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Abstract

Pair trading is one of the most discussed topics among financial researches.
Despite a growing base of work, portfolio management for multivariate time
series is rarely discussed. On the other hand, most researches focus on re-
fining strategy rules instead of finding the optimal portfolio weight. In this
paper, we brought up a simple yet profitable strategy called Volatility &
Model Adaption Trade-off (VMAT) to leverage the issues. Experiment stud-
ies show its superior profit performance over baselines.

Keywords: multivariate pair trading, optimal portfolio weight

1. Introduction

Trading across equities is a long lasting research hotspot over time. The
classical approach of using a simple two step method to determine the re-
lationship between two time series (Gatev et al., 2006) has been well estab-
lished both theoretically and empirically (Do and Faff, 2010). Later, more
refined correlation methods have been introduced (Perlin, 2007; Chen et al.,
2019). Beside the simple algorithmic approaches, methods that assess the
comovement between pairs by cointegration testing have come into spotlight
(Vidyamurthy, 2004). For multivariate time series, generalized cointegration
approaches have been introduced (Galenko et al., 2007; Dunis and Ho, 2016).
In the domain of utilizing time series forecasting techniques, there is also the
classical method that model the simple spread between the pairs of equities
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(Elliott et al., 2005) as well as more complex framework based on modern
machine learning methods (Huck, 2010).

Despite the growing base of work, there is only a relatively small amount
of strategies designed for multivariate scenarios. On the other hand, while
most methods concentrate on refining the strategy rules (i.e. when to par-
ticipate and when to bail out), they put less discussion in determining the
portfolio weight allocation. However, optimizing the portfolio weight is cru-
cial for profiting.

To leverage the issues, we introduce our strategy framework called Volatil-
ity & Model Adaption Trade-off (VMAT) in this paper. The framework first
finds optimal portfolio weight for multivariate time series by solving a trade-
off between AR model predictability and volatility of the portfolio process.
Then, it determines participation by controlling the profiting probability
in the trading period. Experiment studies show that VMAT has superior
profit performance over the baselines including the traditional cointegration
method especially when the length of trading period is limited.

The paper is organized as the following: in section 2, we unify the problem
formulation for the pair trading research, and then develop our framework by
generalizing traditional baselines; in section 3, we study multiple empirical
issues of VMAT based on real data experiments; in section 4, we summarize
VMAT’s advantages and further consideration.

2. Method

2.1. Problem Formulation

Formulate equities as a multivariate time series Xt ∈ Rp
+. A trading

strategy of a limited trading period d at time t is characterized by three
elements:

• Portfolio weight vector wt ∈ [−1, 1]p.

• Signal of participation δt ∈ {−1, 0, 1}.

• Time to bail lt ∈ N+.

The strategy aims to maximize the log return of the portfolio.

maximizewt,δt,lt EXt+lt
|X(−∞):(t−1)

{δtwTt (log(Xt+lt)− log(Xt))}
s.t. |wt|1 = 1 (1)
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For the simplicity of discussion, we employ a greedy approach for time to
bail function lt:

l̃t = min{k ∈ N+ : Xt+k > Xt} (2)

It means that the strategy finishes the arbitrage as long as profit emerges.
For the rest of the discussion in this paper, we focus on developing wt, δt.

2.2. What’s Beyond Baselines?

Classical statistical arbitrage methods aim to form a long term equilib-
rium relationship between multivariate series (Galenko et al., 2007). The
strategy tends to find abnormal portfolio value and then perform the arbi-
trage over a future time point where the value will revert to the equilibrium
(a.k.a mean reverting). The strategy is formally called cointegration ap-
proach (Krauss, 2015).

Empirically, the strategy first finds a weight vector wt such that yt =
wTt logXt is stationary. Then the strategy selects a δt such that the profiting
probability will be controlled in the following trading period. Due to the
stationarity of the process, the probability of profiting in the trading period
can be approximated by the profiting probability on the stationary distribu-
tion when d → ∞. Additionally, by assuming the stationary distribution is
asymptotically normal and we can approximate the joint profiting probabil-
ity by the product of the single variate profiting probability, we can derive a
δt that control the profiting probability over level α:

δα,t =


1 yt < σLongα,t

0 else

−1 yt > σShortα,t

where σShortα,t = N
(1−α)

1
d /2
{E(y∗t ), V ar(y

∗
t )}

σLongα,t = −σShortα,t (3)

In practice, the mean and variance of asymptotic normal distribution is
then estimated by the limited sample of formation period.

The method heavily relies on the assumption of the trading period d
approaches infinity, which is not the case in real life due to the customer
demand or the risk of low liquidity. When d is limited, the exact profiting
probability can not be approximated.
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A naturally question will be followed: what if we can employ time series
techniques to model the stationary univariate time series, so that we can know
better of the exact profiting probability? It’s easy to see the plausibility. For
example, if we assume the stationary univariate time series truly follows
an AR process. Additionally, we can consistently estimate the coefficients
of the correct AR structure. Then, by employing this additional modeling
knowledge, we can formulate the exact profiting probability by comparing to
the forecast intervals of AR model.

One step further, if we have a strong forecasting model that not only
can fit stationary univariate time series, but also a larger class of series,
do we still have to form a stationary process from the multivariate series?
This question leads us to probe into the essence of profitability of statistical
arbitrage strategies.

In our understanding, the profitability of statistical arbitrage strategies
can be separated into two parts: predictability and volatility. While the
volatility describes the scale of potential profit, the predictability represents
the likelihood of profiting.

The traditional cointegration approach focus on raising predictability of
the portfolio series by deriving stationarity, but ignored profitability conveyed
through the volatility of the series, thus traditional cointegration approach
is sub-optimal.

On the other hand, one can raise the volatility of a formed series to
obtain larger scale of profiting margin, but the series may become highly
unpredictable. Therefore, increasing in the overall profit will not be ensured.

In the next section, we will introduce a framework called Volatility &
Model Adaption Trade-off (VMAT) to entackle the above issue. The VMAT
framework employs AR model for univariate time series and adopts the con-
cept of profiting probability control from the traditional cointegration ap-
proach. It extends the profitability from predictability only to an optimal
trade-off between volatility and predictability.

2.3. VMAT: Volatility & Model Adaption Trade-off

At each trading time t, VMAT finds wt to optimize the trade-off between
predictability and volatility.

maximizewt Predictability(wTt logXt) + λ ∗Volatility(wTt logXt)

s.t. |wt|1 = 1
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Note that λ is a tuning parameter that controls the relative importance
between volatility and predictability. While the volatility of an univariate
time series is easy to estimate, it’s hard to measure the predictability of the
series on a given model framework. For simplicity of optimization, we utilize
a simple AR model and measure the predictability by its squared error loss.

Then we rewrite the optimization as the following and solve wt indepen-
dently at each trading time t:

maximizewt,βt −
t∑

t′=t−L

(wTt logXt′ − wTt [logX(t′−p):(t′−1)]βt)
2

+ λ
t∑

t′=t−L

(wTt logXt′ − wTt logX)2

s.t. |wt|2 = 1 (4)

In the above optimization, we take the last L + 1 data in the history
of time t to train wt, βt where βt is the coefficient vector for AR(p) model;
[logX(t′−p):(t′−1)] is the k × p design matrix for AR(p) model where k is the
dimension for multivariate series; L as a parameter is the length of the for-
mation period; logX is the sample mean of logXt′ over the formation period.
Also note that the constraint is changed from L1 to L2 for easiness of the
optimization.

The optimization conveys the idea of trade-off through the parameter
λ. When λ approaches infinity, the optimal wt becomes the weight vector
wMaxV ar
t that tries to maximize univariate series volatility. When λ = 1, the

objective becomes the likelihood ratio statistic of the AR(p) model over a
null model (i.e. sample mean). Therefore, the tuned λ should be between 1
and infinity.

For solving the optimization, we can see that the partial optimal estimator
β̂t(wt) is simply the OLS estimator for AR(p) model on the univariate time
series {wtlogXt′}. For the partial optimal estimator for ŵt(βt), we are solving
a quadratic programming problem where wt is constrained on a unit sphere.

maximizewt wTt K(βt)wt

s.t. |wt|2 = 1 (5)
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K(βt) is a k×k matrix defined by βt and the data {X ′t} from the optimiza-
tion. Solving the above quadratic programming problem yield the partial
optimal estimator ŵt(βt) which is the eigenvector for K(βt) that correspond
to the largest eigenvalue.

After defining the partial optimal estimators β̂t(wt), ŵt(βt), we use the
following n-step coordinate descent algorithm to estimate the global optimal
w̃t:

Algorithm 1: VMAT(AR) n-step coordinate descent

Result: Portfolio weight w̃t
wt = wCoint

t or wMaxV ar
t ;

βt = β̂t(wt) = β̂OLSt ;
step = 0;
while step < 1 do

wt = ŵt(βt) = ŵQPt ;

βt = β̂t(wt) = β̂OLSt ;
step+ = 1 ;

end
w̃t = wt

|wt|1 ;

wCoint
t , wMaxV ar

t denote the wt initiated by the cointegration vector or the
vector that tries to maximize univariate series volatility. In practice, we
usually only allow 1 iteration of the algorithm due to the fast convergence
speed.

After we have determined the optimal wt, we can develop δt by the same
concept in the cointegration framework : cover the profiting probability.
Recall that we define yt = wTt logXt.

δα,t =


1 yt < σLongα,t

0 else

−1 yt > σShortα,t

where
d∏
i=1

Φ(
σLongα,t − ŷt+i
Err(ŷt+i)

) = 1− α

d∏
i=1

Φ(
σShortα,t − ŷt+i
Err(ŷt+i)

) = α
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ŷt+i denotes the i-step ahead forecast from yt by the fitted AR(p) model;
Err(ŷt+i) denotes the forecast error of ŷt+l. Φ is the CDF function of the
standard normal distribution.

As we mentioned in the last section, we use greedy approach for the
bailing time l̃t.

2.4. Select optimal λ

We develop two methods for the λ selection: one is by the cross validation
and the other is by the backward selection with goodness-of-fit tests.

For CV selection, we evaluate the VMAT strategy performance over sev-
eral trading time before the current time with different choices of λ. Then
we select the optimal λ that has the highest averaged profit.

For the backward selection (later we name it VMAT Tame), we start the
VMAT optimization with a large λ. We decrease the λ until the residual of
the AR(p) model doesn’t reject the null hypothesis of the Ljung-Box tests.

The computational complexity of both methods are linear to the size of
the search space in the worst case scenario. However, in practice, the second
method is usually faster. Furthermore, it’s easier to specify the search space
of λ in the second method.

3. Experiment

In this section, we experiment our methods on two data sets and discuss
multiple issues on them.

3.1. Dataset

We collect two data set for model evaluation:

• Data 1: 5 years daily adjusted close price for Coca-Cola Co (KO) and
PepsiCo Inc (PEP) from April 8th 2016 to April 9th 2021. The data is
therefore a (252 ∗ 5)× 2 matrix.

• Data 2: 5 years daily adjusted close price for Apple Inc (AAPL), Ama-
zon.com, Inc. (AMZN), Facebook, Inc. Common Stock (FB), Alphabet
Inc Class C (GOOG), Netflix Inc (NFLX), Tesla Inc (TSLA), SPDR
S&P 500 ETF Trust (SPY) from April 8th 2016 to April 9th 2021. The
data is therefore a (252 ∗ 5)× 7 matrix.
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For either of the two dataset, we create three different data scenarios
by specifying d = 3, 7, 14, which represent strategies are allowed in short
trading period, medium trading period and long trading period respectively.
Intuitively, the shorter of the trading period is, the harder of profiting will
be.

3.2. Arbitrage Performance

In this subsection, we study the arbitrage performance of different meth-
ods across different data scenarios.

• Cointegration approach. It controls profiting probability based on the
stationary distribution.

• Cointegration AR. It controls profiting probability based on fitting the
AR model on the stationary process.

• MaxVar AR. It controls profiting probability by forming a maximized
volatility univariate series, and fitting the AR model on it.

• VMAT. Our method with λ = 1.

• VMAT CV. Our method with λ selected by cross validation.

• VMAT Tame. Our method with λ selected by backward goodness-of-fit
testing.

For all the methods above, we fix their parameters p = 10, L = 60, α =
0.999. The parameter values might not be the optimal in terms of empirical
profiting performance. In later section, we also show that it’s necessary for
advanced fine tuning in order to achieve optimal profit. But for the simplicity
of model comparison, we fixed them the same across different data scenarios.

The strategy of each method will be executed independently on each time
point over the evaluation period. In the end, we collect profit and loss on
each time point and compute the following performance metrics:

• PL average. Sample mean and standard error will be reported.

• Signal rate. The rate of strategy participation (i.e. position not equals
to zero).
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• Control rate. The rate of strategy finishes arbitrage before reach the
time limit d.

• Profit rate. The ratio of profiting days over all days. Non-participation
days will count as non-profit days.

• Max draw. The maximum drawback (a.k.a the largest loss).

The results of scenarios ”data 1, d = 7” and ”data 2, d = 7” are shown
below. The rest of tables are in Appendix A.

Table 1: Data 1, d = 7. All values here are presented in percentage (i.e. x%). ’SR’ denotes
the signal ratio. ’CR’ denotes the control ratio. ’PR’ denotes the profit ratio. ’maxDraw’
denotes maximum drawback.

PL mean (se) SR CR PR maxDraw
Coint 0.04549 (0.02745) 77.8 76.4 61.1 -5.3

Coint AR 0.4785 (0.01801) 87.0 98.9 86.0 -2.6
MaxVar AR 0.7366 (0.03172) 86.1 98.8 85.3 -7.9

VMAT 0.7597 (0.03278) 85.2 98.7 84.4 -7.1
VMAT CV 0.7619 (0.03288) 85.0 98.7 84.2 -7.1

VMAT Tame 0.7687 (0.03281) 85.6 98.7 84.8 -7.1

Table 2: Data 2, d = 7. Values in %.

PL mean (se) SR CR PR maxDraw
Coint 0.01194 (0.03170) 87.9 75.6 68.4 -12.

Coint AR 0.4090 (0.01620) 88.7 99.3 88.2 -0.6
MaxVar AR 0.7779 (0.03314) 86.8 99.2 86.2 -4.7

VMAT 1.02 (0.04712) 87.9 98.8 87.0 -5.1
VMAT CV 1.07 (0.04888) 88.0 98.8 87.2 -5.2

VMAT Tame 1.06 (0.04819) 88.1 98.8 87.2 -5.2

From the tables we can observe that in all data scenarios, VMAT with
optimized λ achieves the highest overall profit; On the other hand, VMAT ex-
hibit higher profit when the dimension of multivariate series increases. This
is an interesting phenomenon since traditional strategy usually fails at high
dimension situation; Beside the profit, VMAT also achieves comparable sig-
nal ratio, control ratio and profiting ratio to the baseline methods. However,
VMAT as a profiting strategy usually has higher max drawback comparing
to the traditional cointegration approaches.
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3.3. Profit as a long-term strategy

We plot the cumulative profit of VMAT over 5 years when d = 7. As it
shows in Appendix B Figure B.1, VMAT gains profit at most time points
regardless of the fluctuation of the spread, especially when no systematic risks
occurs; When systematic risks occurs, VMAT has the capability of turning
it into profit. This can be observed by the surged profit around Jan 2020
when the recession in the stock market emerged.

3.4. Sensitivity to parameters

We test VMAT’s performance over different values of the parameters.
The experiments are performed on both data sets with fixed d = 3. The
results are shown in Appendix C Figure C.2.

First of all, we test the impact of λ on the list [1,3,5,7,10,13,20,30]. To
our surprise, VMAT is resilient to different λ. For data 1, the profit is
mostly unchanged; For data 2, no statistical difference in profit is found
across different λ.

Then, we test the impact of different α on the list [0.4, 0.65, 0.8, 0.9, 0.95,
0.99]. The profit doesn’t change much until alpha reaches a very large value.

We move on to test different p with a list [5,7,10,13,17,21,25,30]. The lag
order p is influential to the profit as its presenting a upside down U-shape
curve. Fine tuning is needed for p in order to optimize the strategy profit.

At last, we test different L in [30, 40, 50, 60, 70 ,80]. The pattern of
profit over different L seems different between the two data set: for data
2, the curve has U-shape while for data 1 it’s the opposite. Since L is also
influential to the profit, fine tuning is needed in order to optimize the strategy
profit.

3.5. Computation

We study the behavior of the coordinate descent algorithm. We build
VMAT strategy on the last possible trading time of two data sets with d =
3, L = 60, p = 10, λ = 1. w1 as the first element of w is presented along
iterations of the algorithm.

As shown from Appendix D Figure D.3 D.4, the algorithm is robust in
initial method and converges by only one step.
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4. Conclusion

In this paper, we introduce an innovative statistical arbitrage framework
for multivariate time series. It finds optimal portfolio weight by solving
volatility & model adaption trade-off, and determine participation by con-
trolling the profiting probability in the trading period. Experiments have
shown that VMAT has superior profit performance over the baselines in-
cluding the traditional cointegration method especially when the length of
trading period is limited.
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Appendix A. Arbitrage performance

Table A.3: Data 1, d = 3.

PL mean (se) SR CR PR maxDraw
Coint 0.004720 (0.01656) 33.5 49.6 20.3 -3.5

Coint AR 0.08762 (0.01404) 13.8 72.8 10.9 -3.3
MaxVar AR 0.1243 (0.02669) 12.0 74.3 9.85 -10.

VMAT 0.1254 (0.02663) 11.8 76.7 9.85 -10.
VMAT CV 0.1276 (0.02692) 12.4 76.5 10.2 -10.

VMAT Tame 0.1297 (0.02698) 12.3 77.0 10.2 -10.

Table A.4: Data 1, d = 14. Values in %.

PL mean (se) SR CR PR maxDraw
Coint 0.08717 (0.03473) 100. 84.6 85.0 -7.6

Coint AR 0.5345 (0.01856) 100. 99.8 99.8 -2.2
MaxVar AR 0.7709 (0.03682) 100. 99.8 99.8 -18.

VMAT 0.8031 (0.03687) 100. 99.8 99.8 -18.
VMAT CV 0.8073 (0.03691) 100. 99.8 99.8 -18.

VMAT Tame 0.8128 (0.03692) 100. 99.8 99.8 -18.

Table A.5: Data 2, d = 3. Values in %.

PL mean (se) SR CR PR maxDraw
Coint 0.02599 (0.01930) 50.0 50.4 32.3 -9.1

Coint AR 0.06782 (0.01113) 13.9 77.2 11.6 -2.0
MaxVar AR 0.1529 (0.02430) 14.0 86.3 12.6 -8.4

VMAT 0.2063 (0.03691) 13.4 80.1 11.7 -10.
VMAT CV 0.2276 (0.03858) 13.5 80.8 11.7 -10.

VMAT Tame 0.2003 (0.03754) 13.5 79.6 11.9 -10.

Appendix B. Long term performance

Appendix C. Sensitivity to parameters

Appendix D. Computation
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Table A.6: Data 2, d = 14. Values in %.

PL mean (se) SR CR PR maxDraw
Coint 0.0 (0.04056) 100. 82.5 83.0 -10.

Coint AR 0.4341 (0.01661) 100. 99.9 99.9 -0.9
MaxVar AR 0.8281 (0.03119) 100. 99.8 99.8 -3.4
VMAT AR 1.09 (0.04444) 100. 99.9 99.9 -3.0
VMAT CV 1.17 (0.04626) 100. 100. 100. 0

VMAT Tame 1.13 (0.04640) 100. 99.9 99.9 -2.6

Figure B.1: VMAT long term profit over 5 years. The values on y-axis is in normal scale.
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Figure C.2: Profit against different parameters. The 95% confidence interval is also pre-
sented.
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Figure D.3: Convergence on data 1. 10 steps are evaluated. Algorithms with different
initializing method are compared.

Figure D.4: Convergence on data 2. 10 steps are evaluated. Algorithms with different
initializing method are compared.
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