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Preface

This book is written for graduate students and researchers, who are interested in
using copula-based models for multivariate data structures. It provides a
step-by-step introduction to the class of vine copulas and their statistical inference.
This class of flexible copula models has become very popular in the past years for
many applications in diverse fields such as finance, insurance, hydrology, mar-
keting, engineering, chemistry, aviation, climatology, and health.

The popularity of vines copulas is due to the fact, that it allows in addition to the
separation of margins and dependence by the copula approach, tail asymmetries,
and separate multivariate component modeling. This is accommodated by con-
structing multivariate copulas using only bivariate building blocks, which can be
selected independently. These building blocks are glued together to valid multi-
variate copulas by appropriate conditioning. Thus, also the term pair copula con-
struction was coined by Aas et al. (2009). This approach allows for flexible and
tractable dependence models in dimensions of several hundred, thus providing a
long-desired extension of the elliptical and Archimedean copula classes. It forms
the basis of new approaches in risk, reliability, spatial analysis, simulation, survival
analysis, and data mining to name a few.

Books for the experts already exist. The book by Kurowicka and Cooke (2006)
was the first book with vines in the context of belief nets, while Kurowicka and Joe
(2011) edited a book entirely devoted to vines. The recent book by Joe (2014)
provides a current summary focused mostly on theory and gives many references.
However there is no book, which provides the basis for applications of the vine
approach. This book will fill this gap. It is geared toward students and researcher
novel to this area and is focused on statistical estimation and selection methods of
vine copulas for data applications. It provides in addition to the necessary back-
ground in multivariate statistics and copula theory exploratory data tools and
illustrates the concepts using real data examples. Computations are facilitated using
the freely available package VineCopula of Schepsmeier et al. (2018) package in
R (see R Core Team 2017). It also includes numerous exercises and thus can be
used as a book for a course in the statistical analysis of vine copulas.

The book starts with a background chapter on multivariate and conditional
distributions and copulas. Basic bivariate dependence measures are introduced in
Chap. 2. Chapter 3 is devoted to the bivariate building blocks of vine copulas. It
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includes the parametric classes of elliptical, Archimedean, and extreme value
copulas. Their parameter estimation and graphical tools for the identification of
sensible bivariate copula models to data are developed. Bivariate conditional
copulas are also introduced since the vine copula approach requires the specifica-
tion of such copulas. In Chap. 4 the decomposition and construction principle of
vines is first given in three dimensions and then extended to the special cases of
drawable (D-) and canonical (C-) vines. The general case of regular (R-) vines is
developed and discussed in Chap. 5. A vine copula has a building plan, which is
specified by the vine tree sequence and requires a bivariate copula family and their
parameters for each building block. Simulation algorithms are constructed in Chap. 6.
Parameter estimation of a specified vine copula including the sequential estimation
approach is the topic of Chap. 7. Chapter 8 concentrates on the problem of selecting
the bivariate copula family and the selection of the vine tree structure. Classical
comparison methods such as Akaike and Schwarz information criteria and the like-
lihood ratio test proposed by Vuong (1989) are adapted and illustrated in Chap. 9.
A case study characterizing the dependence among German assets contained in the
DAX index is given in Chap. 10. The final chapter is devoted to recent extensions of
vines including advances in estimation, model selection, for special data structures
and reviews major applications in finance, life and earth sciences, insurance, and
engineering. It closes with an overview of the available software to select, estimate,
and visualize vine-based models. The R code of all figures and tables can be found at
http://www.statistics.ma.tum.de/personen/claudia-czado/r-code-to-analyzing-dependent-
data-with-vinecopulas.

This book would not have been written without the help of many colleagues and
students. First, I would like to thank A. Frigessi and K. Aas who exposed me to the
wonderful wide world of vines. A special thank you also to H. Joe, R. Cooke, and
D. Kurowicka, who helped me in countless conversions to build a deep under-
standing of this flexible copula class. Most important are, however, the willingness
to accompany me and to contribute to this research journey my former and current
Ph.D. students E. C. Brechmann, J. Stöber, U. Schepsmeier, D. Schmidl, A. Bauer,
L. Gruber, T. Erhardt, D. Kraus, M. Killiches, D. Müller, L. Höhndorf, T. Nagler,
N. Barthel, A. Kreuzer and my postdoctoral students A. Min, A. Panagiotelis and
C. Almeida. Vine-based data modeling would have never been so successful without
the availability of software. In this area, I have to thank J. Dißmann, U. Schep-
smeier, J. Stöber, E. C. Brechmann, B. Gräler, T. Nagler, T. Erhardt, T. Vatter and
H. Joe for their computational contributions to the package VineCopula.

Garching, Germany Claudia Czado
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1MultivariateDistributions
andCopulas

1.1 Univariate Distributions

Before we describe multivariate distribution, we review some notation and char-
acteristics of univariate distributions. In general, we use capital letters for random
variables and small letters for observed values, i.e., we write X = x . Here, we only
consider absolutely continuous or discrete distributions, and therefore correspond-
ing (conditional) densities or probability mass functions exist. In both cases, we
use the letter f for densities or probability mass functions and the letter F for the
corresponding distribution function.

In the first course on statistics, standard parametric distributions for univariate
continuous variables are introduced (see, for example, Johnson et al. 1995). These
include the uniform, exponential, and gamma distribution in addition to the normal
and Student’s t distribution. The book by Klugman et al. (2012) contains more
flexible distribution classes for positive random variables used for loss data. Skewed
versions of the normal and Student’s t distribution are introduced and discussed in
Azzalini and Capitanio (2014). Due to their importance and use in statistics, we only
introduce the univariate normal and Student’s t distribution and leave the reader to
consult the above references for other univariate distributions.

Ex 1.1 (Univariate Normal and Student’s t-distribution) The density of a uni-
variate normal distribution with mean μ ∈ R and variance σ2 > 0 is given
by

f (x; μ,σ2) = 1√
2πσ2

exp

{
− 1

σ2 (x − μ)2
}
. (1.1)

We denote a random variable X with a normal distribution with mean μ and
variance σ2 by X ∼ N (μ, σ2). For the standard normal distribution N (0, 1), the
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Fig. 1.1 Univariate densities: normal and Student’s t distribution with ν = 3

density and distribution function are abbreviated as φ(·) and �(·), respectively.
In the case of the univariate Student’s t distribution with mean μ ∈ R, scale
parameter σ2 > and degree of freedom parameter ν > 0 the density is given by

fν(x; μ,σ2) := �
(

ν+1
2

)
�

(
ν
2

) √
(πν)σ

{
1 +

(
x − μ

σ

)2 1

ν

}− ν+1
2

. (1.2)

We denote a random variable X with Student’s t distribution by X ∼ tν(μ, σ2).
For ν > 2, the mean and variance are given by

E(X) = μ and Var(X) = ν

ν − 2
σ2.

The density of a Student’s t distribution with mean μ = 0 and scale parameter
σ2 = 1 is abbreviated by tν and is called univariate standard t distribution. The
corresponding distribution function is denoted by Tν . In Fig. 1.1, we illustrate
the well-known shape of these univariate distributions.We see that the Student’s
t distribution has heavier tails than the corresponding normal distribution. Since
in financial data often heavy tails are observed, the Student’s t distribution is
often used as error distribution.

In general, the parameters of the distribution of a random variable X are unknown
and have to be estimated. Often estimation is based on a sample x1, ..., xn of inde-
pendent identically distributed (i.i.d) observations from X . If we use a parametric
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model for X with parameter vector θ, i.e., we assume X ∼ f (·; θ), the parameter
vector θ ∈ � is commonly estimated by maximum likelihood, i.e.,

θ̂ := argmax
θ∈�

n∏
i=1

f (xi ;θ). (1.3)

Here, � denotes the corresponding parameter space for θ and the function to be
maximized in (1.3) is called the likelihood function.

The associated distribution function F(·; θ) is then estimated by F(·; θ̂). If one
does notwant tomake the assumption of a parametric statisticalmodel, the univariate
empirical distribution is often utilized.

Definition 1.1 (Empirical distribution function) Let x1, . . . , xn be an i.i.d.
sample from a distribution function F , then the empirical distribution function
is defined as

F̂(x) := 1

n + 1

n∑
i=1

1{xi≤x} for all x .

Division by n + 1 instead of n is used to avoid boundary problems of the
estimator F̂(x).

Remark 1.2 (Ranks and empirical distributions) Let Ri be the rank of observation xi ,
i.e., Ri = k if the observation xi is the kth largest observation among the observations
x1, ..., xn . In this case, it follows that F̂(xi ) = Ri

n+1 for i = 1, . . . , n.

To characterize the dependence between several random variables, we need to
standardize random variables. For this, we use the probability integral transform.

Definition 1.3 (Probability integral transform) If X ∼ F is a continuous
random variable and x is an observed value of X , then the transformation
u := F(x) is called the probability integral transform (PIT) at x .

Remark 1.4 (Distribution of the probability integral transform) If X ∼ F then
U := F(X) is uniformly distributed, since

P(U ≤ u) = P(F(X) ≤ u) = P(X ≤ F−1(u)) = F(F−1(u)) = u
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holds for every u ∈ [0, 1]. If F is estimated by F(·; θ̂) or by the empirical distribution
F̂ , then this holds only approximately.

Ex 1.2 (Parametric and nonparametric PIT histograms of normal samples)
To illustrate the probability integral transformation, we generate a sample of
sizes 100 and 500 of a standard normal random variable and consider the asso-
ciated PIT samples in Fig. 1.2. We see from the last row of Fig. 1.2 that for a
small sample size the parametric PIT histogram can be quite different than the
one expected from of a uniform distribution (uniformly flat). This changes if a
larger sample size is used. A sample size of 100 is enough when the empirical
distribution function is used as seen from the middle row of Fig. 1.2.

1.2 Multivariate Distributions

Multivariate distributions describe the random behavior of several random variables.
In this case,we can distinguish betweenmarginal, joint, and conditional distributions
arising from the multivariate distribution. Generally, we denote random vectors in
d dimensions in bold letters and subsets of random vectors by XD for the subset D
of {1, ..., d}. Marginal distribution functions and densities have a subscript j , while
conditional distributions of X j given Xk are indicated by subscripts j |k.

Definition 1.5 (Marginal, joint, and conditional distributions) For d variate
random vector X = (X1, ..., Xd)

�, we use the following notation:

density function distribution function
marginal f j (x j ), j = 1, ..., d Fj (x j ), j = 1, ..., d
joint f (x1, ..., xd) F(x1, ..., xd)
conditional f j |k(x j |xk), j �= k Fj |k(x j |xk), j �= k

The class of elliptical distributions is a well-known class of multivariate distribu-
tions. For a general introduction and extensions see, for example, Genton (2004).

Definition 1.6 (Elliptical distribution) The d-dimensional random vector X
has an elliptical distribution if and only if the density function f (x) possesses
the representation

f (x;μ, �) = kd |�|− 1
2 g((x − μ)��−1(x − μ)),
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Fig.1.2 Histograms: (top row) of a standard normal random sample of size 100 (left) and 500
(right) and their associated PIT values using the empirical distribution function (middle row) and
the standard normal distribution function (bottom row)

for some constant kd ∈ R only dependent on the dimension d, a mean vector
μ ∈ R

d , a � ∈ R
d×d symmetric positive definite matrix, and some function

g : R+
0 → R

+
0 , which is independent of the dimension d.

Themultivariate normal and themultivariate Student’s t-distribution aremembers
of this class.
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Ex 1.3 (Multivariate normal distribution) The multivariate normal distribution
(see, for example, Anderson et al. 1958) arises if

g(t) := exp{−t/2} and kd = (2π)−d/2

is chosen. In this case, we say that the random vector X := (X1, ..., Xd)
� is

multivariate normally distributed with mean vector μ := (μ1, ...,μd)
� ∈ R

d

and positive definite covariance matrix � = (σi j )i, j=1,...,d ∈ R
d×d and we

write

X ∼ Nd(μ, �).

In particular, E(Xi ) = μi and Cov(Xi , X j ) = σi j for all i, j = 1, ..., d,
where σi j is the (i, j)th element of the matrix �. Furthermore, the marginal
distributions satisfy

Xi ∼ N (μi ,σi i ) ∀i = 1, ..., d,

where one often writes σ2
i := σi i instead.

The density of the multivariate normal distribution is given as

fN (x;μ, �) = 1

(2π)d/2 |�|−1/2 exp

{
−1

2
(x − μ)��−1(x − μ)

}
,

where |A| denotes the determinant of the matrix A. The distribution function of
a multivariate normal distribution with zero mean vector and correlation matrix
R, i.e., Nd(0, R), we denote by �d(· · · ; R).

We illustrate the bivariate standard normal density and its contour lines (solid
lines) with zero means, unit variances, and a correlation ρ in the two most left
panels of Fig. 1.3.

Ex 1.4 (Conditional distributions of multivariate normal distributions) Of par-
ticular interest are conditional distributions of sub-vectors of a multivariate
normally distributed random vector X . Here, we assume a nondegenerate dis-
tribution, i.e., the covariance matrix � is positive definite. Let X = (X1, X2) ∈
R
d1+d2 , μ = (μ�

1 ,μ�
2 )� ∈ R

d1+d2 for d1 + d2 = d and partition

� =
(

�11 �12

��
12 �22

)
, (1.4)
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Fig. 1.3 Bivariate densities and contour lines: left: bivariate normal with zero
means, unit variances and ρ = .8, middle: contour lines for bivariate normal with ρ = .8 (solid
lines) and bivariate standard Student’s t with ν = 3, ρ = .8 (dotted lines) and right: bivariate
standard Student’s t with ν = 8, ρ = .8

where �11 ∈ R
d1×d1 , �22 ∈ R

d2×d2 and �12 ∈ R
d1×d2 . Then, the conditional

distribution of X2 given X1 = x1 is

X2|X1 = x1 ∼ Nd(μ2|1, �2|1), (1.5)

where the conditional mean vector is determined by

μ2|1 := μ2 + ��
12�

−1
11 (x1 − μ1),

and the conditional covariance matrix by

�2|1 := �22 − ��
12�

−1
11 �12.

For a proof see Anderson et al. (1958).

Ex 1.5 (Multivariate Student’s t distribution) Following Kotz and Nadarajah
(2004), the random vector X = (X1, ..., Xd)

� has multivariate (or d-variate)
Student’s t distribution with ν > 0 degrees of freedom (df), mean vector μ ∈
R
d , and scale parameter matrix � (a d x d symmetric and positive definite

matrix with elements ρi j ), denoted by td(ν, μ, �), if its density is given by

ft (x; ν;μ;�) = �( ν+d
2 )

�( ν
2 )(νπ)

d
2

|�|− 1
2

{
1 + 1

ν
(x − μ)��−1(x − μ)

}− ν+d
2

.

(1.6)
The matrix� in (1.6) is the correlation matrix of X , i.e., Cor(Xi , X j ) = ρi j .

The Student’s t distribution is said to be central if μ = 0; otherwise, it is said to
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be noncentral. Note that for ν > 2 the variance covariance matrix of X is given
by ν

ν−2�.
The multivariate Student’s t distribution also allows the following stochastic

representation: If X = (X1, ..., Xd)
� ∼ td(ν,μ, �) with ν > 2 and if Y =

(Y1, ...,Yd)t ∼ Nd(0,Cov) with covariance matrix Cov = (covi j )i, j=1...d ,
where

covi j :=
{

σ2 for i = j

σ2ρi j otherwise

and νS2/σ2 ∼ χ2
ν with df ν, independent of Y , then the following identity in

distribution

X
D= S−1Y + μ (1.7)

holds. Here, χ2
ν denotes a Chi-square distribution with ν degrees of freedom.

The representation (1.7) implies that the conditional distribution of X given
S2 = s2 is given by

X|S2 = s2 ∼ Nd

(
μ,

1

s2
Cov

)
. (1.8)

Finally choosing

g(t) :=
(
1 + t

ν

)−(ν+d)/2

and kd := �( ν+d
2 )

�( ν
2 )

and using (1.6) shows that the multivariate Student’s t distribution is a member
of the class of elliptical distributions.

Ex 1.6 (Bivariate standard Student’s t distribution) The bivariate standard
Student’s t distribution is a special case of (1.6) with d = 2, zero mean vector
μ, and scale parameter matrix

�ρ =
[
1 ρ
ρ 1

]
. (1.9)

The associated density is given by

t (x1, x2; ν, ρ) = �( ν+2
2 )(1 − ρ2)−1/2

�( ν
2 )(νπ)

{
1 + 1

ν

x21 − 2x1x2ρ + x22
1 − ρ2

}− v+2
2

.

(1.10)
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The density and the contour lines for a bivariate Student’s t distribution with
zero means, scale matrix with correlation ρ = .8 and d f = 3 are given in the
left panel and as dotted lines in middle panel of Fig. 1.3. We see that for small
contour levels, the Student’s t-density is larger than the Gaussian density with
the zero means, unit variances, and correlation ρ, thus the bivariate standard
Student’s t distribution has heavier tails than the bivariate Gaussian distribution
with zero means, unit variances, and correlation ρ. Recall that the marginal
variances of these distributions do not match.

Ex 1.7 (Conditional distributions of multivariate t) As, for example, shown
in Kotz and Nadarajah (2004) if X = (X1, ..., Xd)

� ∼ td(ν, 0, �) and the
partition of� for X = (X1, X2)

� as in (1.4) holds, then the conditional density
of X2 given X1 is given by

fX2|X1(x2|x1) = �( ν+d
2 )

(πν)
d1
2 �( ν+d1

2 )

· |�11| 12
|�| 12

· [1 + (1/ν)x�
1 �−1

11 x1]
ν+d1
2

[1 + (1/ν)x��−1x] ν+d
2

.

(1.11)
More generally, if X = (X1, ..., Xd)

� ∼ td(ν,μ, �) for � positive definite
then the conditional distribution of X2 given X1 = x1 is again multivariate
td2(ν2|1,μ2|1, �2|1) with

μ2|1 := μ2 + ��
12�

−1
11 (x1 − μ1)

�2|1 := ν + (x1 − μ1)
��−1

11 (x1 − μ1)

ν + d1
(�22 − ��

12�
−1
11 �12) (1.12)

ν2|1 := ν + d1.

More details can be found in Kotz and Nadarajah (2004).

Ex 1.8 (Conditional distribution of bivariate standard Student’s t-distribution)
For the bivariate standard Student’s t distribution introduced in Example1.6,
we use Eqs. (1.12) to determine the conditional parameters of X1 given X2 = x2
as

μ1|2 := ρx2,σ
2
1|2 := �1|2 = (ν + x22 )(1 − ρ2)

v + 1
and ν1|2 := ν + 1. (1.13)

In particular, the conditional density t1|2(x1|x2; ν, ρ) is then a univariate Stu-
dent’s t-density with the parameters given by (1.12) and can be expressed as
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t1|2(x1|x2; ν, ρ) = �( ν+2
2 )

�( ν+1
2 )[π(ν + x2)(1 − ρ2)] 1

2

[
1 + (x1 − ρx2)2

(1 − ρ2)(ν + x22 )

]− v+1
2

.

(1.14)

Nowweextend the notion of an univariate empirical distribution to themultivariate
case, which is used if parametric assumptions are to be avoided.

Definition 1.7 (Multivariate empirical distribution) Suppose xi = (x1i , ...,
xdi ) is an i.i.d. sample of size n from the d-dimensional distribution F , then
the multivariate empirical distribution function is defined as

F̂(x1, ...xd) := 1

n + 1

n∑
i=1

1{x1i≤x1,...,xdi≤xd } for all x := (x1, ..., xd)
� ∈ R

d .

1.3 Features of Multivariate Data

To explore the shape of univariate data, classical visualization tools such as his-
tograms are sufficient. For multivariate data, these marginal displays are not suffi-
cient and first exploration of such data includes plots of pairs of variables. However,
in pairwise plots, the marginal behavior of the variables is mixed with the depen-
dence structure between the variables. To extract marginal effects on the dependence
structure, it is useful to normalize each variable such that it has a standard normal
distribution and then to consider associated pairs plots. We illustrate this way of
proceeding in a three-dimensional data set.

Ex 1.9 (Chemical components of wines) Cortez et al. (2009) analyzed 1599 red
wine samples according to several chemical components including

• acf = fixed acidity
• acv = volatile acidity
• acc = citric acid

We now investigate their marginal distributions using histograms. The his-
tograms for each of the three components are given in top row of Fig. 1.4.
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We see that the marginal distributions are non-normal and different for each
component. The pairs plots in the middle row of Fig. 1.4 show the joint effects
of the margins and the dependence between the two variables. In the bottom row
of Fig. 1.4, the marginal effects are removed by standardizing each variable to
have standard normalmargins. This is done by first using the probability integral
transform based on the empirical distribution and then applying the quantile
function of the standard normal distribution. The resulting pairs plots of the
transformed variables in the bottom row show that there is dependence between
the variables since the data clouds are not balls. In particular, the joint occurrence
of small values for two normalized variables acf and acc is different than the
occurrence of large values. This indicates nonsymmetric dependence structures
in this pair of variables.

The findings of Example1.9 are common for multivariate data, i.e., different
marginal distributions and nonsymmetric dependencies between some pairs of vari-
ables.

Standard parametric distributions such as the multivariate normal or Student’s
t distribution cannot accommodate different types of marginal distribution, since
the marginal distributions belong to the same distributional class (see, for example,
Anderson et al. 1958). Further, they are symmetric distributions.

The observed nonsymmetric dependence between pairs of variables can also be
an indication of heavy tail dependencies between these pairs. Under tail dependence,
we understand the dependence, when two variables take on extremely large or small
values. In particular, the multivariate normal distribution is not heavy tail-dependent,
while the multivariate Student’s t distribution has only a single parameter to govern
tail dependence. This is more discussed in Sect. 2.3.

In the following section, we introduce an approach which is more suitable for
modeling multivariate data.

1.4 The Concept of a Copula and Sklar’s Theorem

The copula approach to multivariate data allows to model the margins individually.
We have seen the necessity of this already in Example1.9. It is also clear that the
shape of scatter plots between two variables depends on the scale of the variables.
Thus, we like to standardize each variable to see if there is dependence between the
standardized variables. As standardization tool, the probability integral transform of
Definition1.3 can be utilized. So we want to characterize the dependence between
random variables with the common marginal distribution given by the uniform dis-
tribution. This approach separates the dependence between the components from
the marginal distributions. For this, the dependence between random variables with
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Fig.1.4 WINE3: top row: marginal histograms left: acf, middle: acv, right: acc; middle row: pairs
plots left: acf versus acv, middle: acf versus acc, right: acv versus acc. bottom row: normalized pairs
plots left: acf versus acv, middle: acf versus acc, right: acv versus acc

uniform margins has to be modeled by a corresponding joint distribution function
which is called a copula.

Definition 1.8 (Copula and copula density)

• A d-dimensional copula C is a multivariate distribution function on the
d-dimensional hypercube [0, 1]d with uniformly distributed marginals.

• The corresponding copula density for an absolutely continuous copula we
denote by c can be obtained by partial differentiation, i.e., c(u1, ..., ud) :=

∂d

∂u1...∂ud
C(u1, ..., ud) for all u in [0, 1]d .
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Sklar (1959) proved the following fundamental representation theorem for mul-
tivariate distributions in terms of their marginal distributions and a corresponding
copula.

Theorem 1.9 (Sklar’s Theorem) Let X be a d-dimensional random vector
with joint distribution function F and marginal distribution functions Fi , i =
1, . . . , d, then the joint distribution function can be expressed as

F(x1, ..., xd) = C(F1(x1), ..., Fd(xd)) (1.15)

with associated density or probability mass function

f (x1, ..., xd) = c(F1(x1), ..., Fd(xd)) f1(x1)... fd(xd) (1.16)

for some d-dimensional copula C with copula density c. For absolutely con-
tinuous distributions, the copula C is unique.

The inverse also holds: the copula corresponding to a multivariate distri-
bution function F with marginal distribution functions Fi for i = 1, . . . , d
can be expressed as

C(u1, ..., ud) = F(F−1
1 (u1), ..., F

−1
d (ud)) (1.17)

and its copula density or probability mass function is determined by

c(u1, ..., ud) = f (F−1
1 (u1), ..., F

−1
d (ud))

f1(F
−1
1 (u1)) · · · fd(F−1

d (ud))
. (1.18)

Proof For absolutely continuous distribution, we see that C(u1, ..., ud) is the distri-
bution function of (U1, ...,Ud) for Uj := Fj (X j ), j = 1, ..., d. The proof for the
general case can be found in the book by Nelsen (2006). �

Remark 1.10 (Usage of Sklar’s Theorem) There are two major applications of
Sklar’s Theorem.

• Estimation of the dependence between the standardized variables: The depen-
dence between standardized variables can be characterized by the copula. In prac-
tical data applications, we need to have an i.i.d sample xi = (xi1, . . . , xid)� for
i = 1 . . . , n available. For this, we construct pseudo-copula data using an esti-
mated probability integral transform by setting

ui j := Fj (xi j ; θ̂ j ) for j = 1, . . . , d and i = 1, . . . , n,
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where θ̂ j is a parameter estimate of θ j in a parametric statistical model for the jth
marginal. The empirical distribution function of Definition1.1 can alternatively be
used. Now the dependence between the standardized variables ui j can be utilized
to find an appropriate model for the copula.

• Construction ofmultivariate distributions: Sklar’s Theorem also allows to com-
bine arbitrary marginal distributions together with a copula or copula density
to build new multivariate distribution and density functions by using (1.15) and
(1.16), respectively.

Ex 1.10 (Chemical components of red wines on the copula scale) We again
consider the data of Example1.9. First, we transform the data using the empir-
ical distribution function F̂ for each variable separately to get approximately
uniformly distributed data for each variable. The resulting data is the pseudo-
copula data as discussed in Remark1.10. The corresponding histograms and
scatter plots for each pair of variables of the copula data are given in Fig. 1.5,
showing that the marginal distributions are now approximately uniform and the
bivariate dependence structure of the pseudo-data now characterizes the depen-
dence on the copula scale. This is in contrast to the scatter plots on the original
scale (compare to Fig. 1.4), where the effects of themarginal distribution and the
dependence are not separated. For further discussion, see also Sect. 1.8. Addi-
tionally, we see from the lower middle panel of Fig. 1.5 that high values of acf
and acc more often occur together than low values. This further indicates the
presence of asymmetric tail dependence as discussed in Example1.9.

For theoretical results on copulas, the following general bounds are useful.

Theorem 1.11 (Fréchet–Hoeffding bounds)LetC be a d-dimensional copula.
Then for every u ∈ [0, 1]d ,

Wd(u) ≤ C(u) ≤ Md(u), (1.19)

where Wd(u) := max(u1+...+ud−d+1, 0) and Md(u) := min(u1, ..., ud).

It can be shown that the upper bound Md is a copula, while the lower bound Wd is
a copula only for d = 2. For a proof of Theorem1.11, see the books by Joe (1997)
or Nelsen (2006).
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Fig.1.5 WINE3: top row: marginal histograms of the copula data (left: acf, middle: acv, right: acc),
bottom row: pairs plots of the copula data (left: acf versus acv, middle: acf versus acc, right: acv
versus acc)

1.5 Elliptical Copulas

We now discuss the copulas derived from elliptical distributions such as the multi-
variate normal and Student’s t distributions.

Ex 1.11 (Bivariate Gaussian copula) The bivariate Gaussian copula can be
constructed using a bivariate normal distribution with zero mean vector, unit
variances, and correlation ρ and applying the inverse statement (1.17) of Sklar’s
Theorem to obtain

C(u1, u2; ρ) = �2(�
−1(u1), �

−1(u2); ρ),

where�(·) is the distribution function of a standard normal N (0, 1) distribution
and�2(·, ·; ρ) is the bivariate normal distribution functionwith zeromeans, unit
variances, and correlation ρ. The corresponding copula density can be expressed
as

c(u1, u2; ρ) = 1

φ(x1)φ(x2)

1√
1 − ρ2

exp

{
−ρ2(x21 + x22 ) − 2ρx1x2

2(1 − ρ2)

}
,
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where x1 := �−1(u1) and x2 := �−1(u2). Here, Eq. (1.18) of Sklar’s theorem
has been utilized. A three-dimensional plot of the Gaussian copula with ρ = .88
is in the left panel of Fig. 1.6.

Ex 1.12 (Multivariate Gaussian copula) Applying the inverse statement of
Sklar’s theorem (1.17) to the multivariate Gaussian distribution with zero mean
vector and correlation matrix R yields the multivariate Gaussian copula as

C(u; R) = �R
(
�−1(u1), ..., �

−1(ud)
)
, (1.20)

where �−1 denotes the inverse of the univariate standard normal cumulative
distribution function� and�d(· · · ; R) the multivariate standard normal distri-
bution function with zero mean vector, unit variances, and symmetric positive
definite correlation matrix R ∈ [−1, 1]d×d . The copula density is then given by

c(u; R) = |R|− 1
2 exp

{
1

2
x�(Id − R−1)x

}
, (1.21)

where x = (x1, ..., xd)� ∈ R
d with xi := �−1(ui ), i = 1, ..., d.

Ex 1.13 (Bivariate Student t copula) The bivariate Student’s t copula can be
constructed using the bivariate Student’s t distribution with ν degrees of free-
dom, zero mean, and correlation ρ as discussed in Example1.6 and is given by
integrating over the bivariate Student’s t copula density t (x1, x2; ν, ρ) (com-
pared to (1.10)) expressed using (1.18) of Sklar’s Theorem as follows:

C(u1, u2; ν, ρ) =
∫ u1

0

∫ u2

0

t (T−1
ν (v1), T−1

ν (v2); ν, ρ)

tν(T
−1
ν (v1))tν(T

−1
ν (v2))

dv1dv2

=
∫ b1

−∞

∫ b2

−∞
t (x1, x2; ν, ρ) dx1 dx2, (1.22)

where the variable transformation b1 := T−1
ν (u1) and b2 := T−1

ν (u2) is used.
For reference, we also give the expression of the bivariate t copula density

c(u1, u2; ν, ρ) = t (T−1
ν (v1), T−1

ν (v2); ν, ρ)

tν(T
−1
ν (v1))tν(T

−1
ν (v2))

. (1.23)

The bivariate Student’s t copula density for ν = 3 and ν = 8 and association
parameter ρ = .88 is illustrated in the middle and left panel of Fig. 1.6.
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Fig. 1.6 Bivariate copula densities: left: Gauss, middle: Student’s t with ν = 3,
ρ = .88 and right: Student’s t with ν = 8, ρ = .88

Ex 1.14 (Multivariate Student’s t copula) Anotherwidely used elliptical copula
is themultivariate t copula (see alsoDemarta andMcNeil 2005)which is derived
from the multivariate Student’s t distribution and is given as

C(u; R, ν) = TR,ν

(
T−1

ν (u1), ..., T
−1
ν (ud)

)
, (1.24)

where TR,ν denotes the distribution function of the multivariate standard Stu-
dent’s t distribution with scale parameter matrix R ∈ [−1, 1]d×d and ν > 0
degrees of freedom. The bivariate case was discussed in Example1.6. Further
T−1

ν denotes the inverse of the distribution function Tν of the univariate standard
Student’s t distribution with ν degrees of freedom.

1.6 Empirical Copula Approximation

In statistical analyses, we only have multivariate observations available and we need
to make inference about the underlying copula. For this, we introduce a data-driven
approximation suitable for continuous randomvectors of the underlying copula based
on a bivariate copula data sample. It utilizes the multivariate empirical distribution
introduced in Definition1.7 for copula data.

Definition 1.12 (Empirical copula approximation for d = 2) For the bivariate
copula sample {u1i , u2i , i = 1, ..., n}, the empirical copula approximation is
defined as

Ĉ(u1, u2) := 1

n + 1

n∑
i=1

1{u1i≤u1,u2i≤u2} for all 0 ≤ u1, u2 ≤ 1. (1.25)
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Of course, the general case for d > 2 can also be considered. It is a bivariate
distribution but only an approximation of the underlying copula, since the marginal
distributions associated with (1.25) are discrete and only approximate the continuous
uniform distribution on the unit interval when n < ∞. In addition, one has to be
aware that they cannot be used for the assessment of the dependence structure in the
tails.

1.7 Invariance Properties of Copulas

Copulas are invariant with respect to strictly increasing transformations of the mar-
gins. In particular, the following Lemma holds.

Lemma 1.13 (Invariance of copulas) Let Yi := Hi (Xi ), i = 1, ..., d for Hi

strictly increasing functions, then the copula of Y = (Y1, . . . , Yd)� denoted
by CY agrees with the copula CX of the underlying random vector X =
(X1, . . . , Xd)

�.

Proof The marginal (inverse) distribution functions FYi (F
−1
Yi

) and the joint distri-
bution function FY of Y can be determined as

FYi (yi ) = P(Yi ≤ yi ) = P(Xi ≤ H−1
i (yi )) = FXi (H

−1
i (yi ))

F−1
Yi

(ui ) = Hi (F
−1
Xi

(ui ))

FY ( y) = FX (H−1
1 (y1), ..., H

−1
d (yd)).

By Sklar’s Theorem using Eq. (1.17), it follows that

CY (u) = FY (F−1
Y1

(u1), ..., F
−1
Yd

(ud))

= FX (H1(F
−1
Y1

(u1)), ..., Hd(F
−1
Yd

(ud)))

= FX (H1(H
−1
1 (F−1

X1
(u1))), ..., Hd(H

−1
d (F−1

Xd
(ud))))

= FX (F−1
X1

(u1), ..., F
−1
Xd

(ud))

= CX (u),

thus the two copulas CY and CX agree. �

Remark 1.14 (Invariance for Gaussian and Student’s t copulas) A consequence of
Lemma1.13 is that the copulas corresponding to normal distributions with arbitrary
mean vectors and variances coincide and are given as in Example1.12. The same
holds for the copulas corresponding to arbitrarymultivariate Student’s t distributions.
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1.8 Meta Distributions

A distribution which is constructed by an arbitrary copula and arbitrary marginal
distributions is called a meta distribution.

Ex 1.15 (Meta-distribution involving a Gaussian copula) To illustrate a meta-
distribution, we combine a bivariate Gaussian copula with a Gaussian margin
and an exponential margin. In Fig. 1.7, we present scatter plots for a bivariate
sample (ui1, ui2) of size n = 200 from a bivariate Gaussian copula with ρ =
.88 and different margins. Either we use N (0, 1)/exponential with rate λ = 5
margins giving the sample (xi1, xi2) or normal N (0, 1)/N (0, 1)margins giving
the sample (zi1, zi2). This shows that scatter plots (left or right panel of Fig. 1.7)
of the original data are difficult to interpret with regard to their dependence
pattern, since both side panels of Fig. 1.7 have the same dependence as illustrated
by the middle panel.

Ex 1.16 (Meta-distribution involving a non-elliptical copula) Given the defi-
nition of a meta-distribution, we can revisit Examples1.9 and 1.10. Since the
scatter plot on the copula scale of acf and acc in Fig. 1.5 shows nonsymmet-
ric dependence pattern, we need to find copula classes other than the elliptical
copula families to capture such behavior. This will be done in Chap.3.
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Fig. 1.7 Scatter plots of a bivariate sample (n = 200) from Gaussian
meta distributions: left: N (0, 1)/exponential with rate λ = 5 margins, middle:
uniform[0, 1]/uniform[0, 1] margins, right: N (0, 1)/N (0, 1) margins. The common copula is a
bivariate Gauss copula with ρ = .88
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1.9 Bivariate Conditional Distributions Expressed in Terms
of Their Copulas

In the following, we will use the fact that we can express conditional densities in
terms of a product of a copula and a marginal density.

Lemma 1.15 (Conditional densities and distribution functions of bivariate
distributions in terms of their copula) The conditional density and distribution
function can be rewritten as

f1|2(x1|x2) = c12(F1(x1), F2(x2)) f2(x2)

F1|2(x1|x2) = ∂

∂u2
C12(F1(x1), u2)|u2=F2(x2)

=: ∂

∂F2(x2)
C12(F1(x1), F2(x2)).

Proof Using the definition a conditional density and Eq. (1.16), we have

f1|2(x1|x2) = f12(x1, x2)

f2(x2)

= c12(F1(x1), F2(x2)) f1(x2) f2(x2)

f2(x2)

= c12(F1(x1), F2(x2)) f1(x2)

= ∂2C12(u1, u2)

∂u1∂u2
|u1=F1(x1),u2=F2(x2)

∂u1
∂x1

= ∂

∂u2

(
∂

∂x1
C12(F1(x1), u2)

)
|u2=F2(x2).

This implies that

F1|2(x1|x2) =
∫ x1

−∞
∂

∂u2

(
∂

∂z1
C12(F1(z1), u2)

)
|u2=F2(x2)dz1

= ∂

∂u2

(∫ x1

−∞
∂

∂z1
C12(F1(z1), u2)dz1

)
|u2=F2(x2)

= ∂

∂u2
C12(F1(x1), u2)|u2=F2(x2). �

Lemma1.15 can also be applied to the bivariate copula distribution C12. In this
case, we denote the conditional distribution and density byC1|2 and c1|2, respectively.
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In particular, it follows that

C1|2(u1|u2) = ∂

∂u2
C12(u1, u2) ∀u1 ∈ [0, 1]. (1.26)

The relationship between F1|2 and C1|2 using Lemma1.15 is therefore given by

F1|2(x1|x2) = ∂

∂u2
C12(F1(x1), u2)|u2=F2(x2) = C1|2(F1(x1)|F2(x2)). (1.27)

Applying (1.27) yields the following relationship among the inverse function of the
conditional distribution functions:

F−1
1|2 (u1|x2) = F−1

1 (C−1
1|2(u1|F2(x2))). (1.28)

The conditional distribution function C1|2 associated with a copula was denoted by
Aas et al. (2009) also as an h-function.

Definition 1.16 (h-functions of bivariate copulas) The h functions corre-
sponding to a bivariate copula C12 are defined for all (u1, u2) ∈ [0, 1]2 as

h1|2(u1|u2) := ∂

∂u2
C12(u1, u2)

h2|1(u2|u1) := ∂

∂u1
C12(u1, u2).

Ex 1.17 (Conditional distribution function of a bivariate Student’s t copula)
We start with the conditional density c1|2(u1|u2; ν, ρ) of U1 given U2 = u2,
where (U1,U2) are distributed according to the bivariate t copula as introduced
in Example1.13. This is given as

c1|2(u1|u2; ν, ρ) = c(u1, u2; ν, ρ), (1.29)

where we used the fact that the margins of (U1,U2) are uniform. Recall that
c(u1, u2; ν, ρ) is defined in (1.23). Then, the conditional distribution function
C1|2(u1|u2; ν, ρ) of U1 given U2 = u2 can be determined using bi := T−1

ν (ui )
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for i = 1, 2 and the variable transformation x1 = T−1
ν (v1) as

C1|2(u1|u2; ν, ρ) =
∫ u1

0
c1|2(v1|u2; ν, ρ)dv1 =

∫ u1

0
c(v1, u2; ν, ρ)dv1

=
∫ u1

0

t (T−1
ν (v1), T−1

ν (u2); ν, ρ)

tν(T
−1
ν (v1))tν(T

−1
ν (u2))

dv1

=
∫ b1

−∞
t (x1, b2; ν, ρ)

tν(b2)
dx1

=
∫ b1

−∞
t1|2(x1|b2; ν, ρ)dx1

= T1|2(b1|b2; ν, ρ)

= Tν+1

⎛
⎝T−1

ν (u1) − ρT−1
ν (u2)√

(ν+(T−1
ν (u2))2)(1−ρ2)

ν+1

⎞
⎠ . (1.30)

Here, t1|2(x1|x2; ν, ρ) is the conditional density of X1 given X2 = x2 of a
bivariate standard t distribution for (X1, X2) defined in (1.14) with correspond-
ing distribution function T1|2(x1|x2; ν, ρ). As shown in Example1.8, this is a
univariate Student’s t distributionwith the parameters identified in (1.13), which
explains the last equality.

Finally, we summarize our notation and findings with regard to bivariate distribu-
tions and copulas in Table1.1.

1.10 Exercises

Exer 1.1
Conditional distribution for bivariate Student’s t distributions: Derive from first
principles the conditional distribution of X1 given X2 = x2 when (X1, X2) are
jointly Student’s t distributed with mean vector μ, scale matrix �, and ν degree of
freedom. Determine the corresponding expectation and variance.

Exer 1.2
Conditional density and distribution of the bivariate Gaussian copula: Derive the
h-functions corresponding to a bivariate Gaussian copula with correlation parameter
ρ and graph the surface of h1|2(u1|u2; ρ) for 0 < u1 < 1, 0 < ρ < 1 for fixed
u2 = .1 and u2 = .8, respectively.

Exer 1.3
Density and conditional distributions of the bivariate Clayton copula: The bivariate
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Table 1.1 Relationships among bivariate absolutely continuous distributions and copulas

Distr.
quant.

Original
scale

Copula
scale

Relationship

Joint
distr.

F12 C12 F12(x1, x2) = C12(F1(x1), F2(x2))
C12(u1, u2) = F12(F

−1
1 (u1), F

−1
2 (u2))

Marg.
distr.

F1
F2

C1(u1) = u1
C2(u2) = u2

Joint
den.

f12(x1, x2) =
∂2F12(x1,x2)

∂x1∂x2

c12(u1, u2) =
∂2C12(u1,u2)

∂u1∂u2

f12(x1, x2) = c12(F1(x1), F2(x2)) f1(x1) f2(x2)

c12(u1, u2) = f12(F
−1
1 (u1),F

−1
2 (u2))

f1(F
−1
1 (u1)) f2(F

−1
2 (u2))

Marg.
den.

f1
f2

c1(u1) = 1
c2(u2) = 1

Cond.
den.

f1|2(x1|x2) =
f12(x1,x2)
f2(x2)

c1|2(u1|u2) =
c12(u1, u2)

f1|2(x1|x2) = c12(F1(x1), F2(x2)) f1(x1)

Cond.
distr.

F1|2(x1|x2) =
∂

∂x2
F12(x1,x2)

f2(x2)

C1|2(u1|u2) =
∂

∂u2
C12(u1, u2)

F1|2 = ∂
∂u2

C12(F1(x1), u2)|u2=F2(x2) =
C1|2(F1(x1)|F2(x2))

Cond.inv.
distr.

F−1
1|2 (u1|x2) C−1

1|2 (u1|u2) F−1
1|2 (u1|x2) = F−1

1 (C−1
1|2 (u1|F2(x2))

Clayton copula is defined as

C(u1, u2|θ) = (u−θ
1 + u−θ

2 − 1)−
1
θ

for 0 ≤ θ < ∞.

1. Show that the corresponding copula density is given by

c(u1, u2; θ) = (1 + θ)(u−θ
1 + u−θ

2 − 1)−
1+2θ

θ (u1u2)
−(θ+1)

2. Show that the conditional distribution function ofU1 givenU2 = u2 is given by

C1|2(u1|u2; θ) = (u−θ
1 + u−θ

2 − 1)−
1+θ
θ u−(θ+1)

2

3. Derive the inverse of C1|2(u1|u2; θ).

Exer 1.4
Multivariate Burr distribution: A d variate version of the Burr distribution was
introduced by Takahashi (1965) with density for xi ≥ 0 and i = 1, ..., d

f (x; b, r, p) = �(p + d)

�(p)

∏d
k=1 rkbkx

bk−1
k

(1 + ∑d
k=1 rk x

bk
k )(p+d)

, (1.31)

where p ≥ 1, b = (b1, . . . , bd)� and r = (r1, · · · , rd)� with bk ≥ 1 and rk > 0
for k = 1, · · · , d. We denote this distribution by Burr(d, b, r , p). For d = 2, show
the following:
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1. The marginal densities and distribution functions for k = 1, 2 are

fk(xk) = rkbkx
bk−1
k

(1 + rk x
bk
k )p+1

and Fk(xk) = 1 − (1 + rk x
bk
k )p.

2. The bivariate distribution function is given by

F12(x1, x2; b, r, p) = F1(x1) + F2(x2) + (1 + r1x
b1
1 + r2x

b2
2 )−p − 1.

3. The associated copula to F12 is independent of b and r and is given by

C(u1, u2; p) = u1 + u2 + ((1 − u1)
− 1

p + (1 − u2)
− 1

p − 1)−p − 1.

4. Derive the density and distribution function of the conditional distribution of X1
given X2 = x2.

Exer 1.5
URAN3: Three-dimensional uranium data: Perform the same analysis as for the wine
data in Examples1.9 and 1.10 for variables Co, Ti and Sc of the data uranium
contained in the R package copula of (Hofert et al. 2017). This data was also
considered in Acar et al. (2012) and Kraus and Czado (2017b).

Exer 1.6
ABALONE3: Three-dimensional abalone data: Perform the same analysis as for the
wine data in Examples1.9 and 1.10 for variables shucked, viscera, and shell
of the data abalone contained in the R package PivotalR from Pivotal Inc.
(2017). Restrict your analysis to the female abalone shells.

Exer 1.7
WINE7: Seven-dimensional red wine data: The chemical components of red wine
data studied in Cortez et al. (2009) considered in Examples1.9 and 1.10 have more
components available. The full data set is available from the UCI Machine Learn-
ing Repository under https://archive.ics.uci.edu/ml/datasets/
wine+quality. In particular, we have measurements

• acf = fixed acidity
• acv = volatile acidity
• acc = citric acid
• clor = chlorides
• st = total sulfur dioxide
• den = density
• ph = pH value
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Fig. 1.8 WINE7: Scatter plots of the seven-dimensional red wine data

available. A plot of all pairwise scatter plots of the pseudo-data obtained using
empirical distributions for each margin separately is given in Fig. 1.8.

Based on Fig. 1.8

• Identify which pairs show strong dependence.
• Identify which pairs show an asymmetric tail dependence pattern.
• Identify which pairs show positive and which pairs show negative dependence.
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There exist several measures for the strength and direction of dependence between
two random variables. The most common ones are the Pearson product–moment
correlation, Kendall’s tau, and Spearman’s rho. We give a short introduction to these
measures including their estimation based on data. Kendall’s tau and Spearman’s rho
can be expressed in terms of the corresponding copula alone, while this is not always
the case for the Pearson product–moment correlation. For joint extreme events, the
notion of tail dependence coefficients will be introduced. Finally, the concepts of
partial and conditional correlations will be discussed, which will play an important
role in the class of multivariate vine copulas.

2.1 Pearson Product–Moment Correlation

The Pearson product–moment correlation is a measure of linear dependence with
values in the interval [−1, 1]. It is not invariant with respect to monotone increasing
transformations of the margins. Further, it is not defined for distributions with non-
finite second moments (e.g., the Cauchy distribution). Additionally, its value might
depend on the marginal distributions of X1 and X2 (see Example3.1 of Kurowicka
and Cooke 2006).

Definition 2.1 (Pearson product–moment correlation)ThePearson’s product–
moment correlation coefficient ρ between two random variables X1 and X2
with finite second moments is defined as

ρ := ρ(X1, X2) := Cor(X1, X2) = Cov(X1, X2)√
Var(X1)

√
Var(X2)

, (2.1)

© Springer Nature Switzerland AG 2019
C. Czado, Analyzing Dependent Data with Vine Copulas, Lecture Notes
in Statistics 222, https://doi.org/10.1007/978-3-030-13785-4_2
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Ex 2.1 (Zero correlation does not imply independence) Assume X1 is a random
variable with E(X1) = E(X3

1) = 0 and consider X2 := X2
1, then obviously X1

and X2 are dependent, however Cor(X1, X2) = 0.

From a random sample from (X1, X2), the Pearson correlation ρ(X1, X2) can be
estimated.

Definition 2.2 (Pearson product–moment correlation estimate) For a random
sample {xi1, xi2, i = 1, ..., n} of size n from the joint distribution of (X1, X2)

the Pearson correlation ρ(X1, X2) is estimated by

ρ̂ := ρ̂(X1, X2) :=
∑n

i=1(xi1 − x̄1)(xi2 − x̄2)
√∑n

i=1(xi1 − x̄1)2
√∑n

i=1(xi2 − x̄2)2
, (2.2)

where x̄1 := 1
n

∑n
i=1 xi1 and x̄2 := 1

n

∑n
i=1 xi2 are the corresponding sample

means.

Ex 2.2 (Pearson correlation depends on the margins as well)We consider again
the bivariate sample data from Example1.15. For the N (0, 1)/N (0, 1) margins
the Pearson correlation is estimated as .832, while for uniform margins it is
.881 and for the N (0, 1)/ exponential with rate λ = 5 it is .896, respectively.
These numbers change to .808, .885, and .893 for a sample size of n = 10000.
This illustrates that the Pearson correlation ρ is not invariant under monotone
transformations.

2.2 Kendall’s τ and Spearman’s ρs

Both Kendall’s tau and Spearman’s rho are dependence measures which are rank-
based and therefore invariantwith respectmonotone transformations of themarginals.
Their range of values is the interval [−1, 1]. Additionally, they can be expressed
solely in terms of their associated copula and therefore their value does not depend
on the marginal distributions. Often there are closed-form expressions in terms of
the copula parameters available.

Kendall’s tau, denoted by τ , is defined as the probability of concordance minus
the probability of discordance of two random variables X1 and X2.
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Definition 2.3 (Kendall’s tau) The Kendall’s τ between the continuous ran-
dom variables X1 and X2 is defined as

τ (X1, X2) = P((X11 − X21)(X12 − X22) > 0)− P((X11 − X21)(X12 − X22) < 0),
(2.3)

where (X11, X12) and (X21, X22) are independent and identically distributed
copies of (X1, X2).

Nonparametric estimation ofKendall’s τ is treated in detail inChap.8 ofHollander
et al. (2014). In particular to estimateKendall’s τ froma random sample {xi1, xi2, i =
1, ..., n} of size n from the joint distribution of (X1, X2), we consider all

(n
2

)
= n(n−1)

2
unordered pairs xi := (xi1, xi2) and x j := (x j1, x j2) for i, j = 1, ..., n.

Definition 2.4 (Concordant, discordant, and extra pairs) The pair (xi , x j ) is
called

• concordant if the ordering in x1 := (xi1, x j1) is the same as in x2 :=
(xi2, x j2), i.e., xi1 < x j1 and xi2 < x j2 holds or xi1 > x j1 and xi2 > x j2
holds,

• discordant if the ordering in x1 is opposite to the ordering of x2, i.e. xi1 <

x j1 and xi2 > x j2 holds or xi1 > x j1 and xi2 < x j2 holds,
• extra x1 pair if xi1 = x j1 holds,
• extra x2 pair if xi2 = x j2 holds.

Remark 2.5 (Characterization of concordance and discordance) Concordance
occurswhen (xi1−x j1)(xi2−x j2) > 0 anddiscordanceoccurswhen (xi1−x j1)(xi2−
x j2) < 0. In the case of continuous randomvariables the case (xi1−x j1)(xi2−x j2) =
0 occurs with probability zero.

Definition 2.6 (Estimate of Kendall’s τ allowing for ties) Let Nc be the num-
ber of concordant pairs, Nd be the number of discordant pairs, N1 be the
number of extra x1 pairs, and N2 be the number of extra x2 pairs of random
sample {xi1, xi2, i = 1, ..., n} from the joint distribution of (X1, X2). Then an
estimate of Kendall’s τ is given by

τ̂∗
n := Nc − Nd√

Nc + Nd + N1 × √
Nc + Nd + N2

. (2.4)

The estimate of τ in (2.4) is used in Kurowicka and Cooke (2006), while Genest
and Favre (2007) use the simpler estimate assuming no ties.
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Definition 2.7 (Estimate of Kendall’s τ allowing for no ties) An estimate of
Kendall’s τ for samples of size n without ties is defined as

τ̂n := Nc − Nd
(n
2

) . (2.5)

Both estimates coincide in the case of no ties since the total number of unordered
pairs agrees with the sum Nc + Nd . Further both estimates do not change if the ranks
of the observations are used instead of the data values, thus the estimates are rank
based. For large sample sizes n, it is better to use the algorithm of Knight (1966),
which is also given as Algorithm 1 on page 269 of Joe (2014).

General results on the asymptotic distribution of τ̂n are available. For example, Joe
(2014) noted on page 55 that n−1(τ̂n − τ ) is asymptotically normal with asymptotic
variance given by

nVar(τ̂n) −−−→
n→∞ 16

∫ 1

0

∫ 1

0
[C(u1, u2) + C(1 − u1, 1 − u2)]2c(u1, u2)du1du2,

(2.6)
whereC is the copula associated to (X1, X2)with density c. This can be proven using
the U-statistic formulation of Hoeffding (1948). From this, the following approxi-
mation can be derived.

Theorem 2.8 (Asymptotic approximation of the distribution of Kendall’s τ
estimate) The asymptotic distribution of Kendall’s τ estimate τn based on (2.5)
can be approximated for large n by

√
n
τ̂N − τ

4S
≈ N (0, 1), (2.7)

where S2 := 1
n

∑n
i=1(Wi +W̃i −2W̄ ) for W̄i := 1

n #{ j : xi1 < x j1, xi2 < x j2},
Wi := 1

n #{ j : xi1 ≤ x j1, xi2 ≤ x j2} and W̃ := 1
n (W1 + · · · + Wn).

We now treat the case of independence. In particular if (X1, X2) are independent
random variables the asymptotic variance specified in (2.6) is 4/9. Genest and Favre
(2007) use direct calculation of the variance of τ̂n under the null hypothesis of
independence to show

Var(τ̂n) = 2(2n + 5)

9n(n − 1)
.

Details on this calculation can be found on page 419 of Hollander et al. (2014).
While the mean and variance can be directly determined, the asymptotic normality
follows again using the U-statistic formulation of Hoeffding (1948). This allows for
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the construction of an asymptotic α level test for H0 : X1 and X1 are independent
versus H1 : not H0. In particular, reject H0 versus H1 if and only if

√
9n(n − 1)

2(2n + 5)
|τ̂n| > z1−α/2, (2.8)

where zβ is the β quantile of a standard normal distribution.
We discuss now a second-rank-based dependence measure.

Definition 2.9 (Spearman’s ρs or rank correlation) For continuous random
variables X1 and X2 withmarginal distributions F1 and F2, respectively, Spear-
man’s ρs or the rank correlation is defined as the Pearson correlation of the
random variables F1(X1) and F2(X2), i.e.,

ρs := ρs(X1, X2) = Cor(F1(X1), F2(X2)). (2.9)

Ex 2.3 (Relationships between Pearson correlation ρ, Spearman’s ρs , and
Kendall’s τ for the bivariate normal distribution) For the bivariate normal dis-
tribution, relationships among all three dependence measures are available. In
particular, we have the following results:

ρ = 2 sin
(π

6
ρs

)
and τ = 2

π
arcsin(ρ).

These have been shown in Pearson (1904). We illustrate these relationships in
Fig. 2.1. From this we see that Kendall’s τ is larger (smaller) than Spearman’s
ρs for ρ ≤ 0 (ρ ≥ 0).

We show now that Kendall’s τ and Spearman’s ρs are independent of the marginal
specification and thus depend exclusively on the associated copula.

Theorem 2.10 (Kendall’s τ and Spearman’s ρs expressed in terms of the cop-
ula)Let (X1, X2) be continuous random variables, then Kendall’s τ and Spear-
man’s ρ can be expressed as

τ = 4
∫

[0,1]2
C(u1, u2)dC(u1, u2)−1 and ρs = 12

∫

[0,1]2
u1u2dC(u1, u2)−3.

(2.10)
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Fig. 2.1 Dependence
measures: Kendall’s τ
(solid) and Spearman’s ρs

(dashed) for a bivariate
normal distribution with
changing Pearson correlation
ρ (dotted line is the x = y
axis)
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Proof Let (X11, X12) and (X21, X22) be independent copies of (X1, X2). For con-
tinuous variables, we have

P((X11 − X21)(X12 − X22) > 0) = 1 − P((X11 − X21)(X12 − X22) < 0),

therefore, τ = 2P((X11 − X21)(X12 − X22) > 0) − 1. Further we have that

P((X11 − X21)(X12 − X22) > 0) = P(X11 > X21, X12 > X22) + P(X11 < X21, X12 < X22).

Now using the transformation u1 := F1(x1) and u2 := F2(x2) gives

P(X11 > X21, X12 > X22) = P(X21 < X11, X22 < X12)

=
∫ ∞
−∞

∫ ∞
−∞

P(X21 < x1, X22 < x2)dC(F1(x1), F2(x2))

=
∫ ∞
−∞

∫ ∞
−∞

C(F1(x1), F2(x2))dC(F1(x1), F2(x2))

=
∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2).

Similarly, we can show that

P(X11 < X21, X12 < X22) =
∫ 1

0

∫ 1

0
[1 − u1 − v1 + C(u1, u2)]dC(u1, u2).
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Since C is the distribution function of the random variables U1 := F1(X1) and
U2 := F2(X2) and Ui have mean 1/2, it follows that

P(X11 < X21, X12 < X22) = 1 − 1

2
− 1

2
+

∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2)

=
∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2).

This concludes the proof for Kendall’s τ . For Spearman’s ρs , we note that the
variance of a uniform distribution on [0, 1] is 1/12 and thus

ρs = Cor(F1(X1), F2(X2)) = Cor(U1, U2) = E(U1U2) − 1
4

1
12

= 12E(U1U2) − 3 = 12
∫ 1

0

∫ 1

0
u1u2dC(u1, u2) − 3.

For a random sample {xi1, xi2, i = 1, ..., n} of size n from the joint distribution
of (X1, X2), Spearman’s ρs is estimated by using the marginal ranks {ri1, ri2, i =
1, ..., n}, where ri j is the rank of observation xi j for j = 1, 2. These are now used in
the same way as the original observations for the estimate of the Pearson correlation.
This yields the following estimate of Spearman’s ρs

Definition 2.11 (Estimate of Spearman’s ρs) A estimate of Spearman’s ρs

based on a sample (xi1, xi2) of size n with ranks ri j for j = 1, 2 is given by

ρ̂s := ρ̂s(X1, X2) :=
∑n

i=1(ri1 − r̄1)(ri2 − r̄2)
√∑n

i=1(ri1 − r̄1)2
√∑n

i=1(ri2 − r̄2)2
, (2.11)

where r̄1 := 1
n

∑n
i=1 ri1 and r̄2 := 1

n

∑n
i=1 ri2 are the corresponding sample

rank means.

Ex 2.4 (Estimated bivariate dependence measures for the wine data of
Example1.9) The estimated bivariate dependence measures for the wine data
are given in Table2.1. We see that there is positive and negative bivariate depen-
dence in this data set.
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Table2.1 WINE3: Estimated correlation ρ, Kendall’s τ , and Spearman’s ρs for all pairs of variables
of the red wine data of Example1.9

Measure (acf, acv) (acf, acc) (acv, acc)

Pearson ρ −.26 .67 −.55

Kendall τ −.19 .48 −.43

Spearman ρs −.28 .66 −.61

2.3 Tail Dependence

For assessing tail dependence an extremal view is taken and the probability of the
joint occurrence of extremely small or large values are considered.

Definition 2.12 (Upper and lower tail dependence coefficient) The upper tail
dependence coefficient of a bivariate distribution with copula C is defined as

λupper = lim
t→1− P(X2 > F−1

2 (t)|X1 > F−1
1 (t)) = lim

t→1−
1 − 2t + C(t, t)

1 − t
,

while the lower tail dependence coefficient is

λlower = lim
t→0+ P(X2 ≤ F−1

2 (t)|X1 ≤ F−1
1 (t)) = lim

t→0+
C(t, t)

t
.

To illustrate the concept of tail dependence, consider Fig. 2.2 of two variables X1
and X2 with standard normal distribution. Here upper tail dependence is driven by
the square points, while lower tail dependence is driven by the triangle points. For
some parametric copulas, the tail dependence coefficient can be directly computed.
We give now two examples.

Ex 2.5 (Tail dependence coefficients of the bivariate Student t copula) For the
bivariateStudent’s t copulaC withparametersρ andν discussed inExample1.13
the upper and lower tail dependence coefficient are the same and given by

λ = 2Tν+1

(

−√
ν + 1

√
1 − ρ

1 + ρ

)

, (2.12)

where Tν+1 is the univariate Student’s t distribution function with ν +1 degrees
of freedom. For a derivation of (2.12) see Demarta and McNeil (2005).
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Fig. 2.2 Tail
dependence: Illustration
of upper and lower tail
dependence: upper tail
dependence (squares), lower
tail dependence (triangles)
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In contrast, some copulas have no tail dependence at all, neither upper nor lower
tail dependence.

Ex 2.6 (Tail dependence coefficients for the bivariate Gaussian copula) For the
bivariate Gaussian copula with parameter ρ ∈ (−1, 1) (see Example1.11 the
upper and lower tail dependence coefficient are the same and are given by

λ = lim
x→∞ 2

(

1 − �

(
x
√
1 − ρ√
1 + ρ

))

= 0.

Thus, the Gaussian copula has no tail dependence. See Demarta and McNeil
(2005) and the references therein for details.

In practice, it is difficult to obtain a stable estimate the tail dependence coefficients
in smaller sample sizes. Frahm et al. (2005) discuss estimation methods and pitfalls
they encountered. Therefore simpler tail-weighted dependence measures have been
proposed more recently. In particular, Krupskii and Joe (2015b) considered such
measures. For a first exploration if tail dependence and in particular asymmetric tail
dependence is present in the data semi-correlations are considered. Semi-correlations
are derived from the correlation between transformations of the random variables
X1 and X2 given by

ρN (C) := Cor(�−1(F1(X1)), �
−1(F2(X2))),

where Fj are the marginal distribution functions of X j for j = 1, 2. Here C is
the associated copula to (X1, X2). The quantities �−1(Fi (Xi )) are called the van
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der Waerden scores, which were first defined in Van der Waerden (1953). Note that
the van der Waerden scores are standard normally distributed. When instead of the
marginal distribution functions the empirical distribution is used then one speaks of
the van der Waerden score rank correlation discussed in Section III.6.1 of Hajek and
Sidak (1967).

The corresponding semi-correlations are then defined as

ρ++
N (C) := Cor(�−1(F1(X1)), �

−1(F2(X2)|F1(X1) > .5, F2(X2) > .5)

ρ−+
N (C) := Cor(�−1(F1(X1)), �

−1(F2(X2)|F1(X1) < .5, F2(X2) > .5)

ρ+−
N (C) := Cor(�−1(F1(X1)), �

−1(F2(X2)|F1(X1) > .5, F2(X2) < .5)

ρ−−
N (C) := Cor(�−1(F1(X1)), �

−1(F2(X2)|F1(X1) < .5, F2(X2) < .5).

These population semi-correlations can easily be estimated based on the observed
data. Large values indicate the presence of tail dependence in the corresponding
corner of the bivariate copula space [0, 1] × [0, 1]. If the estimates of ρ++

N and ρ−−
N

differ considerably, then asymmetric tail dependence is present. For the bivariate
normal distribution explicit expressions for the semi-correlations can be derived.

2.4 Partial and Conditional Correlations

In the case of d variables, we consider the dependence of any pair of variables.
Additionally, we are interested in the dependence of two variables after the effect of
the remaining variables are removed (partial correlations) or the dependence when
we fix the values of the remaining variables (conditional correlations).

Definition 2.13 (Partial regression coefficients and partial correlation) Let
X1, ...Xd be random variables with mean zero and variance σ2

i . Further denote
by I d

−(i, j) the set {1, ..., d} with indices i and j for i 
= j removed. Define the
partial regression coefficients bi, j;I d

−(i, j)
for i < j as quantitieswhichminimize

E([Xi −
d∑

j=2, j 
=i

ai, j;I d
−(i, j)

X j ]2). (2.13)

The corresponding
(n
2

)
partial correlations ρi, j;I d

−(i, j)
are defined as

ρi, j;I d
−(i, j)

= sgn(bi, j;I d
−(i, j)

) ×
√

bi, j;I d
−(i, j)

× b j,i;I d
−(i, j)

. (2.14)
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The partial correlation can be interpreted as the correlation between the projection
of Xi and X j onto the plane orthogonal to the space spanned by X−(i, j). Here
X−(i, j) is the vector of variables, where the variables Xi and X j are removed. For the
calculation of the partial correlations, Yule and Kendall (1950) showed the following
recursive formula.

Theorem 2.14 (Recursion for partial correlations) The partial correlations
defined in (2.14) satisfy the following recursions:

ρi, j;I d
−(i, j)

=
ρi, j;I d−1

−(i, j)
− ρi,d;I d−1

−(i, j)
ρ j,d;I d−1

−(i, j)
√
1 − ρ2

i,d;I d−1
−(i, j)

√
1 − ρ2

j,d;I d−1
−(i, j)

. (2.15)

Ex 2.7 (Partial correlations in three dimensions) This example is taken from
page 69 of Kurowicka and Cooke (2006). For X1, X2, X3 with zero mean and
finite variance σ2

i the partial regression coefficients b12;3, b13;2, b21;3, and b23;1
minimize

E([X1 − a12;3X2 − a13;2X3]2)
E([X2 − a21;3X1 − a23;1X3]2)

over real valued a12;3, a13;2, a21;3 and a23;1. Taking partial derivatives and set-
ting the above equations to zero the partial regression coefficients have to satisfy

∂

∂b12;3
E([X1 − b12;3X2 − b13;2X3]2) = −2E([X1 − b12;3X2 − b13;2X3] × X2) = 0

∂

∂b13;2
E([X1 − b12;3X2 − b13;2X3]2) = −2E([X1 − b12;3X2 − b13;2X3] × X3) = 0

∂

∂b21;3
E([X2 − b21;3X1 − b23;1X3]2) = −2E([X2 − b21;3X1 − b23;1X3] × X2) = 0

∂

∂b23;1
E([X2 − b21;3X1 − b23;1X3]2) = −2E([X2 − b21;3X1 − b23;1X3] × X3) = 0

This implies using the zero-mean assumption that

Cov(X1, X2) − b12;3Var(X2) − b13;2Cov(X2, X3) = 0

Cov(X1, X3) − b12;3Cov(X2, X3) − b13;2Var(X3) = 0 (2.16)

Cov(X1, X2) − b21;3Var(X1) − b23;1Cov(X1, X3) = 0

Cov(X2, X3) − b21;3Cov(X1, X3) − b23;1Var(X3) = 0.



38 2 Dependence Measures

In the following, we shorten notation by setting ci j := Cov(Xi , X j ) and vi :=
Var(Xi ). Solving for b13;2 and b23;1 using the second and fourth equation of
(2.16) gives

b13;2 = c13 − b12;3c23
v3

and b23;1 = c23 − b21;3c13
v3

.

Substituting these back into the first and third equation of (2.16) yields

b12;3 =
c13×c23

v3
− c12

c223
v3

− v2

and b21;3 =
c13×c23

v3
− c12

c213
v3

− v1

.

Thus we obtain

ρ12;3 = √
b12;3 × b21;3

=
√
√
√
√
√

c13×c23
v3

− c12
c223
v3

− v2

×
c13×c23

v3
− c12

c213
v3

− v1

=
√
√
√
√
√

c13×c23
v3v2

− c12
v2

c223
v3v2

− v2
v2

×
c13×c23

v3v1
− c12

v1

c213
v3v1

− v1
v1

=

√
√
√
√
√

c213c223
v23v1v2

− 2c12c23c13
v3v1v2

+ c212
v2v1

(1 − ρ223)(1 − ρ213)

=
√

ρ213ρ
2
23 − 2ρ12ρ23ρ13 + ρ212
(1 − ρ223)(1 − ρ213)

=
√

(ρ12 − ρ13ρ23)2

(1 − ρ223)(1 − ρ213)

= (ρ12 − ρ13ρ23)
√

(1 − ρ223)(1 − ρ213)
.

This shows that the recursion (2.15) is valid for d = 3.

We now consider conditional correlations. Formally they are defined as the Pear-
son correlation of the bivariate distribution (Xi , X j ) given X I d

−(i, j)
.
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Table 2.2 WINE3: Estimated
partial correlations for the red
wine data of Example1.9

ρ̂ac f,acv;acc ρ̂ac f,acc;acv ρ̂acv,acc;ac f

0.19 0.66 −0.53

Definition 2.15 (Conditional correlations) The conditional correlation of
(Xi , X j ) given X−(i, j) is defined as

ρi j |I d
−(i, j)

:= E(Xi X j |X−(i, j)) − E(Xi |X−(i, j))E(X j |X−(i, j))

σ(Xi |X−(i, j))σ(X j |X−(i, j))
,

where σ2(Xi |X−(i, j)) and σ2(X j |X−(i, j)) are the corresponding conditional
variances.

Remark 2.16 (Properties of conditional correlations)

• For arbitrary bivariate distributions partial and conditional correlations are not the
same in general, however in the class of elliptical distributions they coincide (see
Baba et al. 2004).

• In general, the bivariate conditional distribution of (Xi , X j ) given X−(i, j) depends
on the conditioning values, thus the associated moments also depend on those.
However, under joint normality there is no dependence on the conditioning values.

Ex 2.8 (Empirical partial and conditional correlation of the wine data of
Example1.9) The estimated partial correlations associated with the data of
Example1.9 are given in Table2.2. This shows that there is a strong partial
correlation of acf and acc given acv. If we assume normality of the data,
then the estimated partial correlations are also estimates of the conditional cor-
relations.

2.5 Exercises

Exer 2.1
Tail dependence coefficients for the Student’s t-distribution: Derive the expression
(2.12) for the tail dependence coefficient of a bivariate Student’s t distribution.
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Table 2.3 WINE7: Estimated pairwise dependence measures (top: Kendall’s τ , middle: Pearson
correlations, bottom: Spearman’s ρs )

Estimated pairwise Kendall’s τ

acf acv acc clor st den ph

acf 1.00 −0.19 0.48 0.18 −0.06 0.46 −0.53

acv −0.19 1.00 −0.43 0.11 0.06 0.02 0.16

acc 0.48 −0.43 1.00 0.08 0.01 0.25 −0.39

clor 0.18 0.11 0.08 1.00 0.09 0.29 −0.16

st −0.06 0.06 0.01 0.09 1.00 0.09 −0.01

den 0.46 0.02 0.25 0.29 0.09 1.00 −0.22

ph −0.53 0.16 −0.39 −0.16 −0.01 −0.22 1.00

Estimated pairwise Pearson correlations ρ

acf acv acc clor st den ph

acf 1.00 −0.26 0.67 0.09 −0.11 0.67 −0.68

acv −0.26 1.00 −0.55 0.06 0.08 0.02 0.23

acc 0.67 −0.55 1.00 0.20 0.04 0.36 −0.54

clor 0.09 0.06 0.20 1.00 0.05 0.20 −0.27

st −0.11 0.08 0.04 0.05 1.00 0.07 −0.07

den 0.67 0.02 0.36 0.20 0.07 1.00 −0.34

ph −0.68 0.23 −0.54 −0.27 −0.07 −0.34 1.00

Estimated pairwise Spearman’s ρs

acf acv acc clor st den ph

acf 1.00 −0.28 0.66 0.25 −0.09 0.62 −0.71

acv −0.28 1.00 −0.61 0.16 0.09 0.03 0.23

acc 0.66 −0.61 1.00 0.11 0.01 0.35 −0.55

clor 0.25 0.16 0.11 1.00 0.13 0.41 −0.23

st −0.09 0.09 0.01 0.13 1.00 0.13 −0.01

den 0.62 0.03 0.35 0.41 0.13 1.00 −0.31

ph −0.71 0.23 −0.55 −0.23 −0.01 −0.31 1.00

Exer 2.2
URAN3: Three-dimensional uranium data: Perform the same analysis as for the wine
data in Example2.8 for variables Co, Ti, and Sc of the data uranium contained
in the R package copula of Hofert et al. (2017). This data was also considered in
Acar et al. (2012) and Kraus and Czado (2017b).

Exer 2.3
ABALONE3: Three-dimensional abalone data: Perform the same analysis as for the
wine data in Example2.8 for variables shucked, viscera and shell of the
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data abalone contained in the R package PivotalR from Pivotal Inc. (2017).
Again restrict your analysis to the female abalone shells.

Exer 2.4
WINE7: Estimated bivariate dependencies: Consider again the data of Exercise1.7.
Estimates of bivariate dependence measures are given in Table2.3. Interpret the
strength between the pairs of variables.

Exer 2.5
Calculation of partial correlations: Show that the conditional correlation ρi j |I d

−(i, j)

when X = (X1, ..., Xd) ∼ Nd(μ, �) can be calculated as the (i, j)th element of
the matrix �−1.

Exer 2.6
Partial correlation is equal to conditional correlation under normality for d = 3:
Show that the partial correlation ρ12;3 is equal to the conditional correlation ρ12|3,
when the random variables (X1, X2, X3) are jointly normal distributed.

Exer 2.7
Connection between partial and ordinary correlations: Consider the following set
of partial and ordinary correlations Sp := {ρ12, ρ23, ρ34, ρ13;2, ρ24;3, ρ14;23} and
the set of ordinary correlations S := {ρ12, ρ23, ρ34, ρ13, ρ24, ρ14} between four ran-
dom variables. Using Theorem 2.14 show that there exist a one-to-one relationship
between the sets Sp and S.



3Bivariate Copula Classes,Their
Visualization,andEstimation

3.1 Construction of Bivariate Copula Classes

There are threemajor construction approaches of copulas. One arising from applying
the probability integral transform (see Definition1.3) to eachmargin of knownmulti-
variate distributions and one to use generator functions. The first approach applied to
elliptical distributions yields the class of elliptical copulas.With the second approach,
we obtain the class of Archimedean copulas. The well-known examples of this class
are the Clayton, Gumbel, Frank, and Joe copula families. The third approach arises
from extensions of univariate extreme-value theory to higher dimensions.

3.2 Bivariate Elliptical Copulas

In Chap.1, we have already seen two members of the class of elliptical copulas,
namely, the multivariate Gauss copula (Example1.12) and the multivariate Student’s
t copula (Example1.14). Here we consider the bivariate versions (Examples1.11 and
1.13).

3.3 Archimedean Copulas

Archimedean copulas are discussed extensively in the books by Joe (1997) and
Nelsen (2006). A more recent characterization of the generator functions can be
found in McNeil and Nešlehová (2009). Here we give an elementary introduction to
bivariate Archimedean copulas.

© Springer Nature Switzerland AG 2019
C. Czado, Analyzing Dependent Data with Vine Copulas, Lecture Notes
in Statistics 222, https://doi.org/10.1007/978-3-030-13785-4_3
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Definition 3.1 (Bivariate Archimedean copulas) Let � be the set of all con-
tinuous, strictly monotone decreasing, and convex functions ϕ : I → [0,∞]
with ϕ(1) = 0. Let ϕ ∈ �, then

C(u1, u2) = ϕ[−1](ϕ(u1) + ϕ(u2)) (3.1)

is a copula. C is called a bivariate Archimedean copula with generator ϕ. Is
ϕ(0) = ∞, the generator is called strict. Here ϕ[−1] is the pseudo-inverse of
ϕ, which is defined as ϕ[−1] : [0,∞] → [0, 1] with

ϕ[−1](t) :=
{

ϕ−1 (t) , 0 ≤ t ≤ ϕ (0)

0 , ϕ (0) ≤ t ≤ ∞.

Remark 3.2 (Properties of generators of Archimedean copulas)

1. If ϕ (0) = ∞, then ϕ[−1] (t) = ϕ−1 (t) ∀t ∈ [0,∞].
2. The pseudo-inverse ϕ[−1] is continuous, nonincreasing on [0,∞] and strictly

decreasing on [0,ϕ(0)].
3. It satisfies ϕ[−1](ϕ(u)) = u on [0, 1] and

ϕ(ϕ[−1](t)) =
{
t , 0 ≤ t ≤ ϕ (0)

ϕ(0) ,ϕ (0) ≤ t ≤ ∞.

4. Some authors prefer to express Archimedean copulas in terms of ψ(w) :=
ϕ[−1](w) forw > 0. This allows for simpler expressions for associated stochastic
representations.

Lemma 3.3 (Density ofArchimedean copulas) IfC is a continuousArchimedean
copula, then its density c can be expressed as

c(u1, u2) = ∂2C(u1, u2)

∂u1∂u2
= ϕ′′(C(u1, u2))ϕ′(u1)ϕ′(u2)

[ϕ′(C(u1, u2))]3 . (3.2)

We discuss now examples of parametric bivariate Archimedean copulas with a
single parameter.
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Ex 3.1 (Parametric bivariate Archimedean copulas with a single parameter)
The bivariate Clayton copula is given as

Clayton: C(u1, u2) = (u−δ
1 + u−δ

2 − 1)−
1
δ , (3.3)

where 0 < δ < ∞ control the degree of dependence. Full dependence is
obtained when δ → ∞. Independence corresponds to δ → 0.

The bivariate Gumbel copula is given as

Gumbel: C(u1, u2) = exp[−{(− ln u1)
δ + (− ln u2)

δ} 1
δ ], (3.4)

where δ ≥ 1 is the parameter of dependence. For δ → ∞ we have full depen-
dence, while δ = 1 corresponds to independence.

The bivariate Frank copula is given as

Frank: C(u1, u2) = −1

δ
ln

(
1

1 − e−δ
[(1 − e−δ) − (1 − e−δu1)(1 − e−δu2)]

)
,

(3.5)
where the parameter δ can take values in [−∞, ∞]\{0}. For δ → 0+, the
independence copula arises.

The bivariate Joe copula is defined as

Joe: C(u1, u2) = 1 −
(
(1 − u1)

δ + (1 − u2)
δ − (1 − u1)

δ(1 − u2)
δ
) 1

δ
,

(3.6)
where δ ≥ 1. The independence copula corresponds to δ = 1. The copula
densities are illustrated in Fig. 3.1 where the copula parameter of each of the
fourArchimedean copulas results in aKendall’s τ = .7. In particular, this occurs
if δ = 4.7 for the Clayton copula, δ = 3.3 for the Gumbel copula, δ = 11 for
the Frank copula, and δ = 5.5 for the Joe copula. For details on the relationship
between the parameters of Archimedean copulas and associated Kendall’s τ see
Sect. 3.5.

There are also Archimedean copulas available with two parameters such as the
BB1 and BB7 families.
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Fig.3.1 Archimedean copulas: BivariateArchimedean copula densitieswith a single param-
eter: top left: Clayton, top right: Gumbel, bottom left: Frank, and bottom right: Joe (the copula
parameter is chosen in such a way that the corresponding Kendall’s τ = .7)

Ex 3.2 (BB copulas) The BB notation was introduced in Joe (1997), and
the properties of several members of the BB family were explored in
Nikoloulopoulos et al. (2012). A summary of the properties of the BB fam-
ily is also contained in Joe (2014). The bivariate BB1 copula is defined as

BB1: C(u, v; θ, δ) =
{
1 + [(u−θ − 1)δ + (v−θ − 1)δ] 1δ

}− 1
θ

= η(η−1(u) + η−1(v)),

(3.7)
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where η(s) = ηθ,δ(s) = (1 + s
1
δ )− 1

θ . Note that η corresponds to the inverse
generator. Here the parameter range is θ > 0 and δ ≥ 1. For θ → 0+ and the
δ → 1+, the independence copula arises. The bivariate BB7 copula is defined
as

BB7: C(u, v; θ, δ) = 1 −
(
1 − [(1 − (1 − u)θ)−δ + (1 − (1 − v)θ)−δ − 1]− 1

δ

) 1
θ

= η(η−1(u) + η−1(v)),

(3.8)

where η(s) = ηθ,δ(s) = 1 − [1 − (1 + s)− 1
δ ] 1θ , θ ≥ 1 and δ > 0. The

independence copula corresponds to θ = 1 and δ = 0. We now illustrate the
corresponding copula densities. Since both families have two parameters, there
are more than one parameter set to achieve a fixed Kendall’τ . For both families,
we use two parameter sets for a resulting τ = .7 and the corresponding copula
density plots are shown in Fig. 3.2.

3.4 Bivariate Extreme-Value Copulas

In extreme-value theory, one is interested in studying the behavior of extreme events
and their dependence. The foundation for probabilistic modeling of multivariate
extremes including asymptotic theory was developed in de Haan and Resnick (1977)
and Pickands (1981). Books which focus on the statistical inference for extreme-
value distributions are Coles et al. (2001), Beirlant et al. (2006) and McNeil et al.
(2015). The connection of multivariate extreme-value theory to copulas has been
investigated in Gudendorf and Segers (2010). Genest and Nešlehová (2013) give
a survey of using copulas to model extremes. We restrict in this short exposition
to the bivariate case. In particular, we consider n i.i.d. bivariate random vectors
X i = (Xi1, Xi2)

	 for i = 1, . . . , n with common bivariate distribution function F
andmargins F1, F2. Further, letCX be the corresponding copula to F . Inmultivariate
extreme-value theory often the behavior of component-wise maxima defined by

Mnj = max
i=1,...,n

(Xi j ) for j = 1, 2 (3.9)

is studied. It is easy to show that the copulaCMn associated withMn = (Mn1, Mn2)
	

is given by

CMn (u1, u2) = [CX (u
1
n
1 , u

1
n
2 )]n (3.10)

Even though the vector of component-wise maxima does not in general constitute
a sample point, multivariate extreme-value theory studies the limiting behavior of
(3.10).
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Fig. 3.2 BB copula densities: Top left: BB1 with δ = 20/12, θ = 2, top right: BB1 with
δ = 2, θ = 4/3, bottom left: BB7 with θ = 2, δ = 4.5, and bottom right: BB7 with θ = 1.3, δ = 2
(copula parameters are chosen in such a way that the corresponding Kendall’s τ = .7)

Definition 3.4 (Bivariate extreme-value copula) A bivariate copulaC is called
an extreme-value copula if there exists a bivariate copula CX such that for
n → ∞ we have

[CX (u1/n1 , u1/n2 )]n → C(u1, u2)∀(u1, u2) ∈ [0, 1]2. (3.11)

The copula CX is said to be in the domain of attraction of the copula C.
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One characterization of bivariate extreme-value copulas involvesmax stable cop-
ulas.

Definition 3.5 A bivariate copula C is called max stable if it satisfies

C(u1, u2) = [C(u1/m1 , u1/m2 )]m (3.12)

for every integer m ≥ 1 and for all (u1, u2) ∈ [0, 1]2.

This definition allows in view of (3.11) the following characterization.

Theorem 3.6 (Max stability and extreme-value copula) A bivariate copula
C is an extreme-value copula if and only if it is a max stable copula.

The proof is left as an exercise. So far, the definition of an extreme-value and a max
stable copula can be easily extended to the d-dimensional case and also Theorem3.6
remains valid. It is now possible to characterize a d-dimensional extreme-value cop-
ula in terms of a stable tail dependence function. To define the stable tail dependence
function one requires the notion of a spectral measure. Details can be found, for
example, in Beirlant et al. (2006).

The following characterization of extreme value copulas in terms of the Pickands
dependence function A is only valid in the bivariate case.

Theorem 3.7 (Characterization of bivariate extreme-value copulas in terms of
the Pickands dependence function) A bivariate copula C is an extreme-value
copula if and only if

C(u1, u2) = exp

{
[ln(u1) + ln(u2)] A

(
ln(u2)

ln(u1u2)

)}
, (3.13)

where the function A : [0, 1] → [ 12 , 1] is convex and satisfiesmax{1− t, t} ≤
A(t) ≤ 1 for all t ∈ [0, 1]. The function A is called the Pickands dependence
function.

The proof starts with the representation of extreme-value copulas in terms of their
stable tail dependence function restricted to two dimensions and uses the unit simplex
{(1 − t, t), t ∈ (0, 10} to express the stable tail dependence function in terms of the
Pickands dependence function.An illustrationof the admissible rangeof thePickands
dependence function is given in Fig. 3.3.
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Fig. 3.3 Pickands
dependence function:
The admissible range is
colored in gray. The dashed
upper line corresponds to the
independence copula while
the solid line denotes
max{t, 1 − t}, which
corresponds to perfectly
dependent variables. The
dotted lines show two
examples of typical
dependence functions
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Using Theorem3.7, it is easy to express the conditional distribution functions
and the copula density of bivariate extreme-value copulas in terms of their Pickands
dependence function.

Lemma 3.8 (Conditional distribution functions and copula density of a bivari-
ate extreme-value copula) Assuming that the Pickands dependence function A
of the bivariate extreme-value copula C is twice differentiable the conditional
distributions and the copula density can be expressed as follows:

C2|1(u2|u1) = C(u1, u2)

u1
(A(t) − t A′(t)) (3.14)

C1|2(u1|u2) = C(u1, u2)

u2
(A(t) + (1 − t)A′(t)) (3.15)

c(u1, u2) = C(u1, u2)

u1u2

·
[
A(t)2 + (1 − 2t)A′(t)A(t) − (1 − t)t

(
A′(t)2 − A′′(t)

ln(u1u2)

)]
(3.16)

where t = ln(u2)/ ln(u1u2).

There are many parametric families of bivariate extreme-value copulas known in
the literature. One special bivariate extreme-value copula is theMarshall–Olkin cop-
ula (Marshall and Olkin 1967). It is the copula associated with dependent lifetimes
of two components, which fail after the occurrence of a shock. Shocks can occur to a
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single component or jointly to both components. For more details see, for example,
Durante et al. (2015).Mai and Scherer (2010) showed that theMarshall–Olkin copula
is max stable and thus an extreme-value copula. Its Pickands dependence function is
not continuous and thus statistical inference is more difficult to derive. However, the
Marshall–Olkin copula occurs often as limiting case of other extreme-value copulas.

The next example of a parametric extreme-value copula is theHüsler–Reiss copula
with parameter λ ≥ 0. It arises as the associated copula from taking blockmaxima of
a bivariate normal distribution, where the correlation parameter converges to one in
addition to the block size going to infinity. In particular, thismeans that the correlation
parameter ρ depends on the block size n, i.e., ρ = ρn , and it is assumed that ρn → 1
for n → ∞. Additionally, one requires that (1 − ρn) ln(n) → λ2 for a λ ≥ 0 for
n → ∞. This was shown in Hüsler and Reiss (1989). Similarly, the t extreme-value
(t-EV) copula arises from the bivariate Student’s t distribution. A derivation of the
t-EV copula is given in Demarta and McNeil (2005).

The only Archimedean copula, which is also extreme value, is the Gumbel copula.
It is obtained as the limit of block maxima of bivariate Archimedean copulas with
generator ϕ. More precisely, the generator has to be differentiable and the following
limit has to exist (Gudendorf and Segers 2010):

θ := − lim
s↓0

sϕ′(1 − s)

ϕ(1 − s)
∈ [1,∞].

In this case the Gumbel copula with parameter θ as the limit of block maxima arises.
If one considers the survival copula (for precise definition see Example3.3) of an
Archimedean copula with differentiable generator ϕ, Gudendorf and Segers (2010)
note the following: If the limit

δ := − lim
s↓0

ϕ(s)

ϕ′(s)
∈ [0,∞]

exist, the Galambos copula with parameter δ first discussed in Galambos (1975)
arises. Tawn (1988) introduced a three parameter extreme-value copula family,which
allows for very flexible shapes (see also Fig. 3.10).

Table3.1 is taken from Eschenburg (2013) and gives the Pickands dependence
function of these common extreme-value copulas together with their domain of
attraction.

Figure3.4 also taken from Eschenburg (2013) displays the interconnectedness
of the bivariate extreme-value copulas given in Table3.1. In particular the Gumbel
copula can be obtained from the Tawn copula (with parametersψ1 = ψ2 = 1) as well
as from the BB5 copula (with parameter δ → 0). Similarly, the Galambos copula
can be obtained from the extended Joe copula (with parameters ψ1 = ψ2 = 1) as
well as from the BB5 copula (with parameter θ = 1). The extended Joe copula with
ψ1 = ψ2 = 1 is the standard Joe copula discussed, for example, on page 170 of Joe
(2014).
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Table 3.1 Overview: Extreme-value copula families and their Pickands dependence functions
(Eschenburg 2013)

Copula
family

Pickands dependence function Parameter(s) Domain of
attraction

Symmetry

Marshall–
Olkin

A(t) = max{1−α1(1−t), 1−α2t} 0 ≤
α1,α2 ≤ 1

No

Hüsler–Reiss A(t) = (1 − t)�(z1−t ) + t�(zt ),
zt = ( 1λ + λ

2 ln t
1−t )

λ ≥ 0 Gaussian
copula

Yes

t-EV A(t) = (1 − t) · Tν+1(z1−t ) + t ·
Tν+1(zt ), zt = (1 +
ν)1/2

([
t

1−t

]1/ν − ρ

)
(1−ρ2)−1/2

ν > 0,
−1 < ρ < 1

Student’s t
copula

Yes

Gumbel A(t) = [tθ + (1 − t)θ]1/θ θ ≥ 1 Archimedean
copula

Yes

Tawn A(t) = (1−ψ1)(1− t)+ (1−ψ2)t
+[(ψ1(1 − t))θ + (ψ2t)θ]1/θ

0 ≤
ψ1,ψ2 ≤ 1,
θ ≥ 1

No

Galambos A(t) = 1 − [t−δ + (1 − t)−δ]−1/δ δ > 0 Archimedean
survival
copula

Yes

Extended Joe
(BB8)

A(t) = 1 − {[ψ1(1 − t)]−δ +
(ψ2t)−δ}−1/δ

0 ≤
ψ1,ψ2 ≤ 1,
δ > 0

No

BB5 A(t) = {tθ + (1 − t)θ − [(1 −
t)−θδ + t−θδ]−1/δ}1/θ

θ ≥ 1, δ > 0 Yes

Finally, we illustrate the bivariate Tawn copula density with three parameters for
four choices in Fig. 3.5. In particular, the four parameter set choices are

Set 1: θ = 2,ψ1 = .8,ψ2 = .2

Set 2: θ = 2,ψ1 = .8,ψ2 = .8

Set 3: θ = 5,ψ1 = .8,ψ2 = .2

Set 4: θ = 5,ψ1 = .8,ψ2 = .8.
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Fig. 3.4 Relationships between the bivariate extreme-value copulas:
Parameter ranges of the families are given on the right side. An arrow symbolizes that a family can
be obtained from another family by the given parameter(s). Arrows to the left display convergence
toward the independence copula (Eschenburg 2013)

3.5 Relationship Between Copula Parameters and Kendall’s τ

For bivariate Archimedean, extreme-value, and elliptical copulas, there exist general
results relating the Kendall’s τ to generators, the Pickands dependence function or
parameters of the copula families. In particular, the following result is available.

Theorem 3.9 (Kendall’s τ for bivariate Archimedean, extreme-value, and
elliptical copulas) Let ϕ a generator of a bivariate Archimedean copula and
A the Pickands dependence function of a bivariate extreme-value copula with
existing first derivative. The corresponding Kendall’s τ for the Archimedean
copula satisfies

τ = 1 + 4
∫ 1

0

ϕ(t)

ϕ′(t)
dt (3.17)

and for the bivariate extreme we have

τ =
∫ 1

0

t (1 − t)

A(t)
d A′(t). (3.18)
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Fig. 3.5 Tawn copula densities: Top left: θ = 2,ψ1 = .8,ψ2 = .2, top right: θ = 2,
ψ1 = .8,ψ2 = .8, bottom left: θ = 5,ψ1 = .8,ψ2 = .2, and bottom right: θ = 5,ψ1 = .8,ψ2 = .8

For elliptical copulas, we obtain the following relationship between the asso-
ciation parameter ρ and Kendall’s τ

ρ = sin
(π

2
τ
)

. (3.19)

The proof for elliptical copulas is given, for example, in Embrechts et al. (2003),
while the proof for the Archimedean and the extreme-value copula can be found in
Hürlimann (2003). In particular, we see that extreme-value copulas can only model
positive dependence.
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Table 3.2 Relationships: Kendall’s τ and copula parameters for different bivariate copula
families

Family Kendall’s τ Range of τ

Gaussian τ = 2
π arcsin(ρ) [−1, 1]

t τ = 2
π arcsin(ρ) [−1, 1]

Gumbel τ = 1 − 1
δ [0, 1]

Clayton τ = δ
δ+2 [0, 1]

Frank τ = 1 − 4
δ + 4 D1(δ)

δ with

D1(δ) = ∫ δ
o

x/δ
ex−1dx (Debye function)

[−1, 1]

Joe τ =
1+

(
−2+2γ+2 ln(2)+�( 1δ )+�( 12

2+δ
δ )+δ

−2+δ

)
with Euler constant

γ = limn→∞
( ∑n

i=1
1
i − ln(n)

)
≈

0, 57721
and digamma function �(x) =
d
dx ln(�(x)) = d

dx �(x)/�(x)

[0, 1]

BB1 τ = 1 − 2
δ(θ+2) [0, 1]

BB7 τ = 1− 2
δ(2−θ) + 4

θ2δ
B( 2−2θ

θ +1, δ+2)
for 1 < θ < 2
with beta function
B(x, y) = ∫ 1

0 t x+1(1 − t)y−1dt

[0, 1]

Now we will summarize the relationships between Kendall’s τ and the copula
parameters in Table3.2 for the discussed Archimedean and elliptical bivariate para-
metric copula families. Formany of the bivariate extreme-value copula families given
in Table3.1, there is no simplification possible over the general expression given in
(3.18).

We see from Table3.2 that the Gumbel, Clayton, Joe, BB1, and BB7 copulas
can only accommodate positive dependence (τ > 0). We can extend this range by
allowing for rotations which we will discuss in the next section.

In Fig. 2.1, we investigated the relationship of Kendall’s τ and Spearman’s ρs
as the Pearson correlation parameter ρ changes in any bivariate elliptical copula. In
Fig. 3.6, we show similar results for the Clayton and Gumbel copula. This shows that
there is a considerable difference between the associated Kendall’s τ and Spearman’s
ρs for the Clayton copula and somewhat less so for the Gumbel copula. In any case,
the difference is higher compared to the ones observed in Fig. 2.1 for the elliptical
copulas.
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Fig.3.6 Relationship: Copula parameter and rank-based dependence measures: Clayton cop-
ula (left) and Gumbel copula (right)

3.6 Rotated and Reflected Copulas

To extend the range of dependence we use counterclockwise rotations of the copula
density c(·, ·) by

• 90◦: c90(u1, u2) := c(1 − u2, u1),
• 180◦: c180(u1, u2) := c(1 − u1, 1 − u2), and
• 270◦: c270(u1, u2) := c(u2, 1 − u1).

This allows, for example, to extend the Clayton copula to a copula with a full
range of Kendall’s τ values by defining

cextendedclayton (u1, u2; δ) :=
{
cclayton(u1, u2) if δ > 0
cclayton(1 − u2, u1) otherwise

Here a 90◦ rotation is used for δ ≤ 0, but we also could use a 270◦ rotation. All
rotations of the copula density are illustrated in Fig. 3.7 using normalized contour
plots defined in Definition3.11. The term rotation is used in the context of the copula
density and does not correspond to rotations of the random vector (U1,U2).

Some rotations of bivariate copula density can also be explained by considering
reflections of uniform random variables on (0, 1). If (U1,U2) have copulaC then the
copula associated with the bivariate random vector (1 −U1, 1 −U2) is the survival
copula C discussed in Example3.3 with copula density given by c180. Recently, Joe
(2014) considered on p. 272 further reflections such as (1 − U1,U2) with the 1-
reflected copula C∗1(u1, u2) = u2 −C(1−u1, u2) and density c∗1(u1, u2) = c(1−
u1, u2) and (U1, 1−U2)with the2-reflected copulaC∗2(u1, u2) = u1−C(u1, 1−u2)
and density c∗2(u1, u2) = c(u1, 1 − u2). For further discussion see Exercise3.14.
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Fig.3.7 Rotations: Normalized contour plots of Clayton rotations: top left: 0◦ rotation (τ = .5),
top right: 90◦ rotation (τ = −.5), bottom left: 180◦ rotation (τ = .5), and bottom right: 270◦ rotation
(τ = −.5)

Ex 3.3 (Bivariate survival copulas) In univariate survival analysis, one models
the survival function S(t) := P(T > t) = 1 − F(t) of a lifetime T instead of
the distribution function F(t). For bivariate survival times (T1, T2) the bivariate
survival function S(t1, t2) := P(T1 > t1, T2 > t2) can be expressed using a
version of Sklar’s theorem as

S(t1, t2) = C(S1(t1), S2(t2)),

where Sk(tk) are themarginal survival functions of Tk for k = 1, 2. The copulaC
is called the survival copula. If we denote the associated copula to the lifetimes
(T1, T2) by C(u1, u2), we have the following relationship

C(u1, u2) = u1 + u2 + C(1 − u1, 1 − u2) − 1 (3.20)
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for 0 ≤ u1, u2, ≤ 1. Using differentiation of (3.20), it is straightforward to see
for the associated copula densities that

c(u1, u2) = c(1 − u1, 1 − u2) = c180(u1, u2).

Remark 3.10 (Exchangeability and reflection symmetry of bivariate copulas) Bivari-
ate copulas which satisfy c(u1, u2) = c(u2, u1) are called exchangeable or reflection
symmetric around the u1 = u2 axis. The one parametric copulas considered so far
are exchangeable. However, a 90 or 270◦ rotated version of the Clayton or Gumbel
copula is no longer exchangeable. In the case of nonsymmetric bivariate copulas,
the order of the arguments plays a role, so we might include them in the notation
of the copula, i.e., we write c12(u1, u2) or c21(u2, u1). However, the density value
of the random (U1,U2) is the same as of the random vector (U2,U1), so we have
c12(u1, u2) = c21(u2, u1) holds for every (u1, u2) ∈ [0, 1]2.

3.7 Relationship Between Copula Parameters andTail
Dependence Coefficients

For the bivariate Gaussian and Student’s t copula, we have already discussed the
tail dependence coefficients (see Definition2.12) in Examples2.6 and 2.12, respec-
tively. For the bivariate Archimedean copulas the tail dependence coefficients can
be expressed in terms of the corresponding generator functions. Similarly, the tail
dependence coefficients for bivariate extreme-value copulas can be written utilizing
the Pickands dependence function. These results are summarized in Table3.3. For
details on the derivation see, for example, Embrechts et al. (2003) andNikoloulopou-
los et al. (2012) .

3.8 ExploratoryVisualization

In this section, we are only considering bivariate parametric copulas, and therefore,
we can study the shape of the copula itself or the copula density, when it exists.
As in the univariate case, the exploration of the density is more insightful com-
pared to its distribution function (copula). Since the support of the copula is the unit
square, the copula densities for the different classes discussed before are not easy to
interpret. Therefore, we consider the transformation to a bivariate distribution with
normal N (0, 1) margins and density g(z1, z2). For example, if we consider a Gaus-
sian copula, then this transformation just yields a bivariate normal distribution with
zero mean vector, unit variances, and correlation ρ, i.e., contour plots of its density
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Table 3.3 Tail behavior: Tail dependence coefficients of different bivariate copula families
in terms of their copula parameters

Family Upper tail dependence Lower tail dependence

Gaussian – –

t 2tν+1

(
−√

ν + 1
√

1−ρ
1+ρ

)
2tν+1

(
−√

ν + 1
√

1−ρ
1+ρ

)
Gumbel 2 − 21/δ –

Clayton – 2−1/δ

Frank – –

Joe 2 − 21/δ –

BB1 2 − 21/δ 2−1/(δθ)

BB7 2 − 21/θ 2−1/δ

Galambos 2−1/δ –

BB5 2 − (2 − 2−1/δ)1/θ –

Tawn (ψ1 + ψ2) − (ψθ
1 + ψθ

2)
1/θ –

t-EV 2[1 − Tν+1(z1/2)] –

Hüsler–Reiss 2[1 − �( 1λ )] –

Marshall–Olkin min{α1,α2} –

should be ellipses with a center at (0, 0). For a visual inspection, we use contours of
the function g(z1, z2) to be studied, i.e., g(z1, z2) = k for different values of k. In the
above case, this provides an easy way to assess departures from the Gaussian copula
assumption. The contour plots of a bivariate density obtained from a copula density
transformed to achieve standard normal margins we call normalized bivariate copula
contour plots. In general, this gives us three variables scales.

Definition 3.11 (Variable scales) We consider the following scales:

• x-scale: original scale (X1, X2) with density f (x1, x2),
• u-scale: copula scale (U1,U2) where Ui := Fi (Xi ) and copula density
c(u1, u2), and

• z-scale: marginal normalized scale (Z1, Z2), where Zi := �−1(Ui ) =
�−1(Fi (Xi )) for i = 1, 2 with density

g(z1, z2) = c(�(z1), �(z2))φ(z1)φ(z2).

Here �(·) and φ(·) are the distribution and density function of a N (0, 1)
variable.
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Fig. 3.8 Bivariate elliptical copulas: First column: Gauss with τ = .7, second col-
umn: Gauss with τ = −.2, third column: Student’s t with ν = 4, τ = .7, and fourth column:
Student’s t with ν = 4, τ = −.2 (top row: normalized bivariate copula contours of g(·, ·) and
bottom row: pairs plot of a random sample (ui1, ui2) on the copula scale)

Normalized contour plots for many parametric copula families are implemented
in the R package VineCopula of Schepsmeier et al. (2018). For this, a BiCop
object for the desired copula family and its parameter has to be generated and then
the function contour can be applied.

In the following, we first give the normalized contour plots of the density g(z1, z2)
arising frombivariate elliptical copulas (Fig. 3.8). HereGaussian copulaswith τ = .7
and τ = .2 are compared to the corresponding Student’s t copula with degree of
freedom set to ν = 4. A similar plot is given for the bivariate Clayton and Gumbel
copulas in Fig. 3.9. These plots also show samples of the copula of size n = 500 in
the bottom panels.

To explore the contour shapes for extreme-value copulas we also visualize Tawn
copula for different combinations of the three parameters given in Fig. 3.10. The
exploration of the normalized contours for further bivariate copula families is left as
an exercise.

As expected the normalized bivariate copula contours in the two left panels of
Fig. 3.8 are ellipses, while diamond shapes occur in the Student’s t copula case as
seen in two right panels of Fig. 3.8. A careful inspection of the sample scatter plots in
Fig. 3.8 corresponding to the Student’s t copula also shows that the joint occurrence
of very large (close to 1) copula data values and very small (close to zero) values is
larger when compared to the Gaussian copula case. The Clayton copula (Fig. 3.9) can
be identified by lower tail dependence in the positive dependence case (τ > 0), while
the Gumbel copula (Fig. 3.9) shows the opposite behavior. For negative Kendall’s τ
values in the Clayton and Gumbel case we used a 90◦ rotation. The extreme-value
Tawn copula allows for nonsymmetric shapes around the diagonal in contrast to the
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Fig. 3.9 Bivariate Archimedean copulas: First column: Clayton with τ = .7, second
column: Clayton with τ = −.2, third column: Gumbel with τ = .7, and fourth column: Gumbel
with τ = −.2 (top row: normalized bivariate copula contours of g(·, ·) and bottom row: pairs plot
of a random sample (ui1, ui2) on the copula scale)
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Fig. 3.10 Bivariate Tawn copula with three parameters: First column:
τ = .14, second column: τ = .38, third column: τ = .18, and fourth column: τ = .56
(top row: normalized bivariate copula contours of g(·, ·) and bottom row: pairs plot of a random
sample (ui1, ui2) on the copula scale)

other visualized copulas in Figs. 3.8 and 3.9. The resulting Kendall’s τ values are
also given in the caption of Fig. 3.10.

These contour shapes can now be utilized in an exploratory fashion to select
appropriate copula families to observed copula data {(ui1, ui2)	, i = 1, ...n}. In
this case, we transform these observations to the z-scale by setting (zi1, zi2)	 :=
(�−1(ui1),�−1(ui2))	 for i = 1, ...n. Bivariate kernel density smoothing can now
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be applied to this data and used to estimate the corresponding contours. These empir-
ical normalized contours can then be compared to the contour shapes arising from
the parametric copula families. This allows for a first selection of an appropriate
copula family to the data at hand.

3.9 Simulation of Bivariate Copula Data

Since the joint bivariate copula density c12(u1, u2) can be expressed as the product
of c1|2(u1|u2) times c2(u2) = 1 for all (u1, u2), bivariate samples can be generated
as follows.

Algorithm 3.12 (Bivariate copula simulation)To simulate i.i.d. data {(ui1, ui2),
i = 1, ..., n} from bivariate copula distributions

• First, simulate ui1 from a uniform distribution on [0, 1] for i = 1, . . . , n.
• Second, simulate ui2 from the conditional distribution C2|1(·|ui1), where
C2|1(·|ui1) = h2|1(·|ui1) as defined in Definition1.16, i.e., set ui2 =
h−1
2|1(vi2|ui1) where vi2 is a realization of the uniform distribution for

i = 1, . . . , n.

This simulation algorithm is implemented by the function BiCopSim of the R
package VineCopula of Schepsmeier et al. (2018) for many parametric bivariate
copula families.

We can now compare theoretical normalized contour plots with ones based on
samples. For this, we use two-dimensional kernel density smoothing as provided for
example by the R function kdecop a of the R package kdecopula described
by Nagler (2016). In particular, the local likelihood estimator with nearest neigh-
bor bandwidth on the z-scale proposed by Geenens et al. (2017) is implemented
in kdecopula. This method has been shown to be the preferred method for cop-
ula kernel density estimations of bivariate copula densities in Nagler (2014). This
approach is also implemented in VineCopula for copuladata objects using the
function pairs.

Remark 3.13 (Bivariate kernel density estimates as estimates of the normalized z-
scale density g(·, ·)) If we use copula data and transform it to the z-scale, then
the corresponding sample (zi1, zi2) = (�−1(ui1), �−1(ui1) is a sample which has
standard normal margins. However, general kernel density estimation methods such
as kde2d do not enforce this restriction on the margins; therefore, they are only
approximations to the density corresponding to the z-data.

We will now illustrate how the empirical normalized contour plot based on bivari-
ate kernel density estimation compares to theoretical normalized contour plot for
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Fig. 3.11 Bivariate elliptical copulas: First column: Gauss with τ = .7, second
column: Gauss with τ = −.2, third column: Student’s t with ν = 4, τ = .7, and fourth column:
Student’s t with ν = 4, τ = −.2 (top row: normalized bivariate copula contours of g(·, ·) and
bottom row: empirical normalized bivariate copula contours based on a sample of size n = 500)
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Fig. 3.12 Bivariate Archimedean copulas: First column: Clayton with τ = .7, second
column: Clayton with τ = −.2, third column: Gumbel with τ = .7, and fourth column: Gumbel
with τ = −.2 (top row: normalized bivariate copula contours of g(·, ·) and bottom row: empirical
normalized bivariate copula contours based on a sample of size n = 500)

known parametric bivariate copula families. In Fig. 3.11 we compare empirical nor-
malized contour plots for medium and high dependence as measured by Kendall’s
τ using BiCopKDE in the R package VineCopula with theoretical contour plots
for two elliptical bivariate copula families. For the bivariate Archimedean Clayton
and Gumbel copula the corresponding plot is given in Fig. 3.12. Both plots illustrate
the satisfactory performance of the kernel density smoothing for this sample size.
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3.10 Parameter Estimation in Bivariate Copula Models

Assume that you have bivariate independent identically distributed data {(xi1, xi2),
i = 1, ..., n} available. The marginal distributions can either be known, known up to
marginal parameters or unknown.

In the known casewe transformdirectly to the copula scale by using the probability
integral transform

(ui1, ui2) := (F1(xi1), F2(xi2)) for i = 1, ..., n.

In the case of unknownmargins, one often uses a two-step approach by estimating
the margins first and then using the estimated marginal distributions F̂j , j = 1, 2 to
transform to the copula scale by defining the pseudo-copula data

(ui1, ui2) := (F̂1(xi1), F̂2(xi2)) for i = 1, ..., n.

and then formulate a copulamodel for the pseudo-copula data. If parametricmarginal
models are used, then we speak of an inference for margins approach (IFM) and
if the empirical distribution is applied we speak of a semiparametric approach.
The efficiency of the IFM approach has been investigated by Joe (2005), while the
semiparametric approach has been proposed by Genest et al. (1995).

Remark 3.14 (Misspecifications of marginal distributions) Kim et al. (2007) inves-
tigated in simulations the error one makes if the margins are misspecified and found
that this is only a problem if the margins are severely misspecified. For example,
they studied fitting normal margins, when the true margins are exponential. Such
misspecifications can be avoided, if a careful statistical analysis for the marginal
distributions is performed.

In both cases, we end up with data on the copula scale, which can be used for
estimation of the copula parameter of the chosen bivariate copula family. We first
discuss the inversion of Kendall’s τ approach for estimation. In this case, we choose
a copula family which has a one-to-one relationship between the copula parameter
θ and Kendall’s τ , i.e.,

τ = k(θ)

we can use the empirical estimator τ̂ of τ defined in (2.4) or (2.5) and set

θ̂τ := k−1(τ̂ ).

This gives an estimator of the copula parameter θ. Its asymptotic distribution you
can determine using the Delta method applied to the asymptotic distribution of τ̂ as
given in Theorem2.8. This is valid as long as the marginal distributions are known
up to the parameter and only approximately valid in the case of unknown margins.
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Table3.2 gives examples of bivariate parametric copula families that are amenable to
this way of proceeding. In the VineCopula package, the R function BiCopEst
with option method="itau" uses this inversion approach.

Alternatively, we can use maximum likelihood (ML), since the likelihood is given

�(θ; u) =
n∏

i=1

c(ui1, ui2; θ), (3.21)

where u := {(ui1, ui2), i = 1, ..., n} is the observed or pseudo-copula data. We
speak of pseudo-maximum likelihood if pseudo-copula data is used. The
(pseudo) maximum likelihood estimator θ̂ML maximizes (3.21). This approach is
implemented in VineCopula by using BiCopEst with method="mle".

This covers the case of independent identically distributed data {(xi1, xi2), i =
1, ..., n}. However, it there are marginal time series structures and/or regression
structures in the marginal data, then these have to be accounted for using appropriate
marginal models.

Remark 3.15 (Handlingmarginal data structures) In the case ofmarginal time series
structuresARMA(p,q) and/orGARCH(p,q)models (see, for example, Ruppert 2004)
can be fitted first to each of the two margins to account for marginal time depen-
dencies, and in a second step, standardized residuals are formed. These are then
approximately independent identically distributed and thus can be used to transform
to copula data. For the inclusion of covariate effects appropriate regression mod-
els can be used and again the resulting standardized residuals are used for further
processing.

Ex 3.4 (WINE3: Empirical and fitted normalized contour plots) The original
data is transformed to copula data scale using marginal empirical distributions.

Now we conduct a pairwise analysis to explore the dependence structure
among all pairs of variables. First, we determined empirical contours to the
normalized z-data using the function pairs in the R library VineCopula of
Schepsmeier et al. (2018), where the data is stored in a copuladata object.
The results are displayed in Fig. 3.13 and show non-elliptical dependencies.
Comparing to the shapes given in Sect. 3.8 a rotated 270◦ Gumbel copula might
be appropriate for the pair (acf,acv), while aGumbel copula for the pair (acf,
acc) and a Frank copula for the pair (acv, acc) might be reasonable choices,
respectively. The shape of the Frank copula will be explored in Exercise3.7.
The estimated Kendall’s τ values, the selected copula family and the (through
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acf

−0.19 0.48

acv

−0.43

acc

Fig. 3.13 WINE3: Upper triangle: pairs plots of copula data, diagonal: Marginal histograms of
copula data, and lower triangle: empirical contour plots of normalized copula data

Table 3.4 WINE3: Estimated Kendall’s τ , chosen copula family, and through inversion estimated
copula parameter for all pairs of variables

Pair τ̂ Copula family θ̂

(acf, acv) −0.19 Gumbel 270 −1.2

(acf, acc) 0.48 Gumbel 1.9

(acv, acc) −0.43 Frank −4.6

inversion) estimated copula parameter are given in Table3.4. To check infor-
mally our choices we use the estimated Kendall’s τ values given in Table2.1 and
transform them to a corresponding parameter estimate using the relationships
given in Table3.2. The corresponding fitted normalized contour plots are given
in Fig. 3.14.
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Fig. 3.14 WINE3: Fitted normalized contour plots for the chosen bivariate copula family with
parameter determined by the empirical Kendall’s τ estimate (left: acf versus acv, middle: acf
versus acc, and right: acv versus acc)

3.11 Conditional Bivariate Copulas

Sometimes one is interested in the dependence of two variables (X1, X2) conditional
on the value of a third variable X3 = x3. This dependence might change as the value
of x3 is changing. This dependence is characterized by the copula corresponding to
the bivariate distribution of (X1, X2) conditional on X3 = x3.

We start our discussion with the special case where three variables (U1,U2,U3)

have uniform margins and their joint distribution is given by a three-dimensional
copula C123 with copula density

c123(u1, u2, u3) = ∂3

∂u1∂u2∂u3
C123(u1, u2, u3).

To determine the bivariate distribution functionC12|3(·, ·|v3) of (U1,U2) givenU3 =
v3 we integrate the conditional density c12|3(u1, u2|v3) = c123(u1, u2, v3) to get

C12|3(u1, u2|v3) =
∫ u1

0

∫ u2

0
c123(v1, v2, v3)dv1dv2

=
∫ u1

0

∫ u2

0

∂3

∂v1∂v2∂v3
C123(v1, v2, v3)dv1dv2 (3.22)

= ∂

∂u3
C123(u1, u2, u3)|u3=v3 .

To derive the copula C12;3 corresponding to the bivariate distribution (U1,U2)

givenU3 = v3 we will apply the inverse statement of Sklar’s Theorem (1.17) to this
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distribution. Thus we require the marginal distribution functions of (U1,U2) given
U3 = v3. We denote by Ci(3)(ci(3)) the distribution (density) of the i th margin of
(U1,U2) given U3 = v3 for i = 1, 2. In particular, we have using (3.22)

C1(3)(u1|v3) = C12|3(u1, 1|u3)
= ∂

∂u3
C123(u1, 1, u3)|u3=v3

= ∂

∂u3
C13(u1, u3)|u3=v3 = C1|3(u1|v3).

Similarly, we get C2(3)(u2|v3) = C2|3(u2|v3) showing that the margins of (U1,U2)

givenU3 = v3 agree with the conditional distribution functions ofUi givenU3 = v3
for i = 1, 2. Now we have calculated all building blocks for the inverse statement
of Sklar’s theorem (1.17) to derive the copula C12;3 of (U1,U2) givenU3 = v3 with
distribution function C12|3, which is given by

C12;3(u1, u2|v3) = C12|3(C−1
1|3(u1|v3),C−1

2|3(u2|v3)|v3). (3.23)

We speak then of the conditional bivariate copula.
For a general bivariate distribution X1, X2 conditional on X3 = x3 we have the

same copula specified in (3.23) with conditioning value v3 = F3(x3), where F3 is
the marginal distribution function of X3. This follows from the invariance property
of copulas given in Lemma1.13.

Ex 3.5 (Conditional copula associated with a trivariate Frank copula) The
trivariate extension of the Frank copula considered in (3.5) is given

C123(u1, u2, u3; δ) = 1

ln(α)
ln

[
1 − (1 − α)

3∏
i=1

1 − αui

1 − α

]
, (3.24)

where α := exp(−δ) for δ ∈ [−∞, ∞]\{0}. We now want to determine the
bivariate distribution function of (U1,U3) given U2 = v2. Straightforward dif-
ferentiation and applying (3.22) determines this conditional distribution as

C13|2(u1, u3|v2; δ) = ∂

∂u2
C123(u1, u2, u3; θ)|u2=v2

= −αv2(1 − αu1)(1 − αu3)

(1 − α)2 − ∏3
i=1(1 − αui )|u2=v2

. (3.25)
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To determine the associated conditional copula C13;2(u1, u3|u2 = v2; δ) to
(3.25) we need the following marginals:

C1|2(u1|v2; δ) = ∂

∂u2
C12(u1, u2; δ)|u2=v2 = − αv2(1 − αu1)

(1 − α) − (1 − αu1)(1 − αv2)
,

C3|2(u3|v2; δ) = ∂

∂u2
C32(u3, u2; δ)|u2=v2 = − αv2(1 − αu3)

(1 − α) − (1 − αu3)(1 − αv2)
.

To apply (3.23), we need to invert the above margins by setting pi =
Ci |2(ui |u2; δ) ∈ (0, 1) for i = 1, 3. In particular, this implies

(1 − αui ) = − pi (1 − α)

αv2 − pi (1 − αv2)

for i = 1, 3. Using these expressions, it follows that the conditional copula
C13;2(p1, p3|v2; δ) can be expressed as

C13;2(p1, p3|v2; δ) = C13|2(C−1
1|2(p1|v2; δ),C−1

3|2(p3|v2; δ)|v2; δ)

= p1 p3
(1 − αv2) [1 − (1 − p1)(1 − p3)] − αv2

. (3.26)

Comparing (3.25) with (3.26), we see that the bivariate distribution of (U1,U3)

given U2 = v2 does not agree with the associated conditional copula. Thus, we
use different notations such as C13|2 versus C13;2.

Ex 3.6 (Conditional copula associated with a trivariate Clayton copula) The
trivariate extension of the Clayton copula considered in (3.3) is given by

C123(u1, u2, u3; δ) = (u−δ
1 + u−δ

2 + u−δ
3 − 2)−

1
δ , (3.27)

for 0 < δ < ∞. For (U1,U2,U3) with distribution function (3.27), the distri-
bution function of (U1,U3) given U2 = v2 is given by

C13|2(u1, u3|v2; δ) = (u−δ
1 + v−δ

2 + u−δ
3 − 2)−

1+δ
δ v

−(δ+1)
2 , (3.28)

with corresponding margins

C1|2(u1|v2; δ) = (1 + δ)(u−δ
1 + v−δ

2 − 1)−
δ+1
δ v

−(δ+1)
2 (3.29)

and similar expression for C1|3.
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Proceeding as in Example3.5, we can show that the copula associated with
(U1,U3) given U2 = v2 is given by

C13;2(p1, p3|v2; δ) =
(
p

− δ
1+δ

1 + p
− δ

1+δ
3 − 1

)− δ+1
δ

. (3.30)

This shows that the conditional copula is independent of the conditioning value
v2 and can be identified as a bivariate Clayton copula with parameter δ

1+δ .

3.12 Average Conditional and Partial Bivariate Copulas

In general, the conditional copula C13;2 as defined in (3.23) will depend on the
conditioning value, and thus, Gijbels et al. (2015) considered the average conditional
copula defined as

CA
13;2(u1, u3) :=

∫ 1

0
C13;2(u1, u3|v2)dv2, (3.31)

where the dependency on the conditioning value is integrated out. This concept
was first mentioned in Bergsma (2004, 2011) in the context of nonparametric tests
for conditional independence. From this definition, it is not clear that the average
conditional copula is a copula. We will show this later.

Another approach to remove the dependency on the conditioning value is the
partial copula, which was also discussed in Bergsma (2004). For this, we consider
the random variables

V1|2 := C1|2(U1|U2) and V3|2 := C3|2(U3|U2). (3.32)

These random variables are also called conditional probability integral transforms
(CPIT). The distribution of V1|2 is uniform since

P(V1|2 ≤ v1|2) =
∫ 1

0
P(C1|2(U1|U2) ≤ v1|2|U2 = u2)du2

=
∫ 1

0
P(U1 ≤ C−1

1|2(v1|2|u2)|U2 = u2)du2

=
∫ 1

0
C1|2(C−1

1|2(v1|2|u2)|u2)du2

=
∫ 1

0
v1|2du2 = v1|2
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holds. Similarly, V3|2 has a uniform distribution. Therefore, the joint distribution of
(V1|2, V3|2) is a copula and this copula is called the partial copula and is denoted
by CP . Note that this copula does not depend on a specific value the conditioning
variable U2.

Following Gijbels et al. (2015) we show now that the partial and the average
conditional copula coincides. For this, consider

CP (v1|2, v3|2) := P(V1|2 ≤ v1|2, V3|2 ≤ v3|2)

=
∫ 1

0
P(C1|2(U1|U2) ≤ v1|2,C3|2(U3|U2) ≤ v3|2|U2 = u2)du2

=
∫ 1

0
P(U1 ≤ C−1

1|2(v1|2|u2),U3 ≤ C−1
3|2(v3|2|u2)|U2 = u2)du2

=
∫ 1

0
C13|2(C−1

1|2(v1|2|u2),C−1
3|2(v3|2|u2)|U2 = u2)du2

=
∫ 1

0
C13;2(C1|2(C−1

1|2(v1|2|u2)|u2),C3|2(C−1
3|2(v3|2|u2)|u2)|u2)du2

=
∫ 1

0
C13;2(v1|2, v3|2|u2)du2

= CA(v1|2, v3|2)

for all values v1|2 and v3|2 in (0, 1). This also shows that the average conditional
copula is a copula, since the partial copula is a copula by definition.

3.13 Exercises

Exer 3.1
Galambos copula: Derive from the Pickands dependence function given in Table3.1
the Galambos copula and its copula density. Visualize this copula using normalized
contour plots for several values of δ.

Exer 3.2
t-EV copula: Derive from the Pickands dependence function given in Table3.1 the
t-EV copula and its copula density. Visualize this copula using normalized contour
plots for ρ = .3 and ρ = .7 for ν = 5.

Exer 3.3
Exploratory bivariate copula choices for the seven-dimensional red wine data: For
the data set considered in Exercise1.7 the pairs plot of the associated pseudo-copula
data is given in Fig. 3.15. For each pair of variables propose a pair copula family.
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Fig. 3.15 WINE7: upper triangular: pairs plots of copula data, diagonal: Marginal histograms of
copula data, lower triangular: empirical contour plots of normalized copula data

Exer 3.4
URAN3:Exploratory copula choices for the three-dimensionaluranium data: Con-
sider as in Example2.2 the three-dimensional subset of the uranium data set con-
tained in the R package copula with variables Cobalt (Co), Titanium (Ti) and
Scandium (Sc). As in Example3.4 transform the original data to the copula scale
using marginal empirical distributions. Then explore the empirical normalized con-
tour plots for all pairs of variables and suggest appropriate parametric pair copula
families. Check your choices by comparing the fitted to the empirical normalized
contour plots.

Exer 3.5
ABALONE3: Exploratory copula choices for the three-dimensional abalone data:
Consider as in Example2.3 the three-dimensional subset of the abalone data set
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contained in the R package PivotalR with variables shucked, viscera, and
shell. As in Example3.4 transform the original data to the copula scale using
marginal empirical distributions. Then explore the empirical normalized contour
plots for all pairs of variables and suggest appropriate parametric pair copula families.
Check your choices by comparing thefitted to the empirical normalized contour plots.

Exer 3.6
The effect of the degree of freedom in a bivariate Student’s t copula on the contour
shapes: For d f = 2, ..., 30 draw the normalized contour plots, when the association
parameter is ρ = .7. Do the same for ρ = −.2. How do these plots change when you
fix τ = .7 and τ = −.2, respectively.

Exer 3.7
Normalized contour shapes for Frank and Joe copulas: Draw normalized contour
shapes for the bivariate Frank and Joe copula defined in Example3.1 for Kendall’s
τ values .7 and −.2 using the function contour in the R package VineCopula.
Note you might need to apply rotations.

Exer 3.8
Normalized contour shapes for two parameter subclasses of the Tawn copula
with Pickands dependence function given in Table3.1: Draw normalized contour
shapes for the Tawn copula with two parameters. In particular, in the R package
VineCopula, the family fam=104 represents the Tawn copula where ψ2 = 1,
while fam=204 setsψ1 = 1. Again use contour in the R package VineCopula.
Explore also the range of the Kendall’s τ obtained as the parameters of these two
parameter subfamilies vary. Do the same for the upper tail dependence coefficient.

Exer 3.9
Kendall’s τ values and normalized contour shapes for BB1 and BB7 copulas:

• Draw perspective plots for Kendall’s τ values as the two parameters (θ, δ) of the
BB1 family change. Do the same for the BB7 family.

• Draw perspective plots for the upper tail dependence coefficient values as the two
parameters (θ, δ) of the BB1 family change. What is the range of achievable upper
tail dependence coefficients? Do the same for the BB7 family.

• Draw perspective plots for the lower tail dependence coefficient values as the two
parameters (θ, δ) of the BB1 family change. What is the range of achievable lower
tail dependence coefficients? Do the same for the BB7 family.

• Draw normalized contour shapes for the bivariate BB1 and BB7 copula defined
in Example3.2 for two parameter configurations of θ and δ yielding a Kendall’s τ
value .7. Do the same for a resulting Kendall’s τ value of −0.2. Again rotations
might be necessary.
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Exer 3.10
Conditional distribution of the Clayton copula: Derive and visualize the h functions
C2|1(u2|u1 = .5) andC1|2(u1|u2 = .5) of a bivariateClayton copulawith aKendall’s
τ = .5 and τ = .8, respectively. Compare the two functions. Do the same for a 90◦
rotated Clayton copula.

Exer 3.11
Conditional distribution of the Gumbel copula: Derive and visualize graphically the
h functions C2|1(u2|u1 = .75) and C1|2(u1|u2 = .75) of a bivariate Gumbel copula
with a Kendall’s τ = .7 and τ = .2, respectively. Compare the two functions. Do
the same for a 270◦ rotated Gumbel copula.

Exer 3.12
Conditional distribution of the Frank copula: Derive and visualize graphically the h
functions C2|1(u2|u1 = .25) and C1|2(u1|u2 = .25) of a bivariate Frank copula for
with a Kendall’s τ = .7 and τ = .2, respectively. Compare the two functions. Do
the same for a 90◦ rotated Frank copula.

Exer 3.13
Bivariate survival copula: Prove the relationship (3.20) for bivariate survival times.

Exer 3.14
Rotated and reflected versions of the two parameter Tawn copula:

• Consider again the two parameter Tawn copula family of Exercise3.8. For this
family plot normalized contour plots of all rotations and all reflections discussed
in Sect. 3.6.

• Under which conditions on the bivariate copula density can 1-reflected copula
density be interpreted as a rotated copula density?

• Show that C∗1(u1, u2) = u2 − C(1−U1, u2) is a copula and that it is the copula
of (1 −U1,U2).

Exer 3.15
Conditional copula associated with a trivariate Clayton copula: For Example3.6
derive Eqs. (3.28), (3.29) and (3.30).
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Fig. 3.16 Exploratory visualization: Top row: scatter plots on u-level scale. Bottom
row: normalized contour plots on z-level scale

Exer 3.16
Bivariate scatter and normalized contour plots: Analyze the bivariate scatter plots
of u-level and corresponding normalized contour plots on the z-level given in
Fig. 3.16 with respect to the strength of dependence, tail dependencies, symme-
tries, and exchangeability. In addition, for each of the three panels name a possible
parametric pair copula family that can be used to model the described dependence
characteristics.



4Pair CopulaDecompositions
andConstructions

The goal is to construct multivariate distributions using only bivariate building
blocks. The appropriate tool to obtain such a construction is to use conditioning.
Joe (1996) gave the first pair copula construction of a multivariate copula in terms
of distribution functions, while Bedford and Cooke (2001, 2002) independently
developed constructions expressed in terms of densities. Additionally they provided
a general framework to identify all possible constructions.

4.1 Illustration in Three Dimensions

We start with random variables X1, X2 and X3 and consider the recursive factoriza-
tion of their joint density given by

f (x1, x2, x3) = f3|12(x3|x1, x2) f2|1(x2|x1) f1(x1). (4.1)

Now we consider each part separately. To determine f3|12(x3|x1, x2) we con-
sider the bivariate conditional density f13|2(x1, x3|x2). Note that this density has
F1|2(x1|x2)( f1|2(x1|x2)) and F3|2(x3|x2)( f3|2(x3|x2)) asmarginal distributions (den-
sities) with associated copula density c13;2(·, ·; x2). More specifically, c13;2(·, ·; x2)
denotes the copula density associated with the conditional distribution of (X1, X3)

given X2 = x2. By Sklar’s Theorem 1.9 we have

f13|2(x1, x3|x2) = c13;2(F1|2(x1|x2), F3|2(x3|x2); x2) f1|2(x1|x2) f3|2(x3|x2).
(4.2)

© Springer Nature Switzerland AG 2019
C. Czado, Analyzing Dependent Data with Vine Copulas, Lecture Notes
in Statistics 222, https://doi.org/10.1007/978-3-030-13785-4_4
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Now f3|12(x3|x1, x2) is the conditional density of X3 given X1 = x1, X2 = x2 which
can be determined using Lemma 1.15 applied to (4.2) yielding

f3|12(x3|x1, x2) = c13;2(F1|2(x1|x2), F3|2(x3|x2); x2) f3|2(x3|x2). (4.3)

Finally direct application of Lemma 1.15 gives

f2|1(x2|x1) = c12(F1(x1), F2(x2)) f2(x2) (4.4)

f3|2(x3|x2) = c23(F2(x2), F3(x3)) f3(x3) (4.5)

Inserting (4.3), (4.4) and (4.5) into (4.1) yields a pair copula decomposition of the
joint density.

Definition 4.1 (A pair copula decomposition in three dimensions) A pair cop-
ula decomposition of an arbitrary three dimensional density is given as

f (x1, x2, x3) = c13;2(F1|2(x1|x2), F3|2(x3|x2); x2) × c23(F2(x2), F3(x3)) (4.6)

× c12(F1(x1), F2(x2)) f3(x3) f2(x2) f1(x1).

From this decomposition we see that the joint three dimensional density can
be expressed in terms of bivariate copulas and conditional distribution functions.
However this decomposition is not unique, since

f (x1, x2, x3) = c12;3(F1|3(x1|x3), F2|1(x2|x1); x3) × c13(F1(x1), F3(x3))

× c23(F2(x2), F3(x3)) f3(x3) f2(x2) f1(x1) (4.7)

and

f (x1, x2, x3) = c23;1(F2|1(x2|x1), F3|1(x3|x1); x1) × c13(F1(x1), F3(x3)) (4.8)

× c12(F1(x1), F2(x2)) f3(x3) f2(x2) f1(x1)

are two different decomposition, which result from a reordering of the variables in
(4.1).

We speak of a pair copula decomposition of a multivariate distribution, when
the copulas associated with conditional distributions are allowed to depend on the
specific value of the underlying conditioning variable. In (4.6) this means that
c13;2(·, ·; x2) depends on x2. In the following we make often the assumption that
this dependence can be ignored. In this case we speak of making the simplifying
assumption. For a in-depth discussion of the simplifying assumption see Sect. 5.4.
In the remainder of this section we assume that the simplifying assumption holds.
Mathematically the simplifying assumption in three dimensions is given as follows.
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Definition 4.2 (Simplifying assumption in three dimensions) The simplifying
assumption of a three dimensional pair copula construction based on (4.6) is
satisfied when for any x2 ∈ R

c13;2(u1, u2; x2) = c13;2(u1, u2) for u1 ∈ [0, 1], u2 ∈ [0, 1]

holds.

Assuming the simplifying assumption, the right hand side of (4.6) can also be
used in a constructive fashion: Specify arbitrary parametric bivariate copula families
for c12;3, c23 and c12 copula densities with parameters θ12;3, θ23 and θ12 respectively
and define a valid parametric joint density as follows:

Definition 4.3 (Pair copula construction of a joint parametric density in three
dimensions) A parametric pair copula construction in three dimensions spec-
ifies a three dimensional density with parameter vector θ = (θ12, θ23, θ12;3)
as

f (x1, x2, x3; θ) := c13;2(F1|2(x1|x2), F3|2(x3|x2); θ13;2) × c23(F2(x2), F3(x3); θ23)
(4.9)

× c12(F1(x1), F2(x2), θ12) f3(x3) f2(x2) f1(x1),

where c13;2(·, ·; θ13;2), c12(·, ·; θ12) and c23(·, ·; θ23) are arbitrary parametric
bivariate copula densities.

In Definition 4.3 we also could allow for marginal parameters for the marginal
densities f1, f2 and f3. In the future we are often interested in considering the
dependence structure as characterized by the copula on its own.

Definition 4.4 (Pair copula construction of a three dimensional parametric
copula) A three dimensional parametric copula family with parameter vector
θ = (θ12, θ23, θ12;3) can be defined as follows

c(u1, u2, u3;θ) := c13;2(C1|2(u1|u2),C3|2(u3|u2); θ13;2) × c23(u2, u3; θ23)
(4.10)

× c12(u1, u2, θ12),

where C1|2(·|u2) and C3|2(·|u2) are the conditional distribution functions of
U1 given U2 = u2 and U3 given U2 = u2, respectively.
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Recall that the conditional distribution functionsC1|2(·|u2) andC3|2(·|u2) needed
in the construction have already been determined in in Eq. (1.26).

From the construction (4.9) or (4.10) we see that the bivariate marginal distribu-
tion of the variables (X1, X3) or (U1,U3) is not directly given, it can however be
determined by integration. In particular we have for (4.10)

c13(u1, u3;θ) =
∫ 1

0
c13;2(C1|2(u1|u2; θ12),C3|2(u3|u2; θ23); θ13;2)

× c23(u2, u3; θ23)c12(u1, u2; θ12)du2.

In practice we can also use simulated values to determine this bivariate margin.
To explore the flexibility for the shape of this margin we studied in Chap.5 of Stöber
and Czado (2017) the parametric pair copula constructions (4.10) as specified in
Table 4.1.

The panels in Fig. 4.1 demonstrate the flexibility of the pair copula constructions
in 3 dimensions. They are based on two-dimensional kernel density estimates using
1000000 data points simulated from (4.10) transformed to standard normal margins.
None of these normalized contour plots resemble the shapes of normalized contour
plots from known parametric bivariate copulas discussed in Chap.3.

In three dimensions we can also visualize three dimension contour regions
attached to a three dimensional density for different levels k, where f (x1, x2, x3) = k
holds. The contour regions on the normalized z-scale (z1 = �−1(u1), z2 =
�−1(u2), z3 = �−1(u3))were recently studied inKilliches et al. (2017) for arbitrary
three dimensional PCC’s. In Fig. 4.2 we show now the 3D normalized contour plots
for three different angles (given in columns) corresponding to the cases specified in
Table 4.1 (given in rows).

The non Gaussian behavior of the three variate copulas specified in Table 4.1 is
clearly visible by the non ellipsoid shapes in Fig. 4.2.

Before we continue with the pair copula construction wewould like to give further
characterizations of the copula associated with the conditional distribution (X1, X3)

given X2 = x2.

Table 4.1 Specifications: Models for the panels of normalized contour plots in Fig. 4.1
(Taken from Stöber and Czado (2017). With permission of c©World Scientific Publishing Co. Pte.
Ltd. 2017.)

(1, 2) (2, 3) (1, 3; 2)
Case Family Par. τ Family Par. τ Family Par. τ

1 Gumbel 5 0.80 Clayton −0.7 −0.26 Clayton 0.7 0.26

2 Student t (0.8,
1.2)

0.59 Gumbel 1.75 0.43 Student
t

(−0.95,
2.5)

−0.80

3 Joe 7 0.76 Joe 24 0.92 Joe 4 0.61

4 Frank −40 −0.90 Clayton 20 0.91 Frank 100 0.96
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Fig.4.1 Normalized contours: Estimated normalized contours of the bivariate (1, 3) mar-
gin corresponding to the four cases given in Table 4.1 (Taken from Stöber and Czado (2017). With
permission of c©World Scientific Publishing Co. Pte. Ltd. 2017.)

Ex 4.1 (Copula and density corresponding to (X1, X3) given X2 = x2) Assum-
ing the simplifying assumption and using Sklar’s Theorem 1.9 for the condi-
tional distribution function (X1, X3) given X2 denoted by F13|2 we can express
C13;2(·, ·|x2) the copula associated with the bivariate conditional distribution
function F13|2 as

C13;2(u1, u3; x2) = F13|2(F−1
1|2 (u1|x2), F−1

3|2 (u3|x2)).
Therefore the corresponding density c13;2(·, ·; x2) satisfies

c13;2(u1, u3|x2) = ∂2

∂v1∂v3
F13|2(v1, v3|x2)|v1=F−1

1|2 (u1|x2),v3=F−1
3|2 (u3|x2)

dv1

du1

dv3

du3
(4.11)
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Fig.4.2 3Dcontours: Three angles of 3D level surfaces for the three dimensional PCC’s specified
in Table 4.1 (top to bottom rows: Case 1 to Case 4)
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Since

dv1

du1
= dF−1

1|2 (u1|x2)
du1

= 1

f1|2(F−1
1|2 (u1|x2)|x2)

and a similar expression for dv3/du3 holds it follows that

c13;2(u1, u3; x2) = f13|2(F−1
1|2 (u1|x2), F−1

3|2 (u3|x2))
f1|2(F−1

1|2 (u1|x2)|x2) f3|2(F−1
3|2 (u3|x2)|x2)

=
f123(F

−1
1|2 (u1|x2),x2,F−1

3|2 (u3|x2))
f2(x2)

f12(F
−1
1|2 (u1|x2),x2)
f2(x2)

f23(x2,F
−1
3|2 (u1|x2))

f2(x2)

(4.12)

Using the density expression from Sklar’s Theorem 1.9 gives

f123(F
−1
1|2 (u1|x2), x2, F−1

3|2 (u3|x2)) = c123(F1(F
−1
1|2 (u1|x2)), F2(x2), F3(F−1

3|2 (u3|x2)))
× f1(F

−1
1|2 (u1|x2)) f2(x2) f3(F−1

3|2 (u3|x2))
f12(F

−1
1|2 (u1|x2), x2) = c12(F1(F

−1
1|2 (u1|x2)), F2(x2))

× f1(F
−1
1|2 (u1|x2)) f2(x2)

f23(x2, F
−1
3|2 (u3|x2)) = c23(F2(x2), F3(F

−1
3|2 (u3|x2)))

× f3(F
−1
3|2 (u3|x2)) f2(x2)

Inserting this into (4.12) results in

c13;2(u1, u3; x2) =
c123(F1(F

−1
1|2 (u1|x2)), F2(x2), F3(F−1

3|2 (u3|x2)))
c12(F1(F

−1
1|2 (u1|x2)), F2(x2))c23(F2(x2), F3(F−1

3|2 (u3|x2)))
(4.13)

Ex 4.2 (Copula and density corresponding to (U1,U3) given U2 = u2) We
will denote the copula corresponding to the bivariate distribution function
C13|2(·, ·|u2) of (U1,U3) given U2 = u2 by Cu

13;2(·, ·|u2) and its density by
cu13;2(·, ·|u2), respectively. We will derive an expression for cu13;2(·, ·|u2) and
relate it to c13;2(·, ·|u2) defined in (4.11). Using (1.18) we can express

cu13;2(u1, u3|u2) = c13|2(C−1
1|2(u1|u2),C−1

3|2(u3|u2))
c1|2(C−1

1|2(u1|u2)|u2)c3|2(C−1
3|2(u3|u2)|u2)
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= c123(C
−1
1|2(u1|u2), u2,C−1

3|2(u2|u2))
c12(C

−1
1|2(u1|u2), u2)c23(u2,C−1

3|2(u3|u2))
(4.14)

Inverting the relationship between inverse conditional distribution functions as
given in (1.28) it follows that

C−1
1|2(u1|F2(x2)) = F−1

1 (F−1
1|2 (u1|x2))

C−1
3|2(u3|F2(x2)) = F−1

3 (F−1
3|2 (u3|x2))

Let u2 = F2(x2) and inserting the above equations in (4.14) gives

cu13;2(u1, u3|u2) =
c123(F1(F

−1
1|2 (u1|x2)), F2(x2), F3(F−1

3|2 (u3|x2))
c12(F1(F

−1
1|2 (u1|x2)), F2(x2))c23(F2(x2), F3(F−1

3|2 (u3|x2)))
(4.15)

Comparing (4.15) with (4.13) shows that

cu13;2(u1, u3|u2) = c13;2(u1, u3|x2) for u2 := F2(x2)

We conclude this section by illustrating the pair copula construction using the
three dimensional red wine data of Example 1.9.

Ex 4.3 (WINE3: Pair copula constructions) In Example 3.4 we have already
chosen pair copula families for the three pairs as given in Table 3.4. Now we
investigate the three possible pair copula constructions given by (4.6), (4.7) and
(4.8) for this data set with pseudo copula observation (ui,ac f , ui,acc, ui,acv) for
i = 1, . . . , n. Here we enumerated the variables as follows: acf=1, acc=2 and
acv=3. In particular we need to choose appropriate pair copula families for the
distribution of

• PCC1: (Uacf ,Uacv) given Uacc (corresponds to (4.6))
• PCC2: (Uacf ,Uacc) given Uacv (corresponds to (4.7))
• PCC3: (Uacv,Uacc) given Uacf (corresponds to (4.8)),

where Uacf ,Uacv and Uacc are the corresponding copula random variables of
the variables acf, acv and acc. An approximate sample for the bivariate
distribution (Uacf ,Uacv) given Uacc is given by using the pseudo copula data

ui,ac f |acc := Cacf |acc(ui,ac f |ui,acc; θ̂ac f,acc) and ui,acv|acc := Cacv,acc(ui,acv |ui,acc; θ̂acv,acc),
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Table 4.2 WINE3: Three pair copula constructions together with empirically chosen pair copula
families, their estimated Kendall’s τ̂ and their estimated parameter θ̂

Pair copula Copula family τ̂ θ̂

PCC1

(acf,acv) Gumbel 0.48 1.94

(acv,acc) Frank −0.43 −4.57

(acf,acc;acv) Gauss 0.13 0.20

PCC2

(acf,acv) Gumbel 270 −0.19 −1.23

(acv,acc) Frank −0.43 −4.57

(acf,acc;acv) Gumbel 0.45 1.83

PCC3

(acf,acv) Gumbel 270 −0.19 −1.23

(acf,acc) Gumbel 0.48 1.94

(acv,acc;acf) Frank −0.38 −3.95

where θ̂ac f,acc = 1.9, θ̂acv,acc = −4.6 are the associated parameters of a 270◦
rotated Gumbel and a Frank copula, respectively. This bivariate sample can now
be used to determine empirical normalized contour plots for Cacf,acv;acc given
in the left top panel of Fig. 4.3. The shape of the empirical normalized contours
suggests to use a Gaussian copula forCacf,acv;acc. The corresponding empirical
Kendall’s τ is used to estimate the copula parameter for the Gaussian copula.
The corresponding fitted normalized Gaussian contours are given in the right
top panel of Fig. 4.3.

The corresponding results for the other two pair copula constructions , i.e. for
Cacf,acc;acv is given in the middle panels of Fig. 4.3 and for Cacv,acc;ac f in the
bottom panels of Fig. 4.3, respectively. ForCacf,acc;acv the empirical marginally
normalized contour plot suggested a Gumbel copula, while for Cacv,acc;ac f it is
a Frank copula. The corresponding empirical Kendall’s τ estimates are included
in the right panel of the figures.

Table 4.2 summarizes our findings. In Chap.7 we will discuss parameter
estimation more formally.

Ex 4.4 (WINE3: Three dimensional normalized contour plots) We now illus-
trate the three dimensional PCC’s estimated for the WINE3 data set using
three dimensional normalized contour regions as developed and discussed in
Killiches et al. (2017). The results are shown in Fig. 4.4. The first two columns
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Fig. 4.3 WINE3: Empirical (first column) based on pseudo copula data and normalized contour
plots (second column) for a Gaussian conditional pair copula Cacf,acv;acc needed for PCC1 (top
right), a 270◦ rotated Gumbel copula Cacf,acc;acv needed for PCC2 (middle right) and a Frank
copula Cacv,acc;ac f needed for PCC3 (bottom right)
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Fig. 4.4 WINE3: Three dimensional normalized contour plots corresponding to the fitted PCC’s
in Table 4.2 (top row: PCC1, middle row: PCC2 and bottom row: PCC3)

reflect the unconditional pair copula choices, while the last column corresponds
to an unconditional view of the last pair, which was not modeled directly. Thus
this pair is only obtainable by integration of the full density over the conditioning
variable.
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4.2 Pair-Copula Constructions of Drawable D-vine and Canonical
C-vine Distributions

The starting point is again the decomposition of a multivariate density into products
of conditional densities. For this let (X1, ..., Xd) be a set of variables with joint
distribution F1,...,d and density f1,...,d , respectively. Consider the decomposition

f1,...,d(x1, ..., xd) = fd|1,...,d−1(xd |x1, · · · , xd−1) f1...,d−1(x1, · · · , xd−1)

= · · · =
[

d∏
t=2

ft |1,...,t−1(xt |x1, · · · , xt−1)

]
× f1(x1). (4.16)

Here f (·|·) and later F(·|·) denote conditional densities and cumulative distribution
functions of the variables indicated by the subscripts, respectively.

As a second ingredient we use again Sklar’s Theorem 1.9 for dimension d = 2
and consequently Lemma 1.15 to expand the conditional densities. In the following
we need the notion of copulas associated with bivariate conditional distributions
in contrast to bivariate conditional distributions on the copula scale. Therefore we
introduce some useful abbreviations to shorten notation.

Definition 4.5 (Copulas associated with bivariate conditional distributions)
Let (X1, ..., Xd) be a set of random variables.

• Let D be a set of indices from {1, ..., d} not including i and j . The copula
associated with the bivariate conditional distribution (Xi , X j ) given that
XD = xD is denoted by Ci j;D(·, ·; xD).

• In contrast the conditional distribution function of (Ui ,Uj ) givenUD = uD

is expressed asCi j |D(·, ·; uD)with bivariate density function ci j |D(·, ·; uD).
• For distinct indices i, j and D := {i1, . . . , ik} with i < j and i1 < · · · < ik
we use the abbreviation

ci, j;D := ci, j;D(Fi |D(xi |xD), Fj |D(x j |xD); xD). (4.17)

Remark 4.6 (Difference between Ci j;D(·, ·; xD) and Ci j |D(·, ·; uD)) In general the
copulaCi j;D(·, ·; xD) is not equal to the bivariate distribution functionCi j |D(·, ·; uD)

even if uD = FD(xD) holds, since Ci j |D might have non uniform margins, while
Ci j;D needs to have uniform margins. In Example 3.5 we have explored these dif-
ferences in the case of the trivariate Frank copula.

These notations now allow us to decompose the joint density as follows.
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Theorem 4.7 (Drawable vine (D-vine) density)Every joint density f1,...,d can
be decomposed as

f1,...,d(x1, . . . , xd) =
[ d−1∏

j=1

d− j∏
i=1

ci,(i+ j);(i+1)...,(i+ j−1)

]
·
[ d∏
k=1

fk(xk)

]
,

(4.18)
where we used the abbreviation introduced in Eq. (4.17). The distribution asso-
ciated with this density decomposition is called a drawable vine (D-vine).

Proof Using Lemma (1.15) for the conditional distribution of (X1, Xt ) given
X2, . . . Xt−1 we can express the conditional density ft |1,...,t−1(xt |x1, . . . , xt−1)

recursively as

ft |1,...,t−1(xt |x1, . . . , xt−1) = c1,t |2,...,t−1 × ft |2,...,t−1(xt |x2, . . . , xt−1)

=
[ t−2∏
s=1

cs,t;s+1,...,t−1

]
× c(t−1),t × ft (xt ) (4.19)

Using (4.19) in decomposition (4.16) and setting s = i, t = i + j gives

f1,...,d(x1, . . . , xd) =
[ d∏
t=2

t−2∏
s=1

cs,t;s+1,...,t−1

]
·
[ d∏
t=2

c(t−1),t

][ d∏
k=1

fk(xk)

]

=
[ d−1∏

j=1

d− j∏
i=1

ci,(i+ j);(i+1)...,(i+ j−1)

]
·
[ d∏
k=1

fk(xk)

]
.

Note that the decomposition (4.18) of the joint density consists of pair-copula
densities ci, j |D(·, ·; xD) evaluated at conditional distribution functions Fi |D(xi |xi1 ,
· · · , xik ) and Fj |D(x j |xi1 , · · · , xik ) for specified indices i, j, i1, · · · , ik andmarginal
densities fk . This is the reason why we call such a decomposition a pair-copula
decomposition. This class of decompositions was named by Bedford and Cooke
(2001, 2002) the class of D-vine distributions.

A second class of decompositions is possible, when we apply Lemma (1.15) to
the conditional distribution of (Xt−1, Xt ) given X1, · · · , Xt−2 to express ft |1,...,t−1
(xt |x1, · · · , xt−1) recursively. This second class is given in Theorem 4.8.

Theorem 4.8 (Canonical vine (C-vine) density) The joint density can be
decomposed as

f (x1, ..., xd) =
[ d−1∏

j=1

d− j∏
i=1

c j, j+i;1,··· , j−1

]
×

[ d∏
k=1

fk(xk)

]
, (4.20)
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we used the abbreviation introduced in Eq. (4.17). According to Bedford and
Cooke (2001, 2002) this PCC is called a canonical vine (C-vine) distribution.

Proof Exercise.

We now extend the simplifying assumption of Definition 4.2 to C- and D-vines.

Definition 4.9 (Simplifying assumption for C and D-vines) If

ci j,D(Fi |D(xi |xD), Fj |D(x j |xD); xD) = ci j,D(Fi |D(xi |xD), Fj |D(x j |xD))

holds for all xD and i, j and D are chosen to occur in (4.18)–(4.20), then the
corresponding D-vine (C-vine) distribution is called simplified.

For illustration we specify simplified C- and D-vines in four dimensions.

Ex 4.5 (Simplified dimensional D- and C-vine density in four dimensions) For
d = 4 the simplified D-vine density has the following form

f1234(x1, x2, x3, x4) = [
4∏

i=1

fi (xi )] × c12(x1, x2) × c23(x2, x3) × c34(x3, x4)

× c13;2(F1|2(x1|x2), F3|2(x3|x2)) × c24;3(F2|3(x2|x3), F4|3(x4|x3))
× c14;23(F1|23(x1|x2, x3), F4|23(x4|x2, x3))

For the simplified C-vine we have

f1234(x1, x2, x3, x4) = [
4∏

i=1

fi (xi )] × c12(x1, x2) × c13(x1, x3) × c14(x1, x4)

× c23;1(F2|1(x2|x1), F3|1(x3|x1)) · c24;1(F2|1(x2|x1), F4|1(x4|x1))
× c34;12(F3|12(x3|x1, x2), F4|12(x4|x1, x2)).

4.3 Conditional Distribution Functions Associated with
Multivariate Distributions

The density of D- and C-vines requires the evaluation of conditional distribution
functions. We discuss these evaluations now in the context of a general distribution.
We begin with an illustrative example.
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Ex 4.6 (Computation of F1|23 and C1|23 in the simplified and non simplified
case) Using Sklar’s theorem for the bivariate conditional density f13|2 and
Lemma 1.15 to derive the associated marginal density f1|23 we have in the
simplified case

F1|23(x1|x2, x3) =
∫ x1

−∞
f1|23(y1|x2, x3)dy1

=
∫ x1

−∞
c13;2(F1|2(y1|x2), F3|2(x3|x2)) f1|2(y1|x2)dy1

=
∫ x1

−∞
∂

∂F1|2(y1|x2)
∂

∂F3|2(x3|x2)C13;2(F1|2(y1|x2), F3|2(x3|x2)) f1|2(y1|x2)dy1

= ∂

∂F3|2(x3|x2)
∫ x1

−∞

[
∂

∂y1
C13;2(F1|2(y1|x2), F3|2(x3|x2))

]
dy1

= ∂

∂F3|2(x3|x2)C13;2(F1|2(x1|x2), F3|2(x3|x2)).

In the copula case we have for C1|23 similarly

C1|23(u1|u2, u3) = ∂

∂C3|2(u3|u2)C13;2(C1|2(u1|u2),C3|2(u3|u2))

= ∂

∂v2
C13;2(h1|2(u1|u2), v2))|v2=h3|2(u3|u2)

= h1|3;2(h1|2(u1|u2)|h3|2(u3|u2)), (4.21)

where

h1|3;2(v1|v3) := ∂

∂v3
C13;2(v1, v3)

is the h function with respect to the first argument v1 of the bivariate copula
C13;2 (compare to Definition 1.16). In particular h1|3;2(·|v3) is the conditional
distribution function of V1 given V3 = v3 when the joint distribution of (V1, V3)
is given by C13;2. Here we used the fact that we are in the simplified case, i.e.
h1|3;2 does not depend on the conditioning value u2.

In the case of a non simplified vine the copula density c13;2 depends on u2
and therefore we define

h1|3;2(v1|v3; u2) := ∂

∂v3
C13;2(v1, v3; u2)

and can compute C1|23 accordingly.

This last example can now be generalized and we have the following result.



92 4 Pair Copula Decompositions and Constructions

Theorem 4.10 (Recursion for conditional distribution functions) Let X be a
random variable and Y be a random vector which have an absolutely contin-
uous joint distribution. Let Y j a component of Y and denote the sub-vector of
Y with Y j removed by Y− j . In this case the conditional FX |Y (·| y) distribution
of X given Y = y satisfies the following recursion

FX |Y (·| y) = ∂CX,Y j ;Y− j (FX |Y j (x | y− j ), FYj |Y j (y| y− j ))

∂FYj |Y− j (y j | y− j )
,

where CX,Y j ;Y− j (·, ·| y− j ) denotes the copula corresponding to (X, Y j ) given
Y− j = y− j .

Proof This result follows directly from the chain rule of differentiation and was first
stated in Joe (1996). �

4.4 Exercises

Exer 4.1
Exploratory copula choices for the three dimensional uranium data: Consider as
in Example 3.4 the three dimensional subset of the uranium data set contained in
the R package copula with variables Cobalt (Co), Titanium (Ti) and Scandium
(Sc).

• Use the copula choices you made for the pairs of variables to construct the
pseudo copula data needed for the estimation of the three conditional pair copulas
CCo,T i;Sc, CCo,Sc;T i and CSc,T i;Co.

• Construct the corresponding empirical normalized contour plots and suggest
appropriate pair copula families.

• Use these choices of pair copula families to construct a table (compare to Table
4.2) of empirical Kendall’s τ and θ estimates using inversion for the three possible
pair copula construction.

Exer 4.2
C-vine decomposition: Prove Theorem 4.8.

Exer 4.3
Gaussian pair copula construction in 3 dimensions: Show that in a pair copula
decomposition of the three dimensional normal distribution N3(μ, �) the copula
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density associated with the conditional distribution (X1, X3) given X2 = x2 does
not depend on x2. This means that the simplifying assumption is satisfied.

Exer 4.4
Pair copula construction in 3 dimensions of the multivariate Student t distribution:
Show that in a pair copula decomposition of a three dimensional Student t distribu-
tion t3(μ, ν, �) the copula density associated with the the conditional distribution
(X1, X3) given X2 = x2 does not depend on x2. This means that the simplifying
assumption is satisfied.

Exer 4.5
Pair copula construction in 3 dimensions of the multivariate Clayton copula: For the
three dimensional Clayton copula (see Eaxmple 3.6) defined as

C(u1, u2, u3) = (u−δ
1 + u−δ

2 + u−δ
3 − 2)

1
δ

for 0 < δ < ∞ derive the following properties:

• The bivariate conditional density c13|2 depends on the conditioning value u2.
• The copula density associated with the the conditional distribution (U1,U3) given
U2 = u2 does not depend on u2 and agrees with by a bivariate Clayton cop-
ula density with parameter δ

1+δ . This means that the simplifying assumption is
satisfied.

The Clayton copula in d dimensions has been considered in Joe (2014) in Sect. 4.6.2.

Exer 4.6
Conditional distributions in four dimensional simplified C-vines: Show that the
required conditional distributions in the simplified C-vine in four dimensions intro-
duced in Example 4.6 can be computed using only the pair copulas specified in the
construction. This holds true for C- and D-vines in arbitrary dimension.
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In the last chapter we saw that we can construct trivariate distributions using only
bivariate buildingblocks.Additionallywe introduced special vine distribution classes
such as C- and D-vine distributions in arbitrary dimensions through recursive condi-
tioning. In this chapterwe generalize this construction principle allowing for different
conditioning orders. As we already noted the construction is not unique, therefore
it will be important to allow for different constructions and to organize them. We
present now the approach developed by Bedford and Cooke (2001, 2002) and pre-
sented in Kurowicka and Cooke (2006), Stöber and Czado (2017).

5.1 Necessary GraphTheoretic Background

Since different constructions are identified with graph theoretical concepts we first
present the necessary background from graph theory. A good resource is Diestel
(2006).

Definition 5.1 (Graph, node, edge, degree) We use the following notation.

• A graph is a pair G = (N , E) of sets such that E ⊆ {{x, y} : x, y ∈ N }.
• The elements of E are called edges of the graph G, while the elements of
N are called nodes.

• The number of neighbors of a node v ∈ N is the degree of v, denoted by
d(v).

© Springer Nature Switzerland AG 2019
C. Czado, Analyzing Dependent Data with Vine Copulas, Lecture Notes
in Statistics 222, https://doi.org/10.1007/978-3-030-13785-4_5
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Fig. 5.1 Example graphs (I): Left panel: Graph for Example 5.1. Middle panel: discon-
nected graph with components on nodes N1 = {1, 2} and N2 = {3, 4, 5, 6}. Right panel: spanning
tree of the graph in the left panel

Ex 5.1 (Example of a graph) Consider the graph given in the left panel of
Fig. 5.1. It is a graph with G = (N , E) with nodes N = {1, 2, 3, 4, 5, 6} and
edges

E = {{1, 2}, {2, 3}, {2, 6}, {3, 4}, {3, 5}, {3, 6}, {4, 5}, {5, 6}}.

For example the degree of node 3 is d(3) = 4.

The graph G defined in Definition 5.1 is usually referred to as undirected, since
the order of nodes corresponding to an edge is arbitrary. In a directed graph the order
of the edge matters, therefore edge set E is tuple with two elements and is denoted
by E ⊆ {(x, y) : x, y ∈ N }. If there is a function w : E → R, then the graph
G is called weighted and denoted by G = (N , E, w), i.e., weights are assigned to
each edge. Moreover, if E = {{x, y} : x, y ∈ N } in Definition 5.1, then G is called
complete.

Ex 5.2 (Illustration of basic graph concepts) The left panel of Fig. 5.2 shows
a directed graph, while the middle panel gives a complete graph on four nodes.

A subgraph of a graph G = (N , E) is a graph G ′ = (N ′, E ′) with node set
N ′ ⊆ N and edge set E ′ ⊆ E . Important examples of graphs are paths and cycles,
which often occur as subgraphs of interest.

Definition 5.2 (Path, cycle) A path is a graph P = (N , E) with node set
N = {v0, v1, ..., vk} and edges E = {{v0, v1}, {v1, v2}, ..., {vk−1, vk}}. A
cycle is a path with v0 = vk .
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Fig.5.2 Example graphs (II): left panel: directed graph. Middle panel: complete graph on
four nodes. Right panel: spanning star with root node 1 in a complete graph

For example the graph in the left panel of Fig. 5.1 has a cycle given by 2 − 3 −
5 − 6 − 2 and a path by 1 − 2 − 3 − 4 − 5 − 6.

A graph G is called connected if any two of its nodes are linked by a path in
G. A disconnected graph is shown in the middle panel of Fig. 5.1. Further, a path
in G containing every node of G is called a Hamiltonian path,. The path given by
1−2−3−4−5−6 in the left panel of Fig. 5.1 is a Hamiltonian path. A cycle which
contains every node of G is called a Hamiltonian cycle. Two nodes are adjacent if
there is an edge connecting them, otherwise they are called non-adjacent.

The most important class of graphs that will be considered in the following are
trees, which are connected and do not contain cycles. They can be characterized by
the following theorem, where G ± e denotes a graph with an added/removed edge e.

Theorem 5.3 (Characterization of trees) The following statements are equiv-
alent for a graph T = (N , E):

1. T is a tree.
2. Any two nodes of T are connected by a unique path in T .
3. T is minimally connected, i.e., T is connected but T − e is disconnected

for every edge e ∈ E.
4. T is maximally acyclic, i.e., T contains no cycle but T + {x, y} does for

any two non-adjacent nodes x, y ∈ N.

A spanning tree of a graph G = (N , E) is a subgraph T = (NT , ET ), which is
a tree with NT = N . Moreover, a tree, which has a node v0 with d(v0) = |N | − 1,
will be called a star and v0 the root node. Obviously, in star trees it holds that
d(v) = 1 ∀v ∈ N \ {v0}.

The right panel of Fig. 5.1 shows a spanning tree of the graph in the left panel. A
spanning star with root node 1 is shown in the right panel of Fig. 5.2.
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5.2 Regular Vine Tree Sequences

Based on the graph theoretic concepts introduced in the last section, a regular (R-)
vine tree sequence can now be defined.

Definition 5.4 (Regular (R-) vine tree sequence) The set of trees V =
(T1, . . . , Td−1) is a regular vine tree sequence on d elements if:

(1) Each tree Tj = (N j , E j ) is connected, i.e. for all nodes a, b ∈ Tj , j =
1, . . . , d − 1, there exists a path n1, . . . , nk ⊂ N j with a = n1, b = nk .

(2) T1 is a tree with node set N1 = {1, . . . , d} and edge set E1.
(3) For j ≥ 2, Tj is a tree with node set N j = E j−1 and edge set E j .
(4) For j = 2, . . . , d − 1 and {a, b} ∈ E j it must hold that |a ∩ b| = 1.

Remark 5.5 (Proximity condition) The property (4) is called the proximity condition.
It ensures that if there is an edge e connecting a and b in tree Tj , j ≥ 2, then a and
b (which are edges in Tj−1) must share a common node in Tj−1.

Ex 5.3 (Six dimensional regular vine tree sequence specified using the set nota-
tion) We consider now an example for a vine tree sequence on six nodes with
treesT1 untilT5 by specifying their node sets Ni and edge sets Ei for i = 1, . . . , 5
as follows:

T1 N1 = {1, 2, 3, 4, 5, 6}
E1 = {{12}, {13}, {34}, {15}, {56}}

T2 N2 = E1 = {{12}, {13}, {34}, {15}, {56}}
E2 = {{{12}, {13}}, {{13}, {34}}, {{13}, {15}}, {{15}, {56}}}

T3 N3 = E2 = {{{12}, {13}}, {{13}, {34}}, {{13}, {15}}, {{15}, {56}}}
E3 = {{{{12}, {13}}, {{13}, {34}}},

{{{13}, {34}}, {{13}, {15}}},
{{{13}, {15}}, {{15}, {16}}}}

T4 N4 = E3 = {{{{12}, {13}}, {{13}, {34}}},
{{{13}, {34}}, {{13}, {15}}},
{{{13}, {15}}, {{15}, {16}}}}

E4 = {{{{{12}, {13}}, {{13}, {34}}}, {{{13}, {34}}, {{13}, {15}}}},
{{{{13}, {34}}, {{13}, {15}}}, {{{13}, {15}}, {{15}, {16}}}}}

T5 N5 = E4
E5 = {{{{{{12}, {13}}, {{13}, {34}}}, {{{13}, {34}}, {{13}, {15}}}},

{{{{13}, {34}}, {{13}, {15}}}, {{{13}, {15}}, {{15}, {16}}}}}}.



5.2 Regular Vine Tree Sequences 99

To shorten notation we used the abreviation i j for the unordered tuple {i, j}.
You can easily check that the proximity condition given in Remark 5.5 holds
for this example. As an example for a pair of nodes in tree T2 that cannot be
directly joined by an edge, consider the pair {1, 2} and {3, 4} from the node set
N2 in T2. They cannot be connected, since they do not share as edges in E1 a
common node in T1.

From Example 5.3 we see that the set notation becomes unmanageable even for
small numbers of nodes, therefore we now introduce a simplified edge notation for
a regular vine tree sequence. It will also be used later to assign bivariate copulas
for the regular vine construction of multivariate distributions. For this some further
notation is needed.

Definition 5.6 (m-child and m-descendent) For node e we define

• If node e is an element of node f , then we call f an m-child of e.
• Conversely if e is reachable from f via the membership relationship e ∈
e1 ∈ ... ∈ f , then e is called an m-descendent of f .

Ex 5.4 (m descendents and m-children in Example 5.3) Table5.1 lists the asso-
ciated m-descendents and m-children for the R-vine tree structure of Example
5.3 involving the first 4 nodes of tree T1.

Definition 5.7 (Complete union and conditioned sets) For any edge e ∈ Ei

define the set

Ae :=
{
j ∈ N1|∃ e1 ∈ E1, . . . , ei−1 ∈ Ei−1 such that j ∈ e1 ∈ . . . ∈ ei−1 ∈ e

}
.

The set Ae is called the complete union of the edge e. The conditioning set De

of an edge e = {a, b} is defined by

De := Aa ∩ Ab
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Table 5.1 Children and descendents: m-children and m-descendents in the R-vine tree
sequence of Example 5.3 involving the first 4 nodes of tree T1

Node e m-children of e m-descendents of e ∈ N1

1 – 1

2 – 2

3 – 3

{12} {{12}, {23}} 1, 2

{23} {{12}, {23}}, {{23}, {34}} 2, 3

{34} {{23}, {34}} 3, 4

{{12}, {23}} {{{12}, {23}}, {{23}, {34}}} 1, 2, 3

{{23}, {34}} {{{12}, {23}}, {{23}, {34}}} 1, 2, 3

{{{12}, {23}}, {{23}, {34}}} – 1, 2, 3, 4

and the conditioned sets Ce,a and Ce,b are given by

Ce,a := Aa \ De, Ce,b := Ab \ De and Ce := Ce,a ∪ Ce,b.

We often abbreviate each edge e = (Ce,a, Ce,b; De) in the vine tree sequence
by

e = (ea, eb; De). (5.1)

Note that the complete union Ae is the subset of {1, ..., d} which consists of the
m-descendents of e. Further the conditioned sets Ce,a and Ce,b are singletons and the
size of a conditioning set of an edge in tree Tj is j − 1 for j = 2, . . . , j − 1 as
proven in Chap.4 of Kurowicka and Cooke (2006).We use a semi column to separate
the conditioned set from the conditioning set, since later we link edges to bivariate
copulas associated with conditional distributions. This yields a consistent notation
with Definition 4.5.

Ex 5.5 (Complete union, conditioned and conditioning sets) We illustrate these
sets using the edge e = {{1, 2}, {1, 3}} of Example 5.3. The complete union
contains all nodes in tree T1, which are included in e, i.e. Ae = {1, 2, 3}. The
conditioning set of e is given by De = {1}, since Aa = {1, 2} and Ab = {1, 3}.
The conditioned set of edge e is therefore Ce = {2, 3}.
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1 3 4

2 5 6

T1
1,3 3,4

1,2
1,5

5,6

1, 2 1, 3 3, 4

1, 5 5, 6

T2
2,3;1 1,4;3

1,6;5
3,5;1

2, 3; 1 1, 4; 3 3, 5; 1 1, 6; 5T3
2,4;1,3 4,5;1,3 3,6;1,5

2, 4; 1, 3 4, 5; 1, 3 3, 6; 1, 5T4
2,5;1,3,4 4,6;1,3,5

2, 5; 1, 3, 4 4, 6; 1, 3, 5T5
2,6;1,3,4,5

Fig. 5.3 Regular vine tree sequence: The six dimensional regular vine tree sequence
of Example 5.3, from the lowest tree T1 to the highest tree T5 with edge labels based given by (5.1)

Ex 5.6 (Six dimensional regular vine tree structure using conditioned sets and
conditioning sets) We consider again the regular vine tree sequence of Example
5.3 but this time with the edges labeled by their conditioned sets separated by a
semi colon from their conditioning set as introduced in (5.1). The resulting tree
sequence with edge labels is given in Fig. 5.3.

Remark 5.8 (Number of regular vine tree structures) Counting all possibilities of

choosing edges, Morales-Nápoles (2011) shows that there are (d!/2) · 2(d−2
2 ) R-vine

tree sequence in d dimensions.

We now consider two important sub classes of R-vine tree sequences.
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T1 1

3

2

4

5

1,2

1,3

1,4
1,5

1,3

1,4

1,5

1,2T2

2,3;1

2,4;1
2,5;1

2,4;1

2,5;1

2,3;1T3

1

3,4;1
,2

3,5;1,2

3,5;1,23,4;1,2T4
4,5;1,2,3

T1 1 2 3 4 5
1,2 2,3 3,4 4,5

T2 1,2 2,3 3,4 4,5
1,3;2 2,4;3 3,5;4

T3 1,3;2 2,4;3 3,5;4
1,4;2,3 2,5;3,4

T4 1,4;2,3 2,5;3,4
1,5;2,3,4

Fig. 5.4 C- and D-vine: C-vine tree sequence (left panel) and D-vine tree sequence (right
panel) in four our dimensions

Definition 5.9 (C-vine tree sequence, D-vine tree sequence) A regular vine
tree sequence V = (T1, . . . , Td−1) is called

• D-vine tree sequence if for each node n ∈ Ni we have |{e ∈ Ei |n ∈ e}| ≤ 2.
• C-vine tree sequence if in each Tree Ti there is one node n ∈ Ni such that

|{e ∈ Ei |n ∈ e}| = d − i . Such a node is called the root node of tree Ti .

Ex 5.7 (C- and D-vine tree sequences in five dimensions) The vine tree
sequences of the C- and D-vine in five dimensions are given in Fig. 5.4, respec-
tively.

Remark 5.10 (Implications of the proximity condition on C- and D-vine tree
sequences) For a D-vine tree sequence the proximity condition of Definition 5.5
induces that once tree T1 is fixed all other trees T2 to Td−1 are determined. For a
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C-vine tree sequence the proximity condition allows to choose d − i + 1 different
root nodes in Tree Ti for i = 1, . . . , d − 1.

Note that the tree structure of a D-vine resembles a grape vine, therefore (Bedford
and Cooke 2001) called the linked tree sequence of Definition 5.4 a vine.

5.3 Regular Vine Distributions and Copulas

Up to now the R-vine tree sequence of Definition 5.4 is only a graph theoretic object,
which does not contain any stochastic component. We now add such a component.

Definition 5.11 (Regular vine distribution) The joint distribution F for the
d dimensional random vector X = (X1, . . . , Xd) has a regular vine distribu-
tion, if we can specify a triplet (F ,V,B) such that:

1. Marginal distributions: F = (F1, . . . , Fd) is a vector of continuous
invertible marginal distribution functions, representing the marginal dis-
tribution functions of the random variable Xi , i = 1, . . . , d.

2. Regular vine tree sequence: V is an R-vine tree sequence on d elements.
3. Bivariate copulas: The set B = {Ce|e ∈ Ei ; i = 1, . . . , d − 1}, where

Ce is a symmetric bivariate copula with density. Here Ei is the edge set
of tree Ti in the R-vine tree sequence V .

4. Relationship betweenR-vine tree sequenceV and the setB of bivariate
copulas: For each e ∈ Ei , i = 1, . . . , d − 1, e = {a, b}, Ce is the
copula associatedwith the conditional distribution of XCe,a and XCe,b given
XDe = xDe . Further Ce(., .) does not depend on the specific value of xDe .

Remark 5.12 (Simplifying assumption for regular vine distributions) The assump-
tion in Definition 5.11 that the bivariate copulasCe(., .) do not depend on the specific
value of xDe is called the simplifying assumption.

Ex 5.8 (Example 5.3 continued) The copula Ce for edge e = {{1, 3}, {3, 4}}
of Example 5.3 indicates that the conditional bivariate distribution function of
(X1, X4) given X1 = x1 is given by

F14|3(x1, x4|x3) = Ce
(
F1|3(x1|x3), F4|3(x4|x3)

)
.
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Definition 5.13 (Pair copula and copula density associated with edge e) We
will denote the copula Ce corresponding to edge e by CCe,aCe,b;De and the
corresponding density by cCe,aCe,b;De , respectively. This copula is also called
a pair copula.

Remark 5.14 (Non-symmetric pair copulas in an regular vine distribution) Sincewe
define the regular vine tree sequence as a set of undirected graphs in Definition 5.4,
we had to restrict ourselves to symmetric bivariate copulas (see Remark 3.10 for a
definition of a symmetric copula) in Definition 5.11. This is only a formal restriction,
since the theory presented in this chapter remains also true, when directed edges are
used. This allows us to identify non-symmetric pair copulas. However symmetry is
a common assumption in the literature on vines in order to be able to use the set
notation with unordered elements as illustrated in Example 5.3. In simulations and
applications we will indicate how to work with non-symmetric copulas.

Bedford andCooke (2002) showed that theR-vine triplet (F ,V,B)with properties
(1)–(3) of Definition 5.11 can be uniquely connected to a d dimensional distribution
F , in particular the following theorem holds.

Theorem 5.15 (Existenceof a regular vinedistribution) Assume that (F ,V,B)

satisfy the properties (1)–(3) of Definition 5.11, then there is a unique d dimen-
sional distribution F with density

f1,...d (x1, . . . xd ) = f1(x1) · · · · · fd (xd ) (5.2)

·
d−1∏
i=1

∏
e∈Ei

cCe,aCe,b;De (FCe,a |De (xCe,a |xDe ), FCe,b |De (xCe,b |xde )),

such that for each e ∈ Ei , i = 1, . . . , d − 1, with e = {a, b} we have for the
distribution function of XCe,a and XCe,b given XDe = xDe

FCe,aCe,b|De

(
xCe,a , xCe,b |xDe

) = Ce
(
FCe,a |De(xCe,a |xDe), FCe,b|De(xCe,b |xDe)

)
.

Further the one dimensional margins of F are given by Fi (xi ), i = 1, . . . , d.
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Remark 5.16 (Extended vine tree sequences) Bedford and Cooke (2001) extended
the regular vine tree sequence toCantor trees,which then allows to proof the existence
of the regular vine distributions more elegantly.

Theorem 5.15 allows to specify regular vine distributions solely by the triplet
(F ,V,B). From these the associated joint density can always be constructed.

Definition 5.17 (Regular vine copula) A regular vine copula is a regular vine
distribution, where all margins are uniformly distributed on [0, 1].

Remark 5.18 (Existence of regular vine distributions when non-symmetric pair cop-
ulas are used) The existence result of Theorem 5.15 remains valid for ordered pairs
in trees with directed edges. This changes Eq. (5.2) only by specifyingwhich element
of an edge {a, b} is the head “a” and which is the tail “b” of the directed edge a → b.
This was already shown by Bedford and Cooke (2002) without explicitly mentioning
it. In particular Theorem 3 of Bedford and Cooke (2002) is valid for this case.

Remark 5.19 (Ordering of pair copula indices) In general we make the following
convention: Copula Ci, j;i1,...,ir has first argument Fi |i1,...,ik and second argument
Fj |i1,...,ik , for i 
= j and additional distinct indices i1, . . . , ik for the conditioning
set. Further we arrange the indices both for the conditioned and conditioning set in
increasing order.

Ex 5.9 (Example of anR vine distribution in six dimensions) TheR-vine density
corresponding to R-vine tree structure given in Fig. 5.3 is

f123456(x1, . . . , x6) = c26;1345 · c25;134 · c46;135
· c45;13 · c24;13 · c36;15 · c35;1 · c14;3 (5.3)
· c23;1 · c16;5 · c15 · c34 · c13 · c12 · c56 · f6 · f5 · f4 · f3 · f2 · f1,

where we used the abbreviation introduced in (4.17) for the pair copula terms,
f1··· j for f1··· j (x1, · · · , x j ) in case of the joint density and f j for f j (x j ) in case
of the marginal densities. We also assume that the simplifying assumption of
Remark 5.12 holds.

Following Remark 5.19 we arrange the indices of the conditioned set and the
conditioning set in increasing order. In this example we use

c36;15 = c36;15(F3|15(x3|x1, x5), F6|15(x6|x1, x5)),
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which is the same as

c63;15 = c63;15(F6|15(x6|x1, x5), F3|15(x3|x1, x5)).

The joint density (5.3) can also be built by the following recursive decompo-
sition

f12345 = f1 · f2|1 · f3|12 · f4|123 · f5|1234 · f6|12345.

and these conditional densities can be expressed as

f2|1 = c12 · f2 (5.4a)

f3|12 = c23;1 · f3|1
= c23;1 · c13 · f3, (5.4b)

f4|123 = c24;13 · f4|13 = c24;13 · c14;3 · f4|3
= c24;13 · c14;3 · c34 · f4, (5.4c)

f5|1234 = c25;134 · f5|134
= c25;134 · c45;13 · f5|13
= c25;134 · c45;13 · c35;1 · f5
= c25;134 · c45;13 · c35;1 · c15 · f5|1 (5.4d)

f6|12345 = c26;1345 · f6|1345
= c26;1345 · c46;135 · f6|135
= c26;1345 · c46;135 · c36;15 · f6|15
= c26;1345 · c46;135 · c36;15 · c16;5 · f6|5
= c26;1345 · c46;135 · c36;15 · c16;5 · c56 · f6. (5.4e)

Note that we used only pair copulas associated with the edges specified in vine
tree sequence given in Fig. 5.3.

To completely specify the R-vine density (5.3), we require the conditional dis-
tribution functions, which occur as arguments in the pair copula terms of represen-
tation (5.3) For this we can apply recursively Theorem 4.10 and illustrate this for
Example 5.9.
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Ex 5.10 (Conditional distribution functions for R-vine in Example5.9) To
obtain expressions for the arguments of the bivariate densities, which only
require bivariate copulas already used in the construction and thus do not require
integration, we have tomake a “clever choice” in each step. Figure5.5 illustrates
these choices for Example 5.9.

We give now an example for a choice, which would require further bivariate
copula terms than given in the representation (5.3). If we had chosen the copula
density c56;13 instead of c36;15 in (5.4e) the density of neither copulas C16;3
nor C36;1, from which the argument F6|13 can be calculated, would have been
included in the repesentation.

But how to systematicallymake a “clever choice” in each step?The arguments
of copulas conditioned on d variables will always have to be expressed by
copulas conditioned on d−1, . . . , 1 variables. It is thus natural to use a bottom-
up approach, since possible choices on the “higher” trees depend on the choices
made on the “lower” trees. To illustrate the bottom up approach we study the
vine tree structure specified in Fig. 5.3.

In the first tree, i.e. T1, we have all the bivariate copulas of decomposition
(5.3), each Ci, j represented as an edge linking the univariate margins i and
j (shown as nodes). For T2 we have the bivariate copula indices of the edges
in tree T1 as nodes. The edges in T2 are the indices of the bivariate copulas
conditioned on one variable. They link the nodes from which their arguments
are obtained using a recursion based on Theorem 4.10. Continuing in this way
all required bivariate copulas in (5.3) can be identified by the five trees. Consider
for example the copula density

c36;15(F3|15(x3|x1, x5), F6|15(x6|x1, x5)),

with arguments obtainable from

F3|15(x3|x1, x5) = ∂C35;1(F3|1(x5|x1), F5|1(x5|x1))
∂F5|1(x5|x1)

and

F6|15(x6|x1, x5) = ∂C16;5(F1|5(x1|x5), F6|5(x6|x5))
∂F1|5(x1|x5) .

It is represented as edge 36; 15 between nodes 35; 1 and 16; 5.
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c26;1345

F2|1345

c25;134

F2|134

c42;13

F4|13

c14;3

F1|3

c13

F4|3

c34

F2|13

c23;1

F2|1

c12

F3|1

c13

F5|134

c45;13

F4|13

c14;3

F1|3

c13

F4|3

c43

F5|13

c35;1

F3|1

c13

F5|1

c15

F6|1345

c46;135

F4|135

c45;13

F4|13

c14;3

F1|3

c13

F3|4

c34

F5|13

c35;1

F3|1

c13

F5|1

c15

F6|135

c36;15

F3|15

c35;1

F3|1

c13

F5|1

c15

F6|15

c16;5

F1|5

c15

F6|5

c56

Fig. 5.5 Conditional distribution functions: Following this chart, the arguments
of all copulas in decomposition (5.3) for Example 5.9 can be obtained recursively. The pair copulas
marked with rectangular shapes are present in the vine decomposition (5.4a–e)

5.4 Simplified Regular Vine Classes

Using the decomposition (4.16) of a joint d dimensional density together with a
recursive application of Lemma 1.15 we can represent any multivariate density by
pair copulas applied to marginal and conditional distribution functions together with
their marginal densities. This general factorization can be considered in a regular
vine distribution, if the indices corresponding to the pair copulas used form a regular
vine tree sequence. However even in this case the pair copulas will often depend
on the values of the conditioning variables. Such regular vine distributions will be
called non simplified.

In contrast regular vine distributions in which no pair copula depends on the con-
ditioning value are called simplified as already mentioned in Remark 5.12. However
even in the case of simplified regular vine distributions the conditioning values have
an effect, since the arguments given by the conditional distribution functions do
depend on the values of the conditioning variables.

It is now interesting to investigate the magnitude of the class of simplified regular
vines and copulas. For this it is enough to consider the case of simplified regular
vine copulas, since with Sklar’s Theorem 1.9 we can easily transform from copulas
to distributions. There are several multivariate copulas, which can be represented as
a simplified regular vine distribution.
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Theorem 5.20 (Multivariate copulas represented as simplified regular vine
copulas) The following multivariate copula classes can be represented as
simplified regular vine copulas:

1. The class of the multivariate Gaussian copulas. Here, the pair copulas
are bivariate Gaussian copulas with dependence parameter given by the
corresponding partial correlation.

2. The class of the multivariate Student t copulas with ν degrees of freedom
and dependence matrix R a correlation matrix. Here the pair copulas of
tree Tj are bivariate Student t copulas with ν + j − 1 degrees of freedom
and dependence parameter the corresponding partial correlation.

3. The class of multivariate Clayton copulas.

Proof To proof the first statement, we note that the Gaussian distribution is closed
under conditioning (see Example 1.4). In particular, only the conditional mean
depends on the conditioning variable, which implies that the copula associated with
this conditional distribution is independent of the conditioning value (cf. Lemma
1.13). The parameters of these copulas are given by conditional correlations, which
are equal to partial correlations in the class of elliptical distributions.

For the second statement we also use the closure under conditioning for the multi-
variate t distribution, however here also the covariance of the t distribution depends on
the conditioning value (see Example 1.7). However this dependence is only through
a scaling factor. Therefore the overall dependence on the conditioning values is only
through location and scale. Since copulas are invariant under monotone transfor-
mations (cf. Lemma 1.13) they are also invariant under location and scale trans-
formations, thus the copula corresponding to the conditional distribution does not
depend on the conditioning values. The dependence parameters of the corresponding
pair copula are conditional correlations and thus partial correlations. The degrees of
freedom depend on the number of conditioning values are discussed in Example 1.7.

The proof of the third statement uses the fact that the multivariate Clayton cop-
ula is the copula of the multivariate Burr distribution. The multivariate Burr dis-
tribution is also closed under conditioning (Takahashi 1965). For more details see
Exercise 1.4.

In general, we can say that the class of simplified regular vine distributions is
very flexible, since the number of vine tree structures is huge (see Remark 5.8). To
illustrate this, the precise numbers are given for different dimensions in Table5.2.

Further, we can use any bivariate copula family (parametric or nonparametric)
as pair copulas. Additionally Nagler and Czado (2016) have shown, that the use of
nonparametric pair copulas in simplified regular vines avoids the curse of dimen-
sionality in multivariate density estimation. Corresponding kernel density estimation
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Table 5.2 Regular vine tree sequences: Number of different regular vine tree
sequences for different dimensions

d Number of vine tree structures

3 3

4 24

5 480

6 23040

7 2580480

8 660602880

9 380507258880

10 487049291366400

15 197610163390430276198532535812096000

methods have been implemented in the R library kdecopula of Nagler (2017a)
and a general comparison of non parametric pair copula estimation in the context of
simplified vines is available in Nagler et al. (2017).

See also Stöber et al. (2013) for the effects of approximating non simplified distri-
butions by simplified regular vine distributions and Acar et al. (2012) for local poly-
nomial smoothing approach to fit non simplified vine distributions. However their
approach is at the moment restricted to three dimensions and involves multidimen-
sional smoothing, which might be difficult to extend to higher dimensions. A more
feasible approach in higher dimensions using a generalized additive model speci-
fication has been developed by Vatter and Nagler (2018). Finally recall that many
shapes for bivariate margins are possible in simplified vines as shown in Fig. 4.1.

For Gaussian regular vines there is a very useful relationship between partial
correlations and ordinary correlations.

Remark 5.21 (Relationship between partial correlations and correlation matrix)
The correlations contained in a correlation matrix have to be chosen such, that the
resulting matrix is positive definite. In contrast, we can choose partial correlations
arbitrarily in [−1, 1] in a regular Gaussian vine distribution and there exists accord-
ing to Theorem 4.4 of Bedford and Cooke (2002) a one-to-one relationship between
the space of partial correlations of regular Gaussian vines and the space of positive
definite correlationmatrices. For an example of this relationship see Exercise 2.7. Joe
(2006) applies this relationship to use regular Gaussian vines to generate uniformly
on the space of correlation matrices.

For the determinant of the correlationmatrix of aGaussian distributionKurowicka
and Cooke (2006) showed the following relationship:
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Theorem 5.22 (Relationship between the determinant of a correlation matrix
and the partial correlations of a Gaussian vine distribution) Let D be the
determinant of the correlation matrix of multivariate Gaussian distribution in
d dimensions withD > 0. Then for any Gaussian vine distribution with partial
correlations ρCe,a ,Ce,b;De associated to the edge e = (Ce,a, Ce,b; De) ∈ V the
following relationship holds

D =
d−1∏
i=1

∏
e∈Ei

ρCe,a ,Ce,b;De .

Proof The proof can be found on p. 126 of Kurowicka and Cooke (2006). �

5.5 Representing Regular Vines Using Regular VineMatrices

To develop inference methods for arbitrary R-vines we need a way to store the vine
tree sequence in the computer. For this we usematrices first introduced byKurowicka
(2009) and extended for likelihood calculations by Dißmann (2010), Dißmann et al.
(2013).

To store the vine tree structure
{Ce,a, Ce,b; De, e ∈ Tj , j = 1, ..., d

}
the associ-

ated indices are stored in an upper triangular matrix. Upper triangular matrices are
utilized, since they allow, that sums in the log likelihood of R-vine distributions can
be represented by increasing indices in contrast, when lower triangular matrices are
used. This has already been followed in Chap.5 of Stöber and Czado (2017), while
the work by Dißmann et al. (2013), Dißmann (2010) uses lower triangular matrices.
The R library VineCopula of Schepsmeier et al. (2018) can handle both lower and
upper triangular matrices.

Definition 5.23 (Regular vine matrix) Let M be an upper triangular matrix
with entries mi, j for i ≤ j . The elements mi, j can have values between 1
to d. A matrix M is called a regular vine matrix, if it satisfies the following
conditions:

1. {m1,i , . . . ,mi,i } ⊂ {m1, j , . . . ,m j, j } for 1 ≤ i < j ≤ d (The entries of a
specific column are also contained in all columns right of this column.)

2. mi,i /∈ {m1,i−1, . . . ,mi−1,i−1} (The diagonal entry of a column does not
appear in any column further to the left.)

3. For i = 3, . . . , d and k = 1, . . . , i − 1 there exist ( j, �) with j < i and
� < j such that



112 5 Regular Vines

{
mk,i , {m1,i , . . . ,mk−1,i }

}
=

{
m j, j , {m1, j , . . . ,m�, j }

}
or

{
mk,i , {m1,i , . . . ,mk−1,i }

}
=

{
m�, j , {m1, j , . . . ,m�−1, j ,m j, j }

}
.

The last assumption in this definition is the analogue of the proximity condition
for regular vine trees. With this definition of an R-vine matrix it was shown that there
is a bijection between regular vine trees and regular vine matrices. Corresponding
algorithms are given below and are taken from Stöber and Czado (2017). Before we
present these we illustrate the algorithms in examples.

Ex 5.11 (Construction of a regular vine matrix for the vine tree sequence of
Example 5.9) In the first step we select one of the entries of the conditioned set
of the single edge in tree Td−1, i.e. 2 or 6 from edge 2, 6; 1, 3, 4, 5 of tree T5 in
Example 5.3, and put it in the lower right corner of a d dimensional matrix.

Selecting for example the element 6 we write down all indices, which are
in the conditioned sets of an edge together with 6 (bolded in Fig. 5.6). These
are the numbers 2, 4, 3, 1, 5. We order them in this way, since 2 occurs in T5,
4 in T4, 3 in T3, 1 in T2 and 5 in T1. Choosing 6 together with such a number
and the numbers above this entry identifies a particular edge in the vine tree
sequence. For example the entries 6 and 4 and the entries 3, 1, 5 above in the
last column identifies the edge 4, 6; 1, 3, 5. In summary the edge 2, 6; 1, 3, 4, 5,
the edge 4, 6; 1, 3, 5, the edge 3, 6; 1, 5, the edge 1, 6; 5 and the edge 5, 6 are
identified by the last column. Recall that we order the entries of the conditioned
and conditioning set in increasing order. More generally the entries m6,6 and
m j,6 identify the edge m6,6,m j,6;m1,6, . . . ,m j−1,6 for j = 2, . . . , d − 1 up to
ordering of the indices.

Therefore all pair copula terms needed to characterize the dependence of X6
on X1, . . . , X5 is stored in the last column of the matrix M. We remove now
all nodes and edges of the vine tree sequence containing the index 6. These are
exactly the ones which we have just identified for 6 in the conditioned set, and
we end up with the following reduced vine tree sequence given in Fig. 5.7.

With this secondvine tree sequencewe redo the aboveprocedure, selecting for
example 5 in tree T4 of Fig. 5.7 and selecting it as diagonal element of the second
last column of the matrix. Adding the entries, which are in the conditioned sets
together with 5 ordered by the tree level they are occurring in, the matrix is filled
as shown on the left panel of Fig. 5.7.

Continuing, the selected nodes in the second last column are removed and
the resulting reduced vine tree sequence is shown in Fig. 5.8. These steps are
repeated until all nodes of the original vine tree sequence have been removed.
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⎛
⎜⎜⎜⎜⎜⎜⎝

5
1
3
4
2
6

⎞
⎟
⎟⎟⎟⎟⎠

1 3 4

2 5 6

T1
1,3 3,4

1,2
1,5

5,6

1, 2 1, 3 3, 4

1, 5 5, 6

T2
2,3;1 1,4;3

1,6;5
3,5;1

2, 3; 1 1, 4; 3 3, 5; 1 1, 6; 5T3
2,4;1,3 4,5;1,3 3,6;1,5

2, 4; 1, 3 4, 5; 1, 3 3, 6; 1, 5T4
2,5;1,3,4 4,6;1,3,5

2, 5; 1, 3, 4 4, 6; 1, 3, 5T5
2,6;1,3,4,5

⎟

Fig.5.6 R-vine matrix: Construction of the last column for the R-vine matrix corresponding
to Example 5.9. We select 6 in edge 2, 6; 1, 3, 4, 5, and all entries which are in a conditioned set
together with 6

This gives the final vine regular matrix as

⎛
⎜⎜⎜⎜⎜⎜⎝

4 4 3 1 1 5
3 4 3 3 1

1 4 4 3
2 2 4

5 2
6

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5.5)

Following these steps we can always determine an R-vine matrix once a regular
vine tree sequence is given. This allows the conditioned and conditioning sets of the
edges to be stored in the following way: The diagonal entrymk,k of each row k is the
first entry of all conditioning sets of the entries, which have been deleted from the
vine filling up the row. The entries above the diagonal corresponds to an edge ei with
conditioned set Cei = {mk,k,mi,k}, i < k. The proximity condition implies that the
associated conditioning set of ei is Dei = {mi−1,k, . . . ,m1,k}. A general algorithm
for computing the associated regular matrix was given in Stöber and Czado (2017)
and is reprinted in Algorithm 5.1.
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⎛
⎜⎜⎜⎜⎜⎜⎝

1 5
3 1
4 3
2 4
5 2

6

⎞
⎟⎟⎟⎟⎟⎟⎠

1 3 4

2 5

T1
1,3 3,4

1,2

1,5

1, 2 1, 3 3, 4

1, 5

T2
2,3;1 1,4;3

3,5;1

2, 3; 1 1, 4; 3 3, 5; 1 T3
2,4;1,3 4,5;1,3

2, 4; 1, 3 4, 5; 1, 3 T4
2,5;1,3,4

Fig. 5.7 R-vine matrix: The reduced vine sequence (right panel) and the construction of the
second last column (left panel) after the first step of constructing the associated regular vine matrix

Fig. 5.8 R-vine
matrix: Construction of
the third column in the
R-vine matrix: Here we
select 2 in the edge 2, 4; 1, 3
and then all entries which are
in a conditioned set together
with 2

1 3 4

2

T1
1,3 3,4

1,2

1, 2 1, 3 3, 4 T2
2,3;1 1,4;3

2, 3; 1 1, 4; 3 T3
2,4;1,3

Remark 5.24 (Non uniqueness of the R-vine matrix) Since at each step you can
choose between the two elements of the conditioned set, the resulting R-vine matrix
is not unique. However it encodes all edges in a vine tree sequence and thus is highly
useful for statistical programming with regular vines.

We now consider the reverse problem of drawing the associated R-vine tree
sequence from a given R-vine matrix. This algorithm inverts the steps of Algorithm
5.1 by adding for each identified edge from the regular vine matrix the associated
nodes and edges and is given as Algorithm 5.2, which is taken fromStöber and Czado
(2017).
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Algorithm 5.1 (Computing a regular vine matrix for a regular vine tree
sequence V) The input of the algorithm is a regular vine tree sequence
V = (T1, . . . , Td−1) and the output will be a regular vine matrix M .

X := {} (1)

FOR i = d, . . . , 3 (2)

Choose x, x̃, D with x̃ /∈ X and |D| = i − 2 such that there is an edge e

with Ce = {x, x̃}, De = D (3a)

mi,i := x,mi−1,i := x̃ (3b)

FOR k = i − 2, . . . , 1 (4)

Choose x̂ such that there is an edge e with Ce = {x, x̂} and
|De| = k − 1 (5a)

mk,i := x̂ (5b)

END FOR

X := X ∪ {x} (6)

END FOR

Choose x, x̃ ∈ {1, . . . , d} \ X (7a)

m2,2 := x,m1,2 := x̃,m1,1 := x̃ (7b)

RETURN M := (mk,i |k = 1, . . . d, k ≤ i) (8)

(Taken from Stöber and Czado (2017). With permission of c©World Scientific Publishing Co. Pte. Ltd.

2017.)

Algorithm 5.2 (Construction of a tree sequence from an R-vine matrix M)
The input of the algorithm is a d-dimensional regular vine matrix M and the
output will be a regular vine V = (T1, . . . , Td−1).

N1 := {1, . . . , d} (1a)

E2 := {}, . . . , Ed−1 := {} (1b)

E1 := {m2,2,m1,2} (1c)

FOR i = 3, . . . , d (2)

ei1 := {mi,i ,m1,i } (3a)

E1 := E1 ∪ {ei1} (3b)

FOR k = 1, . . . , i − 2 (4)

Select ak ∈ Ek with Aak = {m1,i , . . . ,m1+k,i } (5a)

eik+1 := {eik , ak } (5b)

Ek+1 := Ek+1 ∪ {eik+1} (5c)

END FOR

END FOR

RETURN V :=
(
T1 := (N1, E1), T2 := (E1, E2), . . . , Td−1 := (Ed−2, Ed−1)

)
(6)

(Taken from Stöber and Czado (2017). With permission of c©World Scientific Publishing Co. Pte. Ltd.

2017.)
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Col M Edge Tree structure

2 3,4

3 4T1
3,4

3,4T2

3 1,3

1 3 4T1
1,3 3,4

1,3 3,4T2

3 14;3

1 3 4T1
1,3 3,4

1,3 3, 4T2
1,4;3

1,4;3T3

Fig. 5.9 R-vine tree construction: First three steps in building up the associated vine
tree sequence for R-vine matrix given in (5.5)

The order in which edges are added in Algorithm 5.2 is chosen such that it coin-
cides with the set notation of Definition 5.4. We illustrate Algorithm 5.2 by the
following example.

Ex 5.12 (Constructing a vine tree sequence from the regular vine matrix (5.5))
The algorithm starts in column 2 of the regular vine matrix specified in (5.5),
adding an edge between the two entries in this column, in our example 3 and 4
(see Fig. 5.9 first row). Further, node 3, 4 is added to tree T2. It then moves one
column to the right, adding edge 1, 3 in tree T1, as well as node 1, 3 to tree T2
(see Fig. 5.9 second row). Then the edge 1, 4; 3 between 1, 3 and 3, 4 in T2 and
the node 1, 4; 3 in tree T3 are added (see Fig. 5.9 third row). Adding the next
three edges identified by column 4 of the R-vine matrix (5.5) are illustrated in
Fig. 5.10 These steps are repeated until the whole R-vine tree sequence is rebuilt
after row d.
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Col M Edge Tree structure

4 1,2

1 3 4

2

T1
1,3 3,4

1,2

1,2 1, 3 3, 4T2
1,4;3

1, 4; 3T3

4 2,3;1

1 3 4

2

T1
1,3 3,4

1,2

1,2 1,3 3, 4T2
1,4;32,3;1

2,3;1 1, 4; 3T3

4 2,4;1,3

Fig.5.10 R-vine tree construction: Adding the information from the three edges iden-
tified from column 4 of the R-vine matrix (5.5) to the associated R-vine tree sequence

Remark 5.25 All algorithms presented in this section work exactly the same way if
we replace unordered sets with ordered pairs, i.e. if we switch to directed graphs.
Introducing the ordering we get a one-to-one correspondence between R-vine matri-
ces and directed regular vines (since x and x̃ in Algorithm 5.1 become distinguish-
able). Therefore we can also assign non-symmetric copulas to an R-vine as soon as
it is parametrized by an R-vine matrix with the convention that the first argument of
the copula always corresponds to the diagonal entry of the R-vine matrix.

With the algorithms outlined above, all necessary tools to describe the structure
of a pair copula construction have now been developed. To conclude this section,
Example 5.13 shows the corresponding matrices for the special C- and D-vine tree
sequences from Definition 5.9.
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Ex 5.13 (Regular vine matrices for C-vine and D-vines) After permutation of
(1, . . . d) the R-vine matrix of a d dimensional C-vine tree sequence can always
be expressed as

⎛
⎜⎜⎜⎜⎜⎝

1 · · · 1 1 1
. . .

...
...

...

d − 2 d − 2 d − 2
d − 1 d − 1

d

⎞
⎟⎟⎟⎟⎟⎠

. (5.6)

In this case the root node of tree T1 is 1, the root node of tree T2 is 1, 2 . . . of
tree Td−1 is d, d − 1; 1, . . . , d − 2.

The R-vine matrix for a D-vine can be written as
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · d − 4 d − 3 d − 2 d − 1
. . .

...
...

...
...

d − 3 1 2 3
d − 2 1 2

d − 1 1
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (5.7)

As mentioned in Remark 5.10 the ordering of the node 1, . . . , d in tree T1
determines all further trees of the vine tree sequence.

Ex 5.14 (Interpreting an regular vine matrix given as lower triangular matrix)
Suppose the regular vine matrix in lower triangular matrix notation is given by

⎛
⎜⎜⎜⎜⎝

2
5 3
3 5 4
1 1 5 5
4 4 1 1 1

⎞
⎟⎟⎟⎟⎠

(5.8)

For example the second column of matrix (5.8) identifies the edge 3, 5; 1, 4,
the edge 3, 1; 4 and the edge 3, 4. Thus the following edges of the R-vine tree
sequence are identified

• Tree T1: {2, 4}, {3, 4}, {4, 1}, {5, 1}
• Tree T2: {2, 1; 4}, {3, 1; 4}, {4, 5; 1}
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5 1 4

2

3

T1
1,5 1,4 2,4

3,4

1, 5 1, 4

2, 4

3, 4

T2
4,5;1

1,2;4

1,3;4

4, 5; 1 1, 3; 4 1, 2; 4 T3
3,5;1,4 2,3;1,4

3, 5; 1, 4 2, 3; 1, 4 T4
2,5;1,3,4

Fig. 5.11 R-vine matrix: Regular vine sequence corresponding to lower triangular regular
vine matrix (5.8)

• Tree T3: {2, 3; 1, 4}, {3, 5; 1, 4}
• Tree T4: {2, 5; 3, 1, 4}.

The corresponding R-vine tree sequence is given in Fig. 5.11.

5.6 Exercises

Exer 5.1
R-vine tree sequence plots in VineCopula: Use the function plot for an RVM
object in the R library VineCopula to plot the R vine tree sequence given in
Fig. 5.3 using the R vine matrix specified in (5.5).

Exer 5.2
Construction of a lower triangular regular vine matrix for C- and D-vine tree
sequences: Derive the lower triangular regular vine matrices corresponding to a
C-vine tree sequence in five dimensions. Do the same for a D-vine tree sequence in
five dimensions.
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1 2 3 4 5

6 7

Fig. 5.12 R-vine tree sequence: Tree T1 considered in Exercise 5.3

Exer 5.3
Proximity in vine structures: Consider the tree T1 of a regular vine structure given in
Fig. 5.12.

(i) Draw a graph with all edges that the proximity condition allows for tree T2.
(ii) Select one permissible tree T2 and draw it in a separate graph.
(iii) Draw a graph with all edges that the proximity condition allows for a tree T3,

given the selected tree T2. Add all the edge labels to this graph.

Exer 5.4
Construction of a regular vine tree sequence from a R-vine matrix: Draw the regular
vine structure that corresponds to the regular vine matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

7
3 6
4 3 5
5 4 3 4
6 5 4 3 3
2 2 2 2 2 2
1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Is this not only a regular vine but also aC-vine or aD-vine? Justify your answer.Addi-
tionally, determine how many different regular vine matrices exist that correspond
to this regular vine.

Exer 5.5
Construction of a regular vine density from a regular vine tree sequence: Provide
the formula for the density f (x1, . . . , x7) of the regular vine distribution with the
underlying regular vine tree sequence specified in Fig. 5.13 assuming that all pair
copulas in tree T3 until tree T5 are independence copulas.

Exer 5.6
Conditional distributions in vine copula: Express the conditional distribution U7
given U3,U4,U5, i.e. C7|345(u7|u3, u4, u5) in terms of h-functions of pair-copulas
specified by a vine copula with vine tree sequence given in Fig. 5.13.
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1 2 3 4 5 6

7

1, 2 2, 3 3, 4 4, 5 5, 6

4, 7

1, 3; 2 2, 4; 3 3, 7; 4 3, 5; 4 4, 6; 5

1, 4; 2, 3 2, 7; 3, 4 5, 7; 3, 4 3, 6; 4, 5

1, 7; 2, 3, 4 2, 5; 3, 4, 7 6, 7; 3, 4, 5

1, 5; 2, 3, 4, 7 2, 6; 3, 4, 5, 7

Fig. 5.13 R-vine tree sequence: Regular vine tree sequence considered in Exercise 5.5
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Exer 5.7
DeriveR-vine tree sequence andR-vine density froma specifiedR-vinematrix:Derive
the corresponding R-vine tree sequence and R-vine density from the following R-
vine matrix ⎛

⎜⎜⎜⎜⎝

2 0 0 0 0
5 3 0 0 0
3 5 4 0 0
1 1 5 5 0
4 4 1 1 1

⎞
⎟⎟⎟⎟⎠

.

Exer 5.8
Construction of an R vine matrix from a R vine tree sequence: Consider again the
regular vine tree sequence specified in Fig. 5.13. Derive a corresponding regular vine
matrix.

Exer 5.9
Derivation of conditional distribution functions in Example 5.9: Derive the condi-
tional distribution functions in (5.4) of Example 5.9 associated with the conditional
densities on the left hand side of the equation.



6SimulatingRegularVineCopulas
andDistributions

6.1 Simulating Observations fromMultivariate Distributions

For simulation from a d-dimensional distribution function F1,...,d with condi-
tional distribution functions Fj |1,..., j−1(·|x1, . . . , x j−1) and their inverses F

−1
j |1,..., j−1

(·|x1, . . . , x j−1) for j = 2, . . . , d we can use iterative inverse probability transfor-
mations. In particular, a multivariate transformation introduced by Rosenblatt (1952)
and studied more generally by Rüschendorf (1981) is utilized and stepwise inverted.
It is also called the Rosenblatt transform. More specifically Theorem 6.1 holds.

Theorem 6.1 (Simulating from a d variate distribution) To obtain a sample
x1, ..., xd from F1,...,d , the following steps can be performed:

First : Sample w j
i.i.d.∼ U [0; 1], j = 1, . . . , d

Then : x1 := F−1
1 (w1)

x2 := F−1
2|1 (w2|x1)

...

xd := F−1
d|d−1,...,1(wd |xd−1, . . . , x1).

Then, (x1, ..., xd) is a random sample of size n = 1 from the distribution
F1,...,d .

Proof First, x1 is a realization from the marginal distribution of X1 and x2 is a
realization from the conditional distribution of X2 given X1 = x1 by applying the

© Springer Nature Switzerland AG 2019
C. Czado, Analyzing Dependent Data with Vine Copulas, Lecture Notes
in Statistics 222, https://doi.org/10.1007/978-3-030-13785-4_6
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probability integral transformation. Therefore, it follows that (x1, x2) is a sample
from the bivariate marginal distribution (X1, X2). Induction can be used to proof the
remainder of the theorem.

This shows that it is necessary to determine conditional distribution functions and
to be able to sample from them. We will now apply the transformation in Theorem
6.1 to sample from regular vine copulas.

Simulations from regular vine distributions have first been discussed in Bedford
and Cooke (2001), Bedford and Cooke (2002) but without giving programmable
algorithms. Aas et al. (2009), Kurowicka and Cooke (2005) developed sampling
algorithms for C-vines and D-vines. While Kurowicka and Cooke (2005) also gave
hints on how to treat the general R-vine case, it was Dißmann (2010), who demon-
strated how to write a sampling algorithm for the general R-vine using the matrix
notation from Sect. 5.5. The algorithms we present are slightly corrected versions
from Stöber and Czado (2017). These are based on Dißmann et al. (2013), where
some redundant calculations have been omitted.

6.2 Simulating from Pair Copula Constructions

Adapting Theorem 6.1 to copulas gives the following procedure:

Theorem 6.2 (Simulating from a multivariate copula) Perform the following
steps to obtain a sample u1, . . . , ud from a d variate copula:

First : Sample w j
i.i.d.∼ U [0; 1], j = 1, . . . , d

Then : u1 := w1

u2 := C−1
2|1(w2|u1)

...

ud := C−1
d|d−1,...,1(wd |ud−1, . . . , u1)

To determine the conditional distribution functions C j | j−1,...,1, j = 1, . . . , d
needed for pair copula constructions, we will use the recursive relationship for the
conditional distribution function given in Theorem 4.10 together with the h-function
introduced in Definition 1.16. This gives an iterative expression using h-functions
for the desired conditional distribution function, which can easily inverted recur-
sively. More precisely, we use the notation h1|2(u1|u2; θ12) for a h1|2-function with
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parameters θ12 of a specified bivariate copula C12. The general notation utilized in
this chapter is now given.

Definition 6.3 (General notation of h-functions of bivariate parametric cop-
ulas) For the bivariate copula Ci j (ui , u j ; θi j ) with parameter θi j , we define
the h-functions

hi | j (ui |u j ; θi j ) := ∂

∂u j
Ci j (ui , u j ; θi j ) (6.1)

h j |i (u j |ui ; θi j ) := ∂

∂ui
Ci j (ui , u j ; θi j ). (6.2)

For the parametric pair copulaCea ,eb;De(w1, w2; θea ,eb;De) in a simplified reg-
ular vine corresponding to the edge ea, eb; De, we introduce the notation

hea |eb;De(w1|w2; θea ,eb;De) := ∂

∂w2
Cea ,eb;De(w1, w2; θea ,eb;De) (6.3)

heb|ea;De(w2|w1; θea ,eb;De) := ∂

∂w1
Cea ,eb;De(w1, w2; θea ,eb;De). (6.4)

We need the two versions of the h-functions since the bivariate copula indices
are usually ordered such as C13 and not as C31. Thus to determine the conditional
distribution functions C1|3 and C3|1 both versions are required.

Ex 6.1 (h-functions associatedwith pair copulas) For the edges 23; 1 and 24; 13
of the R-vine considered in Example 5.9 with pair copulas C23;1 and C24;13,
respectively, we can express associated h-functions as follows:

h2|3;1(w1|w2; θ23;1) := ∂

∂w2
C23;1(w1, w2; θ23;1)

h2|4;13(w1|w2; θ24;13) := ∂

∂w2
C24;13(w1, w2; θ24;13).

Before deriving simulation algorithms for arbitrary dimensions, we first consider
a three-dimensional example.
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1 2 3 T1
1,2 2,3

1, 2 2, 3 T2
1,3;2

Fig.6.1 R-vine tree sequence for d = 3: The only possible three-dimensional regular
vine tree sequence (up to permutations of the nodes)

Ex 6.2 (Simulating from a three-dimensional pair copula construction) In three
dimensions, there is up to permutation of the nodes in tree T1 only one possi-
ble regular vine structure, displayed in Fig. 6.1. Having independently drawn
w1, w2, andw3 from the uniform distribution, we directly set u1 := w1. For u2
we have

C2|1(u2|u1) = ∂C12(u1, u2)

∂u1
= h2|1(u2|u1; θ12).

Thus, we set u2 := h−1
2|1(w2|u1; θ12). The calculation for u3 is a bit more

involved. The conditional density c3|12(u3|u1, u2) of U3 given U2 = u2 and
U1 = u1 can be expressed as

c3|12(u3|u1, u2) = c13;2(C1|2(u1|u2),C3|2(u3|u2))c3|2(u3|u2).

Therefore the corresponding distribution function can be derived by integration
applying (6.1), (6.2) and (6.4) as

C3|12(u3|u1, u2) =
∫ u3

0

∂2

∂w1∂w2
C13;2(w1, w2)|w1=C1|2(u1|u2),w2=C3|2(v3|u2)

∂w2

∂v3
dv3

= ∂

∂w1
C13;2(w1,C3|2(u3|u2))|w1=C1|2(u1|u2)

= h3|1;2
(
C3|2(u3|u2)|C1|2(u1|u2); θ13;2

)
= h3|1;2

(
h3|2(u3|u2; θ23)|h1|2(u1|u2; θ12); θ13;2

)
.

This implies

C−1
3|12(w3|u1, u2) = h−1

3|2
(
h−1
3|1;2

(
w3|h1|2(u1|u2, θ12), θ13;2

) |u2, θ23
)

.

To generalize this procedure to arbitrary dimensions, we need to find an algorith-
mic way of selecting the appropriate arguments for the inverse h-functions in each
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step. First, we discuss the simulation algorithm for C- and D-vine copulas before
considering the general case of regular vine copulas.

6.3 Simulating from C-vine Copulas

Before we discuss simulating from C-vine copulas in arbitrary dimensions, we intro-
duce some useful abbreviations. To shorten notation, we use i : j for the vector
(i, . . . , j) of the indices and ui : j for (ui , . . . , u j ), respectively.

To further simplify notation, we omit in the following the dependence of the h-
function on the copula parameter, i.e., wewrite hi | j (ui |u j ) instead of hi | j (ui |u j ; θi j ).
We start our discussion by first considering the four-dimensional case.

Ex 6.3 (Simulating from a four-dimensional C-vine) To simulate from a four-
dimensional C-vine copula, we need the inverses of the following conditional
distributions: C2|1,C3|1:2 and C4|1:3. For example, we can express the condi-
tional distribution function C4|1:3 as the derivative with regard to first argument
of the bivariate conditional copula C34;1:2 evaluated at the associated univariate
conditional distribution functions C3|1:2 and C4|1:2. A similar case was already
discussed in Example 4.6. This allows us to calculate the required conditional
distribution functions as follows:

C4|1:3(u4|u1:3) = h4|3;1:2(C4|1:2(u4|u1:2)|C3|1:2(u3|u1:2))
= h4|3;1:2

(
h4|2;1

(
h4|1(u4|u1)|h2|1(u2|u1)

) |C3|1,2(u3|u1:2)
)

C3|1:2(u3|u1:2) = h3|2;1(C3|1(u3|u1)|C2|1(u2|u1))
= h3|2;1(h3|1(u3|u1)|h2|1(u2|u1))

C2|1(u2|u1) = h2|1(u2|u1).

Recall that we ignore the parameters associated with the h-functions to make
the expressions more compact. Now, we derive the associated inverse functions
as

C−1
4|1:3(u4|u1:3) = h−1

4|1
(
h−1
4|2;1

(
h−1
4|3;1:2

(
u4

∣∣C3|1:2(u3|u1:2)
) ∣∣C2|1(u2|u1)

) ∣∣u1
)

C−1
3|1:2(u3|u1,2) = h−1

3|1
(
h−1
3|2;1

(
u3

∣∣h2|1(u1|u1)) ∣∣u1
)

C−1
2|1(u2|u1) = h−1

2|1(u2|u1).

We can now apply Theorem 6.2. In particular, we first simulate four i.i.d.
uniformly distributed realizations w1, . . . , w4. Then u1, u2, u3, and u4 is a
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realization from the C-vine, where

u1 := w1 (realization from uniform)
u2 := h−1

2|1(w2|u1) (realization from C2|1(·|u1))
u3 := h−1

3|1
(
h−1
3|2;1

(
w3

∣∣h2|1(u2|u1)) ∣∣u1
)

= h−1
3|1

(
h−1
3|2;1

(
w3

∣∣h2|1(h−1
2|1(w2|u1|u1)

) ∣∣u1
)

= h−1
3|1

(
h−1
3|2;1 (w3|w2)

∣∣w1

)
(realization from C3|1,2(·|u1, u2))

u4 := h−1
4|1

(
h−1
4|2;1

(
h−1
4|3;1:2

(
w4

∣∣C3|1:2(u3|u1:2)
) ∣∣C2|1(u2|u1)

) ∣∣u1
)

= h−1
4|1

(
h−1
4|2;1

(
h−1
4|3;1:2 (w4|w3)

∣∣w2

) ∣∣w1

)
.

(realization from C4|1,2,3(·|u1, u2, u3))

For the last equation for u4, we used the fact that u3 = C−1
3|1,2(w3|u1:2) and

u2 = C−1
2|1(w2|u1) holds by definition.

We turn now to the general case of simulating from C-vine copulas. In this case,
the corresponding d×d-dimensional R-vine structure matrix has the following form
up to relabeling of the nodes.

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 ...

2 2 2 2 ...

3 3 3 ...

4 4 ...

5 ...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

In the special case of C-vines, using Theorem 4.10, we can express the univariate
conditional distribution function Ci |1:i−k(ui |u1:i−k) as

Ci |1:i−k(ui |u1:i−k) (6.5)

= ∂Ci,i−k;1:i−k−1
(
Ci |1:i−k−1(ui |u1:i−k−1),Ci−k|1:i−k−1(ui−k |u1:i−k−1)

)
∂Ci−k|1:i−k−1(ui−k |u1:i−k−1)

for i = 1, . . . , d and k = 1, . . . , i − 2. The sampling algorithm stores the copula
parameters also in a strict upper triangular d×d matrix�with entries ηik = θik;1:i−1
for i < k = 2, . . . , d given by

� :=

⎛
⎜⎜⎝

− θ1,2 θ1,3 θ1,4 ...

− − θ2,3;1 θ2,4;1 ...

− − − θ3,4;1,2 ...

− − − − ...

⎞
⎟⎟⎠ .
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Thismatrix� is now utilized to calculate the entries of the following upper triangular
d × d matrix V of conditional distribution functions with entries vik for i ≤ k =
1, . . . , d:

V :=

⎛
⎜⎜⎜⎜⎝

u1 u2 u3 u4 ...

C2|1(u2|u1) C3|1(u3|u1) C4|1(u4|u1) ...

C3|1,2(u3|u1, u2) C4|1,2(u4|u1, u2) ...

C4|1,2,3(u4|u1, u2, u3) ...

...

⎞
⎟⎟⎟⎟⎠ .

(6.6)

To determine the entries of V, we first use that C j |1: j−1(u j |u1: j−1) = w j , i.e.,
v j j = w j for j = 1, . . . , d holds. Here, the variables w j are defined as in Theorem
6.2. Finally, we rewrite (6.5) in terms of h-functions as

Ci |1:i−k (ui |u1:i−k ) = hi |i−k;1:i−k−1
(
Ci |1:i−k−1(ui |u1:i−k−1)|Ci−k|1:i−k−1(ui−k |u1:i−k−1

)
,

and invert with respect to the first argument to obtain for i = 1, . . . , d and k =
1, . . . , i − 2

Ci |1:i−k−1(ui |u1:i−k) (6.7)

= h−1
i |i−k;1:i−k−1

(
Ci |1:i−k(ui |u1:i−k−1)

∣∣Ci−k|1:i−k−1(ui−k |u1:i−k−1)
)
.

More precisely, Algorithm 6.4 (taken from Stöber and Czado 2017) applies the
relationship (6.7) recursively to calculate the entries vi j of matrix V defined in (6.6).
It generates a sample (u1, . . . , ud) from the C-vine copula, which is stored in the
first row of the matrix V.

Algorithm 6.4 (Sampling from a C-vine copula) The input is a strict upper
triangular matrix� of copula parameters with entries ηki = θki;1:k−1 for k < i
and i, k = 1, . . . , d for the d-dimensional C-vine, the output will be a sample
from the C-vine copula.

Sample wi
i.i.d.∼ U [0; 1], i = 1, . . . , d (1)

v1,1 := w1 (2)

FOR i = 2, . . . , d (3)

vi,i := wi (4)

FOR k = i − 1, . . . , 1 (5)

vk,i := h−1
i |k;1:k−1(vk+1,i |vk,k, ηk,i ) (6)

END FOR

END FOR

RETURN ui := v1,i i = 1, . . . , d (7)

(Taken from Stöber and Czado 2017.With permission of c©World Scientific Publishing Co. Pte. Ltd. 2017.)
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Table 6.1 R-vine specification: Chosen pair copula families, their family name abbrevi-
ations in VineCopula, parameter value, and corresponding Kendall’s τ value

Edge Family Abbrev. θ τ

12 Clayton (C) 3 4.80 0.71

13 Gaussian (N) 1 0.50 0.33

14 Gaussian (N) 1 0.90 0.71

15 Gumbel (G) 4 3.90 0.74

23;1 Gumbel (G) 4 1.90 0.47

24;1 Rotated Gumbel
90◦ (G90)

24 −2.60 −0.62

25;1 Rotated Gumbel
90◦ (G90)

24 −6.50 −0.85

34;12 Rotated Clayton
90◦ (C90)

3 −5.10 −0.72

35;12 Clayton (C) 3 0.90 0.31

45;123 Gaussian (N) 1 0.20 0.13

Remark 6.5 It is not needed to store the whole matrix V in this algorithm, since the
only entries we are going to use more than once are vi,i = wi . Thus, we can always
delete or overwrite the other entries after they have been used as input for the next
recursion. The matrix structure is chosen to illustrate the iterative procedure. It is
also needed to understand the general regular vine case discussed later.

Ex 6.4 (Simulating from a five-dimensional C-vine copula) The function
RVineSim from the R library VineCopula can be used to simulate from
C-vine copulas. As inputs we need an RVineMatrix object, which stores
structure matrix M, the pair copula families and their parameters. To create
such an RVineMatrix object for C-vines, the function C2Rvine can be
used. For our example, we choose the pair copula families together with their
parameter and the corresponding Kendall’s τ specified in Table 6.1. If we fix a
Kendall’s τ value, we can use the function BiCopTau2Par to determine the
corresponding parameter value. This is unique, since we used only pair copula
families with a single parameter.

The corresponding C-vine tree sequence together with copula family and
Kendall’s τ values are given in Fig. 6.2. This is produced using the function
plot for an RVineMatrix object within the VineCopula package.

To get an idea, how the pair copula specification of Table 6.1 looks at the
normalized contour level, we present these contour plots shown in Fig. 6.3. This
is produced with the function contour applied to a RVineMatrix object
within the VineCopula package.
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Tree 1

G(3.9)

N(0.9)

N(0.5)

C(4.8)

5

4

3

2

1

Tree 2

G90(−6.5)

G90(−2.6)

G(1.9)

1,5

1,4

1,3

1,2

Tree 3

C(0.9)

C90(−5.1)

2,5 ; 1

2,4 ; 1 2,3 ; 1

Tree 4

N(0.2)

3,5 ; 2,1

3,4 ; 2,1

Fig. 6.2 C-vine tree plots: Tree sequence with families and Kendall’s τ values

Fig. 6.3 Normalized
contours: Normalized
theoretical contour plots of
all pair copulas specified in
the C-vine tree sequence
given in Fig. 6.2

4,5 ; 3,2,1

3,5 ; 2,1 3,4 ; 2,1

2,5 ; 1 2,4 ; 1 2,3 ; 1

1,5 1,4 1,3 1,2
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Fig. 6.4 C-vine
simulation: A simulated
sample of size 1000 from the
C-vine specified in Table 6.1
(upper triangle: pair scatter
plot of copula data, diagonal:
marginal histograms of
copula data, lower triangle:
empirical normalized
contour plots)

V1

0.70 0.33 0.71 0.74
V2

0.50 0.44 0.45

V3

0.061 0.16

V4

0.80
V5

Finally, we present pairs plots and empirical normalized contour plots of a
sample from this C-vine of size 1000 shown in Fig. 6.4.We see the typical shapes
of the contour plots for the pairs (1, 2), (1, 3), (1, 4), and (1, 5) associated with
the pair copulas of the first tree of the C-vine specification (first column of the
lower triangle of Fig. 6.4). The remaining empirical normalized contour plots
give estimates of the theoretical normalized contour plots. These theoretical
plots can only be determined through integration over the appropriate condi-
tioning variables. For example the theoretical normalized contour plot of the
pair (2, 3) requires the bivariate marginal copula density

c23(u2, u3) =
∫ 1

0
c12(u1, u2)c13(u1, u3)c23;1(C(u2|u1),C(u3|u1))du1.

The associated normalized contour plot for c23 is estimated using the normalized
sample values (�−1(ui2),�−1(ui3)) and given by the panel in row3 and column
2 of Fig. 6.4.
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6.4 Simulating fromD-vine Copulas

Now, we consider d-dimensional D-vine copulas with regular vine matrix given as

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 2 3 4 ...

2 1 2 3 ...

3 1 2 ...

4 1 ...

5 ...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

For sampling from a D-vine copula (right panel of Fig. 5.4), the relationship which
we use instead of (6.5) for the C-vine case is

Ci |k:i−1(ui |uk:i−1) = ∂Ci,k;k+1:i−1
(
Ci |k+1:i−1(ui |uk+1:i−1),Ck|k+1:i−1(uk |uk+1:i−1)

)
∂Ck|k+1:i−1(uk |uk+1:i−1)

, (6.8)

where i = 3, . . . , d and k = 2, . . . , i − 1, i.e., i > k. In contrast to the C-vine
copula, we do not automatically obtain the second argument in (6.8). This means
that an extra step for its computation has to be added and that we have to determine
two upper triangular matrices in d × d dimensions containing needed conditional
distribution functions

V :=

⎛
⎜⎜⎜⎜⎝

u1 u2 u3 u4 ...

C2|1(u2|u1) C3|2(u3|u2) C4|3(u4|u3) ...

C3|2,1(u3|u2, u1) C4|3,2(u4|u3, u2) ...

C4|3,2,1(u4|u3, u2, u1) ...

...

⎞
⎟⎟⎟⎟⎠
(6.9)

V 2 :=

⎛
⎜⎜⎜⎜⎝

u1 u2 u3 u4 ...

C1|2(u1|u2) C2|3(u2|u3) C3|4(u3|u4) ...

C1|2,3(u1|u2, u3) C2|4,3(u2|u4, u3) ...

C1|4,3,2(u1|u4, u3, u2) ...

...

⎞
⎟⎟⎟⎟⎠

(6.10)

using the strict upper triangular matrix � with entries ηki for k < i

� :=

⎛
⎜⎜⎝

− θ1,2 θ2,3 θ3,4 ...

− − θ3,1;2 θ4,2;3 ...

− − − θ4,1;3,2 ...

− − − − ...

⎞
⎟⎟⎠ . (6.11)
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In particular, we have

ηki = θi−k,i;i−k+1:i−1

for k = 1, . . . , d−1 and i = k+1, . . . , d. Recall that the order of the two conditioned
indices is not important, i.e., θea ,eb;De = θeb,ea;De holds. Before we present the
general algorithm, we illustrate it in four dimensions.

Ex 6.5 (Simulating from a four-dimensional D-vine copula) We will use the
matrices V, V 2, and � as defined in (6.9), (6.10) and (6.11) for the special case
when d = 4. To simulate from the four-dimensional D-vine copula we need to
calculate the following conditional distributions:

C4|1:3(u4|u1:3) = h4|1;2:3(C4|2:3(u4|u2:3)|C1|2:3(u1|u2:3); θ14;23) (6.12)
C3|1:2(u3|u1,2) = h3|1;2(C3|2(u3|u2)|C1|2(u1|u2); θ13;2) (6.13)

C2|1(u2|u1) = h2|1(u2|u1; θ12).

Now, we sample w1, w2, w3, and w4 independently and identically from
the uniform distribution on the unit interval and set u1 := w1, u2 :=
C−1
2|1(w2|u1), u3 := C−1

3|1:2(w3|u1:2) and u4 := C4|1:3(w4|u1:3). Now
(u1, u2, u3, u4) is a realization from the four-dimensional D-vine copula. Fur-
ther, we note that w1 = u1, w2 = C2|1(u2|u1), w3 = C3|1:2(u3|u1:2) and
w4 = C4|1:3(u4|u1:3) holds.

Inverting the right-hand side of the equations (6.12) and (6.13) with respect
to the first argument gives

C3|2(u3|u2) = h−1
3|1;2(w3|C1|2(u1|u2); θ13;2) (6.14)

C4|2:3(u4|u2:3) = h−1
4|1;2:3(w4|C1|2:3(u1|u2:3); θ14;23). (6.15)

We now determine the entries of V and V 2. For the first column of V and V 2,
we set

v11 := w1 = u1 and v211 := w1 = u1.

For the second column of V and V 2, we define

v22 := w2 = C2|1(u2|u1)
v12 := u2 = C−1

2|1(w2|u1) = h−1
2|1(v22|v211, η12)

v212 := u2
v222 := C1|2(u1|u2) = h1|2(u1|u2, θ12) = h1|2(v211|v12, η12)
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Now, we proceed with the third column of V and V 2 as follows:

v33 := w3 = C3|1:2(u3|u1:2)
v23 := C3|2(u3|u2) = h−1

3|1:2(w3|C1|2(u1|u2), θ13;2) = h−1
3|1:2(v33|v222, η23)

v233 := C1|2:3(u1|u2:3) = h1|3;2(C1|2(u1|u2)|C3|2(u3|u2); θ13;2) = h1|3;2(v222|v23; η23)

v13 := u3 = C−1
3|1:2(w3|u1:2) = h−1

3|2(h
−1
3|1:2(w3|C1|2(u1|u2); θ13;2)|u2; θ23) = h−1

3|2(v23|v212; η13)

v213 := v13
v223 := C2|3(u2|u3) = h2|3(v212|v13; η13).

For the entry v23, we used (6.14) and for the entry v13 equation (6.13) with
inversion. For the entry v233, we used Eq. (4.21).

For the fourth column of V , we get:

v44 := w4 = C4|1:3(u4|u1:3)
v34 := C4|2:3(u4|u2:3) = h−1

4|1;2:3(w4|C1|2:3(u1|u2:3); θ14;23) = h−1
4|1;2:3(v44|v233, η34)

v24 := C4|3(u4|u3) = h−1
4|2;3(C4|23(u4|u2:3)|C2|3(u2|u3); θ24;3) = h−1

4|2;3(v34|v223; η24)

v14 := u4 = C−1
4|1:3(w4|u1:3) = h−1

4|3(C4|3(u4|u3)|u3; θ34) = h−1
4|3(v24|v213; η14).

(6.16)

For v34, we used (6.15) and for v24, we used a similar calculation as for v23.
Finally, v14 requires the inversion of (6.12) and the use of previously defined
elements of V and V 2. For sampling from this four-dimensional D-vine copula,
only the values vi i for i = 1, . . . , 4 are required, the remaining values of the
fourth column of V are just given for completeness.

As we see, we need to evaluate the second argument ofC4|1:3 separately. This
is also intuitively clear since for a D-vine the conditioning sets in each tree Tj

is changing for each edge in the tree, while this is not the case for C-vines.

The calculations of the entries ofV andV 2 in arbitrary dimension can be facilitated
using the recursions given in Algorithm 6.6. It is a slightly adapted version of the
algorithm contained in Stöber and Czado (2017).

Algorithm 6.6 (Sampling from a D-vine copula) The input of the algorithm
is the matrix � specified in (6.11) of copula parameters for the d-dimensional
D-vine, the output will be a sample from the D-vine distribution.

Sample wi
i.i.d.∼ U [0; 1], i = 1, . . . , d (1)

v1,1 := w1, v
2
1,1 := w1 (2)

FOR i = 2, . . . , d (3)

vi,i := wi (4)

FOR k = i − 1, . . . , 1 (5)

vk,i := h−1
i |i−k;i−k+1:i−1(vk+1,i |v2k,i−1, ηk,i ) (6)
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IF i < d (7)

v2k+1,i := hi−k|i;i−k+1:i−1(v
2
k,i−1|vk,i , ηk,i ) (8)

END IF

END FOR

v21,i := v1,i (9)

END FOR

RETURN vi := v1,i i = 1, . . . , d (10)

(Taken from Stöber and Czado 2017.With permission of c©World Scientific Publishing Co. Pte. Ltd. 2017.)

Remark 6.7 Just as we noted for the C-vine copula in Remark 6.5, we do not need
to store all matrix entries calculated during the recursion. The entries in row i of the
first matrix V can always be deleted after they have been used to calculate ui and
the entries of the second matrix V 2.

6.5 Simulating from Regular Vine Copulas

After the construction of simulation algorithms for C- and D-vine copulas, we
develop now a simulation algorithm from a general R-vine copula. The C- and
D-vine tree sequences are extreme cases. In the C-vine case, there is one root node
in each tree, which shares edges with all other nodes, while in the D-vine case each
node has edges at most with two other nodes. In the simulation algorithms, we need
a set of conditional distribution functions corresponding to the first argument (stored
in matrix V ) and the second argument (stored in the matrix V 2) for the inverse
h-function. For the C-vine case, the entries for the second argument are already
determined by the entries of the matrix V . For the general R-vine copula, the sam-
pling procedure will be a combination between these two extreme cases and will
depend on the number of edges for each node.

Choose now a d-dimensional R-vine matrix M = (mi, j )i, j=1,...,d as defined in
Sect. 5.5. Without loss of generality, we assume that the entries on the diagonal are
ordered as 1, 2, . . . , d, i.e., mi,i = i . If this is not the case use a permutation of the
indices 1, 2, . . . , d. The parameters for the pair copulas associated with M are stored
in a strict upper triangular d × d matrix �. Here, the (k, i)th entry ηk,i for k < i of
� corresponds to the parameter of cmk,i ,mk,k ;m1,i ,...,mk−1,i . More precisely define the
matrix � as

� =

⎛
⎜⎜⎝

− θm1,2,2 θm1,3,3 θm1,4,4 ...

− − θm2,3,3;m1,3 θm2,4,4;m1,4 ...

− − − θm3,4,4;m2,4,m1,4 ...

− − − − ...

⎞
⎟⎟⎠ . (6.17)
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In contrast to C- and D-vine copulas different shapes of the associated R-vine trees
Tj are possible for R-vine copulas. In this more general case, we still need to express
all required arguments for the h function in terms of the R-vine matrix M . More pre-
cisely, the conditional distribution function corresponding toUmi,i can be determined
by Umk,i = umk,i , . . . ,Um1,i = um1,i (compare to (6.5) and (6.8)) as

C(umi,i |umk,i , umk−1,i . . . , um1,i ) =
∂Cmi,i ,mk,i ;mk−1,i ,...,m1,i

(
C(umi,i |umk−1,i , . . . , um1,i ),C(umk,i |umk−1,i , . . . , um1,i )

)
∂C(umk,i |umk−1,i , . . . , um1,i )

(6.18)
for i = 3, . . . , d and k = 2, . . . , i − 1. To shorten notation, we left out the sub
indices of the conditional distribution functions. Again, we define two upper trian-
gular matrices V and V 2 as follows:

V =

⎛
⎜⎜⎜⎜⎝

u1 u2 u3 u4 ...

C(u2|um1,2) C(u3|um1,3) C(u4|um1,4) ...

C(u3|um1,3 , um2,3) C(u4|um1,4 , um2,4) ...

C(u4|um1,4 , um2,4 , um3,4) ...

...

⎞
⎟⎟⎟⎟⎠

(6.19)

V 2 =

⎛
⎜⎜⎜⎜⎝

u1 u2 u3 u4 ...

C(um1,2 |u2) C(um1,3 |u3) C(um1,4 |u4) ...

C(um2,3 |um1,3 , u3) C(um2,4 |um1,4 , u4) ...

C(um3,4 |um1,4 , um2,4 , u4) ...

...

⎞
⎟⎟⎟⎟⎠ . (6.20)

The matrix V 2 is similarly defined as the corresponding one for the D-vine copula.
Two questions have to be addressed before a sampling algorithm can be con-

structed: From which column of the R-vine matrix do we have to select the second
argument of the inverse h-function (and the first argument of the h-function)? Do we
have to select it from the first matrix V defined in (6.19) or from the second matrix
V 2 defined in (6.20)?

For the answer to these questions, we consider the R-vinematricesM correspond-
ing to the C-vine andD-vine copula given in (5.6) and (5.7), respectively. Using these
we learn how the choices in Algorithms 6.4 and 6.6 can be expressed in terms of
R-vine matrices. This will give us an idea of how to choose the right arguments for
a general R-vine copula. Additionally, we introduce the matrix M = (m̃k,i ), k ≤ i ,
with elements

m̃k,i := max{mk,i ,mk−1,i , . . . ,m1,i }.
For the C-vine copula with matrix M we have M = M , i.e., we have m̃k,i = k for
all entries of M. However for the D-vine copula matrix M , we have M �= M . In
particular m̃k,i = i − 1 holds for all off-diagonal entries ofM.

For the C-vine copula, we always select an entry for the second argument for
the inverse h-function from the kth column of V within Step (6) of Algorithm 6.4.
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This corresponds to column mk,i = m̃k,i = k. For the D-vine copula, we remain
in column i − 1 (= m̃k,i ) in Step (6) of Algorithm 6.6 for the second argument
of the inverse h-function. Therefore, the sampling algorithm for an R-vine copula
will always choose m̃k,i . The entry, which is needed as second argument for the
inverse h-function has to be in this column, since the second argument in (6.18)
is C(umk,i |umk−1,i , . . . , um1,i ), and m̃k,i is the largest index in this expression. The
first row where an entry containing index m̃k,i can be located is row m̃k,i , since the
diagonals of M are arranged in increasing order and sinceml,h ≤ h for l = 1, . . . , h
by Property 3 of Definition 5.23. Furthermore, each element in column h of (6.19)
and (6.20) contains the index h, which means that the entry we are looking for cannot
be found in a column to the right of column m̃k,i .

In matrix V of (6.19), all entries in column m̃k,i are conditional distribution
functions of Um̃k,i given other variables, and in matrix V 2 defined in (6.20) Um̃k,i is
part of the conditioned variables. Thus, we only need to check whether m̃k,i = mk,i

to choose from the appropriate matrix.
Algorithm 6.8 taken in slightly corrected form from Stöber and Czado (2017)

summarizes the results of the discussion. Induction can be used to proof that at each
step of the algorithm the appropriate entry can selected from two matrices V and V 2

with the form given in (6.19) and (6.20), respectively. A more formal proof can be
found in Chap.5 of Dißmann (2010).

Algorithm 6.8 (Sampling from an R-vine copula) The input of the algorithm
is a matrix � with entries ηk,i , given in (6.17), of copula parameters for the
d-dimensional R-vine copula. The output will be a sample from the R-vine
copula.

Sample wi
i.i.d.∼ U [0; 1], i = 1, . . . , d (1)

v1,1 := w1 (2)

FOR i = 2, . . . , d (3)

vi,i := wi (4)

FOR k = i − 1, . . . , 1 (5)

IF (mk,i = m̃k,i ) (6)

vk,i := h−1
mii |mki ;m1i ,...mk−1,i

(vk+1,i |vk,m̃k,i , ηk,i ) (7a)

ELSE

vk,i := h−1
mii |mki ;m1i ,...mk−1,i

(vk+1,i |v2k,m̃k,i
, ηk,i ) (7b)

END IF ELSE

IF (i < d) (8)

IF (mk,i = m̃k,i ) (9)

v2k+1,i := hmki |mii ;m1i ,...mk−1,i (vk,m̃k,i |vk,i , ηk,i ) (10a)

ELSE



6.5 Simulating from Regular Vine Copulas 139

v2k+1,i := hmki |mii ;m1i ,...mk−1,i (v
2
k,m̃k,i

|vk,i , ηk,i ) (10b)

END IF ELSE

END IF

END FOR

END FOR

RETURN ui := v1,i i = 1, . . . , d (11)

(Taken from Stöber and Czado 2017.With permission of c©World Scientific Publishing Co. Pte. Ltd. 2017.)

Ex 6.6 (Sampling from the regular vine of Example 5.6 restricted to five dimen-
sions) To illustrate the steps of Algorithm 6.8, we consider Example 5.6
restricted to five dimensions to shorten our exposition. For this, we remove
the nodes 6, 56, 16; 5, 36; 15, and 46; 135 from the trees T1, …, T5, respec-
tively. The corresponding R-vine matrix M is given by (5.5) with the sixth row
and column removed. We now reorder the diagonal in increasing order giving
the following matrices:

M =

⎛
⎜⎜⎜⎜⎝

1 1 2 3 3
2 1 2 2

3 1 1
4 4

5

⎞
⎟⎟⎟⎟⎠ and M̃ =

⎛
⎜⎜⎜⎜⎝

1 1 2 3 3
2 2 3 3

3 3 3
4 4

5

⎞
⎟⎟⎟⎟⎠ ,

respectively. Further, we have the matrix V and V 2 given as

V =

⎛
⎜⎜⎜⎜⎝

u1 u2 u3 u4 u5
C(u2|u1) C(u3|u2) C(u4|u3) C(u5|u3)

C(u3|u2, u1) C(u4|u3, u2) C(u5|u3, u2)
C(u4|u3, u2, u1) C(u5|u3, u2, u1)

C(u5|u3, u2, u1, u4)

⎞
⎟⎟⎟⎟⎠ (6.21)

V 2 =

⎛
⎜⎜⎜⎜⎝

u1 u2 u3 u4 u5
C(u1|u2) C(u2|u3) C(u3|u4) C(u3|u5)

C(u1|u2, u3) C(u2|u3, u4) C(u2|u3, u5)
C(u1|u3, u2, u4) C(u1|u3, u2, u5)

C(u4|u3, u2, u1, u5)

⎞
⎟⎟⎟⎟⎠ .

(6.22)
Finally, the matrix � of pair copula parameter is given by

� =

⎛
⎜⎜⎝

− θ12 θ23 θ34 θ35
− − θ13;2 θ24;3 θ25;3
− − − θ14;23 θ15;23
− − − − θ45;123

⎞
⎟⎟⎠ . (6.23)
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For columns 1–4 of M corresponding to u1, . . . , u4, this matrix is the same
as for a D-vine copula, which means that except for row 1, we havemk,i �= m̃k,i

and that we select the second entry of the inverse h-function from the second
matrix V 2 (6.20). In row 1, m1,i = m̃1,i for i = 1, . . . , 5 such that in the last
step of the iteration for u1, . . . , u4 we select from (6.19).

To obtain u5(= v15), we calculate C(u5|u1, u2, u3)(= v45) from C(u5|u1,
u2, u3, u4) = w5(= v55) as

C(u5|u1, u2, u3)(= V45) = h−1
5|4;123

(
w5(= v55)|C(u4|u1, u2, u3)(= v44), θ45|123(= η45)

)
.

Since C(u4|u1, u2, u3) = v44 is given in Matrix (6.21) and m45 = 4 = m̃45
it gets correctly selected. For the next two steps of the recursion, we need
C(u1|u2, u3)(= v233) andC(u2|u3)(= v232), which are given in the third column
of the matrix V 2 (6.22). Correspondingly, we have m35 = 1 �= m̃35 = 3 and
m25 = 2 �= m̃25 = 3. In the last step, we do select u3(= v13) from the third
column of matrix V (6.21), m̃1,5 = 3.

Remark 6.9 As it was noted in Remark 5.27, an R-vine matrix corresponds to a
directed vine, when the diagonal element is arranged as the first argument. This
requirement might result in an ordering of the conditioned and conditional indices
which are not increasing. However, following this specification, we can introduce
one further dimension in the parameter of the h-function giving the angle of rotation,
and still apply Algorithm 6.8.

The simplified algorithms for the C-vine and D-vine copulas correspond to the
special structure in the corresponding R-vine matrices shown in Example 5.13.

Remark 6.10 (Sampling from R-vine distributions) So far, we only have discussed
the simulation from anR-vine copula. For a general R-vine distributionwithmarginal
distribution and quantile functions Fj and F−1

j , we can easily transform a sample
(u1, . . . , ud) from the associated R-vine copula to a sample from the R-vine distri-
bution by setting x j := F−1

j (u j ) for j = 1, · · · , d.

Ex 6.7 (Sampling from a specified R-vine copula) We can use the function
RVineSim from the R library VineCopula to simulate from a specified
R-vine copula. As specification for the R-vine tree sequence, we use the follow-
ing R-vine matrix in lower triangular form as discussed in Example 5.14:
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⎛
⎜⎜⎜⎜⎝

2 0 0 0 0
5 3 0 0 0
3 5 4 0 0
1 1 5 5 0
4 4 1 1 1

⎞
⎟⎟⎟⎟⎠ .

As pair copula families, we chose

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
1 0 0 0 0
3 23 0 0 0
24 24 4 0 0
4 1 1 3 0

⎞
⎟⎟⎟⎟⎠ ,

where 1 corresponds to a Gaussian (N), 3 to a Clayton (C), 4 to a Gumbel (G),
23 to rotated 90◦ Clayton (C90), and 24 to a rotated 90◦ Gumbel (G90). The
corresponding copula parameters were set to

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0.2 0 0 0 0
0.9 −5.1 0 0 0

−6.5 −2.6 1.9 0 0
3.9 0.9 0.5 4.8 0

⎞
⎟⎟⎟⎟⎠

The associatedR-vine tree sequence plot is given inFig. 6.5 and the associated
theoretical normalized contour plots of the specified (conditional) pair copulas
are given in Fig. 6.6.

Pairs plots and normalized contour plots of a sample of size 1000 using the
function RVineSim of the library VineCopula are given in Fig. 6.7. Note
that, not all bivariate distributions of pairs are directly specified through the
R-vine. For example a theoretical normalized contour plot for the variable pair
(2, 5) would require a three- dimensional integration over the variables 1, 3 and
4, it however can be estimated using the 1000 sampled values for the variables 2
and 5. The function RVineSim requires an RVM object, which can be generated
by the function RVineMatrix.
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Tree 1

G(3.9)

N(0.9)N(0.5)

C(4.8)

2

3

4

5

1

Tree 2

G90(−6.5)
G90(−2.6)

G(1.9)

4,2

4,3

1,4

1,5

Tree 3

C(0.9)

C90(−5.1)

1,2 ; 4

1,3 ; 4

5,4 ; 1

Tree 4

N(0.2)

3,2 ; 1,4

5,3 ; 1,4

Fig. 6.5 R-vine tree plots: with copula families and Kendall’s τ values

Fig. 6.6 Normalized
contours: Theoretical
normalized contour plots of
the specified pair copulas

5,2 ; 3,1,4

3,2 ; 1,4 5,3 ; 1,4

1,2 ; 4 1,3 ; 4 5,4 ; 1

4,2 4,3 1,4 1,5
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Fig. 6.7 R-vine
simulation: Pairwise
scatter plots (upper
triangular), marginal
histograms (diagonal), and
pairwise normalized contour
plots (lower triangular) of
1000 simulated realizations
of the R-vine copula
specified in Example 6.7

V1

0.11 0.11 0.33 0.69

V2

0.86 0.77 0.29

V3

0.73 0.24

V4

0.50

V5

6.6 Exercises

Exer 6.1
(Recursion for simulation from D-vine copulas) Proof in detail Equality (6.16) in
Example 6.5.

Exer 6.2
(Simulate from a D vine) Simulate from a D-vine copula, where the families and
parameters are specified as in Table 6.1 of Example 6.4 for the edges of a corre-
sponding five- dimensional D-vine. More precisely, the edges 12, 13, 14 and 15 of
the C-vine correspond to the edges 12, 23, 34 and 45 of the D-vine vine. Make a
similar correspondence for trees T2 until tree T4 to completely specify the D-vine
copula. Produce a tree sequence plot and pairs/normalized contour plots for sam-
ple of size 1000 from this D-vine copula. Compare the results to ones obtained in
Example 6.4.

Exer 6.3
(Order of the C-vine copula) Consider you have the variables “A”, “B”, “C”, “D”,
and “E” available. Simulate from a C-vine with specification as in Example 6.4.
Change then only the order of the C-vine to “B”, “D”, “E”, “A”, and “C”, compare
then the two samples of the C-vine with appropriate C-vine tree sequence plots and
pairs/contour plots. The plots should have the variables names “A”, “B”, “C”, “D”,
and “E”.
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Exer 6.4
(Verification of general R-vine sampling Algorithm6.8) For Example 6.6, determine
all entries of the Algorithm 6.8 and verify that they produce a sample of the specified
R-vine.



7Parameter Estimation in Simplified
RegularVineCopulas

In the last chapter, we have seen how to design very flexible multivariate copulas.
To make them useful for practise, we have now to tackle the problem of parameter
estimation. For this, we will assume that the simplifying assumption holds through-
out. We also suppose, that the vine copula model is completely specified by a given
vine tree sequence, as well as, the pair copula families associated with each edge in
the vine tree sequence. The problem of how to choose the pair copula families and
how to select the vine structure will be treated in subsequent chapters.

We study now the estimation of the associated pair copula parameters for pair
copulas in a given vine structure. This estimation problem can be decomposed in
a sequence of smaller estimation problems, which can be solved efficiently. This
sequential solution can be utilized as a starting value for determining joint maximum
likelihood.

7.1 Likelihood of Simplified Regular Vine Copulas

For the following, we assume that we have an i.i.d. d-dimensional sample of size n
from a regular vine copula with specified vine tree sequence and pair copula families
available. We collect this sample in a n × d data matrix defined as

u := (u�
1 , ..., u�

n ) with uk := (uk,1, ..., uk,d)
� for k = 1, ..., n.

Recall from (5.1) that we abbreviate an edge e = eCe,a ,Ce,b;De from the edge set
E = (E1, . . . , Ed−1) by

e = (ae, be; De) with e ∈ E j for j = 1, ..., d − 1.
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Using the expression for the regular vine density given in (5.2), we can easily deter-
mine the likelihood of a regular vine copula under the simplifying assumption.

Definition 7.1 (Likelihood of a simplified regular vine copula) The likelihood
of a simplified regular vine copula with copula parameters θ = {θe, e ∈ E}
and observed data u is defined as

�(θ; u) =
n∏

k=1

d−1∏

j=1

∏

e∈E j

cae,be;De(Cae|De(uk,ae |uk,De),Cbe|De(uk,be |uk,De)).

(7.1)

Remark 7.2 In the likelihood expression (7.1), we suppressed the dependence on
the associated copula parameters. In particular, the pair copula cae,be;De depends
on θae,be;De , while the arguments Cae|De and Cbe|De depend on the parameters of
the pair copulas, which are needed to recursively determine them. It is important
to note, that the recursion only uses pair copulas, which are identified by the vine
tree sequence. In Example 5.10, we see from Fig. 5.5 that C5|1,3,4 is determined
by c5,4;1,3, c5,3;1, c4,1;3, c5,1, c3,1, and c4,3 and thus, it depends on the parameters
associated with these terms.

We now discuss the special case in three dimensions, as well as the C-vine and the
D-vine case in arbitrary dimension.

Ex 7.1 (Likelihood in a three-dimensional PCC) Using the copula density
(4.10), the likelihood for θ = (θ12;3, θ23, θ12)� can be expressed as

�(θ; u) =
n∏

k=1

c13;2(C1|2(uk,1|uk,2; θ12),C3|2(uk,1|uk,2; θ23);θ13;2)

× c23(uk,2, uk,3;θ23)c12(uk,1, uk,2;θ12). (7.2)

Ex 7.2 (Likelihood of a parametric D-vine and C-vine copula) We assume that
all pair copula families needed for a C-vine or D-vine copula are parametric.
In particular for a D-vine, the parameter(s) of the pair copula Ci,i+ j;i+1:i+ j−1
are denoted by θi,i+ j;i+1:i+ j−1 for j = 1, . . . d − 1 and i = 1, . . . , d − j ,
and all parameters are collected in θ. Correspondingly, we use θ j,i+ j;1: j−1 for
the parameter(s) of the pair copula C j,i+ j;1: j−1 and again collect all parameters
in θ.
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Using (4.18) and (4.20), respectively, the likelihood of the D-vine copula is
given by

�(θ, u) =
n∏

k=1

d−1∏

j=1

d− j∏

i=1

(7.3)

× ci,i+ j;i+1:i+ j−1(Ci |i+1:i+ j−1(uk,i |uk,i+1:i+ j−1),Ci+ j |i+1:i+ j−1(uk,i+ j |
uk,i+1:i+ j−1)),

while the likelihood of a C-vine copula can be written as

�(θ, u) =
n∏

k=1

d−1∏

j=1

d− j∏

i=1

(7.4)

× c j,i+ j;1: j−1(Ci |1: j−1(uk,i |uk,1: j−1),Ci+ j |1: j−1(uk,i+ j |uk,1: j−1)).

In particular for D-vine copulas, the conditional distribution func-
tion Ci |i+1:i+ j−1 depends first on θi,i+ j−1;i+ j−2, while Ci+ j |i+1:i+ j−1 on
θi+2,i+ j−1;i+ j−1. This can be used recursively to determine the complete
parameter dependence.

7.2 Sequential andMaximum Likelihood Estimation
in Simplified Regular Vine Copulas

The standard parameter estimation method in statistics is maximum likelihood. This
involvesmaximizing the likelihood. Often, it is easier to maximize the log-likelihood
instead of the likelihood. Here it is particularly easy, since the likelihood of a regular
vine copula is a product of terms, which transforms to a sum, when we optimize
the log-likelihood. For hierarchical Archimedean copulas (see for example Savu and
Trede 2010 and Okhrin et al. 2013), this is not possible.

In the case of simplified regular vine copulas in d dimensions with pair copulas
with a single parameter, the number of parameters to be maximized is d(d − 1)/2,
which grows quadratically. Therefore it is important to find good starting values for
the optimization. Such starting values are given by sequential parameter estimates.
We first illustrate this approach in the three dimensional case.

Ex 7.3 (Sequential estimation in three dimensions) The associated likelihood
for the three-dimensional case is given in (7.2). In thefirst step,wefindparameter
estimates of θ12 and θ23 by using the bivariate sub samples (uk,1, uk,2) and
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(uk,2, uk,3) for k = 1, ..., n, respectively. Here, we can usemaximum likelihood
or the inversion ofKendall’s τ , when pair copula familieswith a single parameter
have been used (see Sect. 3.10). We denote the corresponding estimates by θ̂12

and θ̂23, respectively.
In the second step, we define the pseudo-observations

uk,1|2,θ̂12
:= C1|2(uk,1|uk,2, θ̂12)

uk,3|2,θ̂23
:= C3|2(uk,3|uk,2, θ̂23) (7.5)

for k = 1, ..., n. Under the simplifying assumption, these provide an approxi-
mate i.i.d. sample from the pair copula C13;2. Further, the marginal distribution
associated with the pseudo-observations (7.5) is approximately uniform, since
the transformation in (7.5) is a probability integral transform with estimated
parameter values (compared to the definition of CPIT given in (3.32)). There-
fore, we use the pseudo-observations to estimate the parameter(s) of the pair
copula c13;2 by again either maximizing

n∏

k=1

c13;2(uk,1|2,θ̂12
, uk,3|2,θ̂23

;θ13;2)

over θ13;2 or when θ13;2 is univariate by inverting the empirical Kendall’s τ
based on the pseudo observations (uk,1|2,θ̂12

, uk,3|2,θ̂23
) for k = 1, ..., n.

This way of proceeding we extend now to higher dimensions.

Definition 7.3 (Sequential estimation in simplified regular vines copulas) We
use the following notation:

• Let θe the copula parameter(s) corresponding to edge e = (ae, be; De) in a
regular vine tree sequence in tree Ti .

• The copula parameters associated with the edges in tree Ti we denote by
θ(Ti ) and their estimates by θ̂(Ti ).

• Suppose all pair copula parameters identified in tree T1 to tree Ti−1 are
already estimated. We denote this collection of parameter estimates by
θ̂(T1,...,i−1).

The sequential estimate of θe for edge e = (ae, be; De) in tree Ti is based on
the pseudo-observations

uk,ae|De ,̂θ(T1,...,i−1)
:= Cae|De(uk,ae |uk,De , θ̂(T1,...,i−1))
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uk,be|De ,̂θ(T1,...,i−1)
:= Cbe|De(uk,be |uk,De , θ̂(T1,...,i−1))

for k = 1, ..n. In particular, θ̂e is estimated by maximizing

n∏

k=1

cae,be;De(uk,ae|De ,̂θ(T1,...,i−1)
, uk,be|De ,̂θ(T1,...,i−1)

; θe)

or by inversion of the empirical Kendall’s τ based on the pseudo-observations.

Ex 7.4 (WINE3: Parameter estimates and log-likelihood) We now present the
sequential and joint maximum likelihood estimates and their log-likelihood for
the three chosen pair copula constructions as defined inExample 4.3 inTable7.1.
From this, we see that the log-likelihoods are highest for the construction PCC1.
This PCC has the highest empirical Kendall’s τ values on the first tree. Further,
the sequential estimation method using the inversion of the pairwise Kendall’s
τ estimates results in lower log-likelihoods in two cases compared to where the
pair copula parameters are estimated sequentially using maximum likelihood.
The improvement in the log-likelihood using joint maximum likelihood esti-
mation is not so large compared to the sequential one using pairwise maximum
likelihood.

7.3 Asymptotic Theory of Parametric Regular Vine Copula
Estimators

We call a regular vine copula parametric, when all pair copulas are specified para-
metrically. Further, we assume that we have i.i.d. data available from a parametric
regular vine copula. The associated parameters are collected in the parameter θ. In
Sect. 7.2, we have developed methods to determine the sequential estimator and the
joint MLE of θ. We first consider the case of maximum likelihood estimation.

The asymptotic theory for general maximum likelihood estimators is well devel-
oped (see for example, Lehmann and Casella 2006) and can be applied in this case.
For the convenience of the reader, we recall the most relevant concepts. Under reg-
ularity conditions, one has for a p-dimensional parameter η with MLE η̂n based on
sample size n that

√
nI (η)1/2(η̂n − η) → Np(0, Ip) as n → ∞, (7.6)

where Ip is the p × p-dimensional identity matrix and I (η) is the expected Fisher-
informationmatrix.Recall that for a log-likelihood ofη given the randomobservation
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Table 7.1 WINE3: Sequential (inversion of Kendall’s τ , MLE) and joint ML estimates as well as
associated Kendall’s τ estimate together with the log-likelihoods

Sequential Inversion Sequential MLE Joint MLE

Edge Family θ̂ τ̂ θ̂ τ̂ θ̂ τ̂

PCC1

(acf, acc) G 1.94 0.48 1.80 0.44 1.80 0.44

(acv, acc) F −4.57 −0.43 −4.44 −0.42 −4.51 −0.42

(acf, acv;
acc)

N 0.20 0.13 0.17 0.11 0.17 0.11

log lik 807.90 816.83 816.92

PCC2

(acf, acv) G270 −1.23 −0.19 −1.15 −0.13 −1.20 −0.16

(acc, acv) F −4.57 −0.43 −4.44 −0.42 −4.14 −0.40

(acf, acc;
acv)

G 1.82 0.45 1.71 0.41 1.73 0.42

log lik 763.93 763.43 772.58

PCC3

(acf, acv) G270 −1.23 −0.19 −1.18 −0.15 −1.17 −0.14

(acc, acf) G 1.94 0.48 1.80 0.44 1.74 0.42

(acv, acc;
acf)

F −4.00 −0.39 −4.11 −0.40 −4.20 −0.40

log lik 770.27 784.05 785.72

vector X = (X�
1 , . . . , X�

n )� denoted by �(η|X) the Fisher-information matrix is
defined as

I (η) := −Eη

[(
∂2

∂ηi∂η j
�(η|X)

)

i, j=1,...,p

]
. (7.7)

Since the expectation in (7.7) is often not analytically available, the Fisher-
information matrix is then replaced by the observed one, which is defined as

In(η) := −
⎡

⎣
(
1

n

n∑

k=1

∂2

∂ηi∂η j
�(η|xk)

)

i, j=1,...,p

⎤

⎦ . (7.8)

Here, xk = (xk1, . . . , xkd)� denotes the kth observation vector. This matrix In(η)

is by definition the negative Hessian matrix divided by n associated with the log-
likelihood. An estimate of In(η) can be obtained by replacing η by the maximum
likelihood estimate η̂n .

We apply now these general results to the regular vine copula likelihood specified
in (7.1). Stöber and Schepsmeier (2013) develop a general algorithm to determine the
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observed Fisher-information matrix numerically associated with the copula param-
eter θ for an arbitrary regular vine copula. They use results of Schepsmeier and
Stöber (2014) and the algorithm is implemented in the VineCopula package of
Schepsmeier et al. (2018) in the function RVineHessian.

We now turn to the case of vine copula parameters, which have been sequentially
estimated as defined in Sect. 7.2. This was first considered in Haff et al. (2013)
and later improved and implemented in Stöber and Schepsmeier (2013) using a
sandwich form of the asymptotic covariance matrix. For further details, see Stöber
and Schepsmeier (2013).

Onemajor application of the asymptotic result (7.6) is the construction of standard
error estimates for the copula maximum likelihood parameter estimators. They are
given by the square roots of the diagonal elements of the inverse of the observed
information matrix n × In(η̂n) based on (7.8). This is implemented in the function
RVineStdError within the package VineCopula.

So far, we assumed that we have i.i.d. observations from a regular vine copula
available. Now, we remark on the case, where only pseudo copula data is available
resulting from estimated margins.

Remark 7.4 (Asymptotic theory for copula parameter estimators of regular vine
based models) In applications, we do not have i.i.d. copula data but only an i.i.d.
sample on the original scale available and so one has to consider also models for
the marginal distribution. In particular, we can use a parametric or a nonparametric
distribution for the margins. Joe and Xu (1996) follow a parametric approach, which
they call inference for margins (IFM) approach. In contrast, Genest et al. (1995)
utilize normalized ranks of the marginal observations, which can be considered as
nonparametric estimates of the marginal distribution. We followed this approach
in Example 3.4. Both approaches allow for asymptotic theory, however the result-
ing estimators of the marginal and copula parameters are less efficient than a joint
approach, where the likelihood is maximized over marginal and copula parameters
jointly. However, this is often numerically challenging and the loss of efficiency is
often negligible (see Joe and Xu 1996 for examples).

Ex 7.5 (WINE3: Standard error estimates for joint copula maximum likelihood
estimates) Estimated standard errors for the joint copulaML estimates are given
in Table7.2 for each of the pair copula constructions considered. Here, we
assume that we have copula data available, i.e., we ignore the error made by
estimating the margins using normalized ranks. The results show that all copula
parameter estimates are statistically significant.
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Table 7.2 WINE: Joint ML estimates together with estimated standard errors

Edge Family θ̂ ˆstder(θ̂)

PCC1

(acf, acc) G 1.80 0.04

(acv, acc) F −4.51 0.18

(acf, acv; acc) N 0.17 0.02

PCC2

(acf, acv) G270 −1.20 0.02

(acc, acv) F −4.14 0.17

(acf, acc; acv) G 1.73 0.04

PCC3

(acf, acv) G270 −1.17 0.02

(acc, acf) G 1.74 0.04

(acv, acc; acf) F −4.20 0.18

7.4 Exercises

Exer 7.1
Likelihood for four-dimensional D- and C-vine copulas: Give for all terms in the
likelihood expression (7.1) the dependence on the parameters for a four dimensional
D- and C-vine copula, respectively.

Exer 7.2
WINE3: Choice of pair copula families: To investigate the choice of the pair copula
family on the model fit, consider the data of Example 7.4. In this example, we have
used careful exploratory analysis to choose the pair copula families. Refit now the
three pair copula constructions with the following choices

• All pair copulas are bivariate Gaussian copulas.
• All pair copulas are bivariate Gumbel copulas.
• All pair copulas are bivariate Student’s t copulas.

Compare the results to the ones presented in Example 7.4. What conclusions do you
draw?

Exer 7.3
URAN3: Pair copula models for the three dimensional uranium data: Consider as
in Exercise 4.1 the three-dimensional subset of the uranium data set contained in
the R package copula with variables Cobalt (Co), Titanium (Ti) and Scandium
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(Sc). Perform a similar analysis as in Example 7.4 using the choices made for the
pair copula families in Example 4.1.

• For each PCC determine the sequential pair copula estimates using inversion of
Kendall’s τ and pairwise ML estimation, respectively.

• Determine the joint MLE for the three possible pair copula constructions.
• Which of the three pair copula constructions would you prefer?
• Determine standard error estimates of the joint ML estimates. What are the data
assumptions and what conclusions can you draw given the assumptions?

Exer 7.4
ABALONE3 Pair copula models for the three dimensional abalone data: Perform
the same analysis as in Exercise 7.3 for the three dimensional abalone data set
considered in Exercise 1.6.



8Selectionof RegularVineCopula
Models

The full specification of a vine copula model requires the choice of a vine tree struc-
ture, copula families for each pair copula term and their corresponding parameters.
In this chapter, we discuss different frequentist selection and estimation approaches.
The three-layered definition of a regular vine copula leads to three fundamental
estimation and selection tasks:

1. Estimation of copula parameters for a chosen vine tree structure and chosen pair
copula families for each edge in the vine tree structure,

2. Selection of the parametric copula family for each pair copula term and estimation
of the corresponding parameters for a chosen vine tree structure,

3. Selection and estimation of all three model components.

The first task we already have solved in Chap.7. To fix ideas, we identify a full
R-vine copula specification by the triplet (V,B(V), �(B(V))). Here, V denotes the
vine tree structure, i.e., the building plan of the vine copula. The set B(V) collects
all pair copula families associated with each edge of V and the set �(B(V)) gives
the associated pair copula parameters to each member of the set B(V).

Ex 8.1 (Illustration of the general notation for a R-vine specification) We now
illustrate the general notation (V,B(V), �(B(V))) associated with the regular
vine tree sequence V specified in Fig. 8.1. Here, V = {Ti = (Ni , Ei ), i =
1, . . . , 4} with node sets N1 = {1, 2, 3, 4}, N2 = {12, 23, 34, 35}, N3 =
{13; 2, 24; 3, 25; 3}, N4 = {14; 23, 45; 23} and edge sets {E1 = N2, E2 =
N3, E3 = N4, E4 = {15; 234}}. Suppose all pair copula families are Gaus-
sian in the first tree T1. For the second tree T2 and the third tree T3, we
assume Gumbel and Clayton copulas, respectively. Then, the set of associ-
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1 2 3 4

5

T1
1,2 2,3 3,4

3,
5

1, 2 2, 3 3, 4

3, 5

T2
1,3;2 2,4;3

2,5;3

1, 3;2 2, 4;3 2, 5;3T3
1,4;2,3 4,5;2,3

1, 4; 2, 3 4, 5; 2, 3T4
1,5;2,3,4

Fig. 8.1 R-vine trees: Regular vine tree sequence V on five elements for Example 8.1

ated pair copula families are B(V) = {Gaussian for e ∈ E1,Gumbel for e ∈
E2,Clayton for e ∈ E3 or E4}. As copula parameters, we select 0.5 for the
Gaussian copulas, 1.5 for the Gumbel copulas and 1.2 for the Clayton copulas,
then the set �(B(V)) is specified as �(B(V)) = {0.5 for e ∈ E1, 1.5 for e ∈
E2, 1.2 for e ∈ E3 or E4}. So both setsB(V) and�(B(V)) contain 10 elements.

8.1 Selection of a Parametric Copula Family for Each
Pair Copula Term and Estimation of the Corresponding
Parameters for a GivenVine Tree Structure

A d-dimensional regular vine copula with tree structure V is based on a set B(V) of
d(d − 1)/2 bivariate copula families and their corresponding parameters contained
in �(B(V)). The bivariate copula families can be chosen arbitrarily, e.g., from the
popular classes of Archimedean, elliptical or extreme-value copulas. Assuming that
an appropriate vine structure V has been specified, the question therefore is how to
select adequate pair copula families Cae,be;De and their parameters for given data x
of sample size n in d dimensions. The (k,m)th data element of x is denoted by xk,m
for k = 1, . . . , n and m = 1, . . . , d.

Since we have to select bivariate parametric copula families in all trees, we use the
Akaike information criterion (AIC) of Akaike (1998) to choose between bivariate
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copula families together with their parameters. This approach has been followed by
Manner (2007) and Brechmann (2010). In particular, Brechmann (2010) compares
the AIC-based bivariate copula selection to three alternative selection strategies:
selection of the family with highest p-value of a copula goodness of fit test based
on the Cramér-von Mises statistic (Genest et al. 2006, 2009), with smallest distance
between empirical and modeled dependence characteristics (Kendall’s τ , tail depen-
dence), or with highest number of wins in pairwise comparisons of families using
the test by Vuong (1989). In his large-scale Monte Carlo study, the AIC turned out
to be the most reliable selection criterion for the pair copula family and its param-
eter(s). Therefore, we discuss now this AIC based selection approach of the copula
family and its parameter(s) to all pair copula terms specified by the regular vine tree
sequence V .

More precisely, we first consider the selection of the pair copula families and their
parameters in the first tree T1 of V . For an arbitrary edge e = (ae, be) in T1, we use
the copula data uk,ae := Fae(xk,ae) and uk,be := Fbe (xk,be) for k = 1, . . . , n. In
particular, let Be the set of possible parametric bivariate copula families for edge e.
For each element CB of Be, use the copula data ue := {uk,ae , uk,be ; k = 1, . . . , n} to
fit this copulaCB with copula density cB , i.e., find the maximum likelihood estimate

of the associated parameter θB denoted by θ̂
B
as discussed in Sect. 3.10. In the next

step, calculate the corresponding AIC value defined as

AIC(CB, θ̂
B; ue) := −2

n∑

k=1

ln(cB(uk,ae , uk,be ; θ̂
B
)) + 2kB, (8.1)

where kB is the dimension of the parameter vector θB . Thus, we now select the

copula family Ce with parameter θe for edge e, which minimizes AIC(CB, θ̂
B; ue)

over the set Be. Note that this minimization always requires that all parameters are
estimated for every pair copula family allowed in Be.

Since wemost often fit only bivariate copula families with one- or two parameters,
an alternative selection criterium such as the Bayesian information criterion (BIC)
of Schwarz (1978) is not needed to induce model sparsity for the considered pair
copula family selection.

For the copula family selection and parameter estimation of edges in trees Ti for
i > 1, we use the sequential estimation approach developed in Sect. 7.2. For an edge
e = (ae, be; De) in tree Ti for i > 1, we have pseudo-observations for the bivariate
copula distribution of (Uae ,Ube) given UDe available. These pseudo-observations
were defined in Definition 7.3 and will be abbreviated as

ûk,ae|De := uk,ae|De;θ̂(T1,...,Ti−1)
and ûk,be|De := uk,be|De;θ̂(T1,...,Ti−1)

(8.2)

for k = 1, . . . , n. Now again consider the set of possible parametric bivariate copula
families Be for edge e ∈ Ti for i > 1. The pseudo data ue := {ûk,ae|De , ûk,be|De , k =
1, . . . , n} is used to estimate the copula parameter(s) θB by maximum likelihood for
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each elementCB of the setBe bymaximum likelihood. In the next step, determine the
corresponding AIC(CB, θB, ue) similarly defined as in (8.1) using the pseudo data
ue for the edge e = (ae, be; De). Again we select that element from Be which gives
minimal AIC AIC(CB,θB, ue) value. This way of proceeding allows to select all
pair copula families together with their parameter estimates in tree Ti . These choices
are then used to define the pseudo-observations needed for the pair copula terms in
tree Ti+1.

Ex 8.2 (Sequential selection of pair copula families) Consider again the five-
dimensional regular vine tree sequence V of Fig. 8.1 with unknown pair copula
families B(V) and their parameter set �(B(V)). In the first tree, we need to
select the copula families for C1,2, C2,3, C3,4 and C3,5 and estimate the corre-
sponding parameters θ1,2, θ2,3, θ3,4 and θ3,5 using maximum likelihood based
on copula observations uk, j := Fj (xk j ), k = 1, ..., n j = 1, ..., 5. For each
possible element CBe in Be estimate, the parameter θBe based on the copula
data ue for e ∈ {(1, 2), (2, 3), (3, 4), (3, 5)} and determine the corresponding
AIC(CBe , θBe ; ue) values. Choose now for each of the four edges the copula
family with the lowest AIC value.

Given these copula families and their estimated parameters for the first tree,
we then have to select the families for the conditional pair copulas and their
parameters in the second tree. In case of the copula C1,3;2, we therefore again
form the appropriate pseudo-observations ûk,1|2 := C1|2(uk,1|uk,2, θ̂1,2) and
ûk,3|2 := C3|2(uk,3|uk,2, θ̂2,3), k = 1, ..., n,. Based on these, we estimate for
each copula family allowed for this edge the associated copula family parameter.
Select then the copula family C1,3;2 together with its parameter estimate θ̂1,3;2
with the lowest AIC value.

Clearly, this sequential selection strategy accumulates uncertainty in the selection
of the pair copula families and their associated parameter(s) over the tree levels.
Therefore, the final model has to be carefully checked and compared to alternative
models. For the latter, the tests for non-nested model comparison by Vuong (1989),
Clarke (2007) may be used, see also Chap.9.

8.2 Selection and Estimation of all ThreeModel Components
of aVine Copula

Since the pair copula family set B(V) and its associated parameter set θ(B(V)) both
depend on the vine tree structure V , the identification of adequate trees is crucial to
the model building process using vine copulas. As it was already the case for pair
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Table 8.1 R-, C- and D-vines: Number of C-, D-, and R-vine tree structure for different
values of d

d Number of C- or D-vine structures Number of R-vine structures

3 3 3

4 12 24

5 60 480

6 360 23040

7 2520 2580480

8 20160 660602880

9 181440 380507258880

copula selection in Sect. 8.1, it is again not feasible to simply try and fit all possible
regular vine copula specification (V,B(V), θ(B(V)) and then choose the “best”
one. Recall that the number of possible regular vine tree sequences on d variables

is d!
2 × 2(

d−2
2 ) as shown by Morales-Nápoles (2011). This means that even if pair

copula families and their parameters were known, the number of different models
would still be enormous. This remains true, even when the selection is restricted to
the subclasses of C- and D-vine structures, since there are still d!/2 different C- and
D-vine tree structures in d dimensions, respectively (see Aas et al. (2009)). Table 8.1
gives the precise number of C- or D-vine and R-vine tree structures for dimensions
d = 3, . . . , 9. In particular in d = 3, all D-, C-, and R-vine structures coincide, while
for d = 4, we have 12 C-vine and 12 D-vine structures. R-vine structures different
than C- or D-vine structures only occur for dimensions d > 4. Table 8.1 again shows
the enormous growth in the number of tree structures to choose from.

Two greedy construction strategies have been proposed in the literature: a top-
down approach by Dißmann et al. (2013) and a bottom-up method by Kurowicka
(2011). Both strategies proceed sequentially tree by tree and respect the proxim-
ity condition in each step. In this book we will restrict ourselves to the top-down
approach. Since this approach is the most often used model selection algorithm for
regular vine copulas and was first proposed by Dißmann et al. (2013), we also speak
of the Dißmann algorithm for regular vine copulas.

8.3 The Dißmann Algorithm for Sequential Top-Down Selection
of Vine Copulas

Selecting regular vine trees sequentially top-downmeans that we start with the selec-
tion of the first tree T1 and continue tree by tree up to the last tree Td−1. Thefirst tree T1
can be selected as an arbitrary spanning tree. Given that a tree Tm, m ∈ {1, ..., d−2},
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has been selected, the next tree Tm+1 is chosen respecting the proximity condition
(see Remark 5.5). In other words, Tm+1 can only be formed by the edges {ae, be; De},
which satisfy the proximity condition.

Ex 8.3 (Top-down tree selection) Assume that we have selected the first tree T1
as shown in Fig. 8.1. Then the question is which edges {ae, be; De} are eligible
for the construction of the second tree T2. According to the proximity condition,
these are {1, 3; 2}, {2, 4; 3}, {2, 5; 3}, and {4, 5; 3}. Obviously, the last three pairs
form a cycle and therefore only two of them can be selected for T2. One of the
three possibilities of choosing two edges is shown in Fig. 8.1.

Toperform this iterative selection strategy, a criterion is needed to select a spanning
tree among the set of eligible edges. Recall that a spanning tree simply denotes a
tree on all nodes. Clearly, the log-likelihood �m of the pair copulas in tree Tm(m =
1, . . . , d −1) of a regular vine copula can be determined. For the tree Tm , we denote
by B(Tm) the set of pair copula families for tree Tm and similarly, we use �(B(Tm))

for the set of corresponding parameters.

Definition 8.1 (log-likelihood of tree Tm for a regular vine copula) The log-
likelihood of tree Tm(m = 1, . . . , d − 1) with edge set Em for a regular vine
copula based on the copula data u is defined as

�m
(
Tm,BTm ,θTm |u) =

n∑

k=1

∑

e∈Em

ln
(
cae,be;De

(
Cae|De ,Cbe|De ; θae,be;De

))
,

(8.3)
where we abbreviated BTm := B(Tm) and θTm := �(B(Tm)).

A straightforward solution therefore would be to choose the tree such that (8.3) is
maximized after having selected pair copulas with high log-likelihood for each (con-
ditional) pair {ae, be; De} satisfying the proximity condition. This solution however
leads to highly over-parameterized models, since models with more parameters in
which simpler models are nested will always give a higher likelihood. For instance,
the Student’s t copula always has a higher likelihood value than the Gaussian copula,
since it is a special case of the Student’s t copula as the degrees of freedom go to
infinity.
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Therefore we formulate the following algorithm in terms of a general weight ω
assuming that wewant tomaximize it for each tree. The previously discussed strategy
corresponds to choosing the pair copula log-likelihoods associated with an edge as
edge weights.

Algorithm 8.2 (Dißmann’s algorithm)

1: Calculate the weight ωi, j for all possible index pairs {i, j}, 1 ≤ i < j ≤ n.

2: Select the maximum spanning tree, i.e.

T1 = argmax
T=(N ,E) spanning tree

∑

e=(ae,be)∈E
ωae,be .

3: for each edge e ∈ E1 do

4: Select a copula Cae,be with estimated parameter(s) θ̂ae,be as discussed in
Sect. 3.10.

5: For k = 1, ..., n generate the pseudo observations

Cae|be(uk,ae |uk,be , θ̂ae,be) and Cbe|ae(uk,be |uk,ae , θ̂ae,be)

as introduced in Definition 7.3.

6: end for
7: for m = 2, . . . , d − 1 do

8: Determine the weight ωae,be;De for all edges {ae, be; De}, that can be part
of tree Tm . Denote the set of edges, which satisfy the proximity condition
for tree Tm by EP,m .

9: Among these edges, select the maximum spanning tree, i.e.,

Tm = argmax
T=(N ,E) spanning tree with E⊂EP,m

∑

e∈E
ωae,be;De .

10: for each edge e ∈ Em do

11: Select a pair copula Cae,be;De with estimated parameter(s) θ̂ae,be;De as
discussed in Sect. 8.1.



162 8 Selection of Regular Vine Copula Models

12: For k = 1, ..., n generate the pseudo observations

Cae |be∪De (uk,ae |uk,be , uk,De , θ̂ae,be |De ) and Cbe |ae∪De (uk,be |uk,ae , uk,De , θ̂ae,be |De )

using Definition 7.3.

13: end for

14: end for
15: return the sequential model estimate (V̂, B̂, θ̂).

Clearly, this algorithm only makes a locally optimal selection in each step, since
the impact on previous and subsequent trees is ignored. The strategy is however
reasonable with regard to statistical modeling with regular vine copulas. Important
dependencies as measured by the weights are modeled first. The maximum spanning
tree in lines 2 and 10 can be found, e.g., using the classical algorithms by Prim or
Kruskal (see for example Sect. 23.2 of Cormen et al. (2009)). Later Gruber andCzado
(2015) have shown in six-dimensional simulation scenarios, that the greedyDißmann
algorithm gets about at least 75% of the true log-likelihood, which indicates a good
performance. Possible choices for the weight ω are, for example,

• the absolute empirical Kendall’s τ as proposed by Dißmann et al. (2013), Czado
et al. (2012);

• the AIC of each pair copula as introduced in Sect. 8.1;
• the (negative) estimated degrees of freedom of Student’s t pair copulas as proposed
by Mendes et al. (2010);

• the p-value of a copula goodness of fit test and variants as proposed by Czado
et al. (2013).

Remark 8.3 (Sequential selection of C- and D-vine copulas) Algorithm 8.2 can
easily be modified to select C- or D-vine copulas instead of general R-vine copulas.
For C-vine structures the root node in each tree can simply be identified as the node
with the maximal sum of weights compared to all other nodes (see Czado et al.
(2012)). In the case of D-vines structures only the order of variables in the first tree
has to be chosen. Since D-vine trees are Hamiltonian paths, a maximumHamiltonian
path has to be selected. This problem is equivalent to a traveling salesman problem as
discussed by Brechmann (2010). As an NP-hard problem, there is no known efficient
algorithm to find a solution. In practise we have utilized the TSP package of Hahsler
and Hornik (2017) in R, which proposes several solutions for the order of the D-vine.
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Fig. 8.2 WINE7: Complete
graph of all pairs of variables
of the first tree

acv

acc

acf

den

clor

st

ph

Ex 8.4 (WINE7: Illustration of the Dißmann Algorithm) To illustrate the model
selection algorithm discussed in this section, we again study the extended data
set of the chemical components of red wines considered in Exercises 1.7 and
3.3.

The original data is rank transformed for each margin and the corresponding
empirical pairwise copula data and normalized contour plots are displayed in
Fig. 3.15. Many of the normalized contour plots (lower triangular panels) show
non- elliptical shapes, thus indicating the need to allow for non-Gaussian depen-
dence. Pairwise empirical Kendall’s τ , Pearson correlations and Spearman’s
correlations are given in Table 2.3. We see that strong positive and negative
dependence among the variables are present.

We illustrate theDißmannAlgorithm8.2 using absolute values of the pairwise
empirical Kendall’s τ values as weights. Table 8.2 shows the ordered weights
needed to determine the first vine tree T1.

Figure 8.2 shows the complete graph of all pairs of variables, while Fig. 8.3
displays the selected edges for T1. It also illustrates the restriction to a tree in
the selection of the edges. Finally Fig. 8.4 shows the selected first tree. This
completes the selection of the first tree T1. After this, we select and estimate for
each edge in tree T1 the pair copula family and the associated parameter using
the AIC criterion defined in (8.1), respectively.

Now, we turn to the selection of tree T2. For this, we generate the pseudo
copula data for tree T2 using (8.2). More precisely, the pseudo data ûk,den;acf,
ûk,ph;ac f , ûk,acf;acc, ûk,acv;acc, ûk,acc;ac f , ûk,st;clor, ûk,den;clor, ûk,acf;den, and
ûk,clor;den for k = 1, . . . , n is needed. It is used to estimate the Kendall’s τ asso-
ciated with the potential pair copula terms in tree T2. The resulting Kendall’s τ
estimates are given in Table 8.3. All possible edges according to the proximity
condition are shown in Fig. 8.5. The edge choices which are available for tree T2
are illustrated in Fig. 8.6. The final choices are then indicated in bold in Fig. 8.7.
Since tree T2 is a Hamilitonian path as in a D-vine tree structure, the tree choices
for trees T3 until T6 are determined.
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Table 8.2 WINE7: Ordered weights (pairwise absolute empirical Kendall’s τ values of copula
data) for all pairs of variables. The edges chosen according to Algorithm 8.2 are highlighted in bold

acf,ph acf,acc acf,den acv,acc acc,ph clor,den acc,den

0.5278 0.4843 0.4575 0.4284 0.3898 0.2879 0.2457

den,ph acf,acv acf,clor clor,ph acv,ph acv,clor clor,st

0.2172 0.1852 0.1760 0.1627 0.1587 0.1090 0.0916

st,den acc,clor acv,st acf,st acv,den acc,st st,ph

0.0877 0.0767 0.0637 0.0569 0.0159 0.0116 0.0068

Fig. 8.3 WINE7: Illustration
of stepwise selection of the
highest weights. Selected
edges are shown as solid
black lines. Selecting the
dashed edge would result in
a cycle within the graph and
is therefore not allowed to be
selected

acv

acc

acf

den

clor

st

ph

Fig. 8.4 WINE7: First tree
graph shown with selected
edges in bold

acv

acc

acf

den

clor

st

ph

Fig. 8.5 WINE7: Graph
showing all pairs of variables
for tree T2 and edges allowed
by the proximity condition

acf,den ph,acf

acf,acc

acc,acvclor,st

den,clor
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Fig. 8.6 WINE7: Illustration
of stepwise selection of the
highest weights for Tree T2.
Selected edges are illustrated
as solid bold lines. Selecting
the dashed edge would result
in a cycle within the graph
and is not allowed to be
selected

acf,den ph,acf

acf,acc

acc,acvclor,st

den,clor

Fig. 8.7 WINE7: Second
tree graph with selected
edges highlighted in bold

acf,den ph,acf

acf,acc

acc,acvclor,st

den,clor

Table 8.3 WINE7: Ordered weights (pairwise absolute empirical Kendall’s τ values of pseudo data
based on the copula fits of tree T1) for all pairs of pseudo variables. The edges chosen according to
the Dißmann Algorithm 8.2 are highlighted in bold

den,ph;acf acf,acv;acc acc,ph;acf acc,den;acf st,den;clor acf,clor;den

0.1894 0.1283 0.0978 0.0831 0.0484 0.0050

Ex 8.5 (WINE7 Fitted R-vine, C-, and D-vine copulas) We again con-
sider the rank transformed data of Example 8.4. The function RVine
StructureSelectimplements the Algorithm 8.2 proposed by Dißmann
et al. (2013). For this data set, we allowed for the Gaussian (N), Frank (F),
Joe (J), and Gumbel (J) copula and its rotations of the Joe (SJ, J90 or J270) and
of the Gumbel (SG, G90 or G270) as pair copula families. As model selection
criteria for the pair copula families the AIC criterion (8.1) is used.

We fitted R-vine, C-, and D-vine copulas sequentially with the pair
copula families given above as well a Gaussian R-vine copula, where
all pair copulas are bivariate Gaussian copula. The TSP package gave
den-acf-ph-acc-acv-st-clor as D-vine order.

The resulting tree sequence plots are given in Figs. 8.8, 8.9 and 8.10 for the
R-vine, C-vine, and D-vine, respectively. We see that the fitted R-vine is close
to a D-vine, while the C-vine is different.

When the dependence strength in a pair copula is weak, we might conduct an
independence test between the pair of variables based on Kendall’s τ as given
in (2.8). If the tests fails to reject the null hypothesis of independence at the 5%
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Tree 1

F(−0.42)

G(0.44)
SG(0.09)

SJ(0.26) G(0.45) G270(−0.5)

acv

acc
st

clor

den

acf

ph

Tree 2

F(0.13)

G90(−0.09)

SJ(0.04)

J270(−0.03)

G(0.19)

acc,acv

acf,acc

clor,st

den,clor

acf,den

ph,acf

Tree 3

J(0.01)

F(−0.07)G270(−0.14)

J90(−0.13)

acf,acv ; acc

ph,acc ; acf

den,st ; clor

acf,clor ; den ph,den ; acf

Tree 4

SJ(0.16)

F(−0.01)

G90(−0.12)

ph,acv ; acf,acc

den,acc ; ph,acf

acf,st ; den,clor

ph,clor ; acf,den

Tree 5

SG(0.09)F(0.09)
den,acv ; ph,acf,acc

clor,acc ; den,ph,acf
ph,st ; acf,den,clor

Tree 6

J(0.03)

clor,acv ; den,ph,acf,acc

st,acc ; clor,den,ph,acf

Fig. 8.8 WINE7: Selected R-vine tree plots based on the Dißmann Algorithm 8.2
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Tree 1

SJ(0.16)

F(−0.18)

N(−0.06)

G(0.44)

G(0.45)

G270(−0.5)

clor

acv

st

acc

den

acf ph

Tree 2

SJ(0.21)

SG(0.18)SG(0.16)

F(−0.09)G(0.19)

acf,clor

acf,acvacf,st

acf,acc

acf,den

ph,acf

Tree 3

J(0.06)

F(−0.38)

N(0.1)

G90(−0.08)
den,clor ; acf

den,acv ; acf

den,st ; acf

den,acc ; acf

ph,den ; acf

Tree 4

J90(−0.12)

J270(−0.04)

J90(−0.11)
acc,clor ; den,acf

acc,acv ; den,acf

acc,st ; den,acf

ph,acc ; den,acf

Tree 5

SG(0.08)

J(0.03)

ph,clor ; acc,den,acf

ph,acv ; acc,den,acf

ph,st ; acc,den,acf

Tree 6

SJ(0.03)

acv,clor ; ph,acc,den,acf

st,acv ; ph,acc,den,acf

Fig. 8.9 WINE7: Selected C-vine tree plots based on Dißmann Algorithm 8.2
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Tree 1

SG(0.09)

SG(0.06)F(−0.42)

N(−0.38)

G90(−0.5)

G(0.45)

clor

st

acv

acc

ph

acf

den

Tree 2

SG(0.1)

N(0.07)

F(−0.09)

G(0.28)

G(0.19)

st,clor

acv,st

acc,acv ph,acc

acf,ph

den,acf

Tree 3

G(0.16)

F(0.02)

G(0.1)

F(−0.07)

acv,clor ; st

acc,st ; acv

ph,acv ; acc

acf,acc ; ph

den,ph ; acf

Tree 4

G270(−0.11)

J90(−0.08)

SJ(0.16)
acc,clor ; acv,st

ph,st ; acc,acv

acf,acv ; ph,acc

den,acc ; acf,ph

Tree 5

SG(0.07)

N(0.18)

ph,clor ; acc,acv,st

acf,st ; ph,acc,acv
den,acv ; acf,ph,acc

Tree 6

SG(0.2)

acf,clor ; ph,acc,acv,st

den,st ; acf,ph,acc,acv

Fig.8.10 WINE7: Selected D-vine tree plots based on one solution found by TSP of Hahsler and
Hornik (2017) for the order of the variables
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Table 8.4 WINE7: Chosen pair copula families for different vine copula models. Models with ind
at the ending denote a selection with an independence test performed for each pair copula in the
Dißmann Algorithm 8.2

N F J G SJ J90 J270 SG G90 G270 I

R-vine 0 5 2 3 3 1 1 2 2 2 0

R-vine-ind 0 4 1 3 3 1 0 2 2 2 3

C-vine 2 3 2 3 3 2. 1 3 1 1 0

C-vine-ind 2 3 1 4 2 1 1 2 2 1 2

D-vine 3 4 0 5 1 1 0 5 1 1 0

D-vine-ind 3 3 0 5 1 1 0 5 1 1 1

significance level, then we replace the pair copula by the independence copula.
We can also apply the Dißmann Algorithm 8.2 with choosing the independence
copula for the pair copula term in this case. This approach identified at most
three associated pair copulas, which can be modeled by the independence pair
copula for this data set as can be seen fromTable 8.4. In Table 8.4 the occurrence
of the pair copula families for the different models are recorded. From this table
we see that a Gaussian R-vine is not selected for this data, since many of the
pair copula terms are not selected as a Gaussian copula.

Finally we report the range of the estimated (conditional) Kendall’s τ values
corresponding to all pair copulas of all models without the independence test.
Their values are given in Table 8.5 for the R-vine, Gaussian R-vine, C-vine,
and D-vine, respectively. Copula parameters are jointly estimated using maxi-
mum likelihood. This table shows that the selected vine models have decreasing
dependence strength in the pair copulas as the level j of tree Tj increases. Here,
we assess the dependence strength by the fitted conditional Kendall’s τ values.

8.4 Exercises

Exer 8.1
(ABALONE6: Dependence models for the six dimensional abalone data set: We
now allow additional variables of the abalone data set contained in the R pack-
age PivotalR from Pivotal Inc. (2017). Here, we consider the female abalone
shells only and use the variables length, diameter, whole, shucked
viscera and shell. We transform them to the copula scale by using empirical
distribution functions.
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Table 8.5 WINE7: Range of estimated (conditional) Kendall’s tau values per tree for MLE esti-
mated R-vine model (top left), Gaussian R-vine model (top right), C-vine model (bottom left), and
D-vine model (bottom right)

R-vine Min Max

Tree 1 −0.50 0.46

Tree 2 −0.09 0.19

Tree 3 −0.13 0.01

Tree 4 −0.13 0.16

Tree 5 0.09 0.09

Tree 6 0.03 0.03

Gaussian

Tree 1 −0.51 0.46

Tree 2 −0.11 0.18

Tree 3 −0.15 −0.02

Tree 4 −0.14 0.18

Tree 5 0.07 0.11

Tree 6 0.04 0.04

C-vine

Tree 1 −0.49 0.46

Tree 2 −0.08 0.20

Tree 3 −0.38 0.10

Tree 4 −0.12 −0.03

Tree 5 0.03 0.08

Tree 6 0.04 0.04

D-vine

Tree 1 −0.49 0.46

Tree 2 −0.09 0.29

Tree 3 −0.13 0.09

Tree 4 −0.13 0.16

Tree 5 0.08 0.09

Tree 6 0.03 0.03

• Use the DißmannAlgorithm 8.2 to select an R-vine copula, where all implemented
pair copulas of the R package VineCopula of Schepsmeier et al. (2018) are
used with no zero Kendall’s τ test. As the estimation method uses the sequential
approach.

• Perform the same analysis as above for selecting a C- and a D-vine copula.
• Illustrate the associated vine tree structure of the vine copula models studied.
• Investigate if a zero Kendall’s τ test can induce more parsimonious vine copula
models.
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• Investigate which pair copula families have been chosen for each vine copula class.
• Study the fitted strength of dependence, the occurrence of tail dependence, the
occurrence of asymmetries for the selected pair copulas as the tree level increases.

• Determine joint maximum likelihood estimates of the copula parameters for all
studied models and compare them to the corresponding sequential ones.

Exer 8.2
(URANIUM7: Dependence models for the seven dimensional uranium data set:
Consider now all variables of the uranium data set contained in the R package
copula of Hofert et al. (2017). Perform a similar analysis as in Exercise 8.1.



9ComparingRegularVineCopula
Models

In this chapter, we want to compare the fit of two or more regular vine copula
specifications for a given copula data set. For each considered model, we have to
specify

• the vine tree structure V and
• the set of pair copula families B(V) = {Be|i = 1, . . . , d − 1; e ∈ Ei }.

Recall that the set of corresponding copula parameters are denoted by θ(B(V)). For
a random sample u = (u�

1 , ..., u�
n )� of size n from this model specification with the

kth observation uk ∈ [0, 1]d , the associated likelihood for the parameters θ(B(V))

in a regular vine model with vine structure V and pair copula family set B(V) can
be expressed as

�(θ(B(V)); u) =
n∏

k=1

�k(θ(B(V)); uk), (9.1)

where

�k(θ(B(V)); uk) :=
d−1∏

i=1

∏

e∈Ei

cae,be;De(Cae|De(uk,ae |uk,De), Cbe|De(uk,be |uk,De))

denotes the likelihood contribution of the kth observation uk (compare to Eq. (7.1)).
This allows us to use classical model comparison criteria for likelihood-based sta-
tistical models.
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9.1 Akaike and Bayesian Information Criteria for Regular Vine
Copulas

Classical statistical model comparison criteria are the Akaike information criterion
(AIC) of Akaike (1973) and the Bayesian information criterion (BIC) of Schwarz
(1978). We give now the general form of AIC and BIC for arbitrary regular vine
copulas. Recall that we already encountered AIC, when selecting a pair copula term
within a regular vine copula (see Eq. (8.1)).

Definition 9.1 (Akaike and Bayesian information criteria for regular vine
copula models) For an random copula sample u of size n from a regular vine
copula with triplet (V,B(V), θ(B(V))), the Akaike information criterion for
the complete R-vine copula specification is defined as

AI CRV = −2
n∑

k=1

ln(�k(θ̂(B(V)); uk) + 2K , (9.2)

while corresponding Bayesian information criterion is

B I CRV = −2
n∑

k=1

ln(�k(θ̂(B(V)); uk) + ln(n)K . (9.3)

Here K is number of model parameters, i.e., the length of the vector θ(B(V)).
Further θ̂(B(V)) denotes an estimate of θ(B(V)).

Ex 9.1 (WINE3: Model selection based on Akaike and Bayesian information
criteria) The AI CRV and B I CRV values of the three PCC’s copula models
discussed in Example 7.4 are given in Table9.1. For this data set we have two
sequential parameter estimation methods available, one using the inversion of
Kendall’s τ for each pair copula parameter and the other one based on maxi-
mum likelihood estimation of each pair copula parameter. The third estimation
method is standard maximum likelihood estimation of all parameters jointly.
The results in Table9.1 show that the sequential pairwise maximum likelihood
estimation is closer to the joint maximum likelihood estimation compared to
the sequential pairwise inversion of Kendall’s τ estimation for the PCC1 and
PCC3 model. This holds for both AI CRV and B I CRV values. According to
both AI CRV and B I CRV the PCC1 copula model specification has the lowest
values, thus it is the preferred vine copula model for this data set. For the PCC2
specification the sequential estimation with pairwise inversion of Kendall’s τ
estimation performs better than the sequential estimation with pairwise maxi-
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Table 9.1 WINE3: AI CRV and B I CRV for PCC1 (D-vine order acf-acc-acv), PCC2 (D-
vine order acf-acv-acc) and PCC3 (D-vine order acv-acf-acc) copula models using three
parameter estimation methods (sequential pairwise inversion of Kendall’s τ , pairwise and joint
maximum likelihood)

PCC copula Sequential estimation
Pairwise τ inversion

Sequential estimation
Pairwise ML

Joint
MLE

AI CRV

PCC1: acf-acc-acv –1609.8 –1627.7 –1627.8

PCC2: acf-acv-acc –1521.9 –1520.9 –1539.2

PCC3: acv-acf-acc –1534.5 –1562.1 –1565.4

B I CRV

PCC1: acf-acc-acv –1593.5 –1611.5 –1611.7

PCC2: acf-acv-acc –1505.7 –1504.7 –1523.0

PCC3: acv-acf-acc –1518.4 –1546.0 –1549.3

mum likelihood. However, in this case, the joint maximum likelihood estimates
yield a higher improvement of the log-likelihood than the sequential estimation
methods for the PCC2. For the other two specifications PCC1 and PCC2 the
sequential estimation using pairwise maximum likelihood are very close to the
joint maximum likelihood estimation results.

Ex 9.2 (WINE7: Model selection based on AIC and BIC) We now continue
our analysis of the extended wine data considered in Exercises 1.7 and 3.3. We
use the fitted vine copula models in Example 8.5 for this data set. In addition
to the sequential parameter estimates the corresponding joint maximum like-
lihood estimates were also determined, showing only a small increase of the
log-likelihood fit over the sequentially fitted ones. Table9.2 summarizes the fit
of the studied vine copula models.

The overall AI CRV criterion identifies the regular vine without the reduction
of using independence copulas as the best fitting model, while the B I CRV

selects the regular vine with the reduction of using independence pair copulas
identified by the independence test for the null hypothesis τ = 0 for each pair
copula term. This is a result of the fact that the BIC criterion, in general, prefers
more parsimonious models.

We see that regular vine copulas provide a better fit than the subclasses of
C- and D-vine copulas. Comparing C-vines and D-vines specifications we note,
that C-vine copulas are preferred over D-vine copulas, when the model is not
reduced by applying the independence test. If the reduced model approach is
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Table 9.2 WINE7: Estimated log-likelihood, number of parameters (# par), AI CRV and B I CRV

for all fitted models and estimation methods (seq = sequential estimation, mle = maximum likeli-
hood, ind = independence test used to allow for independence pair copula family)

Model Method Log-
likelihood

# par AI CRV B I CRV

R-vine seq 2525.32 21 −5008.64 −4895.72

R-vine mle 2527.30 21 −5012.59 −4899.67

R-vine ind-seq 2519.48 18 −5002.96 −4906.17

R-vine ind-mle 2521.17 18 −5006.34 −4909.55

Gauss seq 2271.77 21 −4501.55 −4388.63

Gauss mle 2271.80 21 −4501.59 −4388.67

Gauss ind-seq 2266.98 18 −4497.95 −4401.16

Gauss ind-mle 2267.15 18 −4498.30 −4401.51

C-vine seq 2489.41 21 −4936.81 −4823.89

C-vine mle 2496.41 21 −4950.83 −4837.91

C-vine ind-seq 2446.52 19 −4855.05 −4752.88

C-vine ind-mle 2454.46 19 −4870.91 −4768.75

D-vine seq 2445.21 21 −4848.31 −4735.37

D-vine mle 2452.74 21 −4863.48 −4750.58

D-vine ind-seq 2443.60 20 −4846.89 −4739.42

D-vine ind-mle 2551.23 20 −4862.40 −4754.80

used, this is reversed, since the decrease in the log-likelihood of the reduced
model is larger for C-vine than for D-vine copulas.

Finally we compare to the Gaussian vine copula fits, where the pair copula
family is fixed to be a bivariate Gaussian copula. Note that all Gaussian vine
copula fits correspond to a d-dimensional Gaussian copula with however pos-
sibly different correlation parameter estimates. Since the Gaussian AI CRV and
B I CRV values are much lower than the corresponding regular, D- and C-vine
copula fits, we conclude that the dependence structure present in this data set is
not a Gaussian one.

Remark 9.2 (AIC and BIC for non-nested models) Often the AIC and BIC criteria
are only used when comparing nested models. We speak of nested models, when
we have a “full” model, that is specified in terms of certain parameters, while the
“reduced” model is a special case of this “full” model and parametrized with a subset
of these parameters. However, Ripley (2008, pp. 34–35) states that AIC comparisons
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are also feasible for non-nested models but at the expense of an increased variability
of the estimated AIC difference for pairs of non-nested models.

9.2 Kullback–Leibler Criterion

Since we are interested in comparing non-nested vine copula models, we introduce
now an alternative method for arbitrary parametric statistical models proposed by
Vuong (1989). It is a statistical test and thus allows to assign a significance level
between two different statistical models, while the AIC and BIC criteria only allow
for a preference order among the studied models. To discuss the Vuong test we first
need to introduce the Kullback–Leibler criterion (KLIC) of Kullback and Leibler
(1951).

The Kullback–Leibler criterion (KLIC) measures the distance between the true
but unknown density h0 and a specified, approximating parametric density f (·|θ)

with parameter θ. Note that the parameter θ does need to coincide with the parameter
of the true density h0, if h0 is a parametric density. We follow here the exposition of
Vuong (1989).

Definition 9.3 (Kullback–Leibler criterion (KLIC) for comparing statistical
models) The Kullback–Leibler criterion (KLIC) between a true density h0(·)
of a random vector X and the approximating density f (·|θ) is defined as

K L I C(h0, f,θ) :=
∫

ln

[
h0(x)

f (x|θ)

]
h0(x)dx = E0[ln h0(X)] − E0 [ln f (X|θ)] , (9.4)

where E0 denotes the expectation with respect to the true distribution with
density h0.

The optimal choice of θ among all allowed parameter vectors with regard to the
KLIC criterion given in (9.4) is the onewhichmaximizes E0 [ln f (X|θ)]. Given i.i.d.
observations xk, k = 1, . . . , n from the true density h0, the term E0 [ln f (X|θ)] can
be estimated by

1

n

n∑

k=1

ln f (xk |θ).

The associated maximum likelihood estimate of θ based on a sample of size n,
denoted by θ̂n , maximizes this term. Thus the minimum of K L I C(h0, f,θ) over all
parameter values is estimated by K L I C(h0, f, θ̂n).

Remark 9.4 (KLIC and Kullback–Leibler divergence) The Kullback–Leibler crite-
rion is the special case of the Kullback–Leibler divergence between two densities h0
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and h1, defined as

K L I C(h0, h1) = E0(ln

[
h0(X)

h1(X)

]
)

for h1x) = f (x|θ).

9.3 VuongTest for Comparing Different Regular Vine Copula
Models

Vuong (1989) was interested in assessing, whether two competingmodel classesM j

specified by parametric densities { f j (·|θ) for θ ∈ � j } for j = 1, 2 are providing
equivalent fits for a given data set or whether one model class is to be preferred over
the other. Let θ j be the value of θ ∈ � j , which maximizes E0(ln f j (X|θ)) over
θ ∈ � j for j = 1, 2. In particular, he investigated the cases, where the two model
classes are strictly non-nested, overlapping or nested. Strictly non-nested models do
not share parameters, while overlapping models share some but not all parameters.
Recall that two models are called nested, if one model is a special case of the other,
thus the parameters of the smaller model are contained in the set of parameters for
the larger model.

More precisely, Vuong (1989) utilized the KLIC defined in (9.4) and constructed
an asymptotic likelihood ratio test for the null hypothesis of equivalence between
the two model classesM1 and M2:

H0 : K L I C(h0, f1,θ1) = K L I C(h0, f2,θ2).

Using (9.4) this null hypothesis can be equivalently expressed as

H0 : E0 [ln f1(X|θ1)] = E0 [ln f2(X|θ2)] . (9.5)

Obviously, when

Hm1 : E0[ln f1(X |θ1)] > E0[ln f2(X |θ2)],

holds model M1 is better than M2. The corresponding reverse hypothesis to Hm1
we call Hm2. In this case modelM2 is better than modelM1. However, the question
arises, whether one of the models is significantly better than the other. An obvious
test statistics for the null hypothesis in (9.5) is given by the likelihood ratio.

Definition 9.5 (Likelihood ratio statistic for two approximating statistical
models) For i.i.d. observations xk, k = 1, ..., n, from the true density h0 with
maximum likelihood estimates θ̂ j associated with statistical model classes
M j specified by the densities f j (·|θ j ) for j = 1, 2 define the kth observed
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log-likelihood ratio contribution

mk(xk) := ln

[
f1(xk |θ̂1)

f2(xk |θ̂2)

]
, k = 1, ..., n.

The observed likelihood ratio statistic for the two approximating model M1

and model M2 is defined by

L Rn
(
θ̂1, θ̂2

)
(x1, . . . , xn) :=

n∑

k=1

mk(xk). (9.6)

Further, let mk(Xk) and L Rn
(
θ̂1, θ̂2

)
(X1, . . . , Xn) the associated random

quantities, when Xk ∼ h0 i.i.d.

Under the true distribution h0 and appropriate regularity conditions on the two
model classes, the normalized likelihood ratio 1

n L Rn
(
θ̂1, θ̂2

)
(X1, . . . , Xn) is a ran-

dom variable satisfying the following law of large numbers.

Theorem 9.6 (Lawof large numbers for theLRstatistics)Under the regularity
conditions in Lemma 3.1 of Vuong (1989), it follows that

1

n
L Rn

(
θ̂1, θ̂2

)
(X1, . . . , Xn) = 1

n

n∑

k=1

mk(Xk)
a.s.−−−→

n→∞ E0

(
ln

f1(X|θ1)

f2(X|θ2)
.

)

Vuong (1989) now considers the sample variance of the likelihood ratio statistics
L Rn

(
θ̂1, θ̂2

)
(X1, . . . , Xn)

ω̂(x1, . . . , xn)2 := 1

n

n∑

k=1

(mk(xk) − m̄(x1, . . . , xn))2 ,

where m̄(x1, . . . , xn) = n−1 ∑n
k=1 mk(xk) and obtains the asymptotic distribution

of L Rn
(
θ̂1, θ̂2

)
(X1, . . . , Xn).

Theorem 9.7 (Asymptotic normality of the likelihood ratio statistics for two
approximating strictly non-nested models) Under regularity conditions of
Theorem 5.1 in Vuong (1989) the following asymptotic normality under the
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null hypothesis (9.5) holds

ν(X1, . . . , Xn) := L Rn
(
θ̂1, θ̂2

)
(X1, . . . , Xn)

√
nω̂(X1, . . . , Xn)2

D−−−→
n→∞ N (0, 1). (9.7)

This readily yields an asymptotic test called the Vuong test for model selection
between strictly non-nested models. Since the Vuong test is a statistical test, it also
assigns a significance level to its decision or does not make a decision at all at the
prespecified level.

Definition 9.8 (Asymptotic α level Vuong test for strictly non-nested models)
An asymptotic α level test of

H0 : E0 [ln f1(X |θ1)] = E0 [ln f2(X |θ2)] against H1 : not H0, (9.8)

is given by:

Reject H0 if and only if |ν(x1, . . . , xn)| > �−1
(
1 − α

2

)
.

In particular,

• if ν(x1, . . . , xn) > �−1
(
1 − α

2

)
, we prefer model classM1 to model classM2,

since the test indicates that theKLICwith regard tomodel classM1 is significantly
smaller than the KLIC of model classM∈ (compare to (9.5)).

• Similarly,we choosemodel classM2 overM1 ifν(x1, . . . , xn) < −�−1
(
1 − α

2

)
.

Remark 9.9 (Vuong tests for comparing vine copula models) Up to now we intro-
duced the general concept of the Vuong test. We now consider as model classes two
competing regular vine copula classes. In general, they are non-nested model classes
and thus Theorem 9.7 is applicable. This is the case, when they do not share pair
copula terms and will be the case if the tree T1 of the two vine tree structures does
not share any edge. The case where they share pair copula terms is not easy to treat,
but some general results for this overlapping case are available (see Theorem 6.3 of
Vuong 1989).

For the case of nested models the standard likelihood ratio test is available as
pointed out by Vuong (1989) in Sect. 7 of the paper. For regular vine copula models
we have nested models, when one compares a regular vine copula model with one,
where the same vine tree structure, the same pair copula families and the same
parameters is used for the first m trees, while the remaining trees Tm+1 to Td−1 are
specified using the independence copula for each pair copula term. We speak of
truncated vine models, which have been studied in Brechmann et al. (2012). Since
the asymptotic distribution of the standard likelihood ratio test is not tractable, they
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apply the same Vuong test as suggested for the non-nested case. They justify their
approach with a large simulation study, that proceeding this way gives satisfactory
performance in finite samples.

9.3.1 Correction Factors in theVuongTest for Adjusting for Model
Complexity

The test defined in (9.8) does however not take into account the possibly different
number of parameters of both models. Thus the model complexity as measured by
the number of parameters is ignored. Hence the test is called unadjusted and Vuong
(1989) gives the definition of an adjusted statistic

L̃ Rn
(
θ̂1, θ̂2

)
(X1, . . . , Xn) := L Rn

(
θ̂1, θ̂2

)
(X1, . . . , Xn) − Kn ( f1, f2) ,

where Kn ( f1, f2) is the correction factor, which depends on the characteristics of
the competing model classesM1 and M2 and is assumed to satisfy

n−1/2Kn ( f1, f2) = op(1). (9.9)

Recall that Zn = op(1) for a set of random variables (Zn)n∈N corresponds to con-
vergence to zero in probability, i.e., limn→∞ P(|Zn| > ε) = 0 ∀ε > 0. Then the
asymptotic result (9.7) also holds for L̃ Rn and we can redefine test (9.8) in terms of
L̃ Rn . In particular, Vuong (1989) notes that in terms of the unadjusted LR statistics,
we would fail to reject the null hypothesis specified in (9.5) at level α if and only if

−�−1
(
1 − α

2

)
+ Kn ( f1, f2)√

nω̂2
≤ ν(x1, . . . , xn) ≤ �−1

(
1 − α

2

)
+ Kn ( f1, f2)√

nω̂2
.

(9.10)

Here, ν is the scaled likelihood ratio statistics defined in (9.7).
Corresponding to the definition of AIC in (9.2) and BIC in (9.3), respectively, we

consider the following two model complexity corrections satisfying (9.9) suggested
by Vuong (1989):

• Akaike correction: K A
n ( f1, f2) = k1 − k2,

• Schwarz correction: K S
n ( f1, f2) =

(
k1
2

)
ln(n) −

(
k2
2

)
ln(n),

where k1 and k2 denote the number of parameters in model class M1 and M2,
respectively. The Schwarz correction again leads to more parsimonious models.
Note however, that these choices were made out of convenience and other choices
might be more appropriate depending on the specific setting, since there is a wide
range of possible correction factors.
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Remark 9.10 (Limits for the use of the Vuong test, AIC and BIC) Moreover, the
Vuong test, as well as the AIC and BIC, only allows for a model selection among a
set of possible models. If this model set is chosen badly, the selected “best” model
can still be far off from the true model. The set of possible models therefore has to
be carefully chosen.

Ex 9.3 (Model comparison of selected vine copula models for the extended
WINE data set) We continue now our analysis of the data set considered in
Exercise 1.7. Table9.3 gives the results for all pairwise comparisons of the
considered four models without utilizing the independence test (2.8). For this
the function,RVineVuongTest of theVineCopula library by Schepsmeier
et al. (2018) has been applied. We used joint maximum likelihood estimates of
all copula parameters. Since all selected vine copula models have the same
number of parameters, as can be seen from Table 9.2, no correction is used. We
see that the R-vine copula model is better than the D-vine and Gaussian copula
models, while the difference between the C-vine copula and R-vine copula is
not significant at the 5% level. Also we have significant evidence to distinguish
between C- and D-vines copula models.

Finally, we look at the comparison of the full specification and the one
obtained from applying the pairwise test (2.8) for zero Kendall’s τ values. Here,
the reduced models have less parameters than the full specification, thus we
consider also the Akaike and Schwarz adjustment. The results are contained in
Table9.4. From this, we see that there is no significant evidence to distinguish
between the full and the reduced specification for the fitted regular vine cop-
ulas, Gaussian vine copulas and D-vine copulas, when the unadjusted or the
Akaike adjusted Vuong test is performed. Thus, we can use the reduced model
specification. For the C-vine copula specification, we have to stick with the full
specification. The Schwarz correction is a larger correction than the Akaike cor-
rection, thus the acceptance region specified in (9.10) is shifted to right more
than the one of theAkaike. Hence the adjusted LR statistics will become smaller,
thus the p-values will become smaller. Thus under the Schwarz adjustment only
the reduced R-vine copula and the D-vine copula can be utilized, while for all
other vine copula models one has to stick with the full specification.

9.4 Exercises

Exer 9.1
ABALONE6: Comparing vine copula models for the six dimensional abalone
data set: As in Exercise 8.1, we consider the variables length, diameter,
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Table 9.3 WINE7: Comparing different fitted vine copula models using the asymptotic Vuong test
in (9.8) with no adjustment

Comparison Unadjusted LR statistics p-value

R-vine versus C-vine 2.00 0.07

R-vine versus D-vine 4.00 0.00

R-vine versus Gauss-vine 7.83 0.00

C-vine versus D-vine 2.10 0.04

C-vine versus Gauss-vine 6.41 0.00

D-vine versus Gauss-vine 6.41 0.00

Table 9.4 WINE7: Comparing full and reduced by independence tests vine copula models (models
ending with ind) using the Vuong test with Akaike and Schwarz corrections

Comparison Unadjusted Adjusted Akaike Adjusted Schwarz

Statistic p-value Statistic p-value Statistic p-value

R-vine
versus
R-vine-ind

1.61 0.11 0.82 0.41 −1.29 0.20

Gauss-vine
versus
Gauss-vine-
ind

1.49 0.14 0.53 0.60 −2.06 0.04

C-vine
versus
C-vine-ind

3.07 0.00 2.92 0.00 2.53 0.00

D-vine
versus
D-vine-ind

0.87 0.38 0.31 0.76 −1.20 0.23

whole, shucked viscera and shell of the abalone data set contained
in the R package PivotalR from Pivotal Inc. (2017). Again we restrict to female
abalone shells and transform the data to the copula scale by using empirical distri-
bution functions. Fit the following selected vine copula models using the Dißmann
Algorithm 8.2.

• An R-vine, C-vine and D-vine copula using sequential and joint estimation of all
copula parameter without applying the zero Kendall’s τ test (2.8) allowing for all
implemented pair copula families in theR-packageVineCopula of Schepsmeier
et al. (2018).

• An R-vine, C-vine and D-vine with applying a zero Kendall’s τ test given in (2.8)
and all other specifications as above.

For these fitted vine copula models perform the following model comparisons:
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• Using the Akaike and BIC information criteria specified in (9.2) and (9.3), respec-
tively, find the best fitting R-vine copula model among all above fitted R-vine
models. Do the same for the fitted C- and D-vine copula models. Finally, compare
between the different vine copula classes.

• Using the likelihood ratio test (9.8), compare first the models within their vine
copula class and then compare between the best fitting member of the vine copula
class.

• Given the comparison results, which model would you choose?

Exer 9.2
ABALONE6: Finding more parsimonious vine copula models for the six dimensional
abalone data set: Again, consider the data set of Exercise 9.1. We now want to
investigate, if one can reduce the choice of pair copula families without loosing
goodness of fit. For this perform, the same tasks as in Exercise 9.1 for each specified
family set below:

• Only allowing a single parametric bivariate copula family. Do this separately for
the Gaussian, Student’s t and Gumbel copula family.

• Only allowing the implemented parametric bivariate copula families with a single
parameter.

• The bivariate Gaussian, Student’s t or the Gumbel copula (including rotations)
• Only bivariate Gaussian copulas resulting in a Gaussian vine.

Given your results, which vine copula specification would you choose?

Exer 9.3
URANIUM7: Comparing vine copula models for the seven dimensional uranium
data set: Consider now all variables of the uranium data set contained in the R
package copula of Hofert et al. (2017). Perform a similar analysis as in Exercise
9.1 and 9.2.



10CaseStudy:DependenceAmong
GermanDAXStocks

10.1 Data Description and Sector Groupings

Understanding dependence among financial stocks is vital for option pricing and
forecasting portfolio returns. Copula modeling has a long history in this area.
However, the restrictive use of the multivariate Gaussian copula with no tail depen-
dence has been blamed for the financial crisis in 2007–2008 (see Li 2000, Salmon
2012 and recently Puccetti and Scherer 2018), and therefore it is important to allow
for much more flexible dependence models such as allowed by the vine copula class.
In this context, the possibility of modeling tail dependence by vine copulas has to
be mentioned.

Since financial data are strongly dependent on past values, copula-based mod-
els have to account for this. Therefore, a two-step inference for margins approach
is appropriate. This allows us to remove the marginal time dependence by utiliz-
ing standard time series models and to consider the dependence structure among
standardized residuals. In particular, generalized autoregressive conditional het-
eroskedasticity (GARCH)models are commonly used in this context. They allow for
time-varying volatility and volatility clustering, which are often observed in finan-
cial data. Roughly speaking, they model the variance at time t as function of the
past by including the variance and the observed value at time t − 1. Thus, they are
observation-driven dynamicmodels, which allow for forecasting. They are described
in much more detail in the book of Francq and Zakoian (2011).

In this case study, we investigate the dependence structure among the daily val-
ues of German stocks included in the German financial index DAX from January
4, 2005 until July 22, 2011 after we have removed the marginal time dependence.
The DAX (Deutscher Aktienindex (German stock index)) is a blue chip stock mar-
ket index consisting of the 30 major German companies trading on the Frank-
furt Stock Exchange. Prices are taken from the Xetra trading venue. According to
Deutsche Börse, the operator of Xetra, DAXmeasures the performance of the Prime
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Standard’s 30 largest German companies in terms of order book volume and
market capitalization. It is the equivalent of the FT 30 and the Dow Jones Indus-
trial Average.

There are 30 stocks in the DAX to consider. To keep this case study manageable,
we do not study the dependence structure among all stocks of the DAX.We restrict to
the analysis of the dependence among sectors. For this, we select a representative for
each sector and build up a vine copula to model the dependence. The corresponding
ticker names, the companies, and their sector are given in Table10.1.

Table 10.1 DAX: Ticker and company name and the corresponding sector

Ticker name Company Sector

ADS.DE ADIDAS retail

ALV.DE ALLIANZ financial

BAS.DE BASF chem.health

BAYN.DE BAYER chem.health

BEI.DE BEIERSDORF retail

BMW.DE BMW automobile

CBK.DE COMMERZBANK financial

DAI.DE DAIMLER automobile

DB1.DE DEUTSCHE.BOERSE financial

DBK.DE DEUTSCHE.BANK financial

DPW.DE DEUTSCHE.POST trans.util.it

DTE.DE DEUTSCHE.TELEKOM trans.util.it

EOAN.DE E.ON trans.util.it

FME.DE FRESENIUS.Med.Care chem.health

FRE.DE FRESENIUS chem.health

HEI.DE HEIDELBERGCEMENT industrial

HEN3.DE HENKEL retail

IFX.DE INFINEON trans.util.it

LHA.DE DT.LUFTHANSA trans.util.it

LIN.DE LINDE chem.health

MAN.DE MAN industrial

MEO.DE METRO retail

MRK.DE MERCK chem.health

MUV2.DE MUNICHRE financial

RWE.DE RWE trans.util.it

SAP.DE SAP trans.util.it

SDF.DE K.S chem.health

SIE.DE SIEMENS industrial

TKA.DE THYSSENKRUPP industrial

VOW3.DE VOLKSWAGEN automobile
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10.2 Marginal Models

Often the observed sample does not constitute an independent identically distributed
sample. This is however needed, ifwewant to use the estimation techniques discussed
in Chap.7. In particular, for time series data as being considered here, we need as
already mentioned to remove the serial dependence present in each component. This
will be accomplished by using standard univariate financial time series models such
as the class of GARCH models.

For each of the 30 stocks, we fit aGARCH (1, 1)model with standardized Student
t innovations using the function garchFit of the R library fgarch (Wuertz et al.
2017). A GARCH (1, 1)model for a time series Yt, t = 1, . . . , T is defined using the
conditional variance σt := Var(Yt |Y1, . . . , Yt−1) and innovation variables Zt, t =
1, . . . , T by

Yt = σtZt
σt = ω + αY 2

t−1 + βσ2
t−1. (10.1)

For our data, we assumed the distribution of Zt as standardized Student t. A stan-
dardized Student t distribution is a scaled Student t distribution with zero mean and
unit variance. As a check that the resulting standardized innovations estimates are
a random sample from the standardized Student t distribution, we use a two-sided
Kolmogorov–Smirnov test (Massey Jr 1951). The resulting p-values are given in
Fig. 10.1. This shows that nearly for all stocks the assumption of a standardized
Student t-distribution cannot be rejected. Therefore, we use the cumulative distribu-
tion function of the standardized Student t distribution to define the copula data as
probability integral transformation, i.e., we determine

uit := F(
yit
σ̂it

; ν̂i),

Fig. 10.1 DAX: P-values of Kolmogorov–Smirnov tests for independence of each DAX stock
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where F(·; ν̂i) is the distribution function of the innovation distribution with esti-
mated degree of freedom ν̂i and estimated conditional variance σ̂2

it for stock i =
1, . . . , 30 at time t = 1, . . . ,T .

10.3 Finding Representatives of Sectors

First,we illustrate the dependencieswithin sectors throughpairs plots and normalized
contour plots. The corresponding plots for each of the six sectors are contained in
Fig. 10.2. For the automobile sector, we see that DAIMLER (DAI.DE) has strong
dependence with the other two automobile stocks. The pairwise empirical Kendall’s
τ values range from .34 to .51. For the chem/health sector, we also see positive
dependence (Kendall’s τ range from .13 until .43) with stronger dependencies to
BASF (BAS.DE). For the financial sector, we identify strong positive dependencies
withKendall’s τ estimates between .31 and .52. In the industrial sector, dependencies
are less elliptical with Kendall’s τ from .27 to .51, while the transport/utility/energy
sector has stronger elliptical dependencies with Kendall’s τ from .21 until .58. The
dependencies among the retail stocks are also elliptical with pairwise Kendall’s τ
between .25 and .29.

C-vine tree structures are ideal, when we are interested in finding a ranking of
the nodes according to the strength of the dependence as measured by the Kendall’s
τ . We use this property to find representative companies for each sector. Table10.2
gives the number of companies grouped in one sector as well as the root node of a
C-Vine fit within each sector. These root node companies we choose as representa-
tive of the corresponding sector. In particular, DAIMLER (DAI.DE) is selected as
proxy of the automotive industry in the DAX, while BASF (BAS.DE) represents the
chemical/health industry. The financial industry is represented by the DEUTSCHE
BANK (DKB.DE), while SIEMENS (SIE.DE) is chosen as proxy of the industrial
sector. RWE (RWE.DE) and HENKEL (HEN3.DE) are the representatives of the
transport/utility/energy and the retail sector in the DAX, respectively.

The resultingfirst tree of theC-vine for each sectorchem.health,financial,
industrial, retail, and trans.util.it are given in Fig. 10.3.

10.4 Dependence Structure Among Representatives

Having selected the representative companies for each of the six sectors, we inves-
tigate the dependence among those companies.

First, we explore the pairwise dependencies among the representatives of each
stock in Fig. 10.4. From the contour shapes, we see evidence of positive dependencies
and the shapes suggest the presence of the Student t copula for bivariate pairs. The
Kendall’s τ estimates a range between .22 and .46. To model these dependencies, we
allow for R-, C-, and D-vine copulas. The function RVineStructureSelect
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Fig.10.2 DAX: Pairs plots for automotive, chemical/health (top row), financial, industrial (middle
row), transport/ultility/energy, and retail sector (bottom row) (Within each panel: Upper: pairs plots
of copula data, diagonal: histogram of copula margins, lower: normalized contour plots)



190 10 Case Study:Dependence Among German DAX Stocks

Table10.2 DAX: Number of companies grouped to the six sectors togetherwith their representative
company

Sector Number of companies Representative company

automobile 3 DAI.DE

chem.health 7 BAS.DE

financial 5 DBK.DE

industrial 4 SIE.DE

trans.util.it 7 RWE.DE

retail 4 HEN3.DE
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Fig. 10.3 DAX: First C-vine trees for the sectors auto, chem.health, financial,
industrial, trans.util.it and retail

of the R library VineCopula of Schepsmeier et al. (2018) can be applied for
accomplishing this task.All implementedparametric pair copula families are utilized.

R-vine Copulas

We present now the regular vine fits for the six representatives. We investigated
three R-vine specifications, one allowing for all implemented pair copula families
(rv), one where we only allowed Gaussian and Student t copulas (rvt), and one
where only Gaussian pair copulas are allowed (rvg). Note that the last specification
corresponds to a multivariate Gaussian copula with correlations specified by the
corresponding partial correlations.
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Fig. 10.4 DAX: Upper: pairs plots of copula data, diagonal: histogram of copula margins, lower:
normalized contour plots for the representative companies of the sectors

Additionally, we allow for an asymptotic α = .05 level independence test based
on Kendall’s τ introduced in (2.8). If this test is nonsignificant for a pair copula
term, then we set the associated family to the independence copula. This allows us
to reduce the complexity of the model.

Parameters are estimated using the sequential estimation method and the joint
maximum likelihood discussed in Sect. 7.2. The estimates in Fig. 10.5 are based on
sequential estimates.

The first two rows of Fig. 10.5 give the selected R-vine tree structure together with
the selected pair copula family and the fitted Kendall’s τ value, when all pair copula
families are allowed. We see that in the tree T1, all pair copula families are selected
as Student t copulas. This has been often observed in financial data sets. The trees Tj
with j > 1 however also include non-elliptical pair copula families, but the strength
as measured by the fitted Kendall’s τ values is quite weak.

The last two rows of Fig. 10.5 give the corresponding results, when only Student
t and Gaussian pair copulas are allowed. We observe no change in the selected vine
tree structure, but changes to the selection of the pair copula families and thus to the
associated parameter estimates in trees Tj for j ≥ 2. Since here the fitted Kendall’s
τ values are quite low, the difference between the fitted models will not be large.
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Fig.10.5 DAX: R-vine trees allowing for all pair copula families (top) and allowing only for Student
t or Gaussian copulas (bottom) for sector representatives together with their pair copula family and
the fitted Kendall’s τ value for each edge based on joint maximum likelihood

To investigate more precisely the influence of the selected pair copula family,
we study the associated fitted normalized contour plots given in Fig. 10.6. Here, the
selection allowed all implemented pair copula families. From this, we clearly see
the fitted diamond-shaped contours associated with the bivariate Student t copulas.
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5,1 ; 6,2,3,4

6,1 ; 2,3,4 6,5 ; 3,4,2

2,1 ; 3,4 3,5 ; 4,2 6,3 ; 2,4

3,1 ; 4 4,5 ; 2 2,3 ; 4 6,4 ; 2

4,1 2,5 4,3 2,4 6,2

Fig. 10.6 DAX: Fitted R-vine normalized contour for sector representatives allowing for all pair
copulas (rv) based on joint maximum likelihood (node abbreviations: 1 <-> DAI.DE, 2 <->
BAS.DE, 3 <-> DBK.DE, 4 <-> SIE.DE, 5 <-> RWE.DE, 6 <-> HEN3.DE)

Some nonsymmetry is visible in contour shapes in trees Tj for j ≥ 2. One example
for this behavior is the fitted conditional pair copula C23;4. This property cannot be
modeled by bivariate Student t copulas.

For this data set, we noticed that the asymptotic α level test for independence
given in (2.8) does not give more parsimonious R-vine specifications, thus we do
not present detailed summaries for these fits. Further, we do not show the detailed
results for the joint maximum likelihood estimation of the R-vine copula since they
are very close to the sequential estimates.



194 10 Case Study:Dependence Among German DAX Stocks

Table 10.3 DAX: Sequential parameter estimates (par and if necessary par2) together with implied
Kendall’s τ (tau), upper (utd) and lower (ltd) tail dependence coefficient estimates for the R-vine
copula (allowing for all implemented pair copula families), and the R-vine copula with only Student
t and Gaussian pair copulas (node abbreviations: 1<->DAI.DE, 2<->BAS.DE, 3<->DBK.DE,
4 <-> SIE.DE, 5 <-> RWE.DE, 6 <-> HEN3.DE)

R-vine tree edge cop par par2 tau utd ltd

1 6,2 t 0.45 8.32 0.30 0.09 0.09

1 2,4 t 0.66 4.47 0.46 0.33 0.33

1 4,3 t 0.63 5.56 0.44 0.27 0.27

1 2,5 t 0.51 6.37 0.34 0.17 0.17

1 4,1 t 0.61 5.68 0.42 0.25 0.25

2 6,4;2 F 1.50 – 0.16 0.00 0.00

2 2,3;4 SBB8 2.33 0.71 0.20 0.00 0.00

2 4,5;2 F 1.53 – 0.17 0.00 0.00

2 3,1;4 t 0.35 9.19 0.23 0.05 0.05

3 6,3;2,4 BB1 0.07 1.05 0.08 0.06 0.00

3 3,5;4,2 F 1.36 – 0.15 0.00 0.00

3 2,1;3,4 t 0.20 12.98 0.13 0.01 0.01

4 6,5;3,4,2 SBB1 0.07 1.01 0.05 0.00 0.02

4 6,1;2,3,4 F 0.93 – 0.10 0.00 0.00

5 5,1;6,2,3,4 F 0.25 – 0.03 0.00 0.00

t R-vine tree edge cop par par2 tau utd ltd

1 6,2 t 0.45 8.32 0.30 0.09 0.09

1 2,4 t 0.66 4.47 0.46 0.33 0.33

1 4,3 t 0.63 5.56 0.44 0.27 0.27

1 2,5 t 0.51 6.37 0.34 0.17 0.17

1 4,1 t 0.61 5.68 0.42 0.25 0.25

2 6,4;2 t 0.23 21.27 0.15 0.00 0.00

2 2,3;4 t 0.29 14.42 0.19 0.01 0.01

2 4,5;2 t 0.23 12.07 0.15 0.01 0.01

2 3,1;4 t 0.35 9.19 0.23 0.05 0.05

3 6,3;2,4 t 0.13 17.72 0.08 0.00 0.00

3 3,5;4,2 t 0.22 14.83 0.14 0.01 0.01

3 2,1;3,4 t 0.20 13.77 0.13 0.01 0.01

4 6,5;3,4,2 t 0.08 30.00 0.05 0.00 0.00

4 6,1;2,3,4 N 0.14 - 0.09 0.00 0.00

5 5,1;6,2,3,4 N 0.04 – 0.02 0.00 0.00

In the top part of Table10.3, we present the sequential parameter estimates of the
R-vine specification allowing for all implemented pair copula families. From this,
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we see that the bivariate Student t copula is most often selected and especially it is
selected for all edges in the tree T1. The other selected pair copula families imply no
or only little tail dependence. The first tree T1 identifies Siemens (SIE.DE) from
the industrial sector and BASF (BAS.DE) from the chemical/heath sector as central
nodes in the dependence network identified by the R-vine structure.

The corresponding results for the R-vine, where only bivariate Student t copulas
are allowed for the pair copula families, are contained in the bottompart of Table10.3.
The estimated degree of freedom parameters in the first tree varies between 4.47 and
8.32, thus indicating different tail behaviors of pairs, which cannot be captured by a
six-dimensional Student t copula, which allows only for a single degree of freedom
parameter. In trees Tj for j ≥ 2 larger estimated degree of freedom parameters are
observed, thus a decrease in tail dependence is fitted for these conditional pairs. For
two pair copula terms in trees T4 and T5 even the Student t copulas is replaced by
the Gaussian copula.

C- and D-vine Copulas

Similarly, we conduct a dependence analysis using C- and D-vine tree sequences.
We denote these specifications by cv and dv, respectively. Again the selected tree
structure, the selected pair copula families, and the induced Kendall’s τ values by
sequential estimation are displayed in Fig. 10.7.

For the C-vine specification, the root node ordering is Siemens (SIE.DE) from
the industrial sector, Deutsche Bank (DBK.DE) from the financial sector, BASF
(BAS.DE) from the chemical/health sector, Henkel (HEN3.DE) from the retail sec-
tor, RWE (RWE.DE) from the transport/utility/IT sector, and Daimler (DAI.DE)
from the automotive sector. This gives an estimated importance ordering of the sec-
tor representatives.

The D-vine specification is most appropriate, if there is a prior ordering of the
variables available. This is not the case for this data set. The fitted D-vine assigns
the ordering RWE- Henkel- Daimler- Deutsche Bank- Siemens- BASF to the sector
representatives. Looking at the fitted Kendall’s τ , we see that they are increasingwith
the ordering. This allows for the following interpretation: BASF is most dependent
on Siemens, Siemens on Deutsche Bank after the effect of BASF is accounted for,
Deutsche Bank on Daimler after BASF and Siemens are accounted, Daimler on
Henkel after BASF, Siemens and Deutsche Bank are accounted and Henkel on RWE
after BASF Siemens, Deutsche Bank and Daimler are accounted.

Again, we explore the normalized contour shapes associated with the C- (top) and
D-vine (bottom) fits in Fig. 10.8. A nonsymmetric pair copula is already fitted in tree
T1 for the C-vine specification.

Now, we present the summary tables of the fitted C- and D-vine copulas using the
sequential estimation method and allowing for all implemented pair copula families.
They are contained in Table10.4. We see that the selected C-vine copula has already
a non-elliptical pair copula family in tree T1, while this is not the case for the chosen
D-vine copula. In general, there are more non-elliptical pair copulas chosen for these
more restricted R-vine copula specifications. Therefore, we will compare all studied
model classes in the next section using the methods discussed in Chap.9.
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Table 10.4 DAX: Sequential parameter estimates (par and if necessary par2) together with implied
Kendall’s τ (tau), upper (utd) and lower (ltd) tail dependence coefficients for the C- and D-vine
specifications allowing all implemented pair copulas. (node abbreviations: 1 <-> DAI.DE, 2 <->
BAS.DE, 3 <-> DBK.DE, 4 <-> SIE.DE, 5 <-> RWE.DE, 6 <-> HEN3.DE)

C-vine tree edge cop par par2 tau utd ltd

1 6,4 SBB1 0.07 1.36 0.29 0.00 0.34

1 4,3 t 0.63 5.56 0.44 0.27 0.27

1 4,2 t 0.66 4.47 0.46 0.33 0.33

1 4,5 t 0.49 5.20 0.32 0.19 0.19

1 4,1 t 0.61 5.68 0.42 0.25 0.25

2 6,3;4 BB1 0.11 1.07 0.11 0.09 0.00

2 3,2;4 SBB8 2.33 0.71 0.20 0.00 0.00

2 3,5;4 F 1.91 – 0.21 0.00 0.00

2 3,1;4 t 0.35 9.19 0.23 0.05 0.05

3 6,2;3,4 F 1.25 – 0.14 0.00 0.00

3 2,5;3,4 F 1.49 – 0.16 0.00 0.00

3 2,1;3,4 t 0.20 12.98 0.13 0.01 0.01

4 6,5;2,3,4 G 1.05 – 0.04 0.06 0.00

4 6,1;2,3,4 F 0.99 – 0.11 0.00 0.00

5 5,1;6,2,3,4 F 0.30 – 0.03 0.00 0.00

D-vine tree edge cop par par2 tau utd ltd

1 2,4 t 0.66 4.47 0.46 0.33 0.33

1 4,3 t 0.63 5.56 0.44 0.27 0.27

1 3,1 t 0.61 6.03 0.42 0.23 0.23

1 1,6 t 0.44 11.77 0.29 0.04 0.04

1 6,5 t 0.34 9.26 0.22 0.05 0.05

2 2,3;4 SBB8 2.33 0.71 0.20 0.00 0.00

2 4,1;3 t 0.37 9.30 0.24 0.05 0.05

2 3,6;1 t 0.21 11.90 0.14 0.01 0.01

2 1,5;6 SBB8 3.12 0.60 0.23 0.00 0.00

3 2,1;4,3 t 0.20 13.15 0.13 0.01 0.01

3 4,6;3,1 F 1.29 – 0.14 0.00 0.00

3 3,5;1,6 F 2.03 – 0.22 0.00 0.00

4 2,6;4,3,1 F 1.04 – 0.11 0.00 0.00

4 4,5;3,1,6 SBB8 2.05 0.61 0.12 0.00 0.00

5 2,5;4,3,1,6 F 1.29 – 0.14 0.00 0.00
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Fig. 10.7 DAX: C-vine (top) and D-vine (bottom) trees for sector representatives together with
their chosen pair copula families and the corresponding fitted Kendall’s τ values based on joint
maximum likelihood estimation
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Fig.10.8 DAX: Fitted C-vine (top) and D-vine (bottom) normalized contours for sector representa-
tives allowing for all pair copulas based on joint maximum likelihood (node abbreviations: 1 <->
DAI.DE, 2 <-> BAS.DE, 3 <-> DBK.DE, 4 <-> SIE.DE, 5 <-> RWE.DE, 6 <-> HEN3.DE)
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10.5 Model Comparison

We now compare the different models by studying the standard information-based
model AIC and BIC criteria as well as the Vuong test discussed in Sect. 9.3 suitable
for non-nested model comparison.

Information-Based Model Comparison

In Table10.5, we give the estimated log-likelihood, the number of parameters, and
the AIC and BIC statistics of all copula models studied. From this, we see that the
sequential estimates nearly produce the same log-likelihood as the joint maximum

Table 10.5 DAX: Estimated log-likelihood (loglik), number of parameters (df), AIC and BIC for
all fitted models (seq = sequential estimation, mle = maximum likelihood, ind = asymptotic α
level independence tests used, all = all implemented pair copula families used, t = only Student t
and Gaussian pair copulas used, G = only Gaussian copulas used)

G-vine-seq loglik par AIC BIC

1952.74 15 –3875.48 –3794.28

R-vine-seq-all 2142.09 25 –4234.17 –4098.84

R-vine-mle-all 2144.25 25 –4238.50 –4103.16

R-vine-ind-seq-all 2140.81 24 –4233.62 –4103.70

R-vine-ind-mle-all 2142.87 24 –4237.75 –4107.83

R-vine-seq-t 2137.66 28 –4219.32 –4067.74

R-vine-mle-t 2140.49 28 –4224.99 –4073.41

R-vine-ind-seq-t 2136.54 27 –4219.08 –4072.92

R-vine-ind-mle-t 2139.30 27 –4224.59 –4078.43

C-vine-seq-all 2156.96 24 –4265.92 –4136.00

C-vine-mle-all 2160.71 24 –4273.43 –4143.51

C-vine-ind-seq-all 2156.96 24 –4265.92 –4136.00

C-vine-ind-mle-all 2160.71 24 –4273.43 –4143.51

C-vine-seq-t 2135.58 27 –4217.16 –4071.00

C-vine-mle-t 2139.03 27 –4224.05 –4077.89

C-vine-ind-seq-t 2134.44 26 –4216.89 –4076.14

C-vine-ind-mle-t 2137.81 26 –4223.61 –4082.86

D-vine-seq-all 2155.92 26 –4259.84 –4119.09

D-vine-mle-all 2159.25 26 –4266.49 –4125.74

D-vine-ind-seq-all 2155.92 26 –4259.84 –4119.09

D-vine-ind-mle-all 2159.25 26 –4266.49 –4125.74

D-vine-seq-t 2125.26 29 –4192.51 –4035.53

D-vine-mle-t 2128.77 29 –4199.54 –4042.55

D-vine-ind-seq-t 2125.26 29 –4192.51 –4035.53

D-vine-ind-mle-t 2128.77 29 –4199.54 –4042.55
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likelihood estimates, while there is little reduction in the number of parameters when
the asymptotic α level independence test (2.8) is invoked. Clearly, we see that the
multivariate Gaussian copula is not sufficient, while AIC and BIC slightly prefer the
C-vine model over the D-vine and R-vine model. We note that the estimation results
do not change for the Gaussian specification, when joint maximum likelihood and/or
the asymptotic α level independence test is applied. Therefore, we do not show them
in Table10.5.

Non-nested Model Comparison Using Vuong Tests

First, we compare the fitted models within each vine class. In particular, we want to
investigate, if there is significant evidence for difference between the model specifi-
cations with regard to the pair copula families allowed and whether the asymptotic α
level independence test (2.8) is applied. For this, we use the Vuong test discussed in
Sect. 9.3 applied to the joint maximum likelihood estimates of the vine specification.
The results are presented in Table10.6. We see that all R-vine specifications cannot
be distinguished by the Vuong test on the 5% level. For C-vines, the restriction to
only Student t and Gauss copula families produces a significantly worse fit on the 5%
level compared to the one, where all implemented pair copula fits are allowed. The
same conclusions as for the C-vine specifications can be drawn for the D-vine spec-
ifications. So in the next comparison, we restrict ourselves to comparisons allowing
for all implemented pair copula families and no asymptotic α level independence
test.

To distinguish between the vine classes, we conduct again pairwise comparison
using the Vuong test. The results are reported in Table10.7. They show that there

Table 10.6 DAX: Vuong test model comparison within each vine class using joint maximum
likelihood estimation

Comparison Unadjusted Akaike adjusted Schwarz adjusted

Stat p-value Stat p-value Stat p-value

rv all versus t 0.39 0.69 0.71 0.48 1.56 0.12

rv ind-all versus ind-t 0.38 0.70 0.70 0.49 1.56 0.12

rv all versus ind 0.80 0.42 0.22 0.83 –1.36 0.17

rv t versus ind-t 0.78 0.44 0.13 0.90 –1.63 0.10

cv all versus t 2.13 0.03 2.43 0.02 3.23 0.00

cv ind-all versus ind-t 2.22 0.03 2.41 0.02 2.94 0.00

cv all versus ind 0.00 1.00 0.00 1.00 0.00 1.00

cv t versus ind t 0.79 0.43 0.14 0.89 –1.60 0.11

dv all versus t 2.59 0.01 2.84 0.00 3.53 0.00

dv ind-all versus ind-t 2.59 0.01 2.84 0.00 3.53 0.00

dv all versus ind 0.00 1.00 0.00 1.00 0.00 1.00

dv t versus ind-t 0.00 1.00 0.00 1.00 0.00 1.00
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Table 10.7 DAX: Vuong test model comparison between each vine class using joint maximum like-
lihood estimation allowing for all implemented pair copula families and without the independence
test (2.8)

Comparison Unadjusted Akaike adjusted Schwarz adjusted

Stat p-value Stat p-value Stat p-value

rv all versus dv all –1.44 0.15 –1.53 0.13 –1.77 0.08

rv all versus cv all –1.21 0.23 –1.13 0.26 –0.91 0.36

cv all versus dv all 0.13 0.89 0.31 0.75 0.80 0.42

rv all versus gv 6.68 0.00 6.33 0.00 5.39 0.00

is no significant evidence on the 5% level that the vine class specifications provide
a different fit, while there is strong statistical evidence that the Gaussian copula
provides an inferior fit compared to the vine copulas.

Finally, we like to note that this comparison is all in sample. A more rigorous
comparison would involve cross-validation.

10.6 Some Interpretive Remarks

This analysis shows that the class of vine models can more appropriately explain the
dependence structure among sector representatives of theDAX index than aGaussian
copula. The stock from SIEMENS (SIE.DE) is selected as the most important
stock among the six sector representatives. It is followed by DEUTSCHE BANK
(DKB.DE), BASF (BAS.DE), DAIMLER (DAI.DE), HENKEL(HENS3.DE), and
RWE (RWE.DE). This indicates that the dependency among German economy is
driven by industrial and financial companies.

Finding a good model for the dependence structure is only one building block for
the financial risk analyst. For an introduction to the methods of risk management see
the book byMcNeil et al. (2015). Such a person is especially interested in forecasting
the value at risk of a portfolio of interest. The value of risk is a high quantile of the
portfolio return. For such an analysis, we have to simulate a large sample from the
fitted vine copula model and transfer the sample to the standardized residual level
using for each component the inverse of the fitted residual distribution. For this
step, an invertible fitted marginal distribution is necessary. The univariate empirical
distribution is not suitable for this task.

The sample of the standardized residuals is then used to construct a forecast
sample of the portfolio return using the dynamic marginal GARCH models. Finally,
the forecast sample of the portfolio return is then taken to construct estimates of the
value at risk. This way of proceeding has been followed and is illustrated using vine
copula models in Brechmann and Czado (2013) for the Euro Stoxx 50 index.



11RecentDevelopments inVineCopula
BasedModeling

So far, we have given a basic introduction to vine copulas with some applications.
The field is rapidly developing and in this chapter we showcase some developments
in the area of estimation, model selection and adaptions to special data structures.
Next, we summarize current applications to problems from finance, life and earth
sciences. The chapter closes with a section on available software to conduct vine
copula based modeling.

11.1 Advances in Estimation

Bayesian Vine Copula Analysis

Estimation of vine copula parameters so far was treated in a frequentist way. In
a frequentist perspective unknown parameters are considered as fixed quantities
and estimation are commonly performed by maximum likelihood. In contrast, the
Bayesian framework allows unknown parameters to be random quantities and prior
knowledge about them are summarized in a prior distribution. We denote the asso-
ciated prior density for the random parameter vector θ by p(θ|D). After seeing the
data the knowledge of the parameter is updated by determining the posterior dis-
tribution of parameters. This is defined as the distribution of the parameter vector
θ given the data D. The corresponding density will be denoted by p(θ|D). The
posterior density is then proportional to the likelihood l(θ; D) times the prior, i.e.,
p(θ|D) ∝ l(θ; D) · π(θ). Since only in special cases the posterior distribution is
known analytically, it is often approximated byMarkovChainMonteCarlo (MCMC)
methods. Formore details, contact the books byGilks et al. (1995) andRobert (2004).

The first analysis of vine copulas in a Bayesian framework was conducted by
Min and Czado (2010). They analyze a D-vine copula, where the pair copulas of
the vine are bivariate Student t copulas. Parameters of this model are estimated

© Springer Nature Switzerland AG 2019
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using MCMC by adapting the Metropolis–Hastings algorithm of Metropolis et al.
(1953). The MCMC algorithm provides credible intervals for estimated parameters.
In contrast, confidence intervals are difficult to obtain for vine copulas, if maximum
likelihood estimation is used. Following to this, Min and Czado (2011) employ
Bayesian model selection in D-vine copulas to decide, whether a pair copula is the
independence copula or not. This is achieved by introducing model indicators and
utilizing reversible jump MCMC approaches of Green (1995). This approach leads
to a more parsimonious model compared to the full D-vine specification. Smith et al.
(2010) also employ Bayesian model selection for a D-vine and use this method to
model serial dependence within longitudinal data. Smith (2015) models both the
serial and the cross-sectional dependence of a multivariate time series with a D-vine
copula and provides an MCMC algorithm for parameter inference.

So far Bayesian model selection was restricted to a subclass of regular vine cop-
ulas. Gruber and Czado (2015) provide a sequential method based also on reversible
jumpMCMC,which is able to deal with regular vine copulas in general. This method
selects sequentially the vine tree structure and corresponding pair copula families
from a given set of copula families. In a simulation study, it is shown that this method
leads to better results compared to the standard frequentistmodel selectionAlgorithm
8.2 ofDißmann et al. (2013). However, this is achieved at higher computational costs.
In a follow-up paper Gruber and Czado (2018) developed a non-sequential Bayesian
method for the vine structure by choosing the tree to be updated randomly. They
showed that the associated MCMC sampler mixes well in small dimensions and give
an application to financial data.

For factor vine copula models the Bayesian approach also seems to be promis-
ing and provides advantages as further discussed in Sect. 11.3. In fact, Scham-
berger et al. (2017) develop a first Bayesian approach for a one-factor vine copula
model. They follow a two step approach to facilitate inference for the marginal and
copula parameters. Very recently Kreuzer and Czado (2018) are able to develop a
joint Bayesian inference approach using Hamiltonian Monte Carlo of Hoffman and
Gelman (2014) for a one-factor stochastic volatility model.

So far we have discussed Bayesian approaches to infer vine copula parameters.
Vine copulas can also be helpful to design or improve an inference procedure itself.
Schmidl et al. (2013) show, how vine copulas can be used to obtain multivariate
proposals for the Metropolis–Hastings algorithm. The vine copula based proposal
incorporates the dependency betweenmodel parameters, which leads to an improved
MCMC procedure. They apply this approach to get better mixing over standard
approaches in inference problems in system biology.

Vine Copula Models with Nonparametric Pair Copulas

In Sect. 3.8, we introduced the empirical normalized contour plot as visual guide to
check the appropriateness of a bivariate parametric copula family. But sometimes
none of the bivariate copula families discussed inChap.3 seems tofit the data.As such
a data example, Fig. 11.1 shows several pairs from the MAGIC telescope data set
(https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope). The rank trans-
formed observations (first row) indicate that the dependence has rather uncommon

https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope
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characteristics,which is confirmedby the empirical normalized contour plots (second
row). The contour shapes do not correspond to any of the parametric copula families
introduced in Chap.3. For such situations, a nonparametric approach is preferable.

Several specialized methods for bivariate copula densities were proposed in the
literature. One technique was alreadymentioned in Sect. 3.8. The idea is to transform
the copula data to the z-scale by setting (zi1, zi2) := (�−1(ui1), �−1(ui2)) for
i = 1, . . . , n. We now estimate the density g(z1, z2) of the associated random vector
(Z1, Z2) := (�−1(U1), �

−1(U2)) by a kernel estimator. An estimate of the copula
density c is then obtained by rescaling the kernel density estimate ĝ to uniform
margins by

ĉ(u1, u2) := ĝ
(

�−1(u1), �−1(u2)
)

φ
(

�−1(u1)
)

φ
(

�−1(u2)
) for u1, u2 ∈ [0, 1].

Charpentier et al. (2006) and Geenens et al. (2017) used this technique in com-
bination with kernel estimators of g. There is a variety of other techniques that try
to estimate the copula density c directly: methods based on smoothing kernels (Gij-
bels andMielniczuk 1990; Charpentier et al. 2006), Bernstein polynomials (Sancetta
and Satchell 2004), B-splines (Kauermann et al. 2013), and wavelets (Genest et al.
2009). The method of Geenens et al. (2017) was used to produce the second row of
Fig. 11.1.

Any of the above methods can be used for estimating pair copula densities in a
vine copula model. The corresponding h-functions can be obtained by integrating
the density estimate. With these two ingredients, the sequential estimation proce-
dure of Sect. 7.2 can be adapted to yield a fully nonparametric estimate of the vine
copula density. This approach was followed by Kauermann and Schellhase (2014)
and Nagler and Czado (2016) with B-splines and kernels, respectively. Nagler et al.
(2017) give an overview of the existing methods and compared them in a large sim-
ulation study. Overall, the local-likelihood kernel estimator of Geenens et al. (2017)
seems to perform best, although spline methods may be preferable, if there is low
dependence.

Nonparametric estimators of vine models also have appealing theoretical proper-
ties. Compared to parametric density estimators, nonparametric methods generally
converge at slower rates. Even worse, the converge rate slows down as the number
of variables increases. Put differently, the larger the number of variables, the larger
is the number of observations required for reasonably accurate estimates. This phe-
nomenon is widely known as the curse of dimensionality in nonparametric estimation
(see e.g., Scott 2015).

Nagler and Czado (2016) proved that there is no curse of dimensionality for esti-
mating simplified vine copula densities using nonparametric pair copula estimators.
The simplifying assumption allows us to decompose the problem of estimating a d-
dimensional density into

(d
2

)

bivariate estimation problems. As a result, the vine cop-
ula density estimator converges at a rate equivalent to a bivariate problem, no matter
how large d is. This is a considerable advantage over other nonparametric techniques
for multivariate density estimation. And even when the simplifying assumption is
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Fig. 11.1 MAGIC: Selected pairs from the MAGIC telescope data. First row: standardized rank
plots, second row: empirical normalized contour plots, third row: contour plots of the best fitting
parametric model

violated, this advantage makes vine copula based nonparametric estimators usually
superior to traditional methods. This claim is supported by the simulation results
contained in Nagler and Czado (2016). Hence, vine copulas with nonparametric pair
copulas can be useful constructs in situations, where the dependence structure is not
of primary interest.

Covariate-Dependent and Non-simplified Vine Copula Models

In some situations, it can be sensible to let the pair copulas in a vine depend on
one or more covariates. For example, one may ask how the dependence between
financial returns changes over time or how geographic characteristics influence the
dependence between climatic variables. Another example is nonsimplified vines,
where the copula parameter associated with edge e = (ae, be; De) in tree Tj for
j > 1 may vary with the value of the conditioning variables uDe .
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More generally, suppose ze is a p dimensional vector of covariates for edge e and
the corresponding pair copula can be written as cae,be;De(·, ·; ze). If time is the only
covariate,wedefine ze := t for all e. In a nonsimplifiedvine copula,we set ze := uDe .
The function cae,be;De(·, ·; ze) is the density of the copula associated with (Uae ,Ube)

whereUe depends on ze. This dependence is difficult to specify in general. Therefore
a common approach is to assume a parametricmodel for cae,be;De and let its parameter
θe be a function of the covariates, i.e., cae,be;De(·, ·) = cae,be;De(·, ·; θe(ze)).

An early example of such a model is Erhardt et al. (2015b), who postulated a gen-
eralized linear model θe(z) = g(β�

e z) for the relationship between the dependence
parameter and geographical dissimilarities. Similarly, a generalized linear model
θe(uDe) = g(β�

e uDe) can be used to relax the simplifying assumption. This was
proposed by Han et al. (2017) in combination with a sparsity penalty, to automati-
cally weed out unessential covariates.

The linearity assumption in the dependence parameter may still be too restrictive.
To address this restriction Acar et al. (2012) proposed a semi-parametric model for
a three-dimensional non-simplified vine copula. In the associated second tree, the
dependence parameter θe is merely assumed to be a smooth function of the single
covariate uDe . Acar et al. (2012) proposed to estimate this relationship by local-
polynomial smoothing, but other smoothing methods like penalized splines can be
employed as well. Vatter and Nagler (2018) used the latter technique to build a
very general model, that allows for nonlinearity, nonsimplifiedness and an arbitrary
number of covariates. More specifically, the pair copula parameters are assumed to
follow the generalized additive model

θe(ze) = g

( p
∑

k=1

se,k(ze,k)

)

,

where se,k are arbitrary smooth functions of a single component of ze ∈ R
p.

All models mentioned so far rely on the assumption that each pair copula belongs
to a parametric family. A nonparametric approach for non-simplified vines was pro-
posed by Schellhase and Spanhel (2018). The authors estimate conditional copulas
with a single covariate using B-splines and use principal component analysis to
reduce the covariate dimension in higher trees. A fully nonparametric method is yet
to be explored.

11.2 Advances in Model Selection of Vine Copula BasedModels

Finding Simplified Vine Tree Structures

Given copula data, one of the main tasks of the estimation of a simplified vine
copula is finding a suitable tree structure. The tree structure determines on the one
hand, which specific pair copulas are modeled, and on the other hand, which condi-
tional independencies are implied by the simplifying assumption. The tree structure
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selection method proposed in Sect. 8.3, the so-called Dißmann’s algorithm proposed
in Dißmann et al. (2013), sequentially constructs the tree structure by maximizing
dependence at each tree level. Here, dependence is measured in terms of absolute
Kendall’s τ values. However, Dißmann’s algorithm does not account for the struc-
ture’s implications on the simplifying assumption.

Kraus and Czado (2017b) develop two new algorithms, that select tree structures
of vine copulas, which violate the simplifying assumption as little as possible. Using
a recently developed test for constant conditional correlations (CCC) of Kurz and
Spanhel (2017), their structure selectionmethods take information about the violation
of the simplifying assumption into account. The first algorithm selects the first tree
similar to Dißmann’s algorithm, but additionally utilizes the p-values of the CCC
tests as weights for the selection of higher trees. This yields tree structures, where the
p-values of theCCC tests are rather large, implying that the simplifying assumption is
not a severe restriction. The second algorithm of Kraus and Czado (2017b) proposes
to fit a C-vine copula to the data, where for each tree level the root node is selected
such that the occurrence of nonsimplifiedness in the next tree is minimized.

Kraus and Czado (2017b) demonstrate in a simulation study, that these algorithms
are able to improve the model fit in terms of the Akaike information criterion (AIC)
compared to Dißmann in many cases, especially when the dimension is large. Lastly,
they revisit many data sets, that have already been studied in the vine copula context
and thereby highlight the usefulness of their algorithms. For example, they show
that the classic uranium data set of Cook and Johnson (1986), which is often used
as an example of a data set for which the simplifying assumption is violated, can
be suitably modeled as a simplified vine copula, when the tree structure is selected
using their proposed algorithm.

Goodness-of-Fit Tests for Vine Copulas

Copula goodness-of-fit tests were introduced and discussed in Genest et al. (2006).
More precisely, the hypothesis that the copula associated with the data belongs up to
a parameter specified copula class is tested. Many different test statistics for this null
hypothesis have been given, that follow two major approaches. In a first approach,
the empirical copula process is considered, which is the difference between the fitted
parametric copula and the empirical copula. These differences are then utilized to
construct a multivariate Cramer–von Mises or multivariate Kolmogorov–Smirnov
based test statistic. The other approach is based on first applying the Rosenblatt
transformation (see Sect. 6.1) to transform the dependent components of the copula
data to i.i.d components. These i.i.d components are then aggregated and standard
univariate goodness-of-fit approaches are used. Their small sample performance was
studied in Berg (2009) and Genest et al. (2009) mostly for bivariate copulas.

With the increased use of vine copulas especially in higher dimensions the need
to construct and implement goodness-of-fit tests for the vine copula arose. Schep-
smeier (2015, 2016) developed and investigated goodness-of-fit copula tests for the
hypothesis that the underlying copula of a data set belongs to the class of a vine
copula. Here, the vine tree structure as well as the pair copula families are assumed
to be specified. For this, he first adapted the two approaches given above, but he also
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developed a goodness-of-fit statistics based on the information matrix equality and
specification test proposed by White (1982). This extends the goodness-of-fit test
for copulas introduced by Huang and Prokhorov (2014). While Schepsmeier (2015)
concentrates on the performance of the tests, Schepsmeier (2016) develops the asso-
ciated asymptotic theory. Schepsmeier (2014) additionally proposes an information
ratio test, which is inspired by Zhou et al. (2012), and shows good small sample
performance when compared to the alternatives. As is common in the area of copula
of goodness-of-fit tests, there is no clear winner for a specific goodness-of-fit test in
the context of vine copulas.

Model Distances Between Vine Copula Models

The two main advantages of vine copula models are, that they are extremely flexible
and numerically tractable even in high dimensions. Being able to determine how
much two specified models differ can be important in many cases. The Kullback–
Leibler criterion of Kullback and Leibler (1951) is the most popular measure for
this purpose and was introduced in Sect. 9.2. Often the criterion is also called the
Kullback–Leibler distance, even though is does not satisfy the triangle inequality
required for a distance. For example, Spanhel and Kurz (2015) try to find the sim-
plified vine copula with the smallest Kullback–Leibler distance for a given copula.
Other authors like Stöber et al. (2013) and Schepsmeier (2015) also use theKullback–
Leibler distance in the context of vine copulas. Unfortunately, the computation of the
KL distance requires multivariate integration, which becomes numerically infeasible
in high dimensions. To overcome this curse of dimensionality one could use Monte
Carlo integration for approximating the true Kullback–Leibler distance. However,
Monte Carlo methods are random and become imprecise and/or slow for higher
dimensions.

Therefore, Killiches et al. (2018) develop alternative (nonrandom) methods based
on the Kullback–Leibler distance. They use the relationship that the Kullback–
Leibler distance can bewritten as the sum over expectations of Kullback–Leibler dis-
tances between univariate conditional densities. These expectations are then approx-
imated by evaluation on specialized grids, that are chosen depending on the focus of
the application. The resulting approximate Kullback–Leibler distance is simply an
approximation of the true Kullback–Leibler distance and can be used from a com-
putational point of view for up to five dimensions. The diagonal Kullback–Leibler
distance concentrates on specific conditioning vectors, namely the ones on certain
diagonals in the space. Therefore, it is not an approximation in the classical sense.
However, the qualitative behavior is extremely similar to the one of the Kullback–
Leibler distance. For up to ten dimensions thismethod can easily be used.Whengoing
to dimensions 30 and higher, the authors suggest reducing the number of evaluation
points even further by considering only one principal diagonal, defining the sin-
gle diagonal Kullback–Leibler distance. Many different examples and applications
show, that the three proposed methods are suitable substitutes for the Kullback–
Leibler distance. Further, they manage to outperform Monte Carlo integration from
a computational point of view.
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High-Dimensional Model Selection of Vine Based Models Using Graphical
Structures

Vine copulas have been introduced as a flexible dependencemodeling tool in the non-
Gaussian case. However, exploring the properties of regular vines in the Gaussian
case can help to draw important information for the vine tree structure selection of
arbitrary regular vines and to obtain parsimonious models. More precisely, Gaussian
models on directed acyclic graphs (DAGs), also called Bayesian Networks (BNs)
form a prominent class of graphical models for many applications in biology, psy-
chology, ecology, and other areas. For example, Sachs et al. (2005) identified protein
networks using this model class. In general, these are models for describing condi-
tional independencies induced by a directed graph. Many theoretical results can be
found in the books of Lauritzen (1996) or Koller and Friedman (2009).

To learn such a graphical model from data, most often the multivariate Gaussian
distribution is assumed. In this case, either score-based or constraint-based methods
are employed to learn the underlying DAG G = (V, E), where N is the set of nodes
and E is a set of directed edges or arrows of the graph. Score-based approaches use a
greedy procedure on the underlying data to find a graphical model with highest score
such as the highest log-likelihood or lowest BIC. For constraint-based approaches,
conditional independence tests are utilized to draw inference. For an implementation
of this approach in R see Scutari (2010).

A first connection between Gaussian regular vine models and DAG’s has been
discovered by Brechmann and Joe (2014). For this, they consider truncated regular
vines (compare to Remark 9.9) (Brechmann et al. 2012) and showed that truncated
Gaussian vines can be represented as a special class of structural equation models
(SEM) as for example discussed inKaplan (2009). The special class of SEM’s arising
from truncated Gaussian vines of order k are models, where the nodes can be ordered
and nodes of higher order can be expressed as a linear functions of exactly k nodes
of lower order. Such a representation immediately leads to a DAG, where each node
has at most k parents, i. e. at most k arrows pointing toward a node. A different
characterization of k truncated regular vines is given in Haff et al. (2016).

Since there exist efficient structure learning algorithms for Gaussian DAG’s in
very high dimensions, it is interesting to investigate, which DAG’s with at most k
parents can be represented as k truncated Gaussian R-vine. This was the focus of
Müller and Czado (2018a). Not every DAGwith at most k parents can be represented
as a k truncated Gaussian vine, but Müller and Czado (2018a) show that there exists
a k′ ≥ k such that the DAG with at most k parents can be represented as a k′
truncated Gaussian vine. More precisely, the associated conditional independence
relationships in the DAG can be represented by a k′-truncated R-vine. Since structure
selection for Gaussian DAG’s is much more faster than for arbitrary R-vines, it is
attractable in high dimensions to first estimate a Gaussian DAG model, then find a
representing R-vine tree structure and perform an additional maximum likelihood
estimation of pair copula families and parameters on the chosen R-vine structure.
Here we assume that an appropriate non-Gaussian vine tree structure is determined
by the inclusion of edges which, indicate strong dependence between the (pseudo)
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copula data. These can be detected also by strong pairwise correlation between the
(pseudo) copula data.

The benefit of this approach is, that given some sparse DAG model, i.e., with k
low, a sparse R-vine representation with many independence copulas can be found.
This speeds up the estimation process for R-vines copulas significantly.

Another approach using undirected graphs has been proposed recently by Müller
andCzado (2017). The basic idea is similar to the previous approach, i. e. to first find a
Gaussian graphicalmodel,which can then be represented by anR-vine.However, this
time undirected graphical models described by a sequence of graphs are considered.
The associated sequence of graphs G1, . . . ,GM are selected using the graphical
Lasso of Friedman et al. (2008). This graph sequence induces a partition of the
d dimensional data set into pi different connected components for each element
of the graph sequence Gi , i = 1, . . . , M . Furthermore, each of these graphs is
again a graphical model. The idea is now to fit only an R-vine on each of the pi
connected components separately, and connect them afterwards. This reduces the
complexity of an R-vine in d dimensions to a problem in at most ηi dimensions,
where ηi is the size of the largest connected component in the graph Gi . This also
exploits (conditional) independence similar to the previous approach.Afterwards, the
corresponding pi R-vines are joined into one model. Additionally, the conditional
independencies in the corresponding pi sub-models can also be utilized to make
models more parsimonious.

This approach also allows to improve the accuracy of the sequential greedy search
algorithms introduced in Dißmann et al. (2013). Since many of the admissible edges
for the vine tree sequence are set to the independence copula upfront by the con-
ditional independencies encoded in the graphical models, replacing the value of an
empirical Kendall’s τ as weight by an actually calculated goodness-of-fit measure
such as AIC or BIC for each edge becomes computationally tractable. Recall from
Sect. 8.1 that the use of AIC or BIC for pair copula family selection requires the
determination of AIC or BIC for each allowed family for each nonindependent pair
copula term.

Selecting Vine Copulas in Ultra High Dimensions

The structure selection of Dißmann et al. (2013) presented in Sect. 8.3 has several
drawbacks. At first, greedy search procedures do not insure globally optimal results
in terms of goodness-of-fitmeasures as log-likelihood, AIC or BIC. This is especially
a problem in higher dimensions. It is caused by the sequential bottom-up strategy
employed for R-vine estimation. Since trees of lower order Tj put restrictions on
higher order trees Tj ′ for j ′ > j by the proximity condition, suboptimal choices for
lower order trees can have dramatic impact on higher order trees. Furthermore, it can
also lead to excessive error propagation. Hence, greedy approaches for the structure
selection have to be considered with caution if scaled to higher dimensions, say
d = 500, because the errors propagate through too many tree levels.

An additional aspect in high-dimensional modeling is model parsimony. The total
number of parameters in an R-vine model is d (d − 1) if for each edge a two-
parameter pair copula family is used. This shows that models can become over-
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parametrized very easily in high dimensions. Thus, a significant reduction of the
number of parameters is necessary. There are several ways to achieve this. First,
testing each pair copula to be the independence copula is possible, however com-
putationally inefficient, since each edge needs to be tested. Truncating the R-vine
tree sequence T1, . . . , Td−1 at some specific tree level k as suggested by Brechmann
et al. (2012) demands the upfront definition of a sensible truncation level k < d − 1.
Furthermore, these approaches rely on the principle of finding maximum spanning
trees using empirical Kendall’s τ for pair-wise data as weights, which might not be
computationally feasible in hundreds or thousands of dimensions. Three different
approaches have been introduced recently to handle these drawbacks.

First, Müller and Czado (2018a) link Gaussian DAGs to Gaussian R-vines. Thus,
the DAG is used as a proxy for the R-vine tree structure to obtain a parsimonious
dependence structurewithmany conditional independencies, and thus, independence
pair copulas. Hence, we obtain a vine tree structure estimate, which is less prone
to error propagation compared to Dißmann et al. (2013). This is the case, since
we start with the entire vine tree structure from the beginning and do not need to
sequentially select the vine tree structure. So only the problem of family selection
and parameter estimation for each pair copula term is required. This task is simplified
further by the use of the conditional independence information contained in the DAG
model, which allows us to set many pair copulas to the independence copula upfront.
However, since the overall approach resembles the method of Dißmann et al. (2013),
the computational complexity is similar and hence, dependence models in more than
d = 500 dimensions are difficult to estimate using this approach.

This motivates another method proposed in Müller and Czado (2018b), which
does not use a connection between R-vines and graphical models in the Gaussian
case, but to structural equation models (SEM) (see for example Kaplan 2009). The
special class of SEM’s considered are d ordered linear equations which encode the
dependence in a d dimensional Gaussian distribution. Since these SEM’s can be
parametrized by correlation and partial correlation parameters, they represent under
certain conditions a Gaussian R-vine as established in Brechmann and Joe (2014).
This class of SEM’s is described by linear equations for which parsimonious model
selection in high dimensions can be performed using the Least Absolute Shrinkage
and Selection Operator (Lasso) of Tibshirani (1996). It is shown that zero coeffi-
cients in the corresponding structural equations identify zero partial correlations and
hence, independence pair copulas in a Gaussian R-vine. Thus, the Lasso can be used
to perform model selection for Gaussian R-vines. This procedure takes also into
account the proximity condition, however it is not based on finding spanning trees.
Hence, the implementation is much faster than the previously introduced approaches
and can scale up to about d ∼ 1000 variables. Additionally, it determines a regu-
larization path of the Gaussian R-vine, which allows to consider different levels of
sparsity by only estimating one specific R-vine tree structure and different degrees
of penalization.

The Lasso approach is alreadymaking a large step forward in terms of dimensions.
However, it only reformulates the problem intod structural equationswith atmostd−
1 possible regressors onwhich theLasso is applied to performmodel selection.Going
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to even higher dimensions needs an additional change in the perspective, attained
by a divide-and-conquer approach. Müller and Czado (2017) propose to consider
not the original R-vine structure selection problem in d dimensions, but split it up in
subproblems of dimension dT � d. This means, a specific threshold dimension is
introduced and the data is clustered to consist of subproblems of dimension of at most
dT . For this, again the graphical Lasso of Friedman et al. (2008) is used. Using these
graphical models, we obtain a clustering into the desired subproblems, for which
we can fit R-vines in significantly less time and with less complexity compared
to the original dimension. Afterwards, these sub R-vines can be recombined. This
leads to an overall parsimonious model with stronger within cluster dependence than
the dependence between clusters. Employing this procedure, R-vine copulas can be
estimated in d > 2000 dimensions in reasonable time and with tractable numbers of
parameters.

More recently Nagler et al. (2018) propose a modified BIC criterion tailored to
select sparse vine copulas in high dimensions. This criterion called mBICV can
consistently distinguish between the true and alternative models under less stringent
conditions than the classical BIC. Nagler et al. (2018) use mBICV to select the
truncation level in a truncated vine copula or the threshold in a vine copula where
pair copulas are set to the independence copula, when the associated dependence
strength is less than the threshold. These sparse models are called thresholded vines.
They illustrate their model selection approach for determining the Value at Risk
(VAR) in a large stock portfolio.

11.3 Advances for Special Data Structures

Discrete Variables in Vine Copula Models

In many applications, we not only observe continuous variables, but also discrete
variables. The uniqueness property of the copula is lost and interpretation is challeng-
ing as for example discussed in Genest and Nešlehová (2007). However, the copula
is uniquely defined on the Cartesian product of the possible values of the compo-
nents. This is sufficient for the practitioner and applications in low dimensions can
for example be found in health sciences (Zimmer and Trivedi 2006), transportation
(Spissu et al. 2009), insurance (Krämer et al. 2013) and finance (Koopman et al.
2015).

To determine the associated likelihood for these d dimensional copula models
we need to evaluate rectangle probabilities. The usual inclusion/exclusion formula
requires 2d evaluations of the copula per observation, which is prohibitive in large
dimensions. In contrast, Panagiotelis et al. (2012) show that a vine copula construc-
tion approach is feasible with only four evaluations per observation for each pair
copula term, when all components are discrete. This is much more parsimonious
than the previous approaches. In Stöber et al. (2015), this approach was extended
to include both discrete and continuous components and Schallhorn et al. (2017)
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show how this approach can be applied in a D-vine quantile approach, where either
the response or some of the covariates are discrete. The last paper also contains a
different nonparametric estimation approach by using kernel density estimates. In
particular Nagler (2018) shows that jittering the discrete data as proposed earlier
by Denuit and Lambert (2005) in an appropriate manner to make the data continu-
ous, which does not destroy the asymptotic behavior of the kernel density estimator
applied to the jittered data. This is in contrast to the case of a parametric copula
model as discussed in Nikoloulopoulos (2013).

Vine Decompositions on Directed Acrylic Graphs

As already mentioned, Gaussian directed acyclic graphs (DAG’s) or also called
Bayesian networks (BN) play a prominent role for the selection of vine tree struc-
tures. They also have been extended to allow for non-Gaussian dependence by con-
sidering a similar decomposition of the joint distribution as in the vine distribution.

A prominent result for distributions on DAG’s with global Markovian structure
shows, that the associated joint distribution can be decomposed as the product of the
distribution of each node given it parents (Lauritzen 1996). This factorization was
first used by Hanea et al. (2006) in a Gaussian context and later extended by Bauer
et al. (2012) to the non-Gaussian context to achieve a decomposition involving only
bivariate copulas and univariate conditional distributions as arguments of the bivari-
ate copula. They called their models pair copula Bayesian networks (PCBN). While
the decomposition is quite similar to the vine decomposition, a major difference is,
that not always all required conditional distributions can be easily determined using
only pair copula terms present in the decomposition. Therefore this might induce the
need to determine those using higher dimensional integration based on the general
recursion given in Theorem 4.10.

In a follow-up paper, Bauer and Czado (2016) derive general expressions for the
copula decomposition allowing for non-Gaussian dependence for arbitrary DAG’s. It
also constructs a structure learning algorithm for non-Gaussian DAG’s by extending
the PC algorithm of Spirtes et al. (2000) to test for conditional independence under
non-Gaussian dependence. For this a regular vine is fitted, such that the last tree
Td−1 has as pair copula the copula between the two variables conditional on a set of
variables to be tested. The test for the associated conditional independence is now
facilitated by testing for the independence copula in the last vine tree Td−1.

Another approach to allow for non-Gaussian dependence in a Bayesian network
is to consider nonparametric Bayesian networks (NPBN). These NPBN networks
are discussed and reviewed in Hanea et al. (2015) and a recent extension to NPBN’s
in a dynamic setup using the decomposition of Bauer and Czado (2016) is given in
Kosgodagan (2017).

D-vine Copula Based Quantile Regression

Predicting conditional quantiles, also known as quantile regression, are important
in statistical modeling and especially desired in financial applications. Risk man-
agers use this approach for portfolio optimization, asset pricing and the evaluation of
systemic risk. The standard methodology is linear quantile regression (Koenker and
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Bassett 1978), which can be seen as an extension of ordinary least squares estimation.
It has disadvantages such as the assumption of Gaussianity and the occurrence of
quantile crossings in data applications. When margins are Gaussian, the only depen-
dence structure, which has linear conditional quantiles, is the Gaussian dependence
as shown in Bernard and Czado (2015), thus limiting its applicability to financial
applications.

In Kraus and Czado (2017a) a new semi-parametric quantile regression method
is introduced, which is based on sequentially fitting a conditional likelihood optimal
D-vine copula to given regression data Y with covariates x = (x1, . . . , xp)′. This
results in highly flexible models with easily extractable conditional quantiles. We
note, that the quantiles do not cross for any level by construction.

The main contribution of Kraus and Czado (2017a) is their proposed algo-
rithm, which sequentially selects the set of important covariates u = (u1, . . . , uK )′
on the copula scale using estimated marginal distributions. It estimates a D-vine
copula C(v, u1, . . . , u p) for the copula response V and the random covariates
U := (U1, . . . ,Up)

′ with many desirable features. The resulting conditional distri-
bution of V given U = u is called the vine copula regression model. The algorithm
adds a covariateUk+1 to the current vine copula regression model, if the conditional
likelihood of V given Uc = (u1, . . . , uk)′ and Uk+1 = uk+1 is increased over the
one, which only includes Uc. This means that the algorithm stops adding covariates
to the copula regression model, when the addition of any of the remaining covariates
would not improve the model’s conditional likelihood significantly. This gives an
automatic forward selection of the covariates.

As a result, the chosen models are parsimonious and at the same time flexible in
their choice of required pair copulas. The special nature of D-vine copulas allows
expressing the conditional distribution of a leaf in the first tree T1 given all other vari-
ables as a convolution of associated h functions. Thus, quantiles can be determined
by the appropriate convolution of inverse h functions. This property was already
exploited in the simulation algorithm for D-vine copulas presented in Sect. 6.4. It
further allows for efficient determination of the conditional copula quantile for any
level, if the univariate inverse h functions are available analytically. Otherwise, only
numerical inversion of one-dimensional functions are required. To get the associated
conditional quantiles on the original scale of the response variable Y, an estimate of
the quantile function of Y is required.

In summary, for these models, the estimated conditional quantiles may strongly
deviate from linearity and estimated quantiles do not cross for different levels. Fur-
ther, the classical issues of quantile regression such as dealing with transformations,
interactions and collinearity of covariates are automatically taken care of.

Kraus and Czado (2017a) demonstrate in their simulation study the improved
accuracy and decreased computation time of their approach compared to already
established nonlinear quantile regression methods, such as boosted additive quantile
regression (Fenske et al. 2012) or nonparametric quantile regression (Li et al. 2013).
Finally, they underline the usefulness of their proposed method in an extensive finan-
cial application to international credit default swap data including stress testing and
value at risk prediction.
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After the publication of Kraus and Czado (2017a), further research on the subject
followed. On the theoretical side, Rémillard et al. (2017) investigated the asymptotic
limiting distribution of the conditional quantile estimator. Further, Schallhorn et al.
(2017) extended the methodology to allow also for mixed discrete and continuous
data to be analyzed.On the application side, Fischer et al. (2017) usedD-vine quantile
regression to do an in-depth analysis of the German economy with regards to stress
testing.

The R package vinereg of Nagler and Kraus (2017) implements the D-vine
quantile regression for continuous and mixed discrete/continuous data.

Vine Factor Copulas

Factor analysis is a widely used technique for sparse modeling in statistics (see
for example Comrey and Lee 2013). The variability of variables is described by
underlying unobserved latent factors. Often it is assumed, that the variables follow
a normal distribution. Krupskii and Joe (2013) propose a factor structure for vine
copulas. This model requires, that variables are independent given latent factors.
More precisely, we consider d uniform (0, 1) distributed variables U1, . . .Ud and p
i.i.d. uniform (0, 1) distributed latent factors W1, . . .Wp. In the factor copula model
with p latent factors we assume, that the conditional distribution of

Ui and Uj given W1, . . .Wp are independent for i 	= j, i, j ∈ {1, . . . , d}.

This implies that the joint density c of U1, . . .Ud , can be written as

c(u1, . . . ud) =
∫

[0,1]p

d
∏

j=1

cU j |W1,...,Wp (u j |w1, . . . , wp)dw1 · · · · dwp.

As we see, we need to model the dependence between one of the variables Uj and
the factors W1, . . . ,Wp. If p is small this lead to a significant reduction in model
complexity.

Considering the above model with one factor, i.e p = 1, we only need to model
d bivariate copulas to model the dependence. In contrast a full R-vine in d dimen-
sions requires d(d−1)

2 bivariate copulas. Krupskii and Joe (2013) show how model
parameters can be estimated using maximum likelihood estimation. Furthermore,
they show how certain properties, like tail dependence, of the conditional distri-
butions CU1|W1,...,Wp , . . . ,CUd |W1,...,Wp , for p = 1, 2, influence the distribution of
U1, . . .Ud .

Schamberger et al. (2017) provide an alternative to maximum likelihood estima-
tion. They analyze a one-factor vine copula model in a Bayesian framework and
show how parameters are estimated using Markov Chain Monte Carlo (MCMC).
An advantage of this method is, that the posterior distribution of the latent factors
W1, . . .Wp is estimated in contrast to the frequentist approach proposed by Krupskii
and Joe (2013), where integration over the factor variables is used. The estimated
posterior distribution can yield useful information about the latent factors. Scham-
berger et al. (2017) also provide an application where factor copulas are used to
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analyze portfolio returns. As already mentioned Kreuzer and Czado (2018) use a
different MCMC algorithm based on Hamiltonian Monte Carlo for the Bayesian
analysis of one-factor vine copula model allowing for stochastic volatility models
for the margins. A joint estimation approach of marginal and copula parameters was
taken and the forecasting performance of a portfolio evaluated.

Since vine factor copulas is an attractive model class further extensions have been
studied.

Nikoloulopoulos and Joe (2015) show, how the vine factor copula model can be
applied to item response data, i.e. the variables considered are on an ordinal scale
and not continuous as in most applications. This allows them to analyze data from
surveys.

In the factor copula model each latent factor is linked to each of the variables
U1, . . .Ud . Krupskii and Joe (2015a) provide an extension of this, where the vari-
ables are split into different groups and latent factors are linked to certain groups.
They demonstrate how this model can be applied to estimate the value at risk and
the conditional tail expectation for financial returns. The groups in their model cor-
respond to different industry sectors. Recently, the factor vine copula approach has
been extended to allow for spatial structures in Krupskii et al. (2018).

Somewhat different approaches to combine factor structures with copulas was
followed by Oh and Patton (2017) and Ivanov et al. (2017).

Lee and Joe (2018) provide multivariate extreme value models with factor struc-
ture. They derive the tail dependence functions of the vine factor copula model and
use them to construct new models. In general, extreme value theory is not easily
established for vine copula models. A first illustration in three dimensions is given
in Killiches and Czado (2015).

11.4 Applications of Vine Copulas in Financial Econometrics

The dominant application area of copula-based statistical models is in the area of
finance. Here the need to forecast the value of risk for very high levels for a risky
asset, which is dependent on other assets, is of primary interest. Somodelsmust allow
for tail dependence such as vines (Joe et al. 2010). The availability of daily data for a
multitude of financial assets fosters the application of copula models. Thus also vine
copula models play an important role in this context. A first review of vine copula
based applications to financial data is given in Aas (2016). It includes references
for applications to market risk, capital asset pricing, credit risk, operational risk,
liquidity risk, systemic risk, portfolio optimization, option pricing. In the following,
we concentrate on two areas, which are of current research interest for financial data.

Vine Copulas with Time-Varying Dependence Structures

The availability of daily data also allows to investigate the dependency over time.
Simple approaches include rolling window approaches, where static dependence is
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assumed within a time window.While this gives first insights, whether a dependence
structure is changing over time, more sophisticated models are needed.

A first approach to allow for changing dependence structures is to assume a regime
switching approach. In the context of the vine copulas this was first proposed and
investigated by Chollete et al. (2009) using C-vines, while Stöber and Czado (2014)
used general R-vines. Recent applications are Fink et al. (2017) and Gurgul and
Machno (2016). In all of these approaches, the regime switching only takes place on
the copula scale. The case where margins are also switching is considered in Stöber
(2013), however, the models require many additional parameters.

A more general approach is to allow the copula parameter to vary with time.
The time variation can be induced by covariates such as lagged observed responses
or other time-varying quantities or allowing for a stochastic time dynamic. The
first class are examples of observation driven models and are surveyed in Manner
and Reznikova (2012), which are much simpler to estimate. Another more recent
semi-parametric application observation driven model is given in Vatter and Chavez-
Demoulin (2015). However, the interpretation of parameter estimates in observation
driven models is limited to the data set at hand, while the models with a stochastic
time dynamic allow for data independent interpretation.

Dynamic parameter-driven models were studied in a bivariate copula context for
example in Almeida and Czado (2012) using a Bayesian approach for estimation,
while Hafner and Manner (2012) used an efficient importance sample approach for
estimation. The extension of this approach to higher dimensional D-vine copulas
was studied in Almeida et al. (2016). This approach was also used for modeling the
joint distribution of electricity prices in Manner et al. (2019).

Vines for Modeling Time-Series of Realized Volatility Matrices

Given the increasing availability of high-frequency data volatility and covariance,
modeling and forecasting have become of particular interest in financial economet-
rics. Reliablemodels, which are flexible enough, to account both for the continuously
tightening interactions and interconnectedness between financialmarkets are needed.

The sum of squared intraday returns constitutes a consistent estimate of ex-post
realized volatility and realized covariances. This makes naturally latent variables
observable and measurable (see for example Doléans-Dade and Meyer 1970 and
Jacod 1994). Thus Barndorff-Nielsen and Shephard (2004) show that standard tech-
niques can be used for time-series modeling of realized covariance matrices. By
doing so, algebraic restrictions such as positive semi-definiteness and symmetry of
the forecasts have to be satisfied.

One of the most frequent modeling approaches to satisfy the restrictions is based
on data transformation. For example, Bauer and Vorkink (2011) use the matrix loga-
rithm function or Andersen et al. (2003) utilize the Cholesky decomposition applied
to the time-series of realized covariance matrices. Chiriac and Voev (2011) model
the so-obtained series of Cholesky elements using a vector ARFIMA process. In
contrast, Brechmann et al. (2018) develop regular vine copula models to further
explore the specific dependencies among the Cholesky series induced by this non-
linear data transformation. They are able to improve the Cholesky decomposition
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based model approach. A study on value at risk forecasting gives evidence, that
the prediction model incorporating regular vine models performs best due to more
accurate forecasts.

However, regular vines do not only prove themselves useful as an ingredient
within the Cholesky decomposition based model approach, but allow for an alter-
native and novel data transformation themselves. Using partial correlation vines a
joint prediction model of realized variances and realized correlations is proposed.
Starting point are the univariate time-series of realized partial correlations, which
can be obtained via recursive computation given in Theorem 2.14. By choosing a
regular vine structure V on d elements, a subset of d(d − 1)/2 pairwise standard
correlations and partial correlations is selected. Here, for an edge e ∈ V the par-
tial correlation ρi, j;De coincides with the conditional constraint (i, j |De) associated
with edge e (i, j ∈ {1, . . . , d}, i 	= j , De ⊂ {1, . . . , d} \ {i, j}). Recall that Bedford
and Cooke (2002) show, that there is a bijection between the (partial) correlations
specified by any regular vine structure and the set of symmetric and positive definite
correlation matrices. Also, any partial correlation vine specifies algebraically inde-
pendent (partial) correlations, i.e., positive definiteness is automatically guaranteed.
To the series of realized (partial) correlations specified by the selected regular vine
structure elaborate time-series models such as heterogeneous autoregressive (HAR)
processes can be applied to account for, e.g., long-memory behavior and multifractal
scaling. Extensions by considering GARCH augmentations are discussed in Corsi
et al. (2008). They allow to model non-Gaussianity and volatility clustering in the
marginal time-series. Skewed error distributions for the residuals capture possible
high skewness and kurtosis and have been considered in Bai et al. (2003) and Fer-
nández and Steel (1998). Regular vine structure selection on the copula data arising
from the marginal time-series modeling can be applied using the top-down Dißmann
algorithm of Sect. 8.3. In contrast to the standard Dißmann algorithm the considered
edge weights exclusively rely on historical information contained in the (partial)
correlation time-series and thus allow for a flexible and dynamic parameterization
over time.

Barthel et al. (2018) introduce the partial correlation vine approach in detail and
explore its applicability based on data from the NYSE TAQ database compared to
Cholesky decomposition based benchmark models.

11.5 Applications of Vine Copulas in the Life Sciences

Vine copulas have also found applications in the life sciences. For example,
Nikoloulopoulos (2017) evaluates the diagnostic test accuracy using a trivariate vine
model for the number of true positives (diseased person correctly diagnosed), true
negatives (healthy person correctly diagnosed) and diseased persons, while Diao and
Cook (2014) consider a multiple multistate model with right censoring. It reduces
to a four-dimensional D-vine in the case, where there are two progressive states for
each of two components.
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Aswe alreadymentioned vines can also handle discrete structures, which do often
occur in the life science. A first application was the modeling of the dependence
structure among binary indicators of chronic conditions and the body mass index in
the elderly is given in Stöber et al. (2015). Schmidl et al. (2013) show that a MCMC
based Bayesian analysis of biological dynamical systems can profit from using a
vine dependence model to speed up the convergence to the posterior distribution.

We now outline advances vine based models can make to the analysis of multi-
variate survival analysis and to longitudinal data analysis.

Vine Copulas for Modeling Dependence in Right-Censored Event Time Data

In biomedical, engineering or actuarial studies primary focus lies on the time until
a predefined event occurs. However, due to a limited study horizon or due to early
drop-out the event of interest might not be recorded for all observed individuals,
but only a so-called right-censoring time might be registered. The resulting lack
of information has to be carefully taken into account by inference tools applied to
right-censored data in order to arrive at a sound statistical analysis.

Often, multivariate event time data are generated from clusters of equal size and
hence exhibit possibly complex association patterns, which require elaborate depen-
dence models. Barthel (2015) and Barthel et al. (2018) extend the flexible class of
vine copula models to right-censored event time data. To trivariate and quadruple
data they apply a two-stage estimation approach. In the first step they consider both
parametric and nonparametric approaches for modeling the marginal survival func-
tions. In the second step dependence of the associated pseudo data are modeled
parametrically using maximum likelihood. A likelihood expression in terms of vine
copula components adapted to the presence of right censoring is established. It is
shown that due to the construction principle of vine copulas and right-censoring
single and double integrals shop up requiring numerical integration for likelihood
evaluation. A sequential estimation approach is proposed and implemented to facili-
tate the computationally challenging optimization problem. A detailed investigation
of the mastitis data of Laevens et al. (1997), where primiparous cows (the clusters)
are observed for the time to mastitis infection in the four udder quarters, stresses the
need for elaborate copula models to reliably capture the inherent dependence.

Alternatively, an event might be recurrent for each sample unit. For example, for
children in a medical study a series of subsequent asthma attacks might be recorded.
Typically, the times between subsequent asthma attacks, the so-called gap times, are
dependent on each child. Further, some children are more prone to asthma attacks
than others such that different number of gap times are recorded. Another challenge
arises from the recurrent nature of the data, which results in gap times subject to
induced dependent right censoring. Barthel et al. (2017) investigate the class of D-
vine copula models, which can easily handle the unbalanced data setting and which
naturally capture the serial dependence inherent in recurrent event time data.

Modeling Longitudinal Data with D-Vine Copulas

Analyses of longitudinal studies go back the nineteenth century, where astronomers
like Airy (1861) investigated repeated measurements of celestial phenomena. Today
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there exists extensive literature on statistical concepts and applications of longitudinal
data. For a review see Fitzmaurice et al. (2008) or Diggle and Donnelly (1989).

Linear mixed models extend the classical linear models by combining the fixed
effects with individual-specific random effects. Diggle (2002) and Verbeke and
Molenberghs (2009) provide thorough introductions to the class of linear mixed
models. These models are extremely popular, since they can easily be designed,
estimated, interpreted and applied. However, independently from the actual specifi-
cation, the resulting model remains Gaussian by definition. This implies in particular
that the underlying dependence structure is always Gaussian.

As dependence modeling became more and more popular in all areas of applica-
tions, copulas were also applied for modeling repeated measurement data. Meester
and MacKay (1994) were the first one to create a model for bivariate clustered cat-
egorical data. Other references are for example Lambert and Vandenhende (2002),
Shen and Weissfeld (2006) and Sun et al. (2008).

Since D-vine copulas directly imply a serial ordering, they are particularly suited
for modeling temporal dependence. Further, they are flexible and sub-models which
are needed for conditional prediction are analytically available, making these models
very attractive for application. Therefore, authors like Smith et al. (2010) use them to
model (univariate) longitudinal data. In Smith (2015) and Nai Ruscone and Osmetti
(2017) multivariate longitudinal data are considered. Semicontinuous longitudinal
insurance claims are analyzed in Shi and Yang (2018) with the help of a mixed D-
vine copula. However, all the above references only work in the so-called balanced
setting, where all individuals must have the same number of measurements. Shi et al.
(2016) use a Gaussian copula in the unbalanced setting.

Killiches and Czado (2018) present an approach, that uses a D-vine copula based
model without restrictions on the margins for modeling longitudinal data in the
unbalanced setting. Themodel can be used for understanding the association between
the measurements of one individual. Further, conditional prediction of future events
is possible. For this purpose the authors use the fact that the necessary conditional
quantiles are explicitly given. Formodel selection an adjusted version of theBayesian
information criterion (BIC) is developed in the unbalanced setting. The model is
compared to linear mixed models and found to be an extension of a large class of
LMMs. Further, a sequential maximum likelihood based estimation method for the
D-vine copula is proposed, which resembles the approach of Dißmann et al. (2013)
for complete data. A simulation study shows good performance of the estimator in
small samples. In an application tomedical data both linearmixedmodels andD-vine
copula based models are fitted. The quality of the fitted models is compared based
on the derived model selection criteria and the performance of conditional quantile
prediction. Barthel et al. (2017) extend the concept of Killiches and Czado (2018)
to right-censored recurrent event data.
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11.6 Application of Vine Copulas in Insurance

Applications of copulas in insurance started with the bivariate modeling of the num-
ber of claims and the average claim size to assess the total loss (Czado et al. 2012 and
Krämer et al. 2013). In Erhardt and Czado (2012) vine copulas were used in model-
ing different types of health insurance claims over several time periods. Special care
had to be taken to allow for zero inflation.

Shi and Yang (2018) use a pair copula construction framework for modeling
semicontinuous longitudinal claims. In the proposed framework, a two-component
mixture regression is employed to accommodate the zero inflation and thick tails
in the claim distribution. The temporal dependence among repeated observations is
modeled using a sequence of bivariate conditional copulas based on a D-vine.

Timmer et al. (2018) study the asset allocation decisionof a life insurance company
using a vine copula approach.

11.7 Application of Vine Copulas in the Earth Sciences

Spatial data is characterized by the distance between two observed locations. In
Gräler and Pebesma (2011) pairwise distances are arranged in a set of distance
classes. The associated spatial data within one class is used to fit a bivariate copula.
These class dependent copulas are joined by convex interpolation to form a bivariate
copula for arbitrary pairwise distances. To predict the median value at an unobserved
location s0 Gräler and Pebesma (2011) uses the observed values of d nearest neigh-
bors x1, . . . , xd with locations s1, . . . , sd to construct a d + 1 dimensional C-vine
truncated after the first tree, where the root in the first tree node is given by the
forecast X0 at the unobserved location s0. The pair copula between the neighbor X j

and X0 is chosen as the fitted distance based copula with distance d j0 between the
locations s j and s0. Now the conditional distribution of X0 given the observed values
x1, . . . , xd is determined by d dimensional integration and using a fitted marginal
distribution based on all observed data. This local neighborhood model is estimated
using a composite likelihood approach and applied to model the spatial distribution
of heavy metal concentration at the Meuse river. In a follow-up paper Gräler (2014)
applied this local approach to fit a non-Gaussian skewed spatial model to an emer-
gency scenario data set from the Spatial Interpolation Comparison in 2014, where
it performed very well in the competition. Again a composite likelihood inference
approach was followed using four-dimensional C-vines in Erhardt et al. (2015b). For
prediction, a different conditional distribution was utilized.

A completely different approach to model the spatial dependency was used in
Erhardt et al. (2015a). Here the dependency was captured through distance-based
regression effects on the parameter of regular vines. This allows for a parsimonious
model and was successfully applied to model German temperature data.

In hydrology often spatial pattern also play a major role. For the simulation of
precipitation dependence pattern Hobæk Haff et al. (2015) used the pair copula
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construction, while Bevacqua et al. (2017) used vines to construct multivariate sta-
tistical models for compound events in floods. Time-series of ocean wave heights
and mean zero-crossing periods were studied in Jäger and Nápoles (2017). For this
they modified the approach of Brechmann and Czado (2015). This approach allows
to incorporate cross serial dependence between time-series. For multi site stream
flow simulation Pereira et al. (2016) followed the approach of Erhardt et al. (2015a)
to model the spatial dependence among the sites. In a follow up paper (Pereira et al.
2017) they allowed the inclusion of periodic effects. Vineswere also used to construct
multivariate drought indices (Erhardt and Czado 2018).

In weather forecasting often ensembles are generated from numerical weather
prediction (NWP) models, consisting of a set of differential equations describing the
dynamics of the atmosphere. It is common to use statistical methods to post process
these ensembles. Möller et al. (2018) a new post-processing method based on D-
vine quantile regression is developed and shown to have superior performance over
benchmarks for longer forecast horizons.

11.8 Application of Vine Copulas in Engineering

With the availability of simulated or real data, dependence models are also applied
in engineering. For example Schepsmeier and Czado (2016) considered data from
crash simulation experiments. Vine models were used to characterize the depen-
dence. Another example is Höhndorf et al. (2017), who investigated the relationship
among variables arising from operational flight data using marginal regression mod-
els together with a vine copula.

Vine copula based models have also been successfully used in reliability analysis
for mechanical structures. Jiang et al. (2015) use a vine copula to formulate a relia-
bility model to quantify the uncertainties in loadings, material properties, structure
sizes etc. for mechanical structure. Here, dependencies among derived stochastic
variables are modeled, which are visible in real data sets and thus allowing for more
realistic reliability models. Hu andMahadevan (2017) capture additional time effects
in a reliability analysis.

11.9 Software for Vine Copula Modeling

Freely available software played a major role in the success of vine copula models.
The algorithms for inference and simulation are quite complex and their implemen-
tation requires effort and expertise. Applied researchers were relieved of that burden
early on by the R package CDVine of Brechmann and Czado (2013), first released
in May 2011. Reflecting the (then) current state of research, the package was limited
to C- and D-vines.
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Today the most widely used package is VineCopula provided by Schepsmeier
et al. (2018), which is the successor of CDVine. It allows for arbitrary vine structures
and brings with it additional copula families and a lot of extra functionality for
modeling dependence with bivariate or vine copulas. The package’s functionality
covers most of the material in this book, including

• statistical functions (densities, distributions, simulation),
• inference algorithms (parameter estimation, model selection),
• tools for exploratory data analysis and visualization.

The functions used in this book are summarized in Table11.1.
A recent alternative is thevinecopulibproject (www.vinecopulib.org). Its core

is an efficient C++ implementation of the most important features of VineCopula,
which is especially useful for high-dimensional applications. In addition, it allows
to mix parametric with nonparametric pair copulas and provides interfaces to both
R (Nagler and Vatter 2017) and Python (Arabas et al. 2017), respectively. Beyond
that, there is a MATLAB toolbox for vine copulas with an associated C++ library
(Kurz 2015).

There are also a few more specialized R packages related to vine copula models:

• CDVineCopulaConditional (Bevacqua 2017) provides conditional sam-
pling algorithms for C- and D-vines,

• gamCopula (Vatter and Nagler 2017) allows the parameters of vine copulas to
vary flexibly with covariates,

• kdevine (Nagler 2017b), penRvine (Schellhase 2017b), and pencopula
Cond (Schellhase 2017a) for nonparametric estimation of vine copulas,

• pacotest (Kurz 2017) implements a test for the simplifying assumption,
• vinereg (Nagler and Kraus 2017) implements the D-vine quantile regression of
Kraus and Czado (2017a) and Schallhorn et al. (2017).

www.vinecopulib.org
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