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A Tale of Two Indices

In 1993, the Chicago Board of Options Exchange (CBOE) introduced the CBOE Volatility Index (VIX).

This index has become the de factor benchmark for stock market volatility. The original construction of

this volatility index uses options data on S&P 100 index (OEX) to compute an average of the Black and

Scholes (1973) option implied volatility with strike prices close to the current spot index level and maturities

interpolated at about one month. The market often regards this implied volatility measure as a forecast of

subsequent realized volatility and also as an indicator of market stress (Whaley (2000)).

On September 22, 2003, CBOE revamped the definition and calculation of the VIX, and back-calculated

the new VIX to 1990 based on historical option prices. The newdefinition uses the S&P 500 index (SPX)

to replace OEX as the underlying stock index. Furthermore, the new index measures a weighted average

of option prices across all strikes at two nearby maturities. On March 26, 2004, the CBOE launched a new

exchange, the Chicago Futures Exchange (CFE) to start trading futures on the new VIX. At the time of this

writing, options on the VIX are also planned.

In this paper, we describe the major differences in the definition and calculation of the old and the

new volatility indices. We derive the theoretical underpinnings of the two indices and discuss the practical

motivations for the switch from the old to the new VIX. We alsostudy the historical behavior of the new

volatility index, and analyze how it interacts with stock index returns and realized volatilities. Finally, we

discuss how to use options on the underlying S&P 500 index to define valuation bounds on the VIX futures,

and how to exploit information in the underlying options market and the VIX futures to price options on the

new VIX.



I. DEFINITIONS AND CALCULATIONS

A. The Old VXO

The CBOE renamed the old VIX as VXO and continues to provide quotes on this index. VXO is based on

options on OEX. It is an average of the Black-Scholes impliedvolatilities on eight near-the-money options

at the two nearest maturities. When the time to the nearest maturity is within eight calendar days, the next

two nearest maturities are used instead.

At each maturity, the CBOE chooses two call and two put options at the two strike prices that straddle

the spot level and are nearest to it. The CBOE first averages the two implied volatilities from the put and

call at each strike price, and then linearly interpolates between the two average implied volatilities at the

two strike prices to obtain the at-the-money spot implied volatility. The interpolated at-the-money implied

volatilities at the two maturities are further interpolated along the maturity dimension to create a 22-trading

day volatility, which constitutes the VXO.

The Black-Scholes implied volatility is the annualized volatility that equates the Black-Scholes formula

value to the options market quote. The annualization is based on an actual/365 day-counting convention.

Instead of using this implied volatility directly, the CBOEintroduced an artificial “trading-day conversion”

in the calculation of VXO. Specifically, letATMV(t,T) denote the time-t Black-Scholes at-the-money im-

plied volatility as an annualized percentage with expiry date T. The CBOE converts this percentage to

“trading-day” volatility TV(t,T) by:

TV(t,T) = ATMV(t,T)
√

NC/
√

NT, (1)
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whereNC andNT are the number of actual calendar days and the number of trading days between timet

and the option expiryT respectively. The CBOE converts the number of calendar daysinto the number of

trading days according to the following formula:

NT = NC−2×int(NC/7). (2)

VXO represents an interpolated trading-day volatility at 22 trading days based on the two trading-day volatil-

ities at the two nearest maturities (TV(t,T1) andTV(t,T2)):

VXOt = TV(t,T1)
NT2−22

NT2−NT1
+ IV (t,T2)

22−NT1

NT2−NT1
, (3)

whereNT1 andNT2 denote the number of trading days between timet and the two option expiry datesT1

andT2, respectively.

Since each month has about 22 trading days, VXO represents a one-month at-the-money implied volatil-

ity estimate. Nevertheless, the trading-day conversion inequation (1) raises the level of VXO, and makes

it no longer comparable to annualized realized volatilities computed from index returns. Thus, the VXO

computation methodology has drawn criticism from both academia and industry for its artificially induced

upward bias.

B. The New VIX

In contrast to the old VXO, which is based on near-the-money Black-Scholes implied volatilities of OEX

options, the CBOE calculates the new volatility index VIX using market pricesinstead of implied volatilities.

It also uses SPX options instead of OEX options. The general formula for the new VIX calculation at time

t is,

VS(t,T) =
2

T − t ∑
i

∆K

K2
i

ert(T−t)Ot(Ki ,T)− 1
T − t

[

Ft

K0
−1

]2

, (4)
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whereT is the common expiry date for all of the options involved in this calculation,Ft is the time-t

forward index level derived from co-terminal index option prices,Ki is the strike price of thei-th out-of-

the-money option in the calculation,Ot(Ki,T) denotes the time-t mid-quote price of the out-of-the-money

option at strikeKi, K0 is the first strike below the forward index levelFt , rt denotes the time-t riskfree rate

with maturity T, and∆Ki denotes the interval between strike prices, defined as∆Ki = (Ki+1−Ki)/2. For

notational clarity, we suppress the dependence ofrt andFt on the maturity dateT as no confusion shall

occur.

The formula in equation (4) uses only out-of-the-money options except atK0, at whichOt(K0,T) rep-

resents the average of the call and put option prices at this strike. SinceK0 ≤ Ft , the average atK0 implies

that the CBOE uses one unit of the in-the-money call atK0. The last term in equation (4) represents the

adjustment needed to convert this in-the-money call into anout-of-the-money put using put-call parity.

The calculation involves all available call options at strikes greater thanFt and all put options at strikes

lower thanFt . The bids of these options must be strictly positive to be included. At the extreme strikes of

the available options, the definition for the interval∆K is modified as follows:∆K for the lowest strike is

the difference between the lowest strike and the next higherstrike. Likewise,∆K for the highest strike is the

difference between the highest strike and the next lower strike.

To determine the forward index levelFt , the CBOE chooses a pair of put and call options with prices

that are the closest to each other. Then, the forward price isderived via the put-call parity relation:

Ft = e−rt(T−t)(Ct(K,T)−Pt(K,T))+K. (5)

The CBOE uses equation (4) to calculateVS(t,T) at two of the nearest maturities of the available

options, T1 and T2. Then, the CBOE interpolates betweenVS(t,T1) andVS(t,T2) to obtain aVS(t,T)
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estimate at 30-days to maturity. The VIX represents an annualized volatility percentage of this 30-dayVS,

using an actual/365 day-counting convention:

VIXt = 100

√

365
30

[

(T1− t)VS(t,T1)
NC2−30

NC2−NC1
+(T2− t)VS(t,T2)

30−NC1

NC2−NC1

]

, (6)

whereNC1 andNC2 denote the number of actual days to expiration for the two maturities. When the nearest

time to maturity is eight days or less, the CBOE switches to the next nearest maturity in order to avoid

microstructure effects. The annualization in (6) follows the actual/365 day-counting convention and does

not suffer from the artificial upward bias incurred in the VXOcalculation.

II. ECONOMIC AND THEORETICAL UNDERPINNINGS

A. The Old VXO

The VXO is essentially an average estimate of the one-month at-the-money Back-Scholes implied volatility,

with an artificial upward bias induced by the trading-day conversion. Academics and practitioners often

regard at-the-money implied volatility as an approximate forecast for realized volatility. However, since the

Black-Scholes model assumes constant volatility, there isno direct economic motivation for regarding the

at-the-money implied volatility as the realized volatility forecast beyond the Black-Scholes model context.

Nevertheless, a substantial body of empirical work has found that the at-the-money Black-Scholes implied

volatility is an efficient, although biased, forecast of subsequent realized volatility. Examples include La-

tane and Rendleman (1976), Chiras and Manaster (1978), Day and Lewis (1988),Lamoureux and Lastrapes

(1993), Canina and Figlewski (1993), Fleming (1998), Christensen and Prabhala (1998), and Gwilym and

Buckle (1999). Thus, references to the VXO as a forecast of subsequent realized volatility is more based on

empirical evidence than on any theoretical linkages.

Recently, Carr and Lee (2003) identify an economic interpretation for at-the-money implied volatility

in a theoretical framework which goes beyond the Black-Scholes model. They show under general market
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settings that the time-t at-the-money implied volatility with expiry at timeT represents an accurate approx-

imation of the conditional risk-neutral expectation of thereturn volatility during the time period[t,T]:

ATMV(t,T) ∼= E
Q
t [RVolt,T ] , (7)

whereE
Q
t [·] denotes the expectation operator under the risk-neutral measureQ conditional on time-t filtra-

tion F t , andRVolt,T denotes the realized return volatility in annualized percentages over the time horizon

[t,T]. Appendix A details the underlying assumptions and derivations for this approximation.

The result in (7) assigns new economic meanings for VXO, which approximates the volatility swap

rate with a one-month maturity, if we re-adjust the upward bias induced by the trading-day conversion.

Volatility swap contracts are traded actively over the counter on major currencies and some equity indexes.

At maturity, the long side of the volatility swap contract receives the realized return volatility and pays a

fixed volatility rate, which is the volatility swap rate. A notional dollar amount is applied to the volatility

difference to convert the payoff from volatility percentage points to dollar amounts. Since the contract costs

zero to enter, the fixed volatility swap rate equals the risk-neutral expected value of the realized volatility.

It is worth noting that although the at-the-money implied volatility is a good approximation of the

volatility swap rate, the payoff on a volatility swap is notoriously difficult to replicate. Carr and Lee (2003)

derive hedging strategies for volatility swap contracts that involve dynamic trading of both futures and

options.

B. The New VIX

The new VIX squared approximates the conditional risk-neutral expectation of the annualized realized return

variance over the next 30 days:

VIX2
t
∼= E

Q
t [RVt,t+30] , (8)
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with RVt,t+30 = RVol2t,t+30 denoting the annualized return variance between[t, t +30]. Hence,VIX2
t approx-

imates the 30-day variance swap rate. Variance swap contracts are actively traded over the counter on major

equity indexes. At maturity, the long side of the variance swap contract receives a realized variance and pays

a fixed variance rate, which is the variance swap rate. The difference between the two rates is multiplied

by a notional dollar amount to convert the payoff into dollarpayments. At the time of entry, the contract

has zero value. Hence, by no-arbitrage, the variance swap rate equals the risk-neutral expected value of the

realized variance.

Although volatility swap payoffs are difficult to replicate, variance swap payoffs can be readily repli-

cated, up to a higher-order term. The trading strategy combines a static position in a continuum of options

with a dynamic position in futures. The risk-neutral expected value of the gains from dynamic futures trad-

ing is zero. The square of the VIX is a discretized version of the initial cost of the static option position

required in the replication. The theoretical relation holds under very general conditions. We can think of the

VIX as the variance swap rate quoted in volatility percentage points.

To understand the replication strategy and appreciate the economic underpinnings of the new VIX, we

follow Carr and Wu (2004) in decomposing the realized returnvariance into three components:

RVt,T = 2
T−t

[

R Ft
0

1
K2 (K −ST)+dK+

R ∞
Ft

1
K2 (ST −K)+dK

]

+ 2
T−t

R T
t

[

1
Fs−

− 1
Ft

]

dFs

− 2
T−t

R T
t

R

R0

[

ex−1−x− x2

2

]

µ(dx,ds),

(9)

whereSt denotes the time-t spot index level,R0 denotes the real line excluding zero, andµ(dx,dt) is a ran-

dom measure that counts the number of jumps of size(ex−1) in the index price at timet. The decomposition

in (9) shows that we can replicate the return variance by the sum of (i) the payoff from a static position in

a continuum of European out-of-the-money options on the underlying spot across all strike prices but at the

same expiryT (first line), (ii) the payoff from a dynamic trading strategyholding 2e−rt (T−s)

T−t

[

1
Fs−

− 1
Ft

]

futures

at times (second line), and (iii) a higher-order term induced by the discontinuity in the index price dynamics

(third line).
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Taking expectations under the risk-neutral measureQ on both sides, we obtain the risk-neutral expected

value of the return variance on the left hand side. We also obtain the forward value of the sum of the startup

cost of the replicating strategy and the replication error on the right hand side. By the martingale property,

the expected value of the gains from dynamic futures tradingis zero under the risk-neutral measure. With

deterministic interest rates, we have,

E
Q
t [RVt,T ] =

2
T − t

ert(T−t)
Z ∞

0

Ot(K,T)

K2 dK+ ε, (10)

whereε denotes the approximation error, which is zero when the index dynamics are purely continuous, and

of orderO
[

(

dF
F

)3
]

when the index can jump:

ε = − 2
T − t

E
Q
t

Z T

t

Z

R0

[

ex−1−x− x2

2

]

νs(x)dxds, (11)

whereνt(x)dxdt is the compensator of the jump counting measureµ(dx,dt).

The VIX definition in equation (4) represents a discretization of the integral in the theoretical relation

in equation (10). The extra term(Ft/K0−1)2 in equation (4) is an adjustment for using a portion of in-the-

money call option atK0 ≤ Ft . Appendix B provides a proof for the decomposition in (9) anda justification

for the adjustment term in (4). Therefore, the new VIX index squared has a very concrete economic in-

terpretation. It can be regarded either as the price of a portfolio of options, or as an approximation of the

variance swap rate up to the discretization error and the error induced by jumps.

C. Practical Motivation for the Switch

The CBOE’s switch from the old VXO to the new VIX is motivated by both theoretical and practical con-

siderations. First, until very recently, the exact economic meaning of the VXO, or the at-the-money implied

volatility, was not clear in any theoretical framework beyond the Black-Scholes model. It merely repre-

sents a monotonic but nonlinear transformation of at-the-money option prices. In contrast, the new VIX is
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the price of a linear portfolio of options. The economic meaning of thenew VIX is much more concrete.

Second, the trading-day conversion in the VXO definition induced an artificial upward bias that has drawn

criticism from both academia and industry. Third, althoughthe VXO approximates the volatility swap rate,

it remains true that volatility swaps are very difficult to replicate. In contrast, equation (9) shows that one

can readily replicate the variance swap payoffs up to a higher-order error term using a static position in a

continuum of European options and a dynamic position in futures trading. Therefore, despite the popularity

of VXO as a general volatility reference index, no derivative products have been launched on the VXO

index. This phenomenon is quite unique among indexes, sincealmost all popular indexes have derivative

products launched on them. In contrast, just a few months after the CBOE switched to the new VIX def-

inition, they started planning to launch futures and options contracts on the new VIX. VIX futures started

trading on March 26, 2004 on the Chicago Futures Exchange.

III. HISTORICAL BEHAVIORS

Based on historical data on daily closing option prices on S&P 500 index and S&P 100 index, the CBOE has

back-calculated the VIX to 1990 and VXO to 1987. For our empirical work, we choose the common sample

period from January 2, 1990 to October 18, 2005, spanning 5,769 calendar days. We analyze the historical

behavior of the two indices during this sample period, with afocus on the new VIX. We also download the

two stock indexes OEX and SPX and compute the realized returnvolatilities over the same sample period.

At each dayt, we compute the ex post realized volatility during the next 30 days according to the following

equation:

RVolt,t+30 = 100×

√

√

√

√

365
30

30

∑
j=1

(ln(St+ j/St+ j−1))
2, (12)

where we follow the industry standard by computing the return squared without demeaning the return and

by annualizing the volatility according to the actual/365 day-counting convention. We analyze how the

volatility indices correlate with the index returns and return volatilities.
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A. Summary Statistics

Exhibit 1 reports summary statistics on the levels and dailydifferences of the two volatility indexes (VXO

and VIX), and their corresponding 30-day realized volatilities, RVolSPX andRVolOEX. Since VXO has an

artificial upward bias due to the trading-day conversion, wealso compute an adjusted index (VXOA), which

scales back the conversion in VXO:VXOA=
√

22/30VXO, where we approximately regard the 22 trading

days as coming from 30 actual calendar days. All the volatility series are represented in percentage volatility

points.

Since VIX squared approximates the 30-day variance swap rate on SPX and VXOA approximates the

30-day volatility swap rate on OEX, Jensen’s inequality dictates that VIX should be higher than VXOA if

the risk-neutral expected values of the realized volatilities on the two underlying stock indexes (OEX and

SPX) are similar in magnitude:

VIX2
t

∼= E
Q
t

[

(RVolSPX
t,t+30)

2] =
(

E
Q
t

[

RVolSPX
t,t+30

]

)2
+VarQt

(

RVolSPX
t,t+30

)

, (13)

VXOAt
∼= E

Q
t

[

RVolOEX
t,t+30

]

, (14)

VIX2
t −VXOA2

t
∼= VarQt

(

RVolSPX
t,t+30

)

, if E
Q
t

[

RVolSPX
t,t+30

] ∼= E
Q
t

[

RVolOEX
t,t+30

]

. (15)

Exhibit 1 shows that the sample mean of the realized volatility on OEX is sightly higher than that on SPX.

Nevertheless, the sample average of VIX is higher than the sample average of VXOA due to Jensen’s in-

equality. The sample average of the original VXO series is the highest, mainly due to the erroneous trading-

day conversion.

Comparing the volatility index to the corresponding realized volatility, we find that on average, VIX is

about five percentage points higher than the realized volatility on SPX, and VXOA is about two percentage
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points higher than the corresponding realized volatility on OEX. To test the statistical significance of the

difference between the volatility index and the realized volatility, we construct the followingt-statistic,

t-stat =
√

N
X
SX

, (16)

whereN = 5,769 denotes the number of observations,X denotes the difference between the volatility index

and the realized volatility, the overline denotes the sample average, andSX denotes the Newey and West

(1987) standard deviation ofX that accounts for overlapping data and serial dependence, with the number

of lags optimally chosen following Andrews (1991) and an AR(1) specification. We estimate thet-statistic

for (VIX−RVolSPX) at 14.09 and for (VIX−RVolOEX) at 6.72, both of which are highly significant.

The volatility levels show moderate positive skewness and excess kurtosis, but the excess kurtosis for

daily differences is much larger, showing potential discontinuous index return volatility movements. Eraker,

Johannes, and Polson (2003) specify an index dynamics that contains constant-arrival finite-activity jumps

in both the index return and the return variance rate. By estimating the model to SPX return data, they

identify a strongly significant jump component in the variance rate process in addition to a significant jump

component in the index return. Wu (2005) directly estimatesthe variance rate dynamics without specifying

the return dynamics by using the VIX index and various realized variance estimators constructed from tick

data on SPX index futures. He also finds that the variance ratecontains a significant jump component, but he

finds that the jump arrival rate is not constant over time, butrather is proportional to the variance rate level.

Furthermore, he finds that jumps in the variance rate are not rare events, but arrive frequently and generate

sample paths that display infinite variation.

Exhibit 2 reports the cross-correlation between the two volatility indexes (VIXt andVXOt) and the

subsequent realized volatilities (RVolSPX
t,t+30 andRVolOEX

t,t+30). Each volatility index level is positively correlated

with its corresponding subsequent realized volatility, but the correlation estimates become close to zero when

measured in daily changes. Nevertheless, the two volatility indexes are highly correlated in both levels (0.98)

and daily differences (0.86). The two realized volatility series are also highly correlated in both levels (0.99)
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and daily changes (0.98). Therefore, just as the two stock indexes both provide a general picture of the

overall stock market, the two volatility indexes both proxyfor the overall stock market volatility. Given the

close correlation between VIX and VXO, and the planned obsolescence of VXO, we henceforth focus our

analysis on the behavior of the new VIX.

B. The Leverage Effect

Exhibit 3 plots the cross-correlations between SPX index returns at different leads and lags and daily changes

in the volatility index VIX, with the two dash-dotted lines denoting the 95% confidence band. The instanta-

neous correlation estimate is strongly negative at -0.78, but the correlation estimates at other leads and lags

are much smaller. Careful inspection shows that lagged returns (within a week) show marginally significant

positive correlations with daily changes in the volatilityindex, indicating that index returns predict future

movements in the volatility index. However, index returns with negative lags are not significantly corre-

lated with daily changes in the volatility index. Therefore, volatility index movements do not predict index

returns.

The negative correlations between stock returns and stock return volatilities have been well-documented.

Nevertheless, since return volatility is not observable, the correlation can only be estimated under a structural

model for return dynamics. In Exhibit 3, we use VIX as an observable proxy for return volatility and

compute the correlation across different leads and lags without resorting to a model for return dynamics.

The strongly negative contemporaneous correlation between stock (index) returns and return volatilities

captures the “leverage effect” first discussed by Black (1976): Given a fixed debt level, a decline in the

equity level increases the leverage of the firm (market) and hence the risk for the stock (index). Various other

explanations for the negative correlation have also been proposed in the literature, e.g., Haugen, Talmor, and

Torous (1991), Campbell and Hentschel (1992), Campbell andKyle (1993), and Bekaert and Wu (2000).
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C. The FOMC Meeting Day Effect

Balduzzi, Elton, and Green (2001) find that trading volume, bid-ask spreads, and volatility on Treasury

bonds and bills increase dramatically around FOMC meeting dates. The Federal Reserve often announces

changes in the Fed Funds Target Rate and its views on the overall economy during the FOMC meetings.

The anticipation and ex post reaction to these announcements in monetary policy shifts and assessments

create dramatic variations in trading and pricing behaviorin the Treasury market. In this section, we use the

VIX as a proxy for stock market volatility and investigate whether stock market volatility also shows any

apparent changes around FOMC meeting days.

We download the FOMC meeting day log from Bloomberg. During our sample period, there are 144

scheduled FOMC meetings, about ten meetings per year. Exhibit 4 plots the time series of the Fed Funds

Target Rates in the left panel and the basis point target changes during the scheduled FOMC meeting days

in the right panel. Among the 144 meetings, 62 of the meetingsannounced a change in the Fed Funds Target

Rate. Among the 62 target moves, the change is 25 basis points45 times, 50 basis points 16 times, and 75

basis points once. For 25 times, the change is positive, representing a tightening of the monetary policy, and

for 37 times the change represent a rate cut and hence an easing of monetary policy.

Armed with the list of FOMC meeting days, we sort VIX around the FOMC meeting days and compute

the average VIX level each day from ten days before to ten daysafter the FOMC meeting days. The left

panel of Exhibit 5 plots sample averages of VIX around FOMC meeting days in the left panel. We observe

that the average volatility level builds up before the FOMC meeting date and then drops markedly afterward.

The volatility index reaches its highest level the day before the meeting and drops to the lowest level four

days after the meeting. To investigate the significance of the drop, we measure the difference between

the volatility index one day before and one day after the meeting. The mean difference is 0.6 percentage

volatility point, with at-statistics of 4.06.

Before the FOMC meeting, market participants disagree on whether the Fed will change the Fed Funds

Target Rate, in which direction, and by how much. The fact that the option-implied stock index volatility
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increases prior to the meeting and drops afterwards shows that the uncertainty about monetary policy has

a definite impact on the volatility of the stock market. This uncertainty is resolved right after the meeting.

Hence, the volatility index drops rapidly after the FOMC meeting.

Since VIX squared can be regarded as the variance swap rate onSPX, we also study whether the timing

of a variance swap investment around FOMC meeting days generates different returns. The right panel of

Exhibit 5 plots the average ex post payoff from going long theswap contract around FOMC meeting days

and holding the contract to maturity. The payoff is defined asthe difference between the ex post realized

variance and the VIX squared:(RVt,t+30−VIX2
t ). We find that the average payoffs are negative by going

long the swap on any day. Therefore, shorting the swap contract generates positive payoffs on average.

Comparing the magnitude differences at different days, we also find that shorting the swap contract four

pays prior to the FOMC meeting days generates the highest average payoff, and that shorting the variance

swap four days after the FOMC meeting days generates the lowest average payoff. The difference in average

payoffs between investments in these two days is statistically significant, with at-statistic of 9.29. Therefore,

the evidence suggests that it is more profitable to short the SPX variance swap contract four days before an

FOMC meeting than four days after.

D. Variance Risk Premia

Up to a discretization error and a jump-induced error term, VIX squared is equal to the risk-neutral expected

value of the realized variance on SPX return during the next 30 days:

VIX2
t
∼= E

Q
t [RVt,t+30] . (17)

We can also rewrite equation (17) under the statistical measureP as,

VIX2
t
∼= EP

t [Mt,t+30RVt,t+30]

EP
t [Mt,t+30]

= EP
t [RVt,t+30]+CovPt

(

Mt,t+30

EP
t [Mt,t+30]

,RVt,t+30

)

, (18)
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whereMt,T denotes a pricing kernel between time periodt andT. For traded assets, no-arbitrage guarantees

the existence of at least one such pricing kernel (Duffie (1992)).

Equation (18) decomposes VIX squared into two terms. The first termEP
t [RVt,t+30] represents the sta-

tistical conditional mean of the realized variance, and thesecond term captures the conditional covariance

between the normalized pricing kernel and the realized variance. The negative of this covariance defines the

time-t conditional variance risk premium (VRPt):

VRPt ≡−CovPt

(

Mt,t+30

EP
t [Mt,t+30]

,RVt,t+30

)

= EP
t [RVt,t+30]−VIX2

t . (19)

Taking unconditional expectations on both sides, we have,

EP [VRPt ] = EP
[

RVt,t+30−VIX2
t

]

. (20)

Thus, we can estimate the average variance risk premium as the sample average of the differences between

the realized return variance and the VIX squared. Over our sample period, the mean variance risk premium

is estimated at−158.67 basis points, with a Newey and West (1987) serial dependence adjusted standard

error of 17.2. Hence, the mean variance risk premium is strongly negative.

Risk averse investors normally ask for a positive risk premium for return risk. They require stock

prices to appreciate by a higher percentage on average if stock returns are riskier. In contrast, the negative

variance risk premium indicates that investors require theindex return variance to staylower on average to

compensate for higher variance risk. Therefore, whereas higher average return is regarded as compensation

for higher return risk, lower average variance levels are regarded as compensation for higher variance risk.

Investors are averse not only to increases in the return variance level, but also to increases in the variance of

the return variance.
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From the perspective of a variance swap investment, the negative variance risk premium also implies

that investors are willing to pay a high premium or endure an average loss when long variance swaps in

order to receive compensation when the realized variance ishigh.

Dividing both sides of equation (18) byVIX2
t , we can rewrite the decomposition in excess returns:

1 = EP
t

[

RVt,t+30

VIX2
t

]

+CovPt

(

Mt,t+30

EP
t [Mt,t+30]

,
RVt,t+30

VIX2
t

)

, (21)

If we regardVIX2
t as the forward cost of the investment in the static option position required to replicate the

variance swap payoff,
(

RVt,t+30/VIX2
t −1

)

captures the excess return from going long the variance swap.

The negative of the covariance term in equation (21) represents the conditional variance risk premium in

excess return terms:

VRPRt ≡−CovPt

(

Mt,t+30

EP
t [Mt,t+30]

,
RVt,t+30

VIX2
t

)

= EP
t

[

RVt,t+30

VIX2
t

]

−1. (22)

We can estimate the mean variance risk premium in excess return form through the sample average of the

realized excess returnsERt,t+30 = (RVt,t+30/VIX2
t −1), which is estimated at−40.16%, with a Newey and

West (1987) standard error of 2.87%. Again, the mean variance risk premium estimate is strongly negative

and highly significant. Investors are willing to endure a highly negative excess return for being long variance

swaps in order to hedge away upward movements in the return variance of the stock index.

The average negative variance risk premium also suggests that shorting the 30-day variance swap and

holding it to maturity generates an average excess return of40.16%. We compute the annualized informa-

tion ratio using 30-day apart non-overlapping data,IR = −
√

12ER/SER, whereERdenotes the time series

average of the excess return andSER denotes the serial-dependence adjusted standard deviation estimate of

the excess return. The information ratio estimates averageto 3.52, indicating that shorting 30-day variance

swaps is very profitable on average.
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To further check the historical behavior of excess returns from this investment, we plot the time series

of the excess returns in the left panel and the histogram in the right panel in Exhibit 6. The time series

plot shows that shorting variance swaps provides a positivereturn 89% of the time (5137 out of the 5769

daily investments). However, while the historical maximumpositive return is at 89.53%, the occasionally

negative realizations can be as large as 242.42%. The histogram in the right panel shows that the excess

return distribution is heavily negatively skewed. The highaverage return and high information ratio suggest

that investors ask for a very high average premium to compensate for the heavily negatively skewed risk

profile. The payoff from shorting variance swaps is similar to that from selling insurance, which generates

a regular stream of positive premiums with small variation,but with occasional exposures to large losses.

To investigate whether the classic Capital Asset Pricing Model (CAPM) can explain the risk premium

from investing in variance swaps, we regress the excess returns from being long the variance swap on the

excess returns from being long the market portfolio,

ERt,t+30 = α+ β
(

Rm
t,t+30−Rf

)

+et , (23)

where
(

Rm
t,t+30−Rf

)

denotes the continuously compounded excess return to the market portfolio. If the

CAPM holds, we would obtain a highly negative beta estimate for the long variance swap return. If the

CAPM can fully account for the risk premium, the estimate forthe interceptα, which represents the average

excess return to a market-neutral investment, would not be significantly different from zero.

We proxy the excess return to the market portfolio using the value-weighted return on all NYSE, AMEX,

and NASDAQ stocks (from CRSP) minus the one-month Treasury bill rate (from Ibbotson Associates).

Monthly data on the excess returns is publicly available at Kenneth French’s online data library from July

1926 to September 2005. We match the sample period with our data and run the regression on monthly

returns over non-overlapping data using the generalized methods of moments, with the weighting matrix

computed according to Newey and West (1987).
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The regression estimates are as follows, witht-statistics reported in parentheses,

ERt = −0.3636 − 3.7999 (Rm
t −Rf ) +et , R2 = 19.15%.

(−65.03) (−30.10)
(24)

The beta estimate is highly negative, consistent with the general observation that index returns and volatility

are negatively correlated. However, this negative beta cannot fully explain the negative premium for volatil-

ity risk. The estimate for the intercept, or the mean beta-neutral excess return, remains strongly negative.

The magnitude ofα is not much smaller in magnitude than the sample average of the raw excess return at

−38.36%. Thus, the CAPM only gets the sign right, but cannot fullyaccount for the large negative risk

premium on index return variance risk. This result suggeststhat variability in variance constitutes a separate

source of risk that the market prices heavily.

To test whether the variance risk premium is time varying, werun the following expectations-hypothesis

regressions, with thet-statistics reported in parenthesis:

RVt,t+30 = −11.9006 + 0.6501V IX2
t +et,t+30,

(−0.52) (−4.79)

(RVt,t+30/VIX2
t −1) = −0.4495 + 0.0001V IX2

t +et,t+30.

(−14.28) (1.61)

(25)

Under the null hypothesis of constant variance risk premium, the first regression should generate a slope of

one, and the second regression should generate a slope of zero. Zero variance risk premium would further

imply zero intercepts for both regressions. Thet-statistics are computed against these null hypotheses.

Since the daily series of the 30-day realized variance constitutes an overlapping series, we estimate both

regressions using the generalized methods of moments, and construct the weighting matrix, accounting for

the serial dependence according to Newey and West (1987) with 30 lags.

When the regression is run on the variance level, the slope estimate is significantly lower than the null

value of one, providing evidence that the variance risk premium VRPt is time varying and correlated with
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the VIX level. When the regression is run on excess returns inthe second equation, the slope estimate is no

longer significantly different from zero, suggesting that the variance risk premium defined in excess return

terms (VRPRt) is not highly correlated with the VIX level.

E. Predictability of Realized Variance and Returns to Variance Swap Investments

We estimate GARCH(1,1) processes on the S&P 500 index returninnovation, with an AR(1) assumption on

the return process. Then, we compare the relative information content of the GARCH volatility and the VIX

index in predicting subsequent realized return variances:

RVt,t+30 = a+bV IX2
t +cGARCHt +et,t+30, (26)

whereGARCHt denotes the time-t estimate of the GARCH return variance in annualized basis points. Ex-

hibit 7 reports the generalized methods of moment estimation results on restricted and unrestricted versions

of this regression.

When we use eitherVIX2 or GARCHas the only predictor in the regression, the volatility index VIX

generates an R-squared about ten percentage points higher than the GARCH variance does. When we use

bothVIX2 andGARCHas predictors, the slope estimate on the GARCH variance is nolonger statistically

significant, and the R-squared is only marginally higher than usingVIX2 alone as the regressor. Thus, the

GARCH variance does not provide much extra information in addition to that in the VIX index.

The results in Exhibit 7 show that we can predict the realizedvariance using the volatility index VIX. By

using variance swaps, investors can exploit such predictability and directly convert them into dollar returns.

We investigate whether the predictability of return variance has been fully priced into the variance swap

rate by analyzing the predictability of the excess returns from investing in a 30-day SPX variance swap and

holding it to maturity.
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First, we measure the monthly autocorrelation of the excessreturnsERt,t+30 using non-overlapping 30-

day apart data. The estimates average at 0.12. When we run an AR(1) regression on the non-overlapping

excess returns, the R-squared estimates average to 1.58%. Thus, the predictability of excess returns through

mean reversion is very low. Although the volatility level isstrongly predictable, investors have priced

this predictability into variance swap contracts, so that the excess returns on these swaps are not strongly

predictable.

Exhibit 3 shows that SPX returns predicts future movements in the VIX index. Now we investigate

whether we can predict the excess return on a variance swap investment using index returns. Exhibit 8 plots

the cross-correlation between the excess return to the variance swap and the monthly return on SPX, based

on monthly sampled and hence non-overlapping data. The stock index return and the return on the variance

swap investments show strongly negative contemporaneous correlation, but the non-overlapping series do

not exhibit any significant lead-lag effects. Hence, despite the predictability in return volatilities, excess

returns on variance swap investments are not strongly predictable. This result shows that the SPX options

market is relatively efficient.

IV. VIX DERIVATIVES

Given the explicit economic meaning of the new VIX and its direct link to a portfolio of options, the launch

of derivatives on this index becomes the natural next step. On March 26, 2004, the CBOE launched a new

exchange, the Chicago Futures Exchange, and started trading futures on VIX. Options on the VIX are also

being planned. In this section, we derive some interesting results regarding the pricing of VIX futures and

options.
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A. VIX Futures and Valuation Bounds

Under the assumption of no-arbitrage and continuous marking to market, the VIX futures price,Fvix
t , is a

martingale under the risk-neutral probability measureQ,

Fvix
t = E

Q
t

[

Fvix
T1

]

= E
Q
t [VIXT1] . (27)

We derive valuation bounds on VIX futures that are observable from the underlying SPX options market,

under two simplifying assumptions: (i) The VIX is calculated using a single strip of options maturing at

T2 > T1, with T2−T1 = 30/365, instead of two strips, and on a continuum of options prices rather than a

discrete number of options. (ii) The SPX index has continuous dynamics and interest rates are deterministic.

The first assumption implies that the VIX index is given by,

VIXT1 =

√

2
(T2−T1)BT1(T2)

Z ∞

0

OT1(K,T2)

K2 dK, (28)

whereBT1(T2) denotes the time-T1 price of a zero bond maturing atT2. The second assumption further

implies that the equality between the VIX index squared and the risk-neutral expected value of the return

variance is exact. Alternatively, we can write,

VIXT1 =
√

E
Q
T1

RVT1,T2. (29)

Substituting (29) in (27), we have the VIX futures as,

Fvix
t = E

Q
t

√

E
Q
T1

RVT1,T2, t ≤ T1 < T2. (30)

Then, the concavity of the square root and Jensen’s inequality generates the following lower and upper

bounds for the VIX futures:

E
Q
t

√

RVT1,T2 ≤ Fvix
t ≤

√

E
Q
t RVT1,T2 . (31)
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The lower bound is the forward volatility swap rateLt ≡ E
Q
t
√

RVT1,T2, which can be approximated by

a forward-starting at-the-money option. The proof is similar to that in Appendix A for the approximation

of a spot volatility swap rate using the spot at-the-money option. The upper bound is the forward-starting

variance swap rate quoted in volatility percentage points,Ut ≡
√

E
Q
t RVT1,T2, which can be determined from

the prices on a continuum of options at two maturitiesT1 andT2:

U2
t = E

Q
t RVT1,T2 =

1
T2−T1

[

E
Q
t (T2− t)RVt,T2 −E

Q
t (T1− t)Vt,T1

]

=
2

T2−T1

Z ∞

0

[

Ot(K,T2)

Bt(T2)
− Ot(K,T1)

Bt(T1)

]

dK
K2 . (32)

The width of the bounds is determined by the risk-neutral variance of the forward-starting realized volatility:

U2
t −L2

t = E
Q
t (RVT1,T2)−

(

E
Q
t

√

RVT1,T2

)2
= VarQt

(√

RVT1,T2

)

. (33)

When the market quote on VIX futures (Fvix
t ) is available, we can combine it with forward-starting

variance swap rates (Ut ) to determine the risk-neutral variance of the future VIX:

VarQt (VIXT1) = VarQt

(

√

E
Q
T1

[RVT1,T2]

)

= E
Q
t [RVT1,T2]−

(

E
Q
t

√

EQ
T1

RVT1,T2

)2

= U2
t − (Fvix

t )2. (34)

Therefore, VIX futures provide economically relevant information not only about the future VIX level, but

also about the risk-neutral variance of the future VIX. We can use this information for pricing VIX options.
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B. VIX Options

The VIX futures market, together with the SPX options market, provides the information basis for launching

VIX options. To see this, we consider a call option on VIX, with the terminal payoff:

(VIXT1 −K)+ , (35)

whereK is the strike price andT1 denotes the expiry date of the option. We have shown that we can learn the

conditional risk-neutral mean (m1t) and variance (m2t ) of VIXT1 from information in the VIX futures market

and the underlying SPX options market:

m1t ≡ E
Q
t (VIXT1) = Fvix

t ,

m2t ≡ VarQt (VIXT1) = U2
t − (Fvix

t )2 = 2
T2−T1

R ∞
0

[

Ot(K,T2)
Bt(T2)

− Ot(K,T1)
Bt(T1)

]

dK
K2 − (Fvix

t )2.
(36)

Thus, under certain distributional assumptions, we can derive the value of the VIX option as a function of

these two moments.

As an example, if we assume thatVIXT1 follows a log-normal distribution under measureQ, we can use

the Black formula to price VIX options with the two moments inequation (36) as inputs,

Ct = Bt (T1)
[

Fvix
t N(d1)−KN(d2)

]

,

where

d1 =
lnFvix

t /K + 1
2s2

t (T1− t)

st
√

T1− t
, d2 = d1−st

√
T1− t,

andst is the conditional annualized volatility of lnVIXT1, which can be represented as a function of the first

two conditional moments ofVIXT1,

s=

√

1
T1− t

ln
m2t +(Fvix

t )2

(Fvix
t )2

. (37)
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As another example, if we assume that the risk-neutral distribution ofVIXT1 is normal rather than log-

normal, we can derive the Bachelier option pricing formula as a function of the first two observable moments

of VIXT1:

Ct = Bt (T1)
[√

m2tN
′ (d)+

(

Fvix
t −K

)

N(d)
]

, (38)

with d =
(

Fvix
t −K

)

/
√

m2t . For at-the-money options (K = Fvix
t ), the Bachelier option pricing formula

reduces to a very simple form,

At = Bt(T1)
√

m2t/
√

2π. (39)

V. CONCLUSION

The new VIX differs from the old VXO in two key aspects. First,the two indices use different underly-

ings, SPX for the new VIX versus OEX for the old VXO. Second, the two indices use different formulae

in extracting volatility information from the options market. The new VIX is constructed from the price of

a portfolio of options and represents a model-free approximation of the 30-day return variance swap rate.

The old VXO builds on the one-month Black-Scholes at-the-money implied volatility and approximates the

volatility swap rate under certain assumptions. The CBOE decided to switch from VXO to VIX mainly

because the new VIX has a more well known and robust economic interpretation. In particular, the vari-

ance swap underlying the new VIX has a robust replicating portfolio whose option component is static. In

contrast, robust replication of the volatility swap underlying the VXO index requires dynamic option trad-

ing. Furthermore, the VXO includes an upward bias induced byan erroneous trading-day conversion in its

definition.

Analyzing about 15 years of daily data on the two volatility indices, we obtain several interesting findings

on the index behavior. We find that the new VIX averages about two percentage points higher than the bias-

corrected version of the old index, although the sample average of the 30-day realized volatility on SPX is

0.66 percentage point lower than that of OEX. The differencebetween the new and old volatility indices
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is mainly induced by Jensen’s inequality and the risk-neutral variance of realized volatility. The historical

behaviors of the two volatility indices are otherwise very similar and move closely with each other. We also

find that daily changes in the volatility indices show very large excess kurtosis, suggesting that the volatility

indices contain large discontinuous movements.

We identify a strongly negative contemporaneous correlation between VIX and SPX index returns, con-

firming the “leverage effect” first documented by Black (1976). Furthermore, although lagged index returns

show marginal predictive power on the future movements of the VIX, lagged movements in the volatility

index do not predict future index returns.

When we analyze VIX behavior around FOMC meeting days, during which monetary policy decisions

such as Fed Funds Target Rate changes are often announced, wefind that the volatility index increases prior

to the FOMC meeting, but drops rapidly after the meeting, showing that uncertainty about monetary policy

has a direct impact on volatility in the stock market.

Since VIX squared represents the variance swap rate on SPX, the sample average difference between

the 30-day realized return variance on SPX and VIX squared measures the average variance risk premium,

which we estimate at−158.67 basis points and highly significant. When we represent thevariance risk

premium in excess returns form, we obtain a mean estimate of−40.16% for being long a 30-day variance

swap and holding it to maturity. The highly negative variance risk premium indicates that investors are

averse to variations in return variance and the compensation for bearing variance risk can come in the form

of a lower mean variance level.

From the perspective of variance swap investors, the negative variance risk premium indicates that in-

vestors are willing to pay a high average premium to obtain compensation (insurance) when the variance

level increases. Therefore, shorting variance swaps and hence receiving the fixed leg generates positive

excess returns on average. The annualized information ratio for shorting a variance swap is about 3.52,

much higher than traditional investments. Nevertheless, the excess return distribution accessed by being

short variance swaps is heavily negatively skewed. Negative return realizations are few but large. The high
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information ratio indicates that investors ask for a high average return in order to compensate for the heavily

negatively skewed risk profile. When we regress the excess returns from being long the variance swap on the

stock market portfolio, we obtain a highly negative beta. However, the intercept of the regression remains

highly negative, indicating that the classic Capital AssetPricing Model cannot fully account for the negative

variance risk premium. Investors regard variability in variance as a separate source of risk and charge a

separate price for bearing this risk. Expectations hypothesis regressions further show that the variance risk

premium in variance levels are time varying and correlated with the VIX level, but the variance risk premium

in excess returns form is much less correlated with the VIX level.

We find that the VIX can predict movements in future realized variance, and that GARCH volatilities do

not provide extra information once the VIX is included as a regressor. Nevertheless, the strong predictability

of the realized variance does not transfer to strong predictability in excess returns for investing in variance

swaps.

Finally, we show that the SPX options market provides information on valuation bounds for VIX futures.

The width of the bounds are determined by the risk-neutral variance for forward-starting return volatility.

Furthermore, VIX futures quotes not only provide information about the risk-neutral mean of future VIX

levels, but they also combine with information from the SPX options market to reveal the risk-neutral vari-

ance of the VIX. This information can be used to price VIX options.
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Appendix A. Approximating Volatility Swap Rates with At-the-Money Implied Volatilities

Let (Ω,F ,Q) be a probability space defined on a risk-neutral measureQ. As in Carr and Lee (2003), we assume

continuous dynamics for the index futuresFt under measureQ:

dFt/Ft = σtdWt , (1)

where the diffusion volatilityσt can be stochastic, but its variation is assumed to be independent of the Brownian

motionWt in the price. Under these assumptions, Hull and White (1987)show that the value of a call option can be

written as the risk-neutral expected value of the Black-Scholes formula, evaluated at the realized volatility. The time-t

value of the at-the-money forward (K = Ft ) option maturing at timeT can be written as,

ATMCt,T = E
Q
t

{

Ft

[

N

(

RVolt,T
√

T − t
2

)

−N

(

−RVolt,T
√

T − t
2

)]}

, (2)

whereRVolt,T is the annualized realized return volatility over[t,T]:

RVolt,T ≡

√

1
T − t

Z T

t
σ2

sds. (3)

Brenner and Subrahmanyam (1988) show that a Taylor series expansion of each normal distribution function about

zero implies:

N

(

RVolt,T
√

T − t
2

)

−N

(

−RVolt,T
√

T − t
2

)

=
RVolt,T

√
T − t√

2π
+O((T − t)

3
2 ). (4)

Substituting (4) in (2) implies that:

ATMCt,T ≈ E
Q
t

[

Ft√
2π

RVolt,T
√

T − t

]

, (5)

and hence the volatility swap rate is given by:

E
Q
t [RVolt,T ] =

√
2π

F
√

T − t
ATMCt,T +O((T − t)

3
2 ). (6)
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Since an at-the-money call value is concave in volatility,
√

2π
Ft
√

T−t
ATMCt,T is a slightly downward biased approximation

of the volatility swap rate. As a result, the error term is positive. However, Brenner and Subrahmanyam show that the

at-the-money implied volatility is also given by:

ATMVt,T =

√
2π

Ft
√

T − t
ATMCt,T +O((T − t)

3
2 ). (7)

Once again,
√

2π
Ft
√

T−t
ATMCt,T is a slightly downward biased approximation of the at-the-money implied volatility.

Subtracting equation (7) from (7) implies that the volatility swap rate is approximated by the at-the-money implied

volatility:

E
Q
t [RVolt,T ] = ATMVt,T +O((T − t)

3
2 ). (8)

The leading source of error in (6) is partially canceled by the leading source of error in (7). As a result, this approxi-

mation has been found to be very accurate.

Appendix B. Replicating Variance Swaps with Options

The interpretation of the new VIX as an approximation of the 30-day variance swap rate can be derived under a much

more general setting for theQ-dynamics of SPX index futures:

dFt/Ft− = σt−dWt +

Z

R0
(ex−1)[µ(dx,dt)−νt(x)dxdt] , (9)

whereFt− denotes the futures price at timet just prior to a jump,R0 denotes the real line excluding zero, and the

random measureµ(dx,dt) counts the number of jumps of size(ex − 1) in the index futures at timet. The process

{νt(x),x∈ R0} compensates the jump processJt ≡
R t

0

R

R0 (ex−1)µ(dx,ds), so that the last term in equation (9) is the

increment of aQ-pure jump martingale. To avoid notational complexity, we assume that the jump component in the

price process exhibits finite variation,
Z

R0
(|x| ∧1)νt(x)dx< ∞.

By adding the time subscripts toσt− andνt(x), we allow both to be stochastic and predictable with respectto the

filtrationF t . To satisfy limited liability, we further assume the two stochastic processes to be such that the futures price

Ft is always nonnegative and absorbing at the origin. Finally,with little loss of generality, we assume deterministic
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interest rates and dividend yields. Under these assumptions, the annualized quadratic variation on the futures return

over horizon[t,T] can be written as

RVt,T =
1

T − t

[

Z T

t
σ2

t−dt+
Z T

0

Z

R0
x2µ(dx,dt)

]

. (10)

Applying Itô’s lemma to the functionf (F) = lnF, we have

ln(FT) = ln(Ft)+
Z T

t

1
Fs−

dFs−
1
2

Z T

t
σ2

s−ds+
Z T

t

Z

R0
[x−ex +1]µ(dx,ds).

Add and subtract 2[FT
Ft
−1]+

R T
t x2µ(dx,dt) and re-arrange, we obtain a representation for the quadratic variation,

(T − t)RVt,T = 2

[

FT

Ft
−1− ln

(

FT

Ft

)]

+2
Z T

t

[

1
Fs−

− 1
Ft

]

dFs

−2
Z T

t

Z

R0

[

ex−1−x− x2

2

]

µ(dx,ds). (11)

A Taylor expansion with remainder of lnFT about the pointFt implies,

lnFT = lnFt +
1
Ft

(FT −Ft)−
Z Ft

0

1
K2 (K −FT)+dK−

Z ∞

F0

1
K2 (FT −K)+dK. (12)

Plug (12) into (11), we have,

(T − t)RVt,T = 2

[

Z Ft

0

1
K2 (K −FT)+dK+

Z ∞

Ft

1
K2 (FT −K)+dK

]

+2
Z T

t

[

1
Fs−

− 1
Ft

]

dFs

+2
Z T

t

Z

R0

[

ex−1−x− x2

2

]

µ(dx,ds), (13)

which is the decomposition in (9) that also represents a replicating strategy for the return quadratic variation.

Take expectations under measureQ, we obtain the risk-neutral expected value of the return variance on the left

hand side, and the cost of the replication strategy on the right hand side,

E
Q
t [RVt,T ] =

2ert(T−t)

T − t

Z ∞

0

Ot(K,T)

K2 dK−2E
Q
t

Z T

t

Z

R0

[

ex−1−x− x2

2

]

νs(x)dxds,
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where the first term denotes the initial cost of the static portfolio of out-of-the-money options and the second term is a

higher-order error term induced by jumps.

The VIX’s definition in equation (4) represents a discretization of the option portfolio. The extra term(Ft/K0−1)2,

in the VIX definition adjusts for the in-the-money call option used atK0 ≤ Ft . To convert the in-the-money call option

into the out-of-the-money put option, we use the put-call parity,

ert(T−t)Ct(K0,K) = ert(T−t)Pt(K0,T)+Ft −K0. (14)

If we plug this equality into equation (4) to convert all option prices into out-of-money option prices, we have

VS(t,T) =
2

T − t ∑ ∆K

K2
i

ert(T−t)Ot(Ki ,T)+
∆K0

(T − t)K2
0

(Ft −K0)−
1

T − t

[

Ft

K0
−1

]2

, (15)

where the second term on the right hand side of equation (15) is due to the substitution of the in-the-money call option

at K0 by the out-of-the-money put option at the same strikeK0. If we further assume that the forward level is in the

middle of the two adjacent strike prices and approximate theinterval∆K0 by Ft −K0, the last two terms in (15) cancel

out to obtain:

VS(t,T) =
2

T − t ∑ ∆K

K2
i

ert(T−t)Ot(Ki ,T). (16)

Thus, the VIX definition matches the theoretical relation for the risk-neutral expected value of the return quadratic

variation up to a jump-induced error term, and errors induced by discretization of strikes.
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Exhibit 1
Summary Statistics of Volatility Indices and Realized Return Volatilities

Moments VIX RVolSPX VXO VXOA RVolOEX VIX RVolSPX VXO VXOA RVolOEX

Levels Daily Differences

Mean 19.46 14.64 20.39 17.46 15.30 -0.00 -0.00 -0.00 -0.00 -0.00
Stdev 6.37 6.82 7.29 6.25 7.29 1.01 0.82 1.16 0.99 0.86
Skewness 0.95 1.46 0.95 0.95 1.43 0.68 0.87 0.68 0.68 0.69
Kurtosis 0.78 2.64 0.76 0.76 2.38 10.24 36.61 13.71 13.71 33.06
Auto 0.99 0.99 0.99 0.99 0.99 -0.03 0.05 -0.09 -0.09 0.06

Entries report the sample average (Mean), standard deviation (Stdev), skewness, excess kurtosis, and first-order auto-
correlation (Auto) on the levels and daily differences of the new volatility index VIX, the 30-day realized volatility on
SPX return (RVolSPX), the old volatility index VXO, its bias-corrected versionVXOA, and the 30-day realized volatility
on OEX return (RVolOEX). Each series has 5,769 daily observations from January 2, 1990 to October 18, 2005. All
series are represented in percentage volatility points.

Exhibit 2
Cross-correlations Between Volatility Indices and Subsequent Realized Return Volatilities

Correlation VIXt RVolSPX
t,t+30 VXOt RVolOEX

t,t+30 VIXt RVolSPX
t,t+30 VXOt RVolOEX

t,t+30

Levels Daily Differences

VIXt 1.00 0.76 0.98 0.76 1.00 -0.04 0.86 -0.04
RVolSPX

t,t+30 0.76 1.00 0.78 0.99 -0.04 1.00 -0.06 0.98
VXOt 0.98 0.78 1.00 0.78 0.86 -0.06 1.00 -0.05
RVOLOEX

t,t+30 0.76 0.99 0.78 1.00 -0.04 0.98 -0.05 1.00

Entries report the contemporaneous cross-correlation between VIXt , SPX 30-day realized volatility (RVolSPX
t,t+30),

VXOt , and OEX 30-day realized volatility (RVolOEX
t,t+30), both in levels and daily differences.
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Exhibit 3
Cross-correlations Between Return and Volatility.
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The stem bars represent the cross-correlation estimates between SPX index returns at the relevant number
of lags (in days) and the corresponding daily changes in VIX.The two dash-dotted lines denote the 95%
confidence band.
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Exhibit 4
The Fed Funds Target Rate Changes
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The solid line in the left panel plots the time series of the Fed Funds Target Rate over our sample period.
The spikes in the right panel represents the target rate changes in basis points.

Exhibit 5
VIX Fluctuation Around FOMC Meeting Days
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Lines represent the sample averages of the VIX levels (left panel) and the average payoffs to long variance
swap contracts,(RVt,t+30−VIX2

t ) (right panel), at each day within ten days before and after the FOMC
meeting days.
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Exhibit 6
Excess Returns from Shorting 30-Day Variance Swaps
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The left panel plots the time series of excess returns from shorting 30-day variance swaps on SPX and
holding the contract to maturity. The right panel plots the histogram of excess returns.

Exhibit 7
Information content in VIX and GARCH volatilities in predicting future realized return variances

Intercept VIX2 GARCH R-square, %

-11.9006 ( -0.52 ) 0.6501 ( 8.90 ) — — 46.87
64.0843 ( 3.70 ) — — 0.7456 ( 8.74 ) 35.76
-11.4691 ( -0.50 ) 0.5873 ( 5.20 ) 0.0981 ( 0.88 ) 47.05

Entries report the estimation results on restricted and unrestricted versions of the following relation

RVt,t+30 = a+bVIX2
t +cGARCHt +et,t+30.

The relation is estimated using generalized method of moments. The covariance matrix is computed according to
Newey and West (1987) with 30 lags. The data is daily from January 2, 1990 to October 18, 2005, generating 5,769
observations for each series.
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Exhibit 8
Cross-correlation Between SPX Monthly Returns and Excess Returns on 30-day Variance Swaps
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The stem bars represent the cross-correlation estimates between SPX returns at different lags and excess
returns on investing in a 30-day variance swap and holding itto maturity. The estimates are based on
monthly non-overlapping data. The two dashed lines denote the 95% confidence band. Positive numbers on
the x-axis represent lags in months for index returns.
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