
Realized Kernels:
Recommended Implementation

Asger Lunde

Professor
Department of Economics and Business Economics

Aarhus University

September 28, 2016

Realised Kernels
Recommended Implementation

ä Non-negative realised kernels of BNHLS (2011; Multivariate RK) is used:

K(X) =
H

∑
h=−H

k
(

h
H+1

)
γh, γh =

n

∑
j=|h|+1

xjxj−h, (1)

where k(x) is a Parzen kernel

k(x) =

1− 6x2 + 6x3 0 ≤ x ≤ 1/2
2(1− x)3 1/2 ≤ x ≤ 1
0 x > 1.

Here xj is the j-th high frequency return calculate over the interval τj−1 to τj.

ä Notice no scaling by sample size. Related to, but different from, HAC
and spectral density estimation.

2 / 8

Realised Kernels
Recommended Implementation

ä The preferred choice of bandwidth is

H∗ = c∗ξ4/5n3/5,

with c∗ =
{

k′′(0)2

k0,0
•

}1/5

and ξ2 =
ω2

IQ
,

where c∗ = ((12)2/0.269)1/5 = 3.5134 for the Parzen kernel.

ä The bandwidth H∗ depends on the unknown quantities ω2 and IQ, where
the latter is the integrated quarticity.

ä We define an estimator of ξ, to get a bandwidth,

Ĥ∗ = c∗ ξ̂4/5n3/5,

that can be implemented in practice.

3 / 8

Realised Kernels
Recommended Implementation

ä To select H we need to estimate

ξ2 =
ω2
√

IQ
' ω2

IV
.

ä To estimate ω2 we compute the realised variance using every q-th trade or
quote.

ä We obtain q distinct realised variances, RV(1)
dense, . . . , RV(q)

dense and
compute

ω̂2 =
1
q

q

∑
i=1

RV(i)
dense

2n(i)
,

n(i) : # non-zero returns used to compute RV(i)
dense.

ä The reason that we choose q > 1 is robustness.

ä IV is estimated by averaging 20 minute realised variances.

4 / 8

Realised Kernels
Recommended Implementation

ä The actual implementation in Matlab is as function call that looks
something like this:

MultivarRKernel(3/5,1,tim~obsPr,NtoS,’parzen’,0)

or if MultivarRKernel(A,B,C,D,E,F) then

A(=3/5): the rate of n, that is α in Ĥ∗ = c∗ ξ̂4/5nα

B(=1): the amount of jittering

C(=usePr): n× 2 matrix with time stamps and prices

D(=NtoS): ξ̂2

E(=’parzen’): text string with the choice of kernel

F(=0): the amount of topflatness (=1 topflat kernels from
BNHLS (2008; univariate RK))

5 / 8

Computing the Asympotic Variance
Recommended Implementation

ä We have
√

n (K(X)− [Y]) L→ MN
(
0, v(IV, IQ, ω2, n, H)

)
, and a log-based

version
√

n [log {K(X)} − log {[Y]}]√
v(IV, IQ, ω2, n, H)/K(X)

L→ N (0, 1) ,

To compute v̂(IV, IQ, ω2, n, H) we do as follows:

1. We have K̂(X), Ĥ, n̄ and n from the previous section.

2. Now we use our bias corrected estimator of ω2 :

ω̆2 = exp{log ω̂2 − K̂(X)/(2n̄ω̂2)}

6 / 8

Computing the Asympotic Variance
Recommended Implementation

3. To estimate IQ we use our subsampling bipower variation type estimator:{
Xδ, ω̆2,

√
n
}[2,2]

=
√

n

√
n

∑
j=1

{
x2

j,· − 2ω̆2
}{

x2
j−2,· − 2ω̆2

}

with x2
j,· =

1√
n+1

√
n

∑
s=0

x2
j,s/(
√

n+1), j = 1, . . . , n.

and the fact that t
´ t

0 σ4
udu ≥

´ t
0 σ2

udu, so

ÎQ = max[{K̂(X)}2,
{

Xδ, ω̆2,
√

n
}[2,2]

]

4. Now we estimate the asymptotic variance by

v̂ ≡ v(K̂(X), ÎQ, ω̆2, n, Ĥ)

7 / 8

Computing the Asympotic Variance
Recommended Implementation

ä The actual implementation of v(K̂(X), ÎQ, ω̆2, n, Ĥ)/
√

n in Matlab is a
function call that looks something like this:

KernelVar(KerH,N,1,KdQ,MKern,EstOmega2,’parzen’,0)

or if KernelVar(A,B,C,D,E,F,G,H) then

A(=KerH): the bandwidth Ĥ.

B(=N): n number of observations used to compute K̂(X).

C(=1): the amount of jittering

D(=KdQ): ÎQ the estimate of integrated quarticity.

E(=MKern): K̂(X) : the realised kernel.

F(=EstOmega2): ω̆2 : bias corrected estimator of ω2.

G(=’parzen’): text string with the choice of kernel

F(=0): the amount of topflatness (=1 topflat kernels from BNHLS (2008))

8 / 8

