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1. Introduction

Mean reversion trading is a major class of trading strategies
used by professional traders and fund managers. The strategy
typically involves a portfolio of positions in two or more highly
cointegrated assets (with a strong financial or economic rela-
tionship that prevents them from diverging), such as stocks and
exchange-traded funds (ETFs), or derivatives, such as futures,
across many asset classes. The challenge is to systematically con-
struct a portfolio whose value over time exhibits mean-reverting
behaviors. Once such a portfolio is identified, then the pattern
can be exploited by traders and the estimated parameters can
inform the optimal trading strategies, such as those developed
in Leung and Li (2016). There are also a number of studies on
trading mean-reverting prices (Kitapbayev & Leung, 2017; Leung
& Li, 2015) and the empirical performance of pairs trading (Gatev,
Goetzmann, & Rouwenhorst, 2006).

Previous works on mean-reverting portfolio design have used
different empirical proxies for mean reversion and can usu-
ally be converted into semi-definite programming problems (see
e.g. d’Aspremont, 2011; Zhao & Palomar, 2018; Zhao, Zhou, &
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Palomar, 2019). In this paper, we instead consider using an
Ornstein-Uhlenbeck (OU) process (Ornstein & Uhlenbeck, 1930)
as a measure for mean reversion. Given an arbitrary set of as-
sets with their price histories, our main goal is to design a
mean-reverting portfolio whose evolution over time can be char-
acterized by an OU process (Ornstein & Uhlenbeck, 1930) through
penalized maximum likelihood estimation (MLE). A major feature
of our joint optimization approach is that we simultaneously solve
for the optimal portfolio and the corresponding parameters for
maximum likelihood using gradient-based method. This unified
approach is different from prior work since (a) it does not rely
on SDP, and (b) we do not break the problem up into stage-wise
computations. For example, d’Aspremont (2011) first determines
optimal weights using mean-reversion proxies other than OU,
and then fits the resulting portfolio to an OU process. Since our
formulation is based on MLE of OU and does not involve other
proxies, it is more natural in our case to perform simultaneous
optimization than a two-stage procedure. Conversely, Leung and
Li (2016) fit an OU process to each of a range of candidate (pair)
portfolios, and takes the candidate with the highest OU likelihood.
Our unified approach looks for the best OU-representable portfo-
lio from a set of candidates, making the quality of the OU fit part
of the optimization problem.

This paper is a revised and expanded version of the short
proceedings paper (Zhang, Leung, & Aravkin, 2018). In particular,
the current paper (1) develops a new efficient projection onto
the intersection of ¢y level sets and the nonconvex set ||x|; =
1 (Lemma 1), (2) establishes differentiability of value function
used in the approach (Section 3.1), (3) proves convergence of
the proposed algorithm (Theorem 2), and (4) presents numerical
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examples with empirical prices (Remark 6) compared with the
approach of Leung and Li (2016).

The paper proceeds as follows. In Section 2 we derive the op-
timization problem associated with the maximum likelihood es-
timation (MLE). We then modify the MLE formulation to include
terms that promote portfolio sparsity and high mean reversion;
in Section 3 we develop an algorithm for the nonsmooth, non-
convex objective based on partial minimization and projection; in
Section 4 we provide numerical illustrations using both simulated
and real data. We end with a discussion in Section 5.

2. Problem formulation

We first present the maximum likelihood formulation for si-
multaneously selecting a portfolio from a set of assets, and repre-
senting that selection using an Ornstein-Uhlenbeck (OU) process.
We also make several theoretical observations about the well-
posedness of the estimation problem. We then extend the max-
imum likelihood formulation to allow selection of higher mean
reversion and parsimony in the portfolio.

2.1. OU MLE via optimization

We are given historical data for m assets, with ST+1*™ the
matrix for assets values over time. Our first goal is to find w, the
linear combination of assets that comprise our portfolio, such that
the corresponding portfolio price process x; := S;w best follows
an OU process. We first show that solving for the portfolio with
the optimal OU likelihood leads to the optimization problem

. 1 1 )
a,c,elmurﬁlzl 5 In(a) + 2TaIIA(c)w o(1 — o)1), (1)
where A(c) = S1.t — cSo.7—1, w is the portfolio to be selected, and
a, c, 6 are likelihood parameters. The objective function is non-
convex, since A(c) multiplies w, and also includes a nonconvex
constraint ||w|l; = 1. The 1-norm constraint limits both long and
short positions. We are primarily interested in the relative not
the absolute magnitude of w;’s. The portfolio weights w;’s and
thus value of the constraint (i.e. 1 on the right-hand side) can be
scaled, and our method can still be applied (see Remark 5). The
derivations of problem (1) are presented below.
An OU process is defined by the SDE

dX[ = /,L(G —X[)dt + O'dBt, (2)

where B; is a standard Brownian motion under the physical
probability measure. The likelihood of an OU process observed
over a sequence {xt}thl is given by

T

T
1
Ef(xt|xt—1) = E N
( (% — X1 exp(—Atp) — 6(1 — eXP(—AtM)))2>
xexp | — =
262

. N .
where 62 = crz”"péim“). Minimizing the negative log-

likelihood results in the optimization problem

IA(w)w — y(0, w)lI?
2T62(), 02)

1 1
min = In(27) + = In(6%(u, 02)) +
/L,az,é‘,w 2

with y = 6(1 — exp(—Atu))1, and A(u) € RT*™ defined as

A(p) == S1.1 — exp(—Atu)So.r—1,

where the subscripts denote ranges for t.

Remark 1. The objective function in (3) is unbounded. Set w =
0, 6 = 0; the objective function is then given by

1-— exp(—ZuAt)>

11(2 )+11(2)+11
— Inl — 1N —1n
Ty e Ty 2%

2
which goes to —oo as o2 — 0.

To solve the issue exposed in Remark 1, we add a 1-norm
equality constraint on w, setting ||w|; = 1. This constraint is
also convenient from a modeling perspective, as it eliminates the
need to select which assets in the portfolio are to be long or short
a priori.

To obtain formulation (1), we denote

., 0%(1—exp(—2Atp))
a=0" =
2u

Applying the linear approximation e* ~ 1 + x to (4), we obtain
simplified expressions for a and c:

, € = exp(—Atp). (4)

a= Ate?, c=1- Atpu. (5)

We can recover u and o2 once we know a and c. For a detailed
relationship between the OU model and discrete-time approxi-
mation in (5), see Zhang et al. (2018).

Remark 2. The term % In(27) is dropped from the objective as it
is simply a constant. In the subsequent sections when we mention
negative log likelihood it refers to value without this constant
term.

2.2. Promoting sparsity and mean reversion

Given a set of candidate assets, we want to select a small
parsimonious subset to build a portfolio. To add this feature to
the model, we want to impose a sparsity penalty on w. While
the 1-norm is frequently used, in our case we have already
imposed the 1-norm equality constraint ||w|; = 1. To obtain
sparse solutions under this constraint, we add a multiple of the
nonconvex constraint |w|o < n to the maximum likelihood (1).
This constraint limits the maximum number of assets to be 7.

In addition to sparsifying the solution, we may also want to
promote other features of the portfolio. The penalized likelihood
framework is flexible enough to allow these enhancements. An
important feature is encapsulated by the mean-reverting coeffi-
cient u; a higher « may be desirable for trading, where positions
are opened when deviations are observed, and closed when the
portfolio returns to the mean. We can obtain a higher u by
promoting a lower c, e.g. with a linear penalty on ¢ = 1 —
Atp with a constant penalization coefficient y. The augmented
likelihood function is

o In(a) JJA(c)w — 6(1 — c)1))?
1
a.c.o.llwli=1lwlo<n 2 2Ta

+ yc. (6)
A higher y drives c to be lower, and hence drives p higher.
3. Value function optimization

We develop an algorithm to solve the nonsmooth, noncon-
vex problem (6) by exploiting its rich structure. We define the
following nested value functions:

_ In(a) IA(c)w — 6(1 — o)N?
f(w,a,c,@)—T‘l‘)/C‘l' 2Ta

fi(w,a,c) = m@inf(w, ac,0)

fH(w,a) = rncinf1(w, ac)= mi@nf(w, ac,0)

fi(w) = mainfz(w, a)= migf(w, a,c,0). (7)
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In other words we project out variables a, c, 6. This technique
is known as variable projection, or partial minimization. Our
main strategy is to use these value functions to recast (6) as the
optimization problem

min  fy(w), (8)
llwlli=1.wllo=<n
and solve it using projected gradient descent as detailed in
Algorithm 1.

To prove Algorithm 1 converges for (8) requires several steps.
First, we establish the differentiability of f; and Lipschitz conti-
nuity of its gradient on region bounded away from the origin in
Theorem 1. Second, we develop a projection map onto the set
w = {w lwlli = 1,lwllo < n} in Lemma 1 and prove
its correctness. Finally we develop the convergence analysis in
Theorem 2.

3.1. Differentiability of f3(w) and Lipschitz continuity of Vfs(w)

We first make an assumption on the input data S: for any
wll, > €, we assume that

IBX(w)o.:r—1ll2 > 6 > 0 9)

where x = Sw and B=1— % e RTXTIf || Bx(w)o.r—1]lz = O for
some w, that implies
1 x(w)or—1

Jw, x(w)or—1 = fl’ (10)

but this is a linear system with m (the number of assets) un-
knowns and T equations, where T usually is much larger than
m. Intuitively, (10) says that the portfolio value x(w) must be
constant over time and exactly equal to its mean, which is very
unlikely with stock market data. Hence assumption (9) is reason-
able.
We now state the theorem.
(6) is

Theorem 1. Consider w € {w : |lw|y > €}. Problem

equivalent to
min  fy(w)
lwlli=1llwlo=n
where f3(w) is a differentiable function for small enough y and Vf;
is Lipschitz continuous.

Proof. We start by deriving an explicit expression for the f; value
function. Taking d,f = 0, we get

0= % =(1-0c)17(6(1 — )1 — A(c)w)
o 0%, w) = 1 (x(w)1.r — ex(w)o.r—1)

T(1—rc)
Plugging 6*(c, w) into f, we get an explicit form of f:
IB(x(w)1.r — cx(w)o.r—1)I1?

1
filw,a,¢c)= Eln(a)+y<:+ Ta (11)

withB=1— % a projection matrix onto the space of vectors in
RT with mean 0. To simplify the following analysis, we define

bi(w) = Bx(w)1.1,

We now apply a differential variant of the implicit function
theorem to f;. Let F(w,y) be f; in (11) where y = [a,c], so
that f3(w) = min, F(w, y). From Bell and Burke (2008, Theorem
2), if there exist w,y such that F(w,y) = 0 and F,(w,y) is
positive definite, then in the neighborhood of (w, y) where f3(w)
is defined, it is twice differentiable. In our case,

1 _ lby—cbo(w)|?
; 2a r 2Ta?
— zbo(w)" (b1(w) — cbo(w))

bo(w) == Bx(w)o.7—1.

Fy(w!.V) = |:

_ 1 + b1 (w)—cbo(w)12  bo(w)T (bq (w)—cbO(w))
Fyy(w’y) = zbaz(w)T(b (w);gf(w)) 1 THZT
Soll Crf)=cholwl) L () bo(w)
When Fy(w, y) = 0, we have
o 1 _ i
a(w) = ?Ilbl(w) — Cho(w)]I%,
_ 1 _ _ -
y(w)= ﬁbo(w)T(bﬂw) — Cho(w)),
and Fy, simplifies to
_1 s
- 2a(w)? a(w)
Fyy(wv y) = |: - i| .
(w) 1 “\T -
% Wbo(w) bo(w)

Given assumption in (9), when y = 0, we immediately have that
Fyy(w, y) is diagonal with positive entries. If y > 0, we write a in
terms of w by solving F,(w, y) = 0 and

o2/ Iboll* = 4y 2(boll2 b2 — (b1 2)
2Ty? 2T)?
where by, b; are evaluated at w.

When ||bo|I?]|b1]|*> — (bjb1)* # 0, in order for a to be a real
number, y has to be small enough so that

lIboll* — 4y>(IbolI*lIb111> = (bb1)*) = 0 Vl|wll, > €

=20<y < inf - I1Bo*
T T lwlzze 2 [lbol1? (1112 — (bpbi)?

The infimum can be attained because |/bo||?> is bounded below
by the assumption on input data and ||bo||?||b1|*> — (bib1)* <
lbolI?||b1]|? is bounded above.

Thus the determinant of F,,(w, y) is

_ - lIbol|*> — 2Tay?
d tF i B e e—
et( yy(w ) T

using the expression for a. Since Fy,(w, y) is a 2 x 2 matrix with
a positive first minorant and positive determinant, it must be
positive definite. Hence the conditions in Theorem 2, Bell and
Burke (2008) are satisfied, implying that f5 is twice differentiable
on {w : |lwla > €}. Moreover, the eigenvalues of F,, depend
continuously on w, which is restricted to a compact set W. Hence
the operator norm of Fy, has an upper bound for all w € W, and
this value is also a Lipschitz constant for Vf(w). O

a—=

Remark 3. The expression for ¢ is
bobi — Tay
lIboll?

There is no guarantee that c is positive. Indeed ¢ can potentially
be negative, in which case no corresponding positive p exists.
This means that the given data and y do not permit the construc-
tion of a mean-reverting time series. The y term in numerator
drives ¢ towards negative values, which means that the higher
mean-reverting level we request, the less likely such a process
can be constructed.

Cc =

Remark 4. When y > 0, f3(w) is given by

bl (g1 Tay®  ybgb
2Ta  2Tad|bol>  2[boll> ~ Ilbol?”
When y = 0, f3(w) simplifies to

fo(w) = 5 In@) +

fi(w) = %ln(ﬁ)—f- 1/2.

In both expressions, a, by, b, are evaluated at w as in the proof of
Theorem 1. See Zhang et al. (2018) for a detailed derivation.
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Remark 5. If we scale w to Kw, then
1 . K?||b1)1? K*(bTh,)?
Kw) == In(K%a - 0
SlKw) =35 IR + = ~ 2TKaal by 2
TK?ay?  K?*yblb,
2K2||bg|I? ~ K2||bol|?
=In(K) + f3(w).

Let v = Kw. Then

min fa(w).

min 3
il =K. llvllo=n lwlli=1lwllo<n

3.2. Projection map onto W

The set of interest,
wW={w:|wl =1, wl <n} (12)

is highly nonconvex, but admits an efficient projection. First, we
reduce the problem to projection of a non-negative vector, and
recovering the true projection by element-wise multiplication:

. . 2
Projyy(X) <= argmin,, _y 7, <, X — Z|I

. . 2
= sign(x) © argmin, =1, jujo <y 11X — vl
= sign(x) © argmin,r_y y=o,jujo<nll Xl — Ul
= sign(x) © Proja, .=y 1X1),

i.e. the projection of |x| onto the intersection of the 1-simplex
and the set of vectors with at most n nonzero entries. Above © is
element-wise multiplication, and the second equality is obtained
by a change of variable u = sign(x) © z.

Next, to find proj,ny.,<,(|]), we propose the following pro-
cedure, whose correctness is proved in Lemma 1.

2

e Order |x| such that |x{| > |x2] > -+ > |xp].

+ ; 2 +
L4 X1;;7 <~ argmlnuljneﬁ\l ” |X1:r]| - ul:n ” , X

n+1:m =0.

Lemma 1. Suppose v € R™. Let K be any size k subset of I =
{1,...,m} and K the union of all such Ks. I — K denotes the
complement of K in I. The problem is to find

. 1 2
min —|lv—u|”.
ugeAq,u_g=0,Kek 2

Let us reorder v such that vi > vy, > --- > vy, The claim is that the
optimal Kope = {1, 2, ..., k}, i.e. the indices corresponding to the k
largest components in v.

Proof. Equivalently, the problem can be stated as

1 , 1 5
ul(ErAnll.l?(EK 5 Z(UJ - uj) + 5 Z vj

jek jel-K

i 1|| 1% + ]II II?
= mm vk — Uk vk
2 2

ugeA,KeK

& min
ugeAq,Kek

1 21 2, 1 2
—llvk —u —=|lv + = .
5 ok = uell™ = Sllvel® + Sl

Note that the last term %||v||2 does not depend on ug, so we can
focus on the first two terms, i.e.

. 1 2 1 2
min =g —ug|l* — < flogll*
ugeA,Kek 2 2

Suppose there is some K’ that is different from K,,; and denote
the corresponding v as vyg. Define f(y) and g(t) by

_ 1 2 . 1 2
fy)= —Ellyll + min Elly —z|°,
g(t) = f((1 — vk, + tvg).

Then we have

1
F(o) = Fv) = £(1) — £(0) = f g(t)dt,
0

g'(t) = VI((1 = )okyy + tv) (=g, + Vi),
Vfy)=—-y+y—2z'=-2z" ¢ A,

where z* is the projection of y onto the simplex A;. Vf(y)
is nonpositive in all components and strictly negative in some
components. Therefore, Vf((1 — t)vk,, + tvkr) < 0. Further
— Uk, + vk < 0 because v, contains the k-largest components
of v. As a result,

1
g(t)= 0= / g0t 2 0 = f(ue) = flvgay)
0

This shows that K,y must be the optimal choice. Once we have
determined K, we can apply simplex projection onto vg with
existing techniques (Duchi, Shalev-Shwartz, Singer, & Chandra,
2008).

Algorithm 1 Projected Gradient Descent for f3(w; y, n) (7).

Input: w € R™, S, f3,v,7
tw={w:lwli=1wl <n}
2: while not converged do
3wk« Projyy(w ! — 8V, fa(w Ty, )
Recover a, c, 6 from w.
4: (8; denotes stepsize via line search.)

3.3. Convergence analysis

Algorithm 1 is projected gradient descent for the value func-
tion f; over the nonconvex set W, which converges for a large
class of nonconvex functions (Attouch, Bolte, & Svaiter, 2013).
However our problem does not satisfy the assumptions of At-
touch et al. (2013) because the gradient of loss function f3(w) is
not globally Lipschitz. As shown in the previous section, when
w is bounded away from the origin, the gradient is Lipschitz;
when w approaches the origin, however, the function value goes
to oo and the gradient is not Lipschitz. Fig. 1 shows a schematic
plot of the loss function f3. Global Lipschitz of gradient is used to
establish sufficient decrease in the loss, a key component of any
convergence theory. We derive Lemma 2 to establish sufficient
decrease of f3, taking advantage of the fact that W is bounded
away from the origin. We also include additional lemmas to
provide a full picture of the analysis. The main result is presented
in Theorem 2.

Theorem 2. Consider the optimization problem

min f(w),

wew

where f is the objective function f5 in (8) and W = {w : ||w| =
1, |lwllo < n} is the nonconvex constraint set in (8). In particular, f
is nonconvex and is not smooth and has singularities near the origin.

Let {w*} be the sequence generated by the line search wt <«
ITyy(w — tVf(w)) with t > t, then

VF(w*) + 38w (w*) — 0
as k — oo. Here ITy, denotes the projection onto W, t a lower

{0 zew

(0,8]
subdifferential, which is the appropriate generalization of derivative
for this situation; see e.g. Rockafellar and Wets (2009).

bound on t, §(z) = , and 38 denotes the limiting
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Fig. 1. 3D plot of the objective function in (8) for w € R?, with constraint set
lwl]l; = 1, lwllp < 2. Our goal is to find the minimum value of f; (yellow 3D
plot) restricted to W (edges of the blue diamond).

Proof. This theorem is proved using the following lemmas (de-
tailed below):

e Lemma 2 relates decrease in function values f(w) — f(w™)
to consecutive differences |wt — w||?, using Lipschitz con-
tinuity of Vf on the set

C=R"—B/(0) D> W,

where B.(0) = {w : |w|> < €} and € < v/2/2.

e Lemma 3 uses Lemma 2 to show that [Jw*t! — wk| | 0.

e Lemma 4 shows that elements in the subdifferential Vf+3§,y
converge to 0 using Lemma 3.

Lemma 2. Let C = R" — B.(0) where B.(0) = {w : |w|y < €}
and € < «/2/2. In other words, B.(0) is inside the 1-norm sphere
{w: Jlw|l; = 1}. Let L(€) be the upper bound such that

IVf(w) = V() < L(e)|lw — w'|| Yw, w" € C.
Suppose w € W, and let wt < IT,y(w — tVf(w)). Then we have

flwt) < flw) — YL PHE

2
lw* —w|.
2

w

Proof. If the line segment from w to w™ does not go through B,,
then by L(¢)-Lipschitz,
L(e)
T w|?

fw®) < flw) + (w" —w, Vf(w)) + — lw

Otherwise, let wy, w4 denote the intersection of the line segment
with the closed ball B, and wg = w, ws = w*. We can find a 2D
circle centered at the origin with diameter 2¢ that passes through
w1, wy. Then we can find a tight box with length 2¢ that contains
the circle. Let w,, w3 be two vertices on the box, through which
we can define a path from w; to w,4 along the box. This path does
not go through B..
By L(¢)-Lipschitz of f on C,

Flwigpr) < flwi) + (wipr — wi, VI (wy))
L(e) 2
+ 7||wi+1 — wl|

4
L
Sty = Y s — wn V) + S i — il
£ —w, Vf(w))
- L(e) )
+ Z<w,-+1 = wi, Vf(wi) = Vf(w) + = wis = wi
Sf(wt) = flw) + fw*

—w, Vf(w))

: I(e)
Z Nlwirr = will lwi = woll + = llwiyr — wil?

Sf(w™) < fw) + (W — w, Vi) + m Dyt 2.

By the definition of projection,

_argmmyEW ||w — tVf(w) —y|?

:>%||w—w — tVf(w)|? EltVf(w)

w2 + (wh — w, Vf(w)) <O0.

1
R
t

Adding them together yields

15L

DUyt — w2,
2

w* — wlf?.

Fw )+ 5w = wt P = ) +
1/t — 15L(¢)

flw*) < fw) - ==

Lemma 3. Let {w*} be a sequence generated by wt <« ITyy(w —
tVf(w)) with initial guess w® € C, and let K = 15L(¢). If we choose
ty at each step such thatt < t, < % then

Z ”wk—H k

<00 = lim " — wk| = 0.
k—o00

Proof. Sincet < t;, < K, the expression {7 is bigger than 0,
and is upper bounded by some M > 0 for alli k. By Lemma 2

wt! —wh)? < T = Fw*th)]

= 1/t<
< MI[f(w )—f(w"“)].

Summing up k from 0 to N — 1 gives
Z ”wk+1 _ U)k 2 < M Zf(wk) _f(wk+1)
k k

= M[f(w°) — f(w™)] < M[f(w®) — f(w")].

Taking N — oo yields the desired result.

Lemma 4. Let {w"} be a sequence generated by w* <« ITyy(w —

tVf(w)). Define
Ak — L(wk—l
k-1

— wk) + Vf(wk) — VF ).

Then A* € Vf(w*) + 38 (w*) and A¥ — 0 as k — oc.

Proof. By the definition of projected gradient step,

0e V(w1 + " (w* — w*1) + 38y (w")
k—1
1
;‘T(’”’H —wk) € VAW ) + 98y (w").
k—1
Hence,

A eVF(w* ) + 38y (wh) + V(W) — V()
=38yy(w*) + Vf(w").

In turn, we have

1
IAY| stk—nwk*1 —w|l + L(e)wk — w |
-1

1
< (; +L(e)) lwk — w1

By Lemma 3, as k — oo, A¥ — 0.
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Table 1

Estimated parameters, weights, and nll. We set y = 0 for
y = 0.5 for bottom three rows.
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top three rows,

N o? 0 w nll (train, test)
5 24 009 007 [12 —11, 33, 31, —.12] —(3.03, 3.04)
4 29 010 032 [13,.12, .38, .36, 0] —(2.96, 2.94)
3 2.6 0.11 0.23 [0.16, 0, 0.43, 0.42, 0] —(2.90, 2.90)
5 50 009 008 [11, —11, —33, 32, —12] —(3.02, 2.99)
4 5.8 0.10 0.18 [.14, 0, .35, .34, .16] —(2.93, 2.84)
3 4.7 0.11 0.27 [0, O, .40, .40, —.19] —(2.88, 2.83)

4. Numerical results

Algorithm 1 is much faster than the standard projected gra-
dient descent on all unknowns (Zhang et al., 2018, Section IV B).
We give additional examples to show how the approach identifies
mean-reverting time series using simulated data. We simulate
five time series; four from an OU process with (i, o, ) given by
(1,1,0), (4,1, 1),(1,0.5, 1), (4, 0.5,0), and one is non-OU time
series with o = .1 (the fifth time series). All have T = 500 and
At = 0.01. We divide the data into training set (70% of data) and
test sets (30% of data).

Table 1 compares the estimated OU parameters and weight
vectors as we tune y and 7. Top three rows correspond to y = 0,
and bottom three rows y = 0.5. When y = 0,n = 5, the
model puts 64% of the weights into the pair of OU time series
with o = 0.5. It is evident from the results that the model favors
OU time series with a lower o value but is less sensitive to u
values.

With larger n we reach lower negative log likelihood (nll) since
that means more freedom in choosing assets.

Remark 6. As noted in Remark 3, y will drive ¢ to be negative. If
y is large, the model may not find a feasible time series combi-
nation. In addition, y controls the balance between negative log
likelihood and mean-reversion promoting term (i.e. yc). If y is
too large, the model may choose a portfolio that has high negative
log likelihood, i.e. low likelihood. Also, since u = —Ait log(c) and
¢ € (0, 1), a small increase in ¢ will be amplified in x. Hence a
small y usually suffices and is preferred. In practice it is a good
idea to start with y = 0. The tuning of n is straightforward. One
can set it to be the desired number of assets for the portfolio.

Real data. We performed experiments with empirical price data
from three groups of selected assets: precious metals, large equi-
ties and oil companies. Data were taken from Yahoo Finance, and
give closing stock prices for each asset over the past five years.
The first 70% of data (over time) is used for training, and the rest
for testing.

For each group, we progressively augmented the set of can-
didate assets in pairs, and applied our approach. The model
determined asset weights, along with negative log-likelihoods of
portfolios and of individual assets are given in Table 2. The port-
folios’ negative log likelihoods are generally smaller than negative
log likelihoods of individual assets in that portfolio and decrease
as we include more assets, which means we can obtain more
OU-representable portfolios as the candidate sets expand. The
negative log likelihood on the test set can sometimes be signifi-
cantly larger than that on the training set. In Group 2, individual
assets such as GOOG, JNJ and MCD have significantly larger neg-
ative log likelihood on test than on training. The discrepancy in
likelihood indicates that those assets have very different patterns
before and after the split of training/test. As a result, the con-

Table 2

Negative log-likelihood (nll) of assets groups for n € {2, 4, 6} (no. of assets in
portfolio) and y = 0. The bottom row shows the (training, testing) nll of our
optimal portfolios.

Assets 2 4 6 indiv. nll
(train, test)
GLD -0.17 —0.08 —0.07 0.77, 0.44
GDX —0.21 -0.29 0.05, —0.30
GDX] 0.03 0.70, 0.38
SLV 0.83 0.44 0.30 —0.69, —1.0
GG 0.10 —0.04, —0.44
ABX 0.27 0.21 —0.24 ,—0.54
Port. —1.48, —1.72 —1.95, 2.12 —2.18, —2.35
GOOG 2.66, 3.06
INJ —0.12 -0.10 0.40, 0.86
NKE —0.49 —0.36 —0.27 0.09, 0.43
MCD —0.11 —0.07 0.49, 1.09
SBUX 0.51 0.41 0.36 0.02, 0.05
SPY 0.12 0.95, 1.00
VIG —0.07, 0.01
VO —0.08 0.53, 0.45
Port. —0.70, —0.08 —0.77, —0.14 —1.07, —0.52
BP —0.01 —0.09, —-0.33
copr —0.01 —0.01 0.46, 0.25
CVX —0.02 —0.01 0.79, 0.73
OIL —0.59 —0.57 —0.57 —0.84, —1.25
uso 0.41 0.41 0.41 —0.45, —0.86
VLO 0.002 0.58, 0.43
XOM 0.48, 0.26
Port. —2.89, —3.29 —2.94, —3.35 —2.96, —3.37
Table 3

Model estimations with different y and n for precious metals, large equities,
and oil companies.

y n "w o? 0 nll (train, test)
0 2 2.69 4,77 —6.42 —1.48, —1.72
0.5 2 451 478 —6.14 —1.48, —1.72
0 4 2.28 1.87 —2.90 —1.95, —2.13
0.5 4 7.06 2.35 —2.65 —1.84, —2.07
0 6 1.20 1.17 —3.30 —2.18, —2.35
0.5 6 12.70 1.11 —0.98 —2.21, —2.39
0 2 5.74 22.85 —0.57 —0.70, —0.08
0.5 2 11.49 23.11 —0.56 —0.69 —0.04
0 4 1.90 19.76 —22.84 —-0.77, —0.14
0.5 4 412 19.63 —23.61 —0.77, 0.01
0 6 3.54 10.87 1.00 —1.07, —0.52
0.5 6 6.35 10.64 —1.78 —1.08, —0.46
0 2 11.80 0.28 0.89 —2.89, —3.29
0.5 2 3443 0.29 1.00 —2.87, —3.26
0 4 16.84 0.26 0.47 —2.94, —3.35
0.5 4 37.80 0.27 0.44 —2.92, —3.31
0 6 17.39 0.25 0.49 —2.95, —3.37
0.5 6 42.63 0.26 0.63 —2.93, —3.31

structed portfolios also tend to have larger negative log likelihood
on test set. This also suggests that one should check individual
asset patterns before generalizing fitted model to another time
period.

We also conducted experiments varying y to promote larger
w. As summarized in Table 3, when y > 0, we see increasing u
across asset groups. As ¢ = exp(—Atu) ~ 1— Atu, the change in
¢ due to y will be magnified in w, hence we may see fairly drastic
increase in .

Comparison with pairs trading We compared our approach with
that in chapter 2 of Leung and Li (2016) on pairs trading. In Leung
and Li (2016), two assets are selected first, from which a portfolio
is constructed as

X =5 —BS, (13)
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Table 4
Summary of portfolio weights from our model and method of (13) applied to
different pairs.

B Portfolio weights
GLD —pBSLV 3.68 [0.21, —0.79]
—BGLD + SLV 0.19 [—0.17, 0.83]
Our model - [—0.17, 0.83]
NKE —BSBUX 0.61 [0.63, —0.37]
—BNKE + SBUX 0.52 [—0.33, 0.67]
Our model - [—0.49, 0.51]
OIL —BUSO 0.67 [0.59, —0.41]
—pBOIL + USO 142 [—0.59, 0.41]
Our model - [—0.59, 0.41]

where S; and S, are asset price time series. This “B-method”
requires making long the first asset and short the other. With
the weight of the first asset fixed to be 1, this method first de-
termines, for each fixed 8, the model parameters that maximize
the OU likelihood of the corresponding portfolio X. Then, in a
separate step, it searches over a range of 8 for the MLE. For this
approach to identify the optimal pairs, one needs to further find
two optimal 8’s by switching positions of two assets in (13). In
contrast, our model solves for the optimal portfolio in a single
step. For the examples in Table 4, we can simply take the results
from our model with n = 2 from Table 2.

5. Concluding remarks

We have solved a joint optimization problem for simulta-
neous portfolio selection and OU-fitting. We also incorporated
desirable portfolio features, including higher mean-reversion and
sparser portfolios, both important for practical trading purposes.
We developed a fast algorithm for the nonsmooth nonconvex
optimization problem, and presented our solutions using both
simulated and real data, resulting in useful portfolios from several
asset classes. Our model extends the pairs trading model in Leung
and Li (2016), develops a convergence analysis for the algorithm,
and provides a comparison analysis.
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