individual j
and rsh the user-specified niche radius. For measuring the distance
following the authors suggestions we use the metropolitan metric.
The distance is calculated using normalized objective values (see
Section 4.1). Elitism is introduced in NPGA2 using the update oper-
ator as follows. A small number of individuals (tdom) are randomly
selected from the composite population A [ B. Based on the rank
values, the individual with the smallest rank is added (if not al-
ready inside) to the archive of the next generation. If there are
more individuals with identical ranks then the niche count is cal-
culated for those solutions and the one with the smallest value is
added on the archive. Note that the niche count is calculated using
only solutions from the archive of the next generation At+1. This
strategy ensures some elitism, and furthermore we think that it
does not change the initial character of the algorithm. Although
we do not claim that it is a new algorithm, we abbreviate the name
E-NPGA2 for this technique in order to highlight that some form of
elitism has been introduced.
3.1.4. Pareto envelope-based selection algorithm (PESA)
PESA, first, applies the update operator which is performed iter-

atively. The newly generated solutions Bt are incorporated into the
archive one by one. A candidate child enters the archive when it is
non-dominated within Bt, or it is not dominated by any current
member of the archive. If the addition of a solution renders the ar-
chive over-full, then a current solution with the maximum fitness
value is deleted. The fitness of an individual is based on a recur-
sively division of the objective space into hyperboxes. The number
of solutions that reside on the same hyperbox is the fitness of an
individual.
3.1.5. e-MOEA
The last tested algorithm e-MOEA is based on the notion of

e-dominance for preserving diversity (Hanne, 2007). Like PESA,
e-MOEA applies the update operator before the evaluation process
and is used in such a way as to emphasize non-dominated solu-
tions, as well as, to preserve diversity. Like PESA, every individual
in Bt is checked for an inclusion in the archive At+1 of the next gen-
eration iteratively. An efficient offspring is inserted into the archive
if at least one of the following expressions is true:
(1) Dominates any current archive member.
(2) Is non-dominated within the archive and its smallest dis-

tance to every individual in archive of the next generation
is bigger than e.

(3) Improves the optimum of a single objective function.

After the inclusion of a solution, any dominated solutions are
deleted from the archive. If expression three is true, solutions with
distance to the newly added solution smaller than the user-
specified e-value are deleted from the archive. The distance
between individuals is measured by the Euclidian distance applied
in the normalized objective vectors (see Section 4.1). After the
update operator, the algorithm assigns fitness to every individual
based on the k-th smallest Euclidean distance like SPEA2. This
was introduced in order to increase the probability of distant
solutions to be selected.

3.1.6. Single objective evolutionary algorithm (SOEA)
The SOEA used is a simple steady state algorithm similar to the

one used in Chang et al. (2000). In each iteration, a single child is
generated using two parents from the archive. The update operator
then replaces the worst archive member with this newly created
solution. The fitness of an individual is measured by the weighted
function identified in Section 2 (Model 2). Thus, smaller values are
preferable.

3.2. Implementation of algorithms

3.2.1. Solution representation and encoding
In order to allow for a fair comparison, we have chosen all algo-

rithms to have the same solution representation. We have imple-
mented the hybrid representation proposed by Streichert et al.
(2003), Streichert et al. (2004a, Streichert et al. (2004b) which
seems to be more appropriate for portfolio optimization.

In hybrid representation two vectors are used for defining a
portfolio: a binary vector that specifies whether a particular asset
participates in the portfolio, and a real-valued vector used to com-
pute the proportions of the budget invested in the assets:

D ¼ d1; . . . ; dnf g; di ¼ 0� 1; i ¼ 1; . . . ;n;
W ¼ fw1; . . . ;wng; 0 � wi � 1; i ¼ 1; . . . ;n:
3.2.2. Constraints satisfaction
Before the objective values were computed the following repair

algorithm was performed in order to find the portfolio x associated
with the above encoding. First, if the number of assets in the port-
folio (i.e., the number of 1’s in D), overcomes the maximum al-
lowed, we delete (by changing its value from 1 to 0 in D) those
assets that have the minimum weight in W. In this way the portfo-
lio satisfies cardinality constraint.

The next step in the repair process is used to satisfy the remain-
ing constraints (budget, lower proportion). The real portfolio
weights are computed using the following equation:

xi ¼ li � di þ
wi � diPn
i¼1wi � di

1�
Xn

i¼1

li � di

 !
; i ¼ 1; . . . ;n:

To account with upper quantity bounds, we propose the repair
algorithm outlined in Chang et al. (2000). However, we do not de-
scribe it here because no such bounds are used in this study.

3.2.3. Variation and sample procedure
Sample and vary operators are the same as in usual evolution-

ary algorithms. We use identical schemes for all tested algorithms
in order to ensure a fair comparison. For selecting the parents we



Table 2
Values of objective functions for each problem.

Problem f min
1

f max
1 f min

2
f max
2

P1 0.000578 0.005253 0.00234 0.011950
P2 0.000130 0.003120 0.00140 0.010800
P3 0.000185 0.001668 0.00211 0.009030
P4 0.000120 0.003233 0.00156 0.010000
P5 0.000270 0.001800 �0.00034 0.004370

Table 3
Best parameter values for the algorithms.

Parameters NSGA-II SPEA2 E-NPGA2 PESA e-MOEA SOEA

Npop 250 250 250 250 250 1
Narc 250 250 250 250 – 100
pcrossover 0.9 0.9 0.9 0.8 0.8 0.9
pW 1.0 1.0 1.0 1.0 1.0 1.0

pD 1/n 1/n 1/n 1/n 1/n 1/n
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use binary tournament selection for all MOEAs, except E-NPGA2
which uses a different tournament size (tdom).

For reproducing the offspring population, we have used the uni-
form crossover operator in each string of the chromosome. In uni-
form crossover two selected individuals generates a single child
and its value for each array is selected with equal probability from
one or another parent.

The children were considered also for mutation. We have used
different mutation probabilities for each string (pW, pD). In real-val-
ued arrays the Gaussian random mutation was used with standard
deviation 0.15, while in the binary string bit flip mutation in a ran-
domly defined position was applied.

4. Computational analysis

In this section, we present the computational results obtained
by performing experiments on a public available data set, which
contains five test problem instances and can be downloaded from:
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html. The
data set provides the necessary input data for groups of assets in
different stock market indices: the Hong Kong Hang Seng with
31 assets (P1), the German Dax 100 with 85 assets (P2), the British
FTSE 100 with 89 assets (P3), the US S&P 100 with 98 assets (P4),
and the Japanese Nikkei 225 with 225 assets (P5).

We have also performed a number of experiments for testing
the effectiveness of MOEAs to solve large scale instances of the
MVCCPO problem using a public benchmark data set available in
the web page: http://w.3.uniroma1.it/Tardella/homepage.html.
This data set contains weekly stock prices and the required ex-
pected returns and covariance matrices for five major capital mar-
ket indices. We have chosen the two largest data sets, namely S&P
500 which contains 476 assets and NASDAQ which includes 2196
assets, to perform experiments with the two best algorithms ob-
served from the above experimental comparison.

All algorithms have been implemented in Visual C++ and run on
a personal computer Core 2 Duo at 2.1 GHz. The maximum number
of assets allowed in the portfolio was fixed to be ten (K = 10) for all
test problems. For the stock weights xi lower and upper bounds
were 1% and 100% respectively, i.e., li = 0.01, ui = 1, i = 1, . . . , n.
These are the usual constraint parameters utilized by most studies.

4.1. Performance indicators

Up to now there are two approaches for comparing the quality
of different MOEAs: (a) by measuring each qualitative characteris-
tic of an approximation set separately, (b) by identifying whether
one approximation set is better than another based on certain set
preference relations (Zitzler, Thiele, Laumanns, Fonseca, & Grunert
da Fonseca, 2003). In this study we follow the second approach and
we use the e-indicator and the hypervolume metric proposed by
Zitzler and Thiele (1999), Zitzler et al. (2003). When two algo-
rithms generate conflicting preferences between the two metrics
they are incomparable (Knowles, Thiele, and Zitzler, 2006).

In order to allow the objectives to contribute approximately
equally to each metric we have used the following linear normali-
zation technique (Knowles et al., 2006). Each objective function va-
lue i was transformed according to the following equation:

f 0i ¼
fi � f min

i

f max
i � f min

i

;

where f min
i and f max

i are the minimum and maximum values, that
the ith objective can take. In order to obtain f min

i ; f max
i , we have

run the single objective evolutionary algorithm a number of times
for each instance to get the single objective approximate optimum
value. The value of f min

i ; f max
i was chosen as the 10% difference of the
optimum values obtained. Table 2 shows these values for each
problem instance.

The reference point required to compute the hypervolume met-
ric was zref = {1, 0} normalized for all problem instances.
4.2. Parameter settings

Before the experiments were performed, some tuning for all
algorithms was done using a moderate size problem instance,
namely P2, which involves 85 assets. The best parameter values
obtained for all algorithms are shown in Table 3 and are kept con-
stant for all instances in an effort to test the developed techniques
robustness and scaling.

In order to ensure a fair comparison we have used identical
population and archive sizes for all MOEAs which were allotted
to run for 400 generations (i.e., 100,000 generated solutions). For
SOEA we believe that it is not trivial to run the algorithm for
100,000 generated solutions because this would mean that either
we would obtain only five efficient portfolios (given that it re-
quires, for each k, 20,000 generated solutions in order to converge
near the optimum) or (in order to get roughly 250 efficient points)
we would run each of the 250 optimization problems only for 400
generations (i.e., 400 function evaluations) leading us to a local
rather a global optimum. For this reason, we have chosen to run
the algorithm to its own stopping criteria even though this requires
a considerable higher number of solutions to be generated.

Apart from those values, PESA, E-NPGA2, and e-MOEA require
some additional parameters to be set. After trial and error analysis
the division of the search space for PESA was set equal to 100, the
niche radius rsh for E-NPGA2 to 0.07 and the size of the comparison
set tdom to 8 for all the experiments. For e-MOEA we have per-
formed a number of experiments for each instance to choose the
appropriate e value in order to obtain roughly 250 efficient solu-
tions on average at the end of all runs of the algorithm. These val-
ues were 0.00432, 0.0046, 0.00442, 0.004675, and 0.00458 for each
problem instance respectively. In order to cope with the stochastic
nature of the tested algorithms, 30 different optimization runs
have been carried out in all test problems considered.
4.3. Experimental results

4.3.1. Comparison of the algorithms
The results, as can been seen in Figs. 1–5 that shows the median

and the standard deviation for each problem instance, demonstrate
a superiority of SPEA2, since it wins in four out of the five test

http://www.people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
http://www.3.uniroma1.it/Tardella/homepage.html


Fig. 1. Hypervolume indicator (left) and e-indicator (right) for Hong Kong Hang Seng data set.

Fig. 2. Hypervolume indicator (left) and e-indicator (right) for German Dax 100 data set.

Fig. 3. Hypervolume indicator (left) and e-indicator (right) for British FTSE 100 data set.

Fig. 4. Hypervolume indicator (left) and e-indicator (right) for US S&P data set.
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Fig. 5. Hypervolume indicator (left) and e-indicator (right) for Japanese Nikkei 225 data set.

Fig. 6. Efficient frontiers for Japanese Nikkei 225data set, K = 10.

Fig. 7. Efficient frontiers for Japanese Nikkei 225 data set, K = 10.
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problems. However, we should note that this superiority comes at
the cost of greatest computational effort since SPEA2 is the worst
algorithm in terms of the CPU time (except SOEA). NSGA-II and
e-MOEA comes at the second place and seems to have almost com-
parable performance. NSGA-II wins two instances, e-MOEA one,
and for two instances no one dominates the other since they gen-
erate conflicting results in terms of the hypervolume and e-indica-
tor. However, e-MOEA is faster than NSGA-II requiring, on average,
only half of its run-time.

We have also performed a Kruskal–Wallis test to judge the sta-
tistical significance of the results and it was found that the differ-
ences are indeed significant in all instances at the 0.01 significance
level.

Based on this analysis we conclude that SPEA2, NSGA-II and
e-MOEA can be considered as the best techniques for solving the
MVCCPO problem, since E-NPGA2 and PESA the best that can
achieve is incomparability in three problem instances (E-NPGA2
vs e-MOEA). SPEA2 dominates (i.e., wins in both metrics) both E-
NPGA2 and PESA in all problem instances while NSGA-II dominates
E-NPGA2 in four instances and PESA in all instances. However,
PESA is the fastest approach among all algorithms.

A remarkable result of the experiments is that all MOEAs are
better than the single objective evolutionary algorithm and they
doing this in less CPU time and much less solutions generation.
The best that SOEA can achieve is incomparability with PESA on
two instances and with E-NPGA2 on one instance. An interesting
result is that SOEA has the worst performance in terms of e-indica-
tor for all problem instances. Furthermore, the small standard
deviation for all algorithms reveals that are reliable algorithms
for solving the MVCCPO model. Again, SPEA2 provides the most
reliable results for all algorithms.

For illustrative purposes we give the efficient frontier of the
algorithms for the largest problem instance, the Japanese Nikkei
225 (P5), along with the true cardinality constrained efficient fron-
tier (TCCEF) (Figs. 6–11). The TCCEF is obtained from the web page
of Professor F. Tardella: http://w3.uniroma1.it/Tardella/home-
page.html, and contains 500 efficient points generated using the
method described in Cesarone, Scozzari, and Tardella (2008). Due
to space limitations we do not provide the efficient frontiers for
the other instances. Similar conclusions are drawn by examining
these graphs. We see the good performance of MOEAs both in
terms of convergence and coverage of the efficient frontier and,
on the other hand, the bad performance of SOEA mainly in terms
of diversity of efficient points and the coverage of the efficient
frontier.

4.3.2. Computational experiments on large scale problem instances
In this section we report the results obtained by running the

NSGA-II and SPEA2, the best algorithms observed from the
previous experimental comparison, on the large data sets S&P
500 (476 assets) and NASDAQ (2196 assets).

For the S&P 500 we have solved the problem with the same con-
straint parameters as defined in Section 4.3.1 (i.e., K = 10 and
li = 0.01, ui = 1, i = 1, . . . , n). Figs. 12 and 13 illustrate the approxi-
mate efficient frontiers obtained by the proposed techniques along
with the true cardinality constrained efficient frontier (TCCEF). The
TCCEF is given along with the data set and contains 500 efficient
points computed using Model 3 and applying the algorithm de-
scribed in Cesarone et al. (2008).

It is seen that MOEAs generate efficient frontiers very close to
the true efficient points with good coverage characteristics (see
Fig. 13).

To provide a numerical evidence for the effectiveness of MOEAs
and to compare their results with exact efficient points, an

http://w3.uniroma1.it/Tardella/homepage.html
http://w3.uniroma1.it/Tardella/homepage.html


Fig. 8. Efficient frontiers for Japanese Nikkei 225 data set, K = 10.

Fig. 9. Efficient frontiers for Japanese Nikkei 225 data set, K = 10.

Fig. 10. Efficient frontiers for Japanese Nikkei 225 data set, K = 10.

Fig. 11. Efficient frontiers for Japanese Nikkei 225 data set, K = 10.

Fig. 12. Efficient frontiers for S&P 500 data set, K = 10.

Fig. 13. Efficient frontiers for S&P 500 data set, K = 10.
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approximation error was computed as follows: For each solution xa

generated by a MOEA, the percent error was calculated as:
g ¼ kFðx

aÞ�FðxrÞk2
kFðxr Þk2

100%, where xr is the solution from the reference
efficient frontier that gives the smallest Euclidean distance to xa

and FðxÞ ¼ ½
ffiffiffiffiffiffiffiffiffiffi
qðxÞ

p
;lðxÞ�T . The approximation error is the average

of all percent errors. Note that in F(x) we have used the standard
deviation instead of variance in order to have the same scale for
both objective functions. As reference efficient frontier we have
used the TCCEF when available or otherwise the efficient frontier
of the Markowitz model (TMEF).

The average approximation error for SPEA2 and NSGA-II is
0.358% and 0.405%, respectively showing also numerically that
the algorithms almost found the exact efficient points with SPEA2
generating a slightly better value. This was achieved, generating
only 100,000 solutions and within 457 s for NSGA-II and 607 s
for SPEA2 on average.

Applied the Mann–Whitney test for comparing the samples of
quality metrics values for NSGA-II and SPEA2 it was observed that,
unlike the experiments with the OR-Library (Section 4.3.1), there
are no significant differences between the algorithms for both
the hypervolume and e-indicator at the 5% significance level.

For the largest problem instance NASDAQ with 2196 assets the
authors give the exact cardinality constrained efficient frontier
only when the cardinality constraint parameter K = 5. With
K = 10 their algorithm was unable to provide optimal solutions.
We have performed experiments for both instances to show the
effectiveness of MOEAs.

The output of MOEAs for K = 5 are shown in Figs. 14 and 15. It is
clear that both achieve a good coverage of the exact efficient fron-
tier. The approximation error for this instance is 0.905% for SPEA2
and 1.827% for NSGA-II showing also numerically the convergence
of the algorithms towards the TCCEF. The computational times for



Fig. 14. Efficient frontiers for NASDAQ data set, K = 5.

Fig. 15. Efficient frontiers for NASDAQ data set, K = 5.

Fig. 17. Efficient frontiers for NASDAQ data set, K = 10.
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NSGA-II and SPEA2 were 4797 and 4914 s respectively. Compared
with the 738,094 s of the Cesarone et al. (2008) algorithm, the per-
formance of MOEAs is rather satisfactory.

For the K = 10 instance, as we have already discussed, the
authors do not provide any exact efficient points for the MVCCPO
problem. For this reason in Figs. 16 and 17 the MOEAs’ efficient
frontiers are compared with the exact efficient frontier of the stan-
dard Markowitz model (TMEF). It is easily seen that MOEAs attain a
very good coverage of the TMEF and this reveals that they provide
an even better approximation of the (unknown) cardinality con-
strained efficient frontier. The TMEF provides an upper bound bor-
der for any constrained efficient frontier as any additional
constraint imposed on the model results in points below the TMEF
(see also the analysis in Steuer, Qi, and Hirschberger (2007), Sec-
tion 6). The approximation error was computed at 6.675% for
SPEA2 and 5.79% for NSGA-II. This approximation error is only an
Fig. 16. Efficient frontiers for NASDAQ data set, K = 10.
upper bound of the true approximation error to the unknown exact
cardinality constrained efficient frontier.

The comparison of the sample of quality metrics values shows
that the algorithms are equivalent for this instance since there
were no significant differences found for both quality metrics
(hypervolume, e-indicator) using the Mann–Whitney test. The
computational times for this instance were 4883 and 4821 s for
SPEA2 and NSGA-II, respectively.
5. Conclusion

In this paper, we have presented a computational comparison of
the current state-of-the-art multiobjective evolutionary algorithms
(MOEAs) on the mean–variance cardinality constrained portfolio
optimization problem. Except their popularity, the particular
MOEAs were selected in such a way as to capture the main algo-
rithmic operators used in MOEAs design. Furthermore, we have in-
cluded in the comparison test a variant of a single objective
evolutionary algorithm (SOEA). The experiments, which were per-
formed on a public available benchmark data set containing in-
stances that range from 31 to 225 assets, showed a clear
superiority of SPEA2. In the second place NSGA-II and e-MOEA
seems to have comparable performance. A very interesting result
of the study is that all MOEAs outperform the SOEA in all problem
instances and this can be demonstrated with visual comparisons as
well. This result of MOEAs comes with much fewer solution gener-
ation and computational time than SOEA.

Furthermore, the ability of the best performed MOEAs, i.e.,
NSGA-II and SPEA2 to solve large-scale instances of the MVCCPO
problem was shown graphically, as well as, numerically, compar-
ing them with exact efficient points, and using data sets which
contain up to 2196 assets.
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