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On the skew and curvature of implied and local volatilities
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Abstract

In this paper, we study the relationship between the short-end of the local and
the implied volatility surfaces. Our results, based on Malliavin calculus techniques,
recover the recent 1

H+3/2 rule (where H denotes the Hurst parameter of the volatility

process) for rough volatilitites (see Bourgey, De Marco, Friz, and Pigato (2022)), that
states that the short-time skew slope of the at-the-money implied volatility is 1

H+3/2 the

corresponding slope for local volatilities. Moreover, we see that the at-the-money short-
end curvature of the implied volatility can be written in terms of the short-end skew
and curvature of the local volatility and viceversa, and that this relationship depends
on H .

Key words. Stochastic volatility; local volatility; rough volatility; Malliavin calcu-
lus

AMS subject classification. 60G44, 60H07, 91G20

1 Introduction

Local volatilities are a main tool in real market practice (see Dupire (1994)), since they
are the simplest models that capture the empirical implied volatility surface. They are
an example of mimicking process (see Gyöngy (1986)), in the sense that they are one-
dimensional models that can reproduce the marginal distributions of asset prices St. In
a local volatility model, the volatility process is a deterministic function σ(t, St) of time
and the underlying asset price. The values of this function can be computed via Dupire’s
formula (see again Dupire (1994)).The plot of this function σ, is called the local volatility
surface.

One challenging problem in this context is the study of the relationship between implied
and local volatilities. Even when both surfaces are similar, we can easily notice that short-
end local volatility smiles are more pronounced that implied volatility smiles. In fact, some
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empirical studies (see Derman, Kani, and Zou (1996)) state that, for short and intermediate
maturities, the ATM implied volatility skew is approximately half the skew of the local
volatility (a property that is known as the one-half rule).

There have been many attemps to address this phenomena from the analytical point
of view. Classical proofs of this property for stochastic volatility models can be found in
the literature. For example, in Derman, Kani, and Zou (1996) or in Gatheral (2006), this
property is deduced from the expression of implied volatilities as averaged local volatilites.
In Lee (2001), the expansion of implied and local volatility allow to proof this property
by a direct comparison. In Alòs and Garćıa-Lorite (2021), Malliavin calculus techniques
give a representation of the short-limit at-the-money (ATM) implied volatility skew as an
averaged local volatility skew, from where the one-half rule follows directly.

Nevertheless, recent studies (see Bourgey, De Marco, Friz, and Pigato (2022)) state
that the one-half rule is not true for rough volatility models (where the volatility process is
driven by a fBm with Hurst parameter H < 1

2). More precisely, the ATM short-end implied
volatility skew is 1

H+ 3

2

the ATM short-end local volatility skew, a result that can is obtained

via large deviations techniques.
Our aim in this paper is twofold. First of all, we see how Malliavin calculus leads to

an easy proof of this 1
H+ 3

2

rule. On the other hand, we study the relationship between

the curvature of implied and local volatilities. In particular, we see how the ATM short-
end implied volatility curvature can be written in terms of the ATM short-limit skew and
curvature of the local volatility, and viceversa. Our results are valid for every H ∈ (0, 1).
That is, they hold for rough (H < 1

2 ) volatilities, for classical stochastic volatility models
(H = 1

2 ), and for long-memory processes (H > 1
2 ).

This paper is organized as follows. In Section 2 we present the main tools of Malliavin
calculus needed in this work. Section 3 is devoted to introduce the framework and the
notations. In Section 4 we analize the relationship between the local and the implied
volatility skews. The local and the implied curvatures is studied in Section 5.

2 Basic concepts of Malliavin calculus

In this section we recall the key tools of Malliavin calculus that we use in this paper.
We refer to Alòs and Garćıa-Lorite (2021) for a deeper introduction to this topic and its
applications to finance.

2.1 Basic definitions

If Z = (Zt)t∈[0,T ] is a standard Brownian motion, we denote by S the set of random variables
of the form

F = f(Z(h1), . . . , Z(hn)), (1)

whereh1, . . . , hn ∈ L2([0, T ]), Z(hi) denotes the Wiener integral of hi, for i = 1, .., n, and
f ∈ C∞

b (Rn) (i.e., f and all its partial derivatives are bounded). If F ∈ S, the Malliavin
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derivative of F with respect to Z, DZF , is defined as the stochastic process in L2(Ω× [0, T ])
given by

DZ
s F =

n
∑

j=1

∂f

∂xj
(W (h1), . . . ,W(hn))(s)hj(s).

Moreover, for m ≥ 1, we can define the iterated Malliavin derivative operator Dm,Z , as

Dm,Z
s1,...,sm

F = DZ
s1
. . . DZ

sm
F, s1, . . . , sm ∈ [0, T ].

The operators Dm,Z are closable in L2(Ω) and we denote by D
n,2
Z the closure of S with

respect to the norm

||F ||n,2 =

(

E |F |p +

n
∑

i=1

E||Di,ZF ||2L2([0,T ]i)

)
1

2

.

Notice that the Malliavin derivative operator satisfies the chain rule. That is, given f ∈ C1,2
Z ,

and F ∈ D
1,2
Z , the random variable f(F ) belongs to D

1,2
Z , and DZf(F ) = f ′(F )DWF . We

will also make use of the notation L
n,2 = D

n,p
Z (L2([0, T ])).

The adjoint of the derivative operator DZ is the divergence operator δZ , which coincides
with the Skorohod integral. Its domain, denoted by Dom δ, is the set of processes u ∈
L2(Ω × [0, T ]) such that there exists a random variable δZ(u) ∈ L2(Ω) such that

E(δZ (u)F ) = E

(
∫ T

0
(DZ

s F )usds

)

, for every F ∈ S. (2)

We use the notation δZ(u) =
∫ T

0 usdZs. It is well known that δ is an extension of the Itô
integral. That is, δ, applied to adapted and square integrable processes, coincides with the
classical Itô integral. Moreover, the space L

1,2 is included in the domain of δ.

From the above relationship between the operators DZ and δZ , it is easy to see that,
for an Itô process of the form

Xt = X0 +

∫ t

0
asds+

∫ t

0
bsdZs,

where a and b are adapted processes in L
1,2
Z , its Malliavin derivative is given by

DZ
uXt =

∫ t

0
DZ

u asds+ bu1[0,t](u) +

∫ t

0
DZ

u bsdZs. (3)

Then, if we consider an equation of the form

Xt = X0 +

∫ t

0
a(s,Xs)ds +

∫ t

0
b(s,Xs)dZs,

3



where a(s, ·) and b(s, ·) are differentiable functions with bounded derivatives, a direct ap-
plication of (3) allows us to see that

DZ
uXt =

∫ t

u

∂a

∂x
(s,Xs)D

Z
uXsds+ b(u,Xu) +

∫ t

u

∂b

∂x
(s,Xs)D

Z
uXsdZs. (4)

Notice that the above equality also holds if a and b are globally Lipschitz functions with
polynomial growth (see Theorem 2.2.1 in Nualart (2006)), replacing ∂a

∂x
and ∂b

∂x
by adequate

processes.

2.2 Malliavin calculus for local volatilities

Consider a local volatility model of the form

St = S0 +

∫ t

0
σ(u, Su)SudWu, (5)

where W is a Brownian motion, σ(u, ·) is a bounded and twice differentiable funcion and
where we take the interest rate r = 0 for the sake of simplicity. According to (4), its
Malliavin derivative is given by

DW
r St = σ(r, Sr)Sr +

∫ t

r

a(u, Su)D
W
r SudWu,

where r < t and a(u, Su) : ∂Sσ(u, Su)Su + σ(u, Su). This implies that

DW
r St = σ(r, Sr)Sr exp

(

−
1

2

∫ t

r

a2(u, Su)du+

∫ t

r

a(u, Su)dWu

)

(6)

Now, take θ < r. Then

DW
θ DW

r St (7)

= a(r, Sr)D
W
θ Sr exp

(

−
1

2

∫ t

r

a2(u, Su)du+

∫ t

r

a(u, Su)dWu

)

+σ(r, Sr)Sr exp

(

−
1

2

∫ t

r

a2(u, Su)du+

∫ t

r

a(u, Su)dWu

)

×

(

−
1

2

∫ t

r

DW
θ (a2(u, Su))du+

∫ t

r

DW
θ (a(u, Su))dWu

)

(8)

= a(r, Sr)σ(θ, Sθ)Sθ exp

(

−
1

2

∫ r

θ

a2(u, Su)du+

∫ r

θ

a(u, Su)dWu

)

+σ(r, Sr)Sr exp

(

−
1

2

∫ t

r

a2(u, Su)du+

∫ t

r

a(u, Su)dWu

)

×

(

−
1

2

∫ t

r

DW
θ (a2(u, Su))du+

∫ t

r

DW
θ (a(u, Su))dWu

)

. (9)
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Notice that, as θ, r → t,
DW

r St → σ(t, St)St,

and
DW

θ DW
r St → a(t, St)σ(t, St)St = ∂σ(t, St)S

2
t + σ2(t, St)St.

3 Statement of the Model and notation

Consider a risk-neutral probability model for asset prices of the form

dSt = σtSt(ρdW+

√

1− ρ2dBt), (10)

where we assume the interest rate to be zero, ρ ∈ [−1, 1], W and B are two independent
Brownian motions, and where σ is a stochastic process adapted to the filtration generated
by W . Notice that we do not assume σ to be a diffusion nor a Markov process. Then,
(10) includes both the cases of classical stochastic volatility models (where σ is assumed
to be a diffusion) and fractional volatilities (where σ is driven by a fractional Brownian
motion). In particular, it includes the case of rough volatilities (fractional volatilities with
Hurst parameter H < 1

2 .
Throught this paper, we assume the following hypotheses.

Hypothesis 1 The process σ = (σt)t∈[0,T ] is positive and continuous a.s., and satisfies that
for all t ∈ [0, T ],

c1 ≤ σt ≤ c2,

for some positive constants c1 and c2.

Hypothesis 2 σ ∈ L
3,2
W , and there exist C > 0 and H ∈ (0, 1) such that for all t ≤ τ ≤

θ ≤ r ≤ u ≤ T

|(DW
θ σ2

r )| ≤ C(r − θ)H−
1

2 ,

|(DW
θ DW

r σ2
u)| ≤ C(u− r)H−

1

2 (u− θ)H−
1

2 ,

|(DW
τ DW

θ DW
r σ2

u)| ≤ C(u− r)H−
1

2 (u− θ)H−
1

2 (u− τ)H−
1

2 .

Hypothesis 3 For every t ∈ [0, T ], the following quantities

1

(T − t)
3

2
+H

∫ T

t

(
∫ T

s

DW
s σ2

udu

)

ds,

1

(T − t)2+2H

∫ T

t

(

Er

∫ T

r

DW
r σ2

udu

)2

dr,

1

(T − t)2+2H

∫ T

t

(
∫ T

s

DW
s

(

σr

∫ T

s

DW
s σ2

udu

)

dr

)

ds.

have finite limit as T → t.
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Remark 1 Notice that the above hypotheses have been chosen for the sake of simplicity,
but they can be replaced by adequate integrability conditions.

In the next section, we compare the short-end of the implied skew slope for a model of
the form (10) and the short-end of its corresponding local volatility.

4 The skew

Let us consider the following adaptation of Theorem 6.3 in Alòs, León and Vives (2007)
(see also Theorem 7.5.2 in Alòs and Garćıa-Lorite (2021)).

Theorem 2 Under Hypothesis 1, 2 and 3, and for every fixed t ∈ [0, T ],

lim
T→t

(T − t)
1

2
−H∂kI(t, k

∗) =
ρ

2σ2
t

lim
T→t

1

(T − t)
3

2
+H

Et

(
∫ T

t

(
∫ T

r

DW
r σ2

udu

)

dr

)

. (11)

Notice that the above theorem is valid not only for the model (10), but also for local
volatility models of the form (5), where σu = σ(u, Su). Then, we are in a position to prove
the main result of this section.

Theorem 3 Under Hypothesis 1, 2 and 3 for every fixed t ∈ [0, T ]

lim
T→t

(T − t)
1

2
−H∂kI(t, k

∗) =
1

3
2 +H

lim
T→t

(T − t)
1

2
−H∂xσ̂(T,XT ),

where σ̂ denotes the local volatility function in terms of the log-price X.

Proof. Theorem 2 gives us that the limit

lim
T→t

(T − t)
1

2
−H∂kI(t, k

∗)

exists and it is finite, which also implies that the limit in the right-hand-side in (11) is also
finite. Moreover, as the vanilla implied volatilities are the same for the model (10) and for
the corresponding local volatility model, the result in Theorem 2 is also true if we replace
σu by the local volatility σ(u, Su). Notice that, because of the chain rule,

DW
r σ2(u, Su) = 2σ(u, Su)D

W
r (σ(u, Su))

= 2σ(u, Su)∂Sσ(u, Su)D
W
r Su, (12)

Then, a direct application of Theorem 2 and Equation (6) give us that

lim
T→t

(T − t)
1

2
−H∂kI(t, k

∗) (13)

=
1

2σ(t, St)2
lim
T→t

1

(T − t)
3

2
+H

∫ T

t

(
∫ T

r

2σ(u, Su)∂Sσ(u, Su)σ(r, Sr)Srdu

)

dr. (14)

6



Now, because of the continuity of the local volatility function σ and the asset price S we
can write

lim
T→t

(T − t)
1

2
−H∂kI(t, k

∗) = lim
T→t

1

(T − t)
3

2
+H

∫ T

t

(
∫ T

r

Su∂Sσ(u, Su)du

)

dr. (15)

Now, notice that
Su∂Sσ(u, Su) = ∂X σ̂(u,Xu),

where σ̂ denotes the local volatility function in terms of the log-price X. Then

lim
T→t

(T − t)
1

2
−H∂kI(t, k

∗) (16)

= lim
T→t

1

(T − t)
3

2
+H

∫ T

t

(
∫ T

r

∂xσ̂(u, xu)du

)

dr (17)

= lim
T→t

1

(T − t)
3

2
+H

∫ T

t

(u− t)∂xσ̂(u,Xu)du. (18)

Now, a direct application of l’Hôpital rule gives us that

lim
T→t

(T − t)
1

2
−H∂kI(t, k

∗) (19)

= lim
T→t

1

(T − t)
3

2
+H

∫ T

t

(
∫ T

r

∂xσ̂(u,Xu)du

)

dr (20)

= lim
T→t

1

(32 +H)(T − t)
1

2
+H

(T − t)∂xσ̂(T,XT )du (21)

=
1

3
2 +H

lim
T→t

(T − t)
1

2
−H∂xσ̂(T,XT ), (22)

as we wanted to prove.

Remark 4 In the case H = 1
2 , the above result recovers the classical one-half rule. For the

case H 6= 1
2 , we recover the recent results by Bourgey, De Marco, Friz, and Pigato (2022).

5 The curvature

Let us recall the following result, that is and adaptation of Theorem 4.6 in Alòs and León
(2017) (see also Theorem 8.3.3 in Alòs and Garćıa-Lorite (2021)).
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Theorem 5 Under Hypothesis 1, 2 and 3, and for every fixed t ∈ [0, T ],

lim
T→t

(T − t)1−2H∂2
kkI(t, k

∗)

=
1

4σ5
t

lim
T→t

1

(T − t)2+2H
Et

(

∫ T

t

(

Er

∫ T

r

DW
r σ2

udu

)2

dr

)

−
3ρ2

2σ5
t

lim
T→t

1

(T − t)3+2H
Et

(
∫ T

t

(
∫ T

r

DW
r σ2

udu

)

dr

)2

+
ρ2

σ4
t

lim
T→t

1

(T − t)2+2H
Et

(
∫ T

t

∫ T

s

DW
s

(

σr

∫ T

r

DW
r σ2

udu

)

drds

)

.

(23)

Similar arguments as in the proof of Theorem 3 allow us to study the relationship between
the short-end curvature of the implied and the local volatilities. More precisely, we get the
following theorem

Theorem 6 Under Hypothesis 1, 2 and 3, and for every fixed t ∈ [0, T ],

lim
T→t

(T − t)1−2H∂2
kkI(t, k

∗)

=
1

σ(t, St)
lim
u→t

(u− t)1−2H(∂xσ̂(u,Xu))
2

×

[

3

(H + 3
2 )(H + 1)

−
6

(H + 3
2)

2
+

1

2(H + 1)

]

+
1

2(1 +H)
lim
T→t

(T − t)1−2H∂2
xxσ̂(T,XT ), (24)

Proof. Because of Theorem 5, we know that the limit

lim
T→t

(T − t)1−2H∂2
kkI(t, k

∗)

is finite. Moreover, as local volatilities replicate vanilla prices, the result in Theorem 5 is
also true if we replace the spot volatility σu by the local volatility σ(u, Su). Then we can
write

lim
T→t

(T − t)1−2H∂2
kkI(t, k

∗)

=
1

4σ(t, St)5
lim
T→t

1

(T − t)2+2H
Et

(

∫ T

t

(

Er

∫ T

r

DW
r σ2(u, Su)du

)2

dr

)

−
3

2σ(t, St)5
lim
T→t

1

(T − t)3+2H
Et

(
∫ T

t

(
∫ T

r

DW
r σ2(u, Su)du

)

dr

)2

+
1

σ(t, St)4
lim
T→t

1

(T − t)2+2H
Et

(
∫ T

t

∫ T

s

DW
s

(

σ(r, Sr)

∫ T

r

DW
r σ2(u, Su)du

)

drds

)

= T1 + T2 + T3.

(25)
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Now the proof is decomposed into several steps.

Step 1 Let us study the term T1. Let us study the term T1. As

DW
r σ2(u, Su) = 2σ(u, Su)∂Sσ(u, Su)D

W
r Su, (26)

and because of the continuity of σ, and S, we get

T1 =
1

σ(t, St)
lim
T→t

1

(T − t)2+2H
Et

(

∫ T

t

(

Er

∫ T

r

∂Sσ(u, Su)Sudu

)2

dr

)

(27)

=
1

σ(t, St)
lim
T→t

1

(T − t)2+2H
Et

(

∫ T

t

(

Er

∫ T

r

∂xσ̂(u,Xu)du

)2

dr

)

. (28)

Because of Theorem 3 we know that

(u− t)
1

2
−H∂xσ̂(u,Xu)

tends to a finite limit. Then we can write

T1

=
1

σ(t, St)
lim
u→t

(u− t)1−2H(∂xσ̂(u,Xu)))
2 lim
T→t

∫ T

t

(

∫ T

r
(u− t)H−

1

2du
)2

dr

(T − t)2+2H

=
1

σ(t, St)
lim
u→t

(u− t)1−2H(∂xσ̂(u,Xu)))
2 lim
T→t

∫ T

t
[(T − t)H+ 1

2 − (r − t)H+ 1

2 ]2dr

(H + 1
2)

2(T − t)2+2H

=
1

σ(t, St)(H + 1
2)

2

(

1−
2

(H + 3
2)

+
1

2H + 2

)

lim
u→t

(u− t)1−2H(∂xσ̂(u,Xu)))
2. (29)

Now, notice that

1−
2

(H + 3
2 )

+
1

2H + 2
=

(H + 1
2)

2

(H + 3
2 )(H + 1)

,

and then

T1 =
1

σ(t, St)

1

(H + 3
2)(H + 1)

lim
u→t

(u− t)1−2H(∂xσ̂(u,Xu)))
2. (30)

Step 2 In a similar way,

T2

= −
6

σ(t, St)
lim
u→t

(u− t)1−2H(∂xσ̂(u,Xu)))
2 lim
T→t

1

(T − t)3+2H

(
∫ T

t

(
∫ T

r

(u− t)H−
1

2du

)

dr

)2

= −
6

σ(t, St)

1

(H + 3
2)

2
lim
u→t

(u− t)1−2H(∂xσ̂(u,Xu)))
2. (31)
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Step 3 Let us now study the term T3. Similar arguments as before allow us to write

T3 =
1

σ(t, St)4
lim
T→t

1

(T − t)2+2H
Et

(
∫ T

t

∫ T

s

DW
s

(

σ(r, Sr)

∫ T

r

DW
r σ2(u, Su)du

)

drds

)

=
1

σ(t, St)4
lim
T→t

1

(T − t)2+2H
Et

(
∫ T

t

∫ T

s

(

DW
s σ(r, Sr)

∫ T

r

DW
r σ2(u, Su)du

)

drds

)

+
1

σ(t, St)4
lim
T→t

1

(T − t)2+2H
Et

(
∫ T

t

∫ T

s

(

σ(r, Sr)

∫ T

r

DW
s DW

r σ2(u, Su)du

)

drds

)

= T 1
3 + T 2

3 . (32)

As DW
s σ(r, Sr) = ∂Sσ(r, Sr)D

W
s Sr, the continuity of σ and S allows us to write

T 1
3 =

2

σ(t, St)
lim
T→t

1

(T − t)2+2H
Et

(
∫ T

t

∫ T

s

(

∂Sσ(r, Sr)Sr

∫ T

r

∂Sσ(u, Su)Sudu

)

drds

)

=
2

σ(t, St)
lim
T→t

1

(T − t)2+2H
Et

(
∫ T

t

∫ T

s

(

∂xσ̂(r,Xr)

∫ T

r

∂xσ̂(u,Xu)du

)

drds

)

. (33)

Then, as (u− t)
1

2
−H∂xσ̂(u,Xu) has a finite limit, we get

T 1
3 =

1

σ(t, St)
lim
u→t

(u− t)1−2H(∂xσ̂(u,Xu))
2

×
1

(T − t)2+2H

(

∫ T

t

(
∫ T

r

(u− t)H−
1

2 du

)2

dr

)

=
1

σ(t, St)

1

(H + 3
2)(H + 1)

lim
u→t

(u− t)1−2H(∂xσ̂(u,Xu))
2. (34)

On the other hand,

T 2
3 =

1

σ(t, St)4
lim
T→t

1

(T − t)2+2H
Et

(
∫ T

t

∫ T

s

(

σ(r, Sr)

∫ T

r

DW
s DW

r σ2(u, Su)du

)

drds

)

=
1

σ(t, St)3
lim
T→t

1

(T − t)2+2H
Et

(
∫ T

t

∫ T

s

(
∫ T

r

DW
s DW

r σ2(u, Su)du

)

drds

)

(35)

Now, notice that

DW
θ DW

r σ2(u, Su) = 2(∂Sσ(u, Su))
2DW

θ SuD
W
r Su

+ 2σ(u, Su)∂
2
SSσ(u, Su)D

W
θ SuD

W
r Su

+ 2σ(u, Su)∂Sσ(u, Su)D
W
θ DW

r Su (36)
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Then

T 2
3 =

2

σ(t, St)
lim
u→t

(u− t)1−2H(∂xσ̂(u,Xu))
2

×
1

(T − t)2+2H

(
∫ T

t

∫ T

s

∫ T

r

(u− t)2H−1dudrds

)

+ 2 lim
T→t

1

(T − t)2+2H
Et

(
∫ T

t

∫ T

s

(
∫ T

r

[∂2
SSσ(u, Su)S

2
u + ∂σ(u, Su)Su]du

)

drds

)

+
2

σ(t, St)
lim
u→t

(u− t)1−2H(∂xσ̂(u,Xu))
2

×
1

(T − t)2+2H

(
∫ T

t

∫ T

s

(r − t)H−
1

2

(
∫ T

r

(u− t)H−
1

2 du

)

drds

)

=
1

σ(t, St)
lim
u→t

(u− t)1−2H(∂xσ̂(u,Xu))
2 1

2(H + 1)

(

1 +
2

(H + 3
2)

)

+ 2 lim
T→t

1

(T − t)2+2H
Et

(
∫ T

t

∫ T

s

(
∫ T

r

[∂2
SSσ(u, Su)S

2
u + ∂Sσ(u, Su)Su]du

)

drds

)

=
1

2σ(t, St)(H + 1)

(

1 +
2

(H + 3
2 )

)

lim
u→t

(u− t)1−2H(∂xσ̂(u,Xu))
2

+ lim
T→t

1

(T − t)2+2H
Et

(
∫ T

t

∫ T

s

∫ T

r

∂2
xxσ̂(u,Xu)(u− t)2dudrds

)

. (37)

Notice that, as all the other limits exist and are finite, the last term in the above equation
is finite. Then, a direct application of l’Hôpital rule allows us to write

T 2
3 =

1

2σ(t, St)(H + 1)

(

1 +
2

(H + 3
2)

)

lim
u→t

(u− t)1−2H(∂xσ̂(u,Xu))
2

+
1

2(1 +H)
lim
T→t

(T − t)1−2H∂2
xxσ̂(T,XT ). (38)

Now, (30), (31), (34), and (38) give us that

lim
T→t

(T − t)1−2H∂2
kkI(t, k

∗)

=
1

σ(t, St)
lim
u→t

(u− t)1−2H(∂xσ̂(u,Xu))
2

×

[

3

(H + 3
2 )(H + 1)

−
6

(H + 3
2)

2
+

1

2(H + 1)

]

+
1

2(1 +H)
lim
T→t

(T − t)1−2H∂2
xxσ̂(T,XT ), (39)

as we wanted to prove.
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Remark 7 Notice that, if H = 1
2 , the above reduces to

lim
T→t

(T − t)1−2H∂2
kkI(t, k

∗)

= −
1

6σ(t, St)
lim
u→t

(u− t)1−2H(∂xσ̂(u,Xu))
2

+
1

3
lim
T→t

(T − t)1−2H∂2
xxσ̂(T,XT ), (40)

according to Equation (8.4.3) in Alòs and Garćıa-Lorite (2021). On the other hand, in the
uncorrelated case ρ = 0 it reads

lim
T→t

∂2
kkI(t, k

∗) =
1

2(H + 1)
lim
T→t

∂2
xxσ̂(T,XT ). (41)

In particular, if ρ = 0 and H = 1
2 , we get

lim
T→t

∂2
kkI(t, k

∗) =
1

3
lim
T→t

∂2
xxσ̂(T,XT ), (42)

according to the results in Hagan, Kumar, Lesniewski, and Woodward (2002).

Remark 8 As

lim
T→t

(T − t)1−2H(∂xσ̂(T,XT ))
2 = 4 lim

T→t
(T − t)1−2H(∂kI(t, k

∗))2

the result in Theorem 6 can be written as

1

2(1 +H)
lim
T→t

(T − t)1−2H∂2
xxσ̂(T,XT )

= lim
T→t

(T − t)1−2H∂2
kkI(t, k

∗)

−
4

σ(t, St)
lim
T→t

(T − t)1−2H(∂kI(t, k
∗))2

×

[

3

(H + 3
2 )(H + 1)

−
6

(H + 3
2)

2
+

1

2(H + 1)

]

. (43)
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