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Static Position in a European Put

• A static position in a put with strike K pays off (K−ST)+ at its maturity T :
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Figure 1: Put Payoff

• If the initial purchase price is borrowed, the terminal P&L is:

P&LT = (K −ST)+−P0(K,T )/B0(T ).
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Static Position in a European Call

• A static position in a call with strike K pays off (ST −K)+ at its maturity T :
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Figure 2: Call Payoff

• If the initial purchase price is borrowed, the terminal P&L is:

P&LT = (ST −K)+−C0(K,T )/B0(T ).
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Transforming Option P&L into Local Variance Bets

• Assume frictionless markets, continuous trading opportunities, constant interest
rates rd and r f , and a positive continuous spot FX process S (expressed in do-
mestic units per foreign currency unit):

dSt

St
= µtdt +σtdWt, t ∈ [0,T ],

where the coefficients µ and σ are arbitrary adapted processes. W is a P standard
Brownian motion.

• If one initially buys a call for its initial implied σi0, and is short e−r f (T−t)N(d1(St, t;σi0))
units of the foreign currency at each t ∈ [0,T ], and uses the domestic riskless as-
set to finance, then the terminal P&L is:

P&LT =
∫ T

0
erd(T−t)(σ2

t −σ2
i0)

S2
t

2
e−r f (T−t)N′(d1(St, t;σi0))

Stσi0
√

T − t
dt.

• The quantity multiplying the local variance bet payoff σ2
t −σ2

i0 is half the Black
Scholes dollar gamma evaluated at the initial implied.
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From Local Bets to Global Bets

• Recall that the terminal P&L from delta hedging a long call at its initial implied is:

P&LT =
∫ T

0
erd(T−t)(σ2

t −σ2
i0)

S2
t

2
e−r f (T−t)N′(d1(St, t;σi0))

Stσi0
√

T − t
dt.

• To eliminate the dependence of the terminal P&L on the S path, Neuberger (90)
showed that one can instead delta hedge a fictitious contract that pays 2ln(ST/S0)
at T . Dupire (92) points out that this log contract can be replicated by a static po-
sition in puts and calls. Each option is delta hedged at the same vol σvo resulting
in the simpler payoff:

P&LT =
∫ T

0
(σ2

t −σ2
v0)dt.

• As with any zero cost self financing trading strategy, there exists a measure Q
under which this P&L has zero mean. The in principle ex ante observable quantity
σ2

v0T is thus the Q mean of the subsequent realized (non-annualized) variance.

• Forward, corridor, and local variance swaps can also be created in this way.
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The Love of Money is the Root of all Evil

• Volatility is defined as the square root of Variance:
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• Traders, marketers, lawyers, and customers prefer to think in terms of volatility
not variance. In fact, variance swaps are always quoted as annualized volatilities.

• It seems that only quants can be square.
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Variance Swaps, Vol Swaps, & the Variance of Realized Vol

• Assuming only positivity, we can define VOL ≡
√

1
T

∫ T
0 (dSt

St−
)2 as the realized

volatility.

• By definition, a vol swap pays the above realized vol, less a constant initially
chosen so that the the contract has zero cost of entry.

• Under no arbitrage, there exists a probability measure Q such that the initial vol
swap rate σvol

0 is the initial Q mean of realized vol:

σvol
0 = EQ

0 VOL. (1)

• Recall that the variance swap rate σvo is quoted as an annualized vol, so:

(σvar
0 )2 = EQ

0 VOL2. (2)

• Subtracting the square of (1) from (2) implies:

(σvar
0 )2 − (σvol

0 )2 = EQ
0 VOL2 − (EQ

0 VOL)2 ≡ VarQ0 VOL. (3)
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Getting to the Root of the Problem

• Suppose that your boss demands that you price and hedge a vol swap.

• Easy!, assume an SV model, eg Heston, fit it to options, and vega hedge the vol
swap.

• Wait, we didn’t need an SV model for variance swaps, so why do we need one for
vol swaps?

• By Taylor expanding the realized variance VOL2 about (σvar
0 )2, we get:

VOL ≤ σvar
0 +

1
2σvar

0
[VOL2 − (σvar

0 )2],

so we can get another robust upper bound on a vol swap.

• How about an exact hedge and price?
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Creating Arbitrary Functions of Realized Variance

• It is well known that butterfly spread levels reflect vol vol. Perhaps the whole smile
reflects the risk-neutral distribution of realized variance?

• By further assuming that the instantaneous volatility evolves independently of the
Brownian motion driving the FX rate, Carr and Lee (2005) show that one can
replicate any function of realized variance by dynamic trading in options and their
underlying asset.

• No assumption is placed on the instantaneous vol dynamics other than indepen-
dent evolution. Furthermore, jumps in the FX rate are assumed which render
consistency with observed risk reversal levels.

• Under independence, the initial vol swap rate is well approximated by the initial
ATM forward implied. Otherwise, it depends.

• Other examples covered are options on realized variance, claims paying the
Sharpe ratio, and barrier options knocking in or out on either price or realized
variance.
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Betting on Realized Variance without Options?

• The strategies thus far have required at least a static position in options.

• Can one replicate variance derivatives while never touching options?

• Perhaps surprisingly, the answer is a resounding maybe:

• For simplicity, again assume positive continuous price dynamics:
dSt

St
= µtdt +σtdWt, t ≥ 0.

• Let τ be the payoff time which can be any stopping time.

• Then payoffs U

(
Sτ,

∫ τ
0

(
dSt
St

)2
)

paid at τ are exactly replicated just by currency

trading, so long as the payoff trades off “long vega” for “short gamma”, i.e.:

Uq(S,q) = −S2

2
Uss(S,q), S > 0,q ≥ 0.

• An example is a possibly perpetual claim paying any desired function of the real-
ized variance at the first exit time of a given corridor (L,H) containing S0.
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Delta Hedging at the Running Implied

• Delta-hedging of options requires a volatility input.

• We have examined the P&L arising if the initial implied vol σi0 is used throughout:

P&LT =
∫ T

0
erd(T−t)S

2
t

2
∂2

∂S2
BS(St, t;σi0)(σ2

t −σ2
i0)dt,

where BS(S, t;σ) is the Black Scholes model value of an option with spot FX rate
S at time t and using vol σ.

• A common industry practice is to use the running implied σit of the option. How
does the P&L of a delta hedged option change if this practice is used?

• Assuming only that the stock price S and implied vol σit are continuous processes:

P&LT =
∫ T

0
erd(T−t)

{
∂2

∂S2
BS(St, t;σit)

S2
t

2
(σ2

t dt +d[σ2
it(T − t)])

+
∂2

∂S∂σ
BS(St, t;σit)dStdσit +

∂2

∂σ2
BS(St, t;σit)

(dσit)2

2

}
.

• Now, gamma, vanna, and volga along the joint (S,σi) path dictate the P&L.
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Modelling Implied Vol Dynamics

• Recall that the terminal P&L when delta hedging an option at its running implied
is P&LT =

∫ T
0 erd(T−t)dP&Lt, where dP&Lt =

∂2BS(St, t;σit)
∂S2

S2
t

2
(σ2

t dt +d[σ2
it(T −t)])+

∂2BS(St, t;σit)
∂S∂σ

dStdσit +
∂2BS(St, t;σit)

∂σ2

(dσit)2

2
.

• We can rescale the delta hedged option position at each t ∈ [0,T ], so that dollar
gamma is constant at 2: ˜P&LT =

∫ T
0 erd(T−t)d ˜P&Lt, where d ˜P&Lt

= σ2
t dt +d[σ2

it(T − t)]+
∂2BS(St ,t;σit)

∂S∂σ
∂2BS(St ,t;σit)

∂S2

2dStdσit

S2
t

+
∂2BS(St ,t;σit)

∂σ2

∂2BS(St ,t;σit)
∂S2

(dσit)2

S2
t

= σ2
t dt +d[σ2

it(T − t)]−d2

√
T 2

dSt

St
dσit +Td1d2(dσit)2

after massive simplification.
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Risk-Neutral Drift of Remaining Implied Total Variance

• Recall that a constant dollar gamma strategy ⇒ ˜P&LT =
∫ T

0 erd(T−t)d ˜P&Lt, where:

d ˜P&Lt = σ2
t dt +d[σ2

it(T − t)]−d2

√
T 2

dSt

St
dσit +T d1d2(dσit)2. (4)

• No arbitrage ⇒ there exists an equivalent probability measure Q, s.t. all incre-
ments in P&L from any zero cost/self-financed trading strategy has zero Q mean:

EQ[d ˜P&Lt |Ft] = 0, t ∈ [0,T ]. (5)

• Let It ≡ σ2
it(T − t) be the remaining total implied variance at time t. Since σit is a

continuous process under P, I is some continuous process under Q:

dIt = mtdt +ωtdBt, t ∈ [0,T ], where B is a Q standard Brownian motion.

• A commonly advocated modelling approach is to specify ω, the volatility process
of I, and then determine m, the risk-neutral drift of I, from (4) and (5).
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It Sounded Like a Good Idea at the Time

• A necessary condition on the drift is thus that

EQ
t dIt ≡ mtdt = d ˜P&Lt = −σ2

t dt +d2

√
T 2

dSt

St
dσit −T d1d2(dσit)2.

• Unfortunately, there are 4 cross-sectional no arbitrage relations on term implieds
that are not yet being respected:

1. ∂
∂KCt(K,T ) < 0 ⇒ Upper Bound on Slope of Implied It(T,K) in Strike K.

2. ∂
∂K Pt(K,T ) > 0 ⇒ Lower Bound on Slope of Implied It(T,K) in Strike K.

3. ∂2

∂K2 [C/P]t(K,T) > 0⇒ Lower Bound on Convexity of Implied It(T,K) in Strike
K.

4. ∂
∂T [C/P]t(K,T) > 0 ⇒ Lower Bound on Slope of Implied It(T,K) in Maturity
T .

• Incorporating these cross-sectional constraints at every future time t > 0 is diffi-
cult and probably dooms direct Implied Volatility modelling.
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Delta Hedging at the Running Realized Volatility

• So far, we have examined the P&L arising from being long a call and delta-
hedging:

1. using the initial implied vol σi0 at each t ∈ [0,T ]
2. using the running implied vol σit at each t ∈ [0,T ].

• We now consider a third trading strategy termed:
“Delta-hedging at the Running Realized Volatility”.

• To define the trading strategy, recall that delta-hedging a short call requires that
we always be long e−r f (T−t)N(d1(St, t,σt)) foreign currency units, where:

d1(S, t,σ) ≡
ln(S/K)+(rd − r f +σ2/2)(T − t)√

σ2(T − t)
.

• The issue at hand is:

What Vol σt?
• Notice that σ enters d1 only through “Remaining Total Variance” σ2(T − t).
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Delta Hedging at the Running Realized Volatility

• First, let 〈lnS〉t ≡
∫ t

0 σ2
s ds ≡

∫ t
0

(
dSs
Ss

)2
be the total variance realized between time

0 (when the call was sold) and the current time t.

• Next, let τH be the first time that 〈lnS〉 reaches σ2
i0(T )×T , where recall σi0(T )

is the initial implied vol of the call that was sold.

• If τH ≤ T , then realized vol at T (weakly) exceeded the implied vol forecast σi0(T ),
while if τH > T , then realized vol at T fell short of the forecast.

• Let τ ≡ T ∧ τH be the earlier of maturity and the first passage time.

• We define delta-hedging a short call at the running realized volatility to mean that
the total variance defining the delta-hedging strategy at t ∈ [0,τ] is given by:

σ2
t (T − t) ≡ σ2

i0T −
∫ t

0
σ2

s ds.

• If τH ≤ T , then for t ∈ (τH ,T ), we adopt a “stop-loss/start-gain strategy”, i.e. long
one foreign currency unit and short K domestic units when St > K and hold zero
otherwise.
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P&L when Delta Hedging at the Running Realized Volatility

• Carr & Jarrow (RFS 90) show that using the SLSG strategy over [0, t] results in a
loss given by the local time LF

t (K) of the forward FX rate {Ft} at the strike K.

• Let C(S, t;R) = Se−r f (T−t)N(d1(S, t,R))−Ke−rd(T−t)N(d2(S, t,R))
be the Black Scholes call value with remaining total variance R, where:

d1(S, t,R)≡
ln(S/K)+(rd − r f )(T − t)+R/2)√

R
d2(S, t,R)≡ d1(S, t,R)−

√
R.

• The P&L from delta-hedging a short call at the running realized volatility is:

P&LT = −[LF
T(K)−LF

τH
(K)] < 0,

if τH < T (i.e. realized vol exceeded the forecast), and:

P&LT = C
(
ST ,T ;σ2

i0T −〈lnS〉T
)
− (ST −K)+ ≥ 0,

if τH ≥ T (i.e. realized vol fell short of the forecast).

17



Conclusions

• Under relatively weak assumptions, derivatives on realized variance and/or price
can be manufactured by dynamic trading in options and/or their underlying.

• By restricting attention to the large class of payoffs which just depend on realized
variance and/or price at a fixed time, it is not necessary to specify the dynamics
of the (unobservable) instantaneous volatility beyond independence.

• An alternative approach explored in several papers is to specify the dynamics
of the (term structure of) variance swap rates or ATM implieds. In either case,
the “market price of vol risk” gets buried in the exogenous specification of the
instantaneous volatility of these quantities.

• One can also try to model implied vol surfaces, but the rich information content of
the initial surface makes it difficult to specify arbitrage-free dynamics.

• Further research on the robust linkages between volatility and credit derivatives
is in progress.
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