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ABSTRACT OF THE DISSERTATION

Constructing Sparse and Fast Mean Reverting Portfolios

By

Xiaolong Long

Doctor of Philosophy in Mathematics

University of California, Irvine, 2014

Professor Knut Sølna, Professor Jack Xin, Co-chairs

We study the problem of constructing sparse and fast mean reverting port-

folios based on a set of financial data arising in convergence trading. The

problem is formulated as a generalized eigenvalue problem with a cardinal-

ity constraint [4]. We develope a new proxy of mean reversion coefficient,

the direct OU estimator, which can be used for both stationary and non-

stationary data. In addition, we introduce two different methods to enforce

the sparsity of the solutions instead of predetermining the cardinality. One

method uses the ratio of l1 and l2 norms and the other one uses l1 norm and

prior knowledge. We analyze various formulations of the resulting non-convex

optimization problems and develop efficient algorithms to solve them on port-

folio sizes as large as hundreds. By adopting a simple convergence trading

strategy, we test the performance of our sparse mean reverting portfolios on

both generated and historical real market data. In particular, the l1 norm

regularization method gives robust results on large out-of-sample data set.

We formulated a new type of problems for recovering fastest mean reverting

process. It is a generalization of recovering sparse element in a subspace.

From the numerical tests, we successfully recovered the hidden fastest OU

process.
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Introduction

Convergence trade is a trade designed to benefit from the assumption that the difference

of the prices of two assets will fluctuate around a certain level. The deviations from this

level are temporary and thus investors can build an appropriate trading strategy when they

observe the deviations and expect to profit by the amount of convergence. Mean reversion

has received a significant amount of attention as a classic indicator of predictability in fi-

nancial markets and is sometimes apparent, for example, in equity excess returns over long

horizons. Classical methods include co-integration [6] and canonical correlation analysis [11].

Cointegration is a statistical property of time series variables. It tests whether we could

build a stationary time series as a linear combination of a set of non-stationary time series.

In convergence trade, investors want the values of the portfolio to be stationary since it is

easy to determine trading signals for the trading strategy. Canonical correlation analysis

aims at maximizing the correlation of the linear combinations on two sets of random vectors.

This can help investors find portfolios that share a common stochastic drift.

The risk of a convergence trade is that the expected convergence does not happen, or

that it takes too long such that it possibly diverges before converging. Therefore, it is im-
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portant to quantify how fast the portfolio will converge and what an optimal portfolio could

be constructed based on this criterion. In addition, a sparse portfolio may be preferred in

convergence trading since sparsity typically means less transaction costs. However, there

will be a trade-off between the sparsity and the convergence rate.

An optimization framework in constructing sparse mean reverting portfolios is proposed

in [4]. We briefly review the formulation here:

”Suppose that Sti is the value at time t of an asset Si with i=1,2...n and t=1,2,...n,

we want to form a portfolio Pt of these assets with coefficients xi, and assume it

follows an Ornstein-Uhlenbeck process given by:

dPt = λ(µ− Pt)dt+ σdWt with Pt =
n∑
i=1

xiSti

where λ > 0, σ > 0 and µ are parameters and Wt is a standard Brownian motion.

The objective here is to maximize the mean reversion coefficients λ of Pt by adjust-

ing the portfolio weights xi under the constraints that
∑n

i=1 x
2
i = 1 and that the

cardinality of x, i.e. the number of non-zero coefficients in x, remains below a given

k > 0.”

The author of [4] found a proxy of the mean reversion coefficient, discussed methods

for parameter estimation and formulated an optimization problem with sparsity constraint.

Two algorithms have been proposed to solve this problem: greedy search and semidefinite

relaxation. However, the greedy search often fails to produce the optimal solution and the

semidefinite relaxation method is costly and unwieldy for large size portfolios with hundreds

of assets. The results were mainly tested to small size data sets (8 or 14 assets). It shows

that the mean reversion coefficient increases as the cardinality increases.

Some recent published articles are also focused on this problem. Cuturi et al [3] replaces

the cardinality constraint by the variance constraint in order to improve the profits during

arbitrage opportunities and [8] discussed more details on parameter estimation and trading

2



strategies.

In our work, we developed two optimization methods in using norms to enforce sparsity

of the portfolio.

The first method uses the ratio of l1 and l2 norms as a penalty function assuming limited

prior information of the assets. Such a penalty term arises in non-negative matrix factor-

ization (NMF), blind deconvolution, and sparse representation in coherent dictionaries, [12],

[13], [14],[7], [22]. For example, the non-negative least squares (NNLS) problem under such

penalty takes the following form [7]:

min
x≥0
‖Xx−Y‖2

2 + γP (x)

where P (x) = ‖x‖1
‖x‖2 , X is an m × n matrix and Y is an m × 1 vector. For our problem, we

formulate the following minimization:

(1) min
x6=0

xTAx

xTBx
+ γ
‖x‖1

‖x‖2

where A and B are positive definite matrices.

Due to the non-convexity of (1), finding a global minimum is challenging. To improve

this aspect of global optimization, we shall incorporate a recent variant of simulated anneal-

ing, the so called intermittent diffusion method with discontinuous diffusion coefficient [2].

The combined local minimization of (1) and random search for global minimum is however

expensive for large size portfolio computation.

The second method uses l1 norm and our partial knowledge on the collection of assets.

We reformulate the problem as a quadratic program:

f(r) = max
x(i)=1,‖x‖1≤m

xTBx− rxTAx

3



where A and B are both positive definite matrices.

Non-convexity still exists and a special algorithm designed to optimize a difference of

convex functions can be applied to overcome this difficulty in combination with convex algo-

rithms such as the least angle regression. The resulting algorithm is the most efficient and

can handle portfolios with hundreds of assets in seconds. To our best knowledge, this is the

most significant computational advance to date.

Difference of convex functions(DC) programming are extensively studied in [10], [15],

[19], [20]. The method aims to minimize a function g − h where both g and h are convex

functions on the whole space. This method works on a large set of optimization problems. In

most literature of DC programming, an algorithm to find a local optima is used. Numerically

however, the local algorithm often yields a global minimum.

The rest of the dissertation is structured as follows. In Chapter 1, we provide a reference

on the important concepts, definitions and theories that we used in our work. In Chapter

2, we discussed two proxies of mean reversion coefficient. In Chapter 3, we present the

framework built by D’Aspremont and discuss known algorithms in solving the sparse mean

reverting portfolios problem. In Chapter 4, we formulate two types of optimization problems

based on the ratio of l1 and l2 norms, discuss the algorithms to solve them and analyze how

the penalty term works in enforcing sparsity. In Chapter 5, we formulate an optimization

problem based on the prior knowledge and l1 norm, prove the theory of recovering the global

optimizer and present various algorithms. In Chapter 6, we discussed a new type of problems

which can recover the fastest mean reverting OrnsteinUhlenbeck process. In Chapter 7, we

presented numerical results of all the problems/algorithms in the previous chapters.
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Chapter 1

Basic Definitions and Theories

In this chapter, we will discuss the basic definitions and theories that used through this work.

1.1 Generalized Eigenvalue and Eigenvector

Let A be a square matrix. If there is a non-zero vector v and a scalar λ such that:

Av = λv

then λ is called the eigenvalue of A with corresponding eigenvector v. The possible values

of λ must satisfy the following equation:

det(A− λI) = 0

In our work, we define the generalized eigenvalue and eigenvector in the following way.

Let A and B be a square matrix. If there is a non-zero vector v and a scalar λ such that:

Av = λBv

then λ is called the generalized eigenvalue of A and B with corresponding eigenvector v.

5



The possible values of λ must satisfy the following equation:

det(A− λB) = 0

1.2 Vector Autoregressive Model

Vector autoregressive model (VAR) is an extension of univariate autoregressive model (AR).

It is used to capture the linear interdependencies among multiple time series. In this section,

we will give a brief introduction on VAR(1) and AR(1) models, i.e. we only consider the

first lag term.

1.2.1 Model Form

Definition 1.2.1 The AR(1) model is defined as

Xt = c+ ρXt−1 + εt

where c is a constant and εt is white noise.

In this dissertation, we will assume that εt follows a Gaussian distribution with mean 0 and

variance σ2 and c = 0.

Definition 1.2.2 The VAR(1) model is defined as

Xt = Xt−1β + c+ εt

where Xt and c are 1× n vectors, β is an n× n matrix, and εt are i.i.d N(0,Σ).

1.2.2 Stationarity

There are two types of stationarity for time series: strong stationarity and weak stationarity.

Definition 1.2.3 Given t1, t2,..., tn, if the joint distribution of Xt1, Xt2,..., Xtn is the same

as the distribution of Xt1+τ , Xt2+τ ,..., Xtn+τ for all n and τ , the Xt is a strong stationary

process.
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Since the requirements of the strong stationarity is too strict, the weak stationarity is usually

used.

Definition 1.2.4 If E(Xt) and V ar(Xt) don’t depend on t and the covariance between Xt

and Xt+τ is only a function of τ , then Xt is a weak stationary process.

For AR(1) model, if the noise is Gaussian distributed, then the strong stationarity is

equivalent to weak stationarity.

Theorem 1.2.1 For AR(1) model, if |ρ| < 1, it is stationary. For VAR(1) model, if the

solutions to det(I − βz) = 0 lie outside the unit circle or the eigenvalues of β all lie inside

the unit circle, then it is stationary.

1.2.3 Estimation of ρ and β

For AR(1) and VAR(1) models, we can use the least square estimation.

AR(1):

ρ̂ =

∑T−1
i=0 XiXi+1∑T−1
i=0 X

2
i

VAR(1):

β̂ = (
T−1∑
i=0

XT
i Xi)

−1(
T−1∑
i=0

XT
i Xi+1)

1.3 Order of Integration and Cointegration

Order of integration, denoted I(d), shows the minimum number of differences required to

obtain a covariance stationary series. We will mainly discuss I(0) and I(1) in this disserta-

tion.

Definition 1.3.1 Xt is integrated of order 0 if Xt is stationary.

Definition 1.3.2 Xt is integrated of order 1 if Xt −Xt−1 is integrated of order 0.

Definition 1.3.3 Suppose Yt = (y1t, y2t, ..., ynt) is a vector of I(1) time series. Yt is co-

integrated if there exists a n× 1 vector β such that Ytβ is I(0).

7



1.4 Difference of Convex Functions Programming

Difference of Convex Functions(DC) Programming are introduced by Pham Dinh Tao and

extensively developed by Le Thi Hoai An and Pham Dinh Tao [10], [15], [19]. This method

aims at solving the problem of minimizing a function g − h where both g and h are both

convex functions on the whole space.

From the theory below, we can see that this method works on a large set of optimization

problems.

Theorem 1.4.1 The following three types of problems are equivalent:

• sup{f(x) : x ∈ C}, where f and C are convex;

• inf{g(x)− h(x) : x ∈ Rn}, where g and h are convex;

• inf{g(x)− h(x) : x ∈ C, f1(x)− f2(x) ≤ 0}, where g, h, f1, f2 and C are all convex;

The authors studied the conditions for global and local optimality in DC programs.

However, there is not an efficient general algorithm to search for the global optima. In most

literatures of DC programming, an algorithm to find a local optima is used. According to

their numerical results, the local algorithm often yields the global optima. This algorithm is

implemented in the following way:

Algorithm 1 DC Algorithm

Choose x0 in Rn

repeat
Set yk in ∂h(xk)
Set xk+1 in ∂g(yk) that in most cases leads to solving a convex program:

inf{g(x)− xTyk : x ∈ Rn}

until convergence

The ∂g(x0) is called a different of g at x0. It is defined in this way:

Definition 1.4.1 Define an ε-subgradient of g at x0 to be

∂εg(x0) = {y ∈ Rn : g(x)− g(x0) ≥ (x− x0)Ty − ε}

8



Definition 1.4.2

∂g(x0) =
⋂
ε>0

∂εg(x0)

To illustrate the idea of DCA, we will first define the primal and dual problem.

The primal problem:

(1.1) inf{g(x)− h(x) : x ∈ Rn}

The dual problem:

(1.2) inf{h∗(y)− g∗(y) : y ∈ Rn}

where h∗(y) is called the conjugate ofh(x) and it is defined as

h∗(y) = sup{xTy − h(x), x ∈ Rn}

Le Thi Hoai An gives an explanation of this algorithm: the DCA constructs two sequences

{xk} and {yk}. They are the candidates to be optimal solutions of primal and dual programs

respectively. In addition, the sequences {g(xk)− h(xk)} and {h(yk)− g(yk)} are decreasing.

At the step k, we uses the affine minorization hk = h(xk) + (x− xk)Tyk to approximate the

second component h at a neighbourhood of xk to obtain a convex program whose the solution

set is nothing but ∂g(yk). Similarly, the second DC component g∗ of the dual DC program

is replaced by its affine minorization g∗k(y) = g∗(yk) + (y − yk)Txk+1 at a neighbourhood of

yk to give birth to the convex program whose ∂h(xk+1) is the solution set.

1.5 Ornstein-Uhlenbeck Process

Ornstein-Uhlenbeck process plays an important role in constructing sparse and fast mean

reverting portfolios. We will use the mean reversion coefficient, λ, to test the performance

of a portfolio. Therefore, it is helpful to have a short review of this stochastic process.

Consider an Ornstein Uhlenbeck process:

9



(1.3) dPt = λ(µ− Pt)dt+ σdWt

where µ, λ and σ are parameters and λ is called mean reversion coefficient.

Using Itô’s lemma, we get

Pt = P0e
−λt + µ(1− eλt) +

∫ t

0

σeλsdWS

From this, we could find that the mean and variance of Pt are:

E(Pt) = P0e
−λt + µ(1− eλt) t→∞−−−→ µ

V ar(Pt) =
σ2

2λ
(1− e−2λt)

t→∞−−−→ σ2

2λ

The mean reversion coefficient λ determines rate of convergence. Figure (1.1) compares two

sample paths of two different OU processes with same parameters P0 = 1.3, µ = 1.5 and

σ = 2 but different λ.

Figure 1.1: Sample paths of two Ornstein-Uhlenbeck processes

We could estimate the parameters of an OU process by linear regression. By writing
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(1.3) in a discrete form, we have

(1.4) Pt − Pt−1 = λµ∆t− λPt−1∆t+ σdWt

which is equivalent to the simple linear regression:

y = a+ bx+ εt

Therefore, we could estimate all the parameters by regressing Pt − Pt−1 on Pt−1. Then

we can recover λ̂ as − b̂
∆t

, µ̂ as â

λ̂∆t
and σ̂ as σ̂(εt)√

∆t
. The estimation of λ is scale invariant.

1.6 LASSO and Least Angle Regression

Lasso (least absolute shrinkage and selection operator) is a regularized version of least

squares, which uses the constraint that the L1-norm of the parameter vector is no greater

than a given value. Robert Tibshirani proposed this method in [21] and later Efron, Bradley,

et al [5] developed Least Angle Regression(LARS), a new model selection algorithm which

can be used for implementing the Lasso.

The Lasso problems are defined in the following way:

Definition 1.6.1 Let X = {x1, x2, ..., xm} be a n×m matrix and y be a n× 1 vector. We

could consider the columns of X represent covariates and y are the predicted responses. The

Lasso estimate of β̂ is

β̂ = argmin‖Xβ̂ − y‖2
2 subject to‖β̂‖1 ≤ t

This problem can be solved by quadratic programming techniques. However, a mod-

ified version of LARS is an easier and more efficient algorithm to solve the Lasso prob-

lem. In [5], the authors proved that the LARS algorithm yields all Lasso solutions with

only one condition. Robert Tibshirani summarized the LARS algorithm in his website

(http://statweb.stanford.edu/∼tibs/lasso/simple.html).
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Algorithm 2 LARS

Start with all coefficients β̂j equal to zero;
Find the covariate xj most correlated with y;

Increase the coefficient β̂j in the direction of the sign of its correlation with y. Take

residuals r = y − Xβ̂ along the way. Stop when some other covariate xk has as much
correlation with r as xj has.

Increase (β̂j, β̂k) in their joint least squares direction, until some other covariate xm has
as much correlation with the residual r.
Continue until: all covariates are in the model

For the LARS algorithms, we only need m steps to obtain the full set of solutions.

Normally, in each step, one new covariate will be added. The entire sequence of steps in the

LARS algorithm with m < n covariates requires O
(
m3 + nm2

)
.
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Chapter 2

Proxies of Mean Reverting Property

In [3], the authors discussed three different criteria to measure how fast a portfolio is mean-

reverting. They are predictability, the portmanteau statistics and the crossing statistics. In

[16], the authors reviewed some of the most applied hedging methods and the test statistics

to judge whether a portfolio can be used for hedging. We would refer the reader [3],[1],[16]

for more details. In our paper, we mainly consider two proxies. One is predictability and the

other one is called the direct OU estimator. To our knowledge, no one has used the second

proxy before.

2.1 Predictability

The idea of predictability of a time series is first derived in [1]. They consider a stationary

autoregressive model:

(2.1) St = St−1β + c+ Zt, St ∈ Rn

where St−1 is the lagged portfolio process, c ∈ Rn, β ∈ Rn×n and Zt is a vector of i.i.d Gaus-

sian noise with zero mean and a covariance matrix Σ, independent of St−1. The condition of

stationarity of St is that all the eigenvalues of β lies inside the unit circle.
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In univariate case,

E[S2
t ] = E[(St−1β)2] + E[Z2

t ]

which can be rewritten as σ2
t = σ2

t−1 + Σ. Box & Tiao (1977) measure the predictability of

stationary series by:

ν =
σ2
t−1

σ2
t

d’Aspremont [4] propose to use this measure of predictability as a proxy for the mean rever-

sion parameter λ.

In multivariate case, consider a portfolio Pt = Stx with weights x ∈ Rn, then by multi-

plying both sides of (2.1) by x, we get

Stx = St−1βx+ cx+ Ztx

and we can measure its predictability as:

ν1(x) =
xTβTΓβx

xTΓx

where Γ is the covariance matrix of St. This proxy is first introduced in [4]. Minimizing the

predictability ν1(x) corresponds to maximizing λ.

2.2 Direct OU estimator

Based on the result in Chapter 1, maximizing the estimated mean reversion coefficient λ

corresponds to minimizing the estimated slope of b̂. Note that

b =
Cov(Pt − Pt−1, Pt−1)

V ar(Pt−1)
=
Cov(Pt, Pt−1)

V ar(Pt−1)
− 1

Let’s replace Pt by Stx , we have:

b =
Cov(Stx, St−1x)

V ar(St−1x)
− 1

14



We define the direct OU estimator as:

(2.2) ν2(x) =
Cov(Stx, St−1x)

V ar(St−1x)

If St is stationary, then we can rewrite (2.2) in the following form:

ν2(x) =
xT (Cov(St, St−1) + Cov(St, St−1)T )x

2xTV ar(St−1)x

Here we assume that the covariance matrix of St is positive definite and we have enough

observations of the assets’ values to get a full rank estimation of the covariance matrix.

Minimizing the predictability ν2(x) corresponds to maximizing λ.

This proxy captures similar property of a time series as the portmanteau statistics in

[3] and the direct Dickey-Fuller statistics in [16]. One thing to note is that the proxy (2.2)

works even if we don’t assume that the asset prices St are stationary. The only assumption

needed is that the linear combinations of those assets Stx is stationary. This phenomenon

is called cointegration [6]. This helps us relax the assumption. According to our numerical

tests, the portfolios constructed under this proxy have a better performance in trading.

Though the estimation of Cov(St, St−1) +Cov(St, St−1)T is not guaranteed to be positive

definite, our numerical tests show that in most cases it is still true. Even if this condition

fails, we could use the estimation of Cov(St, St−1) + Cov(St, St−1)T + ρV ar(St−1) as the

matrix in the quadratic form of the numerator where ρ is a tuning parameter. By choosing

an appropriate ρ, the matrix will be positive definite and it is equivalent to the optimization

problem with ρ = 0.
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Chapter 3

Sparse Optimization Problem and

Related Algorithms

3.1 Sparse Optimization Problem

In the previous chapter, we discussed two proxies of the mean reversion coefficient. Note

that both of them can be written as
xTAx

xTBx

where A and B are n×n positive definite matrices and we will make this assumption for the

rest of the work. If we do not care the cardinality of x, then minimizing these proxies are the

same as a generalized eigenvalue problem. In order to obtain a sparse solution, d’Aspremont

in [4] proposed the following sparse optimization problem:

(3.1)

min xTAx/xTBx

s.t. ‖x‖0 ≤ k

‖x‖2 = 1,

This problem has been proved to be NP-hard [17]. When the dimension of the problem is

large, we cannot expect to find the optimal solution. Several methods of solving 3.1 have

been proposed in [4] and [8]. We will give a brief summary here.
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3.2 Algorithms

• Exhaustive search method: it tests all n!
k!(n−k)!

possible combinations of assets and find

the smallest generalized eigenvalue and eigenvectors. This method gives us an optimal

solutions and works very well when n is small. However, it will be extremely slow when

n is large.

• Greedy search: denote Ik as the support of the solution and set Ik = ∅ initially. Each

time, we pick one asset form {1, 2, ..., n} \ Ik such that it has smallest objective among

all the other choice. Then we add it to Ik and repeat this procedure for k times. This

method gives a sub-optimal solution.

• Truncation method: first we solve the unconstrained problem and find xopt. Then we

find the index set Jk of the largest k components of |xopt| = (|x1|, ..., |xn|)T . Then we

solve the generalized eigenvalue problem on the set Jk by taking the corresponding

part of matrices A and B. It gives a sub-optimal solution and it is the fastest among

all the listed methods since it only requires solving the generalized eigenvalue problem

twice.

• Semidefinite relaxation method: this method reformulates the problem (3.1) as a

semidefinite program. It provides sub-optimal solutions. The computational com-

plexity is lower than the exhaustive search method but is higher than that of the

greedy search. For more details, we refer the readers to [4].
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Chapter 4

Optimization Problem Based on the

Ratio of l1 and l2 Norms

4.1 Motivation

One popular method in handling a cardinality constraint is to use a norm penalization.

Standard choices include l1 and lp (0 < p < 1). In our case, we would prefer using ‖x‖1
‖x‖2

since our problem (1) is scale invariant. The scale constraint is required for ‖x‖1 and ‖x‖p
penalties otherwise they cannot enforce sparsity. The reason is that we could simply decrease

the penalty by decreasing the scale of all the elements of x. For analysis of sparsity promoting

properties of ratio of l1 and l2 norms, we refer to [22].

4.2 Constraint Problem

4.2.1 Formulation

We could reformulate the problem (3.1) in the following way:

(4.1)

minx xTAx/xTBx

s.t. ‖x‖1
‖x‖2 ≤ m

x 6= 0,
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Using the similar method as [4] , we found that this problem can be also expressed as a

semidefinite programming problem.

By setting X = xxT , then the problem (4.1) is equivalent to

minX trace(AX)/trace(BX)

s.t. 1T |X|1
trace(X)

≤ m2

rank(X) = 1

X � 0

where |X| means we take the absolute value for each entry of X.

Then by changing of variables:

Y =
X

trace(BX)
, z =

1

trace(BX)

and dropping the rank constraint, the previous problem can be written as a semidefinite

programming problem:

(4.2)

minY trace(AY )

s.t. 1T |Y |1 ≤ m2z

trace(Y )− z = 0

trace(BY ) = 1

Y � 0

If we set Card(x) = k = m2, this is exactly the semidefinite relaxation in [4].

4.2.2 Algorithm

Since we have relaxed the problem to a semidefinite program, we could use many well-

established package like SeDuMi and Yalmip to solve it. The only difficulty is handling the

constraint:

1T |Y |1 ≤ m2z
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It corresponds to 2n
2

constraints. When the dimension of the problem is small, we could

write out a set of linear constraints that cover all the possible signs of x. This method is

impossible to implement when n is large. A classical method to tackle this issue is starting

with a smaller set of linear constraint(s) and increasing the set if the current solution fails

the original constraint. Tibshirani proposed this method in solving the LASSO type problem

[21].

For illustration, we consider a simple example: |x| ≤ t where x = (x1, x2)T . Therefore,

|x| ≤ t is equivalent to the following 4 linear inequalities:

(4.3a) x1 + x2 ≤ t

(4.3b) x1 − x2 ≤ t

(4.3c) −x1 + x2 ≤ t

(4.3d) −x1 − x2 ≤ t

If we want to minimize some function f(x) subject to |x| ≤ t, we start with the problem

of minimizing f(x) subject to 4.3a. We can get a minimizer x∗. If |x∗| ≤ t, then it is

also the minimizer under the constraint |x| ≤ t. If not, then we add a new constraint:

sign(x∗1)x1 + sign(x∗2)x2 ≤ t. Now we will solve the optimization problem with two linear

constraints. We repeat this process until the solution satisfies |x| ≤ t.

For our problem, we proposed the following algorithm:
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Algorithm 3 Solve (4.2)

Input the parameters A, B and m;
Set an initial X0 which corresponds to the solution without sparsity constraint;
Constraint set = {Null}
Calculate Y = X0

trace(BX0)
and z = 1

trace(BX0)

while 1T |Y |1 > m2z do
Add sign(Y ) to the constraint set;
Solve the problem (4.2) by reducing the first 2n

2
constraints to the current constraint

set;
Update X0, Y and z

end while

The last issue is how to recover x from X. We can express X as:

X =
n∑
i=1

λiqiq
T
i

where λi are eigenvalues with corresponding eigenvector qi and λi is a non-increasing se-

quence. Therefore, we could pick the first eigenvector q1 and select the largest k = m2

entries in absolute values.

4.3 Penalized Optimization Problem

4.3.1 Formulation

We could reformulate the problem (3.1) in the following way:

(4.4) min
x6=0

xTAx

xTBx
+ γ
‖x‖1

‖x‖2

where γ is a tuning parameter.

Comparing with the problem (3.1), the advantage of the problem (4.4) is that it does not

specify the cardinality beforehand. This could be closer to the reality. In addition, we could

consider the l1 norm in the numerator as a way to quantify the uniform transaction costs.
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4.3.2 Algorithm

The major difficulty comes from the non-convexity of the problem. Most optimization al-

gorithms will only provide a local minimizer. In our problem, the performance of local

minimizers may vary a lot. Therefore, it is important to develop an algorithm to find the

global minimizer. The intermittent diffusion(ID) algorithm proposed in [2] can be helpful.

The main idea of this algorithm is ”to add intermittent, instead of continuously diminishing,

random perturbations to the gradient flow generated by the objective, so that the trajectories

can quickly escape from the trap of one minimizer and then approach others.”

In addition, we also need to approximate the derivative of the non-smooth function

xTAx/xTBx+ γ
‖x‖1

‖x‖2

The non-smoothness is due to the term ‖x‖1. A common trick in handling this problem is

using

|xi| ≈
√
x2
i + ε

where ε is a small tuning parameter.

Last but not the least, to satisfy the conditions of ID algorithm so that a global minimizer

exists in a bounded set, we also add a penalty function p(x, θ, ξ, ζ) to f(x):

p(x, θ, ξ, ζ) =
∑
i

u(xi, θ, ξ, ζ)

where

u(xi, θ, ξ, ζ) :=


ξ(xi − θ)ζ , xi > θ

0, |xi| ≤ θ

ξ(xi − θ)ζ , xi < −θ

In this way, we can make the objective to be infinity when |x| is approach to infinity.

Finally, our objective becomes:

(4.5) F (x) =
∑
i

u(xi, θ, ξ, ζ) + xTAx/xTBx+ γ
‖x‖1

‖x‖2
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Algorithm 4 Solve (4.4)

Input A, B and γ;
Set α as the scale for diffusion strength, κ the scale for diffusion time and the total number
of realizations N .
Set the initial state x0 as the minimizer of xTAx

xTBx
with the constraint that ‖x0‖2 = 1, i.e.

the generalized eigenvector associated with the smallest eigenvalue
Find a local minimizer x̂0 of problem (4.4) given x0 and set Xopt = x̂0.
for i = 1 to N do

Generate two positive random numbers d, s within [0, 1] by uniform distribution and
let σ := αd and T := κs.
Solve the stochastic equation for t ∈ [0, T ]

dx(t, ω) = −5s F (x(t, ω))dt+ σdW (t), x(0, ω) = Xopt

where 5sF is the gradient of the objective 4.4 and record the final state xT := x(T, ω).
Find a local minimizer x̂i of problem (4.4) by line search algorithm with starting point
xT .
Xopt = x̂i if f(x̂i) < f(Xopt).

end for

4.4 Analysis of the ratio of l1 and l2 penalty

In this section, we want to prove some useful properties of the solutions of problem (4.4).

We will define f(x, γ), L(x) and P (x) as:

f(x, γ) =
xTAx

xTBx
+ γ
‖x‖1

‖x‖2

L(x) =
xTAx

xTBx

P (x) =
‖x‖1

‖x‖2

We denote the set of minimizers of the problem (4.4) as x(γ) and we will set their l2 norm

as 1. When γ is fixed, the existence of the minima of f(x, γ) is due to its continuity on the

unit sphere and the compactness of the unit sphere. Since xTAx/xTBx is scale invariant,

any vector on the same direction yields the same value. If there are different directions that

yield the same f(x, γ), then we always prefer those with the smaller ratio of l1 norm and

l2 norm. Therefore, the set of the optimizers, x(γ), has a unique value of the function P (·)
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on this set (and then the unique value of L(·)). Mathematically, it can be defined in the

following way:

X(γ) = {x ∈ Rn : ‖x‖2 = 1, f(x, γ) = min
z 6=0,‖z‖2=1

{z
TAz

zTBz
+ γ
‖z‖1

‖z‖2

}}

x(γ) = {x ∈ X(γ) : P (x) = min{P (y) : y ∈ X(γ)}}

In the following proofs, we will use these notations:

B(x, δ) ≡ {x′ : ‖x′ − x‖2 < δ}

Sk ≡ {x ∈ Rn : ‖x‖2 = 1, ‖x‖0 ≤ k}

Sn ≡ {x ∈ Rn : ‖x‖2 = 1} = Sn

d(U, V ) = min{‖x− y‖2 : x ∈ U, y ∈ V, U and V are compact sets in Rn}

Lemma 4.4.1 Given A = {aij} and B = {bij} are both n × n positive-definite matrices,

then for any ε > 0, there exist a number γ(ε), such that for any γ ≥ γ(ε), ‖x − e‖2 < ε,

where x(γ) is the set of optimal solutions of problem (4.4) given γ, x ∈ x(γ), e is a 1-sparse

vector and ‖e‖2 = 1.

Proof. First, note that the problem (4.4) is scale invariant, therefore, we could constrain the

problem on the sphere ‖x‖2 = 1. All the vectors in our proof are with l2 norm 1.

Note that the 1-sparse minimizers of L(x) on the sphere ‖x‖ = 1 are the vectors ±ei with

all 0s except for a 1 in the ith coordinate. The i is determined by

i = arg min
i
{aii
bii
}

Without loss of generality, we will assume that i = 1 and this corresponds to a unique

minimizer, i.e.
a11

b11

<
aii
bii
, for all i 6= 1

Note that both f(x, γ) and L(x) are even functions of x, we could further restrict our

region on S+ ≡ {x = (x1, ..., xn)T : x1 ≥ 0 and ‖x‖2 = 1}.
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Since L(x) is continuous on S+, then ∃δi, for any point x in the region {x : ‖x ± ei‖ <

δi} ∩ S+, L(x) ≥ L(e1) = a11

b11
, for i = 2, 3, ..., n.

Denote Di = {x : ‖x±ei‖ < δi} for i = 2, 3, ..., n, then for all the points x ∈ S+∩(∪ni=2Di),

L(x) ≥ L(e1) and ‖x‖1/‖x‖2 ≥ 1. Therefore, they cannot beat e1 for any γ.

For any ε > 0, let D1 = {x : ‖x − e1‖ < ε}, then S+(ε) ≡ S+ \ (∪ni=1Di) is a closed and

bounded set. Therefore, γ(ε) must satisfy the following inequality:

f(e1, γ(ε)) ≤ f(x, γ(ε)), ∀x ∈ S+(ε).

This is equivalent to

a11

b11

+ γ(ε) ≤ L(x) + γ(ε)
‖x‖1

‖x‖2

, for any x ∈ S+(ε).

And it implies:

γ(ε) ≥ (
a11

b11

− L(x))/(
‖x‖1

‖x‖2

− 1), for any x ∈ S+(ε).

The last line holds, since for any x ∈ S+(ε), ‖x‖1‖x‖2 is guaranteed to be greater than 1. Note

that the function (a11

b11
−L(x))/(‖x‖1‖x‖2 − 1) is well-defined and continuous on S+(ε). Therefore,

we can set γ(ε) as:

γ(ε) = max
x∈S+(ε)

(
a11

b11

− L(x))/(
‖x‖1

‖x‖2

− 1)

�

Lemma 4.4.1 indicates that an almost 1-sparse solution can always be recovered by in-

creasing the value of γ.

Now consider the optimization problems (3.1). Denote {λk}nk=1 as the minimums of the

problem (3.1) given parameter k. Obviously, the following inequalities hold:

λ1 ≥ λ2 ≥ ... ≥ λn−1 ≥ λn
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The equal sign could hold by considering the following two matrices:

A =

 1 0.5

0.5 2

 , B =

 2 1

1 3


(1, 0)T is a generalized eigenvector of A and B and it corresponds to the smallest generalized

eigenvalue. Therefore, λ1 = λ2. Using the similar structure, we could construct two matrices

of any dimension n such that the λ1 = λn. In this trivial case, the ratio of l1 and l2 is useless

in searching for sparse solutions.

We want to consider the non-trivial cases, i.e. we will assume that the generalized

eigenvalues of the matrices/sub-matrices of A and B satisfies the following condition:

(H1) λ1 > λ2 > ... > λn−1 > λn

Lemma 4.4.2 Given A = {aij} and B = {bij} are both n × n positive-definite matrices,

suppose {λk}nk=1 are the minimums of the problem (3.1) under the parameter k and they

satisfy (H1). Then for k ≥ 2, ∃ δ > 0 and γk > 0, such that for any 0 ≤ γ ≤ γk, a

minimizer x ∈ x(γ) of (4.4) satisfies the following inequality:

‖x− w‖2 ≥ δ, ∀w ∈ Sk−1

Proof. By the same reason, we could constrain the problem on the sphere ‖x‖2 = 1. All the

vectors in our proof are on the unit ball in Rn.

Note that Sk−1 is the union of finite many compact sets in Rn, so it is also compact.

For k ≥ 2, denote the xk as the generalized eigenvector associated with λk. ‖xk‖1 must

be strictly greater than 1 based on (H1).

Note that the function L(x) is continuous on the unit ball in Rn. Due to (H1) and

the continuity property, for any point y ∈ Sk−1, there exists δ(y) such that for any y0 ∈

B(y, δ(y)), L(xk) + c ≤ L(y0), where c is a constant between 0 and λk−1 − λk.

Since U ≡ ∪y∈Sk−1
{x : ‖x− y‖ < δ(y)} is an open set, then Sn \ U is a closed set. Note

that (Sn \ U) ∩ Sk−1 = ∅ and both are compact, then

(4.6) δ = d(Sn \ U, Sk−1) > 0.
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Since for any γ, we have

L(x) + γ ≤ f(x)

Therefore, γk only need to satisfy the following inequality:

f(xk, γk) ≤ L(x) + γk, for any x ∈ U

It’s equivalent to:

λk + γk‖xk‖1 ≤ L(x) + γk, for any x ∈ U

which implies:

γk ≤ (L(x)− λk)/(‖xk‖1 − 1), for any x ∈ U

Therefore, we could choose γk as c/(‖xk‖1 − 1). For any γ ≤ γk, xk beats all the points in

U and therefore the minimizer x(γ) must be in Sn \ U . By (4.6),

‖x(γ)− w‖2 ≥ δ for any w ∈ Sk−1

�

Lemma (4.4.2) tells us that there exists γk such that when γ ≤ γk the minimizer of the

problem (4.4) is at least k-sparse for k ≥ 2. Then, immediately we could get the next

corollary.

Corollary 4.4.1 A necessary condition to have an almost k-sparse minimizer of the problem

(4.4) given γ is that there exist γk and γk+1 such that γk > γk+1.

Lemma 4.4.3 Suppose x(γ) is the set of minimizers of the problem (4.4), then P (x(γ)) is

non-increasing in γ.

Proof. For any arbitrary γ1 and γ2, assume γ1 < γ2. We want to show that P (x(γ1)) ≥

P (x(γ2)). Since x(γ1) and x(γ2) are two minimizers, so we have

(4.7a) L(x(γ1)) + γ1P (x(γ1)) ≤ L(x(γ2)) + γ1P (x(γ2))
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(4.7b) L(x(γ2)) + γ2P (x(γ2)) ≤ L(x(γ1)) + γ2P (x(γ1))

(4.7a) and (4.7b) implies

(4.8a) L(x(γ1))− L(x(γ2)) ≤ γ1(P (x(γ2))− P (x(γ1)))

(4.8b) L(x(γ1))− L(x(γ2)) ≥ γ2(P (x(γ2))− P (x(γ1)))

Then we have:

(4.9) γ2(P (x(γ2))− P (x(γ1))) ≤ L(x(γ1))− L(x(γ2)) ≤ γ1(P (x(γ2))− P (x(γ1)))

This implies

(γ2 − γ1)(P (x(γ2))− P (x(γ1))) ≤ 0

By the assumption that γ1 < γ2, therefore P (x(γ1)) ≥ P (x(γ2)). �

We can consider f(x, γ) as a continuous function of both x and γ defined on U :

f(x, γ) : U ≡ Sn × [0, L]→ R

where Sn is the unit ball in Rn. Therefore, U is a closed and bounded set. In the following

proofs, we assume that x(γ) only has two vectors x and −x. They are in the opposite

directions. We will call this condition (H2). Under H2, it is harmless to use x(γ) to denote

both the set or the vectors. We will abuse this notation for the proofs below.

Lemma 4.4.4 Suppose x(γ) is the set of minimizers of the problem (4.4) under parameter γ.

Assume that X(γ) is 1-dimension. Let U be a closed set in Rn, U ∩Sn 6= ∅ and x(γ)∩U = ∅.

Then there exist δ1 > 0 and δ2 > 0 such that for any x ∈ U ∩Sn and any γ0 ∈ (γ−δ1, γ−δ2),

f(x, γ0) > f(x(γ), γ0)
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Proof. Since X(γ) is 1-D, then we have:

f(x(γ), γ) < f(x, γ) ∀x ∈ U ∩ Sn

Note that U ∩ Sn is a compact set in Rn. Therefore, there exist fL and PU such that:

fL = min
x∈U∩Sn

{f(x, γ)} > f(x(γ), γ)

PU = max
x∈U∩Sn

P (x)

We will only be interested in the case that PU > P (x(γ)), since δ1 could be any number if

this is not true.

For δ1, we want to find a range of ∆γ > 0 such that:

f(x(γ), γ)−∆γP (x(γ)) < f(x, γ)−∆γP (x) ∀x ∈ U ∩ Sn

Then we only need ∆γ > 0 satisfies:

f(x(γ), γ)−∆γP (x(γ)) < fL −∆γPU

It is equivalent to:

∆γ(PU − P (x(γ)) < fL − f(x(γ), γ)

which implies:

∆γ < (fL − f(x(γ), γ))/(PU − P (x(γ))

Therefore, we could set δ1 = (fL − f(x(γ), γ))/(PU − P (x(γ)).

Similarly, for δ2, we want to find a range of ∆γ > 0 such that:

f(x(γ), γ) + ∆γP (x(γ)) < f(x, γ) + ∆γP (x) ∀x ∈ U ∩ Sn
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Then we only need ∆γ > 0 satisfies:

f(x(γ), γ) + ∆γP (x(γ)) < fL + ∆γ

Thus,

∆γ(PU − 1) < fL − f(x(γ), γ)

and we have

∆γ < (fL − f(x(γ), γ))/(PU − 1)

Therefore, we could set δ2 = (fL − f(x(γ), γ))/(PU − 1). �

Corollary 4.4.2 Suppose x(γ) is the set of minimizers of the problem (4.4) under parameter

γ and assume that X(γ) satisfies H2. If ‖x(γ)‖0 = k > 1, then there exist δ1 and δ2 such

that for any x ∈ Sk−1 and any γ0 ∈ (γ − δ1, γ − δ2),

f(x, γ0) > f(x(γ), γ0)

Proof. Sk−1 is a closed set and x(γ) ∩ Sk−1 = ∅. �

Corollary 4.4.3 Suppose x(γ) is the unique minimizer of the problem (4.4) under parameter

γ and assume that X(γ) satisfies H2. If ‖x(γ)‖0 = k > 1, then for any ε, there exist δ1 > 0

and δ2 > 0 such that for any γ0 ∈ (γ − δ1, γ − δ2),

f(x, γ0) > f(x(γ), γ0) ∀x ∈ Sn \ Sk(ε)

where

Sk(ε) ≡ ∪x∈Sk
B(x, ε)

Proof. Sk(ε) is an open set, so Sn \ Sk(ε) is a compact set. x(γ) ∈ Sk(ε) and therefore,

x(γ) /∈ Sn \ Sk(ε). �
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Corollary 4.4.2 and 4.4.3 indicate the local properties of the optimal solution given the

parameter γ. Corollary 4.4.2 shows that in a neighbourhood of γ, the minimizer of problem

(4.4) has at least k non-zero entries. Corollary 4.4.3 shows that in a neighbourhood of γ,

the minimizer will not be far away from Sk.

Theorem 4.4.1 Denote U ⊂ Sn as a subset of feasible points of problem (4.4). Assume

that X(γ) satisfies H2 for all γ. Suppose we have the follow property:

L(x) ≤ L(y)⇒ ‖x‖0 ≥ ‖y‖0

Then ‖x(γ)‖0 is a non-increasing function of γ, where x(γ) are the minimizers of problem

(4.4) restricted on the subset U .

Proof. For any arbitrary γ1 and γ2, suppose that we have γ1 > γ2 ≥ 0.

Then by the inequality (4.9) in lemma 4, we must have

L(x(γ1))− L(x(γ2)) ≤ γ1(P (x(γ2))− P (x(γ1))) ≤ 0

Therefore, L(x(γ)) is non-increasing in γ.

Note that P (x(γ2)) = P (x(γ1)) ⇐⇒ L(x(γ2)) = L(x(γ1)), otherwise one optimizer will

beat the other one for all γ ≥ 0.

By our assumptions, ‖x(γ)‖0 is a non-increasing function of γ if we restrict the problem

(4.4) on U . �
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Chapter 5

Optimization Problem Based on the l1

Norm and Prior Knowledge

5.1 Motivation

In the previous chapter, we applied a stochastic algorithm in searching for a global optimizer

of the problem (4.4). The major drawback of the algorithms is that we can not guarantee

a global optimizer. Based on the theory of the intermittent diffusion(ID) algorithm, we

could increase the probability of finding the global optimizer by increasing the number of

realizations N . However, choosing N is problem dependent and it will be a difficult task

when the dimension of the problem is large. We have to balance the efficiency and the

performance of the solution.

Therefore, an efficient global optimization algorithm is desired. In addition, we may

prefer a simpler norm to enforce sparsity, because it will lead to simpler algorithms. Last

but not the least, we would like to keep the number of tuning parameters as few as possible.
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5.2 Formulation

Note that the problem (3.1) is equivalent to:

max xTBx/xTAx

s.t. ‖x‖0 ≤ k

‖x‖2 = 1

Now, we use the l1 norm to enforce the sparsity and consider the following problem:

(5.1) f(r) = maximize
x(i)=1,‖x‖1≤M

xTBx− rxTAx

where i is a pre-determined fixed number. We could choose i based on our prior knowledge

or our investment need. For example, we could choose i by selecting the asset which has the

largest entry in absolute value by solving the unconstraint problem. The constraint x(i) = 1

helps the l1 norm to enforce the sparsity and also simplify the problem to a quadratic

program.

5.3 Theory of Recovering the Global Optimizer

We would like to show that

Theorem 5.3.1 Let

f(r) = maximize
x(i)=1,‖x‖1≤M

xTBx− rxTAx

where A and B are both positive definite matrices, then

a For any given R > 0, (5.1) is continuous on 0 ≤ r ≤ R;

b f(r) is an non-increasing function of r;

c There exists r∗ such that f(r∗) = 0;
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d Suppose the optimizer at r∗ is x∗, then x∗ is the optimizer of the following problem:

(5.2)

maximize
x 6=0

xTBx/xTAx

subject to x(i) = 1

‖x‖1 ≤ m

Proof. a. For any given R > 0, since f(x, r) = xTBx−rxTAx is continuous on the closed

and bounded set {(x, r), x(i) = 1, ‖x‖1 ≤ m, 0 ≤ r ≤ R}, all the optimizers are obtainable.

Due to the uniform continuity, f(r) is continuous.

b. Suppose r1 > r2, then for any feasible x, we must have

(xTBx− r1x
TAx)− (xTBx− r2x

TAx)

= (r2 − r1)xTAx < 0

Since A is positive definite and x 6= 0. Therefore, it is non-increasing in r.

c. Notice that f(0) > 0. Since A is positive definite, there must exist an R > 0 such

that B −RA is negative definite. Therefore, f(R) < 0. Due to the continuity of f(r), there

exists r∗ such that f(r∗) = 0.

d. Suppose there exists a feasible x1 such that

r1 :=
xT1Bx1

xT1Ax1

> r∗
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Then we must have:

0 = xT1Bx1 − r1x
T
1Ax1

= xT1Bx1 − r∗xT1Ax1 − (r1 − r∗)x′1Ax1

≤ xT∗Bx∗ − r∗xT∗Ax∗ − (r1 − r∗)xT1Ax1

= −(r1 − r∗)xT1Ax1 < 0

Therefore, there is a contradiction. �

This theorem tells us that if we can find a root of f(r) and the corresponding maximizer,

then we have found the global maximizer of problem (5.2).

The conversion of the ratio minimization problem to a sequence of difference minimiza-

tion problems has been proposed in solving the trace ratio optimization problem arising

in machine learning and high dimensional data analysis [18]. Here in Theorem 5.3.1, we

considered the additional l1 constraint.

5.4 Algorithms

5.4.1 Algorithm for Finding r∗

We used a binary search algorithm.

Algorithm 5 Find r∗
Input the matrices B and A, a threshold ε > 0 for stopping, initial x0, rmin,rmax, i and m;
Set r0 = 1

2
(rmin + rmax);

while |xT0Bx0 − r0x
T
0Ax0| > ε do

Solve the quadratic program (5.1) with r0 and obtain the maximizer x0;
if xT0Bx0 − r0x

T
0Ax0 > ε then

rmin = r0

else
rmax = r0

end if
r0 = 1

2
(rmin + rmax)

end while
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5.4.2 Algorithm for Solving (5.1)

The difficult part is solving the quadratic program (5.1). It is a non-convex optimization

problem. Therefore, classical algorithms can not guarantee a global optimizer. In addition,

there is scalability issue when the dimension of the problem increases.

One way to tackle this problem is treating the problem as a difference of convex functions

and using the DC (difference of convex functions) algorithm.

First, we could reformulate the problem (5.1) in the following way by plugging in the

constraint x(i) = 1:

minimize
‖x‖1≤M ′

rxTV x+ c′x− xTUx

where U and V are both positive definite matrices and x ∈ Rn−1.

In addition, based on a standard method in DCA, we could change it to an unconstraint

problem:

(5.3) minimize
x

rxTV x+ c′x− xTUx+ χ‖x‖1≤M ′(x)

where

χ‖x‖1≤M(x) =

 ∞ : ‖x‖1 > M ′

0 : ‖x‖1 ≤M ′

Let

g(x) = rxTV x+ c′x+ χ‖x‖1≤M ′(x)

h(x) = xTUx

then the objective is a difference of g and h. We can use the following DC algorithm:
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Algorithm 6 Solve (5.3) for a given r

Choose x0 in Rn−1;
repeat

Set yk = 2Uxk;
Solve the optimizer xk+1 of the convex program:

(5.4) inf{rxTV x+ c′x− xTyk + χ‖x‖1≤M ′(x), x ∈ Rn−1}

until convergence

5.4.3 Algorithms for Solving (5.4)

The problem (5.4) can be considered as a quadratic program with l1 constraint.

(5.5)
min rxTV x+ cTx+ xTyk

s.t. ‖x‖1 ≤M ′

It can also be rewritten as a least squares optimization with l1 constraint. This problem has

been well studied in the literature. Now we will present several options for solving it.

1 Use a similar method as algorithm (3). To handle the l1 constraint, we start with a

smaller set of constraint and add new constraints if the solution fails the original one.

We refer to algorithm (7).

Algorithm 7 Solve (5.5)

Input the parameters V , c, yk, r and M ′;
Set x0 = (2rV )−1(c+ yk)
Constraint set = {null}
while ‖x‖1 > M ′ do

Add sign(x) to the constraint set;
Solve the problem (5.5) by reducing the first 2(n−1)2 constraints to the current constraint
set;
Update x

end while

2 Use |xi| ≈
√
x2
i + e to approximate the l1 norm, where e is a small number. Now we

could break the constraint into two cases. The first case is that the optimizer is in the

interior. This implies the optimizer is (2rV )−1(c + yk). Then we only need to check
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whether it satisfies the l1 norm constraint. If not, then the optimizer must satisfy the

equality constraint. Therefore, we could use the method of Lagrange multipliers. The

optimizer is the solution to the following non-linear system


2rV + c+ yk + λ{ xi√

x2
i +e
} = 0∑n−1

i=1

√
x2
i + e−M ′ = 0

where { xi√
x2

i +e
} is a vector with the ith entry xi√

x2
i +e

. This system can be solved by

using the Newton’s method.

3 A common trick in handling the absolute values is using non-negative variables. We

can write x = x+ − x− where x+ and x− are both non-negative variables. Therefore,

problem (5.5) takes the following form:

min r(x+ − x−)TV (x+ − x−) + c′(x+ − x−) + (x+ − x−)Tyk

s.t.
∑
x+ +

∑
x− ≤M ′

In this way, we double the number of variables but reduce to a single constraint. The

problem can be solved by active set method.

4

• Reformulate it as a LASSO problem [21]. Notice that the objective of a LASSO problem

is

‖Xx−Y‖2
2 + λ|x|1 = xTXTXx− 2YTXx+ YTY + λ|x|1

Therefore, by solving the following system for A and b, we could retrieve a LASSO

type problem from (5.4):

rV = XTX c+ y = −2XTY

The first equation can be solved by Cholesky decomposition and then the second

equation is easy to solve. Finally, we could apply the least angel regression algorithm

(LARS) [5].
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Chapter 6

Recover the Fastest Mean Reverting

OU Process

6.1 Motivation

In this section, we formed a new type of problems. Suppose we have several times series

which we believe they are the linear combinations of some hidden mean reverting processes.

We would like to recover the fastest mean reverting process given these observations.

This problem can be considered an inverse problem of constructing sparse and mean

reverting portfolios.

6.2 Formulation 1: Recover the OU Process with an

Abnormal Starting Value

Assume that vt, Xt1, Xt2, ..., Xtk satisfy the following OU processes:

dXtk = −λkXtkdt+ σkdBtk dvt = −λvtdt+ σdBt

where dBtk are the independent noises. We assume that λ >> λi for i = 1, ..., k. Suppose

we have a data set of n periods of the linear combinations of these k + 1 OU processes, we
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wonder recover vt and further find its mean reversion coefficient, i.e.

Given W = span{vt, Xt1, Xt2, ..., Xtk}, for t = 0, ..., n, |v0| >> 0

Find vt

6.3 Formulation 2: Recover the OU Process with a

Jump Process

Consider k + 1 stochastic processes {vt, Xt1, Xt2, ..., Xtk}. vt is the one we would like to

recover. We assume it follows:

dvt = −λvtdt+ σdBt + dN

where N counts the number of jumps that have occurred and the random jump magnitude

is 1. We assume the jump process follows a Poisson process with parameter θ.

For {Xt1, Xt2, ..., Xtk}, we assume they are independent OU processes with relatively

small mean reverting coefficients:

dXtk = −λkXtkdt+ σkdBtk

Our goal is still recover vt given a space spanned by {vt, Xt1, Xt2, ..., Xtk}, i.e.

Given W = span{vt, Xt1, Xt2, ..., Xtk}, for t = 0, ..., n

Find vt

6.4 Methodology

In order to solve the previous problems, we used a method proposed by Laurent Demanet

and Paul Hand [9], which is used for recovering the sparsest element in a subspace.
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This method is trying to solve the following problem: given an arbitrary basis of W ⊂ Rn,

find x, the sparsest nonzero element in W .

The authors transform this problem to n optimization problems:

(6.1)
min ‖z‖1

subject to z ∈ W, z(i) = 1

for each 1 ≤ i ≤ n, where

W = span{w1, w2, ..., wk+1} = span{v, v1, v2, ..., vk}

i is fixed for a single problem and all the entries of vi’s are i.i.d. random variables with

standard normal distribution. The goal is to find v given the basis w1, w2, ..., wk+1. Note

that z ∈ W is equivalent to z ⊥ W⊥ and therefore there will be n− k − 1 equations.

This problem can be considered as a quadratic program. The authors found the condi-

tions for exact and stable recovery. For details, we would refer [9].

This method works on our problem, since it is just a generalization from a set of inde-

pendent normal random vectors to a set of correlated normal random vectors.
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Chapter 7

Numerical Tests

Our codes are implemented in Matlab R2011b. We used the optimization package YALMIP.

Computations are performed on a Dell desktop with 8G RAM and 3.4 GHz i7 CPU. We

have used two historical data sets. One is the U.S. daily swaps data for maturities 1Y, 2Y,

3Y, 4Y, 5Y, 7Y, 10Y and 30Y from July 3, 2000 until July 15, 2005. The data are obtained

from www.Economagic.com. The total number of data is 1257 × 8. The data are in

percent with two digits after the decimal point. The other one is the daily closed prices of

S&P 500 companies. The data are collected from Yahoo finance. In order to obtain a large

sample set, we only select those companies that remain on the list since July 2005. After

this preselection procedure, we have 458 companies left. The data size in our numerical test

is 2000× 458.

7.1 Comparison of Two Mean Reverting Proxies

We first wanted to compare the performance of portfolio selection via two proxies that we

discussed in Chapter 2.

By presetting the matrix β and the noise covariance matrix Σ in the VAR(1) model, we

generated a data set of size 350 × 8 each time which means there are 350 observations for

each asset and there are 8 assets in total. We used the first 100× 8 samples as the training

set and the rest as the test set. Next we made estimations of parameters and solved for the
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optimal solutions by the exhaustive search method based on the training set. We repeated

our simulation 1000 times and then we compared the average of the estimated mean rever-

sion coefficients of our sparse portfolios on both the training set and the test set.

Next we tested the performance of the sparse portfolios based on a simple convergence

trading strategy. In most of the application of convergence trading, investors will consider

two parameters µ and τ , where µ is the estimated average asset value and τ is the toler-

ance of mispricing. In [8], the authors developed a strategy that only takes advantages of

underpricing of the portfolio. We generalized their strategy and took advantages of both the

underpricing and overpricing of the portfolio. For simplicity, we also assumed that we have

the ability to buy and sell assets without any transaction costs and we also have the ability

to short sell. Since it will be difficult to calculate the return if we introduce the action of han-

dling overpricing, we will use the number of trading opportunities to show the performance

of the portfolio. The trading opportunity means the observation that the price converges

after out-of-tolerance mispricing. We use K to denote the number of trading opportunities

and Pt to denote the portfolio value at time t.

The trading strategy can be summarized as follows:

• If the observed sample Pt > µ+ τ , we will sell our portfolio if we already hold one and

K = K + 1. We will short this portfolio if we didn’t short it before. Otherwise we

perform no action.

• If the observed sample Pt < µ− τ , we will go long our portfolio if we already short one

and K = K + 1. We will buy this portfolio if we didn’t hold it before. Otherwise we

perform no action.

• If the observed sample µ− τ ≤ Pt ≤ µ+ τ , we will go long our portfolio if we already

short one and K = K + 1. We will sell our portfolio if we already hold one and

K = K + 1. Otherwise we perform no action.

Figure 7.1 will be helpful in understanding the trading strategy. The X-axis shows the

time periods are from day 1 to day 60. The Y-axis shows the values of the portfolio. The

43



green dashed line is y = µ, the red solid line (overpriced bound) is y = µ + τ and the teal

solid line (underpriced bound) is y = µ− τ .

The trading opportunities will increase by 1 if we have a high price or low price before

returning to the normal range.

Figure 7.1: Trading Opportunities

The simulation test is similar as before. After we found the optimal solutions by the

exhaustive search method, we tested the trading strategy only on the test set and counted the

trading opportunities. We repeated 1000 times and calculated the averages. The estimation

of µ and τ is based on the training set. We set µ as the sample mean and the τ as the sample

standard deviation. The results are shown in Figure 7.2. We can see that the solutions under

direct OU estimator always perform better than that under the predictability.
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Figure 7.2: Comparison of the performance of sparse mean reverting portfolios solved under
different proxies

7.2 Tests of the Ratio of l1 and l2 Norms Approach

In this section, we will present numerical results of solving the penalized optimization prob-

lem 4.4 based on historical data. We used two data sets. One is the U.S. swap rate data and

the other one is a selected set of S&P 500 stocks.

One issue is determining the range of γ. We proposed a simple method by only calculating

the solutions whose cardinalities are 1 and n and setting γ as the value to make f(x1, γ) =

f(xn, 0). This is computationally efficient. Using this method, we found that the range of γ

for U.S. swap rate data is 0 to 1.5 and the range of γ for S&P 500 data is 0 to 0.8.

7.2.1 U.S. Swaps Data

In this section, we study the U.S. daily swap rate data for maturities 1Y, 2Y, 3Y, 4Y, 5Y,

7Y, 10Y and 30Y.
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We performed the following tests on the U.S. swaps data.

First, we used the whole data set to estimate all the parameters and calculated the solu-

tions for different γ. We found the minimizers by the algorithm in chapter 4 for different γ’s

between 0 and 1.5 with a step size 0.02. Then we calculated the estimated mean reversion

coefficients and counted the trading opportunities of the whole period for all the minimizers.

The results are shown in the figure 7.3.

Secondly, we used every 100 observations to estimate those parameters and also found

the minimizers for different γ’s between 0 and 1.5 with a step size 0.02. This time, we

calculated the estimated mean reversion coefficients and counted the trading opportunities

for both these 100 days and the next 100 trading days. The results are shown in the figure 7.4.

We solve the following problem:

xTAx/xTBx+ γ
‖x‖1

‖x‖2

by using intermittent diffusion algorithm (ID algorithm). After each iteration of the line

search algorithm, we fix the l2 norm to be 1.

In our tests of ID algorithm, we let α = 20, κ = 20 and N = 20. In addition, to satisfy

the conditions of ID algorithm, we also add a penalty function p(x, θ, ξ, ζ) to f(x):

p(x, θ, ξ, ζ) =
∑
i

u(xi, θ, ξ, ζ)

where

u(xi, θ, ξ, ζ) :=


ξ(xi − θ)ζ , xi > θ

0, |xi| ≤ θ

ξ(xi − θ)ζ , xi < −θ

We set θ = 10, ξ = 2 and ζ = 100 in our test.
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Figure 7.3: In-sample tests on the whole data set of the U.S. swaps. The x-axis shows the
value of γ and the y-axis shows the estimated mean reversion coefficients and the trading
opportunities

From the numerical results, we could see that as the γ increases the mean reversion

coefficients and the trading opportunities have a decreasing trend for both in-sample and

out-of-sample tests. There are big jumps in Figure 7.3 which means that we failed to recover

some portfolios with intermediate cardinalities.

The curves in Figure 7.4 look smoother, since they are the average performance of port-

folios on different data set. Normally, the in-sample performance is better than the out-of-

sample performance. However, we could notice that we can still maintain about 60% of the

performance.

When γ is close to 1.5, the minimizer will be an 1-sparse vector. This shows that the

ratio of l1 and l2 norms indeed enforces extreme sparsity in our problem.

The ratio of l1 and l2 norms could be considered as l2 normalized transaction costs. It

encourages investors use a small number of portfolios and thus investors could spend less

effort in keeping track of the prices of portfolios. One extreme case is that we compare

an 1-sparse vector x1 = (0, 0, ..., 0, 0, 1)T and a uniform vector xn = ( 1
n
, 1
n
, ..., 1

n
, 1
n
)T under

this penalty. They obtained the minimum and maximum of the ratios of l1 and l2 norms
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Figure 7.4: In-sample v.s. out-of-sample tests on the U.S. swaps. The x-axis shows the value
of γ and the y-axis shows the average estimated mean reversion coefficients and the average
trading opportunities

respectively. However, their l1 norms are identical and if we believe that the transaction

costs are consistent and only depending on the trading volumes, then the vectors have the

same transaction costs. x1 will be preferred under our penalty (given a large enough γ),

since investors only need to keep track of one portfolio. Therefore, we think the ratio of l1

and l2 norms could be also considered as a penalty for the working load.

7.2.2 S&P 500 Data

In this section, we want to apply our model to the stock prices of S&P 500 companies. The

data are collected from Yahoo finance.

Normally, the stock price is a non-stationary time series. However, their linear combina-

tions could be stationary. Therefore, direct OU estimator will be more appropriate due to

the lack of stationarity of the data.

We performed the similar tests as we did for the U.S. swap rate data. The numerical

results are shown in figure 7.5. We could find that as γ increases the estimated mean

reversion coefficients and trading opportunities are decreasing. In addition, figure 7.6 shows

the minimizers under different γ’s. From this plot, we can see that the ratio of l1 and l2
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norms does enforce sparsity.

Figure 7.5: Comparison of the performance of sparse mean reverting portfolios of S&P 500
stocks.

7.2.3 Discussion of the l1/l2 penalty

We would like to use our numerical results to show the non-increasing property of ‖x(γ)‖1
‖x(γ)‖2 . It

is shown in figure 7.7. Therefore, lemma 4.4.3 is numerically verified.

The downward trend of the cardinality of the minimizers are observed as γ increases.

However, we also observed some jumps in-between. We attributes this phenomenon to two

reasons:

• It is very difficult to check the conditions of theorem 4.4.1;

• The minimizers from ID algorithm are still sub-optimal, so they may not be the global

minimizer.
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Figure 7.6: One set of solutions on the S&P 500 data. The Y-axis represents the coefficients.

Therefore a more efficient algorithm in solving for a global minimizer is needed.

We could notice that there is always a huge jump in the values of l1/l2. We tried to shrink

the step size of γ but we still cannot recover more solutions with different cardinality. We

think this is probably a certain property of the ratio penalty that it prefers extreme cases.

7.2.4 Comments on the Ratio of l1 and l2 Norms

The advantages of the ratio of l1 and l2 norms approach are: 1. It does not require any

prior knowledge of the assets and therefore investors will not be misled by their previous

experience; 2. It does not predetermine the cardinality. This approach also has its disad-

vantages: 1. It is difficult to recover a portfolio whose cardinalities are intermediate. We

could encounter big jumps of the mean reversion coefficients and trading opportunities as

we change the tuning parameter γ; 2. The algorithm is not very efficient. It takes more
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Figure 7.7: The values of the penalty term of two solutions sets

than 5 minutes in solving a problem of size 100 (100 different assets for us to choose). If we

compare this speed with methods of the next section, it is relatively slow.

7.3 Tests of the Methods in Chapter 5

7.3.1 In-Sample Tests on U.S. Swaps

In order to test the performance of our methods, we need to set up a criterion. One choice is

the solution obtained by the exhaustive search method. They serve as the reference global

optima.

Table 7.1 shows the solutions obtained by the exhaustive search method based on the

whole U.S. swaps data. The mean reversion coefficients, λ̂’s, are estimated based on the

whole data set.

Notice that the 4Y swap rate has the largest weight in absolute value for portfolios with

cardinality of 4 to 8. Therefore, setting the weights of the 4Y swap to be 1 is a potentially

good strategy.

The key part of the algorithms in Chapter 5 is how to solve the non-convex quadratic

program 5.1 given r and i:

maximize
x(i)=1,‖x‖1≤m

xTBx− rxTAx
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‖x‖0 1 2 3 4 5 6 7 8
1Y 0.000 0.000 0.000 0.000 0.000 0.000 -0.003 0.003
2Y 0.000 0.000 0.000 -0.111 -0.082 0.080 0.095 -0.094
3Y 0.000 0.000 0.000 0.522 0.425 -0.402 -0.426 0.425
4Y 0.000 0.673 0.452 -0.766 -0.754 0.732 0.735 -0.736
5Y 0.000 -0.740 -0.812 0.357 0.488 -0.527 -0.506 0.506
7Y 0.000 0.000 0.369 0.000 -0.077 0.130 0.116 -0.113
10Y 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.002
30Y 1.000 0.000 0.000 0.000 0.000 -0.014 -0.012 0.012

λ̂ 1.35 5.27 102.30 204.12 226.38 229.18 229.65 229.66

Table 7.1: Solutions obtained by the exhaustive search method

We have mainly tested the following four methods:

A Directly use the active set method for quadratic programming and handle the l1 con-

straint by using non-negative variables;

B Use the DC algorithm and Tibshirani’s method, i.e. Algorithm 5 and 6 (option 2 in

section 5.4.3);

C Use the DC algorithm and Non-negative variable method, i.e. Algorithm 5 and option

3 in section 5.4.3;

D Use the DC algorithm and the least angel regression (LARS) algorithm, i.e. Algorithm

5 and option 4 in section 5.4.3;

We have tested different l1 levels and constructed different sparse mean reverting portfo-

lios. We estimated the mean reversion coefficients on these portfolios. Here we only present

one table of our portfolios constructed using different methods. For more numerical results,

we refer to the tables in the appendix.

One thing to note is that LARS algorithm solves for a solution path under l1 penalty

multiplied by a scale parameter. Therefore, we picked the solution x from LARS results

which is slightly over the l1 constraint. This will not affect our ultimate goal: controlling

the ‖x‖0, since the solution path of the LARS algorithm normally will increase at most one

cardinality in each step. This may lead to an unfair comparison between the method D with
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methods A, B and C. However, we could compare their asset selection to see whether there

is any advantage of one method over the other.

From the the table 7.2, we may find that the DC algorithm does help improve the per-

formance of the results. However, it increases the computational costs a lot. Normally,

Tibshirani’s method is not as efficient as the Non-negative variable method and this is just

as what Tibshirani states [21]. Surprisingly, the method D (LARS algorithm in conjunction

with the DC algorithm) is the fastest method. Although its estimated mean reverting coeffi-

cient, λ, is the largest, it does not mean that it has advantages in picking assets. The reason

is just that it slightly breaks the l1 constraint as we stated before. However, we could see that

all the methods have the same choice of assets. Therefore, we could say that they actually

construct the same portfolio. After considering the computation efficiency, we conclude that

the method D is our best choice.

Finally, we would like to compare our results with the table 7.1. Methods A, B, C and

D suggest us picking the 1Y, 3Y, 4Y, 5Y and 30Y swaps. It is of cardinality 5. The best

portfolio of cardinality 5 uses the 2Y, 3Y, 4Y, 5Y and 7Y swaps. Therefore, we could say that

our methods have a correct rate 60% since they pick 3Y, 4Y and 5Y. In addition, we could

see that these three swaps have the leading weights in the portfolio. Our methods select the

main components of the optimal portfolio. We believe the difference of our portfolio and the

optimal portfolio of the same cardinality is due to the difference between l1 norm and the

cardinality. If we normalize the weights of the optimal portfolio such that its 4Y swap is 1,

then its l1 norm will be 2.425 which is much larger then our l1 constraint 2.05. Therefore,

our portfolio is the optimal one under l1 constraint.

7.3.2 In-Sample Tests on 100 Stocks

The efficiency of the method D is better shown for a large dimensional data. In the next

test, we applied the method D to a data set of 100 stocks. These stocks are the first 100 S&P

stocks in ticker symbols’ alphabetical order from our pre-selected list of S& P 500 stocks.

Therefore, the size of the matrices A and B is 100× 100.
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Method A B C D
1Y 0.021 0.020 0.020 0.019
2Y 0.000 0.000 0.000 0.000
3Y -0.475 -0.468 -0.468 -0.423
4Y 1.000 1.000 1.000 1.000
5Y -0.554 -0.560 -0.560 -0.630
7Y 0.000 0.000 0.000 0.000
10Y 0.000 0.000 0.000 0.000
30Y 0.001 0.001 0.001 0.037
λ 149.054 149.185 149.185 185.002

Time(s) 0.446 10.404 3.338 0.033

Table 7.2: Solutions of method A, B, C and D obtained under ‖x‖1 ≤ 2.05

When the problem is of this size, we are not able to use the exhaustive search method

to get the optimal solution for the middle cardinalities. Therefore, in order to set up a

criterion, we will compare our results with the densest solution. This solution should give

us the largest possible mean reversion coefficient based on the data set.

For our data set, the largest possible mean reversion coefficient is 109.97. In addition,

we will set the weight of the No. 43 stock (ticker symbol: AMAT) to be 1, since it has the

largest weight among all.

Figure 7.8, 7.9, 7.10 and 7.11 are the numerical results. The l1 constraints are in the

range of 3 to 16 with a step size 1. Figure 7.8 demonstrates the mean reversion coefficients of

portfolios built under different l1 constraints. The X-axis shows the level of l1 norm and the

Y-axis is the mean reversion coefficients. Figure 7.9 demonstrates the cardinality of those

portfolios and figure 7.10 shows the trading opportunities. Figure 7.11 displays the weights

of 100 stocks.

The average computational cost of the method D of all these tests is 4.928 seconds. This

is a remarkable improvement over the other computational methods to date in terms of

efficiency and speed.
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Figure 7.8: Mean reversion coefficients under different l1 constraints

7.3.3 Out-of-Sample Tests on the U.S. Swaps

We also performed out-of-sample tests. We still worked on the U.S. swap data. Each time,

we used 100 days data as the training data and built a sparse mean reverting portfolio. Then

we estimated the mean reversion coefficients of the portfolio on these 100 days, next 50 days

and next 100 days.

Figure 7.12 shows the numerical results of the average λ and Figure 7.13 shows the nu-

merical results of the average trading opportunities. Both the X-axes are the l1 level. The

range is from 1.5 to 2.7 with a step size 0.1. For each level, we performed several tests

and the Y-axis is the average of the estimated mean reversion coefficients and the trading

opportunities of all these tests.

From Figure 7.12, we see that as expected the in-sample performance is better. Our

portfolios could maintain about 70% of the in-sample mean reversion coefficients during the

50 out-of-sample days and maintain about 65% of the in-sample mean reversion coefficients

during the 100 out-of-sample days.
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Figure 7.9: Cardinalities under different l1 constraints

In order to make a fair comparison of the trading opportunities, we performed the follow-

ing counts. We counted the trading opportunities of the last 50 days of the training period

and compare it with the trading opportunities of the next 50 days. We counted the trading

opportunities of the last 100 days of the training period and compare it with the trading

opportunities of the next 100 days. In this experiment, the total length of trading days are

identical for in-sample and out-of-sample tests. We find that in both cases our portfolios can

maintain about 75% of the in-sample trading opportunities during the out-of-sample period.

7.3.4 Out-of-Sample Tests on High Dimensional Simulated Data

In this section, we perform an out-of-sample test on high dimensional simulated data.

By presetting the matrix β and the noise covariance matrix Σ in the VAR(1) model, we

generated a data set of size 400×100. We consider this set as the training set. we estimated

of the matrices A and B and solved for the optimal solutions by the least angle regression

and DC algorithm based on the training set.

After this, we generated 400×100 observations based on the same VAR(1) model in each
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Figure 7.10: Trading Opportunities

trial. These are test sets on which to evaluate our constructed portfolios.

We generated 100 different test sets and then we compared the average of the estimated

mean reversion coefficients and trading opportunities of our sparse portfolios on both the

training set and the test set. When we counted the out-of-sample trading opportunities, we

still used the mean and standard deviation of the training set, since we are not supposed to

know the future mean or variance.

The results are shown in Figure 7.14. We notice that it is very hard to maintain a

high level of mean reversion coefficients when the dimension of the problem is high. They

are about 10% of the in-sample levels. However, the numbers of trading opportunities do

not decrease such dramatically. They are about 40% of the original. In fact, this is more

important since the profits of convergence trading strategy come directly from those trading

opportunities.
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Figure 7.11: Solutions under different l1 constraints

7.4 Numerical Results of Recovering Fast Mean Re-

verting Process

7.4.1 Recover the OU Process with an Abnormal Starting Value

We assume that vt, Xt1, Xt2, ..., Xtk satisfy the following OU processes:

dXtk = −λkXtkdt+ σkdBtk dvt = −λvtdt+ σdBt

where dBtk are the independent noises. For each process, we have n observations.

In our tests, we used the following parameters:

• σ = σ1 = ... = σk = 1;
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Figure 7.12: In-Sample vs. Out-of-Sample Tests: λ

• v0 = X01 = ... = X0k = 1, i.e. all the processes start at 1;

• λi’s are some random integers between 1 to 7 and λ = 200;

In the original paper, since the position of i is unknown, the author will solve n of the

following quadratic optimization problems for 1 ≤ i ≤ n:

(7.1)
min ‖z‖1

subject to zT ⊥ Xtk, z(i) = 1

In out test, we only need to solve for one problem, because we know that i = 1.

The results are shown in figure 7.15 and 7.16. The x-axis shows the time step and y-axis

shows the value at each time step.

In figure 7.15, we present the recovery results with k = 20 and n = 99. According to

[9], this k is still too large (they require k ≤ n/32. However, the estimated mean reversion

coefficients are already close. The original path is 191 and the recover path is 268.

A similar test result on a large data set is shown in figure 7.16. This time, we set k = 20

and n = 639. According to [9], this k is small enough. The estimated mean reversion coeffi-
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Figure 7.13: In-Sample vs. Out-of-Sample Tests: Trading Opportunities

cients are closer. The original path is 203 and the recover path is 197.

All these problems are solved by the YALMIP package.

7.4.2 Recover the OU Process with a Jump Process

In these tests, we assume it follows:

dvt = −λvtdt+ σdBt + dN

where N counts the number of jumps that have occurred and the random jump magnitude

is 1. We assume the jump process follows a Poisson process with parameter θ.

For {Xt1, Xt2, ..., Xtk}, we assume they are independent OU processes with relatively

small mean reverting coefficients:

dXtk = −λkXtkdt+ σkdBtk

where for each process, we have n observations.

60



Figure 7.14: Solutions under different l1 constraints

We used the following parameters:

• All the processes start at 0;

• σ = σ1 = ... = σk = 1;

• k = 14 and the length of sample path is 450;

• λi’s are some random integers between 1 to 7 and λ = 300;

• The parameter of the Poisson process is 10;

This time, since we do not know when and how many jumps happen, we will have to

solve n of the following quadratic optimization problems for 1 ≤ i ≤ n:

(7.2)
min ‖z‖1

subject to zT ⊥ Xtk, z(i) = 1

Numerical results are presented in table 7.3, figure 7.17, 7.18 and 7.19.

In figure 7.17, we gave the plots of 4 sample paths in the data set, while in total, we

have 14 paths. The path with jumps is the one we want to recover. From our simulation
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Figure 7.15: Original Path v.s. Recovered Path When k = 20 and n = 99.

results, that path have 5 jumps and they happen at time step 223, 370, 371, 423 and 437

(it is difficult to see 5 jumps since two jumps happen in a short time). Therefore, we should

expect that we could get a good recovered path when we set i equal to these numbers. The

numerical results are just as we expected. Please refer to table 7.3.

In figure 7.18, we gave three paths. The path with the best MR means that the path

has the closest mean reversion coefficients to the simulation parameter λ = 300 among all

the solutions obtained under different i. This path is recovered when i = 437. The path

with the best l1 norm means that the path has the smallest l1 norm among all the solutions

obtained under different i. This path is recovered when i = 371.

In figure 7.19, we presented the l1 norms of the recovered sample paths under different

i. The x-axis is the index i and the y-axis shows the corresponding the l1 norms of the

recovered sample path. We could found that it found all the right jumps. The l1 norm is

relatively low when we set i at those jumps.
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Figure 7.16: Original Path v.s. Recovered Path When k = 20 and n = 639.

Jump time l1 norm of recovered path Estimated Mean Reversion Coefficient
223 27.54 400.63
370 27.53 409.32
371 16.63 368.81
423 28.95 370.47
437 27.46 325.30

Table 7.3: Recovering OU process with Jumps
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Figure 7.17: Sample paths of the stochastic processes

Figure 7.18: Recovered paths with k = 14 and n = 450. The estimated mean reversion
coefficients of recovered paths are close to the true parameter 300. The estimated mean
reversion coefficient of original path is 294.9149.
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Figure 7.19: The l1 norms of recovered paths for different i. i is from 2 to 450.
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Chapter 8

Conclusion

In this work, we developed a new proxy of mean reversion coefficient: direct OU estimator.

From numerical tests, the portfolios constructed under this proxy perform better in conver-

gence trading than the portfolios constructed under predictability.

We developed several different types of optimization problems for building sparse mean

reverting portfolios. All these problems do not predetermine the cardinality of the portfolio

and we believe this is more realistic.

Without any prior knowledge of the assets, we used the ratio of l1 and l2 norms to en-

force the sparsity. We studied the properties of the ratio of l1 and l2 norms and designed an

algorithm in solving the penalized optimization problem.

With our prior knowledge of the assets, we only need the l1 norm to enforce the spar-

sity and we found a way to simplify the problem to a non-convex quadratic program. We

presented analysis on obtaining global minimizer and developed various algorithms for com-

puting.

In our numerical tests, we applied our methods on both historical market data and sim-

ulated data. We compared the computation costs of different algorithms. Our numerical

tests suggest that the combination of the least angle regression and the difference of convex
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functions algorithm is the best choice. We carried out efficient computation for portfolios

with hundreds of assets.

We presented the in-sample and out-of-sample performance of the portfolios constructed

under different algorithms and different problem settings. Normally, the in-sample perfor-

mance is better than the out-of-sample performance, but the portfolios constructed under

our methods can still maintain a high performance in the out-of-sample period. As the size

of dimension increases, it becomes more and more difficult in maintaining the mean rever-

sion coefficients. However, the trading opportunities can keep around 40% of the in-sample

counts. We believe future work can be done in increasing the out-of-sample performance.

The trading opportunities on in-sample and out-of-sample data share similar trends.

We formulated a new type of problems for recovering fastest mean reverting process. It

is a generalization of recovering sparse element in a subspace. From the numerical tests, we

successfully recovered the hidden fastest mean reverting OU process.
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APPENDICES

.1 More Numerical Results of the Methods in Chapter

5

Method A B C D
1Y -0.478 -0.479 -0.481 -0.542
2Y 0.000 -0.004 0.000 0.000
3Y 0.000 0.002 0.000 0.000
4Y 1.000 1.000 1.000 1.000
5Y 0.000 0.002 0.000 0.000
7Y 0.000 0.004 0.000 0.000
10Y 0.022 0.015 0.019 0.000
30Y 0.000 0.002 0.000 0.000
λ 1.546 1.548 1.551 1.622

Time(s) 2.669 22.632 7.976 0.161

Table 1: Solutions of method A, B, C and D obtained under ‖x‖1 ≤ 1.5



Method A B C D
1Y 0.000 -0.005 -0.033 0.000
2Y -0.060 -0.050 0.000 0.431
3Y -0.740 -0.746 -0.766 -1.358
4Y 1.000 1.000 1.000 1.000
5Y 0.000 0.000 0.000 0.000
7Y 0.000 0.000 0.000 0.000
10Y 0.000 0.000 0.000 0.000
30Y 0.000 0.000 -0.001 0.000
λ 1.631 1.636 1.664 5.826

Time(s) 2.340 21.656 7.772 0.124

Table 2: Solutions of method A, B, C and D obtained under ‖x‖1 ≤ 1.8

Method A B C D
1Y 0.022 0.022 0.022 0.019
2Y 0.000 0.000 0.000 0.000
3Y -0.447 -0.447 -0.447 -0.403
4Y 1.000 1.000 1.000 1.000
5Y -0.603 -0.603 -0.603 -0.690
7Y 0.000 0.000 0.000 0.000
10Y 0.008 0.008 0.008 0.075
30Y 0.019 0.019 0.019 0.000
λ 186.939 186.939 186.939 207.122

Time(s) 0.251 1.222 0.473 0.011

Table 3: Solutions of method A, B, C and D obtained under ‖x‖1 ≤ 2.1

.2 Estimation of the VAR(1) model

In [8], the authors discussed several methods in estimating β and Γ. In most cases, the

number of the observations of assets values M is greater than the number of assets N .

Under this case and previous assumptions, we could use the following estimates:

β̂ = (
M∑
t=2

(St−1 − S̄1)T (St−1 − S̄1))−1(
M∑
t=2

(St−1 − S̄2)T (St − S̄2))

Γ̂1 =
1

M − 1

M∑
t=1

(St − S̄)T (St − S̄)
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Method A B C D
1Y -0.002 -0.002 -0.002 -0.003
2Y 0.118 0.118 0.118 0.119
3Y -0.580 -0.580 -0.580 -0.559
4Y 1.000 1.000 1.000 1.000
5Y -0.610 -0.610 -0.610 -0.716
7Y 0.041 0.041 0.041 0.175
10Y 0.041 0.041 0.041 0.000
30Y -0.009 -0.009 -0.009 -0.018
λ 227.349 227.349 227.349 229.519

Time(s) 0.251 0.652 0.484 0.012

Table 4: Solutions of method A, B, C and D obtained under ‖x‖1 ≤ 2.4

Method A B C D
1Y -0.003 -0.003 -0.004 -0.003
2Y 0.121 0.121 0.123 0.121
3Y -0.561 -0.561 -0.565 -0.562
4Y 1.000 1.000 1.000 1.000
5Y -0.724 -0.724 -0.717 -0.719
7Y 0.191 0.191 0.185 0.184
10Y -0.009 -0.009 -0.008 -0.006
30Y -0.017 -0.017 -0.017 -0.017
λ 229.426 229.426 229.493 229.486

Time(s) 0.283 0.309 5.784 0.012

Table 5: Solutions of method A, B, C and D obtained under ‖x‖1 ≤ 2.7

where

S̄ =
1

M

M∑
t=1

St S̄1 =
1

M − 1

M−1∑
t=1

St S̄2 =
1

M − 1

M∑
t=2

St

Therefore, the matrices in problem 3.1 can be estimated as:

Â = β̂T Γ̂β̂, B̂ = Γ̂

In [8], the authors also pointed out that by numerically solving a Lyapunov equation we

could get another estimation of Γ which we will call it Γ̂2. They used the quantity ‖Γ̂1− Γ̂2‖

to measure the goodness of model fit. The matrix norm here is the largest singular value.

73




