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Abstract

In this paper, we revisit the ”Smile Dynamics” problem. In a previous work,
Bergomi built a class of linear stochastic volatility models in which he specified the
joint dynamics between the underlying and its instantaneous forward variances. The
author introduced a quantity, which he called the Skew Stickiness ratio, in order to
relate two quantities of interest: the first quantity is the correlation between the in-
crements of the at-the-money implied volatility of maturity T and the log-returns of
the underlying, while the second quantity is the implied skew of the same maturity T .
In our work, we continue the study of the Skew stickiness ratio both from theoretical
and empirical point of view. First, we provide a method to estimate the SSR (skew
stickiness ratio) from option prices, this measure is called the implied SSR as it is
conducted under the risk-neutral pricing measure Q. Next to that, we recall how to
measure the realized SSR under the real-world probability measure P and we point out
empirically that there is a discrepancy between the implied SSR and the realized SSR.
The empirical study shows also that the implied SSR, in the limit of short maturities,
can take a value superior to 2 which is in discordance with the results obtained in
linear stochastic volatility models. For this reason, we show that the positive quantity
(SSRImplied−2) is coherent with the presence of jumps in a stochastic volatility model.
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1 Introduction

The leverage effect is a well known feature in the equity markets, it has been deeply studied
and documented by several authors (see [Bekaert and Wu(2000)], [Bouchaud et al.(2001)Bouchaud,
Matacz, and Potters], [Bollerslev et al.(2006)Bollerslev, Litvinova, and Tauchen], [Ciliberti
et al.(2009)Ciliberti, Bouchaud, and Potters]). This feature consists in the increase of the
volatility following negative returns of the underlying, which explains the negative skewness
of the underlying returns. The leverage effect influences considerably the derivatives prices.
Indeed, the volatility smile in the equity option market has the particularity to be skewed,
which means that the implied volatility is a decreasing function of the strike. Furthermore,
the increment of the at-the-money volatility is negatively correlated with the log-return of
the underlying, and this property is called ”the implied leverage effect”. The understand-
ing of this property is a subject of interest since it is crucial to perform an efficient option
delta-hedging strategy.

In [Bergomi(2009)], the author showed that the rate of decay of the at-the-money forward
skew is linked to the covariance between the at-the-money volatility increment and the
underlying log-return. Thus, he introduced a quantity called the Skew Stickiness Ratio
(SSR) in order to quantify the relation between these two features. In this paper, we build
on the work done in [Bergomi(2009)] and we conduct a study in order to understand the
information contained in the Skew Stickiness Ratio. In the second section, we propose a
model-free approach in order to estimate the SSR implied by option prices under the risk-
neutral probability measure Q. Following that, we carry out in the third section an empirical
study which aims to compare the realized SSR under the historic probability measure P with
the implied SSR under Q. We define also an arbitrage strategy which enables to monetize
the discrepancy between these two quantities. In the fourth section, we recall that, in the
framework of linear stochastic volatility models, the implied SSR tends to the value 2 in the
limit of short maturities. Since this property is contradictory with empirical findings, we
introduce a stochastic volatility model with jumps in order to justify that the implied SSR
can exceed the value 2 in the case of short maturities.

2 A model-free approach for implied Skew Stickiness

Ratio estimation

Let σBS,t(K,T ) denote the implied volatility at time t for strike K and residual maturity
T . We focus in this study on short maturity options (0 < T � 1). Thus, we can assume
that the risk-free interest rate is null (r = 0). We suppose that the implied volatility, can
be approximated for near the money strikes, by a quadratic function of the log-moneyness

2

Electronic copy available at: https://ssrn.com/abstract=2496285



log(K
St

):

σBS,t(K,T ) = σATM,t(T ) + ST log(
K

St
) + CT log(

K

St
)2 + o

(
log(

K

St
)2
)
. (2.1)

The Skew-Stickiness ratio, introduced by Bergomi in [Bergomi(2009)], is a function of the
maturity T and is defined as:

RT =
d 〈σATM(T ), log(S)〉t
STd 〈log(S)〉t

. (2.2)

The quantity RT can be interpreted using the linear regression of the daily increments of the
ATM volatility with maturity T on the daily log returns of the underlying:

dσATM,t(T ) = RTSTd log(St) + ηdZt, (2.3)

where Z is a Brownian motion such that d 〈Z, log(S)〉t = 0. This implies:

dσBS,t(K,T ) = CTd 〈log(S)〉t +

(
(RT − 1)ST + 2CT log(

St
K

)

)
d log(St) + ηdZt +O

(
log(

K

St
)2
)
.

and then:

dσBS,t(K,T ) = CTd 〈log(S)〉t + (RT − 1)STd log(St) + ηdZt +O

(
log(

K

St
)

)
.

If RT = 1 then E(dσBS,t(K,T )|d log(St)) = O(CTdt), which means that the sticky strike rule
holds in average when CT ∼ 0 . On the other hand, ifRT = 0 then E(dσBS,t(K,T )|d log(St)) =
−STd log(St) +O(CTdt). Thus, for CT ∼ 0, the sticky-delta rule, where the implied volatility
depends only on the moneyness, holds in average.

We aim here to estimate the value of RT implied by option prices with maturity T without
using any assumptions on the dynamics of the spot process. All we need here is to find the
adequate value of RT which solves the pricing equation of the option with maturity T .

Let C(t, St, K, T, σATM,t(T − t),ST−t, CT−t) = EQ(e−r(T−t)(ST −K)+|Ft) be the price at date
t of an European call option with residual maturity (T − t) and strike K. Applying Itô’s
Lemma yields:

dCt =
∂C

∂t
dt+

∂C

∂S
dSt +

1

2

∂2C

∂S2
d 〈S〉t +

∂C

∂σATM
dσATM,t

+
1

2

∂2C

∂σ2
ATM

d 〈σATM〉t +
∂2C

∂S∂σATM
d 〈S, σATM〉t .

The implied volatility corresponding to this option is equal to σBS(K,T − t), and then:

C(t, St, K, T − t, σATM,T−t,ST−t, CT−t) = PBS(t, St, K, T, σBS(K,T − t)).
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It is supposed that r = 0, which is an admissible hypothesis here since (T − t) is small. It
follows:

∂PBS
∂t

+
1

2
σ2
BS,t(K,T − t)S2

t

∂2PBS
∂S2

= 0.

Let the hypothesis H∗ be defined as follows:

• H∗ : For T − t ∼ 0, the quantities σATM ,S, C don’t depend on (T − t), and then
σBS(K,T − t) has no time dependence.

If the hypothesis H∗ is satisfied then ∂PBS

∂t
= ∂C

∂t
, and:

dCt = −1

2
σ2
BS,t(K,T − t)S2

t

∂2PBS
∂S2

dt+
∂C

∂S
dSt +

1

2

∂2C

∂S2
d 〈S〉t +

∂C

∂σBS
dσATM,t

+
1

2

∂2C

∂σ2
ATM

d 〈σATM〉t +
∂2C

∂S∂σATM
d 〈S, σATM〉t .

In order to simplify the expressions, the following quantities x, τ and d1 are introduced:

x = log(
K

St
) , τ = T − t , d1,t =

−x+ 1
2
σ2
BS,t(K, τ)τ

σBS,t(K, τ)
√
τ

.

As explained in appendix (6.1), for near the money options (x ∼ 0), high order derivatives
of the option price C can be approximated using Black-Scholes greeks. Indeed, the second
order partial derivative of C with respect to the spot price S writes:

∂2C

∂S2
=

n(d1)

σATMSt
√
τ

(
1− 3xα + x2(5α2 − 5

2
β)

)
+O

(
x3
)

+O
(√

τ
)
. (2.4)

where α and β are functions of σATM and defined as below:

α(σATM) =
ST−t
σATM

, β(σATM) =
2CT−t
σATM

.

In addition, the second order partial derivative of C with respect to σATM can be approxi-
mated using d1,t, σATM , x and τ :

∂2C

∂σ2
ATM

=
Stn(d1,t)

σ3
ATM,t

√
τ
x2 +O

(
x3
)

+O
(√

τ
)
, (2.5)

and finally the approximation of ∂2C
∂S∂σATM

can be given as:

∂2C

∂S∂σATM
=

n(d1,t)

σ2
ATM,t

√
τ

(
x− x2(2α− σATM,tα

′)
)

+O
(√

τ
)

+O
(
x3
)
. (2.6)

Let KL be a strike inferior to the spot value St, and KH be the ATM strike (KH = St). We
define a portfolio X that contains, at time t, a quantity equal to (−1) unity of the option
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CL with strike KL and a quantity equal to (+nt,H) of the option CH with strike KH . The
portfolio is delta-hedged continuously, and evolves as following:

dXt = nt,H
(
dCH

t −∆t,HdSt
)
−
(
dCL

t −∆t,LdSt
)

Using (2.5) and (2.6), it can be deduced that the terms ∂2CH

∂σ2
ATM

and ∂2CH

∂S∂σATM
are at order 1

in
√
τ , and then can be neglected for τ ∼ 0.

In order to cancel the spot gamma sensitivity of the portfolio, the quantity nt,H is chosen as
follows:

nt,H =
∂2CL

∂S2

∂2CH

∂S2

.

Thus, the portfolio X has the following dynamics:

dXt =
1

2
S2
t

(
σ2
BS(KL, T )

∂2PL
BS

∂S2
− nt,Hσ2

BS(KH , T )
∂2PH

BS

∂S2

)
dt+

(
nt,H

∂CH

∂σATM
− ∂CL

∂σATM

)
dσATM,t

− 1

2

∂2CL

∂σ2
ATM

d 〈σATM〉t −
∂2CL

∂S∂σATM
RTStStd 〈log(S)〉t .

In order to simplify the notations, we introduce the following quantities:

Γt =
1

2
S2
t

(
σ2
BS(KL, T )

∂2PL
BS

∂S2
− nt,Hσ2

BS(KH , T )
∂2PH

BS

∂S2

)
,

ϑt = nt,H
∂CH

∂σATM
− ∂CL

∂σATM
.

Under the risk-neutral probability measure Q, we have E(dXt) = rXtdt = 0, then:

∂2CL

∂S∂σATM
RQT StSTd 〈log(S)〉t = Γtdt+ ϑtE

Q(dσATM,t)−
1

2

∂2CL

∂σ2
ATM

d 〈σATM〉t . (2.7)

Based on (2.3), it can be deduced that d 〈σATM〉t = R2
TS2

Td 〈log(S)〉t + η2d 〈Z〉t. Thus, we
obtain the following equation:

1

2

∂2CL

∂σ2
ATM

(RQT )2S2
Td 〈log(S)〉t +RQT

(
∂2CL

∂S∂σATM
StSTd 〈log(S)〉t − ϑtSTE

Q(d log(St))

)
−
(

Γt −
1

2

∂2CL

∂σ2
ATM

η2
)
dt = 0.

Under the simplifying assumptions that η ∼ 0 and EQ(d log(St)) = 0, the last equation
becomes:

1

2

∂2CL

∂σ2
ATM

(RQT )2S2
Td 〈log(S)〉t +

∂2CL

∂S∂σATM
StSTRQT d 〈log(S)〉t − Γtdt = 0. (2.8)
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The resolution of the equation (2.8) enables to obtain the value of RQT :

RQT =
− ∂2CL

∂S∂σATM
StSTd 〈log(S)〉t +

√
Dt

∂2CL

∂σ2
ATM

(ST )2d 〈log(S)〉t
, (2.9)

where Dt represents the discriminant of the quadratic equation (2.8):

Dt =

(
n(dL1 )xL
σ2
ATM

√
τ

)2

S2
t S2

Td 〈log(S)〉2t + 2Γtdt

(
Stn(dL1 )

σ3
ATM

√
τ
x2L

)
S2
Td 〈log(S)〉t ,

3 Arbitraging the Skew Stickiness Ratio

Let RPT be the value of the quantity RT under the historic probability measure P , RPT can
be determined using the linear regression of the daily increments of the ATM volatility with
maturity T on the daily log-returns of the spot process S:

dσATM,t(T ) = RTSTd log(St) + ηdZt,

then RPT can be estimated as follows:

RPt,T =

∑t
i=t−L (σATM,i(T )− σATM,i−1(T )) (log(Si)− log(Si−1))

St,T
(∑t

i=t−L (log(Si)− log(Si−1))
2) .

In order to to make this measure less noisy, RPt,T is computed in the the empirical study as
follows:

RPt,T =

∑t
i=t−L (σATM,i(T )− σATM,i−1(T )) (log(Si)− log(Si−1))(

1
L+1

∑t
i=t−L Si,T

) (∑t
i=t−L (log(Si)− log(Si−1))

2) , (3.1)

We study the historic evolution of RPT and RQT and investigate the presence of discrepancies
between these two quantities.

3.1 Empirical study

We carry out an empirical study on the skew stickiness ratio using the results provided in
(2.9) and (3.1). We use historical data from option markets and from underlying price series,
and we conduct the study on several assets including the SPX index, SX5E index, Financial
Select Sector (XLF), Technology Select Sector (XLK). We focus here on 3M options (T = 3

12
)

which is consistent with the hypothesis of short maturity (T ∼ 0). The hypothesis H∗ is
supposed to be satisfied, and the quantity RQT is obtained through the resolution of the
equation (2.8). We dispose of data ranging from 01/01/2007 to 07/08/2014. For every day
i, we estimate RQi,T and RPi,T solutions of (2.9) and (3.1) respectively. In order to have two
quantities calculated on the same window of data and then easily comparable, we introduce
the quantity R̄Qi,T =

∑i
j=i−LR

Q
j,T . The following graphs give the evolution of R̄Qi,T and RPi,T

using the window parameter L = 50 Days:
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The inspection of the graphs above show that the quantity R̄QT can be significantly larger
than the value of 2. This finding is contradictory with the characteristics of linear stochastic
volatility models. Indeed, Bergomi demonstrated in [Bergomi(2009)], that in the setting of
linear models, the quantity R̄QT converges to the value 2 in the limit of small maturities. In
addition, he showed that, in the case of time-homogeneous models and a flat term-structure
of variance, R̄QT is restricted to the interval [1, 2]. This discrepancy was pointed out by the
authors in [Vargas et al.(2013)Vargas, Dao, and Bouchaud] who justified it by the existence
of a non-linear leverage effect in equity markets which can not be captured using linear
stochastic volatility models. Thus, the empirical study confirms the importance of use of
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non-linear models on some assets like the SPX index for which the average value of R̄QT is
the highest among the other examples.

In addition to that, it can be noticed that RPT is more oscillatory and unstable compared
to R̄QT , and that there is generally a discrepancy between the values of these two quantities.
Bergomi pointed out in [Bergomi(2009)] that RPT is inferior to 2 which is, in the setting of
linear models, the limit of RQT when T tends to 0. This is true in average (but not always)
and raises the question of arbitraging the spread (RQT −RPT ). In [Bergomi(2009)], the author
tried to establish a trading strategy whose P&L is proportional to the spread (2− RPT ). In
the next paragraph, we build on this work and we define a different strategy which aims to
take profit from the discrepancy between RQT and RPT .

3.2 Taking advantage of the Skew Stickiness Ratio discrepancy

Under the real-world probability measure P , the portfolio X, defined previously, has the
following dynamics:

dXt = Γtdt+

(
nt,H

∂CH

∂σATM
− ∂CL

∂σATM

)
dσATM,t

− 1

2

∂2CL

∂σ2
ATM

(
(RPT )2S2

Td 〈log(S)〉t + η2dt
)
− ∂2CL

∂S∂σATM
RPT STStd 〈log(S)〉t .

Using the definition of RQT given in (2.7), it can be deduced that:

dXt =

(
nt,H

∂CH

∂σATM
− ∂CL

∂σATM

)(
dσATM,t − EQ (dσATM,t)

)
+

1

2

∂2CL

∂σ2
ATM

(
(RQT )2 − (RPT )2

)
S2
Td 〈log(S)〉t +

∂2CL

∂S∂σATM

(
RQT −RPT

)
STStd 〈log(S)〉t .

Then:

E(dXt) =
(
RQT −RPT

)(1

2

∂2CL

∂σ2
ATM

(
RQT +RPT

)
S2
T +

∂2CL

∂S∂σATM
STSt

)
d 〈log(S)〉t

which is a function of the spread
(
RQT −RPT

)
.

In the following, we run a backtest of a strategy which replicates the portfolio X. The
strategy consists in selling every day a 3 months option with moneyness 95%, buying the
quantity nH of options with moneyness 100%, and doing the necessary delta-hedging. The
portfolio is unwound the next day and started again. The scatter plots show the daily mark-
to-market P&L of the portfolio as a function of the theoretical P&L given by the analytic
expression of dXt.
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Statistics on PnL explanation Regression slope R-squared
SPX 0.704 0.699
SX5E 0.932 0.462
XLF 1.02 0.495
XLK 0.694 0.546

The scatter plots above and the R2 of the regressions show how well the mark-to-market
P&L matches the theoretical P&L. It should be pointed out here that the difference between
these two quantities can be explained by several factors. Indeed, the quantities ∂2C

∂S∂σATM
, ∂2C
∂S2

and ∂2C
∂σ2

ATM
are not exact but approximated at order 2 in x and 0 in τ , besides the hypothesis
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H∗ is assumed to be verified, which may be a source of noise in the P&L when it’s not the
case.

4 Limit of the Skew Stickiness Ratio for short maturi-

ties

It was clear through the empirical study that RQT can exceed the value of 2 when T ∼ 0.
This empirical finding is in discordance with the theoretical results established by Bergomi
in [Bergomi(2009)] for the class of linear stochastic volatility models. In order to explain
this phenomenon, the authors in [Vargas et al.(2013)Vargas, Dao, and Bouchaud] proposed
an asymmetric Garch model which accounts for the non-linear leverage effect in the equity
market. This model can produce values of RQT superior to 2 for a maturity T of the order of
several days. Meanwhile, for a 3 Months maturity (T = 0.25), which is the maturity consid-
ered in the empirical study, the quantity RQT produced by the asymmetric Garch model can
not be superior to 2. This is due to the fact that the implied at-the-money skew nearly coin-
cides with the quantity SkewnessT

6
√
T

when T is of the order of several months (it can be precised

here that SkewnessT represents the skewness of log(ST

S0
)). Consequently, the asymmetric

Garch model doesn’t justify theoretically the empirical observation RQT > 2 for T = 0.25.

In order to support theoretically this empirical observation, we propose here a model which
enables to obtain a value of RQT superior to 2 when T ∼ 0.

We suppose that, under the risk-neutral probability measure Q, the spot process S has the
following dynamics:

dSt
St

= (r − λk)dt+ σt
√

1− ρ2tdW
(1)
t + σtρtdW

(2)
t + (Jt − 1)dNt

where Nt is a Poisson process with intensity λ, r is the risk-free rate, Jt is a random positive
variable and k = E(Jt − 1). The instantaneous volatility σt = σ(Yt) is a deterministic
function of the stochastic process Y which evolves as follows:

dYt = btdW
(2)
t (4.1)

where d
〈
W (1),W (2)

〉
t

= 0.
It can be mentioned here that bt and ρt can also depend on Yt, that is:

bt = b(Yt) , ρt = ρ(Yt)

and: ∫ t

0

b2sds <∞

Let Pt = e−r(T−t)EQ((ST −K)+) be the price of an European call option on S with strike
K and maturity T . Under the assumption that b and λ are small, the following expansion
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for the option price P can be made:

P =
∞∑
i=0

∞∑
j=0

biλjPi,j

Through the use of a singular perturbation technique in b and λ, the option price P can be
approximated at order 1 in b and λ by P̂ as proved in (6.2):

P̂ (t, St, yt) = P0,0 + bP1,0 + λP0,1, (4.2)

where:

P0,0(t, St, yt) = PBS(t, St, σ(yt), K, T ), (4.3)

P1,0(t, St, yt) =
T − t

2
Stσ(yt)σ

′(yt)ρt
∂2P0,0

∂S∂σ
, (4.4)

P0,1(t, St, yt) = (T − t)(φ(P0,0)− Stk
∂P0,0

∂S
), (4.5)

where the operator φ is defined as:

φ(P ) = E(P (t, S.J, y))− P (t, S, y)

=

∫ ∞
0

P (t, S × j, y)fJ(j)dj − P (t, S, y),

and fJ is the probability density function of the random variable J .

Let It(K,T ) be the implied volatility of P , that is It(K,T ) is defined such that PK,T
t =

PBS (t, St, K, T, It(K,T )). In order to approximate It(K,T ) at first order in b and λ, a
Taylor expansion of the implied volatility It(K,T ) is carried out in (6.3) and we prove that:

It(K,T ) = Ît(K,T ) +O
(
b2 + λ2 + bλ

)
,

where Ît(K,T ) is defined as follows:

Ît(K,T ) = d(ρ, b, λ, T − t) + a(ρ, b, λ, T − t) log(
K

Ft,T
) + c(ρ, b, λ, T − t) log(

K

Ft,T
)2,

the quantities a, c and d are defined as follows:

a(ρ, b, λ, T − t) =
btρt
2

σ′(y)

σ(y)
+ λt

E((J − 1)3)

6σ3(y)(T − t)
− λtE((J − 1)4)

6σ3(y)(T − t)
,

c(ρ, b, λ, T − t) =
λtE((J − 1)4)

24σ5(y)(T − t)2
,

and:

d(ρ, b, λ, T − t) = σ(y) + btρtσ
′(y)

σ(y)

4
(T − t) + λt

E((J − 1)2)

2σ(y)
− λt

E((J − 1)3)

4σ(y)

+
λt
24
E((J − 1)4)(

15

4σ(y)
− 1

σ3(y)(T − t)
)
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In the absence of jumps (λ = 0), the quantity RQT writes:

RQT =
σ′(yt)σ(yt)btρt + btρt

4
(T − t) (σ′(yt)

2 + σ(yt)σ
′′(yt))σ(yt)btρt

btρt
2
σ′(yt)σ(yt)

,

then: lim
T→0

RT = 2.

Suppose now that the intensity of jumps is strictly positive (λ > 0). For the ATM skew
a(ρ, b, λ, T − t) not to be infinite when T = t, it can be supposed that E((J − 1)3) =
E((J − 1)4). Thus, RQT has the following limit when T → 0:

lim
T→0

RT = 2 +
λ

σ2(yt)

(
E((J − 1)3)

2
− E((J − 1)2)

)
,

Consequently, according to this model, RT can take a value superior to 2 when T → 0.

5 Conclusion

In this chapter, we conducted a study on the Skew-Stickiness Ratio. We provided a model-
free approach which allows to measure the SSR under the risk-neutral pricing measure Q
for a given maturity T , this approach is free from any assumption on the dynamics of the
underlying asset. We also showed that the historical value of the SSR under the real-world
probability measure P can be different from its value under the pricing measure Q for short
maturities. Thus, we suggested a trading strategy which aims to monetize the difference
between RQT and RPT . We tested the suggested strategy on real data in order to show that
the assumptions made in the theoretical study are not too strong and that Mark-to-market
P&L stays well explained by the model. We focused then on the empirical observation that
RQT may exceed the value 2 in the limit of short maturities. Since the asymmetric Garch
model fails to reproduce this result for T = 0.25, we proposed a stochastic volatility model
with Jumps that can reproduce this result.
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6 Appendix

6.1 Appendix 1

Suppose that:

σBS(K,T ) = σATM

(
1 + α(σATM) log(

K

St
) +

1

2
β(σATM)

(
log(

K

St
)

)2
)
.

We have:

∂2Q

∂S2
=

∂2PBS
∂S2

+ 2
∂2PBS
∂S∂σBS

∂σBS
∂S

+
∂2PBS
∂σ2

BS

(
∂σBS
∂S

)2 +
∂PBS
∂σBS

∂2σBS
∂S2

,

Then:

S2
t

∂2Q

∂S2
=

Stn(d1)

σBS
√
τ

(
1 + 2

√
τd2σATM(α + βx) + d1d2τσ

2
ATM(α + βx)2 + σBSτσATM(α + xβ + β)

)
,

Recall that d1 =
−x+ 1

2
σ2
BSτ

σBS
√
τ

and d2 = d1 − σBS
√
τ , then the expression can be simplifies as

follows:

S2
t

∂2Q

∂S2
=

Stn(d1)

σBS
√
τ

(
1− 2x(α + βx)(1− αx− 1

2
βx2) + x2α2 + o

(
x3
))

+O
(√

τ
)
,

=
Stn(d1)

σBS
√
τ

(
1− 2xα(σATM) + x2(3α2(σATM)− 2β(σATM)) + o

(
x3
))

+O
(√

τ
)
,

=
Stn(d1)

σATM
√
τ

(
1− 2xα + x2(3α2 − 2β)

)(
1− xα− 1

2
βx2
)

+ o
(
x3
)

+O
(√

τ
)
,

=
Stn(d1)

σATM
√
τ

(
1− 3xα(σATM) + x2(5α2(σATM)− 5

2
β(σATM))

)
+ o
(
x3
)

+O
(√

τ
)
,

The quantity ∂2Q
∂σ2

ATM
can also be written using partial derivatives of PBS:

∂2Q

∂σ2
ATM

=
∂2PBS
∂σ2

BS

(
∂σBS
∂σATM

)2 +
∂PBS
∂σBS

∂2σBS
∂σ2

ATM

Using the expressions of d1 and d2, we deduce that:

1

2
σ2
ATM

∂2Q

∂σ2
ATM

=
Stn(d1)d1d2

√
τ

σBS
(
∂σBS
∂σATM

)2 +O
(√

τ
)
,

=
Stn(d1)σ

2
ATM

2σ3
BS

√
τ

x2 +O
(
x3
)

+O
(√

τ
)
,

=
Stn(d1)

2σATM
√
τ
x2 +O

(
x3
)

+O
(√

τ
)
,
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Using the same method, we provide analytic approximation for ∂2Q
∂S∂σATM

up to order 2 in x
and 0 in τ . Indeed:

∂2Q

∂S∂σATM
=

∂2PBS
∂S∂σBS

∂σBS
∂σATM

+
∂2PBS
∂σ2

BS

∂σBS
∂σATM

∂σBS
∂S

+
∂PBS
∂σBS

∂2σBS
∂S∂σATM

.

Then:

SσATM
∂2Q

∂S∂σATM
=

Stn(d1)

σATM
√
τ

(
σ2
ATM

σ2
BS

x− σ3
ATM

σ3
BS

x2(α(σATM) + xβ(σATM))

)
∂σBS
∂σATM

+O
(√

τ
)
,

=
Stn(d1)

σATM
√
τ

(
(1− 2α(σATM)x)x− (1− 3αx)x2(α + xβ)

) ∂σBS
∂σATM

+O
(√

τ
)
,

=
Stn(d1)

σATM
√
τ

(
x− x2(2α(σATM)− σATMα′(σATM))

)
+O

(√
τ
)

+O
(
x3
)
.

6.2 Appendix 2

Let P be the price of an European option on the stock S with maturity T and payoff H(ST ):

P (t, St, Yt, K, T ) = e−r(T−t)EQ(H(ST )|Ft).

Using Itô’s lemma:
LP = 0,

where the operator L is defined as follows:

LP =
∂P

∂t
+
∂P

∂S
St(r − λk) +

1

2
S2
t σ

2(y)
∂2P

∂S2
+

1

2

∂2P

∂y2
b2 +

∂2P

∂S∂y
Stσ(y)btρt + λφ(P )− rP.

where the operator φ is defined as:

φ(P ) = E(P (t, S.J, y))− P (t, S, y)

=

∫ ∞
0

P (t, Sj, y)fJ(j)dj − P (t, S, y),

and fJ is the probability density function of the random variable J . In order to separate the
terms in L by their orders in b and λ, the following differential operators are introduced:

L0,0 =
∂

∂t
+ r(St

∂

∂St
− .) +

1

2
σ2(y)S2

t

∂2

∂S2
t

,

L1,0 = Stσ(y)ρt
∂2

∂St∂y
,

L2,0 =
1

2

∂2

∂y2
,

L0,1 = φ(.)− kSt
∂

∂St
,
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which implies:

LP =
(
L0,0 + bL1,0 + b2L2,0 + λL0,1

)
P = 0 (6.1)

Under the assumption that b and λ are small, the option price P can be expanded in powers
of b and λ:

P =
∞∑
i=0

∞∑
j=0

biλjPi,j (6.2)

By insertion of (6.2) in (6.1) and regroupment of terms by their powers in b and λ, the
following equations are obtained:

(0, 0) : L0,0P0,0 = 0,

(1, 0) : L0,0P1,0 + L1,0P0,0 = 0,

(0, 1) : L0,0P0,1 + L0,1P0,0 = 0.

Using the zero-order term (0, 0), it can be seen that P0,0 is the solution of the equation:

LBS(σ(y))P0,0 = 0,

with the final condition:

P0,0(T, ST , YT ) = H(ST ).

Then, P0,0 is the Black-Scholes price of the option with implied volatility equal to σ(y):

P0,0(t, St, Yt) = PBS(t, St, σ(yt), K, T ).

The equation of the (1, 0)-term (at order 1 in b and 0 in λ) shows that P1,0 verifies:

LBS (σ(y))P1,0 = −Stσ(y)ρt
∂2P0,0

∂S∂y
,

with the final condition:

P1,0(T, ST , YT ) = 0.

In order to determine P1,0, we start by computing the term Stσ(y) ∂2

∂S∂y
LBS(σ(y)):

Stσ(y)
∂2

∂S∂y
LBS(σ(y)) = LBS(σ(y))Stσ(y)

∂2

∂S∂y
+ σ2(y)σ′(y)St

∂

∂St
(S2

t

∂2

∂S2
t

)

Let R(t, St, yt) be defined as follows:

R(t, St, yt) = (T − t)Stσ(yt)ρt
∂2P0,0

∂S∂y
− (T − t)2

2
σ2(yt)σ

′(yt)ρtD1,SD2,SP0,0
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where D1,S and D2,S denote the two following differential operators:

D1,S = St
∂

∂St
, D2,S = S2

t

∂2

∂S2
t

Then:

LBS(σ(y))R(t, St, Yt) = −Stσ(yt)ρt
∂2P0,0

∂S∂y

+ (T − t)
(
Stσ(y)

∂2

∂S∂y
LBS (σ(y))P0,0 − ρtσ2(y)σ′(y)D1,SD2,SP0,0

)
+ (T − t)σ2(yt)σ

′(yt)ρtD1,SD2,SP0,0

− (T − t)2

2
σ2(yt)σ

′(yt)ρtD1,SD2,SLBS (σ(y))P0,0.

Since LBS (σ(y))P0,0 = 0, it can be deduced that:

LBS(σ(y))R(t, St, yt) = −Stσ(yt)ρt
∂2P0,0

∂S∂y

and R(T, ST , yT ) = 0. Then, it follows that:

P1,0(t, St, yt) = R(t, St, yt)

P1,0(t, St, Yt) = (T − t)Stσ(yt)ρt
∂2P0,0

∂S∂y
− (T − t)2

2
σ2(yt)σ

′(yt)ρtSt
∂

∂St
(S2

t

∂2P0,0

∂S2
t

).

Using the relation between the Gamma and the Vega in the Black-Scholes model, it follows
that:

P1,0(t, St, Yt) = (T − t)Stσ(yt)σ
′(yt)ρt

∂2P0,0

∂S∂σ(y)
− (T − t)2

2
σ2(yt)σ

′(yt)ρt
St

σ(y)(T − t)
∂2P0,0

∂S∂σ(y)

=
T − t

2
Stσ(yt)σ

′(yt)ρt
∂2P0,0

∂S∂σ(y)

Finally, P0,1 satisfies the equation in the (0, 1)-term (of order 1 in λ and 0 in b):

LBS (σ(y))P0,1 = Stk
∂P0,0

∂S
− φ(P0,0),

with the final condition:

P0,1(T, ST , YT ) = 0.

Then, since the operator LBS (σ(y)) commits with the operators φ and S ∂
∂S

, it follows:

P0,1(t, St, Yt) = (T − t)(φ(P0,0)−
∂P0,0

∂S
Stk).
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As a conclusion, the option price P can be approximated at order 1 in b and λ by P̂ :

P̂ (t, St, yt) = P0,0 + bP1,0 + λP0,1,

where:

P0,0(t, St, yt) = PBS(t, St, σ(yt), K, T ),

P1,0(t, St, yt) =
T − t

2
Stσ(yt)σ

′(yt)ρt
∂2P0,0

∂S∂σ
,

P0,1(t, St, yt) = (T − t)(φ(P0,0)− Stk
∂P0,0

∂S
).

6.3 Appendix 3

The option price PK,T can be approximated at order 1 in b and λ as:

PK,T = P0,0 + bP1,0 + λP0,1 +O
(
b2 + λ2 + bλ

)
.

Let It(K,T ) be the implied volatility of PK,T , which means that PK,T
t = PBS(t, St, It(K,T ), K, T ).

Recall that if b = λ = 0, then the constant volatility model is recovered and It(K,T ) = σ(yt),
therefore It(K,T ) can be written at first order in b and λ as:

It(K,T ) = σ(y) + bI1,t(K,T ) + λI2,t(K,T ) +O
(
b2 + λ2 + bλ

)
Thus, we can perform the following Taylor development:

PK,T
t = PBS(t, St, σ(yt)) +

∂PBS
∂σ |σ(y)

(bI1,t(K,T ) + λI2,t(K,T )) +O
(
b2 + λ2 + bλ

)
Since P0,0 = PBS(t, St, σ(y), K, T ), then by equalizing terms which have the same order in b
and λ, it can be deduced that:

∂PBS
∂σ |σ(yt)

I1,t(K,T ) = P1,0 =
T − t

2
Stσ(yt)σ

′(yt)ρt
∂2P0,0

∂S∂σ
∂PBS
∂σ |σ(yt)

I2,t(K,T ) = P0,1 = (T − t)(φ(P0,0)− kSt
∂P0,0

∂S
)

The term P0,0 is a Black-Scholes price, then ∂2P0,0

∂S∂σ
and ∂PBS

∂σ
have the following analytic

expressions:

∂2P0,0

∂S∂σ(y)
= −n(d1)d2

σ(y)

∂P0,0

∂σ(y)
= Stn(d1)

√
T − t

where:

d1 =
log(

Ft,T

K
) + σ(y)2

2
(T − t)

σ(y)
√
T − t

d2 =
log(

Ft,T

K
)− σ(y)2

2
(T − t)

σ(y)
√
T − t

Ft,T = Ste
r(T−t)
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By doing necessary calculations, it can be deduced that:

I1,t(K,T ) =
ρt
2

σ′(y)

σ(y)
log(

K

Ft,T
) + ρtσ

′(y)
σ(y)

4
(T − t)

We aim now to give the expression of I2(K,T ). Recall that:

P0,1(t, St, yt) = (T − t)
(
φ(P0,0)− kSt

∂P0,0

∂S

)
Conditional on the variable J , and under the hypothesis that (J − 1) ∼ 0, the quantity
P0,0(StJ) can be written as:

P0,0(StJ) = P0,0(St) + St(J − 1)
∂P0,0

∂S
(St) +

1

2
S2
t (J − 1)2

∂2P0,0

∂S2
(St) +

1

6
S3
t (J − 1)3

∂3P0,0

∂S3
(St)

+
1

24
S4
t (J − 1)4

∂4P0,0

∂S4
(St) +O

(
(J − 1)5

)
Then, we can take the expectation of the previous equation with respect to the distribution
of J , and we deduce that:

E(P0,0(StJ)) = P0,0(St) + Stk
∂P0,0

∂S
(St) +

1

2
S2
tE((J − 1)2)

∂2P0,0

∂S2
(St)

+
1

6
S3
tE((J − 1)3)

∂3P0,0

∂S3
(St) +

1

24
S4
tE((J − 1)4)

∂4P0,0

∂S4
(St) +O

(
E((J − 1)5)

)
We can then write that:

I2,t(K,T ) = (T − t)
1
2

∂2P0,0

∂S2 (St)S
2
tE((J − 1)2) + 1

6

∂3P0,0

∂S3 (St)S
3
tE((J − 1)3) + 1

24

∂4P0,0

∂S4 (St)S
4
tE((J − 1)4)

∂PBS

∂σ(y)

+O
(
E((J − 1)5)

)
Here again, since P0,0 is a Black-Scholes option price, the quantities ∂3P0,0

∂S3 and ∂4P0,0

∂S4 have
analytic expressions:

∂3P0,0

∂S3
(St) = − n(d1)

σ(y)
√
T − tS2

t

(1 +
d1

σ(y)
√
T − t

)

and:

∂4P0,0

∂S4
(St) =

1

σ(y)
√
T − t

(
d1n(d1)

S2
t

1

Stσ(y)
√
T − t

+
2n(d1)

S3
t

)

− 1

σ2(y)(T − t)
(
(1− d21)n(d1)

S2
t

1

Stσ(y)
√
T − t

− 2d1n(d1)

S3
t

)

Then using the definition of d1, it can be deduced that:

I2,t(K,T ) =
E((J − 1)2)

2σ(y)
− E((J − 1)3)

4σ(y)
+

E((J − 1)3)

6σ3(y)(T − t)
log(

K

Ft,T
)

+
E((J − 1)4)

24
(−

4 log(K
Ft

)

σ3(y)(T − t)
+

log(K
Ft

)2

σ5(y)(T − t)2
+

15

4σ(y)
− 1

σ3(y)(T − t)
) +O

(
E((J − 1)5)

)
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In conclusion, the implied volatility It(K,T ) writes It(K,T ) = Ît(K,T ) + O(b2 + λ2 + bλ)
where:

Ît(K,T ) = d(ρ, b, λ, T − t) + a(ρ, b, λ, T − t) log(
K

Ft,T
) + c(ρ, b, λ, T − t) log(

K

Ft,T
)2

and the functions a, c and d are summarized as:

a(ρ, b, λ, T − t) =
btρt
2

σ′(y)

σ(y)
+ λt

E((J − 1)3)

6σ3(y)(T − t)
− 4λtE((J − 1)4)

24σ3(y)(T − t)
,

c(ρ, b, λ, T − t) =
λtE((J − 1)4)

24σ5(y)(T − t)2
.

d(ρ, b, λ, T − t) = σ(y) + btρtσ
′(y)

σ(y)

4
(T − t) + λt

E((J − 1)2)

2σ(y)
− λt

E((J − 1)3)

4σ(y)

+
λt
24
E((J − 1)4)(

15

4σ(y)
− 1

σ3(y)(T − t)
)

6.4 Appendix 4

At order 0 in xL, the hedging ratio nH writes:

nH =
n(d1,L)

n(d1,H)

then:

Γt =
1

2
S2
t σ

2
BS(KL, T )

(
∂2PL

BS

∂S2
− σ2

BS(KH , T )

σ2
BS(KL, T )

n(d1,L)

n(d1,H)

∂2PH
BS

∂S2

)
,

=
1

2
S2
t σ

2
BS(KL, T )

(
∂2PL

BS

∂S2
− σBS(KH , T )

σBS(KL, T )

∂2PL
BS

∂S2

∂2PH
BS

∂S2

∂2PH
BS

∂S2

)
,

=
1

2
S2
t σ

2
BS(KL, T )

(
∂2PL

BS

∂S2
− σBS(KH , T )

σBS(KL, T )

∂2PL
BS

∂S2

)
,

=
1

2
S2
t σBS(KL, T )

∂2PL
BS

∂S2
(σBS(KL, T )− σBS(KH , T )) ,

Thus, the discriminant Dt of the quadratic equation can be approximated at order 2 in xL
as following:

Dt =

(
n(dL1 )xL
σ2
ATM

√
τ

)2

StS2
Td 〈log(S)〉2t + 2Γtdt

(
Stn(dL1 )

σ3
ATM

√
τ
x2L

)
S2
Td 〈log(S)〉t ,

=
n(dL1 )2x2LS

2
t S2

T

τσ3
ATM

d 〈log(S)〉t dt
(
σBS(KL, T )− σBS(KH , T ) +

d 〈log(S)〉t
σATM(T )dt

)
.

For T ∼ 0, we can make the approximation d 〈log(S)〉t = σ2
ATM(T )dt and then Dt ≥ 0 if

σBS(KL, T )− σBS(KH , T ) + σATM(T ) ≥ 0.
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