
F
or

 a
n 

el
ec

tr
on

ic
 c

op
y 

of
 th

is
 p

ap
er

, p
le

as
e 

vi
si

t: 
ht

tp
://

ss
rn

.c
om

/a
bs

tr
ac

t=
70

6

Valuing Finite-Lived Options as Perpetual

by

Peter Carr and Dmitri Faguet

Cornell University

Johnson Graduate School of Management

Ithaca NY 14853

(607) 255-6255

E-mail:PETER@JOHNSON.CORNELL.EDU

Current Version: June 21, 1996

This paper was formerly titled \Fast Accurate Valuation of American Options". We thank the participants of pre-

sentations at the 1996 AFA conference, Bell Labs, Boston University, Cambridge University, Columbia University,

Conference on Computational Intelligence for Financial Engineering, Cornell University, the Courant Institute,

Duke University, Goldman Sachs, the Institute for Advanced Study, Salomon Brothers, and Risk Conferences on

Volatility, Equity Derivatives, and Exotic Options. In particular, we thank Kerry Back, Warren Bailey, Michael

Brennan, Mark Broadie, Zhenyu Duanmu, Darrell Du�e, Steve Figlewski, Eric Jacquier, Robert Jarrow, Herb

Johnson, Dilip Madan, Luis Reyna, Al Schatz, Richard Skora, Ren�e Stulz, Marty Subrahmanyam, Nick Trefethen,

Lars Wahlbin, Bob Whaley, and especially Bernard Dumas for many excellent suggestions. We also acknowledge

research assistance from David Chang, Ben Hao, Cem Inal, Srikant Sharma, Anand Srinivas, Adam Stevenson,

Kevin Wang, Wei Yuan, Guang Yang, and especially Dmitrie Frolov. Any errors are our own. Comments are

welcome.

Electronic copy available at: https://ssrn.com/abstract=706



F
or

 a
n 

el
ec

tr
on

ic
 c

op
y 

of
 th

is
 p

ap
er

, p
le

as
e 

vi
si

t: 
ht

tp
://

ss
rn

.c
om

/a
bs

tr
ac

t=
70

6

Valuing Finite-Lived Options as Perpetual
Abstract

We show how the value of a �nite-lived option can be interpreted as the limit of a sequence of perpetual

option values subject to default risk. This interpretation yields new closed form approximations for European

and American option values in the Black Scholes model. Numerical results indicate that the approximation is

both accurate and computationally e�cient.
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I Introduction

Closed-form solutions for the value of European-style options have been widely known since the seminal papers of

Black-Scholes[3] and Merton[28]. Unfortunately, the vast majority of listed options are American-style. Despite a

profusion of research on the subject, a completely explicit analytic solution for the value of a �nite-lived American

option continues to elude �nance theorists.

Nonetheless, much progess has been made in developing approaches which approximate the value of such

options. These approaches bifurcate into either numerical methods or analytic approximations. Numerical meth-

ods for valuing American options comprise lattices[34],[11],[36],[21], �nite di�erences[6][43], and Monte Carlo

simulation[41],[16]. Analytic approximations include those based on compound options[14],[8],[17], the quadratic

formula[24],[2], exponential exercise boundaries[33],[10], integral formulations[22],[9],[44], or regressions between

lower and upper bounds[20],[7]. The purpose of this paper is to develop a new analytic approximation based on

an analogy between American options and annuities.

A standard approach for valuing a (�nite-lived) annuity is to consider it as the di�erence between a perpetuity

and a deferred perpetuity. Since closed-form solutions for perpetual American option values have been known since

Samuelson/McKean[39], it is tempting to use these solutions to attempt to value (�nite-lived) American options.

Unfortunately, the value of an American option is not given by the di�erence between a perpetual American option

and its deferred counterpart.

This paper presents an alternative approach for valuing �nite-lived securities such as annuities, which also

relies on knowing perpetual values. This alternative approach has the advantage of being applicable to American

options. In common with all other approaches, it also has the disadvantage of merely approximating the desired

continuous-time values. However, the approximation for both annuities and American options is given by a simple

closed-form formula, which does not involve integrals of any kind. Furthermore, numerical implementation of the

formula for American options indicates convergence to the unknown exact value in a computationally e�cient

manner.

The inspiration for the alternative approach relies on the observation that the values of both annuities and

American options decline over time. In contrast, the values of perpetual annuities and American options experience

no time decay. In this paper, we mimmick the time decay experienced by an annuity by supposing that the

2
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corresponding perpetuity undergoes a series of downgrades in credit quality. Since the terminal value of a �nite-

lived annuity is zero, the �nal downgrade of the corresponding perpetuity becomes bankruptcy with zero recovery.

Just as it is easier for rating agencies to deal with a �nite number of discrete credit classes (eg. AAA, BBB, etc.),

we analogously assume that the �nite-lived annuity has a �nite number of discrete time periods to maturity (eg.

n periods, n� 1 periods etc.).

When dealing with American options, we similarly show that time decay may be mimmicked by credit down-

grades of perpetual option values. The lowest possible credit class corresponds to the terminal value of the option,

which is a known function of the underlying stock price
1
. Since we are able to derive an exact valuation formula

for perpetual options subject to a �nite series of credit downgrades, the formula can be used to approximate the

value of �nite-lived American options.

Our approach o�ers several advantages over existing methods for valuing American options. First, when

compared with numerical methods, the analytic nature of our approach allows us to simultaneously speed up the

computation and to eliminate the error due to truncation of the spatial domain (eg. in �nite di�erences) or to

price discretization (eg. in lattices). The analytic nature of our solution also o�ers insights into the signs and

magnitudes of comparative statics, and implies that derivatives may be calculated without introducing additional

discretization error. Second, when compared with other analytic approaches, our option valuation formulas are

easier to implement because they do not use distribution functions or any other special functions (other than the

natural log). This key result is due to the fact that the implied risk-neutral density for the underlying stock price

may be integrated in closed form. Third, in contrast to most other approaches, our approach yields an explicit

analytic approximation of the critical stock price, so long as dividends are modelled as continuous and constant
2
.

Consequently, we are able to derive a new analytic approximation for the behavior of the exercise boundary near

expiration.

The structure of this paper is as follows. The next section reviews standard results on the pricing of American

puts in the Black-Scholes model. The following section presents our technique for approximating the time decay of a

�nite-lived security with credit downgrades of a perpetual one. The following section discusses the implementation

1We couch the presentation in terms of options on the spot price of a stock. Since we allow for a constant proportional dividend,

readers should have no di�culty applying the analysis to options on the spot or futures price of a stock index, currency, or commodity.
2In contrast, when dividends are modelled as continuous and proportional to the underlying stock price, the critical stock price is

implicitly given by an algebraic equation, which is easily solved numerically.

3
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of our American put formula and compares this implementation with extant approaches in terms of both speed

and accuracy. The penultimate section extends the analysis to dividends and American calls. The �nal section

summarizes our results and suggests directions for future research.

II American Put Valuation in the Black-Scholes Model

In this section, we focus on the valuation of American puts in the Black-Scholes model. We defer the corresponding

development for American calls until dividends have been introduced. The Black-Scholes model assumes that over

the option's life [0; T ], the economy is described by frictionless markets, no arbitrage, a constant riskless rate r > 0,

no dividends from the underlying stock, and that the underlying spot price process fSt; t 2 (0; T )g is a geometric

Brownian motion with a constant volatility rate � > 0. Let P (t; S;T ) denote the value of an American put as a

function of the current time t, the current stock price S, and the maturity date T . Figure 1 graphs the value of

an American put against the current stock price, holding t and T �xed. The critical stock price S(t); t 2 [0; T ] is

de�ned as the largest stock price S at which the American put value P (t; S;T ) equals its exercise value K � S,

where K is the strike price.

As time evolves, the alive American put value falls, which is a phenomenon widely known as time decay. In

contrast, the exercise value K � S does not erode with time. The passage of time therefore raises the critical

stock price at which exercise occurs. When graphed against time, the critical stock price is a smoothly increasing

function termed the exercise boundary (see Figure 2). The continuation region f(t; S);S > S(t); t 2 [0; T ]g lies

above this boundary, while its complement, the exercise region f(t; S);S � S(t); t 2 [0; T ]g lies below. In the

exercise region, the put value P (t; S;T ) is given by its exercise value:

P (t; S;T ) = K � S; S 2 (0; S(t)); t 2 (0; T ): (1)

Thus, the problem is to determine the put value in the continuation region at the initial time t = 0.

For quite general stochastic processes, the American put's value at this time is given by the solution to an

optimal stopping problem:

P (0; S;T ) =
sup

�2[0;T ]E0;Sfe
�r�

[K � S� ]
+g; (2)

where � is a stopping time and the conditional expectation is calculated under the risk-neutral probability measure.

For initial stock prices above the optimal exercise boundary, the continuity of the stock price process in the Black-

4
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Scholes model implies that the optimal stopping time is a �rst passage time to this boundary. Consequently, the

alive American put may alternatively be valued as:

P (0; S;T ) =
sup

B(t);t2[0;T ]E0;Sfe
�r(�B^T )

[K � S�B ]
+g; (3)

where �B is the �rst passage time
3
from S to an exercise boundary B(t); t 2 [0; T ]. Since the optimal exercise

boundary fS(t); t 2 [0; T ]g is an unknown function of time (see Figure 2), neither formulation yields a closed-form

solution for the alive American put value.

McKean[25] showed that an application of Itô's lemma to (2) implies that the alive American put value and

exercise boundary jointly solve a free boundary problem, consisting of the Black-Scholes partial di�erential equation

(p.d.e.):

�2

2
S2Pss(t; S;T )� r[P (t; S;T )� SPs(t; S;T )]+ Pt(t; S;T ) = 0; S 2 (S(t;T );1); t 2 (0; T ); (4)

and the following boundary conditions:

P (T; S;T ) = (K � S)+; S 2 (S(T ;T );1); and S(T ;T ) = K:

lim
S"1

P (t; S;T ) = 0; lim
S#S(t;T )

P (t; S;T ) = K � S(t;T ); lim
S#S(t;T )

Ps(t; S;T ) = �1; t 2 (0; T ):

The hedging arguments given in the seminal papers by Black-Scholes[3] and Merton[28] permit an important

economic interpretation of each term in the di�erential equation. At any point in the continuation region, we may

consider a portfolio consisting of one alive American put with value P (t; S;T ), long jPs(t; S;T )j shares with value

jPs(t; S;T )jS, and P (t; S;T )+ jPs(t; S;T )jS dollars borrowed. Absence of arbitrage implies that this delta-neutral

zero-investment portfolio must maintain zero value through time. This condition in turn implies that the gamma

pro�t measured by the �rst term in (4) must be o�set by the cost of carrying the position and the time decay,

given by the second and third terms in (4) respectively.

While the p.d.e formulation lends insight into the local dynamics of the American put value, this formulation

does not lend itself to an exact closed-form solution. However, as the maturity date T approaches in�nity, time

drops out of both the optimal stopping problem and the free boundary problem, leaving much simpler problems

3As usual, the �rst passage time is considered to be in�nite if the boundary is never touched.

5
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to solve. The optimal stopping problem for the perpetual put value P (S;1) involves the �rst passage time �B to

a constant boundary B:

sup
B P (0; S;1) = E0;Sfe

�r�B (K � B)g; (5)

while the free boundary problem simpli�es to the following ordinary di�erential equation (o.d.e.):

�2

2
S2Pss(S;1) + rSPs(S;1)� rP (S;1) = 0 S 2 (S;1); (6)

and the boundary conditions lim
S"1

P (S;1) = 0; lim
S#S

P (S;1) = K�S; lim
S#S

Ps(S;1) = �1: From Samuelson[39],

both problems yield the following exact solution for the alive perpetual put value P (S;1) and critical stock price

S:

P (S;1) = (K � S)

�
S

S

�� 2r

�2

; S > S; where S =
r

r + �2

2

K: (7)

Just as time drops out when considering perpetual claims, the stock price drops out when considering claims

whose payo�s are independent of the stock price. For example, the time t value of a T -maturity annuity with �xed

continuous payments of � dollars per year is governed by the following o.d.e.:

� rA(t;T ) +At(t;T ) + � = 0; t 2 [0; T ); subject to A(T ;T ) = 0: (8)

As was true for American options, a perpetuity is valued by setting the time derivative to zero:

� rA(t;1) + � = 0: (9)

The solution A(t;1) =
�
r
can be used to generate the well-known solution for the �nite-lived annuity:

A(t;T ) =
�

r
[1� e�r(T�t)]: (10)

Note that the perpetuity value is independent of time, whereas the �nite-lived annuity experiences time decay.

Equation (10) clearly indicates that the value of a �nite-lived annuity is given by the value of a perpetuity
�
r
,

less the value of a deferred perpetuity e�r(T�t) �
r
. Unfortunately, using the corresponding approximation for the

American put will undervalue substantially because this approach implicitly forces the exercise boundary St to

the sub-optimal perpetual boundary S given in (7). In the next section, we develop an approximation procedure

for valuing �nite-lived annuities which also applies to American put options.

6
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III Approximating Time Decay as Credit Downgrades

The analysis in the previous section assumed that all claims are not subject to default risk. However, if we assume

as in Merton[29], Madan and Unal[27], or Du�e and Singleton[13] that default is triggered by a Poisson process,

then the governing di�erential equations change. In particular, suppose that the �rst jump of a standard Poisson

process with constant intensity � forces the risky perpetuity value A(1)
to a given recovery value A(0)

. Then the

generalization of (9) to risky perpetuities is:

� rA(1)
+ �[A(0) �A(1)

] + � = 0; (11)

where the dependence on time has been suppressed as a reminder that we are dealing with perpetuities. The new

term is given by the product of the instantaneous probability of a jump � and the change in value which the jump

triggers. Since we will assume that the perpetuity has no recovery value (A(0)
= 0), the solution is simply:

A(1)
=

�

r + �
; (12)

indicating that � may be interpreted as a credit spread.

More generally, we may assume the existence of n+ 1 credit classes and that each jump of a standard Poisson

process triggers a credit downgrade of the perpetuity from class m to class m� 1, for m = 1; : : : ; n: The resulting

di�erence equation governing the value of a risky perpetuity in credit class m is:

� rA(m)
+ �[A(m�1) �A(m)

] + � = 0; m = 1; : : : ; n; subject to A(0)
= 0: (13)

Comparing (13) for a risky perpetuity with (8) for a riskless annuity indicates a mechanism by which credit

downgrades may be used to mimmick time decay. In particular, suppose that we divide the riskless annuity's life

(0; T ) into n equal steps, each of length 4 � T
n
. Further suppose that we defer the e�ect of time passing on the

annuity value A(t;T ) in (8) until the end of each time step. Let Â(m)
denote the resulting approximation for the

annuity value A(T � m4;T ) with m periods to maturity. Then integrating (8) across time and dividing by 4

implies that Â(m)
solves a di�erence equation of the same form as (13):

� rÂ(m)
+

1

4
[Â(m) � Â(m�1)

] + � = 0; m = 1; : : :n; subject to Â(0)
= 0: (14)

7
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Re-arranging gives the sensible result:

Â(m)
=

�4+ Â(m�1)

1 + r4
= R(�4+ Â(m�1)

); m = 1; : : : ; n; (15)

where R � 1
1+r4

is the single period discount factor. Iterating on m implies that the solution to (14) with n steps

to maturity is:

Â(n)
= �4[R+ R2

+ : : :+Rn
] =

�

r
R(1� Rn

): (16)

Comparing with (10) indicates that this discrete-time approximation converges to the correct continuous-time

solution as the number of steps n becomes large. Furthermore, if we equate the intensity � in (15) to the reciprocal

of the time step length 4 in (14), then the resulting di�erence equations for A(m)
and Â(m)

are formally identical.

As a result, (16) also gives the exact value of a perpetuity in the n-th credit class, where credit downgrades occur

according to a Poisson process with intensity � =
1
4
.

Proceeding analogously for American options, let P (m)
(S) and Sm respectively denote our approximations

for American put value P (T �m4; S;T ) and the critical stock price S(T �m4;T ) with m steps to maturity,

m = 0; 1; : : : ; n, with P (0)
(S) � (K � S)+ and S0 � K. If we suppose that the put's value, delta, gamma, and

critical stock price do not change except at the end of each calendar time step, then integrating the p.d.e. (4)

across calendar time and dividing by 4 implies that:

�2

2

S2P (m)
ss (S)� r[P (m)

(S)� SP (m)
s (S)] +

1

4
[P (m�1)

(S)� P (m)
(S)] = 0; for S 2 (Sm;1); (17)

subject to the boundary conditions:

lim
S"1

P (m)
(S) = 0; lim

S#Sm

P (m)
(S) = K�Sm; lim

S#Sm

P (m)
s (S) = �1, for m = 1; : : : ; n, with P (0)

(S) � (K�S)+: (18)

We may interpret P (m)
(S) as the value of a perpetual put in the m-th credit class. The o.d.e. indicates that the

put enters the next lowest credit class at the next jump time of a Poisson process with intensity � =
1
4
.

Comparing (17) with (4) indicates that the net e�ect of our approximation procedure has been to replace

the time derivative Pt(t; S;T ) �
@P
@t
(t; S;T ) in (4) with the �nite di�erence

4P (m)(S)

4
� P (m�1)(S)�P (m)(S)

4
in

(17). However, the spatial derivatives are not replaced with their �nite di�erences, in contrast to standard �nite

di�erence schemes or the binomial model
4
. The notion of discretizing time while leaving space continuous is

4The binomial model uses a forward �nite di�erence for the maturity derivative leading to an explicit scheme. Our use of a backward

di�erence indicates that our procedure may be considered as the limiting case of a fully implicit scheme, where the size of each space

step is in�nitessimally small.

8
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known in the numerical methods literature as the method of horizontal lines or Rothe's method (see Rothe[38] and

Rektorys[35]). Its application to free boundary problems has been promulgated in Meyer[30],[31] and in Meyer

& van der Hoek[32], who use it to numerically value American options. Goldenberg and Schmidt[15] test this

numerical scheme against other approaches and �nd that it is highly accurate, although slightly slower
5
than some

other approaches.

Our approach is similar to the work of Meyer & van der Hoek and Goldenberg & Schmidt, except that we treat

the method of lines as a way to generate explicit formulas for the approximate value of an American option and its

critical stock price. In contrast to the numerical method of lines, our analytic method of lines is immune to error

introduced by bounding and discretizing the spatial domain. The accuracy of our formulas may be anticipated a

priori by noting that as the maturity date T approaches in�nity holding the number of steps n �xed, then our

modi�ed problem, (17), approaches that of the perpetual put, (6). As a result, the solution at any time step to

our modi�ed problem will converge to the correct perpetual solution, (7). Conversely, as n gets arbitrarily large

with T held �xed, then the �nite di�erence
4P (n)(S)

4
in (17) converges to the time derivative Pt(0; S;T ) in (4). As

a result, we conjecture
6
that the solution (P (n)

(S); Sn) to our modi�ed problem converges to the unknown solution

(P (0; S;T ); S(0;T )) of the exact problem (2) or (4).

Re-arranging (17) leads to the following sequence
7
of (inhomogeneous second order Euler) o.d.e.'s:

�2

2
S2P (m)

ss (S) + rSP (m)
s (S)� (r + �)P (m)

(S) = ��P (m�1)
(S); S 2 (Sm;1); m = 1; : : : ; n; (19)

where recall � =
1
4
=

n
T
is both the intensity of the default process for the perpetual put and the number of time

steps per year for the �nite-lived put.

Setting m = 1 in (18) and (19), the inhomogeneous term is ��P (m�1)
(S) = ��P (0)

(S) = ��(K � S)+ and

the boundary value problem de�ning P (1)
(S) can be solved analytically. See Figure 3 for a graph of this �rst step

solution against the stock price. Setting m = 2 in (18) and (19), ��P (1)
(S) becomes the inhomogeneous term,

and P (2)
(S) may be solved for analytically. See Figure 4 for a graph of this second step solution and Figure 5 for

a graph of the solution over the �rst two steps. Continuing in this fashion, the entire sequence of o.d.e.'s in (19)

5However, given the speed of modern computers, they argue that its inherent accuracy makes it the method of choice among those
tested.

6While numerical implementation of our solution will prove to be consistent with this conjectured convergence, a formal proof of

convergence remains an open question.
7We de�ne P (m�1)(S) � K � S for S 2 (Sm; Sm�1).
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can be solved explicitly.

As previously mentioned, the �nal solution P (n)
(S) is also the value of a perpetual put in the n-th credit class.

Using the Feynman-Kac Theorem (see Du�e[12]), the value of this perpetual claim may be expressed as:

P (n)
(S) = E0;S

Z �n

0
e�(r+�)u�P (n�1)

(Su)du+E0;Se
�(r+�)�n

(K � Sn); (20)

where �n is the �rst passage time to Sn. The �rst term is the value arising if the �rst credit downgrade precedes

exercise, while the second term captures the value of exercising prior to any downgrade. Comparing (20) with

Samuelson's solution (5) indicates that this second term is structurally identical
8
to the value of a riskless perpetual

put. Thus, the default risk (or maturity of the �nite-lived claim) is captured by the �rst term in (20).

The analysis leading to the problem speci�cations (19) or (20) for the value of an American put applies to

European puts as well. The sequence of boundary value problems which governs the approximate value p(m)
(S)

of a European put is:

�2

2
S2p(m)

ss (S) + rSp(m)
s (S)� (r+ �)p(m)

(S) = ��p(m�1)(S); S > 0; m = 1; : : : ; n; (21)

subject to lim
S"1

p(m)
(S) = 0; lim

S#0
p(m)

(S) = KRm; for m = 1; : : : ; n, with p(0)(S) � (K � S)+:

The corresponding sequence of continuous-time perpetual claim valuation problems is:

p(m)
(S) = E0;S

Z 1

0
e�(r+�)u�p(m�1)(Su)du; for m = 1; : : : ; n, with p(0)(S) � (K � S)+: (22)

The corresponding solution to either (21) or (22) for the European put value when m = n is:

p
(n)
0 (S) =

�
S

K

��� n�1X
k=0

�
2� ln

�
S
K

��k
k!

n�k�1X
l=0

 
n� 1 + l

n� 1

!
[KRnqnpl+k �Kq̂np̂l+k]; S > K; (23)

where:

R �
1

1 + r4
;  =

1

2

�
r

�2
; � �

s
2 +

2

R�24
; (24)

and where:

p �
�� 

2�
2 (0; 1); q � 1� p =

�+ 

2�
; p̂ �

��  + 1

2�
2 (0; 1); and q̂ � 1� p̂ =

� +  � 1

2�
(25)

8However, the discount rate and critical stock price di�er.
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may be thought of as pseudo-probabilities. Note that the solution is only valid for S > K, i.e. for a European put

which is currently out-of-the-money. The solution for the initial value of an in-the-money European put is given

by put-call-parity:

p
(n)
1 (S) = KRn � S + c

(n)
1 (S); S � K; (26)

where c
(n)
1 (S) is the initial value of an out-of-the-money European call, given by:

c
(n)
1 (S) =

�
S

K

�+� n�1X
k=0

�
2� ln

�
K
S

��k
k!

n�k�1X
l=0

 
n� 1 + l

n� 1

!
[Kp̂nq̂k+l �KRnpnqk+l]; S � K: (27)

For completeness, we record the initial value of an in-the-money European call as:

c
(n)
0 (S) = S �KRn

+ p
(n)
0 (S); S > K; (28)

where p
(n)
0 (S) is given by (23). These European option formulas are slightly more complex than the Black-Scholes

formulas in that a di�erent formula must be used depending on whether the stock price is above or below the strike

price. However, the formulas are also simpler in that no special functions such as normal distribution functions

require evaluation.

One can also use either method to solve for the value of an American put. However, one must �rst determine the

sequence of critical stock prices S1; : : : ; Sn, where monotonicity of the free boundary implies S1 > S2 > : : : > Sn

(see Figure 8). Like the European put formula, the American put formula will depend on whether the stock price

is above or below the strike. In addition, for stock prices below the strike, the American put formula for P (n)
(S)

will depend on which interval (Si; Si�1) contains the current spot price S.

Assuming that the critical stock prices are known, the solution to either (19) or (20) for the value of an

American put with n periods to maturity is:

P (n)
(S) =

8><
>:
p
(n)
0 (S) + b

(n)
1 (S) if S > S0 � K

KRn�i+1 � S + b
(n)
i (S) +A

(n)
i (S; 1) if S 2 (Si; Si�1]; i = 1; : : : ; n

K � S if S � Sn.

(29)

where for i = 1; : : : ; n:

b
(n)
i (S) �

n�i+1X
j=1

 
S

Sn�j+1

!�� j�1X
k=0

�
2� ln

�
S

Sn�j+1

��k
k!

j�k�1X
l=0

 
j � 1 + l

j � 1

!
qjpk+lRjKr4

A
(n)
i (S; h) �

n�i+1X
j=h

 
S

Sn�j+1

!+� j�1X
k=0

�
2� ln

�
Sn�j+1

S

��k
k!

j�k�1X
l=0

 
j � 1 + l

j � 1

!
pjqk+lRjKr4:
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The formula in the �rst line of (29) for the out-of-the-money value of an American put reects the well-known

decomposition into the value of the corresponding European put and the early exercise premium (see [22], [18],

[9], [44], and [19]). The formula in the second line is a new decomposition of the American put value into the

value if forced to sell at a given date
9
prior to expiration, and the premia which arise because exercise can occur

before or after this date. Appendix 1 provides an economic justi�cation for this decomposition. The �nal line of

(29) indicates that the put should be exercised immediately if the stock price S is at or below the critical stock

price Sn.

A signi�cant advantage of our new decomposition is that it yields an explicit formula for the sequence of

critical stock prices S1; : : : ; Sn. Continuity at the strike price for each time step m = 1; : : : ; n implies c
(m)
1 (K) =

A
(m)
1 (K; 1), which in turn implies the following explicit recursive solution for each critical stock price Sm:

Sm = K

 
pRKr4

c
(m)
1 (K)� A

(m)
1 (K; 2)

! 1
+�

; m = 1; : : : ; n; (30)

where from (27), the at-the-money European call value with m periods to maturity simpli�es to:

c
(m)
1 (K) =

m�1X
l=0

 
m� 1 + l

m� 1

!
[Kp̂mq̂l �KRmpmql]; m = 1; : : : ; n: (31)

To initiate the sequence, we simply set m = 1:

S1 = K

�
pRr4

p̂�Rp

� 1
+�

: (32)

Letting the time step size shrink yields the following simple approximation for the expiration behavior of the

exercise boundary
10
:

lim
4#0

S1 � K

�
r4

%

�%
; where % �

s
�24

2
:

IV Implementation

Our solution (29) for the American put value P (n)
(S;T ) is a triple sum. Clearly, we need the number of steps n to be

small in order to achieve computational e�ciency. This section describes an ingenious technique called Richardson

extrapolation, which can be used to provide accurate answers in at most 3 time steps. Richardson extrapolation

9The given date used is the unique time t solving Ŝ(t;T ) = S, where Ŝ(t;T ) is our step function approximation (see Figure 8) to
the exercise boundary.

10See Barles et. al.[1], Van Moerbeke[42], and Wilmott et. al.[43] for alternative approximations.

12

Electronic copy available at: https://ssrn.com/abstract=706



F
or

 a
n 

el
ec

tr
on

ic
 c

op
y 

of
 th

is
 p

ap
er

, p
le

as
e 

vi
si

t: 
ht

tp
://

ss
rn

.c
om

/a
bs

tr
ac

t=
70

6

has been used previously to accelerate valuation schemes for American
11

options. Geske and Johnson[14] �rst

used Richardson extrapolation in a �nancial context to speed up and simplify their compound option valuation

model. Breen[5] applied this idea to accelerate the binomial model of Cox, Ross, and Rubinstein[11]. Yu[44]

and Subrahmanyam and Yu[40] use the approach to accelerate a modi�cation of the integral representation of

McKean[25]. Finally, Broadie and Detemple[7] use it to accelerate a hybrid of the binomial and Black-Scholes

models.

Richardson extrapolation works o� the same principle as option valuation itself. The key insight of the Black-

Scholes analysis is that the positive correlation between a call option and its underlying stock allows the formation

of a riskless portfolio involving opposing positions. If trading can only occur discretely, then the portfolio will have

risk, but which is of an order of magnitude below that of either component security. In the same vein, the positive

correlation between the errors in two successive put value approximations (eg. P (1)
(S;T ) and P (2)

(S;T )) allows

the formation of a weighted average which has lower error than either approximation. In particular, when the error

of each approximation is of order O(4) as assumed here, the two point Richardson extrapolation, P 1:2
(S;T ), is

obtained from incrementing the more accurate two step value with the improvement over the less accurate single

step value:

P 1:2
(S;T ) = P (2)

(S;T ) + [P (2)
(S;T )� P (1)

(S;T )] = �P (1)
(S;T ) + 2P (2)

(S;T ):

It can be shown that the order of the error of the improved approximation P 1:2
(S;T ) is O(42

).

When trading occurs in discrete time, the variance of a portfolio may be reduced by adding more options. In

a similar manner, the error in a Richardson extrapolation may be reduced by adding more approximations. In a

three point Richardson extrapolation, the single and double step values are combined with the three step value to

obtain the following approximation P 1:3
(S;T ) for the limiting value:

P 1:3
(S;T ) �

1

2
P (1)

(S;T )� 4P (2)
(S;T ) +

9

2
P (3)

(S;T ): (33)

The resulting error is of O(43
). Figures 6 and 7 illustrate the idea behind a 3 step extrapolation. From Marchuk

11Boyle, Evnine, and Gibbs[4] also use the approach to value multivariate options.
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and Shaidurov[23], p. 24, an N point Richardson extrapolation is the following weighted
12
average ofN put values:

P 1:N
(S;T ) �

NX
n=1

(�1)N�nnN

n!(N � n)!
P (n)

(S;T ): (34)

The critical stock price can be obtained by imposing either of the smooth pasting conditions in (18) or
13

by

Richardson extrapolation:

S1:N
(T ) �

NX
n=1

(�1)N�nnN

n!(N � n)!
Sn(T ):

In our implementation of the three point Richardson extrapolation (33), we found it useful to modify the

weights slightly. To understand the nature of this modi�cation, it is instructive to examine a typical test case:

S = 100; K = 100; T = 1; r = :1; � = 0, and � = :3. The true value based on the binomial method with 2000

time steps appears to be 8.3378. Table 1 shows that for this test case, extrapolated put values obtained from

our approach converge rapidly to this true value, with penny accuracy obtained in only 5 points. In contrast,

the unextrapolated values converge very slowly from below. The undervaluation observed in this test case was

observed in other cases as well.

The source of this undervaluation may be understood from two perspectives. Treating the American put value

as the solution to an optimal stopping problem (2), we are freezing the exercise boundary over each time step (see

Figure 8), and therefore optimizing the put value over a restricted set. Treating the American put as a solution

to a free boundary problem (4), we are approximating the average value of the put's time derivative over each

maturity step with its value at the end of each maturity step. Since the put value is an increasing concave function

of maturity (see Figure 7), our �rst order scheme undervalues. Viewed from either perspective, the approximation

error is largest for short maturity options. Fortunately, the early exercise premium is also smallest for such options.

We may nevertheless mitigate the undervaluation by adjusting the Richardson weights upwards in a manner

that depends on the time to maturity. After some numerical experimentation, we settled on the following \�ne-

tuning" of the three point Richardson extrapolation:

P 1:3m
(S; T ) �

1

2
P (1)

(S;T )� 4[1� :0002(5� T )+]P (2)
(S;T ) +

9

2
P (3)

(S;T ): (35)

12The weights always sum to unity and alternate in sign. In general, higher order approximations involve weights with greater
absolute value. As a result, implementing higher order extrapolations on a computer requires double precision to control roundo�

error.
13We prefer the former method when accuracy is important and the latter method when speed matters.
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Thus, no adjustment is made if the time to maturity exceeds 5 years. For shorter maturities, the middle weight is

modi�ed so that the three weights sum to slightly more than one. The maximum adjustment to the middle weight

is .004, which occurs when T = 0. When applied to our test case, the modi�ed value is 8.3332, giving penny

accuracy in only 3 time steps. The extrapolated put value given by (35) is the central result of this paper.

Broadie and Detemple[7] conduct extensive numerical simulations of a wide array of methods for valuing

American options. Their results indicate that our approach dominates most methods in terms of speed and

accuracy. Indeed, their results indicate that our above three point extrapolation is on the \e�cient frontier",

intermediate in terms of speed and accuracy between the quadratic formula and their capped option formulae.

We believe that our three point extrapolation given by (35) represents a satisfactory tradeo� between speed and

accuracy. Furthermore, our approach displays more exibility than other e�cient approaches, in that speed or

accuracy can be emphasized whenever one consideration is paramount, simply by varying the number of Richardson

points used. In particular, arbitrary accuracy can be achieved in contrast to other e�cient methods.

V Extension to Positive Dividends and American Calls

Merton[28] generalized the Black-Scholes analysis to continuously-paid dividends which are either constant or

proportional to the price of the underlying. He did not permit a dividend rate which is linear in the spot price,

presumably due to the di�culty in generating analytic solutions under this assumption. While we are also unable

to deal with a linear dividend rate, this section values American options explicitly when the dividend payout rate

has both a �xed and a proportional component. We also show that our approximation to the put's critical stock

price is still given by an explicit formula when dividends are constant, but must be determined numerically when

there is a proportional component to the dividend ow. Finally, we develop corresponding results for American

call options.

To obtain a truly �xed component � of the dividend ow, we follow Roll[37] in assuming that this component

has been escrowed out of the stock price. In other words, the time t stock price St decomposes into:

St =
�

r
[1� e�r(T�t)] + st; t 2 [0; T ]; (36)

where the �rst term is the present value at t of the constant ow � until T , and the residual st is the stripped price,

reecting the stripping o� of the �xed component of the dividend ow from the stock price. We assume that the

15
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risk-neutralized process for the stripped price fst; t 2 [0; T ]g is the following geometric Brownian motion:

st = s exp

" 
r � � �

�2

2

!
t + �Wt

#
; t 2 [0; T ]; (37)

where fWt; t 2 [0; T ]g is a standard Brownian motion, and from (36), the initial value is:

s = S �
�

r
[1� e�rT ]: (38)

Thus, the dollar dividend rate dt has both a �xed and a proportional component:

dt = �+ �st; t 2 [0; T ]: (39)

The parameter � captures the stickiness of dividends in the short run, while � captures the tendency for dividends

to increase with stock prices in the long run. If � = 0, then � is the constant dividend rate, while if � = 0, then �

is the constant dividend yield, since st = St from (36).

V-A Positive Dividends and American Puts

We generalize the previous analysis by letting P (t; s;T ) denote the value of an American put as a function of the

current time t, the current stripped price s, and the maturity date T . We also de�ne the critical stripped price

s(t) as the unique stripped price s at which the alive American put value P (t; s;T ) just equals its exercise value

K � s � �
r
[1� e�r(T�t)], for t 2 [0; T ]. From (36), the critical stock price S(t) is now de�ned by:

S(t) �
�

r
[1� e�r(T�t)] + s(t); t 2 [0; T ]: (40)

To obtain discrete-time analogs, note that (16) implies that the discrete-time value of a �nite-lived annuity

paying �n each period for n periods is:

Â(n)
=

�n

r
R(1�Rn

);

where R � 1
1+r4

is the single period discount factor. We de�ne the periodic cash ow �n so that the discrete-time

value matches its continuous counterpart:

�n � �
1� e�rT

R(1�Rn
)

:
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We de�ne P (m)
(s) as our approximation

14
for the American put value when m periods remain, m = 1; : : : ; n. Our

approximation for the critical stripped price, sm, is the unique s satisfying P (m)
(s) = K � s � �nR

1�Rm

1�R ; m =

1; : : : ; n:

We may again approximate European option values by solving for the mimmicking perpetual values:

p(n)(s) =

8><
>:
�
s
K

��� n�1P
k=0

(2� ln(
s
K ))

k

k!

n�k�1P
l=0

�n�1+l
n�1

�
[KRnqnpk+l �KDnq̂np̂k+l] if s > K

KRn � sDn
+ c(n)(s) if s � K

(41)

c(n)(s) =

8><
>:
sDn �KRn

+ p(n)(s) if s > K�
s
K

�+� n�1P
k=0

(2� ln(
K
s ))

k

k!

n�k�1P
l=0

�
n�1+l
n�1

�
[KDnp̂nq̂k+l �KRnpnqk+l] if s � K;

(42)

where now:

 =
1

2
�
r � �

�2
; D �

1

1 + �4
; (43)

while R; �; p; q; p̂, and q̂ are again given by (24) and (25).

For � = 0 and � � rK, American puts are not rationally exercised early. Consequently, the American put

value P (n)
(s) is given by (41) in this case. For � > 0 or � < rK, the discrete-time decomposition of the American

put is:

P (n)
(s) =

8><
>:
p
(n)
0 (s) + b

(n)
1 (s) if s > s0 � K

v
(n)
i (s) + b

(n)
i (s) + A

(n)
i (s; 1) if s 2 (si; si�1]; i = 1; : : : ; n

K � S if s � sn,

(44)

where for i = 1; : : : ; n:

v
(n)
i (s) = KRn�i+1 � sDn�i+1 � �nR

Rn�i+1 � Rn

1�R
; (45)

approximates the value of a short forward position maturing in n� i+ 1 periods, while:

b
(n)
i (s) =

n�i+1X
j=1

 
s

sn�j+1

!�� j�1X
k=0

�
2� ln

�
s

sn�j+1

��k
k!

j�k�1X
l=0

 
j � 1 + l

j � 1

!
[qjpk+lRj

(Kr� �n)� q̂j p̂k+lDjsn�j+1�]4

A
(n)
i (s; h) =

n�i+1P
j=h

�
s

sn�j+1

�+� j�1P
k=0

�
2� ln

�
sn�j+1

s

��k
k!

j�k�1P
l=0

�j�1+l
j�1

�
[pjqk+lRj

(Kr� �n)� p̂j q̂k+lDjsn�j+1�]4:

Continuity in s at the strike price for each time step m = 1; : : : ; n again implies c
(m)
1 (K) = A

(m)
1 (K; 1), which

in turn implies that each critical stripped price sm implicitly solves:

c
(m)
1 (K)� A

(m)
1 (K; 2) =

�
K

sm

�+�
[pR(Kr� �n)� p̂Dsm�]4; m = 1; : : : ; n; (46)

14If we realistically assume that exercise of the put at the end of a calendar time period occurs immediately after that period's

dividend is paid, then S is the ex-dividend stock price and s is the ex-dividend price after stripping o� the �xed component of the

dividend ow.
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where from (42), the at-the-money call value on the left hand side (LHS) of (46) simpli�es to:

c
(m)
1 (K) =

m�1X
l=0

 
m� 1 + l

m� 1

!
[KDmp̂mq̂l �KRmpmql] m = 1; : : : ; n: (47)

It is straightforward to solve (46) numerically for each critical stripped price sm, since sm does not appear on the

LHS. Setting � = 0 in (46) implies the following explicit solution for the critical stripped prices when the dividend

rate is constant at �:

sm = K

 
pR(Kr � �n)4

c
(m)
1 (K)�A

(m)
1 (K; 2)

! 1
+�

; m = 1; : : : ; n; (48)

where the call value c
(m)
1 (K) is now given by (31). This solution is a good initial guess when numerically solving

(46). From (40), the critical stock price Sn is determined by:

Sn =
�

r
(1� e�rT ) + sn; (49)

where sn is given by setting m = n in (48) when � = 0 and solves (46) with m = n otherwise.

V-B Positive Dividends and American Calls

Let C(t; s;T ) denote the value of an American call as a function of the current time t, the current stripped price

s, and the maturity date T . We also de�ne the call's critical stripped price �s(t) as the unique stripped price s at

which the alive American call value C(t; s;T ) just equals its exercise value s+ �
r
[1� e�r(T�t)]�K, for t 2 [0; T ].

From (36), the call's critical stock price �S(t) is de�ned by:

�S(t) �
�

r
[1� e�r(T�t)] + �s(t); t 2 [0; T ]: (50)

In discrete time, C(m)
(s) denotes our approximation

15
for the American call value when m periods remain,

m = 1; : : : ; n. Our approximation for the critical stripped price, �sm, is the unique s satisfying C(m)
(s) =

s + �n4R1�Rm

1�R
� K;m = 1; : : : ; n: For � = 0 and � � rK, American calls are not rationally exercised early.

Consequently, the American call value C(n)
(s) is given by (42) in this case. For � > 0 or � > rK, the discrete-time

decomposition of the American call is:

C(n)
(s) =

8><
>:
S �K if s � �sn
�v

(n)
i (s) + �

(n)
i (s) +B

(n)
i (s; 1) if s 2 [�si�1; �si); i = 1; : : : ; n

c
(n)
0 (s) + �

(n)
1 (s) if s < �s0 � K

(51)

15If we realistically assume that exercise of the call at the end of a calendar time period occurs immediately before that period's

dividend is paid, then S is the cum-dividend stock price and s is the cum-dividend price after stripping o� the �xed component of the

dividend ow.
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where for i = 1; : : : ; n, �v
(n)
i (s) is the initial value of a long

16
forward position maturing in n � i+ 1 periods,

�
(n)
i (s) =

n�i+1X
j=1

 
s

�sn�j+1

!+� j�1X
k=0

�
2� ln

�
�sn�j+1

s

��k
k!

j�k�1X
l=0

 
j � 1 + l

j � 1

!
[p̂j q̂k+lDj

�sn�j+1� � pjqk+lRj
(Kr� �n)]4

B
(n)
i (s; h) =

n�i+1X
j=h

 
s

�sn�j+1

!�� j�1X
k=0

�
2� ln

�
s

�sn�j+1

��k
k!

j�k�1X
l=0

 
j � 1 + l

j � 1

!
[q̂jp̂k+lDj

�sn�j+1� � qjpk+lRj
(Kr� �n)]4:

Appendix 2 also provides an economic justi�cation for the decompositions in (51).

Continuity in s at the strike price for each time step m = 1; : : : ; n implies that the critical stripped price �sm

implicitly solves:

p
(m)
0 (K)� B

(m)
1 (K; 2) =

�
K

�sm

���
[q̂D�sm� � qR(Kr� �n)]4; m = 1; : : : ; n; (52)

where from (41), the at-the-money put value on the LHS of (52) simpli�es to:

p
(m)
0 (K) =

m�1X
l=0

 
m� 1 + l

m� 1

!
[KRmqmpl �KDmq̂mp̂l] m = 1; : : : ; n: (53)

It is straightforward to solve (52) numerically for the critical stripped price �sm, since it does not appear on the

LHS. If �n = rK, then (52) yields the following explicit solution for the critical stripped price:

sm = K

 
Kq̂D�4

p
(m)
0 (K)�B

(m)
1 (K; 2)

! 1
���1

; m = 1; : : : ; n: (54)

This solution is a good initial guess when numerically solving (52). From (??), the call's critical stock price �Sn is

determined by:

�Sn =
�

r
(1� e�rT ) + �sn; (55)

where �sn is given by setting m = n in (54) when � = rK and solves (52) with m = n otherwise. Appendix 2

collects all the formulas needed to implement European and American puts and calls when the underlying has a

continuous payout with a �xed component � and a proportional component �.

VI Summary and Future Research

We implemented a new approach to valuing American options, which is fast, accurate, and exible. The approach

uses the known solution for perpetual options to value �nite-lived American options. The insight allows one to

16See (45) for v
(n)

i (s).

19

Electronic copy available at: https://ssrn.com/abstract=706



F
or

 a
n 

el
ec

tr
on

ic
 c

op
y 

of
 th

is
 p

ap
er

, p
le

as
e 

vi
si

t: 
ht

tp
://

ss
rn

.c
om

/a
bs

tr
ac

t=
70

6

replace a free boundary problem involving a p.d.e. with a recurrent sequence of simpler free boundary problems

involving o.d.e's. Alternatively, a �nite-horizon optimal stopping problem involving a �rst passage time to a

time-dependent boundary is replaced with a simpler sequence of in�nite-horizon stopping problems each involving

a passage time to a constant boundary. Under either perspective, each problem in the sequence may be solved

analytically, resulting in an explicit solution for the put value, with the critical stock prices determined recur-

sively. Richardson extrapolation is used to dramatically enhance convergence, with a modi�ed three point scheme

performing particularly well in numerical tests.

Since American options are among the most di�cult derivative securities to value, it appears plausible that our

approach can be applied to valuing other options, such as Asian, barrier, compound, installment, and lookback

options. While analytic solutions or approximations exist for these securities, it is also plausible that our approach

can be used to handle realities such as multiple barriers, discrete sampling, term structure e�ects, and volatility

smiles. Our approach may also be applied to other areas of �nance where optimal stopping problems or p.d.e.'s

arise, such as signalling models or optimal consumption and portfolio theory. In the interests of brevity, these

directions are left for future research.
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Appendix 1

This appendix presents a new decomposition of the value of an American put into the value if forced to sell the

underlying at a given date Tx 2 [0; T ], and the premia which arise because exercise can occur before or after this

date. This decomposition may be understood from the following continuous-time trading strategy, which converts

the initial purchase of an American put into the �nal payo� of a European call. Suppose that at t = 0 an investor

buys an alive American put maturing at T . In the period t 2 (0; Tx), the holder of the put exercises it each time

the stock price crosses the exercise boundary from above and repurchases the put each time the stock price crosses

from below. In order that the transitions self-�nance, the investor keeps K dollars in an interest earning bank

account and is short one share in the exercise region for t 2 [0; Tx]. Thus, when the stock price is in this region

during this period, the investor withdraws interest continuously so as to keep his bank balance at at K and

covers the dividends from the short share position. Consequently, if the stock price is still in the exercise region

at Tx, the investor can liquidate the position for a net payo� K � STx , matching that of a short forward position

expiring at Tx. However, if the stock price is in the continuation region at Tx, obtaining this payo� requires that

the investor purchase one share at Tx and borrow the delivery price K. For stock prices in the continuation region

during the period t 2 (Tx; T ), the investor withdraws any dividend payments and continuously pays interest on

these borrowings so as to keep his liability constant at K. As a result, his overall position in this region during this

period consists of the alive American put,long one share, and less the constant liability of K. During this period,

the investor liquidates this position by exercising the put each time the stock price crosses the exercise boundary

from above and re-enters the position each time the stock price crosses from below. The optimality of the exercise

boundary again ensures that these transitions are self-�nancing. At expiration, the position is worthless if the

stock price �nishes below the strike and pays the di�erence between the stock price and the strike price otherwise.

Equating the initial cost of the strategy to the present value of the cash ows resulting from it gives the

following fundamental decomposition of the continuous-time value of an alive American put:

P (0; s;T ) = v(0; s;Tx) + b(0; s; 0; Tx) + a(0; s;Tx; T ); s > s(0): (56)

The value if forced to sell at Tx is the value of a short forward position:

v(0; s;Tx) = e�rTxE0;s(K � STx) = Ke�rTx � se��Tx �
�

r
[e�rTx � e�rT ]: (57)
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Letting 1(A) denote the indicator function of the event A, and N(�) denote the standard normal distribution

function, the premium for allowing the sale to occur before Tx is given by the value of the interest less dividends

(i.e. net interest) received below the boundary before Tx:

b(0; s; 0; Tx) = E0;s

Z Tx

0
e�rt[rK � �� �st]1(st < s(t))dt

=

Z Tx

0
[(rK � �)e�rtN(�d2(s(t); t))� �se��tN(�d1(s(t); t))]dt;

where:

d2(s(t); t) �
ln(s=s(t)) + (r � � � �2=2)t

�
p
t

; d1(s(t); t) � d2(s(t); t) + �
p
t:

Finally, the premium for allowing the sale to occur after Tx or never is the value of a European call less the net

interest received above the boundary after Tx:

a(0; s;Tx; T ) = E0;se
�rT

(ST �K)
+ �E0;s

Z T

Tx

e�rt[rK � �� �st]1(st � s(t))dt

= se��TN(d1(K; T ))�Ke�rTN(d2(K; T ))�
Z T

Tx

[(rK � �)e�rtN(d2(s(t); t))� �se��tN(d1(s(t); t))]dt:

Note that the simpler decomposition of the alive American put value into the corresponding European put value

and the early exercise premium is obtained by setting Tx = T . In contrast, the discrete-time analog (44) of (56) is

generated by setting Tx to the time Ts which solves Ŝ(Ts) = S, where Ŝ is the step function approximation of the

exercise boundary (see Figure 8) and S is the current stock price, assumed to be in the interval (Ŝ(0); Ŝ(T )). The

�nal term A
(n)
i (s; 1) in our discrete-time decomposition (44) for the American put value reects a simpli�cation

obtained by imposing smoothness
17

at the critical stock price at every time step.

Using a strategy mirroring the one underlying the decomposition of an American put, the alive American call

can be shown to decompose into three terms:

C(0; s;T ) = �v(0; s;Tx) + �(0; s; 0; Tx) + �(0; s;Tx; T ); s < s(0): (58)

The �rst term is the value if forced to buy at Tx and is given by the value of a long18 forward position maturing

at Tx. The premium for allowing the purchase to occur prior to Tx is now the value of the dividends less interest

17It can be shown that at any time step, our solution for the American put is twice di�erentiable for all stock prices strictly above

the critical price. Furthermore, at the critical stock price, our solution is continuous and di�erentiable. It is not twice di�erentiable at

the critical price, as is true of the unknown solution to the original free boundary problem (4).
18See (57) for v(0; s;Tx).
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(i.e. net dividends) received above the boundary before Tx:

�(0; s; 0; Tx) = E0;s

Z Tx

0
e�rt[�+ �st � rK]1(st > �s(t))dt

=

Z Tx

0
[�se��tN(d1(�s(t); t))� (rK � �)e�rtN(d2(�s(t); t))]dt:

Finally, the premium for allowing the purchase to occur after Tx or never is now the value of the net dividends

received below the boundary after Tx:

�(0; s;Tx; T )

= E0;se
�rT

(K � ST )
+ � E0;s

Z T

Tx

e�rt[�+ �st � rK]1(st < �s(t))dt

= Ke�rTN(�d2(K; T ))� se��TN(�d1(K; T ))�

Z T

Tx

[�se��tN(�d1(�s(t); t))� (rK � �)e�rtN(�d2(�s(t); t))]dt:

As in the put case, the discrete-time analog sets Tx to the time which equates a step function approximation of

the exercise boundary to the initial stock price. The �nal term B
(n)
i (s; 1) in (51) reects a simpli�cation obtained

by imposing smoothness at the critical stock price at every time step.
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Appendix 2

This appendix collects all the formulas needed to implement European and American puts and calls when the

underlying has a continuous payout with a �xed component � and a proportional component �. Letting s =

S � �
r
[1� e�rT ]; the N -point Richardson extrapolation of the European put formula is:

p1:N(s;T ) �
NX
n=1

(�1)N�nnN

n!(N � n)!
p(n)(s;T );

where:

p(n)(s;T ) =

8><
>:
�
s
K

��� n�1P
k=0

(2� ln(
s
K ))

k

k!

n�k�1P
l=0

�n�1+l
n�1

�
[KRnqnpk+l �KDnq̂np̂k+l] if s > K

KRn � sDn
+ c(n)(s;T ) if s � K;

with c(n)(s;T ); s � K given on the next page, and where:

 �
1

2
�
r � �

�2
;4�

T

n
;R �

1

1 + r4
; D �

1

1 + �4
; � �

s
2 +

2

R�24
; p �

�� 

2�
; q � 1�p; p̂ �

� �  + 1

2�
; and q̂ � 1�p̂:

The N -point Richardson extrapolation of the American put formula is:

P 1:N
(s;T ) �

NX
n=1

(�1)N�nnN

n!(N � n)!
P (n)

(s;T ):

where:

P (n)
(s;T ) =

8><
>:
p(n)(s;T ) + b

(n)
1 (s) if s > s0 � K

v
(n)
i (s) + b

(n)
i (s) +A

(n)
i (s; 1) if s 2 (si; si�1]; i = 1; : : : ; n

K � S if s � sn,

where for i = 1; : : : ; n; v
(n)
i (s) = KRn�i+1 � sDn�i+1 � �nR

Rn�i+1�Rn

1�R ; �n �
�
r

1�e�rT

R(1�Rn)
;

b
(n)
i (s) =

n�i+1X
j=1

 
s

sn�j+1

!�� j�1X
k=0

�
2� ln

�
s

sn�j+1

��k
k!

j�k�1X
l=0

 
j � 1 + l

j � 1

!
[qjpk+lRj

(Kr� �n)� q̂j p̂k+lDjsn�j+1�]4;

A
(n)
i (s; h) =

n�i+1X
j=h

 
s

sn�j+1

!+� j�1X
k=0

�
2� ln

�
sn�j+1

s

��k
k!

j�k�1X
l=0

 
j � 1 + l

j � 1

!
[pjqk+lRj

(Kr��n)� p̂
j q̂k+lDjsn�j+1�]4:

If � = 0, the critical stripped prices are given by sm = K

�
pR(Kr��n)4

c
(m)

1 (K)�A
(m)

1 (K;2)

� 1
+�

; m = 1; : : : ; n; where

c
(m)
1 (K) =

m�1P
l=0

�
m�1+l
m�1

�
[KDmp̂mq̂l �KRmpmql]. If � > 0, the critical stripped prices solve:

c
(m)
1 (K)�A

(m)
1 (K; 2) =

�
K

sm

�+�
[pR(Kr� �n)� p̂Dsm�]4; m = 1; : : : ; n:

The N -point Richardson extrapolation of the put's critical stock price is S1:N
(T ) � �

r
[1�e�rT ]+

NP
n=1

(�1)N�nnN

n!(N�n)!
sn:
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Similarly, letting s = S � �
r
[1� e�rT ]; the N -point Richardson extrapolation of the European call formula is:

c1:N(s;T ) �
NX
n=1

(�1)N�nnN

n!(N � n)!
c(n)(s;T );

where:

c(n)(s;T ) =

8><
>:
sDn �KRn

+ p(n)(s;T ) if s > K�
s
K

�+� n�1P
k=0

(2� ln(
K
s ))

k

k!

n�k�1P
l=0

�n�1+l
n�1

�
[KDnp̂nq̂k+l �KRnpnqk+l] if s � K;

with p(n)(s;T ); s > K given on the previous page, and where again:

 �
1

2
�
r � �

�2
;4�

T

n
;R �

1

1 + r4
; D �

1

1 + �4
; � �

s
2 +

2

R�24
; p �

�� 

2�
; q � 1�p; p̂ �

� �  + 1

2�
; and q̂ � 1�p̂:

The N -point Richardson extrapolation of the American call formula is:

C(n)
(s;T ) =

8><
>:
S �K if s � �sn
�v

(n)
i (s) + �

(n)
i (s) +B

(n)
i (s; 1) if s 2 [�si�1; �si); i = 1; : : : ; n

c(n)(s) + �
(n)
1 (s) if s < �s0 � K

where for i = 1; : : : ; n,

�v
(n)
i (s) = sDn�i+1

+ �nR
Rn�i+1 �Rn

1� R
�KRn�i+1; �n �

�

r

1� e�rT

R(1�Rn
)
;

�
(n)
i (s) =

n�i+1X
j=1

 
s

�sn�j+1

!+� j�1X
k=0

�
2� ln

�
�sn�j+1

s

��k
k!

j�k�1X
l=0

 
j � 1 + l

j � 1

!
[p̂j q̂k+lDj

�sn�j+1� � pjqk+lRj
(Kr� �n)]4;

B
(n)
i (s; h) =

n�i+1X
j=h

 
s

�sn�j+1

!�� j�1X
k=0

�
2� ln

�
s

�sn�j+1

��k
k!

j�k�1X
l=0

 
j � 1 + l

j � 1

!
[q̂j p̂k+lDj

�sn�j+1��q
jpk+lRj

(Kr��n)]4:

If �n = rK, the critical stripped price �sm is given by:

sm = K

 
Kq̂D�4

p
(m)
0 (K)�B

(m)
1 (K; 2)

! 1
���1

; m = 1; : : : ; n;

where p
(m)
0 (K) =

m�1P
l=0

�m�1+l
m�1

�
[KRmqmpl �KDmq̂mp̂l].

Otherwise, the critical stripped price �sm implicitly solves:

p
(m)
0 (K)� B

(m)
1 (K; 2) =

�
K

�sm

���
[q̂D�sm� � qR(Kr� �n)]4; m = 1; : : : ; n:

The N -point Richardson extrapolation of the call's critical stock price is �S1:N
(T ) � �

r
[1�e�rT ]+

NP
n=1

(�1)N�nnN

n!(N�n)!
�sn:
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Table 1: Convergence without and with Richardson Extrapolation

S = 100, K = 100, T = 1, r = 0.1, � = 0, � = 0:3

Number of Steps n or Points N Unextrapolated Put Value P (n)
Extrapolated Put Value P 1:N

1 7.0405 7.0405

2 7.6175 8.1946

3 7.8353 8.3089

4 7.9505 8.3257

5 8.0220 8.3311

6 8.0709 8.3333

7 8.1065 8.3345

8 8.1335 8.3353

9 8.1548 8.3358

10 8.1720 8.3362

11 8.1862 8.3365

12 8.1981 8.3367

13 8.2082 8.3369

14 8.2169 8.3370

15 8.2246 8.3371
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Figure 1: American Put Value vs Stock Price
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Figure 1: American Put Value vs. Stock Price.
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Figure 2: Exercise Boundary vs. Calendar time.
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Figure 3: Approximate Solution Using One Time-step

r=0.1,sigma=0.3,T=0.5,K=100,n=1

Figure 3: Approximate Solution Using One Time Step.
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Figure 4: Approximate Solution Using Two Time-step

r=0.1,sigma=0.3,T=1,K=100,n=2

Figure 4: Approximate Solution Using Two Time Steps.
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Figure 7: Three-step Richardson Extrapolation
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