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W e derive a backward and forward nonlinear PDEs that govern the implied volatil-
ity of a contingent claim whenever the latter is well-defined. This would include
at least any contingent claim written on a positive stock price whose payoff at a

possibly random time is convex. We also discuss suitable initial and boundary conditions
for those PDEs. Finally, we demonstrate how to solve them numerically by using an
iterative finite-difference approach.

Introduction

As this is well-known, given an option contract written, e.g., on some stock, the implied volatility is
derived from an option price and shows what the market implies about the underlying stock volatility
in the future. For instance, the implied volatility is one of six inputs used in a simple option pricing
(Black-Scholes) model, but is the only one that is not directly observable in the market. The standard
way to determine it by knowing the market price of the contract and the other five parameters, is
solving for the implied volatility by equating the model and market prices of the option contract.
There exist various reasons why traders prefer considering option positions in term of the implied

volatility, rather than the option price itself, see e.g., [Natenberg, 1994]. However, in this paper our
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goal is not to discuss the importance of this concept. Instead we focus on the way how the implied
volatility is computed, and namely - on performance of this process.

As was mentioned, the traditional method of computing the Black-Scholes implied volatility is
relatively simple. Perhaps, the main problem with such an approach occurs if one needs to simultaneously
compute the implied volatility for a wide set of the model (contract) parameters. Then, the iterative
root solver can converge slowly because i) there is no a universal good initial guess to kick off the
iterations, and ii) for some regions of the model parameters the solution either doesn’t exist at all, or
is hard to be found as the sensitivity of the model price to changes in the implied volatility is very low.

Therefore, a surprising idea would be to replace an algebraic equation Eq.(2) used to determine the
implied volatility with another object, for instance, a partial differential equation (PDE). Here the
surprise means that the PDE is a more complicated object than the algebraic equation, and solving
the PDE (especially nonlinear) requires some special methods usually much more complicated than a
simple root solver. However, in contrast to the algebraic equation that should be solved independently
at every given point e.g., in the space of option strikes and maturities, the PDE approach allows finding
the solution simultaneously in many such the points by using a series of marching sweeps in time. Also,
solving a linear PDEs doesn’t require iterations, and hence, there is no need for the good initial guess.
In this paper we demonstrate how such a PDE could be derived by using just a general definition

of the implied volatility. Moreover, we further extend this idea by deriving several types of these
PDEs. For instance, we obtain quasilinear backward and forward parabolic PDEs, and also nonlinear
hyperbolic PDEs of the first order. As these PDEs are new and yet have not been investigated in the
literature, we need to discuss suitable initial and boundary conditions that provide the solution of these
PDE to exist and be unique. We also develop an iterative numerical method to solve the PDEs by
using a finite-difference approach. The method is of second order of approximation in both space and
time, is unconditionally stable and preserves positivity of the solution. Using this method we compute
the PDE implied volaitlity and find that our intuition behind the main idea of the paper is correct. In
other words, performance of the finite-difference solver exceeds that of the traditional approach by
factor of forty. However, this result is subject to some details which are highlighted in the last Section.
Despite in this paper the PDE approach is considered as an alternative to the traditional method

of getting the implied volatility by using the root solver, the latter in turn was seriously improved
within the last few years. First, in [Jackel, 2015] modified Newton iterations were proposed to solve
Eq.(2). When doing so the entire input domain is decomposed into four areas. Rational approximations
are used to provide initial guesses and reduce the number of iterations. Also this method provides
an accuracy close to the machine precision. However, it breaks possible vectorization (but we don’t
consider this topic in this paper anyway).
In [Glau et al., 2018] the approach of [Jackel, 2015] is improved by using a bivariate Chebyshev

interpolation of the implied volaitlity. This algorithm allows vectorization and consists of two steps.
At the offline phase polynomial weights of a low-rank Chebyshev interpolation of the implied volatility
surface are computed and stored for four different input domains, using the algorithm of [Jackel, 2015].
This step is only performed once. During the online phase the input data is split into four domains,
and the Chebyshev interpolation is applied to each domain by choosing the precomputed nodes from
the offline step.

From this prospective, this problem can also be solved by building an artificial neural network (ANN)
and training it on a given data set which will include all parameters of the contract (the spot price,
the time to maturity, the strike, option price, etc.) and output the Black-Scholes implied volatility.
The method of [Jackel, 2015] can be used when training this ANN as the golden "pricer". As such, the
approach proposed in this paper becomes, apparently, less important since the ANN training could
be done offline, while performance of the "pricer" is less important, rather than the accuracy. This is
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completely opposite to the proposed PDE approach. However, using the ANN still requires solving
various problems, such as no-arbitrage, the existence of derivatives, etc., see [Itkin, 2019]. Also, the
advantage of using the ANN approach vs traditional methods, is, perhaps, a property inherent to many
financial models, and not only to the model we consider in this paper.
Aside of practical importance, the existence of the model-free quasilinear parabolic PDE (or the

other hyperbolic PDE) governing the implied volatility is an interesting fact, which yet has not been
discovered in the literature. Therefore, the novelty of this paper consists in the derived equations
together with the proposed numerical method of their solution.
The rest of the paper is organized as follows. In Section 1 we derive a backward quasilinear PDE

for the implied volatility. In Section 2 a similar approch is used to derive an analogous forward PDE.
Section 3 discusses how one can set the appropriate initial and boundary conditions for these PDEs. In
Section 4 we also derive some other PDEs for the implied volatility that have a different type (nonlinear
hyperbolic rather than quasilinear parabolic equations). Then we construct a numerical method to
solve these equations which is described in detail in Section 5 and two Appendices. The results of
our numerical experiments and comparison of two methods: i) the traditional method of finding the
implied volatility by using a root solver with the Black-Scholes equation, and ii) the proposed method
of solving the derived PDEs numerically, are provided in Section 6. In Section 7 we discussed the
results obtained and conclude.

1. Backward PDE

Consider a class of contingent claims which have a single payoff and which are written on the spot
price path of a single underlying risky asset. The Black-Scholes implied volatility, [Hull, 1997], can
be defined for any such contingent claim, as long as the claim’s value in the Black-Scholes model is
monotonic in the volatility of the underlying asset. Standard examples include European options
and American options that are optimally held alive. If the claim’s value is decreasing in volatility,
then the value of a short position in that claim is increasing in volatility. Hence, there is no loss in
generality if implied volatility is only defined for short or long positions in claims whose value increases
with volatility. We refer to any such claim as an option. This section derives a new nonlinear partial
differential equation (PDE) that relates the Black-Scholes implied volatility to the option price, to the
underlying stock price, and to calendar time.

The Black-Scholes implied volatility is a useful measure, as it is a market practice instead of quoting
the option premium in the relevant currency, the options are quoted in terms of the Black-Scholes
implied volatility. Over the years, option traders have developed an intuition in this quantity. However,
it can be further generalized by using a similar concept, but replacing the Black-Scholes framework
with another one. For instance, in [Corcuera et al., 2009] this is done under a Lévy framework, and,
therefore, based on distributions that match more closely historical returns. In this paper we don’t
consider these generalizations, and are concentrated only on the Black-Scholes implied volatility.
Consider a fixed time horizon t ∈ [0, T ] where T > 0 is the time to maturity. We assume that the

underlying stock price S is strictly positive over this horizon. Let BS(S,K, σ, r, q, t) denote the function
relating the Black-Scholes model value BS(S,K, σ, r, q, t) ∈ R of a contingent claim to the underlying
stock price level S > 0, the strike K > 0, the (constant) volatility σ > 0, calendar time t ∈ [0, T ],
the constant interest rate r and continuous dividend q. Let subscripts denote partial derivatives. We
assume that the function BS(S,K, σ, r, q, t) is governed by the Black-Scholes backward PDE. To make
the notation easier, further in the expression BS(S,K, σ, r, q, t) we will drop all variables not relevant
to our particular context. Therefore, instead, in this Section we denote the function value as BS(S, σ, t).
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With this notation, the corresponding Black-Scholes PDE reads, [Hull, 1997]

∂BS(t, S, σ)
∂t

+ (r − q)S∂BS(t, S, σ)
∂S

+ 1
2σ

2S2∂
2BS(t, S, σ)

∂S2 = rBS(t, S, σ), (1)

defined on some open region R of space and time. For example, for a European Call or Put, the region
R would be the Cartesian product RE ≡ [0,∞)× [0, T ). As a second example, for a down-and-out Call
with a lower barrier L ∈ (0, S0), the region R would be the Cartesian product RL ≡ (L,∞)× [0, T ).

We furthermore assume that the Vega of the claim is always strictly positive, i.e. BSσ(S, σ, t) > 0 on
R. This clearly holds for a European Call or Put onRE , but it can also be shown that it holds for a down-
and-out Call on RL. We also assume that one can directly observe the market price Z(T,K) of such a
claim, and that this market price lies in some arbitrage-free open interval A ⊂ R. For a European Call
struck at K, AC ≡ ((QTS −DTK)+, SQT ), where DT = e−rT is the discount factor, and QT = e−qT

is the price appreciation factor. For a European Put struck at K, AP ≡ ((DTK −QTS)+, DTK). For
a down-and-out Call struck at K, AD ≡ ((DTK −QTS)+, QT (S − L)), [Hull, 1997].

For any such claim, we can implicitly define a function Σ(S, t,K, T, r, q, Z) that relates the implied
volatility Σ of the contingent claim to (S, t) ∈ R and to the market price of the contingent claim
Z ∈ A. Again, for easy of notation we drop K,T, r, q from the list of independent variables, and then
the definition of Σ(S, t, Z) reads

BS(S,Σ(S, t, Z), t) = Z. (2)

Let D denote the domain for this function, which is defined as the Cartesian product of R and A.
Since the PDE Eq.(1) holds for any level of σ > 0, it holds in particular if we set σ = Σ(S, t, Z):{

∂BS(t, S, σ)
∂t

+ (r − q)S∂BS(t, S, σ)
∂S

+ 1
2σ

2S2∂
2BS(t, S, σ)

∂S2 − rBS(t, S, σ)
}∣∣∣∣

σ=Σ(S,t,Z)
= 0. (3)

We now show that Eq.(2) and Eq.(3) can be used to generate a nonlinear PDE governing Σ(S, t, Z) on
D.

First, differentiate Eq.(2) with respect to t:

BSt(S,Σ(S, t, Z), t) +BSσ(S,Σ(S, t, Z), t)Σt(S, t, Z) = 0. (4)

Second, differentiate Eq.(2) with respect to S instead:

BSS(S,Σ(S, t, Z), t) +BSσ(S,Σ(S, t, Z), t)ΣS(S, t, Z) = 0. (5)

In what follows, we will also drop the 3 arguments of Σ for notational ease, as it shouldn’t give rise
to any confusion. Now differentiate Eq.(5) with respect to S:

BSSS(S,Σ, t) + 2BSSσ(S,Σ, t)ΣS +BSσσ(S,Σ, t)Σ2
S +BSσ(S,Σ, t)ΣSS = 0. (6)

Substituting Eq.(4) and Eq.(6) into Eq.(3) implies:

−BSσ(S,Σ, t)Σt −
1
2Σ2S2

[
2BSSσ(S,Σ, t)ΣS +BSσσ(S,Σ, t)Σ2

S +BSσ(S,Σ, t)ΣSS

]
(7)

+ (r − q)SBSS(S,Σ, t) = rBS(S,Σ, t).

We now show that we can express Vanna BSSσ(S,Σ, t) and Volga BSσσ(S,Σ, t) in terms of Vega
BSσ(S,Σ, t). First, differentiate Eq.(2) with respect to Z:

BSσ(S,Σ, t)ΣZ = 1. (8)
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Next, differentiate Eq.(8) with respect to S:

BSSσ(S,Σ, t)ΣZ +BSσσ(S,Σ, t)ΣSΣZ +BSσ(S,Σ, t).ΣSZ = 0. (9)

Now differentiate Eq.(8) with respect to Z instead:

BSσσ(S,Σ, t)Σ2
Z +BSσ(S,Σ, t)ΣZZ = 0. (10)

Solving Eq.(10) for Volga BSσσ(S,Σ, t) yields

BSσσ(S,Σ, t) = −BSσ(S,Σ, t)ΣZZ

Σ2
Z

. (11)

Substituting Eq.(11) into Eq.(9) and solving for Vanna BSSσ(S,Σ, t) implies:

BSSσ(S,Σ, t) = BSσ(S,Σ, t) ΣS

Σ2
Z

ΣZZ −BSσ(S,Σ, t)ΣSZ

ΣZ
. (12)

Substituting Eq.(11) and Eq.(12) into Eq.(7) yields

0 = BSσ(S,Σ, t)
{

Σt + 1
2Σ2S2

[(ΣS

ΣZ

)2
ΣZZ − 2 ΣS

ΣZ
ΣSZ + ΣSS

]}
(13)

− (r − q)SBSS(S,Σ, t) + rZ.

Also from Eq.(8) we can express the option Vega via ΣZ , from Eq.(5) - the option Delta, and substitute
these expressions into Eq.(13) to obtain

0 = BSσ(S,Σ, t)
{

Σt + 1
2Σ2S2

[(ΣS

ΣZ

)2
ΣZZ − 2 ΣS

ΣZ
ΣSZ + ΣSS

]
+ (r − q)SΣS + rZΣZ

}
. (14)

Therefore, if the option Vega is non-zero, the backward PDE for the implied volatility Σ finally takes
the form

Σt + 1
2Σ2S2

[(ΣS

ΣZ

)2
ΣZZ − 2 ΣS

ΣZ
ΣSZ + ΣSS

]
+ (r − q)SΣS + rZΣZ = 0. (15)

This is a quasilinear1 PDE of the parabolic type.
When the Black-Scholes model Delta of a contingent claim is known in closed form, there is an

alternative quasilinear PDE that governs the function Σ(S,Z, t) on D. Solving Eq.(8) for Vega
BSσ(S,Σ, t), substituting the result into Eq.(5), and then solving for Delta BSS(S,Σ, t) implies:

BSS(S,Σ, t) = −ΣS

ΣZ
. (16)

Hence Eq.(13) can also be written as:

Σt + 1
2Σ2S2

[
BS2

S(S,Σ, t)ΣZZ + 2BSS(S,Σ, t)ΣSZ + ΣSS

]
+ (r − q)SΣS + rZΣZ = 0. (17)

1A partial differential equation is said to be quasilinear if it is linear with respect to all the highest order derivatives of
the unknown function, [Pinchover and Rubinstein, 2005].
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To illustrate, it is well known that for a European Call, Delta BSS(S,Σ, t) is known in closed form:

BSS(S,Σ, t) = N(d1(S,Σ, t)), (18)

where:

d1(S,Σ, t) ≡
ln S

K + Σ2

2 T

Σ
√
T

, (19)

and N(x) is the normal CDF. Hence, for a European Call, the quasilinear PDE Eq.(17) can also be
represented as another quasilinear PDE:

Σt + 1
2Σ2S2

[
N 2(d1(S,Σ, t))ΣZZ + 2N (d1(S,Σ, t))Σ2

SZ + ΣSS

]
+ (r − q)SΣS + rZΣZ = 0, (20)

whose domain is the Cartesian product of RE and AC , which is D = (0,∞) × (0, T ) × ((QTS −
DTK)+, QTS). Similar quasilinear PDE’s can be derived for European Puts or down-and-out Calls.
For an American put option with a positive early exercise premium, in the continuation region the

relevant PDE is Eq.(15), since neither the value nor the Delta is known in closed form.

2. Forward equation

In practice it is often necessary to simultaneously compute the Black-Scholes implied volatility of many
options written on the same underlying, but having different strikes and maturity. This is to construct
so-called the implied volatility surface, given market quotes Z(K,T ) and the market values of S, r, q.
However, it is well-known that solving this problem by using the backward PDE is time-consuming
since for every pair K,T a separate backward PDE has to be solved. In contrast, the forward equation
can be used to efficiently do this in one sweep, see e.g., [Dupire, 1994, Gatheral, 2006].

Having this in mind, in this Section we derive a forward PDE for the implied volatility Σ(S, T,K, r, q, Z).
For easy of notation we will write it as Σ(T,K,Z), thus dropping parameters that don’t change. The
derivation can be done in a way similar to that in Section 1. Therefore, here we omit a detailed algebra,
and provide just short explanations.

Again, we can start with the definition of the implied volatility Σ(K,T, Z) in Eq.(2), which in new
variables read

BS(K,Σ(K,T, Z), T ) = Z, (21)

where Σ(K,T, Z) ∈ [0,∞), and the domain of definition for (K,T, Z) is RF,E ≡ [0,∞)× (0,∞)×AC .
To proceed, we need a forward PDE for the European option price BS(K,T, σ) which is also known

as Dupire’s equation, [Dupire, 1994]

∂BS(K,T, σ)
∂T

= 1
2σ

2(K)K2∂
2BS(K,T, σ)

∂K2 − (r − q)K∂BS(K,T, σ)
∂K

− qBS(K,T, σ). (22)

Since the PDE Eq.(22) holds for any level of σ > 0, it holds, in particular, if we set σ = Σ(K,T, Z). In
what follows, we will drop the 3 arguments of Σ for notational ease.

Differentiating Eq.(21) with respect to T , K and twice with respect to K yields

0 = BST (K,Σ, T ) +BSσ(K,Σ, T )ΣT , (23)
0 = BSK(K,Σ, T ) +BSσ(K,Σ, T )ΣK ,

0 = BSKK(K,Σ, T ) + 2BSKσ(K,Σ, T )ΣK +BSσσ(K,Σ, T )Σ2
K +BSσ(K,Σ, T )ΣKK .
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Substituting Eq.(23) into Eq.(22) implies:

0 = BSσ(K,Σ, T )ΣT −
1
2Σ2K2

[
2BSKσ(K,Σ, T )ΣK +BSσσ(K,Σ, T )Σ2

K +BSσ(K,Σ, T )ΣKK

]
+ (r − q)KBSσ(K,Σ, T )ΣK − qBS(K,Σ, T ). (24)

Again, derivatives BSKσ(K,Σ, T ) and BSσσ(K,Σ, T ) can be expressed in terms of BSσ(K,Σ, T ).
Differentiating Eq.(21), first with respect to Z, and then with respect either to K, or to Z, yields

1 = BSσ(K,Σ, T )ΣZ , (25)
0 = BSKσ(K,Σ, T )ΣZ +BSσσ(K,Σ, T )ΣKΣZ +BSσ(K,Σ, T )ΣKZ ,

0 = BSσσ(K,Σ, T )Σ2
Z +BSσ(K,Σ, T )ΣZZ .

The last equation in this system can be solved for BSσσ(K,Σ, T ), and then the second one - for
BSKσ(K,Σ, T ). Substituting these solutions into Eq.(24) yields

0 = BSσ(K,Σ, T )
{

ΣT −
1
2Σ2K2

[(ΣK

ΣZ

)2
ΣZZ − 2ΣK

ΣZ
ΣKZ + ΣKK

]
+ (r − q)KΣK

}
− qZ. (26)

Using the first line in Eq.(25), this could be re-written as

0 = BSσ(K,Σ, T )
{

ΣT −
1
2Σ2K2

[(ΣK

ΣZ

)2
ΣZZ − 2ΣK

ΣZ
ΣKZ + ΣKK

]
+ (r − q)KΣK − qZΣz

}
. (27)

If the option Vega is non-zero, we finally obtain the forward PDE for the implied volatility Σ(K,T, Z)

0 = ΣT −
1
2Σ2K2

[(ΣK

ΣZ

)2
ΣZZ − 2ΣK

ΣZ
ΣKZ + ΣKK

]
+ (r − q)KΣK − qZΣZ . (28)

This PDE has to be solved subject to some initial and boundary conditions which are discussed in
Section 3.

Since we consider the European options, the Black-Scholes model strike delta of a contingent claim
is known in closed form. Then, similar to the previous Section, the PDE in Eq.(28) could be slightly
simplified. Indeed, as follows from the second line of Eq.(23) and first line of Eq.(25)

BSK(S,Σ, T ) = −ΣK

ΣZ
. (29)

Hence Eq.(28) can also be re-written as:

0 = ΣT −
1
2Σ2K2

[
BS2

K(K,Σ, T )ΣZZ + 2BSK(K,Σ, T )ΣKZ + ΣKK

]
+ (r − q)KΣK − qZΣZ . (30)

For instance, for a European Call, the strike delta BSK(K,Σ, T ) can be found in closed form. Indeed,
since the Black-Scholes European Call option price is a homogeneous function of order 1 in (S,K) it is
easy to find that

KBSK(K,σ, T ) = BS(K,σ, T )− SBSS(K,σ, T ) = −Ke−rTN(d2(K,σ, T )), (31)

where d2 = d1 − σ
√
T .
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3. Initial and boundary conditions

The non-linear PDE Eq.(28) describes evolution of the function Σ(K,T, Z) ∈ [0,∞) at the domain
RF,E , and has to be solved subject to some initial and boundary conditions. However, this immediately
brings some problems.
Indeed, the initial condition for Eq.(28) has to be set at T = 0. From the Black-Scholes formula

we know that the option Vega BSσ(K,Σ, T ) vanishes at T = 0. Therefore, the expression in curly
braces in Eq.(26) could have any value. Also, the equation BSσ(K,Σ, T ) = 0 doesn’t have a solution
for Σ. This is because at T = 0 function BS(K,Σ, 0) gets its intrinsic value (e.g. for the Call option -
BS(K,Σ, 0) = (S −K)+) which doesn’t depend on Σ. Accordingly, for the ITM options there is no Σ
which would make the intrinsic value zero, and for the OTM options any Σ could be chosen.

To resolve this, we make a change of the dependent variable Σ(K,T, Z) 7→ S(K,T, Z) = Σ(K,T, Z)
√
T .

This pursues two goals. First, at T = 0 a natural initial condition implies S(K, 0, Z) = 0. Second, if
we know S(K,T, Z) given some values of (K,T, Z), the value of Σ(K,T, Z) can be easily restored.

The forward PDE for the new dependent variable S(K,T, Z) can be derived from Eq.(28), which
yields

ST = 1
2TS2K2

[(
SK

SZ

)2
SZZ − 2SK

SZ
SKZ + SKK

]
− (r − q)KSK + qZSZ + 1

2TS. (32)

Since Eq.(32) is a 2D parabolic PDE (quasilinear), the boundary conditions must be set ∀T > 0.
Suppose that we consider an European Call defined at the domain Ω : [K,Z] ∈ [0,∞]× ((QTS −

DTK)+, QTS) which is depicted in Fig. 1. A special attention should be drawn to two of these
boundaries: Z = 0 and Z = QTS −DtK - to decide whether the PDE needs any boundary condition
at them.

Z =
SQ

T −
K
D

T

K

Z

0

QTS

QTS/DT

Ω
Figure 1: The domain Ω : [K,Z] ∈ [0,∞]×AC .

As mentioned in [Itkin and Carr, 2011], the correct boundary conditions are determined by the speed
of the diffusion term as we approach the boundary in a direction normal to the boundary. To illustrate,
consider a PDE

Ct = a(x)Cxx + b(x)Cx + c(x)C, (33)

where C = C(t, x) is some function of the time t and the independent variable x ∈ [0,∞), a(x), b(x), c(x) ∈
C2 are some known functions of x. Then, as shown by [Oleinik and Radkevich, 1973], no boundary
condition is required at x = 0 if limx→0[b(x)− ax(x)] ≥ 0. In other words, the convection term at x = 0
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is flowing upwards and dominates as compared with the diffusion term. A well-known example of such
consideration is the Feller condition as applied to the Heston model, see, e.g., [Lucic, 2008].

To make it clear, no boundary condition means that instead of the boundary condition at x→ 0 the
PDE itself should be used at this boundary with coefficients a(0), b(0), c(0).
In Section 5 we show how to solve Eq.(32) by using temporal discretization that gives rise to the

following equation

ST = 1
2T S̃2K2

(S̃K

S̃Z

)2

SZZ − 2S̃K

S̃Z

SKZ + SKK

− (r − q)KSK + qZSZ + 1
2TS. (34)

Here S = S(T + ∆T,K,Z), S̃ = S̃(T,K,Z), and ∆T is the step of the temporal grid in T . The
Eq.(34) is a linear PDE since all coefficients are already known (they are either given, e.g., r, q, T , or
known from the previous time step). Thus, Eq.(34) is a 2D version of Eq.(33).
Accordingly, in the K direction with allowance for Eq.(23),Eq.(31), the condition limK→0 b(K)−

a′(K) ≥ 0 reads

lim
K→0

[
b(K)− a′(K)

]
= lim

K→0

{
−
[
(r − q)K + S̃K

T

(
S̃ +KS̃K

)]}

= lim
K→0

{
−K

[
r − q + S̃

T

(
S̃−K

√
T
BSK(K,Σ, T )
BSσ(K,Σ, T )

)]}

= lim
K→0

{
−K

[
r − q + S̃

T

(
S̃ + N(d2(K,σ, T ))

Φ(d2(K,Σ, T ))

)]}
= 0, Φ(x) = N ′(x),

because limK→0 S̃(K,T, Z) = 0, T > 0. Therefore, as per [Oleinik and Radkevich, 1973], no boundary
condition should be set at K = 0 as the PDE itself serves as the correct boundary condition.
However, our domain Ω includes the only point with K = 0, while the left boundary is a line

Z = QTS −DTK. It can be easily checked that along this line S = 0 which is the required boundary
conditions.
In the Z direction, again using Eq.(25), we obtain

1
2K

2 ∂

∂Z

(
S̃S̃K

S̃Z

)2

= K2 S̃S̃2
K

S̃Z

(
1 + S̃S̃KZ

S̃ZS̃K

−
˜SSZZ

S̃2
Z

.

)
(35)

= K2T
Σ̃Σ̃2

K

Σ̃Z

(
1 + Σ̃Σ̃KZ

Σ̃ZΣ̃K

− Σ̃Σ̃ZZ

Σ̃2
Z

)
= K2T

Σ̃Σ̃2
K

Σ̃Z

(
1 + Σ̃BSK,σ(K, Σ̃, T )

BSK(K, Σ̃, T )

)

= K2T
Σ̃Σ̃2

K

Σ̃Z

(
1− Σ̃ BSσ,K(K, Σ̃, T )

DTN(d2(K, Σ̃, T ))

)
= K2T

Σ̃Σ̃2
K

Σ̃Z

(
1− Σ̃Φ(d2(K, Σ̃, T ))d1(K, Σ̃, T )

DTN(d2(K, Σ̃, T ))

)
.

From Eq.(25), ΣZ = 1/BSσ(K, Σ̃, T ) > 0. Therefore,

lim
Z→0

[
b(Z)− a′(Z)

]
= lim

Z→0

[
qZ −K2 Σ̃Σ̃2

K

Σ̃Z

(
1− Σ̃Φ(d2(K, Σ̃, T ))d1(K, Σ̃, T )

DTN(d2(K, Σ̃, T ))

)]

= −K2 lim
Z→0

[
Σ̃Σ̃2

KBSσ(K, Σ̃, T )
(

1− Σ̃Φ(d2(K, Σ̃, T ))d1(K, Σ̃, T )
DTN(d2(K, Σ̃, T ))

)]

Since at Z = 0 the domain Ω is a straight line KDT ≥ SQT , it can be checked that the value of
d1(K, Σ̃, T ) along this line is always negative, while Σ̃ 6= 0 except the point K = SQT /DT . Therefore,
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what remains to be checked is the behavior of the option Vega as Z → 0. The implied volatility
Σ̃ which solves the equation Z = 0 can be found numerically, and is not zero at KDT > SQT .
Therefore, Vega is positive (despite very small). Thus, limZ→0 [b(Z)− a′(Z)] < 0. Therefore, as per
[Oleinik and Radkevich, 1973], we need a boundary condition at the boundary Z = 0. This condition
can be found by solving the equation

Z = BS(K,Σ, T ) = 0, (36)

with respect to Σ. A typical example of the behavior of this solution is given in Fig. 2 which is
computed using the following input data: r = 0.02, q = 0.01 and two cases with (S = 1.0, T = 0.1) and
(S = 100, T = 1.0).

Figure 2: Implied volatility S obtained by solving the equation Z = 0 for the European Call option.

Boundary conditions at K → ∞: To set this boundary condition we need to know an asymp-
totic behavior of the implied volatility when K → ∞. This was a subject of an intensive research
for the last decade, and several useful results are available in the literature, see, e.g., [Lee, 2004,
Benaim and Friz, 2009, Gulisashvili, 2010] and references therein. In particular, the following asymp-
totic formula was obtained in [Gulisashvili, 2010]

S(K) =
√

2
[√

log K
F

+ log SQT
C(K) −

√
log SQT

C(K)

]
+O

((
log SQT

C(K)

)−1/2
log log SQT

C(K)

)
, (37)

as K →∞. Here, C(K) is the Call option price corresponding to the given K,T , and F = SQt/DT is
the forward price. One can observe, that in our case C(K) = Z. Therefore, as the boundary condition
at K →∞ we can use

S(K) =
√

2

√log K
F

+ log SQT
Z
−

√
log SQT

Z

 . (38)
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Since Z ≤ SQT , the logarithm log(SQT /Z) is always non-negative.
However, this asymptotics cannot be used along the whole vertical line of the domain Ω at K →∞

in Fig. 1. For instance, at Z = SQT the reminder of the approximation in Eq.(37) is large. In this case
one can solve numerically the equation

BS(K,S, T ) = Z. (39)

Boundary conditions at Z = SQT : The condition Z = QTS implies that N(d1(K,T,S)) = 1 and
N(d2(K,T,S)) = 0. This means that S→∞. To resolve this when constructing a numerical solution,
one can move this boundary to QT (S −∆S), where ∆S � S. Then, using a Taylor series expansion of
BS(K,S, T ) around S→∞, we can find the solution of the equation

BS(K,S, T ) = QT (S −∆S). (40)

Taking into account first 8 terms in this expansion, we arrive at the following equation

0 =
√

2k
[
− 6

(
S2 − 20

)
log4(k) + 24

(
S4 − 12S2 + 240

)
log2(k) + log6(k) (41)

− 48
(
S6 − 4S4 + 48S2 − 960

) ]
+ 24

√
πδe

S2
8 S7,

where k = SQT /(KDT ), δ = ∆SQT /(KDT ), so δ � k. This equation has three roots, and usually
one is negative. Among the other two positive roots we need the smallest one, which approximately
corresponds to the solution of Eq.(41) with δ = 0. Then this root aligns with the asymptotics of the
solution at large K considered in the previous paragraph. Setting δ = 0 in Eq.(41) gives rise to a cubic
algebraic equation which can be solved analytically. Alternatively, Eq.(40) can be solved numerically.

4. Another type of PDE

The Eq.(32) can be further transformed into another type of the PDE. Indeed, the expression in square
brackets in Eq.(32) can be represented as

A(T,K,Z,S) =
(
SK

SZ

)2
SZZ − 2SK

SZ
SKZ + SKK = SZ

∂
(
SK
SZ

)
∂K

− 1
2
∂
(
SK
SZ

)2

∂Z

 . (42)

From Eq.(29), and Eq.(31) we have

SK

SZ
= −BSK(S,S, T ) = e−rTN(d2(K,S)), (43)

Substituting Eq.(43) into Eq.(42), and taking into account that S = S(K,T, Z), we obtain

A(T,K,Z) = a(T,K,S)SZ

[
b(T,K,S)SZ + c(T,K,S)SK + d(T,K,S)

]
, (44)

a(T,K,S) = 1√
2π

exp
(
−rT − 1

2d2(K,S)2
)
,

c(T,K,S) = ∂d2(K,σ, T )
∂σ

∣∣∣
σ
√
T=S

, b(T,K,S) = −e−rTN(d2(K,S))c(T,K,S),

d(T,K,S) = ∂d2(K,σ, T )
∂K

∣∣∣
σ
√
T=S

.
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With this expressions, the PDE in Eq.(32) takes the form

ST = a(T,K,S)K2

2T S2SZ [b(T,K,S)SZ + c(T,K,S)SK + d(T,K,S)] (45)

− (r − q)KSK + qZSZ + 1
2TS.

In contrast to Eq.(32), this is a nonlinear hyperbolic PDE. It can be used as an alternative to Eq.(32)
which is a quasilinear parabolic PDE. Accordingly, the PDE in Eq.(45) requires just the boundary
conditions at lines K ∈ [SQt/DT ,∞) and Z = (SQT −DTK)+, see Fig. 1.
The Eq.(45) can be further simplified by using Eq.(43) that yields

ST = −Θ(T,K, σ)
∣∣∣
σ
√
T=S

SZ + 1
2TS, (46)

where Θ(T,K, σ) is the option Theta. This, of course, also follows from Eq.(23), Eq.(25), so Eq.(46)
can be obtained directly from these equations. The Eq.(32) is a one-dimensional non-linear PDE with
K being a dummy variable. In other words, for any fixed K this is a one-dimensional non-linear PDE
with T,Z be the independent variables.

5. Numerical method

In this Section we describe a numerical method used to solve either the PDE in Eq.(32) or in Eq.(45).
The method is constructed similar to how this is done in [Itkin, 2018].

First, we re-write Eq.(32) and Eq.(45) in the operator form by introducing an operator L(T,K,Z) :
[0,∞) 7→ [0,∞). With this notation Eq.(32) can be represented as

ST = L(T,K,Z)S, (47)

where

L(T,K,Z) = 1
2TS2K2

[(
SK

SZ

)2
∂2
Z − 2SK

SZ
∂K∂Z + ∂2

K

]
− (r − q)K∂K + qZ∂Z + 1

2T , (48)

Similarly, Eq.(45) can be re-written in the same form with

L(T,K,Z) = a(K,T, Z)K2

2T S2SZ [b(K,T, Z)∂Z + c(K,T, Z)∂K + d(K,T, Z)] (49)

− (r − q)K∂K + qZ∂Z + 1
2T .

Suppose we now discretize the time to maturity T ∈ [0,∞) by creating a uniform grid in time
with step ∆T , so our discrete time is defined at the points [0,∆T, 2∆T, . . .). By using Taylor series
expansion it can be shown that the discrete solution of the Eq.(47) up to O((∆T )) could be represented
in the form

S(T + ∆T,K,Z) = e∆TL(T,K,Z)S(T,K,Z) (50)

where e∆TL(T,K,Z) is the operator exponent, [Hochschild, 1981].
Again, using the Taylor series expansion, one can verify that the following scheme

S(T + ∆T,K,Z) = e∆TL(T+∆T,K,Z)S(T,K,Z) (51)
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also approximates Eq.(47) up to in O((∆T )). Combining them together we obtain the scheme

S(T + ∆T,K,Z) = e
1
2 ∆T [L(T+∆T,K,Z)+L(T,K,Z)]S(T,K,Z), (52)

which approximates Eq.(47) up to O((∆T )2).
Now we setup an iterative algorithm to solve this discrete equation. This algorithm is a ver-

sion of the fix-point Picard iteration algorithm, and relies on the Banach fixed-point theorem,
[Granas and Dugundji, 2003]:

1. At the first iteration we start by setting L(T + ∆T,K,Z) = L(T,K,Z) as the initial guess. Thus,
Eq.(52) transforms to Eq.(50), which could be represented in the form

S(1)(T + ∆T,K,Z) = e∆TL(T,K,Z)S(T,K,Z), (53)

where in S(k) the superscript (k) marks the value of S found at the k-th iteration of the numerical
procedure. As the exponent L(T,K,Z) in the right hands size of Eq.(53) is computed at the
known time T , it is a linear operator with coefficients being the known functions of (K,T, Z). In
particular, when T = 0 these functions are determined by the initial condition. If T > 0 they are
determined by the solution at the previous time step.
The Eq.(53) could be solved by either computing the discrete matrix exponential defined on some
grid in (K,Z) (which could be done with complexity O(N3M +NM3), N is the number of the
grid points in K direction, andM is the number of the grid points in Z direction), or by using any
sort of Padé approximation of the exponential operator. For instance, the Padé approximation
(1, 1) leads to the well-known Crank-Nicholson scheme which could be solved with the linear
complexity in N and M , and provides O((∆T )2) approximation in time, see [Itkin, 2017b].

2. To proceed we represent Eq.(52) in the form

S(k)(T + ∆T,K,Z) = e
1
2 ∆T [L(k−1)(T+∆T,K,Z)+L(T,K,Z)]S(k−1)(T,K,Z), k > 1. (54)

Therefore, the next approximation S(k)(T + ∆T,K,Z) to S(T + ∆T,K,Z) can be found again
by either computing the matrix exponential, or by using some Padé approximation.

Having this machinery in hands we can proceed in the same manner until the entire procedure
converges, i.e. when the condition

‖S(k)(T + ∆T,K,Z)−S(k−1)(T + ∆T,K,Z)‖ < ε

is reached after k iterations with ε being the method tolerance, and ‖ · ‖ being some norm, e.g., L2.
Note, that Eq.(54) with the accuracy O((∆T )2) can be re-written in the form

S
(k)
T = 1

2
[
L(T,K,Z) + L(k−1)(T + ∆T,K,Z)

]
S(k−1) = L̃(k−1)S(k−1), (55)

where tilde in the new notation L̃(k−1) means that we take a half of sum of the operators L at times
T and T + ∆T , and (k−1) means that at time level T + ∆T we take the value of the operator at the
(k − 1)-th iteration.
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5.1. Coordinate transformation

Since our PDEs are defined in the domain Ω which has a trapezoidal shape, we cannot directly apply
a finite-difference (FD) method for solving Eq.(54), while finite elements or Radial Basis Functions
methods can be used here with no problem. However, a simple trick makes application of the FDM
possible. The trick utilizes the fact that the right vertical boundary of Ω lies at K → ∞. Thus,
based on the asymptotic formula Eq.(38), in this limit S → ∞ as well, regardless of the value of
Z ∈ [0, SQT /DT ]. Therefore, without any loss of accuracy, the domain Ω could be replaced with the
domain Ω̃ depicted in Fig. 3.

Z =
SQ

T −
K
D

T

Z =
D

T (K
max −

K)

Kmax

K

Z

0

QTS

QTS/DT

Ω̃
Figure 3: The domain Ω̃ : {K ∈ [0,∞), Z ∈ [0, SQT ].

By construction, the domain Ω̃ is a parallelogram, and K ∈ [0,Kmax], where Kmax is some fixed
strike. We introduce it to truncate an infinite strip in K to some fixed computational area.
Now, the parallelogram could be transformed to rectangle by using, e.g., the following affine

transformation (for introduction to this topic see, e.g., [Katsumi; and Sasaki, 1994])

Z 7→ SQTu, K 7→ SQT
DT

(1− u) +
(
Kmax −

SQT
DT

)
v. (56)

This transformation converts the domain Ω̃ into a unit square with the following map of the boundaries

Z = SQT −KDT 7→ v = 0, (57)
Z = DT (Kmax −K) 7→ v = 1,

Z = SQT 7→ u = 1,
Z = 0 7→ u = 0.

Accordingly, we need to re-write the operator L(T,K,Z) in new variables (u, v). For instance, for the
parabolic operator Eq.(48) this yields

L(T, v, u) = 1
2TS2K2

1

[
S2
u∂

2
v − 2SuSv∂u∂v + S2

v∂
2
u

]
− [(r − q)v +B]∂v + qu∂u + 1

2T , (58)

B = QTS(r(1− u)− q)
DTKmax − SQT

,

K1 = c1(1− u) + av

aSu + c1Sv
, a = 1

SQT
, c1 = 1

DTKmax − SQT
,

(59)
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Since Ω̃ - the domain of definition of the operator L(T, v, u) in Eq.(58) - is a unit square, now the PDE
can be solved by using a FD method.

5.2. Splitting in spatial dimensions

Since computation of matrix exponent is time-consuming, especially in case of a two-dimensional
operator L, we proceed with using a splitting technique, see [Lanser and Verwer, 1999, Duffy, 2006,
Itkin, 2017b] and references therein. For instance, in [Itkin, 2017a] an ADI (alternative direction
implicit) scheme proposed in [In’t Hout and Welfert, 2007] for the solution of a backward PDE was
extended twofold. First, a similar ADI scheme has been proposed for the forward equation which
equalizes the results obtained by solving backward and forward PDEs. Second, it replaces the first
explicit step of the ADI, applied to the mixed derivative term of the PDE, with the fully implicit
step. This is especially important for the forward PDE as it increases the stability of the solution and
guarantees its positivity.

However, for the PDE in Eq.(55) using this ADI approach is not a trivial problem, mainly because of
various problems with a stable approximation of the mixed derivative term at the second sweep of the
ADI. Therefore, instead of the ADI method, here we use the Strang splitting, [Lanser and Verwer, 1999,
Duffy, 2006, Itkin, 2017b]. The main idea of this approach is as follows.
With allowance for Eq.(58), let us represent the Eq.(55) in the new coordinates in the form

S
(k)
T =

[
L̃(k−1)
u + L̃(k−1)

v + L̃(k−1)
uv

]
S(k−1), (60)

Lu = 1
2TS2K2

1S
2
v∂

2
u + qu∂u + 1

4T ,

Lv = 1
2TS2K2

1S
2
u∂

2
v − [(r − q)v +B]∂v + 1

4T ,

Luv = − 1
T
S2K2

1SuSv∂u∂v.

Thus, the operator Lu includes all differentials with respect to u and also a half of the killing term in
Eq.(58). This is a linear convection-diffusion operator with state and time dependent coefficients. The
operator Lv includes all differentials with respect to v and a half of the killing term in Eq.(58), and
also is a linear convection-diffusion operator with state and time dependent coefficients. Finally, the
operator Luv includes only a mixed derivatives term in Eq.(58), and also is a linear diffusion operator
with state and time dependent coefficients.

Equation Eq.(60) can be solved numerically by using the Strang splitting scheme

S(k)(T + ∆T, u, v) = e
∆T
2 L̃

(k−1)
u e

∆T
2 L̃

(k−1)
v e∆T L̃(k−1)

uv e
∆T
2 L̃

(k−1)
v e

∆T
2 L̃

(k−1)
u S(k−1)(T + ∆T, u, v) (61)

+O((∆T )2).

This scheme can also be represented as a sequence of fractional steps, which read

S
(k)
1 = e

∆T
2 L̃

(k−1)
u S(k−1), (62)

S
(k)
2 = e

∆T
2 L̃

(k−1)
v S

(k)
1 ,

S
(k)
3 = e∆T L̃(k−1)

uv S
(k)
2 ,

S
(k)
4 = e

∆T
2 L̃

(k−1)
v S

(k)
3 ,

S(k) = e
∆T
2 L̃

(k−1)
u S

(k−1)
4 .
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We underline that the Strang splitting provides the second order approximation in ∆T only if the
PDE at every fractional step in Eq.(62) is solved also with the second order approximation in ∆T . To
achieve that at every fractional step we use the Padé approximation (1, 1) to obtain a Crank-Nicholson
scheme in time. For instance, for the first line in Eq.(62) it gives the following scheme(

1− 1
4∆T L̃(k−1)

u

)
S

(k)
1 =

(
1 + 1

4∆T L̃(k−1)
u

)
S(k−1). (63)

5.3. Spatial discretization

To apply this algorithm we construct an appropriate discrete nonuniform grid G(x) in the (u, v)
space, see [Itkin, 2017b]. In each spatial direction i ∈ [u, v] a nonuniform grid contains Ni + 1 nodes
(p0, p1, ..., pNi) with the steps h1 = p1 − p0, ..., hNi = pNi − pNi−1. Accordingly, in the operator Eq.(58)
we replace continuous derivatives with their finite-difference approximations, and denote these discrete
operators defined on G(x) as O. Thus, we replace ∂x with Ox, etc.

5.3.1. Approximation of derivatives

Once a non-uniform grid is constructed, the first and second derivatives can be approximated on this
grid. The corresponding expressions are obtained by using the Taylor series expansions. Here for the
reference we provide just the final results, see, e.g., [Itkin, 2017b, In’t Hout and Foulon, 2010]:
Let f : R→ R be any given function, let xi, i ∈ Z be any given increasing sequence of mesh points,

and hi = xi − xi−1,∀i. To approximate the first derivatives of f(x) employ the following formulas.

Backward scheme:
O1B
x = α−2f(xi−2) + α−1f(xi−1) + α0f(xi) = f ′(xi) +O((hi + hi−1)2), (64)

Forward scheme:
O1F
x = γ0f(xi) + γ1f(xi+1) + γ2f(xi+2) = f ′(xi) +O((hi+1 + hi+2)2).

Central scheme:
O1C
x = β−1f(xi−1) + β0f(xi) + β1f(xi+1) = f ′(xi) +O((hi + hi+1)2).

Here the super index 1X means the first derivatives with the X approximation, X ∈ [B,F,C] could be
backward (B), forward (F) and central (C), and the coefficients α, β, γ read

α−2 = hi
hi−1(hi + hi−1) , α−1 = −hi−1 + hi

hihi−1
, α0 = hi−1 + 2hi

hi(hi−1 + hi)
,

γ0 = − 2hi+1 + hi+1
hi+2(hi+2 + hi+1) , γ1 = hi+2 + hi+1

hi+2hi+1
, γ2 = − hi+1

hi+2(hi+2 + hi+1) .

β−1 = − hi+1
hi(hi+1 + hi)

, β0 = hi+1 − hi
hi+1hi

, β1 = hi
hi+1(hi+1 + hi)

.

As follows from Eq.(64), these expressions provide approximation of the first derivatives with the
second order O(h2).

To approximate the second derivatives of f(x) one can employ the following formulas.

O2C
x = O1F

x O1B
x = O1B

x O1F
x , O2B

x = O1B
x O1B

x , O2F
x = O1F

x O1F
x .
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These expressions provide approximation of the second derivatives also with the second order O(h2).
For instance, for O2C

x we have in the explicit form

O2C
x = δ−1f(xi−1) + δ0f(xi) + δ1f(xi+1) = f ′′(xi) +O((hi + hi+1)2),

where

δ−1 = 2
hi(hi+1 + hi)

, δ0 = − 2
hi+1hi

, δ1 = 2
hi+1(hi+1 + hi)

.

Let f : R2 → R2 be any given function of two variables (x, y). To approximate the mixed derivative
∂x,yf(xi, yj) at any point (xi, yj) one can consequently apply either one-sided approximations in each
direction, or apply the central difference approximation first in x and then in y (or vice versa). The
latter results in the FD approximation of the mixed derivative using a 9-points stencil while still
providing the second order of approximation. However, as shown in [Itkin, 2017a], this discretization
could be unstable. Therefore, instead a fully implicit scheme was proposed which, as applied to our
problem, is discussed in the next Section.
For the future we need some additional notation. We denote a matrix of O1F

x as A2F
1,x; the matrix

of O1B
x - as A2B

1,x; the matrix of O1C
x - as A2C

1,x
2. For the first order approximations we use the

following definitions. Define a one-sided forward discretization of O, which we denote as A1F
1,x :

A1F
1,xC(x) = [C(x+ h, t)− C(x, t)]/h. Also define a one-sided backward discretization of O, denoted as

A1B
1,x : A1B

1,xC(x) = [C(x, t)− C(x− h, t)]/h. These discretizations provide first order approximation in
h, e.g., ∂xC(x) = A1F

1,xC(x) +O(h). Also Ix denotes a unit matrix.

5.3.2. Approximation of the operator L(T, v, u)

Here we use the same approach as in [Itkin, 2018]. Denote A2C
2,x a matrix of the discrete operator

O2C
x on the grid G(x). Observe, that A2C

2,x is the Metzler matrix, see [Berman and Plemmons, 1994,
Itkin, 2017b]. Indeed, it has all negative elements on the main diagonal, and all nonnegative elements
outside of the main diagonal. Also A2C

2,x is a tridiagonal matrix.
By the properties of the Metzler matrixM its exponent is a nonnegative matrix. Therefore, operation

eMS preserves positivity of vector S. Also all eigenvalues of the Metzler matrix have a negative real
part. Therefore, the spectral norm of the matrix follows

‖eM‖ < 1.

Thus, if in Eq.(54) the operatorM = L̃(k−1) on the grid G(x) is represented by the Metzler matrix
AM, the map eAM is contractual, and, hence, the entire scheme Eq.(54) is stable.
By the definition of the operator L̃(k−1) in Eq.(60), it consists of several terms.

Second derivatives. The first term 1
2TS

2K2
1S

2
u∂

2
v can be approximated on the grid as

A2,v = 1
2TS2K2

1S
2
uA

2C
2,v.

As T > 0, obviously A2,v is the Metzler matrix. Same is true for the matrix A2,u:

A2,u = 1
2TS2K2

1S
2
vA

2C
2,u.

2Hence, e.g. for A2F
1,x, the superscript means: backward second order approximation, and subscript means: first order

derivative.
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The mixed derivative. The mixed derivative term in Eq.(60) reads: − 1
TS

2K2
1SuSv∂u∂v. Observe,

that from Eq.(56) we have

Su = SQT
DT

(DTSZ −SK) , Sv = SK

(
Kmax −

SQT
DT

)
,

from Eq.(25)

SZ =
√
T

BSσ(K,Σ, T ) ≥ 0,

and from Eq.(29), Eq.(31)

SK = −SZBSK(S,Σ, T ) = SZDTN(d2(K,Σ, T )) ≥ 0.

With the allowance for these expressions, it follows that

Su =
√
T

BSσ(K,Σ, T )SQT [1−N(d2(K,Σ, T ))] = sR(d2) ≥ 0, (65)

Sv =
√
T

BSσ(K,Σ, T )N(d2(K,Σ, T ))(DTKmax − SQT ) =
(
Kmax
K
− s

)(√
2πed2

2/2 −R(d2)
)
≥ 0,

s = SQT
KDT

, d2 = d2(K,Σ, T ),

where R(x) ≡ 1−N(x)
N ′(x) is the Mills ratio for the standard normal distribution. It can be efficiently

computed by the particularly simple continued fraction representation at x > 1

R(x) =
1

x+
1

x+
2

x+ ...

, (66)

or by using Taylor series expansion at 0 ≤ x ≤ 1, see [Gasull and Utzet, 2013].
Thus, SuSv ≥ 0. Therefore, to have A2,uv to be the Metzler matrix, we need the matrix of SuSv to

be the negative of the Metzler matrix 3, again see [Itkin, 2017b]. However, the standard methods fail
to provide discretization of the second order that guarantees this feature. Therefore, we need another
approach, similar to what was proposed in [Itkin, 2017a]. We discuss this in Appendix A.

As compared with [Itkin, 2017a], the method in this paper has two innovations. First, in [Itkin, 2017a]
a first order approximation in time step was constructed, while here we provide the second order
approximation. Second, in [Itkin, 2017a] a mixed derivative term has the form ρu,vf(v)g(u)∂u∂v, where
f(u) is some function of u only, and g(v) is some function of v only. Here we deal with a more general
term ρu,vf(u, v)∂u∂v, and show that the approach of [Itkin, 2017a] can be applied in this case as well.

Convection terms. The next step is to construct a suitable approximation for the convection terms.
The term qu∂u admits the forward approximation O1F

u as q ≥ 0 and u ∈ [0, 1]. Approximating the term
−[(r−q)v+B]∂v is a more delicate issue and depends on the sign of the function F (u, v) = (r−q)v+B.
Suppose r > q. A typical behavior of function F (u, v) at T = 0.01 is presented in Fig. 4 at the values
of model parameters given in Table 1.

3Rigorously speaking, the matrix A2,uv should be the negative of the EM-matrix, where the latter stays for the Eventually
M-Matrix. For the introduction into the EM matrices and their properties see [Itkin, 2017b].

18



Figure 4: The behavior of function F (u, v) at T = 0.5.

As can be seen, F (u, v) ≥ 0 for all values of (u, v) ∈ [0, 1]× [0, 1]. Therefore, when approximating
the term −F (u, v)∂v. a backward approximation should be used to obtain the Metzler matrix, i.e.
−F (u, v)A1B

2,v. It can be checked that in case r < q the forward approximation should be used as then
F (u, v) ≤ 0.

Finally, the resulting matrices AL̃u
, AL̃v

, are, by construction, also the Metzler matrices, as each of
them is a sum of the Metzler matrices, [Berman and Plemmons, 1994].
It is easy to prove that the matrix exp(AL̃(k−1)) is the second order approximation of the operator

eM in the spatial steps hu, hv on the grid, i.e. O(h2
u + h2

v + huhv). That follows from the fact that the
derivatives are approximated by using Eq.(64), where every line is the second order approximation to
the corresponding partial derivative.

5.4. Convergence of Picard iterations

The remaining point to prove is the convergence of the fixed-point Picard iterations. Again, in doing
so we follow [Itkin, 2018]. According to Eq.(54), change of variables in Eq.(56), and Eq.(55) we run
the iterations

S(k)(T + ∆T, u, v) = e∆T L̃(k−1)
S(k−1)(T, u, v), k > 1. (67)

By construction, at every iteration k the operator L̃(k) is linear, continuous and bounded at the
computational domain. Also, the operator E = exp[∆T L̃(k)] is Lipschitz∥∥∥ES1(T, u, v)− ES2(T, u, v)

∥∥∥ ≤ ∥∥∥E∥∥∥‖S1(T, u, v)−S2(T, u, v)‖ ≤ ‖S1(T, u, v)−S2(T, u, v)‖,

since we constructed discretization of E as eM with M being the Metzler matrix, and it was shown
earlier that in the spectral norm ‖eM‖ ≤ 1.

Now, to prove convergence of the Picard iterations denote by Ŝ(T + ∆T, u, v) the exact solution of
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Eq.(47) at time T + ∆T . Then, by the mean-value theorem for operators, we have∥∥∥S(k)(T + ∆T, u, v)− Ŝ(T + ∆T, u, v)
∥∥∥ =

∥∥∥ES(T, u, v)− ÊlS(T, u, v)
∥∥∥

≤ ‖D(E)(ξ(k))‖ ·
∥∥∥S(k−1)(T + ∆T, u, v)− Ŝ(T, u, v)

∥∥∥
where ξ(k) is a convex combination of S(k−1)(T + ∆T, u, v) and S(k)(T + ∆T, u, v), and D denotes
the Frèchet derivative of the operator E at the space of all bounded non-linear operators, see, e.g.,
[Hutson et al., 2005, Li et al., 2010]. Thus, the iterations converge if ‖D(E)‖ < 1. We prove that
actually this is the case for the operators in Eq.(60) in Appendix B. In particular, we show there that
the iterative scheme is "almost" unconditionally stable, where "almost" means for the values of the
model parameters reasonable from the practical point of view.
All the results obtained in this Section can be further summarized in the following proposition

Proposition 5.1. The scheme Eq.(54) with approximation Eq.(67) is a) (almost) unconditionally
stable, b) preserves non-negativity of the solution, c) provides second order approximation of Eq.(54) in
space on the grid G, and d) converges.

6. Numerical results and comparison

In our numerical test we use the input parameters shown in Table 1. We build a non-uniform grid

S r q Tmax Kmax Call/Put Nu Nv Rc
100.00 0.05 0.01 1.00 400.00 Call 200 100 20

Table 1: Parameters of the test.

G(x) in the (u, v) space, which contains Nu nodes in the u direction and Nv nodes in the v direction.
Since the gradients of the implied volatility S(T, u, v) are high at the boundaries of the computational
domain, i.e. close to u = 0, 1 and v = 0, 1 it makes sense to make the grid denser close to these areas.
Since from practical purposes the far boundary is of a less interest, we compress the grid close to the
lines u = 0, v = 0. This is obtained by using the compression ratio Rc = 50, see the description in
[Itkin, 2017b]. Thus constructed grid is represented in Fig. 5. With the initial parameters in Table 1,
one step in the v direction approximately corresponds to a change in strike by 3$, and one step in the
u direction approximately corresponds to a 50 cents change in both the options price and the strike.

We solve the forward equation starting at T = 0 and going forward in time to Tmax with the time step
∆T = 0.01. The boundary conditions are computed as this is described in Section 3 using numerical
solutions of Eq.(36), Eq.(39) and Eq.(40). Thus found boundary values corresponding to T = 0.01 are
presented in Fig. 6 (along the lines u = 0, u = 1, v = 0 and v = 1).

The standard way to get the implied volatility by solving Eq.(2) numerically is used for comparison,
and further is called "traditional". We run this traditional approach at every point of the grid
G(x) by using Matlab function blsimpv, or a root solver at the boundaries where blsimpv provides
unsatisfactory results. All tests were run on a PC with Intel i7-4790 CPU (8 Cores, 3.6GHz) as a
sequential loop, i.e. no parallel tools have been used. The total elapsed time was 113 secs for 20000
points on the grid, or, on average, 6 msc per a single point.. The results are presented in Fig. 3.

The grid G(x) doesn’t change in time. On the other hand, functions d1(S), d2(S) in the Black-Scholes
formula (see Eq.(19)) also almost don’t depend on T (since T is now embedded into S). Therefore, the
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Figure 5: Non-uniform finite-difference grid
in (u, v) space.

Figure 6: Implied volatility S(K,Z, T ) at
T = 0.01 computed by using the traditional
approach.

only dependence on T in the numerical implementation of Eq.(2) is the dependence of QT , DT which
is weak. Thus, Fig. 6 changes with time very slow. Also, for the purpose of a better illustration of
the behavior of S at intermediate values of (u, v), we zoom-in Fig. 6 by excluding the boundaries and
setting T = 0.5. Thus obtained plot is represented in Fig. 7.

Figure 7: Implied volatility S(K,Z, T ) at T = 0.5 computed by using the traditional
approach (zoomed-in).

6.1. First step in time

The first step in time is the most challenging problem with our approach. Indeed, according to Section 3,
the initial condition for the PDE in Eq.(55) is S(0, u, v) = 0 for all u and v. This, in turn, means that
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all gradients Su,Sv tend to infinity at T = 0. Also,

L̃NL(0, u, v) = 0, (68)

where LNL denotes the non-linear part of the operator L. Therefore, the iterative scheme in Eq.(55)
becomes incorrect. At the moment we don’t have a good resolution of this problem. Therefore, instead,
for T = ∆T we proceed by computing S(∆T, u, v) in the traditional way, and denote thus obtained
implied volatility as Str(∆T, u, v).
Again, the main problem here is that at T = ∆T we don’t have a good initial guess for S as it

cannot be taken from the previous time step. But, in principle, if we would have a good initial guess for
S, we could run our iterative algorithm even at T = ∆T . To validate this, we further use Str(∆T, u, v)
as the initial guess for the iterative scheme. But, based on Eq.(68), for this time step we also need to
modify the scheme in Eq.(55) to be

S
(k)
T = L(k−1)(T + ∆T,K,Z)S(k−1) = L̃(k−1)S(k−1). (69)

Then we solve this equation iteratively, but it is easy to check that this scheme provides only the first
order approximation in ∆T .

The results are as follows. We do 20 iterations of the method to obtain the relative error

ε = ‖Str(∆T, u, v)−S(∆T, u, v)‖
‖Str(∆T, u, v)‖

to be 1.5 bps. The elapsed time for doing so is 16 secs, or 0.8 secs per iteration. The difference between
Str(∆T, u, v) and our numerical solution S(∆T, u, v) is presented in Fig. 8. The graph is truncated up
to u = v = 0.8 because very large values of strikes don’t have practical interest.

Figure 8: The difference ∆S = Str(∆T, u, v) −S(∆T, u, v) as a function of u, v
at T = 0.01 after 20 iterations.

6.2. Next steps in time

Having good (not all zeros) values of S(∆T, u, v) we can proceed based on the general scheme
described in Section 5. We increase time to T = 2∆T , iterate to get the numerical solution, then
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compute Str(2∆T, u, v), compare these solutions, etc. In Fig. 9 these results are presented for
T = 2∆T, 5∆T, 10∆T, 20∆T .

Figure 9: The difference ∆S = Str(∆T, u, v)−S(∆T, u, v) as a function of u, v at T = 0.02 (upper-left),
T = 0.05 (upper-right), T = 0.1 (bottom-left) and T = 0.2 (bottom-right).

It turns out that at those time steps the iterations converge much faster as compared with the test
for the first step reported in Section 6.1. This convergence is summarized in Table 2. This partially
could be explained by the order of approximation in time, since at the first step the scheme was of the
order one, while at the next steps it is of the order 2.

As this can be seen from the presented results, the convergence of the method slightly improves with
time T , the elapsed time remains the same, while the relative error between the traditional method
and the PDE solver slightly increases with T . The later can obviously be explained by accumulation of
the approximation errors at every time step with the increase of T . However, for instance, for T = 0.2
this error is still acceptable (to be 20-50 bps). On the other hand, the biggest deviation from the
traditional results corresponds to high u and v. In particular, in our numerical example the point
u = v = 0.8 maps to the strike K = 260$ which, in turn, corresponds to the moneyness S/M = 0.385
and the option price 20$. Hence, this is a deep OTM option, and the corresponding implied volatility
is very high, 2.61. Therefore, this case is almost impractical.
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Step in time Iterations per step ε t elapsed, secs
1 20 1.5e-4 16
2 3 2.3e-6 2.7
3 3 1.9e-6 2.8
5 3 1.4e-6 2.8

10 3 8.3e-7 2.8
20 3 3.8e-7 2.8

Table 2: Convergence of the Picard iterations for various steps in time T . The time step ∆T = 0.01.

7. Discussion

In this paper we derive a backward and forward quasilinear parabolic PDEs that govern the implied
volatility of a contingent claim whenever the latter is well-defined. This would include at least any
contingent claim written on a positive stock price whose payoff at a possibly random time is convex.
Alternative to that we also derived a forward nonlinear hyperbolic PDE of the first order which also
governs evolution of the implied volatility in (K,T, Z) space. We also discuss suitable initial and
boundary conditions for those PDEs. Finally, we demonstrate how to solve them numerically by using
an iterative method. All these results are new.
We compare performance of two methods. The first one uses a traditional scheme of getting the

implied volatilities by using a root solver and solving Eq.(2). The second method relies on a numerical
solution of the derived PDEs. We show that based on our numerical experiments, if the implied
volatility is needed at every point on the rather dense grid, the PDE solver significantly outperforms
the root solver. As follows from Table 2, the PDE solver is almost 40 times faster.

However, a few comments shoud be made with this regard. First, our method utilizes the traditional
method in two ways. We use it to compute the boundary conditions, and we also use it at the first
time step T = ∆T as this was discussed in Section 6.1 since we don’t have a good start value of S for
iterations to kick off. Also this drops the order of approximation in time from O((∆T )2) to O(∆T )
at this step. Nevertheless, all those issues are relatively minor, and for the longer time horizons our
method still outperforms the traditional one.
The second obstacle is that, most likely, in practice we rarely need implied volatilities on so dense

grid in both space and time. Usually, we need them only at those points in (K,T ) which correspond to
the tradable market strikes and maturities, and they are not so dense. However, the FD method still
requires a grid. Therefore, the number of points for the traditional method could be much smaller that
that for the FD method. This could compensate a slower performance of the traditional method and
make both methods to be comparable in the elapsed time.

Third, as was already mentioned, functions d1(S), d2(S) in the Black-Scholes formula (see Eq.(19))
weakly depend on T (since T is now embedded into S), namely only via QT and DT . Therefore,
the solution of Eq.(2) also depends on T only via QT , DT . Therefore, since we already computed
S(∆T,K,Z) by using the traditional way, then for T = 2∆T Eq.(2) could be solved by expanding the
left hands side into series on ∆T � 1. In more detail, we write

BS(T,K,S(T,K,Z)) = Z, (70)
BS(T + ∆T,K,S(T + ∆T,K,Z)) = Z,

and define S(T + ∆T,K,Z) = S(T,K,Z) + ∆S(T,K,Z). Now expanding the second line of Eq.(70)
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into series on ∆T � 1,∆S� 1, and using the first line in Eq.(70), in the first order we obtain

∆S(T,K,Z) = − Θ(T,K,S(T,K,Z))
Vega(T,K,S(T,K,Z))

√
T∆T. (71)

Since S(T,K,Z) is already known, the expression in Eq.(71) can be easily computed.
Once all S(T + ∆T,K,Z) are computed in such a way, we can proceed to T + 2∆T . The problem

with this approach, however, is that its accuracy decreases with every time step. As an alternative,
periodically at some time steps the accurate value of S(T,K,Z) can be recomputed by using the
traditional approach. However, same could be done for the PDE approach as well.

It should also be mentioned that in this paper we present results for European plain vanilla options
using the forward equation, while for e.g., for American options one has to solve the backward PDE,
which computationally is more expensive.
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Appendices
A. FD approximation of the mixed derivative term in Eq.(60)

In this Appendix we show how to solve the third line in Eq.(62) with the accuracy O((∆T )2) in time
and O(h2

u + h2
v + huhv) in space folloiwng the method first proposed in [Itkin, 2017a]. To recall, the

equation under consideration reads

S(k) = e∆T L̃(k−1)
uv S(k), (A.1)

Luv = − 1
T
S2K2

1SuSvOuOv.

To achieve this accuracy in time we use the Padé approximation (1, 1) to obtain a Crank-Nicholson
scheme (wrtten with some loose of notation to make it better readable)(

1− 1
4∆T L̃(k−1)

uv

)
S(T + ∆T ) =

(
1 + 1

4∆T L̃(k−1)
uv

)
S(T ) = S̄(T ). (A.2)

This numerical scheme is, of course, implicit due to the fact that, despite we know S̄(T ), to find
S(T + ∆T ) we need to solve Eq.(A.2). It is known that, after some discretization on the FD grid is
applied to Eq.(A.2), the matrix in the left hands side of Eq.(A.2) must be an M-matrix, to ensure that
this scheme is stable and preserves the positivity of the solution. However, this is impossible by using
the standard FD discretizations of the second order, in more detail see [Itkin, 2017b].
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Therefore, we rewrite Eq.(A.2) by dropping the dependence on T and using a trick proposed in
[Itkin, 2017a]4 (

P −
√

∆Tρu,vU(u, v)Ou
)(
Q+

√
∆TV (u, v)Ov

)
S (A.3)

= S̄ +
[
(PQ− 1)−Q

√
∆Tρu,vU(u, v)Ou + P

√
∆TV (u, v)Ov

]
S.

U(u, v) = 1√
T
SK1Su, V (u, v) = 1√

T
SK1Sv.

Here ρu,v = −1/4,5 P,Q, are some positive numbers which have to be chosen based on some conditions,
e.g., to provide diagonal dominance of the matrices in the parentheses in the lhs of Eq.(A.3), see below.
Also the intuition behind this representation is discussed in detail in [Itkin, 2017a].

Note, that in [Itkin, 2017a] we considered a mixed derivative term of the form ρu,vf(v)g(u)∂u∂v,
where f(u) is some function of u only, and g(v) is some function of v only. Here we are dealing
with a more general term ρu,vf(u, v)∂u∂v, so the presented approach is a generalization of that in
[Itkin, 2017a]. Also our method in this paper is of the second order in time while the method in
[Itkin, 2017a] is of the first order.

The Eq.(A.3) can be solved using fixed-point Picard iterations. One can start with setting S0 = S̄
in the right hands side of Eq.(A.3), then solve sequentially two systems of equations(

Q+
√

∆TV (u, v)Ov
)
S∗ = S̄ +

[
PQ− 1−Q

√
∆Tρu,vU(u, v)Ou + P

√
∆TV (u, v)Ov

]
Sj ,(

P −
√

∆Tρu,vU(u, v)Ou
)
Sj+1 = S∗. (A.4)

Here Sj is the value of S at the j-th iteration6.
To solve Eq.(A.4) we propose two FD schemes. The first one (Scheme A) is introduced by the

following Propositions7:

Proposition A.1. Let us approximate the left hands side of Eq.(A.4) using the following finite-
difference scheme:(

QIv +
√

∆TV (u, v)A2B
1,v

)
S∗ = α+S̄−Sj , (A.5)(

PIu −
√

∆Tρu,vU(u, v)A2B
1,u

)
Sj+1 = S∗,

α+ = (PQ+ 1)I −Q
√

∆Tρu,vU(u, v)A1F
1,u + P

√
∆TV (u, v)A1F

1,v.

Then this scheme is unconditionally stable in time step ∆T , approximates Eq.(A.4) with O(
√

∆T max(hu, hv))
and preserves positivity of the matrix S(u, v, T ) if Q = β

√
∆T/hv, P = β

√
∆T/hu, where hv, hu are

the grid space steps correspondingly in v and u directions, and the coefficient β must be chosen to obey
the condition:

β > max
u,v

[V (u, v) + ρu,vU(u, v)].
4The trick is motivated by the desire to build an ADI scheme which consists of two one-dimensional steps, because
for the 1D equations we know how to make the rhs matrix to be an EM-matrix, see [Itkin, 2016, Itkin, 2017b] and
references therein.

5We introduce this notation to make it easy to compare the description of the method in this paper with that in
[Itkin, 2017a].

6The reader shouldn’t miss these iterations (marked by j) used to solve Eq.(A.1) with those (marked by k) for the
solution of the nonlinear equation which are discussed in Section 5.

7For the sake of clearness we formulate this Proposition for the uniform grid, but it is transparent how to extend it for
the non-uniform grid.
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Proof. The proof can be found in [Itkin, 2017a, Itkin, 2017b].

The computational scheme in Eq.(A.5) should be understood in the following way. At the first line of
Eq.(A.5) we begin with computing the product S1 = α+S̄. This can be done in three steps. First, the
product S1 = Q

√
∆Tρu,vU(u, v)A1F

1,uS̄ is computed in a loop on vi, i = 1, ..., Nv. In other words, if S̄ is
a Nu×Nv matrix where the rows represent the u coordinate and the columns represent the v coordinate,
each j-th column of S1 is a product of matrix Q

√
∆Tρu,vU(u, v)A1F

1,u and the j-th column of S̄. The
second step is to compute the product S2 = P

√
∆TV (u, v)A1F

1,vS̄ which can be done in a loop on
ui, i = 1, ..., Nu. Finally, the right hand side of the first line in Eq.(A.5) is (PQ+ 1)S̄−S1 +S2−Sj .
Then in a loop on ui, i = 1, ..., Nu, Nu systems of linear equations have to be solved, each giving
a row vector of S∗. The advantage of the representation Eq.(A.5) is that the product α+S̄ can be
precomputed.

If
√

∆T ≈ max(hu, hv), then the whole scheme becomes of the second order in space. However, this
would be a serious restriction inherent to the explicit schemes. Therefore, we don’t rely on it. Note,
that in practice the time step is usually chosen such that

√
∆T � 1, and hence the whole scheme is

expected to be closer to the second, rather than to the first order in h. Note, that this approach is
similar to [Toivanen, 2010, Chiarella et al., 2008] for negative correlations, where a seven point stencil
breaks a rigorous second order of approximation in space.
As shown in [Itkin, 2017a], the rate of convergence of the Picard iterations is linear.
The above results can be further improved by making the whole scheme to be of the second order of

approximation in hu and hv. We call this FD scheme as Scheme B.

Proposition A.2. Let us approximate the lhs of Eq.(A.4) using the following finite-difference scheme:(
QIv +

√
∆TV (u, v)A2B

1,v

)
S∗ = α+

2 S̄−Sj , (A.6)(
PIu −

√
∆Tρu,vU(u, v)A2B

1,u

)
Sj+1 = S∗,

α+
2 = (PQ+ 1)I −Q

√
∆Tρu,vU(u, v)A2F

1,u + P
√

∆TV (u, v)A2F
1,v.

Then this scheme is unconditionally stable in time step ∆T , approximates Eq.(A.4) with O(max(h2
u, h

2
v))

and preserves positivity of the vector S(u, x, T ) if Q = β
√

∆T/hv, P = β
√

∆T/hu, where hv, hu are
the grid space steps correspondingly in v and u directions, and the coefficient β must be chosen to obey
the condition:

β >
3
2 max

u,v
[V (u, v) + ρu,vU(u, v)].

The scheme Eq.(A.6) has a linear complexity in each direction.

Proof. See [Itkin, 2017a].

The coefficient β should be chosen experimentally. In our experiments described in the following
sections we used

β = max
u,v

[U(u, v)− ρu,vU(u, v)]. (A.7)

B. Norm of the Frèchet derivative for operators in Eq.(60)

To compute the norm of the Frèchet derivative recall that by definition

‖D(E)‖ = sup
ν 6=0

‖D(E)(ν)‖
‖ν‖
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If ν = (ν1, ..., νm) ∈ [L∞(−∞, 0)]m, then

D(E)(ν) = ∂E(S + kν)
∂k

∣∣∣
k=0

.

In other words, in this case the Frèchet derivative coincides with the Gâteaux derivative.
To find D(ENL)(S) we need some results from functional analysis, namely:

1. The product and quotient rules for the Frèchet derivatives, [Schwartz and Karcher, 1969].
2. The property that the Frèchet derivative of a linear operator is the operator itself, [Schwartz and Karcher, 1969].
3. Let A→ Ar be the map that takes a positive definite matrix to its r-th power, and let DAr be

the Frèchet derivative of this map. Then it is known that ‖DAr‖ = ‖rAr−1‖ if r ≤ 1 or r ≥ 2,
[Bhatia and Holbrook, 2003].

4. Triangle inequality.

Let us denote the non-linear part of L̃ as L̃NL, and the linear part - as L̃L. Accordingly, L̃ = L̃NL +L̃L.
Using the properties of the Frèchet derivatives, we obtain

∥∥∥D(∆TLNL
u )(S)

∥∥∥ ≤ ∆T
2T

∥∥∥∥∥
(
Sv[c1(1− u) + av]

aSu + c1Sv

)2
(2S + S2)O2

u

∥∥∥∥∥ (B.1)

≤ ∆T
2T

∥∥∥∥Sv[c1(1− u) + av]
aSu + c1Sv

∥∥∥∥2
‖S(2 + S)‖‖O2

u‖.

It can be seen that the first norm ‖ · ‖1 in the right hands part of Eq.(B.1) is bounded, and moreover,
‖ · ‖1 ≤ 2. The second norm ‖ · ‖2 is also bounded since we work on a truncated grid with K < Kmax.
Therefore, the values of S are also bounded. For instance, in our numerical experiments S < 8. For
the third norm ‖O2

u‖ it is well-known, [Starzak, 1989], that at the uniform grid

‖O2
u‖ = max

i

[
4
h2
u

sin2 iπ

2(Nu + 1)

]
, i ∈ [1, ..., Nu], (B.2)

where Nu is the size of the matrix AC2,u, and hu is the grid step. For the uniform grid hu = 1/(Nu − 1).
Therefore, ∥∥∥D(∆TLNL

u )(S)
∥∥∥ ≤ 2∆T 2

h2
u

‖Σ‖2 (B.3)

where ‖Σ‖ is the norm of matrix A(Σ) on the grid.
A similar analysis can be provided for the norm

∥∥∥D(∆TLNL
v )(S)

∥∥∥ to obtain

∥∥∥D(∆TLNL
u )(S)

∥∥∥ ≤ 2∆T 1
h2
v

‖Σ‖2 (B.4)

since ∥∥∥∥Su[c1(1− u) + av]
aSu + c1Sv

∥∥∥∥2
≤ 1.

Finally for the mixed derivative term we have

∥∥∥D(−∆TLNL
uv )(S)

∥∥∥ ≤ ∆T
T

∥∥∥∥∥
(
c1(1− u) + av

aSu + c1Sv

)2
SuSvOuv(2S + S2)

∥∥∥∥∥ . (B.5)
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Similarly to Eq.(B.2),

‖OuOv‖ = max
i,j

[ 4
huhv

sin iπ

2(Nu + 1) sin jπ

2(Nv + 1)

]
, i ∈ [1, ..., Nu], j ∈ [1, ..., Nv], (B.6)

and also ∥∥∥∥∥
(
c1(1− u) + av

aSu + c1Sv

)2
SuSv

∥∥∥∥∥ ≤ 3
2 .

Therefore, ∥∥∥D(∆TLNL
uv )(S)

∥∥∥ ≤ 2∆T 3
hvhu

‖Σ‖2. (B.7)

Finally, using these expressions, and properties of the Frèchet derivatives, we obtain

‖D(E)(S)‖ = ∆T‖E‖‖D
(
∂E
∂∆T

)
(S)‖ ≤ ∆T‖E‖

(
‖Σ‖2

∣∣∣∣ 1
h2
u

+ 2
h2
u

− 3
hvhu

∣∣∣∣+ ‖LL‖) , (B.8)

where ‖LL‖ is the norm of the linear part of the operator L̃(k−1)
u + L̃(k−1)

v + L̃(k−1)
uv in Eq.(60). It is

easy to show that
‖LL‖ ≤ αL

∣∣∣∣ 1
hu

+ 1
hv

∣∣∣∣ ,
where |αL| ≤ 1.

As we mentioned already, on the FD grid ‖E‖ is a spectral norm of the matrix exponential eM where

‖M‖ ≤ ∆T
(
αNL‖Σ‖2

∣∣∣∣ 1
h2
u

+ 2
h2
u

− 3
hvhu

∣∣∣∣+ αL
∣∣∣∣ 1
hu

+ 1
hv

∣∣∣∣) .
Here αNL, αL are some terms that don’t depend on ∆T , hu, hv, i.e. on the FD steps in all spatial and
temporal directions. Also, by construction M = A(M) is the Metzler matrix with all eigenvalues being
negative. Therefore, it can be seen that by decreasing the steps hu, hv, or increasing the step ∆T we
decrease the norm ‖D(E)(S)‖ (as the exponential term dominates). Therefore, to decrease the norm
‖D(E)(S)‖ we can, e.g., fix the time step ∆T , and then decrease the step hu or hv (or both) until we
get ‖D(E)(S)‖ < 1.

This could be compared with the familiar stability condition for the Euler explicit FD scheme, which
reads, [Itkin, 2017b]

2D∆t
h2 ≤ 1, (B.9)

with D being some diffusion coefficient. The latter condition is restrictive, because it sets the upper
limit on the time step given the space step h. In contrast, our condition, using a loose notation, reads

2D∆T
h2 > 1.

Since this is a stability condition, the convergence of our iterative method is conditional. However,
our condition is far less restrictive then that in Eq.(B.9). Indeed, given the space step h we need the
time step to exceed the value h2/(2D), while Eq.(B.9) requires it to be less than h2/(2D). Since h2 is
normally small, and D is proportional to ‖Σ‖2 > 1 on the grid, it could be satisfied with no serious
restrictions on ∆T . Therefore, the iterative scheme is "almost" unconditionally stable, where "almost"
means - at the values of the model parameters reasonable from the practical point of view.
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