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Abstract: This paper develops the generalized causality algorithm and applies it to a multitude of
data from the fields of economics and finance. Specifically, our parameter-free algorithm efficiently
determines the optimal non-linear mapping and identifies varying lead–lag effects between two
given time series. This procedure allows an elastic adjustment of the time axis to find similar but
phase-shifted sequences—structural breaks in their relationship are also captured. A large-scale
simulation study validates the outperformance in the vast majority of parameter constellations in
terms of efficiency, robustness, and feasibility. Finally, the presented methodology is applied to real
data from the areas of macroeconomics, finance, and metal. Highest similarity show the pairs of
gross domestic product and consumer price index (macroeconomics), S&P 500 index and Deutscher
Aktienindex (finance), as well as gold and silver (metal). In addition, the algorithm takes full use of
its flexibility and identifies both various structural breaks and regime patterns over time, which are
(partly) well documented in the literature.

Keywords: lead–lag effect; structural break; generalized causality algorithm; optimal causal path;
simulation study; quantitative economics; finance

1. Introduction

Measuring similarities of time series possesses a long tradition in literature as well as in practice.
Particularly in the fields of economics and finance, research aims at identifying sequences of data points
that show a strong relationship over a historical period. The vast majority of existing studies utilize
classic approaches to achieve this goal [1–6]. Concretely, these manuscripts quantify the similarity
between two time series x = (x(1), ..., x(N)) ∈ RN and y = (y(1), ..., y(N)) ∈ RN by the distance

d(x, y) =
N

∑
i=1

d(x(i), y(i)), (1)

where d(x(i), y(i)) specifies the distance at fixed time i (i ∈ {1, . . . , N}). Due to the definition, the measure
outlined in Equation (1) is very sensitive to time shifts and misalignments—it is impossible to determine
the dependency of two time series with a time delay [7]. This major disadvantage is eliminated by a model
that allows an elastic adjustment of the time axis to identify similar but phase-shifted sequences. For this
purpose, the co-moving between the time series x = (x(1), ..., x(N)) ∈ RN and y = (y(1), ..., y(M)) ∈ RM

is quantified by the cost measure

c(x, y) =
I

∑
i=1

c(x(ni), y(mi)), (2)
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where c defines the local cost and I ∈ {max(N, M), . . . , N + M− 1}. The concept of dynamic time
warping represents an efficient technique for determining the most appropriate non-linear mapping by
minimizing the measure outlined in Equation (2). Following [8,9], this technique is able to handle time
series of different lengths as well as being robust against migration, amplitude changes, and noise in
the data.

Due to its outstanding flexibility and adaptability, research studies use dynamic time warping in a
wide range of application areas. Initially, it is employed in speech recognition to eliminate non-linear time
shifts between two speech patterns as a result of different pronunciation [10–12]. Recently, dynamic time
warping is used mainly in the field of gesture recognition [13,14], chemistry [15,16], medicine [17–19],
and finance [9,20,21]. Surprisingly, there exists only one academic study that provides a non-parametric
methodology to avoid the criticism of arbitrariness and data sniffing: ref. [9] determines the optimal
lead–lag structure between two time series under the assumption that there is no structural break in the
data set. Following [22–26], regime switching models become increasingly important because they allow
structural changes to be taken into account—this procedure leads to lower prediction errors due to more
stable parameters.

In recent years, there has been a rapid development in similar fields of dynamic time warping.
Measuring the impact of high frequency data on low frequency by a class of mixed frequency VAR
models is presented by [27]. The manuscript of [28] compares mixed-data sampling and mixed frequency
VAR approaches to model specification in the presence of mixed-frequency data. In the context of model
selection and combination, the study of [29] considers the properties of weighted linear combinations of
several prediction models, or linear pools, which are evaluated using the conventional log predictive
scoring rule. In similar context, ref. [30] estimate time-varying weights in linear prediction pools and
use it to investigate the relative forecasting performance with and without financial frictions. Finally,
dynamic Bayesian predictive synthesis in time series forecasting is provided by developing a novel class
of dynamic latent factor model [31,32].

This manuscript extends the existing research in several aspects. First, we introduce a new algorithm,
which captures time-varying lead–lag structures between two time series. Therefore, we enlarge [9] by
allowing structural breaks. In contrast to the existing literature, e.g., polynomial time algorithms, we use a
parameter-free procedure. Our algorithm outputs the optimal causal path, the corresponding structural
breaks, and the estimated lag of each sub-period. Second, we validate the algorithm with the aid of a
large-scaled simulation study. The results show an outperformance in the vast majority of parameter
constellations in terms of efficiency, robustness, and feasibility. Third, we apply the generalized causality
algorithm to real data from the fields of macroeconomics, finance, and metal. In all three fields, the algorithm
is able to detect causal relationships, e.g., between gross domestic product and consumer price index
(macroeconomics), S&P 500 index and Deutscher Aktienindex (finance), as well as gold and silver (metal).
Additionally, it finds structural breaks which correspond to major economic and political events. In our
manuscript, the terms “causality” and “dynamic” are used in the sense of [33–35]. Specifically, “causality”
means that one time series leads the second time series by a (time-varying) lag rather than on statistical
tests based on the idea of Granger causality. In similar spirit, “dynamic” is used in the context of dynamic
programming which is both a mathematical optimization method and a computer programming method.

The remainder of this paper is structured as follows. Section 2 describes the theoretical concept of
causal paths with regard to the relevant literature. In Section 3, we introduce the generalized causality
algorithm and conduct a simulation study to validate its performance. Section 4 applies the presented
methodology in the areas of macroeconomics, finance, and metal. Finally, Section 5 concludes and
provides suggestions for further research areas.

2. Theoretical Concept

Identifying non-linear lead–lag effects of time series data is based on the concept of causal
paths. Specifically, we aim at determining the optimal relation structure of two given time series
x = (x(1), ..., x(N)) ∈ RN and y = (y(1), ..., y(M)) ∈ RM. Following [36], a sequence of points
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p = (p1, . . . , pI) with pi = (ni, mi) ∈ {1, . . . , N}× {1, . . . , M} for i ∈ {1, . . . , I} (I ∈ {max(N, M), . . . , N +

M− 1}) is called causal path (warping path) if it fulfills the following three characteristics:

1. p1 = (1, 1) and pI = (N, M) (Boundary condition).
2. n1 ≤ n2 ≤ · · · ≤ nI and m1 ≤ m2 ≤ · · · ≤ mI (Monotonicity condition).
3. pi+1 − pi ∈ {(1, 0), (0, 1), (1, 1)}, ∀i ∈ {1, . . . , I − 1} (Step size condition).

It is simple to recognize that the step size condition implies the monotonicity condition, which,
however, is given for reasons of clarity. We define P as the set of all possible causal paths between the
given time series x and y. Then, the total cost of a causal path p (p ∈ P) is determined by

cp(x, y) =
I

∑
i=1

c(x(ni), y(mi)), (3)

where c describes the local cost measure. As such, the term c(x(ni), y(mi)) describes the gap between
the realizations of x at time ni and y at time mi (i ∈ {1, . . . , I}). Usually, the cost measure is based
on the Manhattan distance [9,35,37] or the Euclidean distance [38–40]. The optimal causal path p∗

between x and y possesses lowest total cost of any possible causal path:

p∗ = argmin
p∈P

cp(x, y). (4)

We define the total cost of p∗ as cp∗(x, y), which is the sum of all local costs of p∗ (see Equation (3)).
Figure 1 illustrates the local costs and the optimal causal path p∗ of two given time series x and y. The points
of p∗ runs along a “valley” of low cost (light colors) and avoids “mountains” of high cost (dark color).

x

y

1 N
1

M
Local cost matrix and optimal causal path

Figure 1. Local costs of two time series and the identified optimal causal path p∗ (solid line). Regions of low
cost (high cost) are marked by light colors (dark colors).

Finding the optimal causal path p∗ is a challenging and ambitious research objective. The naive approach
would consider the total cost cp(x, y) for all possible causal paths p ∈ P—a complexity of exponential order
renders this approach impossible in practice. The most famous way to find the optimal causal path p∗ is
dynamic programming, i.e., we divide the underlying problem into several sub-problems [41]. To be more
specific, we simplify a complicated problem by breaking it down into simpler sub-problems in a recursive
manner. Therefore, we first calculate the optimum solutions of the smallest sub-problems and then combine
them to form a solution of the next larger sub-problem. This procedure is continued until the original
problem is solved. Overall, achieved solutions are stored for future calculations resulting in a time complexity
O(NM).

In addition to the three path conditions described above, academic studies establish global
and local constraints with the primary purpose of accelerating computing time. Global constraints
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aim at limiting the deviation of a causal path from the diagonal—important representatives are the
Sakoe–Chiba band [42] and the Itakura parallelogram [43] (see Figure 2). Local constraints alter the step
size condition by changing the set of potential steps or preferring certain step directions (see [44–47]).
However, we avoid global and local constraints, as both require additional parameter settings and
produce inadequate results in most application areas (see [48]).

Constraint 

region

Constraint 

region

1 N

1

M

x

y 1 N

1

M

x

y

Figure 2. Sakoe–Chiba band (left) and Itakura parallelogram (right). The constraint regions (grey) represent
the environment in which the optimal causal path may run.

Although dynamic time warping measures a distance-like quantity between two given sequences,
it doesn’t ensure the triangle inequality to hold [35]. We are talking about costs in the context of dynamic
time warping because the triangle inequality is a necessary requirement for being a distance. In [49],
the authors show that the corresponding estimator is asymptotically normal and converges to the true
shift function as the sample size per subject goes to infinity. In case we observe structural breaks, things
become more complex and the outlined statement cannot be kept.

In the 21st century, research has focused either on developing a generalized model framework or
on optimizing the computation run time. With the exception of [9], the setting of model parameters
plays a central role in all contributions—criticism of arbitrariness and data snooping is omnipresent.

Within the framework of generalization [33,34] universalize the optimal search by including the
Boltzmann factor proportional to the exponent of the global imbalance of this path. In [50], the authors
provide a symmetric variant for determining the time-dependent mapping. Finally, ref. [9] quantifies
the optimal lead–lag structure between two time series under the assumption that there is no structural
break in the data set.

Within the framework of optimization, ref. [51] implement a modification of the dynamic time
warping, which uses a higher-order representation of data. In [48,52], the authors recursively project
an alignment path calculated at a coarse resolution level to the next higher level and then refine it.
In [53], the authors exploit the possible existence of inherent similarity between two time series. In [54],
the authors present a memory-restricted alignment procedure and [55] use an upper bound estimation
to prune unpromising warping alignments.

In recent times, machine learning methods are used to identify Granger causality, e.g., ref. [56]
for univariate MIDAS regressions and [57] for VAR processes. Following [58], Granger causality and
dynamic time warping are mechanisms to find possible causal links in temporal data. Of course, there also
exist some differences between both [59,60]. First, Granger causality uses a statistical hypothesis test to
judge whether a time series is causally affected by another time series based on predictability. In contrast,
dynamic time warping is a method that calculates an optimal match between two given sequences with
certain restriction and rules. Second, the Granger causality may lose its power in the context of structural
breaks and drifts because the model residuals are not be stabilized. Dynamic time warping can handle
such situations better. Third, Granger causality is a well-established method from econometrics that can
identify relationships between temporally offset causes and effects when the offsets are fixed. In contrast,
dynamic time warping addresses uneven temporal offsets.
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3. Generalized Causality Algorithm

3.1. Methodology

This section introduces the “generalized causality algorithm” which captures time-varying
lead–lag relations for two time series x ∈ RN and y ∈ RM. Specifically, Algorithm 1 outputs the
optimal causal path, the corresponding structural breaks, and the estimated lag of each regime. For a
pleasant visualization, the algorithm also provides the local costs.

Step A determines the 2-dimensional index of the time series x and y based on ascending local costs.
Therefore, a double loop estimates all local costs between x and y, i.e., we calculate c(x(i), y(j))∀i ∈ N,∀j ∈ M.
If i equals j, we measure the distance between x and y at the same time points. Next, the algorithm creates
the variable I ∈ R(N·M)×2 by rearranging the local costs in ascending order, e.g., the first row of I describes
the combination of the indices of x and y with lowest local cost.

Step B specifies the optimal causal path that allows a time-varying lead–lag structure. For this
purpose, we use a binary search algorithm, i.e., half of the solution space is eliminated in each
iteration step. Specifically, our algorithm considers the first n = 0.5 · N ·M elements of I and uses the
function eval to check whether the given set of points is capable of constructing a causal path. If a (no)
subset of the regarded n data points depicts a causal path, we redefine n by n = n− h (n = n + h),
where h describes the step size 0.5 · n. Next, we conduct a similar process for the updated given set of n
points, i.e., the algorithm checks whether the given set of n points is capable of constructing a causal
path and redefines n = n± h with step size h = 0.5 · h. Repeating this procedure until the step size h is
less than 1 leads to the optimal n, i.e., the lowest number of required elements of I that constitute a
causal path. We note that there are many points in the first n elements of I that are not relevant for our
causal path. Finally, we apply the function path to the first n elements of I in order to find the shortest
path—the result is the optimal causal path P. Using the binary search algorithm implicates two main
advantages: our search runs in logarithmic time in the worst case and we know exactly the number of
steps required for given N and M.

Step C identifies the optimal structural breaks and the corresponding lags of the optimal causal
path P. Following [61,62], we estimate the structural breaks and the corresponding confidence bands by
minimizing the sum of squared residuals. Furthermore, the model allows for lagged dependent variables
and trending regressor. It should be noted that the number of structural breaks equals the number of
sub-periods minus one. The algorithm determines the optimal lag of each sub-period by averaging the
corresponding lags which could be disturbed by temporally noise terms. The algorithm returns (i) the
local costs, (ii) the optimal causal path, (iii) the corresponding structural breaks, and (iv) the optimal lag
of each sub-period.
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Algorithm 1 Generalized causality algorithm

Input: Time series x ∈ RN and y ∈ RM as well as local costs measure c.
Output: The local costs (Step A), the optimal causal path (Step B), the

corresponding structural breaks, and the optimal lag of each sub-period (Step C).
Step A—Determine the 2-dimensional index of x and y based on ascending local costs.

for i := 1 to N do
for j := 1 to M do

C[i, j]← c(x[i], y[j])
end for

end for
I ← order(D)

Step B—Specify the optimal causal path.
eval : Function evaluating if the given set of points is able to construct a causal path.
path : Function finding the shortest path of the given set of points.
n← 0.5 · N ·M
h← 0.5 · n
while h < 1 do

if eval(x[I[1 : n, 1], y[I[1 : n, 2]) == TRUE then
n← n− h

else
n← n + h

end if
h← 0.5 · h

end while
P← path(I[1 : n, ])

Step C—Identify the optimal structural breaks and the respective lags of the optimal causal path P.

3.2. Simulation Study

In this section, we perform a simulation study with synthetic data to validate the generalized causality
algorithm. Following [9], two stationary time series X = (X(t))t∈{1,...,N} and Y = (Y(t))t∈{1,...,N} are
generated, whereby X leads Y—without loss of generality Y can also lead X. In contrast to the existing
literature, our algorithm is able to handle time-varying lead–lag structures resulting in more flexible and
realistic scenarios. From a mathematical point of view, we construct the stochastic process X through the
following autoregressive process:

X(t) = bX(t− 1) + ν(t),

where |b| < 1 and ν(t) i.i.d.∼ N (0, σ2
X). The time series Y follows X and is given by

Y(t) =


a1X(t− l1) + ε1(t) for Zt = 1,

a2X(t− l2) + ε2(t) for Zt = 2,

. . .

arX(t− lr) + εr(t) for Zt = r,

where a1, . . . , ar ∈ (−1, 1) and ε1(t), . . . , εr(t)
i.i.d.∼ N (0, σ2

Y). The parameter f = σ2
Y/σ2

X indicates how
much noise reduces the dependency between X and Y. The variable Zt denotes the lead–lag structure
of both processes at time t. In regime i, the stochastic process X leads Y by li lags (i ∈ {1, . . . , r}),
where r describes the number of regimes.
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For a better understanding of the algorithm the following example is presented. First, we simulate
the processes X and Y with three different lead–lag phases, i.e., r = 3. Specifically, the following
subsets are constructed:

• The first phase (Zt = 1) contains 100 data points (N1 = 100) where X leads Y by 1 lag (l1 = 1)
with a “strength” of a1 = 0.8.

• The second phase (Zt = 2) contains 100 data points (N2 = 100) where X leads Y by 3 lags (l2 = 3)
with a “strength” of a2 = 0.8.

• The third phase (Zt = 3) contains 100 data points (N3 = 100) where X leads Y by 5 lags (l3 = 5)
with a “strength” of a3 = 0.8.

Summarizing, we create the stochastic processes X and Y of length N = N1 + N2 + N3 = 300
with three different lead–lag structures. As already mentioned, our algorithm would be able to handle
different lengths, but we renounce it for reasons of consistency with the existing literature and better
comprehensibility. The other parameter values are set identical to [9], who assumes a constant lead lag
structure—we set b = 0.7, σ2

X = 1, and f = 1. Furthermore, we define the local cost measure c as the
absolute difference between x(ni) and y(mi) (i ∈ {1, . . . , I}), see Equation (3).

Figure 3 represents the corresponding simulated time series X and Y. In order to obtain reasonable
results, X and Y are standardized, i.e., our time series start at value 1 and develop on the basis of
the corresponding growth rates. We recognize that no lead–lag structures are visible to the naked
eye. Furthermore, applying the classical lagged-cross correlation does not make sense for two reasons.
First, it would be naive to associate the tiny peaks of the correlation function at 1, 3, and 5 to identify lags
between the two time series. Second, finding structural breaks is impossible because the lagged-cross
correlations are estimated over the whole time interval.

1	               50	 	   100		         150	 	        200	 	      250	 	   300

Simulation of time series x and y

−10

 −5

  0

  5

 10

 15  
x
y

Figure 3. Simulation of time series x and y with r = 3 regimes and lead–lag relations l1 = 1, l2 = 3,
and l3 = 5. Therefore, y follows x by 1 lag in the first phase, 3 lags in the second phase, and 5 lags in
the third phase.

Figure 4 shows the results of applying our generalized causality algorithm. Specifically, we illustrate
the local costs and the identified optimal causal path. Similar to Figure 1, the optimal causal path runs
along a “valley” of low cost (light colors) and prevents “mountains” of high cost (dark color). On the
x-axis, there are two identified structural breaks (large bars) with the corresponding 95 percent confidence
interval (small bars). We observe that the optimal causal path represents a diagonal shifted by the number
of lags l1 = 1, l2 = 3, and l3 = 5—a few outliers are explained by noise variations in the simulated
time series.



Algorithms 2020, 13, 95 8 of 19

Local costs and optimal causal path
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Figure 4. Local costs and optimal causal path (solid line) of time series x and y. The large bars on the
x-axis represent structural breaks with corresponding 95 percent confidence intervals (small bars).

Figure 5 depicts the detailed development of our estimated lags, i.e., the difference between the
index of x and the index of y. We note that the length of the optimal causal path is greater than N = 300
(see Section 2). The first regime possesses a length of around 110 and shows a constant course of 1, i.e., x
leads y by 1 lag. The first structural break initiates the second sub-period, which exhibits a lag of 3 and is
terminated with the second regime-switch. The third phase shows a time delay of 5 with a short-term
outlier to lag 6. Since we have two time series with identical time period, the concept of causal paths,
like any approach in this field of research, requires a burn-in period and a burn-out period.

Summarizing, our algorithm performs very well for the simulated time series x and y.
Whenever simulated time series generate remarkable results it arouses the suspicion of data snooping.
Therefore, we conduct a large-scaled simulations study to validate the robustness of our generalized
causality algorithm.

Estimated lag between x and y

0         50       100       150        200        250        300

Lag

Index

00

1

2

3

4

5

6

Figure 5. Estimated lag between time series x and y. The estimated lag is the difference between the
index of x and the index of y.

According to [9], this manuscript evaluates the performance of the generalized causality algorithm
based on a two-stage procedure. First, the time series X and Y are generated whereby we vary ceteris
paribus the sample size N, the coefficient a, and the noise level f —the other parameters remain the
same because they do not directly influence the dependency between the two time series. Second, we
apply our algorithm to identify the optimal causal path and to calculate the corresponding total cost.
Following [63–65], we conduct 1000 repetitions for each parameter constellation. Figure 6 shows the
resulting boxplots of the average total costs cp∗(x, y) for varying the parameters N, a, and f .



Algorithms 2020, 13, 95 9 of 19

First of all, we notice that an increasing sample size N results in lower average total costs
cp∗(x, y)—this fact is not surprising as outliers in the data set have less impact. At the same
time, the total and interquartile ranges decrease towards zero, indicating predictive accuracy and
robustness. As known from classical time series analysis, we achieve stable estimates from a data set of
about 100 per lead–lag phase.

In addition, average total costs cp∗(x, y) decline for ascending parameter a due to the fact that the
dependency between both time series becomes stronger. The case a = 0 possesses only misjudgements
since this parameter constellation does not imply a direct relationship between the time series x and y.

Finally, we observe that increasing f causes rising average total costs cp∗(x, y). Furthermore, the boxplots
show larger differences both between maximum and minimum as well as between upper and lower quartile.
If σ2

X and σ2
Y are at a similar level, we find a high precision of the estimations. In summary, the generalized

causality algorithm outperforms in the vast majority of parameter constellations in terms of efficiency,
robustness, and feasibility.

0.0

5.0

10.0

50 100 150 200 250 300 350 400 450 500
N

cp*(x, y)

0.0
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7.5
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12.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
a

cp*(x, y)

0.0

5.0

10.0

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
f

cp*(x, y)

Figure 6. Boxplots of the average total costs cp∗ (x, y) for varying the length of the time series N
(first row), the coefficient a (second row), and the amount of noise f (third row).

Of course, the optimal causal algorithm is not always able to estimate relation between two
time series perfectly. Figure 7 shows two extreme situations where the algorithm comes up against
limits. On the left, we observe a step function that represents an unusual curve function. In this case,
the algorithm does not identify plausible relationships between x and y. On the right side, we get two
optimal warping paths as a result of identical costs. Therefore, the concept does not provide an answer
to the question of how two rank these optimal paths.
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Figure 7. Local costs and optimal causal path of time series x and y. The left side represents a step
function in case the algorithm does not identify plausible relationships. The right side displays two
optimal warping paths as a result of identical costs.

4. Applications to Real Data

4.1. Data set

In this section, we apply the generalized causality algorithm developed in the previous sections
to real-world data to check for causality relations. Table 1 provides an overview of the self-assembled
data set we use. For all time series, it shows the frequency, start and end points, as well as their source.
We study three data subsets, namely macroeconomics, finance, and metal data.

Table 1. Overview of the data subsets examined. The data are from the sources FRED1 (https://fred.
stlouisfed.org/), Yahoo2 (https://de.finance.yahoo.com), Perth Mint3 (https://www.perthmint.com/),
and Quandl4 (https://www.quandl.com/).

Data Time Series Frequency Period Source Period Article Source

Macro

Consumer price index (CPI) Monthly 01/1947 – 06/2019 01/1985 – 01/2019 FRED1

Gross domestic product (GDP) Quarterly 07/1947 – 04/2019 01/1985 – 01/2019 FRED1

Federal government tax receipts (FGT) Quarterly 07/1947 – 01/2019 01/1985 – 01/2019 FRED1

Civilian unemployment rate (CUR) Monthly 07/1948 – 07/2019 01/1985 – 01/2019 FRED1

Economic policy uncertainty (EPU) Monthly 07/1985 – 07/2019 01/1985 – 01/2019 FRED1

Finance

S&P 500 index (S&P) Daily 01/1950 – 07/2019 07/2010 – 07/2019 Yahoo2

Federal funds rate (FFR) Daily 07/1954 – 07/2019 07/2010 – 07/2019 FRED1

Deutscher Aktienindex (DAX) Daily 12/1987 – 07/2019 07/2010 – 07/2019 Yahoo2

Dollar/Euro exchange rate (DEE) Daily 01/1999 – 07/2019 07/2010 – 07/2019 FRED1

Bitcoin (BIT) Daily 07/2010 – 07/2019 07/2010 – 07/2019 Yahoo2

Metal

Gold (GOL) Daily 01/1975 – 03/2019 11/1994 – 03/2019 Perth Mint3

Silver (SIL) Daily 01/1975 – 03/2019 11/1994 – 03/2019 Perth Mint3

Platinum (PLA) Daily 06/1991 – 03/2019 11/1994 – 03/2019 Perth Mint3

Ruthenium (RUT) Daily 07/1992 – 07/2019 11/1994 – 03/2019 Quandl4

Palladium (PAL) Daily 11/1994 – 03/2019 11/1994 – 03/2019 Perth Mint3

Regarding the first data subset, we examine macroeconomic data of the United States, using the
following time series: consumer price index (CPI), gross domestic product (GDP), federal government
tax receipts (FGT), and civilian unemployment rate (CUR). In addition, we use the economic policy
uncertainty (EPU) index developed by [66]. According to the authors, EPU can be used as an indicator
for economic uncertainty related to political events. As it is common for macroeconomic time series,
most of the ones in this subset are of monthly or quarterly frequency. Our finance data subset
comprises the S&P 500 index (S&P), the US federal funds rate (FFR), the Deutschen Aktienindex (DAX),

https://fred.stlouisfed.org/
https://fred.stlouisfed.org/
https://de.finance.yahoo.com
https://www.perthmint.com/
https://www.quandl.com/
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the exchange rate between US Dollar and Euro (DEE), and the bitcoin price (BIT). Note that we could
use the interest time series as part of the macroeconomic data subset as well, but the daily frequency
fits better to the finance data. Lastly, we study the subset metal and use daily data on gold (GOL),
silver (SIL), platinum (PLA), ruthenium (RUT), and palladium (PAL). The time period ranges from
November 1994 until March 2019.

In [40], the authors motivate the attractiveness of dynamic time warping in the context of economics
by different time periods until the same action has an impact. When an economic factor is released on the
basis of its expectations, investors take a determined position, which leads to movements in share prices.
At a certain point in the life of the financial markets, an announcement like the one mentioned above can
have an impact within a short time frame, such as a week. Conversely, if you are in the presence of a
high-volume trading period, the same news may have an impact for only an hour.

Our approach is the same for all three data subsets: We first find the common time period that
all time series of one subset provide data for. Note that due to this approach, the length of the time
series varies per subset. Within one subset, however, all time series have the same number of entries,
which ensures comparability and facilitates interpretation. In a second step, we apply the generalized
causality algorithm to all pairs and find the one with minimal local cost—details are discussed for this
combination. We normalize the data before applying the algorithm to be able to reasonably compare the
time series. To be more specific, we follow the vast majority of literature and determine the returns of
each time series [9,67–69]. Following [70], returns can more easily be assumed to be invariant than prices.

4.2. Macroeconomics

The first data field we want to draw attention to is macroeconomics. The time series consumer price
index (CPI), gross domestic product (GDP), federal government tax receipts (FGT), civilian unemployment
rate (CUR), and economic policy uncertainty (EPU) cover the time period from January 1, 1985 to January 1,
2019 at monthly frequency, which means 137 entries per time series. The reason why our examined period
of time starts in 1985 is that EPU was set up starting at that time only. The left-hand side of Figure 8
shows the development of the normalized data over the examined time period. We see that GDP and
CPI follow an almost linear trend, whereas the other time series, such as FGT underlie more fluctuation.
Furthermore there is a co-movement of CUR and EPU, with some peaks of EPU being followed by a
similar development of CUR. The right-hand part of Figure 8 gives an overview of the distances between
all time series after having applied the generalized causality algorithm. The two pairs with minimal total
distance are (i) GDP and CPI as well as (ii) CUR and EPU. It is not surprising that GDP and CPI have
small total distance. Their development over time is similar, as can be seen in Figure 8, and the variables
mutually depend on one another. The small distance between CUR and EPU is an interesting finding,
as unemployment usually is accompanied with uncertainty. Figures 9 and 10 help to learn more about
the causal relationship of these pairs. Please note that in this subsection as well as in Sections 4.3 and 4.4,
we will only consider figures of type Figure 4, because they contain more information than graphics such
as Figure 5.

Figure 9 shows that gross domestic product (GDP) and consumer price index (CPI) most of the
time move almost perfectly together, with the lead switching regularly. However, the lag is never more
than a few months. There are two structural breaks in the lead–lag structure approximately at the end of
1997 (from CPI to GDP as the leader) and around the second third of 2010 (back to CPI as the leader).
Incidences that might have had an impact on this relationship are the Asian financial crisis in 1997–1998,
which influenced other economies of the world as well [71,72] and the European financial crisis that was
still prevalent in 2010 [73]. Taking a closer look at Figure 9, we see that there is an area of very low cost,
i.e., a region of almost white color, approximately along the diagonal. This is not surprising if we look at
the development of GDP and CPI over time as shown in the left part of Figure 8. The two time series
move almost perfectly together, which means low cost along the diagonal. The similarity of the series is
due to their (partial) mutual dependency. Since CPI is a measure of inflation and GDP naturally increases
with higher prices (caused at least partly by inflation), rising prices imply larger values of both.
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CPI GDP FGT CUR EPU
CPI 0 3 139 122 111
GDP – 0 138 119 119
FGT – – 0 295 264
CUR – – – 0 30
EPU – – – – 0

Figure 8. Standardized macroeconomic time series of consumer price index (CPI), gross domestic
product (GDP), federal government tax receipts (FGT), civilian unemployment rate (CUR),
and economic policy uncertainty (EPU) (left) and pairwise distances applying the generalized causality
algorithm (right). Numbers in bold symbol represent the lowest costs.

Local costs and optimal causal path
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Figure 9. Local costs and optimal causal path of gross domestic product (GDP) and consumer price
index (CPI). The large bars on the x-axis represent structural breaks with corresponding 95 percent
confidence intervals (small bars).

We also take a closer look at the pair yielding the second smallest total distance according to
the generalized causality algorithm, namely civilian unemployment rate (CUR) and economic policy
uncertainty (EPU). Figure 10 shows the causal path for the two variables. It is salient that the series
do not move as smoothly together as GDP and CPI do in the aforementioned case, which is shown
by the heterogeneous cost matrix with no clear area of small cost along the diagonal. CUR leads EPU
throughout the entire period of time observed, which means that whenever unemployment is high,
EPU will rise after some time and vice versa. The size of the lag varies, however, in the way that
it becomes smaller over time and is almost zero between approximately the end of 2008 and 2014,
before it increases again. There are significant moments to the lead–lag structure in mid-1992 and
at the end of 2014. Reasons for this might be the reflation of the economy initiated by former U.S.
president Clinton in 1992, which caused unemployment to drop [74] and hence lose its prompt impact
on economic policy uncertainty. Furthermore, CUR achieves the lowest value since the beginning of
the financial crisis in 2008 (see [75]).
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Figure 10. Local costs and optimal causal path of civilian unemployment rate (CUR) and economic
policy uncertainty (EPU). The large bar on the x-axis represent an structural break with corresponding
95 percent confidence interval (small bars).

To summarize Section 4.2, the generalized causality algorithm is able to detect interesting
relationships between important macroeconomic variables. In both cases, the structural breaks go
along with incisive economic and political events that might have had an influence on the lead–lag
structure of the time series.

4.3. Finance

Our second study field of interest is finance, where we examine the time series S&P 500 index (S&P),
federal funds rate (FFR), Deutscher Aktienindex (DAX), Dollar/Euro exchange rate (DEE), and bitcoin
price (BIT). The series cover the time period from 17 July 2010 to 26 July 2019 at daily frequency, which
means 2207 entries per time series because there is no data for weekends and holidays. The reason why
our examined period of time starts in 2010 is that BIT was introduced in 2010 only. The left plots of
Figure 11 show the development of the normalized data over the examined time period. Note that because
BIT developed to extraordinarily high values, we display this series in a separate graph. Note also that
FFR increased by the factor 13 approximately, from 0.19 percent in July 2010 to 2.4 percent at the end of
July 2019. Furthermore, BIT develops to values larger than 200,000 although the original time series only
reaches values slightly above 20,000 because it started with a value smaller than one. The right part of
Figure 11 gives an overview of the distances between all time series after having applied the generalized
causality algorithm. The pair with minimal distance is S&P and DAX. All pair combination with BIT
show an enormous value implying that this time series has no similarity to the others.

Figure 12 shows the causal path and local costs for the Deutscher Aktienindex (DAX) and the S&P 500
index (S&P). We see that the time series move very well together, with the fact that the representative of
the US stock exchange is leading the German counterpart—there are no changes in the lead–lag structure
until the end of our observed period of time. Merely the size of the lag increases visibly from the fourth
quarter of 2017 onward and shrinks again from mid-2019 onward. Important economic events that might
have had an influence on these structural breaks could be the European debt crisis which was still at a
peak in 2014 (see [76]). With this in mind, the increase of the lag between S&P and DAX could be caused
by the slowly starting recovery of the European economy.
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Figure 11. Standardized finance time series of S&P 500 index (S&P), federal funds rate (FFR), Deutscher
Aktienindex (DAX), Dollar/Euro exchange rate (DEE), and bitcoin (BIT) (left) and pairwise distances
applying the generalized causality algorithm (right). The number in bold symbol represents the lowest cost.
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Figure 12. Local costs and optimal causal path of Deutscher Aktienindex (DAX) and S&P 500 index (S&P).
The large bar on the x-axis represents an structural break with corresponding 95 percent confidence
interval (small bars).

To summarize Section 4.3, the generalized causality algorithm again finds an interesting causality
between two of the most important stock indices of the world. The causal path shows less structural
breaks than those for the macroeconomic data, yet they can still be attributed to economic events
taking place at that time.

4.4. Metal

Our last data field of interest is the field of metal prices, in which we study the time series gold (GOL),
silver (SIL), platinum (PLA), ruthenium (RUT), and palladium (PAL). Note that for all types of metal, we
use average asking prices, which is in line with the literature (see [77]). All series cover the time period
from November 17, 1994 to March 29, 2019 at daily frequency, which means each time series comprises
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6060 entries. RUT depicts an enormous peak in 2006 and 2007 as a result of a price bubble. It was caused
by a misinterpretation of the demand for ruthenium in the solar industry and the assumption that it could
be used in medicine as an active ingredient for cancer therapy. The left-hand side of Figure 13 shows the
development of the normalized data over the examined time period. The right-hand part of Figure 13
gives an overview of the distances between all time series after having applied the generalized causality
algorithm. Gold and silver possesses minimal total distance.

11/1994        01/1999       01/2003      01/2007      01/2011      01/2015        03/2019

Metal                             11/1994 − 03/2019
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SIL
PLA
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GOL SIL PLA RUT PAL
GOL 0 3076 3286 18880 9422
SIL – 0 5380 16197 12479
PLA – – 0 17073 13509
RUT – – – 0 17816
PAL – – – – 0

Figure 13. Standardized metal time series of gold (GOL), silver (SIL), platinum (PLA), ruthenium (RUT),
and palladium (PAL) (left) and pairwise distances applying the generalized causality algorithm (right).
The number in bold symbol represents the lowest cost.

Figure 14 shows the causal path and local costs for the gold price (GOL) and the silver price (SIL).
Again, the path wanders around the diagonal for the entire period of time we consider. In the last
quarter of 2010, silver starts to lead gold until the end of the time period we study. One possible reason
for this structural break is that the dollar was rather weak in 2010, which usually increases silver
prices [78,79]. In contrast to [79,80], which see gold as a driving factor for silver prices, our generalized
causality algorithm detects a contrary relationship. This finding is in line with other empirical evidence
for silver driving gold prices (see [77]).

Local costs and optimal causal path

11/1994         06/1999         01/2004         06/2009         01/2014         03/2019

03/2019

01/2014

06/2009

01/2004

06/1999

11/1994

Gold

Silver

Figure 14. Local costs and optimal causal path of gold (GOL) and silver (SIL). The large bar on the
x-axis represents an structural break with corresponding 95 percent confidence interval (small bars).

To summarize Section 4.4, the generalized causality algorithm also performs well in the data field of
metal prices. The pair yielding minimal total distance exhibits only one structural break in the causal path,
which goes along in time with an economic event that might have had an influence on the structural break.
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In general it can be said that the generalized causality algorithm outperforms in different areas of
application, yielding sound results in line with economic and political events explaining occurring
structural breaks.

5. Conclusions

This manuscript introduces the generalized causality algorithm and applies it to a variety of
economic and finance data. In this respect, we make three main contributions to the existing literature.

The first contribution bears on the novel developed generalized causality algorithm, which
captures time-varying lead–lag structures between two time series. Our parameter-free algorithm
efficiently determines the optimal non-linear mapping and identifies varying lead–lag effects.
Therefore, we are able to elastically adjust the time axis for finding similar but phase-shifted
sequences—structural breaks in their relationship are also captured.

The second contribution refers to the large-scaled simulation study where we demonstrate the
performance of the algorithm. The vast majority of parameter constellations lead to superior results in terms
of efficiency, robustness, and feasibility. Furthermore, simulated structural breaks are always identified.

The third contribution relies on the application to macroeconomics, finance, and metal. In all three
fields of application, the generalized causality algorithm performs well and detects causal relationships.
Structural breaks can be justified with economic and political events that have an influence on the
lead–lag structure.

For further investigations in this research area, a statistical arbitrage strategy may be built on the
basis of the developed algorithm. Next, a multivariate framework could be implemented in order to
account for common interactions between the variables. Finally, the generalized causality algorithm might
be applied to other research areas, such as the recognition of human actions or robot programming.
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