
FTW: Fast Similarity Search under the Time Warping
Distance

Yasushi Sakurai
∗

NTT Cyber Space Laboratories
sakurai.yasushi@lab.ntt.co.jp

Masatoshi Yoshikawa
Nagoya University

yosikawa@itc.nagoya-u.ac.jp

Christos Faloutsos
†

Carnegie Mellon University
christos@cs.cmu.edu

ABSTRACT
Time-series data naturally arise in countless domains, such
as meteorology, astrophysics, geology, multimedia, and eco-
nomics. Similarity search is very popular, and DTW (Dy-
namic Time Warping) is one of the two prevailing distance
measures. Although DTW incurs a heavy computation cost,
it provides scaling along the time axis. In this paper, we pro-
pose FTW (Fast search method for dynamic Time Warping),
which guarantees no false dismissals in similarity query pro-
cessing. FTW efficiently prunes a significant number of the
search candidates, which leads to a direct reduction in the
search cost. Experiments on real and synthetic sequence
data sets reveal that FTW is significantly faster than the
best existing method, up to 222 times.

1. INTRODUCTION
Time-series data naturally occur in many application do-
mains, such as computational biology, meteorology, astro-
physics, geology, multimedia and economics. Even though
the databases generated by the corresponding applications
continue to grow in size, a common demand is to find simi-
larities between time-series data sequences. Moreover, these
applications require a sequence-matching mechanism that is
robust against noise while providing scaling of the time axis
of the sequences.

∗Part of this work was done while this author was visiting
Carnegie Mellon University.
†This material is based upon work supported by the
National Science Foundation under Grants No. IIS-
0083148, IIS-0113089, IIS-0209107 IIS-0205224 INT-
0318547 SENSOR-0329549 EF-0331657IIS-0326322 CNS-
0433540 by the Pennsylvania Infrastructure Technology Al-
liance (PITA) Grant No. 22-901-0001. Additional funding
was provided by Intel and Northrop-Grumman Corporation.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation, or other funding parties.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2005, June 13-15, 2005, Baltimore, Maryland.
Copyright 2005 ACM 1-59593-062-0/05/06 ...$5.00.

(a)

(b)

Figure 1: Illustration of DTW. (a) The alignment
of measurements by DTW for measuring the dis-
tance between two sequences. (b) DTW obtains a
mapping between the sequences. The black squares
denote the optimum warping path.

Retrieving long sequences is very expensive given the large
data sets involved, and various indexing and searching meth-
ods have been proposed to reduce this cost. Most of the ear-
lier works on high-speed sequence matching are based on the
Euclidean distance function. Since the Euclidean distance
function treats sequence elements independently, it cannot
be used to calculate the distance between sequences whose
lengths and/or sampling rates are different. Furthermore,
it can be sensitive to outliers [2]. Recent applications have
adopted Dynamic Time Warping (DTW) [5, 22] to overcome
these problems [13, 21, 19, 12]. DTW is a transformation
that allows sequences to be stretched along the time axis to
minimize the distance between the sequences. The distance
of DTW is calculated by dynamic programming (See Fig-
ure 1 for a drawing and Section 3.1 for the exact definition).
The matrix in Figure 1(b) is fundamental for DTW, and we

(a) (b)

Figure 2: Illustration of global constraints. Global
constraints limit the warping scope. The gray area
corresponds to the warping scope. (a) Sakoe-Chiba
Band. (b) Itakura Parallelogram.

shall refer to it as the time warping matrix. The warping
path is the set of grid cells in the time warping matrix, which
represents an alignment between the sequences. Although
DTW incurs a heavy computation cost, it is more robust
against noise and provides scaling along the time axis. This
ability allows DTW to identify similarities far more accu-
rately and so enhances the functionality of the applications
that use it.

The ideal method for DTW should fulfill the following re-
quirements:

1. Fast: The exact DTW is quadratic, and prohibitive for
long sequences.

2. No false dismissals: A search method that returns the
qualifying sequences without any omissions is required.
It should achieve a high level of search performance
even though it ensures no false dismissals.

3. No restriction on the sequence lengths: The method
should handle any sequence, even data sequences of
different lengths and/or data sequences with lengths
different from that of the query sequence.

4. Support for any, as well as for no restriction on warp-
ing scope: The method in [14] is fast, because it clev-
erly exploits global constraints [22] that appear in dy-
namic programming (See Figure 2). We would like to
have a method that can exploit the restrictions on the
warping scope, when the user so desires; but we also
want a method that will be fast for the plain DTW,
that is, even when the user specifies no restrictions
warping scope.

Our method, described below, bears all these characteristics,
while none of the existing methods can claim the same.

The problem we address in this paper is the following:

Problem 1. Given S time-series data sequences of un-
equal lengths {P1, P2, . . ., PS}, a query sequence Q, an
integer k, and optionally a warping scope W , find the k-
nearest neighbors of Q from the data sequence set by using
DTW with W .

The warping scope is the area that the warping path is al-
lowed to visit in the time warping matrix. It can be limited
by global constraints as shown in Figure 2. Some constraints
are discussed in [22] and [14]. Note that W can be the un-
restricted warping scope as well as any restricted warping
scope in the problem definition of this paper.

In this paper, we propose FTW (Fast search method for
dynamic Time Warping). To obtain the exact time warp-
ing distance, we have to compute distances for all possible
warping paths; this incurs a high computation cost. In or-
der to reduce the computation time, (1) we propose a new
lower bounding measure that approximates the time warp-
ing distance, (2) we exclude the warping paths that will not
yield fruitful search results by using a new algorithm for dy-
namic programming, and (3) the search algorithm gradually
enhances the accuracy of the distance approximations.

We carried out experiments on real and synthetic sequence
data sets. FTW pruned a significant number of data se-
quences at low computation cost, thus reducing the total
search cost. In fact, it is significantly faster than the best
existing method, outperforming it by at least one order of
magnitude, and occasionally up to 222 times. Moreover,
the superiority of FTW grows as data size and/or sequence
length increases. This tendency makes it more attractive for
large and long sequence databases.

The remainder of the paper is organized as follows. Section 2
discusses related work. Section 3 describes our proposed
method, FTW. We show how the approximate distance can
be computed, and then introduce our data structure and
search algorithm. Section 4 reviews the results of the exper-
iments, which clearly show the effectiveness of FTW. Sec-
tion 5 is a brief conclusion.

2. RELATED WORK
Agrawal et al. first proposed an approach for similarity se-
quence matching [1]. Their method extracts feature vectors
from sequences, and indexes them using R*-trees. Only a
small number of features are extracted, since most multi-
dimensional index structures cannot provide high enough
performance for high-dimensional data because of the di-
mensionality curse problem [4, 23]. Their work focus on
whole sequence matching. This was generalized to allow
subsequence matching [8, 18].

Keogh et al. presented an indexing method by using the
Adaptive Piecewise Constant Approximation (APCA) [15].
APCA is a dimensionality reduction technique for sequence
matching based on the Euclidean distance. This technique
uses constant-value segments to approximate sequences. While
many dimensionality reduction techniques have been pro-
posed (e.g. DFT [20, 10], Discrete Wavelet Transform [24]
and Karhunen-Loeve Transform [9]), APCA gives especially
high approximation quality.

Recent applications require DTW for calculating the similar-
ity of sequences [13, 21, 19, 12]. To reduce the matching cost,
many sequence-matching techniques based on dynamic pro-
gramming have been proposed, especially in speech recogni-
tion [22] and bioinformatics [19]. These techniques trade off

Figure 3: Example of PAA representation for a se-
quence. In this case, the sequence is reduced to
8 dimensions. Each equal-sized segment of PAA is
the average of the sequence during the time period
of the segment.

Figure 4: Example of a sequence envelope. The en-
velope consists of lower and upper bounds that to-
tally enclose the sequence.

sequence retrieval speed against precision. They must visit
all data sequences of length N , and the time complexity is
still basically O(N2).

Chu et al. [6] proposed a search method based on distance
approximation, which varies its accuracy during the course
of query processing. Although this method is efficient, it
does not guarantee no false dismissals.

Yi et al. proposed a lower bounding measure for DTW [26].
The distance from a query sequence to each data sequence
is evaluated by using a lower bounding measure, after which
a candidate set is constructed. The current data sequence
for each candidate is visited, and the exact distance between
the data sequence and the query sequence is calculated. The
lower bounding measure is the sum of the squared differences
between the maximum of the query sequence and elements
in the data sequence that are greater than that maximum.
This lower bounding measure also employs elements in the
data sequence that are smaller than the minimum of the
query sequence.

Kim et al. introduced a lower bounding measure employing
4-dimensional vectors [17] that represent the first, last, min-
imum, and maximum sequence elements. The vectors can
be readily indexed using any spatial access method. The
lower bounding measures proposed in [26] and [17] guaran-
tee no false dismissal. However, the results provided in [14]
indicate that these approximations are coarse. The number
of exact distance calculations for the search is large, thus
leading to high search costs.

Keogh [14] proposed a search method based on global con-
straints that appear in dynamic programming. Global con-
straints (e.g. the Sakoe-Chiba Band and the Itakura Paral-
lelogram [22]) limit the scope of the warping path. Zhu et
al.’s search method [27] is also based on global constraints

and represents an improvement over the one of [14]. The
search methods of [14] and [27] compute the envelope of the
query sequence from the scope of warping paths; they then
derive the PAA (Piecewise Aggregate Approximation) [16,
25] of the envelope (See Figures 3 and 4). The lower bound-
ing distance between each data sequence and the query se-
quence is defined as the Euclidean distance between the PAA
of the envelope and the MBR (Minimum Bounding Rect-
angle) of the data sequence. Although these search meth-
ods are efficient for warping paths with narrow scope, their
search performance deteriorates as the warping scope be-
comes wider. Since the optimum scope depends on the ap-
plication and data set, search methods that give high search
performance, even for wide scopes, are required.

3. PROPOSED METHOD
We propose FTW (Fast search method for dynamic Time
Warping), which guarantees no false dismissals. The exam-
ples provided in this section assume that there is no restric-
tion on the warping scope; recall that is the most expensive
setting, that most competing methods can not handle. Note
that FTW can also improve search performance when the
warping scope is limited by global constraints. Unlike pre-
vious works [14, 27], FTW can handle any sequence, even
data sequences of different lengths and/or data sequences
with lengths different from that of the query sequence.

Range queries and k-nearest neighbor queries are essentially
important for practical applications. Although we mainly
focus on k-nearest neighbor queries in this paper, FTW can
efficiently support queries of both types.

3.1 Preliminaries
Dynamic Time Warping (DTW) is a transformation that
temporally warps sequences with the goal being to minimize
the distance between the sequences. Consider two sequences
P = {p1, p2, . . . , pN} of length N and Q={q1, q2, . . . , qM}
of length M . Their time warping distance Ddtw(P, Q) is
defined as:

Ddtw(P, Q) = f(N, M)

f(i, j) = ‖pi − qj‖ + min

⎧⎨
⎩

f(i, j − 1)
f(i − 1, j)
f(i − 1, j − 1)

(1)

f(0, 0) = 0, f(i, 0) = f(0, j) = ∞
(i = 1, . . . , N ; j = 1, . . . , M)

where ‖pi − qj‖ = (pi − qj)
2 is the distance between two

numerical values. Notice that any other choice (say, absolute
difference: ‖pi−qj‖ = |pi−qj |) would be fine; our upcoming
algorithms are completely independent of such choices. The
time warping distance between two sequences is obtained by
matching each sequence element of P to an element of Q in
increasing time order. Since the time warping distance is
obtained by using a dynamic programming algorithm whose
complexity is O(NM), it can be slow, especially for long
sequences.

3.2 Sketch of FTW
Our solution is based on three major ideas, described below.
First we give the intuition behind each of them, and in the
three subsections we describe each of them in detail.

Symbol Definition

dcb
the current k-th nearest neighbor distance
(i.e., the current best)

P a data sequence of length N
pi the i-th element of P (i = 0, . . . , N)
Q a query sequence of length M
qi the i-th element of Q

pA
i

the i-th approximate segment of P
(i = 0, . . . , n)

P A the coarse version of P (P A={pA
1 , . . . , pA

n })
pR

i the segment range of pA
i

pL
i , pU

i the lower and upper bounds of pR
i

pT
i the time interval of pA

i

Figure 5: Symbols and definitions.

Figure 6: Illustration of sequence approximation.
The coarse version P A of a sequence P has three
segments. The i-th approximate segment pA

i is rep-
resented by the time interval pT

i and the segment
range pR

i = (pL
i : pU

i).

LBS: New Lower Bounding Distance Measure
As described in Section 3.1, the complexity of DTW is O(NM),
where N and M are sequence lengths. Since computing
the exact DWT distance is expensive, especially for long
sequences, it is beneficial to use approximations in query
processing.

We operate on coarse representations of the sequences, which
is obtained by segmentation. Figure 6 shows an example of
the representation, called approximate segments. In this fig-
ure, we represent the coarse version of a sequence with three
segments, each of which consists of its segment ranges and
time intervals.

We use the coarse version of sequences to estimate the time
warping distance. Figure 7(a-1) illustrates the approximate
segments of P and Q, P A and QA. We compute the lower
bounding distance from P A and QA by using a dynamic
programming approach as shown in Figure 7(a-2). Our al-
gorithms work for segments of arbitrary, even unequal sizes;
but for exposition purposes, let’s assume that all segments
have the same size t. In that case, we achieve O(N

t
M
t

) time.
Instead of computing the exact time warping distance for
all sequences in the dataset, which needs O(NM) time, we
use the new lower bounding distance measure, LBS (Lower
Bounding distance measure with Segmentation), and prune
a significant number of sequences with O(N

t
M
t

) time.

EarlyStopping: New Algorithm for Dynamic Program-
ming
Query processing maintains the list of candidate k-nearest
neighbors before reporting the final k-nearest neighbors. The
current k-th nearest neighbor distance, dcb (i.e., the current
best), means the exact distance of the best k candidates so
far. When a similar sequence, which gives an exact distance
less than dcb, is found, the list of candidate k-nearest neigh-
bors has to be updated; this makes dcb smaller. dcb keeps
decreasing or remains unchanged; it never increases.

The second idea is to exclude the warping paths that will
not yield fruitful search results by using dcb. In other words,
we exclude the warping paths by using the exact distance
between the query sequence and the candidate k-th near-
est neighbor sequence. This makes the distance computa-
tion more efficient as dcb becomes smaller. Even if a given
warping scope is not restricted (i.e. a global constraint is
not used), we can dynamically reduce the warping scope by
excluding warping paths that give distances exceeding dcb.
That is, dcb serves as the threshold for reducing the warping
scope.

Now let us use Figure 7(a-2) again to give an example of
this idea. We assume a coarse representation of the time se-
quences. Let g(i, j) be the lower bounding distance for the
grid cell (i, j) (the exact definition of the distance g(i, j) will
be given in Equation 2). In the figure, if g(1, 2) > dcb, we
do not need to compute g(1, 3) since g(1, 3) ≥ g(1, 2) always
holds. Similarly, we can exclude g(4, 1) if g(3, 1) > dcb.
The gray area represents the reduced warping scope. We
can safely skip the distance computation for a warping path
which goes through one or more white areas. We dynami-
cally compute the time warping distance by using dcb. As
well as for the approximate time warping distance calcu-
lation, this idea can be used for the exact time warping
distance calculation (See Figure 7(c)).

“Refinement”: New Search Algorithm for DTW
Instead of operating on approximate segments of a single
granularity, we propose to use multiple granularities, trying
to balance the trade-off between accuracy and comparison
speed. As the approximate segment becomes more accurate,
the approximate distance often increases, but the computa-
tion cost also grows. There is a tradeoff between the approxi-
mation distance and the computation cost. Accordingly, we
gradually increase the granularity of sequences, which im-
proves the accuracy of the approximate distance, during the
course of query processing.

Figure 7 shows the gradual ‘refinement’ of the approxima-
tion. In Figure 7 (a), we compute the approximate distance
from the coarsest version of sequences as the first step of
the refinement. If the distance is greater than dcb, we can
safely prune P . Otherwise, we compute the distance from
the more accurate sequences as the second refinement step
(See Figure 7 (b)). We need to compute the exact distance
from the original sequences only if the approximate distance
does not exceed dcb (See Figure 7 (c)).

(a-1) (b-1) (c-1)

(a-2) (b-2) (c-2)

Figure 7: Sketch of FTW. The bottom row shows the time warping matrices; the gray squares are potentially
useful while the white squares are not promising. The black squares show the final optimal path. (a) The
coarse approximation requires a low computation cost. (b) The refinement gives higher approximation quality.
(c) The exact distance calculation by EarlyStopping that visits the small gray area.

3.3 Details for the proposed LBS
We first introduce the approximate segments of sequences.
Let P = {p1, p2, . . . , pN} be a sequence of length N , then
the i-th approximate segment pA

i of P is defined as follows:

pA
i = {pR

i , pT
i }, pR

i = {pL
i , pU

i }
pL

i = min{px, . . . , py}, pU
i = max{px, . . . , py}

x =

{
1 (i = 1)∑i−1

j=1 pT
j + 1 (2 ≤ i ≤ n),

y =
i∑

j=1

pT
j

where pR
i and pT

i denotes the segment range and time inter-
val of P , pL

i and pU
i are the lower and upper bounds of pR

i .
That is, pL

i and pU
i are the maximum and minimum values

among the pT
i elements within the subsequence from px to

py. Therefore, we approximate P by:

P A = {pA
1 , pA

2 , . . . , pA
n}

where n denotes the number of segments.

Example 1. Let P be a data sequence of length N = 18,
and pT

i = 3 (i = 1, . . . , 6). The approximate segments of P
can be derived as follows:

P = {3, 2, 3, 5, 7, 6, 6, 5, 7, 10, 12, 11, 13, 15, 14, 12, 13, 12}
pR
1 = {2, 3}, pR

2 = {5, 7}, pR
3 = {5, 7},

pR
4 = {10, 12}, pR

5 = {13, 15}, pR
6 = {12, 13}

Let Q be a query sequence of length M = 12, and qT
i = 3

(i = 1, . . . , 4) The approximate segments of Q is computed

as:

Q = {7, 6, 7, 10, 12, 11, 9, 8, 11, 10, 8, 9}
qR
1 = {6, 7}, qR

2 = {10, 12}, qR
3 = {8, 11}, qR

4 = {8, 10}

We propose a new lower bounding distance measure based
on a combination of dynamic programming and approximate
segments. Let P A = {pA

1 , . . . , pA
n} and QA = {qA

1 , . . . , qA
m}.

We then introduce LBS (Lower Bounding distance measure
with Segmentation) as follows:

Dlbs(P
A, QA) = g(n, m)

g(i, j) = gcell(i, j) + min

⎧⎨
⎩

g(i, j − 1)
g(i − 1, j)
g(i − 1, j − 1)

(2)

gcell(i, j) = min(pT
i , qT

j) · Dseg(pR
i , qR

j)

g(0, 0) = 0, g(i, 0) = g(0, j) = ∞
where Dseg(pR

i , qR
j) denotes the distance between pR

i and

qR
j ; the distance of two ranges is intuitively the distance of

their two closest points. Formally:

Dseg(pR
i , qR

j) =

⎧⎨
⎩

‖pL
i − qU

j ‖ (pL
i > qU

j)
‖qL

j − pU
i ‖ (qL

j > pU
i)

0 (otherwise)

Notice that, if each range degenerates to a point, the dis-
tance Dseg becomes the original distance ‖∗, ∗‖ between two
points.

Theorem 1. Let P A and QA be the approximate seg-
ments of sequences P and Q, respectively, then

Dlbs(P
A, QA) ≤ Ddtw(P, Q) (3)

Proof. Since

gcell(1, 1) = min(pT
1 , qT

1) · Dseg(pR
1 , qR

1)

the following inequalities hold:

g(1, 1) ≤ f(x, qT
1) (1 ≤ x ≤ pT

1)

g(1, 1) ≤ f(pT
1 , y) (1 ≤ y ≤ qT

1)

Since

gcell(i, j) = min(pT
i , qT

j) · Dseg(pR
i , qR

j)

we have

min{g(i − 1, j − 1), g(i − 1, j)} ≤ f(x, y)

(x =
i−1∑
k=1

pT
k ,

j−1∑
k=1

qT
k < y ≤

j∑
k=1

qT
k)

min{g(i − 1, j − 1), g(i, j − 1)} ≤ f(x, y)

(

i−1∑
k=1

pT
k < x ≤

i∑
k=1

pT
k , y =

j−1∑
k=1

qT
k)

Therefore, we obtain

g(i, j) ≤ f(x, y) (x =
i∑

k=1

pT
k , y =

j∑
k=1

qT
k)

Thus, g(n, m) ≤ f(N, M), which completes the proof.

3.4 EarlyStopping
To compute Dlbs(P

A, QA) efficiently, we introduce an algo-
rithm called EarlyStopping (See Figure 8). During search
processing, we maintain the best-so-far distance, dcb; lower
bounding distances greater than dcb do not need to be com-
puted using Equation (2). EarlyStopping reduces the dis-
tance computation cost by using dcb.

Example 2. Let us consider the approximate segments
of P and Q as shown in Example 1. The lower bounding
distance between P and Q is efficiently computed by using
EarlyStopping as shown in Figure 9. Each value indicates
g(i, j) in the figure. If dcb = 40, the calculations of g(1, 3)
and g(1, 4) are omitted since g(1, 2) = 174 is greater than
dcb. Similarly, the other white cells are also omitted since
g(1, 2) > dcb and g(2, 2) = g(3, 2) = g(4, 1) = 54 > dcb.
As a result, the lower bounding distance between P and Q
is computed as g(6, 4) = 45. Consequently, we can safely
prune P , since the lower bounding distance is greater than
dcb.

EarlyStopping can be applied to the exact time warping
distance calculation for data sequences as well as for the
approximate distance calculation, and it reduces computa-
tion cost. Thus, we utilize EarlyStopping for computing the
exact distance Ddtw(P, Q) of the sequences P and Q. More-
over, EarlyStopping supports global constraints [22]. When
the warping scope is limited by global constraints, we change
the initial values of begin[i] and end[i] in Figure 8 according
to the given warping scope.

Algorithm EarlyStopping(P A, QA, dcb)
// Set the initial values of begin[i] and end[i] according
// to the global constraint
for i = 1 to n do

begin[i] := 1;
end[i] := m;

endfor
// Compute the lower bounding distance
for i = 1 to n do

for j = begin[i] to end[i] do
compute g(i, j);
if i �= 1 and i �= n then

if j > end[i − 1] and g(i, j) > dcb then
end[i] := j;
break;

endif
endif

endfor
if no grid cell satisfies g(i, j) ≤ dcb then

return g(i, end[i]);
else

begin[i] := min{j|g(i, j) ≤ dcb};
end[i] := max{j|g(i, j) ≤ dcb};
if i �= n and begin[i + 1] < begin[i] then

begin[i + 1] := begin[i];
endif

endif
endfor
return g(n, m);

Figure 8: Time warping distance calculation algo-
rithm using the k-nearest neighbor distance.

3.5 Refinement
In the preceding section, we presented an algorithm comput-
ing an approximate distance with approximate segments of
a single granularity. However, we can use segments of mul-
tiple granularities for query processing. Here, we describe
the gradual refinement of the distance approximation with
multiple granularities. We use c different versions of P for
query processing. Let P A

i be the coarse version of P , which
is computed from the time interval ti as:

1 < t1 < t2 < . . . < tc−1 < tc < N

That is, P A
c is the coarsest, while P A

1 is the most accurate.

Various algorithms have been proposed to find the optimal
representation of approximate segments of each sequences
(e.g., [7]). We will use equal-sized segments to approximate
sequences for simplicity although segments of different time
intervals would be acceptable to FTW. Since we operate on
equal-sized segments, the time interval of each i-th segment
is

pT
i =

{
t (1 ≤ i ≤ n − 1)

tn − N (i = n)
(4)

where n = �N/t�.

3.5.1 Indexing
We propose a sequential structure to accelerate search per-
formance. The coarse version of P , P A, consists of the series
of time intervals P T and the series of segment ranges P R.
While the search algorithm uses both P T and P R, the data
structure does not includes P T since P T can be easily com-

Figure 9: Example of a time warping distance calcu-
lation using approximate segments. The white cells
are omitted because they are greater than dcb = 28.

Algorithm Search(Q, k)
compute Set(QA); // Set(QA) = {QA

c , . . . , QA
1 }

// Collect k sequences as the initial candidates
for each P ∈ database do

dcoarse[P] := Dlbs(P A
r , QA

r);
if dcoarse[P] < TempList[k].dist then

add P and dcoarse[P] to TempList, and sort;
endfor
// Compute the initial k-th nearest neighbor distance
for each P ∈ TempList do

// NNL is the sorted nearest neighbor list
add P and Ddtw(P, Q) to NNL, and update dcb;

// Search for the k-nearest neighbors
for each P ∈ database do

if P �∈ TempList and dcoarse[P] ≤ dcb then
for i := c − 1 to 1 do

dapprox := EarlyStopping(P A
i , QA

i , dcb);
if dapprox > dcb then

break;
endfor
if dapprox ≤ dcb then

dexact := EarlyStopping(P , Q, dcb);
if dexact ≤ dcb then

add P and dexact to NNL, and update dcb;
endif

endif
endif

endfor
return NNL;

Figure 10: k-nearest neighbor search algorithm.

puted by using Equation (4). The data structure is simply
an array of feature data of a sequence P :

F (P) = {N, Set(P R)}
Set(P R) = {P R

c , . . . P R
1 }

The feature data F (P) consists of the length of P , N , and
the set of segment ranges of P , Set(P R).

3.5.2 Search Algorithm
Our search algorithm is based on the following ideas:

1. The search algorithm first collects as candidates the k-
nearest neighbors based on the lower bounding distance
measure computed from approximate segments.

FTW reduces computation cost by using the current
k-th nearest neighbor distance, dcb; consequently its ef-
ficiency is improved if the current value of dcb is close

to the final k-th nearest neighbor distance early in the
search process. Therefore, the algorithm calculates the
lower bounding distance between the query sequence
and each data sequence from their approximate seg-
ments, and then collects the k sequences that have the
shortest distance in the sense of the lower bounding
distance. The set of the k collected sequences is re-
garded as the initial candidate set for the k-nearest
neighbor query. We obtain the initial k-th nearest
neighbor distance by computing the exact time warp-
ing distance between the collected sequences and the
query sequence. We pick the lowest granularity (i.e.,
the coarsest sequences) for this initial processing.

2. The search algorithm gradually enhances the accuracy
of the distance approximations.

Distance approximations incur a lower computation
cost than exact distance calculations; moreover, we
require a lower distance computation cost for coarser
sequences. The search algorithm first calculates an
approximate distance of the coarsest data sequence of
the time interval tc. If the approximate distance is
greater than dcb, the algorithm excludes the data se-
quence without computing its exact distance. If the
approximate distance does not exceed dcb, the algo-
rithm then generates a more accurate approximation
based on tc−1, and compares it with dcb. That is, the
search algorithm gradually enhances the accuracy of
the distance approximations. It determines the exact
distance only when the approximate distance derived
from t1 does not exceed dcb.

Figure 10 shows the search algorithm that uses the data
structure described in Section 3.5.1. We first compute the
approximate segments of a given query sequence Q. We then
collect the candidate k-nearest neighbor sequences based on
the lower bounding distance measure. The set of the k col-
lected sequences is used as the initial candidate set. We
obtain the initial k-th nearest neighbor distance by calcu-
lating the exact time warping distance between each can-
didate sequence and the query sequence. We compute a
tighter approximation distance, while reducing the time in-
terval. If the lower bounding distance is greater than dcb,
we exclude the data sequence since it can’t be one of the
k-nearest neighbors.

Although we described only the search algorithm for k-nearest
neighbor queries, FTW can be applied to range queries. It
utilizes the current k-th nearest neighbor distance dcb for
k-nearest neighbor queries, and the search range is used to
handle range queries.

4. EXPERIMENTS
We conducted experiments to verify the superiority of FTW.
[14] claims that the method of [14] outperforms those of [26]
and [17]; moreover, [27] confirms that Zhu et al.’s method is
more effective than that of [14]. Thus, we show the results of
a performance evaluation that compared FTW with the best
existing method proposed in [27]. [27]’s method is denoted
by LB PAA. For LB PAA, we used the R*-tree [3], and each
sequence was indexed according to 16 reduced dimensions as
shown in [27]. We evaluated the search performance mainly

0

50

100

150

200

250

300

350

400

25000 50000 75000 100000

W
al

l C
lo

ck
 T

im
e

(s
ec

.)

Data Set Size

FTW
LB_PAA

(a) Temperature

0

200

400

600

800

1000

1200

1400

25000 50000 75000 100000

W
al

l C
lo

ck
 T

im
e

(s
ec

.)

Data Set Size

FTW
LB_PAA

0

100

200

300

400

500

600

700

25000 50000 75000 100000

W
al

l C
lo

ck
 T

im
e

(s
ec

.)

Data Set Size

FTW
LB_PAA

(b) FinTime (c) RandomWalk

Figure 11: Wall clock time as a function of data set size (N = 2048). The superiority of FTW grows as data
size increases.

based on wall clock time since the wall clock time for DTW
exceeds the disk access time for retrieval processing; that
is, the total execution time depends primarily on wall clock
time. The wall clock time was measured on an Intel Xeon
2.8GHz with 1GB of memory, running Linux. We used 20-
nearest neighbor queries. Each result reported here for a
particular database size and sequence length is the average
of 100 trials.

The data sets we used included the following real and syn-
thetic data sets:

1. Temperature: Temperature measurements, from 55 sen-
sors in buildings of Carnegie Mellon University. Each
sensor gives one value every 30 seconds.

2. FinTime: This is the financial time-series benchmark
from [11]. We used historical stock market data for
100,000 securities.

3. RandomWalk: We generated 100,000 sequences by us-
ing random-walk models [25]: pi = pi−1 + xi where
the p1 of each sequence is uniformly distributed in the
range (0, 10). xi is normally distributed and the vari-
ance is 1.

For FTW, we used four different time intervals (t1 = 2,
t2 = 8, t3 = 32, t4 = 128) for sequences of length 2048. For

sequences of length 512, we used three varieties (t1, t2 and
t3). Before discussing the search performance, we should
mention the cost of constructing the index structures. Our
method required 381 seconds to construct the data structure
for the data set of sequence length 2048 and size 100,000.
LB PAA required 531 seconds including the time for con-
structing the R*-tree.

4.1 Search Performance
To evaluate the search performance, we compared FTW
with LB PAA. We constructed index structures for the data
sets of Temperature, FinTime, and RandomWalk.

We present experimental results on search performance for
when the data set size varies. Figure 11 depicts the wall
clock time of FTW and LB PAA for various data set sizes.
The global constraint we employed for this figure is the
Itakura Parallelogram, which is widely used in practical sit-
uations [5, 22]. The exact distance calculation also employed
the same global constraint. Database size varied from 25,000
to 100,000. Note that the y-axis starts from a negative
value to avoid the overlap between the x-axis and the line
of FTW. The experimental results show that FTW gives
superior approximations for all data sets. As the database
size increases, the effectiveness of FTW increases, making it
even more attractive for large data sets.

Figures 12 and 13 compare the search methods in terms of

1

10

100

1000

10 20 40 60 80 100

W
al

l C
lo

ck
 T

im
e

(s
ec

.)

Warping Scope (%)

FTW
LB_PAA

(a) Temperature

0.1

1.0

10.0

100.0

1000.0

10 20 40 60 80 100

W
al

l C
lo

ck
 T

im
e

(s
ec

.)

Warping Scope (%)

FTW
LB_PAA

(b) FinTime

1

10

100

1000

10 20 40 60 80 100

W
al

l C
lo

ck
 T

im
e

(s
ec

.)

Warping Scope (%)

FTW
LB_PAA

(c) RandomWalk

Figure 12: Wall clock time as a function of warping
scope (N = 512). Note that FTW is up to 49 times
faster than the best existing method.

1

10

100

1000

10000

100000

10 20 40 60 80 100

W
al

l C
lo

ck
 T

im
e

(s
ec

.)

Warping Scope (%)

FTW
LB_PAA

(a) Temperature

1

10

100

1000

10000

100000

10 20 40 60 80 100

W
al

l C
lo

ck
 T

im
e

(s
ec

.)

Warping Scope (%)

FTW
LB_PAA

(b) FinTime

1

10

100

1000

10000

100000

10 20 40 60 80 100

W
al

l C
lo

ck
 T

im
e

(s
ec

.)

Warping Scope (%)

FTW
LB_PAA

(c) RandomWalk

Figure 13: Wall clock time as a function of warping
scope (N = 2048). Note that FTW is up to 222 times
faster than the best existing method.

Figure 14: Frequency of approximation use (Fin-
Time, N = 2048).

wall clock time. We employed the Sakoe-Chiba Band for
these figures, and let the width of the warping scope vary
from 10% to 100% of the sequence length N . In these figures,
the data set size is 100,000, and the scale of the y-axis is
logarithmic. These figures indicate that FTW significantly
reduces the search cost for all data sets. FTW outperforms
LB PAA significantly, by orders of magnitude. Concretely,
FTW is up to 222 times faster than LB PAA.

Figure 14 shows how often each approximation was used
in FTW for the data set size of 100,000. As shown in the
figure, most of the data sequences are excluded by the ap-
proximations of t4 = 128 and t3 = 32. The approximations
of ti−1 incur a computation cost that is (ti/ti−1)

2 times
that of the cost of ti; moreover, the exact time warping dis-
tance calculation requires a higher computation cost than
the approximation of t1. The coarser approximation pro-
vides reasonable approximation quality, and its calculation
speed is high. On the other hand, although the approxima-
tion with higher granularity is not very fast, it offers good
approximation quality. Accordingly, using approximations
of various granularities has significant advantages in terms
of approximation quality and calculation speed. FTW ef-
ficiently prunes a large number of the search candidates,
which leads to a significant reduction in the search cost.

Figure 15 shows the number of page accesses for FTW and
LB PAA. Our data structure is simply an array of feature
data. Although data sequences are accessed randomly, fea-
ture data are visited sequentially in query processing. A
sequential scan of feature data should significantly boost
performance because of the sequential nature of their I/O
requests. In [23], Weber et al. indicate two speed-up factors
for the phenomenon: a practical factor of 10 and a conserva-
tive one of 5. Thus, we used these speed-up factors, SF , in
our experimental evaluations. The number of page accesses
of FTW for a speed-up factor SF is given by:

PASF =
PAfd

SF
+ PAds,

where PAfd and PAds are the number of page accesses for
feature data and data sequences, respectively. Figure 15
indicates that FTW outperforms LB PAA for SF = 5 and
SF = 10 in terms of page accesses.

0

10000

20000

30000

40000

50000

60000

10 20 40 60 80 100

P
ag

e
A

cc
es

se
s

Data Set Size

FTW (SF=10)
FTW (SF=5)

LB_PAA

Figure 15: Number of page accesses as a function of
data set size (FinTime, N = 2048).

1

10

100

1000

10000

100000

0 32 64 128 256

W
al

l C
lo

ck
 T

im
e

(s
ec

.)

Difference in Sequence Lengths

FTW
Exact distance function

Figure 16: Wall clock time as a function of the differ-
ence in sequence lengths in a data set (RandomWalk,
N = 2048).

4.2 Search Performance for Sequences of Dif-
ferent Lengths

We created four sequence data sets that contained sequences
with different lengths, N : Random(2048, 32), Random(2048,
64), Random(2048, 128), and Random(2048, 256), where
Random(Nave, Ndiff) is a random function, Nave is the
average sequence length in a data set, and Ndiff is the
difference between the minimum sequence length and the
maximum sequence length in a data set. All data sets had
100,000 sequences.

Figure 16 shows the wall clock time of a linear scan and
FTW as a function of Ndiff . We employed the Itakura
Parallelogram for this figure. Clearly, FTW outperforms
sequential scanning for all data sets. Its search performance
is superior even when Ndiff is large.

5. CONCLUSIONS
We presented a new search method for DTW, called FTW,
which meets all the requirements mentioned in the introduc-
tion. FTW has been careful designed based on a new lower
bounding distance measure that approximates the time warp-
ing distance. Based on this lower-bounding idea, and sev-

eral careful optimizations (‘EarlyStopping’, ‘Refinement’),
our method has all of the following specifications, that no
competing method matches:

1. It is fast: In experiments on real and synthetic data
sets, FTW clearly outperformed the best existing method,
for all queries, achieving one or two orders of magni-
tude speed up.

2. It has no false dismissals (by our Theorem 1)

3. It can handle sequences of arbitrary lengths

4. It allows for arbitrary warping restrictions, as well as
no restrictions at all

Our experimental results reveal that FTW is significantly
faster than the best existing method, outperforming it by
at least one order of magnitude, and occasionally up to 222
times.

A promising but very challenging research direction is to
extend FTW for a streaming setting. The goal would be
to monitor time sequences, looking for one or more pre-
specified patterns, where the (dis-)similarity score is deter-
mined by DTW.

6. REFERENCES
[1] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient

similarity search in sequence databases. In Proceedings
of the 4th Conference on Foundations of Data
Organization and Algorithms (FODO), pages 69–84,
February 1993.

[2] R. Agrawal, K.-I. Lin, H. S. Sawhney, and K. Shim.
Fast similarity search in the presence of noise, scaling,
and translation in time-series databases. In
Proceedings of VLDB, pages 490–501, September 1995.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-tree: An efficient and robust access
method for points and rectangles. In Proceedings of
ACM SIGMOD, pages 322–331, May 1990.

[4] S. Berchtold, C. Böhm, and H.-P. Kriegel. The
pyramid-technique: Towards breaking the curse of
dimensionality. In Proceedings of ACM SIGMOD,
pages 142–153, June 1998.

[5] D. J. Berndt and J. Clifford. Finding patterns in time
series: A dynamic programming approach. In
Advances in Knowledge Discovery and Data Mining,
pages 229–248, AAAI/MIT, 1996.

[6] S. Chu, E. Keogh, D. Hart, and M. Pazzani. Iterative
deepening dynamic time warping for time series. In
Proceedings of SIAM International Conference on
Data Mining, 2002.

[7] C. Faloutsos, H. V. Jagadish, A. O. Mendelzon, and
T. Milo. A signature technique for similarity-based
queries. In SEQUENCES, June 1997.

[8] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos.
Fast subsequence matching in time-series databases.
In Proceedings of ACM SIGMOD, pages 419–429, May
1994.

[9] K. Fukunaga. Introduction to Statistical Pattern
Recognition. Academic Press, 1990.

[10] R. W. Hamming. Digital Filters. Englewood Cliffs, N.
J., 1977.

[11] K. J. Jacob and D. Shasha. Fintime — a financial
time series benchmark.
http://cs.nyu.edu/cs/faculty/shasha/fintime.html,
March 2000.

[12] J.-S. R. Jang and H.-R. Lee. Hierarchical filtering
method for content-based music retrieval via acoustic
input. In Proceedings of ACM Multimedia, pages
401–410, September/October 2001.

[13] H. Kawasaki, T. Yatabe, K. Ikeuchi, and M. Sakauchi.
Automatic modeling of a 3d city map from real-world
video. In Proceedings of ACM Multimedia (1), pages
11–18, October/November 1999.

[14] E. J. Keogh. Exact indexing of dynamic time warping.
In Proceedings of VLDB, pages 406–417, August 2002.

[15] E. J. Keogh, K. Chakrabarti, S. Mehrotra, and M. J.
Pazzani. Locally adaptive dimensionality reduction for
indexing large time series databases. In Proceedings of
ACM SIGMOD, pages 151–162, May 2001.

[16] E. J. Keogh, K. Chakrabarti, M. J. Pazzani, and
S. Mehrotra. Dimensionality reduction for fast
similarity search in large time series databases.
Journal of Knowledge and Information Systems, pages
263–286, 2000.

[17] S.-W. Kim, S. Park, and W. W. Chu. An index-based
approach for similarity search supporting time
warping in large sequence databases. In Proceedings of
ICDE, pages 607–614, April 2001.

[18] Y.-S. Moon, K.-Y. Whang, and W.-S. Han. General
match: a subsequence matching method in time-series
databases based on generalized windows. In
Proceedings of ACM SIGMOD, pages 382–393, June
2002.

[19] D. W. Mount. Bioinfomatics: Sequence and Genome
Analysis. Cold Spring Harbor, New York, 2000.

[20] A. V. Oppenheim and R. W. Schafer. Digital Signal
Processing. Englewood Cliffs, N. J., 1975.

[21] K. Otsuka, T. Horikoshi, S. Suzuki, and H. Kojima.
Memory-based forecasting for weather image patterns.
In Proceedings of the 17th Conference on Artificial
Intelligence (AAAI), pages 330–336, July 2000.

[22] L. Rabiner and B.-H. Juang. Fundamentals of Speech
Recognition. Englewood Cliffs, N. J., 1993.

[23] R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. In Proceedings of
VLDB, pages 194–205, August 1998.

[24] M. V. Wickerhauser. Adapted Wavelet Analysis from
Theory to Software. A K Peters Ltd, Massachusetts,
1994.

[25] B.-K. Yi and C. Faloutsos. Fast time sequence
indexing for arbitrary lp norms. In Proceedings of
VLDB, pages 385–394, September 2000.

[26] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient
retrieval of similar time sequences under time warping.
In Proceedings of ICDE, pages 201–208, February
1998.

[27] Y. Zhu and D. Shasha. Warping indexes with envelope
transforms for query by humming. In Proceedings of
ACM SIGMOD, pages 181–192, June 2003.

