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Abstract
A double gamma model is proposed for the VIX. The VIX is modeled as

gamma distributed with a mean and variance that respond to a gamma distrib-
uted realized variance over the preceeding month. Conditionally on VIX and
the realized variance, the logarithm of the stock is variance gamma distributed
with a¢ ne conditional drift and quadratic variation. The joint density for the
triple, realized variance, VIX and the SPX is in closed form. Calibrating the
model jointly to SPX and VIX options a risk management application illustrates
a hedge for realized volatility options.

1 Introduction

The S&P 500 index along with options written on the index is now coupled
with the VIX index and options on this index. The two are not unrelated as the
square of the VIX index is the price of a one month variance swap paying the
annualized one month realized variance of returns on the S&P 500 index. The
variance swap rate itself is typically synthesized from S&P 500 options using

�We are grateful to Hitendra Varsani and Abake Adenle for proposing the problem.
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procedures described for example in Carr and Lee (2009). In fact this is how
the VIX is now computed. There is then a demand and an interest in jointly
and consistently modeling options on these two indices. For recent work in this
direction we cite Cont and Kokholm (2010), Gatheral (2008), Bergomi (2004,
2005, 2008), Broadie and Jain (2008) and Buehler (2006).
Though the VIX may be and is computed every day, it is by construction

eventually the price of a di¤erent asset, as the variance of the S&P 500 index over
disjoint months along with the price of such a payout are potentially unrelated.
Of course they may be linked by assuming a model relating them. There are
various levels of consistency that may be asked for and modeled. For example
one may ask for a consistent modeling of both sets of options across all strikes
and maturities through calendar time. Alternatively one may seek to model
consistently across strike and maturity at a single point of time, the calibration
date. Restricting further one may jointly model across both sets of strikes at a
single maturity. The focus of this paper is on the last of these alternatives.
In a partial defense of such a modeling strategy we note that Lévy processes

like the variance gamma model (Madan and Seneta (1990), Madan, Carr and
Chang (1998)) synthesized option prices just across a single maturity, while
an e¤ective parsimonious synthesis across maturities using a one dimensional
Markov model came later in the Sato process of Carr, Geman, Madan and Yor
(2007). An e¤ective synthesis across calendar time has not yet been attained
for just the S&P 500 index itself as most models are recalibrated continuously.
Hence we focus attention here on just two smiles at a common maturity.
From a risk management perspective one may seek to determine a static

portfolio of relatively short maturity options on the S&P 500 index and the
VIX with a view to covering a comparable maturity risk exposure in a realized
volatility swap. For such an application one seeks a joint and consistent mod-
eling of the two smiles. We apply the model developed here to hedge such an
exposure.
The outline of the rest of the paper is as follows. Section 2 sets out the joint

model for the two smiles. Section 3 describes the calibration procedure fol-
lowed for a single calibration date. Section 4 illustrates with a risk management
application. Section 5 concludes.

2 The Joint Model

We formulate a joint model for the logarithm of the index at a �xed, and say,
unit maturity that we denote by s and the square of the V IX at the same time
denoted by v: A third variable of interest is the realized variance on the index
that we shall take to be proportional to x: Options trade on the exponential of
s and the square root of v; while x will be a hidden variable whose conditional
law given s:v will be inferred for a risk management exercise. We shall in fact
formulate a joint law for the triple (s; x; v):
Various models were attempted for the law of v or its square root and we

mention in passing the gamma distribution, or a general power of a gamma
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distributed variable. It was found that these models failed to match out of the
money call option prices. In line with Gatheral�s (Gatheral (2008)) suggestion
of a double log normal we develop here a double gamma given the relative
tractability of the associated Laplace transforms. Since the variable x is scaled
in all its occurences we take it to be our �rst gamma variable with unit mean
and variance 1=: The marginal density for x is then

f(x) =


�()
x�1e�x; x > 0;

where �(x) is the gamma function.
Next we specify the conditional density of v given x and we take this to be

gamma distributed with scale coe¢ cient � and shape coe¢ cient � + �x. The
mean and variance of v respond linearly to x and this speci�cation models the
response of the square of the V IX at unit time to the proxy for realized variance
x to that time. The joint density for x; v is then

g(x; v) =
x�1e�x

�()

��+�xv�+�x�1e��v

�(� + �x)
; x; v > 0:

The marginal density for v would require an integration over x and is not avail-
able in closed form but it may be accessed by transform methods from the joint
characteristic function that is easily seen to be
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Conditional on x; v we suppose that the logarithm of the stock is variance
gamma distributed XCGM with parameters CGM: The characteristic function
for XCGM is

E [exp (iuXCGM )] = exp

�
C ln

�
GM

(M � iu)(G+ iu)

��
:

The density for XCGM is from Madan, Carr and Chang (1998) on transforma-
tion to the CGM parametreization as per Carr, Geman, Madan and Yor (2002)
,

fCGM (x) =
(GM)C

2C�1�(C)
p
2�
�
G+M
2

�C�1=2 exp�G�M2 x

�
jxjC�1=2KC�1=2
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�
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where K�(x) is the modi�ed Bessel function.
The quadratic variation of a variance gamma process with density in CGM

parameterization is

C

�
1

M2
+
1

G2

�
:

We suppose the conditional density for the logarithm of the stock has a condi-
tional drift adapted to x; v as

r + �x+ �v

with quadratic variation modeled to respond to the level of x; v as

C = k + ax+ bv:

The parameters G;M are constants.
The conditional drift for the stock is organized by writing

s = r + �x+ �v + (k + ax+ bv) ln

�
(M � 1) (G+ 1)

GM

�
+XCGM + !

where the constant ! is chosen to set the unconditional drift to be the interest
rate.
The conditional expectation of the exponential of s given x; v is

E [esjx; v] = exp (r + �x+ �v + !)

Hence we set
! = � lnE [exp (�x+ �v)]

and on evaluation of the joint characteristic function of x; v at �i�;�i� we infer
that
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The joint characteristic function of the triple s; x; v is then
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There are 11 parameters in the model and they are ; �; �; �; k; a; b; �; �;G and
M:
The joint density for the triple (s; x; v) is given by

h(s; x; v) = g(x; v)� (GM)C
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We term this model sxvvgwadqv for modeling the triple s; x; v and specifying s
as vg conditional on x; v with affine drift and quadratic variation:

3 Calibration of the Joint Model for the triple
s; x; v

We may organize the parameters into two groups, ; �; �; � of the double gamma
model for the square of the VIX. Followed by k; a; b; �; �;G;M for the V G in
CGM format. Conditional on x; v the parameter C is modeled by the a¢ ne
function k+ax+bv: Similarly conditional on x; v the stock drift is �x+�v: The
�rst step is to �nd the double gamma parameters for the square of the VIX.
Unfortunately there are no quoted options on the square of the VIX but just
options on the VIX. One could build options on the square of the VIX from
VIX options but the range of traded strikes on the VIX may be too narrow for
evaluating the price of the tail of the square. Instead we proceed by �rst �tting
the double gamma model to the VIX even though it is a model for the square.
We next use these parameters to generate prices for calls on VIX over a wide

range of strikes and we then use these prices to determine prices on calls for the
square of the VIX. For a call option on the square of the VIX with strike k the
call price C(k) is obtained in terms of call prices c(x) on the VIX for strike x
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and density f(x) by

C(k) = e�rt
Z 1

p
k

�
x2 � k

�
f(x)dx

= e�rt
Z 1

p
k

2x(1� F (x))dx

=

Z 1

p
k

2x (�c0(x)) dx: (1)

The procedure may also be reversed with density g(k) for the squared V IX by
writing

c(x) = e�rt
Z 1

x2
(
p
k � x)g(k)dk

= e�rt
Z 1

x2

1

2
p
k
(1�G(k))dk

=

Z 1

x2

1

2
p
k
(�C 0(k)) dk (2)

Equation 1 is employed to generate option prices on the squared VIX to get
starting values for the double gamma model for the squared VIX after �tting
this model to the VIX. Equation 2 is then used in calibrating V IX options for
a model on the squared VIX.
We illustrate the procedure for data on October 20, 2008 a month after the

Lehman collapse. Fitting the double gamma model to VIX options yielded the
following parameter values.

 = 0:6617

� = 0:5474

� = 18:7080

� = 5:8241

Figure 1 presents a graph of the �t of the double gamma model to VIX
options.
The double gamma parameter values �tted to VIX options are then used to

generate a set of call prices on the square of the VIX and the double gamma
model is then �t to the generated squared VIX call prices. The resulting para-
meter values for the double gamma squared VIX model are

 = 0:198797

� = 0:002392

� = 3:583938

� = 1:753731
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Figure 1: Fit of double gamma model to VIX option directly on October 20,
2008. Market prices are represented by circles while model prices are shown as
dots.
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Figure 2: Fit of the double gamma model to call option prices for the squared
VIX. Circles represent the call prices generated from the double gamma �t to
the VIX. The double gamma model for the VIX squared are shown as dots.
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Figure 2 shows the �t of the double gamma model to call prices on the
squared VIX.

The eleven parameter model sxvvgwadqv is then �t simultaneously to op-
tions on the SPX and VIX. The resulting parameter values for October 20, 2008
were

 = 0:157211

� = 0:002421

� = 3:728842

� = 1:802546

k = 0:144401

a = 0:007435

b = 0:000228

� = 0:052668

� = 0:000110

G = 8:758678

M = 20:20196

Figures 3 and 4 present graphs of the �t to VIX and SPX options on October
20, 2008.

4 A Risk Management Application

By way of a risk management application we construct a portfolio of options on
the S&P 500 index and VIX options with a view to earning the ask price on the
liability of a call option on realized volatility struck at a volatility of 60: This is
a little out of the money as the variance swap quote for a month was estimated
from the S&P 500 index option data at 51:08.
The mean of the hidden variable x is unity and we let it represent realized

variance by scaling it by the square of the variance swap quote. This scale
factor was 2609:47: The level of the SPX was 984:41. The cash �ow on a
realized volatility call struck at 60 is then modeled as

c =
�p
2609:47 � x� 60

�+
The ask price for this cash �ow seen as a liability is evaluated using the methods
of Cherny and Madan (2010), Carr, Madan and Vicente Alvarez (2011) as the
negative of the distorted expectation of �c; where we distort the conditional dis-
tribution p(xjs; v) of x given s; v. The conditional distribution is obtained from
the joint density of the triple by Bayes rule. The distortion used is minmaxvar
at the stress level of 0:25:
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Figure 3: Fit of sxvvgwadqv to VIX options on October 20, 2008. Market prices
are represented by circles while model prices are shown as dots.
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Figure 4: Fit of sxvvgwadqv to SPX options on October 20, 2008. Market prices
are represented by circles while model prices are shown as dots.
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Figure 5: Ask Price for a call option on realized volatility struck at a volatility
of 60 constructed from the conditional distribution of x given the SPX and the
VIX by minmaxvar distortion at stress level 0.25.
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Figure 6: Di¤erence between the hedge cash �ow and the target cash �ow
attained on minimizing the least squares distance between the two cash �ows.

Figure 5 presents a graph of this ask price as function of the the level of the
SPX and the V IX:
We construct a portfolio of positions in the money market, the SPX, the VIX

and options thereon to minimize by least squares the gap between the hedge
cash �ow and the target cash �ow given by the ask price function displayed
in Figure 5. Figure 6 presents the gap between the hedge cash �ow and the
target cash �ow. The strikes used for the option positions are the same as those
displayed in the model calibration.
The cash �ows contingent on the level of the SPX and VIX held as hedges

are presented in Figures 7 and 8.

5 Conclusion

A double gamma model is proposed for the VIX where the mean and variance of
the VIX respond to a proxy viewed as the realized variance over the preceeding
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Figure 7: Cash �ow contingent on the level of the SPX held as a hedge for the
realized volatility call.
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Figure 8: Cash �ow contingent on the level of the VIX held as a hedge for the
realized volatility call.
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month. Conditional on the realized variance proxy and the VIX the logarithm
of the stock is modeled as conditionally variance gamma distributed with a¢ ne
conditional drift and quadratic variation. The resulting model for the triple, i)
realized variance over the month, ii) the VIX at month end and iii) the S&P 500
index at month end, is a closed form joint density with eleven parameters. The
model is calibrated jointly to SPX and VIX options for the data as at October
20, 2008. A risk management application hedging an ask price for a call on
realized volatility struck at a volatility of 60 illustrates a model application.
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