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Abstract In this paper we optimize mean reverting portfolios subject to cardinal-
ity constraints. First, the parameters of the corresponding Ornstein–Uhlenbeck (OU)
process are estimated by auto-regressiveHiddenMarkovModels (AR-HMM), in order
to capture the underlying characteristics of the financial time series. Portfolio opti-
mization is then performed by maximizing the return achieved with a predefined
probability instead of optimizing the predictability parameter, which provides more
profitable portfolios. The selection of the optimal portfolio according to the goal func-
tion is carried out by stochastic search algorithms. The presented solutions satisfy
the cardinality constraint in terms of providing a sparse portfolios which minimize
the transaction costs (and, as a result, maximize the interpretability of the results). In
order to use the method for high frequency trading (HFT) we utilize a massively paral-
lel GPGPU architecture. Both the portfolio optimization and the model identification
algorithms are successfully tailored to be running onGPGPU tomeet the challenges of
efficient software implementation and fast execution time. The performance of the new
method has been extensively tested both on historical daily and intraday FOREX data
and on artificially generated data series. The results demonstrate that a good average
return can be achieved by the proposed trading algorithm in realistic scenarios. The
speed profiling has proven that GPGPU is capable of HFT, achieving high-throughput
real-time performance.
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1 Introduction

Portfolio optimization was first investigated by Markowitz (1952) in the context of
diversification to minimize the associated risk and maximize predictability. Mean
reversion is a good indicator of predictability, as a result, identifying mean reverting
portfolios has become a key research area (D’Aspremont 2011; Fogarasi and Lev-
endovszky 2013; Sipos and Levendovszky 2013). However, portfolio optimization
becomes very complex when introducing cardinality constraints in order to minimize
the transaction costs. In this case, optimizing sparse portfolios is proven to be NP hard
(Natarajan 1995).

The stochastic nature of a mean reverting portfolio is described by the so-called
Ornstein–Uhlenbeck process (the solution of the OU stochastic differential equation).
Since, this model is rather limited, we need an extension of the stochastic modeling
of portfolio values by using the Auto-Regressive Hidden Markov Model (AR-HMM).
AR-HMMs are widely used for predictions (Durbin 1998; Hassan and Nath 2005;
Jurafsky and Martin 2006; Mamon 2007), furthermore, a multi-state AR-HMM can
be considered as a generalization of the traditional OU modeling (Sipos and Leven-
dovszky 2015), which enables us to perform prediction based algorithmic trading on
general financial time series.

So far, optimization of mean reverting portfolios has been performed subject to
maximizing the so-called predictability parameter. In this paper we introduce a new
objective function, namely, we maximize the return which can be achieved with a
predefined probability. This new objective function gives rise to more profitable port-
folios.

One of the major changes in the computer software industry made towards high
performance simulations has been the move from serial programming to parallel pro-
gramming. Driven by the insatiable market demand for real-time, high-definition 3D
graphics, the Graphics Processing Unit (GPU) has evolved into a highly parallel,
multithreaded computational engine (NVIDIA 2014). The GPU is primarily designed
for high-speed graphics, which are inherently parallel. The General Purpose GPU
(GPGPU) model let the programmer to use this huge computational power for any
kind of problems without need for the graphics primitives (Cook 2013).

Using the GPU shows growing interest in the field of computational finance also
(Pagès andWilbertz 2011). There are several applications that have clearly proven the
success of highly parallel programming, such as option pricing, risk calculation and
time series prediction. In this paper, we will use this computational power for time
series modeling, identification and portfolio optimization.

As a result, the main contribution of the paper are given as follows: (i) we max-
imize the return achieved with a predefined probability based on the corresponding
p.d.f.-s instead of optimizing the predictability parameter (which provides us with a
higher profit); (ii) we use the AR-HMM approach to model the underlying time series,
which is more general than the OU modeling; (iii) the sparse portfolio optimization

123



Parallel Optimization of Sparse Portfolios with AR-HMMs

is carried out by stochastic search yielding a global and valid optimum; (iv) portfolio
optimization and model identification algorithms are tailored to parallel architectures
such as GPGPU which paves the way towards a more sophisticated HFT.

Finally, trading is perceived as a “walk” in the “buy/sell” action space, which is
then tested numerically on randomly generated time series and FOREX rates. The
results exhibit good average returns.

The structure of the paper is as follows:

• In Sect. 2, themodel and the notations are introduced and the concept of AR-HMM
modeling is briefly summarized together with its connection to the mean reverting
processes;

• In Sect. 3, we optimize the portfolio according to the new objective function;
• In Sect. 4, the computational model is mapped out;
• In Sect. 5, the parallel implementation details are described;
• In Sect. 6, a detailed performance analysis is given based on historical data;
• In Sect. 7, some conclusions are drawn.

2 Notations and Stochastic Modeling

In this section we describe the model and the concept of mean reverting portfolios,
and its generalization (D’Aspremont 2011; Fogarasi and Levendovszky 2013; Sipos
and Levendovszky 2015), the Auto-Regressive Hidden Markov Models (AR-HMM).

The time series describing the prices of assets is denoted by sT
t = (s1,t , . . . , sn,t )

where si,t is the price of asset i at time instant t . The portfolio vector is denoted by
xT = (x1, . . . , xn) where xi gives the number of possessed quantity from asset i . The
value of the portfolio at time t is denoted by p(t) and defined as

p(t) = xT st =
n∑

i=1

xi si,t . (2.1)

Our objective is to find the optimal portfolio xopt which maximizes a prede-
fined objective function, such as minimum return achieved with a given probability
(described in Sect. 3), subject to cardinality constraint which specifies that the number
of non-zero components in xopt by being l. This constraint stems from the need for
minimizing the transaction cost. A sparse portfolio also implies higher interpretability
(D’Aspremont 2011; Becker et al. 2013).

Imposing a sparsity constraint is a common approach in the literature, for example
in D’Aspremont (2011), Chang et al. (2000), Fieldsend et al. (2004) or Shaw et al.
(2008). This constraint is further motivated by taking into account realistic market
scenarios, e.g. if round lots are present (the smallest amount of assets that can be
purchased) it would not be feasible to hold dense portfolios consisting only a small
number of assets. Another example is, when trading is done on an order book, some
of the assets might not be available to buy at the same time or at required quantity.

In the literature, the optimal portfolio is sought under the assumption that the portfo-
lio value p(t) exhibits mean reverting properties and follows an Ornstein–Uhlenbeck
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(OU) process (Ornstein and Uhlenbeck 1930). This is a frequent assumption in trading
(Fama and French 1988; Manzan 2007; Ornstein and Uhlenbeck 1930; Poterba and
Summers 1988)which follows from theVAR(1) nature of the underlying asset process.
The OU process is characterized by the following stochastic differential equation

dp(t) = ϑ (μ − p(t)) dt + σdW (t), (2.2)

where W (t) is a Wiener process and ϑ > 0 (mean reversion coefficient),μ (long-term
mean) and σ > 0 (volatility) are constants. One can obtain its solution by using the
Itō-Doeblin formula (Ito 1944).

AR-HMMs, as a type of mixture model, have enough degree of freedom (number
of hidden states) and thus, are capable of modeling a large class of distributions. By
AR-HMMone can capture both the long and short range dependencies, as it combines
a Markov chain on the hidden variables, and statistical dependencies on the observed
variables (Berchtold 1999). An HMM is a statistical model which is an extension of
Markov chains (Baum and Petrie 1966). Such models are widely used in econometrics
(Hamilton 1990), especially for predictions of time series (Fraser 2008; Sipos and
Levendovszky 2013). Thus, due to the general capability of AR-HMM in capturing
the stochastic characteristics of a wider range of random processes, we use AR-HMM
modeling of the portfolio price series. In this way, the method proposed in this paper
can also be applied even when the underlying VAR(1) assumption (necessary for OU
modeling) does not hold.

In AR-HMM modeling, the current state is not directly visible to the observer,
but each state emits an observable output quantity denoted by X = {p1, p2, ..., pT }.
Unlike the standard HMM assumption, in the case of AR-HMMs the emissions are
conditionally not independent given the hidden state Q = {q1, q2, ..., qT } (Murphy
2012). In our approach, the observable output was treated as a continuous value,
described by a Gaussian probability density function. Then the probability of emitting
a specific output is determined by the conditional probability

P (p (t) |p (t − 1) , qt = j,Θ) = N
(

p (t)
∣∣ϕ j p (t − 1) + μ j , σ j

)
(2.3)

In other words, the observation depends on the hidden state, and on the previous obser-
vation through an additive autoregressive component. (Note that the μ and σ symbols
were already introduced in (2.2), however, in this case they are vector quantities.)
The transition probabilities of the underlying Markov chain, describing the jumping
probabilities from one state to another is given by the transition probability matrix
Ai j = P

(
q(t + 1) = qi

∣∣q(t) = q j
)
, while π denotes the initial distribution vector.

The complete model then described by

Θ = {π , A,ϕ,μ, σ } (2.4)

The generality ofAR-HMMstems form the fact that we can consider a single stateAR-
HMM being equivalent as an OU process (Sipos and Levendovszky 2015), however,
this can be either a mean reverting or a mean averting process, and a single state
AR-HMM state can represent Brownian Motion (BM) with a possible linear drift as
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well. Furthermore, having multiple states brings more flexibility into modeling the
price distributions, and this model can also capture if the process is driven by different
stochastic rules over different intervals in time [often called as regimes (Hamilton and
Susmel 1994)].

3 Portfolio Optimization

In this section we discuss the optimal portfolio selection subject to a new objective
function. First, let us define the lower bound for the future price of a given portfolio
achieved with a predefined probability η, i.e.:

ω (t) : P (p (t) ≥ ω (t)) = P
(

xT st ≥ ω (t)
)

= η (3.1)

As a result, ω (t) is determined by the complementary cumulative probability dis-
tribution of the portfolio value, as a random variable. Then the objective function
maximizes the return based on the lower bound as follows (see also Fig. 1):

xopt = argmax
x

Ψ (x), card(x) ≤ l, (3.2)

where
Ψ (x) = max

0<t
ω (t) − p (0)

under the constraint that E (p (t)) − p (0) > 0.
(3.3)

Taking into account the cardinality constraint as well, portfolio optimization can
be reduced to a constrained optimization problem. However, attention should be given
when the future portfolio price distribution is asymmetric. Especially, in the case when
its expected value implies loss on the portfolio, while at the same time the median
(η = 0.5) would falsely prompt us to invest into this specific portfolio. In order to
avoid such situations, a constraint is formed accordingly.

t

0p

p t

t

return with
given certainty

Fig. 1 The objective function maximizes the return based on the tail distribution
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This objective function may prove to be much more beneficial for the portfolio
holder than just simply optimizing the predictability, however, its solution does not
lend itself to analytical tractability [(as opposed to the maximal predictability which
leads to a generalized eigenvalue problem (D’Aspremont 2011)]. Thus, to come to grip
with maximizing ω(t) for a given portfolio, we identify AR-HMMmodel parameters
for an observed process, and then, as a novel approach, we calculate the prediction
based complementary cumulative distribution function (CCDF).

To obtain the CCDF of the future values of p(t), we have usedMonte Carlomethod.
K simulations were run on the identified AR-HMM starting from the observed initial
value of p (0) = xT s0 in the 0 < t ≤ Tmax interval. Section 4.2 describes methods
for estimatingΘ = {π , A,ϕ,μ, σ } and γ 0. Parameter η allows the investors to adjust
their willingness to take risk. One can see that η < 0.5 results in a braver strategy,
while η > 0.5 yields a rather cautious one.

One can include the bid-ask spread into this model in a straightforward manner,
i.e. the portfolio prices, on which the AR-HMM is fit, should then be calculated as
p(t) = xT

(long)s
bid
t + xT

(short)s
ask
t , while the current price in the objective function

as p (0) = xT
(long)s

ask
0 + xT

(short)s
bid
0 , where x (long)

i =
{

xi , i f xi > 0
0, i f xi ≤ 0

and similarly

x (short)
i =

{
xi , i f xi < 0
0, i f xi ≥ 0

. Negative values in the portfolio vector means short selling

the assets.

4 Computational Approach to Modeling and Optimization

The AR-HMM model parameter identification and the evaluation of the objective
function (3.3) is carried out driven by simulated annealing (see 4.1), which helps
us select an optimal portfolio. Then, the trading signal for taking the appropriate
trading actions is made on the basis of the identified portfolio and the cost function.
Our computational framework is shown by the following block diagram (Fig. 2) and
detailed as follows:

• Generate a portfolio vector under the constraint driven by Simulated Annealing
(SA);

Fig. 2 Computational approach
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• Fit an AR-HMM to the time series of the selected portfolio by using the Baum–
Welch learning algorithm described in Sect. 4.2;

• Evaluate the objective function by predicting the future asset prices according to
the identified model given the portfolio (see Sect. 3);

• Continue the simulated annealing process until the optimal portfolio is obtained
(as detailed in Sect. 4.1) according to the objective function;

• Forma trading signal based on the price behavior of the optimal portfolio (Sect. 4.3)
to decide on which trading action is to be launched;

Finally, one can carry out a performance analysis by testing and evaluating various
numerical indicators for the sake of comparing the profitability of the differentmethods
(Sect. 6 contains further details).

4.1 Simulated Annealing for Portfolio Optimization

This section focuses on the portfolio optimization. In the absence of proper analytical
solutions for the constrained optimization problem posed in (3.2), we use simulated
annealing to obtain good quality (as close to the global optimum as possible) heuristic
solutions (Fogarasi and Levendovszky 2013).

Simulated annealing (SA) is a stochastic search method for finding the global
optimum in a large search space as described in many related papers (Fogarasi and
Levendovszky 2013; Janaki et al. 1996; Kirkpatrick et al. 1983; Sipos and Leven-
dovszky 2013). In our case the negative energy function J (x) is equivalent with the
objective function of ω(t) defined as follows:

− J (x) = Ψ (x) = max
0<t

ω (t) − p (0) (4.1)

We perform parallel and independent simulated annealing in a given number of
randomly selected subspaces. Each subspace is l dimensional, to fulfill the cardinality
constraint card(x) ≤ l. More precisely, we used closed orthants in Rl , constraining
each coordinate of the subspace to be nonnegative or nonpositive. This is motivated
by our investigation which has shown that SA converges faster and provide more
reliable results in these regions. However, an exhaustive search in every subspace is
computationally not feasible in case of a larger number of assets. The neighbor function
on each iteration generates a new portfolio on the L1-ball, the distance of which from
the previous one depends on the current temperature T . The algorithm automatically
ensures that the available cash is not exceeded either with the long positions, or the
short positions. In each of the selected subspaces let x be an arbitrary initialization
vector, and then by calling a random number generation a new vector x′ is generated
randomly subject to the abovementioned neighbor function. We automatically, accept
the new vector if J

(
x′) < J (x), or if J

(
x′) ≥ J (x) then due to random acceptance

with e− J(x′)−J (x)

T probability. The sampling is then continued while decreasing the T
until zero. Finally, the last state vectors obtained in the corresponding subspaces are
compared, and the one minimizing J (x) is now the identified optimal sparse portfolio
vector.
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4.2 HMM Parameter Optimization

The estimation of the model parameters (learning) is a key aspect when we are using
HMMs for prediction. First, we need to sample the portfolio price through a sliding
window of length T:

X = {pi−T +1, ..., pi } (4.2)

During training, the likelihood (or in practice, due to the small order of magnitude of
such probabilities, the log-likelihood) of the model is maximized based on the given
observations (Rabiner and Juang 1986):

Θopt = argmax
Θ

P (X|Θ) (4.3)

The Baum–Welch expectation maximization (EM) algorithm (Baum 1970) is a mech-
anism to iteratively update the model (2.4) starting from an arbitrary initial value and
iterating until the likelihood of the model converges to a certain value. Since this is
an iterative method, which can use the forward-backward algorithm, implemented in
an efficient way by dynamic programming (Rabiner 1989), this algorithm is relatively
fast. On the other hand, it may get stuck in one of the local minima. Compared to the
standard HMM, in the case of an AR-HMM, the forward-backward algorithm remains
unchanged, while in the EM algorithm only a slight modification needed (Dey et al.
1994). We can also obtain the posterior state probabilities from this procedure, the
conditional probabilities of being at state j at time instance t given the observation
sequence:

γt
( j) = P (qt = j |X ) (4.4)

4.3 Trading Strategy

In this section we describe the trading algorithm which is used to trade with the
selected optimal portfolio based on the evaluation of the objective function (Sipos and
Levendovszky 2013). In the proposed algorithm, trading is described as a “walk” in a
binary state space in which either we already have a portfolio at hand or cash at hand,
while the transitions are only affected by the evaluations of the potentially owned
and the newly identified portfolios subject to the objective function (see Sect. 3). The
trading strategy is depicted by a state chart (Fig. 3).

As of (3.3), positive evaluation indicates a profitable portfolio, while negative eval-
uation indicates that the portfolio may produce a loss. Higher value in each objective
function implies a better portfolio. Based on this, the agent buys a portfolio only if
it has a positive evaluation. A new trading action is taken if a newly identified port-
folio (xopt ) has higher and also positive evaluation than the present one (x). In this
case one can sell the owned portfolio and buy the new one with higher expectations
instead. This approach treats the present portfolio as a sunk cost, thus only the future
expectations are taken into consideration. Hence, we do not have to give up the best
available portfolio in favor of a presently unfavorable portfolio. In the case that neither
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Fig. 3 Trading strategy

the owned nor the currently identified portfolio has positive evaluation then the agent
closes the position (Fig. 3).

5 Parallel Implementation

In this section, we investigate the implementation of AR-HMM based portfolio opti-
mization on parallel architectures. This implementation may pave the way towards
a more sophisticated HFT using AR-HMMs on GPGPU. Existing solutions [(Idvall
and Jonsson (2008) or Tenyakov and Mamon (2013)] can handle only a single HMM
with low number of assets, whereas our solution enables to accommodate several
AR-HMMs in a real-time manner. This allows us to model portfolio prices instead
of the asset prices, providing a better grasp on the number of free parameters. Hav-
ing the option to fit multiple AR-HMMs in a parallel way also enables us to find a
better quality HMM during the learning phase. However, there are some algorithmic
challenges to be resolved when implementing the portfolio optimization on multicore
architectures.

The architecture which can give rise to parallel implementation is the GPU. It is
a many-core processor with tremendous computational power and very high memory
bandwidth (NVIDIA 2014). The reason behind the discrepancy in floating-point capa-
bility between the CPU and the GPU is that GPU is designed for compute-intensive,
parallel computation. Compared to the simple CPU containing only few cores, a mod-
ern graphics processor has multiple thousand cores (NVIDIA TESLA K40—2880
cores).

A typical GPU consists two key components. The first is the array of Streaming
Multiprocessors (SM), which contains many computation cores and some on-chip
memory. The on-chip—64 kilobytes—memory is shared between processing cores in
one SM. The second important part is the device memory that is much larger than the
on-chip memory −1 to 6 gigabytes commercialized till 2014—and shared between
each SM (Lindholm et al. 2008). However this global memory is very large compared
to the on-chip memory and it is two magnitude slower. Therefore, to use the GPU
optimally we minimize memory transfers from global memory to on-chip and vice
versa.

We use parallel simulated annealing to obtain the optimal portfolio as described
in Sect. 4.1. Random initial portfolios are generated in each subspace (satisfying the
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cardinality constraint), and for each portfolio we fit an HMM and evaluate the objec-
tive function (3.3). The HMM model parameter identification and the HMM based
prediction is fully implemented on the GPU. Then we let the parallel optimization
algorithm run until reaching the predefined iteration number, and then we pick the
best portfolio with respect to the objective function.

In order to run the Baum–Welch algorithm for identifying the HMM parameters
we need an initial estimation. The initial parameter estimations of μ and σ in (2.4) are
based on the K-means clustering algorithm. The input of K-means algorithm consists
the time series for each portfolios and the outputs are the cluster centres and variances.
For a given portfolio we can evaluate the clusterization multiple times (each started
with different initial centers) which might converge into different state distributions.
If we run the Baum–Welch algorithm from multiple starting points, we select the one
HMMwhich likelihood ismaximal. As the portfolios are independent from each other,
we could increase the level of parallelism by running several K-means on the device
parallel. This algorithm is used only to create a reasonable starting point for local
optimization, and the data points are simply treated as samples from the equilibrium
distribution, hence their order is not taken into consideration.

After identifying the initial state distribution, we use the Baum–Welch algorithm
(as described in Sect. 4.2) to estimate the final states, together with the autoregressive
ϕ-s, and transition matrix per HMM. Training HMMs by the traditional Baum–Welch
algorithm on a single core architecture is straightforward. It uses an Expectation-
Maximization algorithm to find the model parameters for a given set of observation.
The computationallymost time consuming stepof this process is the forward-backward
algorithm.

In the parallel implementation, the number of parallel threads are the same as the
number of states, on the other hand, updating the probability distribution vector is still
to be done sequentially. As a result, the degree of parallelism is only determined by the
number of states for a given HMM. This can be further extended by running several
HMMs for each portfolio simultaneously (together with the K-means algorithm). In
this way, the Baum–Welch algorithm can be performed independently on N number
of threads. However, the number of states is chosen less than 32 because a further
increase will not considerably improve the trading performance.

The conventional implementation ofBaum–Welch andK-means algorithm run until
they meet a stopping criteria (e.g. the objective function falls below a given threshold).
Due to the nature of parallel computing we use a fixed number of iteration, because
the runtime is determined by the slowest thread. Also, the sequential steps of the
algorithms are also run on the GPU to avoid transferring data between the GPU and
CPU causing long delays in each iteration.

Regarding the portfolio optimization, we perform parallel and independent sim-
ulated annealing in a given number of randomly selected subspaces, fulfilling the
cardinality constraint card(x) ≤ l. This approach further increases the level of paral-
lelism, resulting N threads per subspace in total. Depending on the properties of the
actual GPU used for the calculations a so called block can be formed from one or more
of these threads to be scheduled to the multiprocessors.

The parallelism of the proposed method is twofold with respect to granularity:
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• Coarse-grained parallelism as opposed to the sequential SA in which in each run
we start from a given initial condition, in the case of our parallel implemented SA
several algorithms run from several initial points at the same time, i.e. AR-HMM
parameter fittings in each subspace are done simultaneously.

• Fine-grained parallelism in each step of SA, (i) the algorithm for AR-HMM para-
meter estimation is parallel along the hidden states, and (ii) the evaluation of the
objective function through theMonte Carlo simulations for estimating the comple-
mentary cumulative distribution function is also carried out in a parallel manner.

6 Performance Analysis

An extensive back-testing framework was created to handle trading actions on various
input data sets and provide numerical results for the sake of comparing the perfor-
mance of CPU and the GPGPU. For a detailed comparative analysis the following
performance measures were calculated for each experiments on the corresponding
time series (either FOREX or generated):

(i) Minimal value Gmin = 1
c0

min
0≤t≤T

ct ;

(ii) Final value G f inal = cT
c0
;

(iii) Maximal value Gmax = 1
c0

max
0≤t≤T

ct ;

(iv) Average value Gavg = 1
c0

1
T

T∑
t=1

ct ,

where ct denotes the sum of owned cash and the market value of the owned portfolio
at time instance t , while c0 denotes the initial cash (in each case the agent started with
$10,000).

In this section, we show the numerical results obtained on the following data sets:

• AR-HMM generated time series;
• FOREX rates (EUR/USD, GBP/USD, AUD/USD, NZD/USD, USD/CHF, USD/
CAD from the year of 2013 in daily and 15 min resolution) [23].

The artificial data was generated by an AR-HMM with two and three hidden states,
respectively. Regarding the sparsity constraint, three assets were selected in each
transaction.

Each numerical experiments were running during the same time interval on both
architectures. As the GPGPU is much faster and thus capable of visiting much more
portfolios in the course of the optimization a much better value of the objective func-
tion has been achieved than the one calculated by CPU. Consequently, the trading
performance has also surpassed the one achieved by the CPU (trading results on gen-
erated data is shown by Fig. 4). In each case 3 hidden states were used, we used 65
observations from the past to fit AR-HMMs, while the prediction was projected to the
next 8 time instances.

The next figures indicate real tests running on FOREX data obtained at 15 min
(Fig. 6) and daily (Fig. 5) tick time. The duration of tests have been 1 year and 3 days,
respectively.
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Fig. 4 Trading performance on generated data
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Fig. 6 Trading performance on 15-min FOREX data
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Fig. 7 Comparison of trading results using different η on 15-min FOREX data

One can see, in each case we managed to secure positive profit. On the 15 minute
tick time the GPGPU has achieved 2.7 % profit, while 0.1 % loss achieved by CPU in
a 3 days interval (annualization is often misleading on high-frequency data). On the
daily averages the system performed more modestly, but even in this case the GPGPU
secured a 22.3 % yearly profit as opposed to the 3.1% loss achieved by the CPU. The
reason for the poorer performance on daily averages may lie in the fact that in the case
of more infrequent samples one cannot exploit the advantage of nature of the time
series exhibited at a finer scale.

As demonstrated by Fig. 7, we also compared the performance when using different
η parameters in (3.1), which controls the level of risk taking. As one can see, it proved
to be favorable to follow a cautious strategy with η = 0.75, but not an overly cautious
one.

6.1 Speed Profiling

The experiments were conducted on a PC with a second generation Intel i7 CPU and
on one NVIDIA GeForce GTX 570 GPU. The comparison between the computation
time of CPU and GPU is shown by Fig. 8.

Figure 9 shows the speedup over serial implementation, that is the ratio between
the computation time on CPU and the computation time on GPGPU.

The performance in the case of small number states of HMM is relatively low,
which is not surprising in the light of the fact the GPGPU computing power remains
underutilized. If we increase the number of optimized HMMs then more and more
blockswill become active on theGPGPUwhich, in turn,will increase the performance.
Thus, the GPU will be much faster than the CPU with a factor 1024 up to 1270.
This increase in speed is imperative to perform HFT. To demonstrate the difference
between CPU and GPGPU, in the M15 simulations (as shown in Fig. 8) the portfolio
optimization took 478 ms on average, which means about 10 minutes on CPU casting
it unfeasible to use in this time scale.
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7 Conclusions

In this paper we have proposed novel algorithms for OU parameter estimation and pre-
dicting future values of financial time serieswithAR-HMMs for portfolio optimization
subject to cardinality constraints. The portfolio optimizations have been carried out
by stochastic search with respect to new objective function in which we maximize the
return achieved by a given probability. The underlying computational processes have
been implemented on GPGPU.

The proposed trading algorithms have proven to be profitable on real financial
time series. The performance analysis demonstrated that the prediction (based on the
novel parameter identification) could indeed increase the trading efficiency and the
profit compared to the traditional OUmodeling, where the parameters are estimated by
linear regression. However, there is still a room for further improvement on the trading
strategy in order to take other factors (e.g. to avoid early sells) into consideration, as
well.
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The implementation on GPGPU have proven that the GPGPU architecture can cope
with high frequency trading and yields a superior performance to that of the CPU both
in speed and in a selecting more profitable portfolios.
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