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Optimal Portfolios of Mean-Reverting Instruments∗

Gordana Dmitrašinović-Vidović and Antony Ware †

Abstract. In this paper we investigate portfolios consisting of instruments whose logarithms are mean-reverting.
Under the assumption that portfolios are constant, we derive analytic expressions for the expected
wealth and the quantile-based risk measure capital at risk. Assuming that short-selling and bor-
rowing is allowed, we then solve the problems of global minimum capital at risk, and problem of
finding maximal wealth subject to constrained capital at risk. We illustrate these results with some
numerical examples, that show the strong effect of the mean-reversion rates on the portfolio choice.

Key words. Mean-reverting process, portfolio optimization, quantile, capital at risk.

AMS subject classifications. 91B28, 93E20.

1. Introduction. Mean reversion has received considerable attention in the financial world
as a classic indicator of predictability in financial markets. In this paper we investigate
portfolios consisting of mean-reverting instruments, more specifically exponential Ornstein-
Uhlenbeck processes, or one-factor Schwartz processes (see [28]) that belong to a broader class
of processes that follow affine distributions. We note that affine distributions are often used to
model the dynamics of commodity spot and futures markets, interest rates and exchange rates
(see [4], [7], [17], [18], [20], [25], [26], [28]). The problem of portfolio optimization in this setting
has been investigated in a number of papers (see, for instance [2], [5], [6], [29]). In most of the
cited papers the authors analyze the optimal investment problem in a financial market where
the risky asset follows the price dynamics of Schwartz, and the risk preferences are described
by some utility function. It has been claimed (see [6]. [8], [16]) that the predictability of asset
returns affects the choice of optimal portfolio and yields significant improvements in portfolio
performance.

In our paper we utilize the risk reward approach, with risk measured by capital at risk
(CaR), defined as the difference between the riskless wealth and the α-quantile, which was
introduced in [14], and further investigated in [11], [9]. Under the assumption that portfolios
are constant, we derive analytic expressions for the expected value and capital at risk of the
corresponding wealth process. We then solve the problems of global minimum capital at risk,
and the problem of finding maximal wealth subject to constrained capital at risk, assuming
that short-selling of risky assets and borrowing of the riskless asset is unconstrained.

The outline of this paper is as follows. In § 2, we give the notation, market setting,
the definition of the portfolio process, and the dynamics of the wealth process and the assets’
logarithms. In § 3, we derive analytic expressions for the log-wealth process, the expected value
and capital at risk of the wealth process. In § 4 we show that CaR is strongly quasiconvex as
a function of the portfolio, which is an essential property for optimization since it guarantees
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2 G. DMITRAŠINOVIĆ-VIDOVIĆ and A. F. WARE

the uniqueness of the optimal solution. We then find a solution to the global minimum capital
at risk, and the maximal expected wealth subject to constrained CaR. Finding these solutions
numerically is done in § 5 for some specific examples that show a strong effect of the mean-
reversion rates on the portfolio choice. Finally, § 6 concludes the paper.

2. Preliminaries. In this section we give the market’s setting, define the portfolio and the
wealth process, and investigate the dynamics of the underlying assets.

Throughout the paper we denote vectors and matrices by bold letters, their transposes by
(·)′, and the Euclidean norm of a matrix or vector by ‖·‖.

We assume that the following conditions are satisfied:

Assumption 2.1.

(i) The securities are perfectly divisible.
(ii) Negative positions in securities are possible.
(iii) Rebalancing of the holdings does not lead to transaction costs.

In addition to the above assumptions, we make the following assumption.

Assumption 2.2.

(i) m+ 1 assets are traded continuously over a finite horizon [0, T ].
(ii) m of these assets follow the mean-reverting dynamics given in the system of stochastic

differential equations below.

dSi(t)

Si(t)
= βi(Li − ci lnSi(t))dt+

∑

j

σijdWj(t), Si(0) > 0, i = 1, . . . ,m. (2.1)

We recall that this model is called a one-factor Schwartz model (see [28]). In this model the
mean-reversion rate βi > 0 and Li ∈ R, i = 1, . . . ,m. Further, ci = 0 or 1, i = 1, . . . ,m, are
scaling factors which allow investigating optimal portfolios in this setting, in the Black-Scholes
setting, or a combination of both. W (t) :=

(
W1(t), . . . ,Wm(t)

)′
is the m−dimensional vector

of independent Brownian motions, and σ := (σij) is the volatility matrix.
(iii) One of the assets is riskless, and its value S0(t), t ≥ 0 is equal to

S0(t) =ert, (2.2)

where r > 0 is the interest rate of the asset. Throughout this work, we assume that the holdings
in this asset are unconstrained, and in particular can be positive or negative.

(iv) σ is invertible.

If we define

ai = βiLi, bi = βici, i = 1, . . . ,m, σi = (σi1, . . . , σim)

the system (2.1) can be written as

dSi(t)

Si(t)
= (ai − bi lnSi(t))dt+ σidW (t), i = 1, . . . ,m. (2.3)

At any time t, Ni(t) shares are held in the asset Si(t), leading to the wealth Xπ(t) =∑m
i=0Ni(t)Si(t). The m+1-dimensional vector-valued function N(t) = (N0(t), . . . , Nm(t))′ is
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called the trading strategy. We denote the fraction of the wealth Xπ(t) invested in the risky
asset Si(t) by

πi(t) =
Ni(t)Si(t)

Xπ(t)
∈ R, i = 1, · · · ,m.

Assumption 2.3.In order to maintain tractability, we assume that πi(t) ≡ π is constant for
each i, and we call π := (π1, · · · , πm)′ ∈ Rm the portfolio. The fraction held in the bond is
π0 = 1− π′1.

Remark 2.1. We note that the constant-portfolio assumption is somewhat restrictive, and
has been made in order to maintain tractability. The current setting differs from other con-
tributions in the area such as [2], [5], [6], [29] which do not make this assumption, and which
use utility optimization with a logarithmic or power utility function; here the portfolio is n-
dimensional, and the optimization is in a risk-reward setting with the risk measured by CaR.
The difficulties of such an approach have been pointed out by Emmer, Klüppelberg and Korn,
who state (see [14], page 369) that “determining the wealth process quantile for a general,
random n−dimensional portfolio is nearly impossible.” The same authors [15] investigate
portfolio optimization problems under CaR, when prices follow exponential Lévy processes,
but also assuming constant portfolios. They derive a weak limit law for CaR’s approximation
and numerical algorithms for the corresponding solutions, but no closed form solution.

Under the assumption that the trading strategy is self-financing, the wealth process (see
[23]) follows the dynamics

dXπ(t) =
m∑

i=0

Ni(t)dSi(t)

= N0S0(t)rdt+

m∑

i=1

Ni(t)Si(t) [(ai − bi lnSi(t))dt+ σidW (t)]

= Xπ(t)

(
rdt+

m∑

i=1

πi [(ai − r − bi lnSi(t))dt+ σidW (t)]

)
, Xπ(0) = X0, (2.4)

where X0 > 0 is the initial wealth.
In order to facilitate further investigation, we define Yi(t) := lnSi(t), i = 1, ...,m. The

characteristics of the processes Yi(t) are given in the following proposition.
Proposition 2.1. The means and covariances of the normally-distributed random variables

Yi(t), i = 1, ...,m are

E [Yi(t)] = Yi(0)e
−bit + âiE (t, bi)

Cov[Yi(t), Yj(t)] = σiσj
′E (t, bi + bj) ,

where

âi = ai −
1

2
‖σi‖2

and

E (t, b) :=

∫ t

0
e−sbds =

{
1−e

−tb

b if b 6= 0

t if b = 0.
(2.5)
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Proof. Applying Itô’s Lemma to (2.3) we find that

dYi(t) = (ai − biYi(t))dt+ σidW(t)− 1

2
‖σi‖2 dt

= (âi − biYi(t))dt+ σidW(t), i = 1, . . . ,m. (2.6)

The substitution

Zi(t) = ebitYi(t)

yields

dZi(t) = bie
bitYi(t)dt+ âie

bitdt− bie
bitYi(t)dt+ ebitσidW(t)

= ebitâidt+ ebitσidW (t).

Thus

Zi(t) = Zi(0) + âiE (t,−bi) + σi

∫ t

0
ebiudW (u).

This leads to

Yi(t) = e−bitYi(0) + âiE (t, bi) + e−bitσi

∫ t

0
ebiudW (u). (2.7)

The expression for E [Yi(t)] follows immediately from (2.7). To evaluate the covariances of
Yi(t), we expand the expression for Cov[Yi(t), Yj(t)], make use of Itô’s Isometry, and find that

Cov[Yi(t), Yj(t)] = E

[(
e−bitσi

∫ t

0
ebiudW (u)

)(
e−bjtσj

∫ t

0
ebjudW (u)

)]
(2.8)

= e−(bi+bj)tE

[(
∑

k

σik

∫ t

0
ebiudW k(u)

)(
∑

l

σjl

∫ t

0
ebjudW l(u)

)]

= e−(bi+bj)t

(
∑

k

σikσjk

∫ t

0
e(bi+bj)udu

)

= σiσj
′E (t, bi + bj) ,

which completes the proof of the proposition.

Proposition 2.2. Let the matrix F(t, b) have the entries

Fij(t, b) := Cov[Yi(t), Yj(t)] = σiσj
′E(t, bi + bj), i, j = 1, . . . ,m. (2.9)

Then, for any t > 0, F(t, b) is positive-definite.

Proof. Let x be an arbitrary vector in Rm, and define, for s ∈ R, the vector z(s) to have
entries

zi(s) = xie
−sbi .
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Then

x′F (t, b)x =
∑

i,j

xixjFij(t, b) =
∑

i,j

xixjσiσj
′E (t, bi + bj)

=
∑

i,j

xixjσiσj
′

∫ t

s=0
e−s(bi+bj)ds

=

∫ t

s=0

∑

i,j

xie
−sbiσixje

−sbjσj
′ds

=

∫ t

s=0
‖σz(s)‖2 ds ≥ 0.

Since z(·) is a continuous function, and σ is invertible, this integral will be zero if and only if
z(s) = 0 for all s ∈ [0, t], i.e. if x = 0.

Remark 2.2.

(i) We note that the market described above consists of processes that follow affine distri-
butions, and contains as a special case (when ci = 0, i = 1, ...,m) the setting of [9], [10], [11],
and [14], where the assets are lognormal, in which case the matrix F(t, b) reduces to σσ′t.

(ii) Affine processes have been used extensively in financial modeling. This is due to their
tractability and flexibility in capturing a range of assets’ dynamics. In particular, affine pro-
cesses are used to model the term structure of interest rates (see [4], [19]). Further, energy
spot and forward price dynamics are captured by mean-reversion models that track their ten-
dency to revert to a price level determined by the cost of production (see [26], [28]). Also,
mean-reverting behaviour is observed in the real exchange rate series (see [20]).

3. Wealth and Capital at Risk. In this section we will use the results of Proposition 2.1
to determine the mean and capital at risk of the wealth process Xπ(t). We recall that the
capital at risk of Xπ(t) was given in [14] by

X0e
rt − qx,

where qx is the α-quantile of Xπ(t), X0 denotes the initial wealth invested in the portfolio,
and r denotes the riskless rate of return.

In order to determine the CaR of the wealth process Xπ(t) we first investigate the log-
wealth process H(t) := lnXπ(t) and prove the following proposition.

Proposition 3.1. The log-wealth process H(t) follows the dynamics

dH(t) = µdt+

m∑

i=1

πi [−biYi(t)dt+ σidW (t)] , H(0) = lnX0,

where

µ = r + π′(a− r1)− 1

2

∥∥π′σ
∥∥2 . (3.1)

The mean and variance of H(t) are given by

E[H(t)] = H(0) + µt+ π′
A(t, b),
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and
V[H(t)] = π′F(t, b)π,

where
Ai = E (t, bi) (âi − biYi(0)) − âit, i = 1, . . . ,m. (3.2)

Proof. We can rewrite (2.4) in the following form:

dXπ(t) = Xπ(t)

((
υ +

m∑

i=1

πi(−biYi(t))
)
dt+ π′σdW (t)

)
,

where υ = r + π′ (a− r1). Applying Itô’s Lemma to the process H(t) we get

dH(t) =

(
υ +

m∑

i=1

πi(−biYi(t))
)
dt+ π′σdW (t)− 1

2

∥∥π′σ
∥∥2 dt.

Using (3.1) we get that

dH(t) = µdt+

m∑

i=1

πi [−biYi(t)dt+ σidW (t)] .

From (2.6), we have
−biYi(t)dt+ σidW (t) = dYi(t)− âidt

so that we can write

dH(t) = µdt+

m∑

i=1

πi [dYi(t)− âidt] .

Thus
dH(t) = (µ− π′â)dt+ π′dY (t),

and so
H(t) = H(0) + (µ− π′â)t+ π′

(
Y (t)− Y (0)

)
.

From (2.7) we get that

Yi(t)− Yi(0) =
(
âi − biYi(0)

)
E (t, bi) + e−bitσi

∫ t

0
ebiudW (u),

so that we can write

H(t) = H(0) + (µ− π′â)t+
m∑

i=1

πiE(t, bi)(âi − biYi(0)) +
m∑

i=1

πie
−bitσi

∫ t

0
ebiudW (u). (3.3)

Thus

E[H(t)] = H(0) + (µ − π′â)t+
m∑

i=1

πiE(t, bi)
(
âi − biYi(0)

)

= H(0) + µt+ π′
A(t, b),
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where A(t, b) is defined in (3.2). Since

V[H(t)] = E[H(t)2]− E[H(t)]2

= E



(

m∑

i=1

πie
−bitσi

∫ t

0
ebiudW (u)

)2

 ,

from the evaluation of Fij(t, b) in (2.8) we get that

V[H(t)] = π′F (t, b)π,

with matrix F given by (2.9), which completes the proof of the proposition.
We now turn our attention to determining the α-quantile of H(t). Given that the α-

quantile qu of a normal random variable U ∼ N
(
µ, σ2

)
is

qu = µ− |zα|σ,

where zα denotes the corresponding α-quantile of the standard normal distribution, the α-
quantile of the log-wealth process H(t) is

qh = E[H(t)]− |zα|
√

V[H(t)] = H(0) + rt+ π′ [(a− r1)t+A(t, b)]

− t

2

∥∥π′σ
∥∥2 − |zα|

√
π′F (t, b)π.

If we define

g(t) := (a− r1)t+A(t, b) and (3.4)

f(π, t) := π′g(t)− t

2

∥∥π′σ
∥∥2 − |zα|

√
π′F(t, b)π.

then the α-quantile of the log-wealth process H(t) can be written as

qh = H(0) + rt+ f(π, t),

so that the α-quantile of the wealth process Xπ(t) is given by

qx = X0e
rtef(π,t).

Since CaR is the difference between the riskless return and the α-quantile of the risky
portfolio we have the following corollary.

Corollary 3.2. The capital at risk of the wealth process Xπ(t) is given by the formula

CaR (π, t) = X0e
rt
(
1− ef(π,t)

)
.

Remark 3.1. When ci = 0, i.e. bi = 0, we get that Ai = 0, i = 1, . . . ,m, so that g(t) = (a−
r1)t, which is actually the risk premium vector. Also, in this case we get that F (t, b) = σσ′t,
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so that the expression for capital at risk becomes the expression from [9], or [17], in the
Black-Scholes setting with constant coefficients.

The expected wealth formula is given in the following proposition.

Proposition 3.3.

The expected value of the wealth process Xπ(t) is

E[Xπ(t)] = X0 exp

(
rt+ π′g(t)− 1

2
π′F̃ (t, b)π

)
,

where F̃ (t, b) := F (t,0)− F (t, b).

Proof. Since H(t) = lnXπ(t) is normally-distributed, we have

E[Xπ(t)] = E

[
eH(t)

]
= exp

(
E[H(t)] +

1

2
V[H(t)]

)
.

Substituting for the mean and variance of H(t) from Proposition 3.1 gives

E[Xπ(t)] = X0 exp

(
rt+ π′g(t)− t

2

∥∥π′σ
∥∥2 + 1

2
π′F (t, b)π

)
.

Noting that t ‖π′σ‖2 = π′F (t,0)π yields the result.

Remark 3.2. Since the matrix F̃ (t, b) is the difference between two positive-definite matri-
ces, it will not in general be positive-definite. The implications of this will be illustrated in
numerical examples in Subsection 5.2.

In the following section we will look at the problem of a global minimum of the portfolio
CaR , and maximal expected wealth subject to a constrained CaR .

4. Minimal Capital at Risk. In this section we first prove that CaR is a strongly quasi-
convex function of π, which guarantees the uniqueness of the global minimum. We then find
the global minimum of CaR , and investigate the problem of the maximal expected wealth
subject to a constrained CaR .

4.1. Quasiconvexity of CaR . We recall that a function ψ : Rm → R is strongly quasi-
convex if

ψ(λπ + (1− λ)ξ) < max{ψ(π), ψ(ξ)},

for all π, ξ ∈ Rm for which π 6= ξ, and for all λ ∈ (0, 1). We now prove that CaR has this
important property.

Theorem 4.1. The capital at risk is a strongly quasiconvex function of the portfolio.

Proof. Suppose that Xπ(t) and Xξ(t) are two wealth processes defined by portfolios π, ξ ∈
Rm, π 6= ξ, with the same initial wealth Xπ(0) = Xξ(0) = X0, and suppose that

CaR (π, T ) ≥ CaR (ξ, T ). (4.1)

This implies that

f(π, T ) ≤ f(ξ, T ). (4.2)
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If we define the matrix A(t, b) to be the unique positive definite square root of F (t, b), i.e.

A(t, b) = F (t, b)
1

2 , (4.3)

we can write (4.2) as

π′g(T )− T

2

∥∥σ′π
∥∥2 − |zα| ‖Aπ‖ ≤ ξ′g(T )− T

2

∥∥σ′ξ
∥∥2 − |zα| ‖Aξ‖ ,

which is equivalent to

(ξ − π)′ g(T ) ≥ T

2

(∥∥σ′ξ
∥∥2 −

∥∥σ′π
∥∥2
)
+ |zα| (‖Aξ‖ − ‖Aπ‖) . (4.4)

We now have to prove that, for λ ∈ (0, 1),

CaR (λπ + (1− λ)ξ, T ) < CaR (π, T ), (4.5)

under condition (4.1). Inequality (4.5) is equivalent to

f(λπ + (1− λ)ξ, T ) > f(π, T ), (4.6)

or

(λπ + (1− λ)ξ)′ g(T )− T

2

∥∥σ′(λπ + (1− λ)ξ)
∥∥2 − |zα| ‖A(λπ + (1− λ)ξ)‖ >

π′g(T )− T

2

∥∥σ′π
∥∥2 − |zα| ‖Aπ‖ .

Note that, from Proposition 2.2, it follows that the matrix A(t, b) is positive-definite, and,
since σ is invertible, we have that the function f(π, T ) is strictly concave. This implies that

f(λπ + (1− λ)ξ, T ) > λf(π, T ) + (1− λ)f(ξ, T ), ∀λ ∈ (0, 1),

or, under condition (4.2),
f(λπ + (1− λ)ξ, T ) > f(π, T ).

Since this holds for all λ ∈ (0, 1), (4.6) is true, and the theorem is proved.
This theorem has an immediate, important consequence. Namely, from Theorem 3.5.9

in [3], if a function ψ : U ⊂ Rm → R is strongly quasiconvex, then its local minimum is its
unique global minimum. Therefore, the following corollary is true.

Corollary 4.2. If CaR (π, T ) has a local minimum at π∗ ∈ Q, then π∗ is its global minimum.

4.2. Global minimum CaR . We will now find the global minimum of CaR (π, T ) at the
time horizon T . Note that

argmin
π

CaR (π, T ) = argmax
π

f(π, T ) (4.7)

= argmax
π

π′g(T )− T

2

∥∥π′σ
∥∥2 − |zα|

√
π′Fπ.
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To solve the above problem we prove the following theorem.

Theorem 4.3.1) If g(T )′F−1g(T ) > |zα|2, the optimal solution of problem (4.7) is equal to

π∗ =

(
Tσσ′ +

|zα|
λ∗

F

)−1

g(T ),

where λ∗ is the unique positive solution of the equation

∥∥∥A
(
λTσσ′ + |zα|F

)−1
g(T )

∥∥∥ = 1,

and A is defined in (4.3).

2) If g(T )′F−1g(T ) ≤ |zα|2 the optimal solution of problem (4.7) is π = 0.

Proof. The critical points of f(π, T ) are π = 0, and the point at which the gradient is
zero, i.e. the solution of the equation

g(T )− Tσσ′π − |zα|√
π′Fπ

Fπ = 0. (4.8)

The solution of (4.8) must satisfy

π =

(
Tσσ′ +

|zα|√
π′Fπ

F

)−1

g(T ).

If we define λ :=
√
π′Fπ, we get the following

π′Fπ = λ2 = g(T )′
(
Tσσ′ +

|zα|
λ

F

)−1

F

(
Tσσ′ +

|zα|
λ

F

)−1

g(T )

= λ2g(T )′
(
λTσσ′ + |zα|F

)−1
F
(
λTσσ′ + |zα|F

)−1
g(T ).

This implies that

g(T )′
(
λTσσ′ + |zα|F

)−1
F
(
λTσσ′ + |zα|F

)−1
g(T ) = 1. (4.9)

Using (4.3) we can write (4.9) in the following way

∥∥∥A
(
λTσσ′ + |zα|F

)−1
g(T )

∥∥∥ = 1.

We now define the function

ω(λ) =
∥∥∥A

(
λTσσ′ + |zα|F

)−1
g(T )

∥∥∥
2
, (4.10)

and prove that ω(λ) is strictly decreasing in λ. Note that, since F = AA′,

ω(λ) =

∥∥∥∥
(
λT
(
A′
)−1

σσ′A−1 + |zα| I
)−1 (

A′
)−1

g(T )

∥∥∥∥
2

,
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where I denotes the identity matrix. Since (A′)
−1

σσ′A−1 is symmetric positive definite, it
has an eigenvalue decomposition

(
A′
)−1

σσ′A−1 = P ′DP ,

where the diagonal elements of D are positive and P is an orthonormal matrix. Writing
u = (A′)

−1
g(T ), we find then that

ω(λ) =
∥∥∥
(
λTP ′DP + |zα| I

)−1
u

∥∥∥
2

=
∥∥∥P ′ (λTD + |zα| I)−1

Pu

∥∥∥
2

= u′P ′ (λTD + |zα| I)−1
PP ′ (λTD + |zα| I)−1

Pu

= u′P ′ (λTD + |zα| I)−1 (λTD + |zα| I)−1
Pu

= u′P ′ (λTD + |zα| I)−2
Pu.

For the sake of simplicity we define the vector v = Pu, and the matrix U = (λTD + |zα| I)−1.
Then the above equation can be written as

ω(λ) = v′U2v.

U is a diagonal matrix with entries

Ui (λ) =
1

λTdi + |zα|
,

where di are the diagonal elements of D, and are positive, so that Ui(λ) is a decreasing
function of λ, for λ > 0, and for all i = 1, . . . ,m. Therefore,

ω(λ) =

m∑

i=1

v2i
(λTdi + |zα|)2

,

so that ω(λ) is a decreasing function of λ, for λ > 0. From equation (4.10) we have that

ω(0) =
g(T )′F−1g(T )

|zα|2
.

We now have two cases:
1) Suppose that g(T )′F−1g(T ) > |zα|2. In this case the equation ω(λ) = 1 hasa unique

positive solution λ∗, and the optimum π is given by

π∗ =

(
Tσσ′ +

|zα|
λ∗

F

)−1

g(T ).

2) If g(T )′F−1g(T ) ≤ |zα|2, the equation ω(λ) = 1 has no positive solution, so that the
optimum portfolio is π∗ = 0, another critical point of function f(π, T ).

Remark 4.1.
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(i) When ci = 0, i.e., bi = 0, we find that g(T )′F−1g(T ) = g(T )′ (σσ′)−1
g(T ) =∥∥g(T )′σ−1

∥∥2, where g(T ) is the risk premium vector, and θ (T ) := σ−1g(T ) is the mar-

ket price of risk. Therefore, the condition g(T )′F−1g(T ) > |zα|2 reduces to the condition∥∥g(T )′σ−1
∥∥2 > |zα|2, or ‖θ (T )‖2 > |zα|2. We note that the last condition is the criterion

under which we invest into the risky assets under minimal CaR in the Black-Scholes setting
(see [9], [14]).

(ii) We note that the optimal strategy given in Theorem 4.3 depends on Si(0) through the
vector g(T ), which in turn involves A, defined in (3.2). In our previous studies (see [9], [10],
[11]) or [14], where the optimization was done in the Black-Scholes setting with respect to
CaR or conditional CaR , this was not the case. We believe that the time-inconsistency in the
current setting is due to a combination of the presence of mean-reversion and the restriction
to constant portfolios.

(iii) When m = 1, i.e. the portfolio consists of one risky and one riskless asset, we can
find the exact analytic solution to the problem (4.7), which will be shown in the following
lemma.

Lemma 4.4.In case when m = 1, the optimal solution of problem (4.7) is equal to

π∗ =

{
g(T )−sign(g(T ))‖zα‖σ

√
E(T,2b)

σ2T
, if ‖g (T )‖ > ‖zα‖σ

√
E (T, 2b)

0, if ‖g (T )‖ ≤ |zα|σ
√

E (T, 2b).
(4.11)

Proof. We note that in the one-dimensional case problem (4.7) reduces to the problem

argmax
π

f(π, T ) = πg(T )− T

2
(πσ)2 − |zα| ‖π‖σ

√
E (T, 2b), with (4.12)

g(T ) =

(
1

2
σ2 − r

)
T + E(T, b)

(
a− 1

2
σ2 − bY0

)
.

Clearly, as in the m-dimensional case the critical points of f(π, T ) are π = 0, and the point
at which f ′(π, T ) = 0. From the expression

f ′(π, T ) =

{
g(T )− Tπσ2 − |zα|σ

√
E (T, 2b), if π > 0

g(T )− Tπσ2 + |zα|σ
√

E (T, 2b), if π < 0,

we get the following cases.
a) If g(T ) > |zα| σ

√
E (T, 2b), or if g(T ) < − |zα| σ

√
E (T, 2b), the optimal solution to

problem (4.12) is

π∗ =
g (T )− |zα| σ

√
E (T, 2b)

σ2T
> 0 or π∗ =

g (T ) + |zα| σ
√

E (T, 2b)

σ2T
< 0.

b) If |zα| σ
√

E (T, 2b) ≤ g(T ) ≤ |zα| σ
√

E (T, 2b) the optimal solution to problem (4.12) is
π∗ = 0, so that the proof of the lemma is complete.

Remark 4.2.

(i) The condition g(T )2

σ2E(T,2b)
> |zα|2 corresponds to the condition g(T )′F−1g(T ) > |zα|2

from Theorem 4.3.



OPTIMAL PORTFOLIOS OF MEAN-REVERTING INSTRUMENTS 13

(ii) When the risk premium g(T ) decreases, the optimal strategy changes from investing
into the risky asset (π∗ > 0), to investing everything into the riskless asset, and finally to
short-selling the risky asset.

In § 5 we will illustrate the results of the above theorem.

4.3. CaR-constrained wealth maximization. We now turn our attention to solving the
following optimization problem

max
π∈Rm

E [Xπ(T )] , subject to CaR (π, T ) ≤ C. (4.13)

Problem (4.13) can be rewritten in the following form

max
π∈Rm

X0e
rT eπ

′g(T )− 1

2
π′F̃ (T,b)π, subject to X0e

rT
(
1− ef(π,T )

)
≤ C, (4.14)

where f(π, T ) and F̃ (T, b) are defined in (3.4) and Proposition 3.3. In the following proposi-
tion we will show that the above problem, under appropriate conditions for C, has an optimal
solution.

Proposition 4.5.

(i) If the constant C satisfies the conditions

0 ≤ C < X0R (T ) if g(T )′F−1g(T ) ≤ |zα|2 ,
CaR (π∗, T ) ≤ C < X0R(T ) if g(T )

′F−1g(T ) > |zα|2 ,
(4.15)

where π∗ is given in (4.11), then problem (4.14) has an optimal solution.
(ii) If the matrix F̃ (T, b) is strictly positive definite, the solution is unique.
Proof.
(i) Problem (4.14) is equivalent to the problem

max
π∈Rm

π′g(T )− 1

2
π′F̃ (T, b)π subject to ef(π,T ) ≥ 1− C

X0erT
. (4.16)

Note that, under conditions (4.15), the constraint in (4.13) is well defined. Problem (4.16) is
equivalent to

max
π∈Rm

{−h(π, T )}

subject to f(π, T ) ≥ c,

where

c = ln

(
1− C

X0erT

)
, and h(π, T ) =

1

2
π′F̃ (T, b)π − π′g(T ), (4.17)

or, to the problem
min
π∈Rm

h(π, T )

subject to −f(π, T ) + c ≤ 0.
(4.18)

Problem (4.18) consists of minimizing a continuous function over the set

Q = {π ∈ Rm | CaR (π, T ) ≤ C} .
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We first note that the set Q, under conditions (4.15) is nonempty and compact. Since h(π, T )
is a continuous function over a compact set, it achieves both its absolute minimum and
maximum over the set Q, so that the existence of an optimal solution is proved.

(ii) To prove the uniqueness of the optimal solution under the condition that h(π, T )
is positive definite, we first note that the set Q is convex, since CaR (π, T ) is a strongly
quasiconvex function of h(π, T ) (see Theorem 3.5.2 in [3]). It is easy to show (see Exercise
4.15 in [3]) that the absolute minimum of problem (4.18) is achieved either at the unique
critical point of the function h(π, T ), i.e., the point π∗∗ = F̃ (T, b)−1g(T ), or at the boundary
of the set Q which we denote by ∂Q. We now consider the following two cases.
1) If π∗∗, i.e., the global minimum of h(π, T ), or the global maximum of E [Xπ(T )] belongs
to Q, then it is also its unique constrained minimum, and the proof is complete.
2) If π∗∗ /∈ Q, then the constrained minimum of h(π, T ) belongs to ∂Q. Suppose that
there exist two solutions π1 and π2 that satisfy h(π1, T ) = h(π2, T ) = minπ∈Q h(π, T ), and

π1,π2 ∈ ∂Q. Since Q is convex, we have that π1+π2

2 ∈ Q, and, from the strict convexity of
h(π, T ), that

h(
π1 + π2

2
, T ) <

1

2

(
h(π1, T ) + h(π2, T )

)
= min

π∈Q
hf(π, T ).

This is obviously a contradiction, so that the proof of Proposition 4.5 is thus complete.

However, due to the complexity of the constraint in problem 4.18, we are only able to find
an optimal solution numerically, which will be illustrated in the next section.

5. Numerical results. In this section we illustrate the results of Theorem 4.3 and Propo-
sition 4.5 in a series of numerial experiments. The parameters used in these experiments
were chosen for illustrative purposes only. We have not addressed in this paper the issue of
calibration of model parameters from market data. Obtaining precise values for parameters
such as β or L for the various assets is an important problem, and in practice one must live
with a level of uncertainty in the parameter values. This is an issue we hope to address in
future work.

5.1. Minimal CaR: one-dimensional case. We begin by considering the case where the
portfolio consists of one risky asset in addition to the riskless asset, with their dynamics given
in (2.1), and (2.2) for m = 1.

We first give a series of examples illustrating how the mean-reversion parameter β affects
the optimal portfolio in the case of one risky asset. The results are shown in Figure 5.1. The
basic setting used here has T = 2, S(0) = 5, X0 = 100, r = 0.02, α = 0.05 and L = log 7.
Thus the risky asset is undervalued at the outset, in the sense that it is reverting to a long-run
mean that is higher than its current value. We note that the above data are simulated using
the Euler scheme with daily granularity.

We see how risk, as measured by CaR, depends heavily on the speed of reversion, i.e. β.
When β = 1, the minimal CaR is obtained for π = 0; as β increases beyond 2, the optimal
CaR is obtained for progressively higher values of π (tending to a limit somewhere between
0 and 2 as β → ∞). We also see in Figure 5.1, in the third column, the wealth process
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Figure 5.1. Typical asset paths (left), 2-year CaR (middle) and wealth process for the minimal-CaR strategy
(right) for the one-dimensional asset model with parameters: L = log 7, c = 1, S(0) = 5, σ = 1.0, T = 2, X0 =
100, and for β = 1, 2, 5 and 50.
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Figure 5.2. Typical asset path (left), 2-year CaR (middle) and wealth process for the minimal-CaR strategy
(right) for the one-dimensional asset model with parameters: L = log 7, c = 1, S(0) = 9, σ = 0.3, T = 2, X0 =
100, and β = 10.

corresponding to the minimal-CaR strategy. Note the increased rate of growth in the wealth
as β increases.

This behaviour is dependent on the relation between exp(L) and S(0). As noted in Re-
mark 4.2(ii), negative values of the optimal π can arise when g(T ) is negative. This will occur,
for instance, when eL < S(0)e(r−σ2/2)T and β is sufficiently high, as illustrated in Figure 5.2.

5.2. CaR-constrained optimal wealth: two-dimensional case. In this section we illus-
trate what can happen when we seek to maximize expected wealth subject to constrained
CaR when there are two mean-reverting assets, in addition to the riskless asset. The process
parameters are given by

L 0.5 2.0
β 4.0 0.1

Y (0) 1 1

and the covariance matrix is

σσ′ =

[
0.99 −0.9
−0.9 0.83

]
.

We consider a time horizon of T = 1, and a riskless interest rate of r = 0.02. The resulting
expected wealth surface is shown (on a logarithmic scale) as a function of (π1, π2) in Figure 5.3.
Superimposed on the surface is the boundary of the portion of the surface attainable when the
CaR is greater than 0.1: the corresponding region in (π1, π2)-space is shown at the base of the
figure. What can be observed from Figure 5.3 is the fact that the logarithm of the expected
wealth is neither convex nor concave (see Remark 3.2). The resulting possible nonuniqueness
of the CaR-constrained optimal expected wealth can also be seen: in this setting it is quite
possible that there might be two portfolios satisfying the constraint with identical expected
wealth.

5.3. Minimal CaR: three-dimensional case. We now look at the case where the portfo-
lio consists of three risky assets and the riskless asset, and find the optimal strategies that
minimize CaR .

We recall that the stocks’ returns variance-covariance matrix, which we denote by Γ, is
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Figure 5.3. The logarithm of the expected wealth as a function of (π1, π2), with the boundary of the region
satisfying the constraint CaR ≥ 0.1 shown at the base of the figure and superimposed on the surface.

equal to σσ′. We also recall that Γ can be decomposed as

Γ = νρν, (5.1)

where ρ is the stocks’ returns correlation matrix, and ν is a diagonal matrix with the entries
equal to the stocks’ returns standard deviations. Therefore, from (5.1) we get

Γ = σσ′ = νρν. (5.2)

Although, theoretically, we assume that the vector of independent Brownian motions W (t)
is {Ft}t∈[0,T ] adapted, i.e. known at time t ∈ [0, T ], it is a common practice that we only
observe Γ or, equivalently, ρ and ν, but not σ. From (5.2) we see that this leads to a nonunique
decomposition of Γ into the product σσ′. Despite this fact, the expressions for CaR (π, t)
and E[Xπ(t)] are uniquely determined, since all the terms that involve σ, i.e., ‖π′σ‖2 and
F (t, b), can be expressed as

∥∥π′σ
∥∥2 = π′σσ′π = π′Γπ, and

F (t, b) = σσ′
� E(t, b) = Γ � E(t, b),
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Figure 5.4. CaR as a function of π1, π2 and π3. In this setting CaR ranges from $-85.998 to $104.081.
In each plot, the missing component of π is held constant at its optimal value.

where the matrix E(t, b) has the entries equal to E(t, bi + bj) defined in (2.5), and the symbol
‘�’ stands for the Hadamard product of two matrices.

We now give a brief illustration of the dependence of CaR on the portfolio π in the case
of three risky assets.

We assume that the correlation matrix is

ρ =




1.0 −0.6 0.5
−0.6 1.0 0
0.5 0 1


 .

The final time T = 1, X0 = 100, and the risk-free interest rate r = 0.02; α = 0.05 and the
other coefficients, and the resulting optimal strategy (π1, π2, π3), are given by

π -1.02 -1.65 2.35
L 0.05 0.50 1.50
β 1 2 5

Y (0) 1 1 1
Thus we see that π0 = 1.32. The dependence of CaR on π is illustrated in Figure 5.4,

where we see three cross-sectional contour plots showing CaR as a function of, in turn, (π1, π2)
(keeping π3 at its optimal value), (π2, π3) (keeping π1 at its optimal value) and (π1, π3) (keeping
π2 at its optimal value). The effect of the negative correlation between S1 and S2, for example,
is to distort the CaR function as shown in the first plot, and the zero correlation between S2
and S3 leads to a more symmetrical dependence of CaR on (π2, π3).

6. Conclusion. In this work we investigated portfolio selection in the market consisting of
instruments that follow exponential Ornstein-Uhlenbeck distributions, instruments that follow
log-normal distributions, or the combination of both. We considered the market setting with
constant coefficients, and investigated constant portfolios, over a finite time horizon [0, T ]. We
note that keeping portfolios constant assumes continuous trading over the given time horizon.

Our approach to portfolio optimization was the risk reward approach, with risk measured
by capital at risk, and reward by the expected return of the wealth process. We derived
analytic expressions for the wealth process, its expected value and capital at risk.
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After deriving all necessary expressions we solved the problem of finding the global mini-
mum capital at risk, and proved that it is unique since capital at risk is a strongly quasiconvex
function of the portfolio. This solution is semi-analytic in the sense that there is a scalar which
has to be found numerically, while the solution to a one-dimensional case is purely analytic.
We further developed optimal strategies that maximize the expected wealth under constrained
capital at risk. Finding optimal strategies required solving nonlinear systems of equations so
that the portfolio weights could be only found numerically.

Finally, we provided some numerical examples which illustrate that the presence and
strength of mean-reversion in an asset model have a significant effect on optimal portfolio
management.

There are several possible directions for future research. One important task will be to
find optimal strategies in the case of time-dependent portfolios, or portfolios that depend on
asset prices. Another interesting question is the asymptotic behaviour of optimal portfolios
over large time horizons. In this case, the dependence of the portfolio on the initial asset prices
dimishes as the time horizon increases. Also, as mentioned in § 5, the calibration of model
parameters is an important practical problem. Precise values are impossible to determine, and
so the question arises of portfolio optimization in the context of uncertain model parameters.

One further possible future direction is to investigate the problem of portfolio optimization
where the constraint is conditional capital at risk, and compare the results with the results
obtained in this paper. Finally, another interesting problem would be to extend the results in
this paper to the problem of portfolio selection where the portfolio consists of more general
instruments, such as instruments that are modelled using Lévy processes.
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[12] G. Dmitrašinović-Vidović. Portfolio Selection Under Downside Risk Measures. PhD Thesis. University of
Calgary. 2004.

[13] R. J. Elliot and P. E. Kopp. Mathematics of Financial Markets. Springer-Verlag, New York, 1998.
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Finance and Stochastics, Number 8, 2004.
[16] E. F. Fama and K. R. French. Business Conditions and Expected Returns on Stocks and Bonds. Journal

of Financial Economics. 25, 1989.
[17] D. Filipovic, P. Cheridito and R. L. Kimmel. Market Price of Risk Specifications for Affine Models:

Theory and Evidence, forthcoming in Journal of Financial Economics
[18] D. Filipovic, D. Duffie and W. Schachermayer. Affine Processes and Applications in Finance, The Annals

of Applied Probability 13, 984-1053, 2003.
[19] D. Filipovic. A General Characterization of One Factor Affine Term Structure Models. Finance and

Stochastics 5, 389-412, 2001.
[20] L. A. Gil-Alana. Mean reversion in the real exchange rates. Economics Letters. Volume 69, Issue 3,

December 2000,
[21] J. C. Hull. Options, Futures, & Other Derivatives. Prentice Hall, Upper Saddle River, 1999.
[22] I. Karatzas and S. E. Shreve. Methods of Mathematical Finance. Springer-Verlag, New York, 1999.
[23] R Korn, and E Korn, Option Pricing and Portfolio Optimization. Graduate Studies in Mathematics. V

31. AMS. Providence. 2000.
[24] R. Korn. Optimal Portfolios. World Scientific, Singapore, 1997
[25] A. Lari-Lavassani, A. A. Sadeghi and Tony Ware. Modeling and Implementing Mean Reverting Price

Processes in Energy Markets. Electronic Publications of the International Energy Credit Association
(www.ieca.net). 30 pages. 2001.

[26] D. Pilipovic. Energy Risk. McGraw-Hill Professional. 2007.
[27] R. T. Rockafellar. Convex Analysis. Princeton University Press. Princeton, 1970.
[28] E.S. Schwartz. The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging.

Journal of Finance. 52:3, 1997.
[29] J. A. Wachter. Portfolio and Consumption Decisions under Mean-Reverting Returns: An Exact Solution

for complete Markets. The Journal of Financial and Quantitative Analysis Volume 37, No1, 2002.

View publication statsView publication stats

https://www.researchgate.net/publication/220137743

