
Pricing Options on Realized Variance

Peter Carr
Courant Institute, New York University

H¶elyette Geman
Universit¶e Paris Dauphine and ESSEC Business School

Dilip B. Madan
Robert H. Smith School of Business

Van Munching Hall
University of Maryland
College Park, MD. 20742

Fax: 301-405-0359
email: dbm@rhsmith.umd.edu

Marc Yor
Laboratoire de Probabilit¶es et Modµeles Al¶eatoires

Universit¶e Pierre et Marie Curie

January 26 2005

1



Abstract: Models which hypothesize that returns are pure jump processes
with independent increments have been shown to be capable of capturing the
observed variation of market prices of vanilla stock options across strike and
maturity. In this paper, these models are employed to derive in closed form the
prices of derivatives written on future realized quadratic variation. Alternative
work on pricing derivatives on quadratic variation has alternatively assumed
that the underlying returns process is continuous over time. We compare the
model values of derivatives on quadratic variation for the two types of models
and ¯nd substantial di®erences.1

Keywords: Options on Variance Swaps, Options on Time Changes, Self
Decomposability and its Hierarchy.

JEL Classi¯cation: G10, G12, G13
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1 Introduction
Risk neutral models for the prices of underlying assets are fundamentally mod-
els of martingales after adjusting for cost of carry considerations. Ocone (1991)
shows that when symmetric martingales are conditioned on their quadratic vari-
ation, they become processes of conditionally independent increments. As these
latter processes are well understood, one may view the modeling of quadratic
variation as fundamental to the study of the risk neutral law for the price of a
¯nancial asset. Undoubtedly, this law is not symmetric and we shall allow for
a prespeci¯ed degree of asymmetry in constructing models for the stock price
from its quadratic variation. We do however wish to focus attention here on
quadratic variation as the primary object to be modeled.

In a related market development, swap contracts on realized variance have
now been trading over the counter for some years with a fair degree of liquidity.
The °oating leg for these so called variance swaps is just the sum of squared
daily log price relatives, which di®ers from the quadratic variation of the log
price only by the sampling frequency. The development of these markets for
speculating and hedging in quadratic variation suggests that uncertainty in fu-
ture quadratic variation is clearly perceived. More recently, derivatives whose
payo®s are nonlinear functions of realized quadratic variation have also begun to
trade over the counter. In particular, a natural outgrowth of the variance swap
market is an interest in volatility swaps, which are essentially forward contracts
written on the square root of realized quadratic variation. Furthermore, several
¯rms are now making markets in options on realized variance. To price these
contracts, it is clearly useful to get a better understanding of the risk-neutral
probability law of the prospective outcomes.

These considerations lead us to investigate approaches which directly model
the quadratic variation of log returns. Given the large literature on pricing
vanilla options and the extent of liquidity in this market, relative to any market

1We thank the anonymous referee for constructive comments on the paper and particularly
with respect to the hierarchy of self decomposability.
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for quadratic variation or its derivatives, it is reasonable to restrict attention to
models for quadratic variation that are implied by models capable of synthesiz-
ing the prices of vanilla options across the strike and maturity spectrum. We will
refer to such models as smile consistent. As is well known, the Black and Scholes
(1973) and Merton (1973) model for stock returns is not smile-consistent as no
options market has displayed °at smiles for quite some time. Furthermore, since
Black Merton Scholes model the stock price as geometric Brownian motion, the
realized quadratic variation for log returns has no uncertainty and hence is not
appropriate for pricing options on realized variance.

In the (time-dependent) Black Merton Scholes model, the log price process
employed can be characterized as the only continuous time process which has
both independent increments and sample paths which are continuous over time.
Hence, in generalizing the model, it is natural to consider relaxing either the in-
dependent increments assumption or the path continuity assumption (or both).
For example, one can relax the independent increments assumption while re-
taining continuity by using a calibrated local volatility model that relates the
instantaneous volatility functionally to the underlying spot price and to calen-
dar time. Such models calibrate to the surface of option prices by design, but
the probability laws of realized quadratic variation would be nearly impossible
to decipher analytically. Stochastic volatility models also relax the indepen-
dent increments assumption while retaining continuity. The prototypical model
in this class is Heston (1993), which Dufresne (2001) suggests may be used to
price options on realized variance. Moreover, Heston and Nandi (2001) consider
a special case of the Heston stochastic volatility model (also studied by Janicki
and Krajna (2001)) for pricing options on realized variance. In contrast to the
local volatility models, these models lend themselves to an analytic description
of the distribution of realized variance. Moreover, one can further relax path
continuity and introduce jumps in either the returns process as shown in Carr,
Geman, Madan and Yor (2003) or in the variance process as shown in Nicolato
and Vernados (2003). However, these authors do not consider the pricing of
derivatives on quadratic variation per se.

Whether jumps are present or not, stochastic volatility models all increase
the Markov dimension of the system from one to two, by augmenting the stock
price with the level of the instantaneous variance rate. There are many com-
plexities associated with the introduction of this second Markov dimension. In
a ¯rst attempt at synthesizing the distribution of realized variance, it seems
prudent to ¯rst consider relaxing the continuity assumption instead of the in-
dependent increments assumption, while keeping the Markov dimension equal
to one. We have argued elsewhere, both theoretically and empirically in favor
of using processes where the jump component is not only present, but of such
high activity that no continuous martingale component is necessary. (Geman,
Madan and Yor (2001), Carr, Geman, Madan and Yor (2002)). As we intend to
keep the independent increments assumption for tractability reasons, we shall
be working with the class of pure jump additive processes. To narrow the focus
slightly, we study pure jump additive processes which have the additional prop-
erty that the process at unit time has a distribution which is self-decomposable.
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One such class of processes which we will study is the set of pure jump L¶evy
processes, which supplement the independent increments assumption with a
stationarity criterion. Another class of pure jump additive processes which we
will also study are the time-inhomogeneous processes introduced by Sato (1991).
For ease of exposition, we will henceforth drop the modi¯er \pure jump", when
describing the processes studied, it being understood that the only stochastic
processes studied in this paper have no continuous martingale component. We
will also refer to the time inhomogeneous additive processes introduced by Sato
as Sato processes.

To summarize to this point, realistic modelling of quadratic variation re-
quires either the relaxation of independent increments or the relaxation of con-
tinuity of returns (or both). The present literature on pricing derivatives on
quadratic variation has relaxed the independent increments assumption, while
retaining continuity of the sample paths of returns. In contrast, this paper fo-
cusses on pricing derivatives on quadratic variation by relaxing the continuity
of returns, while retaining independent increments. There is another interest-
ing distinction between the two modelling approaches. A theorem of Monroe
implies that every martingale can be represented as a stochastic time change
of a Brownian motion. If the martingale is continuous, then by the well known
result of Dambis (1965), Dubins and Schwarz (1965), the stochastic clock used
to time change the Brownian motion is just the quadratic variation of the con-
tinuous martingale. Hence, a derivative security written on quadratic variation
in the continuous context is the same entity as a derivative security written
on the stochastic clock used to time change the Brownian motion. However,
if the martingale has jump components, then its quadratic variation is distinct
from the time change of Brownian motion used to generate it. Building on an
insight in Carr and Lee(2004), we show that so long as the stochastic clock is
independent of the Brownian motion that it time changes, then one can always
price derivatives on this stochastic clock by referring to the market prices of
standard options written on the time-changed Brownian motion. Carr and Lee
further assume continuity of returns and use the DDS result to price derivatives
on quadratic variation. In a jump context, the quadratic variation of the mar-
tingale is distinct from the stochastic clock used to generate it. However, it is
an open numerical question as to whether the pricing of derivatives on the clock
is at least close to the pricing of derivatives on quadratic variation. Using the
CGMY model, we answer this question in the negative by showing that there
are large numerical di®erences between the price of a claim paying the square
root of the stochastic clock and the price of a volatility swap.

The remainder of the paper is structured as follows. In the next section, we
¯rst study which properties of the return process are inherited by the quadratic
variation process. We restrict our analysis to L¶evy and Sato processes for re-
turns. The properties studied include in¯nite activity, variation, complete mono-
tonicity, self decomposability, and membership in the hierarchy of higher orders
of decomposability for forward returns and realized variations. We also consider
how one may reverse engineer a price process with a pre-speci¯ed skewness so
that it is consistent with a given quadratic variation process. Details for the
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speci¯c parametric class of the CGMY model are presented in section 3. In
section 4, we provide explicit formulae for the Laplace transform of quadratic
variation for the particular L¶evy or Sato processes introduced in section 3. Sec-
tion 5 shows how these transforms may be employed to price options on realized
variance and volatility. Section 6 describes how one may synthesize the Laplace
transform of implied time changes from the characteristic function for the log
price. Section 7 reports on a study comparing the price of a contract paying
the square root of the stochastic clock with the price of a contract paying the
volatility, as measured by the square root of realized quadratic variation.

2 Quadratic Variation Processes
We restrict attention to the class of L¶evy processes and Sato processes which
are consistent with a given self decomposable law when evaluated at unit time.
We brie°y describe the structure of the Sato process.

2.1 The Sato Process
A self decomposable random variable X has the property that for every c;
0 < c < 1; there exists an independent random variable X (c) satisfying

X
(d)
= cX + X (c): (1)

These random variables are in¯nitely divisible with a L¶evy density k(x) of the
special form

k(x) =
h(x)
jxj

where h(x) is decreasing for positive x, and increasing for negative x: We de¯ne

hp(x) = h(x); x > 0
hn (¡x) = h(x); x < 0

as the pair of self decomposability characteristics of the self decomposable ran-
dom variable X: These are both nonincreasing functions de¯ned on the positive
half line. We assume that these functions are both di®erentiable.

One may always also associate with this L¶evy density a L¶evy process that has
the self decomposable law as its unit time distribution. Sato (1991) considered
° self similar processes de¯ned by the property that

(Xct ; t ¸ 0) law= (c°Xt; t ¸ 0) :

Sato (1991) proves that for every self decomposable law and every ° > 0 there
exists an additive self similar process with this law at unit time. Carr, Geman,
Madan and Yor (2003) identify the L¶evy system density of this process g(x; t)
as

g(x; t) =

8
<
:

°h0( x
t° )

t1+° x < 0

¡ °h0( x
t° )

t1+° x > 0
: (2)
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We shall be concerned here with the process for quadratic variation implied
by the L¶evy and Sato processes for the underlying stock price associated with
a particular self decomposable law at unit time.

2.2 L¶evy and Sato Implied Quadratic Variation
Consider now the process for the quadratic variation Q(t) of an additive Sato
process with the system of L¶evy densities g(x; t): The analysis for the L¶evy
process follows easily on dropping the dependence of g(x; t) on t: The process
for quadratic variation is de¯ned in terms of the L¶evy or Sato process by

Q(t) =
X

s·t

(¢Xs)2:

The following result identi¯es the L¶evy system for the quadratic variation as an
increasing additive process.

Theorem 1 The process Q(t) of quadratic variation associated with the additive
process with L¶evy system g(x; t) admits as its L¶evy system density q(y; t) where

q(y; t) =
g(py; t)

2
p

y
+

g(¡py; t)
2
p

y
: (3)

where the L¶evy case is covered by suppressing the dependence on t in both q and
g

Proof. Let f (x) be a test function and consider the evaluation of the ex-
pectation

E

2
4X

s·t

Hsf ((¢Xs)2)

3
5

for a bounded predictable process Hs ; where X(t) is the given additive process.
Since the process

M (t) =
X

s·t

Hsf ((¢Xs)2) ¡
Z t

0

Z 1

¡1
Hsf (x2)g(x; s)dxds

is a compensated jump martingale, it follows that the required expectation is
given by

E
·Z t

0

Z 1

¡1
Hsf (x2)g(x;s)dxds

¸
= E

·Z t

0

Z 1

0
Hsf (y)

µ
g(py; s)

2py
+

g(¡py; s)
2py

¶
dyds

¸

= E
·Z t

0

Z 1

0
Hsf (y)q(y; s)dyds

¸

and hence the L¶evy system for the quadratic variation is identī ed by (3).
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As observed earlier, the quadratic variation of a martingale describes an im-
portant of the martingale, in that conditional on the quadratic variation we have
a process of conditionally independent increments. Ocone (1991) shows how a
symmetric martingale conditional on its quadratic variation is constructed as a
process of conditionally independent increments. Given the quadratic variation
one has the size and absolute value of all the jumps and conditional on this in-
formation, under symmetry, the process is a fair coin toss between the positive
and the negative moves. We may generalize somewhat from symmetry in the
interests of working with risk neutral processes that are asymmetric.

We de¯ne an additive process to be ® asymmetric if its L¶evy system density
satis¯es

g(¡y; t) = e®yg(y; t) (4)

where for risk neutral price processes we expect that ® will generally be neg-
ative. We see from equation (3) and (4) that one may reverse engineer an ®
asymmetric process with a given additive quadratic variation with L¶evy system
q(y; t) density by de¯ning

g(
p

y; t) =
2
p

yq(y; t)¡
1 + e®

p
y
¢ (5)

g(¡p
y; t) = e®

p
y 2pyq(y; t)¡

1 + e®
p

y
¢

This process after a drift correction provides us with an ® asymmetric martingale
with the given quadratic variation.

2.3 Properties Inherited across L¶evy, Sato, and Implied
Quadratic Variation processes

We now ask what properties are shared by the original L¶evy process, the Sato
process and the quadratic variation process over forward intervals of time. In
particular we are interested in the properties of in¯nite activity, in¯nite varia-
tion, complete monotonicity, and self decomposability at the initial and higher
levels. We present in a summary subsection a statement of the various properties
considered, followed in another subsection by a brief discussion of their ¯nan-
cial relevance. An analysis of how these properties are shared across the original
L¶evy process, the Sato process and the implied process for quadratic variation
is then taken up in separate subsections devoted to these issues. Apart from
questions of self decomposability, these properties have been studied in Carr,
Geman, Madan and Yor (2002).

2.3.1 De¯nition of Properties Considered

A process of independent and inhomogeneous increments with, in general a time
inhomogeneous L¶evy system density, k(x; t); is said to be of in¯nite activity (IA)
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if it has the property of in¯nitely many moves in any interval and this requires
that Z 1

¡1
k(x; t)dx = 1; for all t:

A process is of in¯nite variation (IV ) if the sum of the absolute value of
changes is in¯nite in any interval, or equivalently the process may not be written
as the di®erence of two increasing processes and this requires that

Z

jxj·1
jxj k(x; t)dx = 1; for all t:

We say that a process has the completely monotone (CM) property if large
jumps in absolute value occur at a strictly smaller rate than jumps of a smaller
size in absolute value. This property requires that the functions kp(x; t) = k(x; t)
and kn(x; t) = k(¡x; t); x > 0 are completely monotone with kth derivatives that
have the sign of (¡1)k:

Self decomposability (SD) was de¯ned earlier. It is a property of a random
variable and we are also interested in its application to the increments X(t) ¡
X(s); s < t: We also refer to the (SD) class as the class L of random variables
since they are the laws of limit random variables as studied by L¶evy (1937) and
Khintchine (1938).

To the extent one is interested in forward returns being of the class L; one
is led to the subclasses of L that were identi¯ed by Urbanik (1972,1973) and
these were studied in detail by Sato (1980). The ¯rst subclass is L1 and a self
decomposable random variableY is in L1 if the residual on the self decomposable
decomposition Y (c) is itself self decomposable. The variable is in L2 if further
the residual in the decomposition of Y (c) is itself self decomposable, and so on.
The limit or intersection of all the classes Lm over all m is the class L1: For
a random variable to be in Lm; for ¯xed m ¸ 1; it is necessary and su±cient
that the functions hp(x) = h(x); and hn(x) = h(¡x); x > 0 have the property
that resulting functions ap(s) = hp(e¡s); an(s) = hn(e¡s) be monotone of
order m + 1: This requires that all regular kth order di®erences of all sizes ± for
k · m+1 are positive. The kth order regular di®erence of size ± for an arbitrary
function f is de¯ned as

¢k
± (f )(s) =

kX

j=0

(¡1)k¡j
µ

k
j

¶
f (s + ±j):

Monotonicity of order m is equivalent to a function being continuously di®eren-
tiable m ¡ 2 times with all these derivatives being nonnegative, nondecreasing
and convex.

Jurek and Vervaat (1983) related the Lm property for a L¶evy process X
with a self decomposable law at unit time to the Lm¡1 property for the Back-
ground Driving L¶evy Process (BDLP) associated with this process. These two
characterizations are simply related to each other via a change of variable. We
later use the Jurek and Vervaat characterization to study the hierarchy for the
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CGM Y model. For other related work on self decomposability we refer the
reader to Jurek (1983), and Iksanov, Jurek and Schreiber (2004) for a related
hierarchy.

The class L1 is particularly interesting; it contains the stable random vari-
ables and for a random variable to be in L1 the associated function ap(s); an(s)
must be of the form

a(s) =
Z 2

0
e®s¡(d®)

for some positive measure on (0; 2) satisfying

Z 2

0

¼
2

csc
³ ¼®

2

´
¡(d®) < 1:

2.3.2 Financial Relevance of Properties

We comment brie°y on the relevance of each of the properties introduced in the
last subsection.

In¯nite Activity Most ¯nancial applications involve the study of prices of
exchange traded assets with very high transaction volumes. It is reasonable to
employ models with in¯nite activity to study such price processes and many
models considered in the literature have this property. Finite activity models
like various forms of the jump di®usion model appear only in conjunction with
an in¯nite activity di®usion component. In the absence of such a component,
it is even all the more appropriate to employ in¯nite activity processes. Carr,
Geman, Madan and Yor (2002) argue that in the presence of an in¯nite activity
jump component synthesizing small and large moves, the use of a di®usion
component is both theoretically and practically redundant.

In¯nite Variation Processes with in¯nite variation are fairly popular in the
literature and include continuous di®usions, the normal inverse Gaussian law
(Barndor®-Nielsen (1998)) and the CGM Y model studied in Carr, Geman,
Madan and Yor (2002), for Y > 1. We observe later that increasing the value of
Y does produce laws capable of belonging to the higher self decomposable classes
and to the extent that this is a desired property, one may wish to accomodate
in¯nite variation as these properties may be more easily delivered by such a
class of processes.

Complete Monotonicity The property of complete monotonicity is a struc-
tural property on the L¶evy density and places the density by Berstein's theorem
in the class of Laplace transforms of positive measures on the half line. Hence
we are in a sense considering mixtures of exponentials for the arrival rates of
moves. The decay rates of the individual exponentials are an appealing property
when we think of price responses to information shocks. For these responses to
occur, in magnitude, the information event must reach a large number of people
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who act on it. As dissemination and actions have built in delay factors and re-
sistances it is natural to speculate that small e®ects do in fact occur at a faster
rate than larger e®ects. We take this hypothesis as a good working hypothesis
that economises the class of models to be investigated.

Self Decomposability and its subclasses Limit laws are probably the best
explanation for the wide spread use of the Gaussian law in the study of ¯nancial
markets. The self decomposable laws are limit laws and this is also their appeal.
They are provably unimodal and have realistic densities associated with them
on this account.

Given the interest in forward returns, the considerations that drive us to
having realistic densities for the holding period return for various terms, suggests
the same for forward returns. Hence, these should be unimodal limit laws for
the same reasons. Since we now require di®erences to be selfdecomposable, the
original law should at least be in the L1 class. It may not be necessary to adopt
laws from the higher Lm classes but it is interesting to try, as in this case one has
limit laws at all levels, whether one models forward returns or forward return
spreads and so on.

2.3.3 Results for In¯nite activity

The Sato process need not have in¯nite activity even if the initial L¶evy process
is one of in¯nite activity. For the Sato process to have in¯nite activity, say, on
the positive side, R+ we require that

Z 1

0
g(x; t)dx = 1

Substituting for g(x; t) from the de¯nition of the Sato process (2) we require
that

1 = ¡
Z 1

0

°
t1+°

h0
³ x

t°

´
dx

= ¡
Z 1

0

°
t
h0(u)du

=
°
t
h(0)

Hence we must have the further condition that

h(0) = lim
x!0

xk(x)
= 1

or equivalently that k(x) tends to in¯nity faster than 1
x :

On the other hand if the Sato process has in¯nite activity and g(x; t) inte-
grates to in¯nity then a simple change of variable shows this is equivalent to
the implied quadratic variation being a process of in¯nite activity.
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2.3.4 Results for In¯nite Variation

The Sato process has in¯nite variation just if
Z

jxj<1
jxj g(x; t)dx = 1

Again, working on the positive side, we note that we now have

¡
Z 1

0

°x
t1+°

h0
³ x

t°

´
dx = 1

¡
Z 1

0

°
t1¡°

uh0(u)du = 1

°
t1¡°

Z 1

0
h(u)du = 1

Since xk(x) = h(x) we have that equivalently the original L¶evy process must
have in¯nite variation.

Quadratic variation on the other hand is a process of ¯nite variation always
as this is an increasing process.

2.3.5 Results on Complete Monotonicity

The process for quadratic variation for a L¶evy system inherits completely mono-
tonicity from this system. The reverse need not be true. Suppose for example
that the Sato process has a L¶evy system in the completely monotone class. We
then have, on the positive side,

g(x; t) =
Z 1

0
e¡ax·(da)

for some positive measure ·(da):
The L¶evy system for quadratic variation implied by this L¶evy system is

q(y; t) =
g(py; t)

py

and we wish to see that q is completely monotone. For this we note that

g(
p

y; t) =
Z 1

0
e¡a

p
y·(da)

=
Z 1

0
·(da)

Z 1

0
e¡uy a

2
p

¼u3
e¡ a2

4u du

=
Z 1

0
e¡uy 1

2
p

¼u3

Z 1

0
ae¡ a2

4u ·(da)

Hence g(py; t) is completely monotone. As 1py is also completely monotone,
it follows that the L¶evy system for quadratic variation is completely monotone.
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On the other hand if quadratic variation has the L¶evy system of an expo-
nential: e¡ydy the process in the symmetric case would have a system, using (5)
for a = 0; on the positive side of 2xe¡x2dx and this is not completely monotone.
Complete monotonicity also does not necessarily pass from the L¶evy measure
to the Sato process.

2.3.6 Results on self decomposability

Even though the Sato process associated with a self decomposable law need not
have a self decomposable law, the process for quadratic variation is selfdecom-
posable. For the Sato process to be self decomposable it is necessary that the
original L¶evy process at time 1 has a law in the L1 class, as we have commented
earlier. The selfdecomposability for quadratic variation is established by the
following theorem.

Theorem 2 The quadratic variation at unit time of a self similar additive pro-
cess with a self decomposable law at unit time is itself a self decomposable law.

Proof. By construction we have that

q(y; t) = ¡
h0

³ p
y

t°

´
°

t1+°2py
+

h0
³
¡

p
y

t°

´

t1+°2py

The characteristic exponent of quadratic variation at unit time is given by

log
³
E

h
eiuQ(1)

i´
=

Z 1

0

Z 1

0

¡
eiuy ¡ 1

¢
q(y; s)dyds

It follows that Q(1) is in¯nitely divisible with L¶evy density

Z 1

0
q(y; s)ds =

Z 1

0

0
@¡

h0
³ p

y
s°

´
°

s1+°2py
+

h0
³
¡

p
y

s°

´

s1+°2py

1
A ds

=
Z 1

1
¡h0(

p
yu° )°u°¡1

2py
du +

Z 1

1

h0(¡p
yu° )°u° ¡1

2py
du

=
Z 1

1
¡h0(pyw)

2py
dw +

Z 1

1

h0(¡pyw)
2py

dw

=
h(

p
y)

2y
+

h(¡p
y)

2y
:

Self decomposability of the original process at unit time then implies self de-
composability of the quadratic variation at unit time.

We also observe from this result that quadratic variation lies in the same
L class as the original L¶evy process. This is because the function a(s) asso-
ciated with quadratic variation is the one associated with the original L¶evy
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process evaluated at s=2: Hence monotonicity of any order just passes through
to quadratic variation.

We now present more direct arguments establishing that forward increments
and di®erences of these increments are self decomposable, provided we begin in
the classes L1 and L2 respectively. Later we shall identify speci¯c models that
lie in the L1 and L2 classes that we propose to employ for the purpose of pricing
options on quadratic variation.

Theorem 3 If the law at unit time is in L1 then the increments of the additive
self similar process over arbitrary intervals is a self decomposable law. Fur-
ther the increments of the associated quadratic variation process also have this
property.

Proof. Let X denote the random variable at unit time with an L1 law. By
construction we have that

Xt
(d)
= t°X1

By the L1 property we have that for all c; 0 < c < 1

X1
(d)
= c°X1 + X (c)

where X (c) is here a self decomposable random variable independent of X1.
It follows that

t°X1
(d)
= (ct)°X1 + t°X (c)

(d)= Xct + t°X (c)

Hence, we see that
Xt

(d)= Xct + t°X (c)

As the process for Xt is an additive process the characteristic function of
the increment Xt ¡ Xct is that of t°X (c) a self decomposable random variable.

By an integration similar to the one conducted in Theorem 2 for the quadratic
variation we observe that the L¶evy density for the increment X(t) ¡ X(u) is

k(Xt¡Xu)(x) =
h( x

t° ) ¡ h( x
u° )

x

and if X 2 L1 we have that h is monotone of order 2 so the ¯rst di®erences
of the functions ap; an are positive and nondecreasing and this is equivalent to
h( x

t° ) ¡ h( x
u° ) being nonincreasing or Xt ¡ Xu being self decomposable.

For the increment in quadratic variation Qt ¡ Qu we note that the L¶evy
density is given by the change of variable x2 = y applied to the L¶evy density
for the increment and so

k(Qt¡Qu)(y) =
h(

p
y

t° ) ¡ h(
p

y
u° )

2y
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and we require that ap(s=2); an(s=2) be monotone of order 2:
We note that if one is pricing options on forward returns as for example in

forward start options then it would be desirable to employ processes that cali-
brate the surface of option prices using self similar additive processes associated
with a unit time law that is in L1: The conditions provided by Sato (1980) are
useful in this regard.

The class L2 is also of potential ¯nancial interest when pricing return spreads.
Here we have a self decomposability result for spreads over scaled intervals. Let
t1 < t2 and consider the interval (ct1; ct2) for some c < 1: In general we would
be interested in cases where ct2 < t1: The return spread is given by

Z = Xt2 ¡ Xt1 ¡ (Xct2 ¡ Xct1) :

Theorem 4 For X 2 L2 the return spread Z is a self decomposable random
variable.

Proof. Since X 2 L2 the decomposition of X used in the proof of Theorem
3 produces a residual X (c) that in fact is in L1: It follows that Xt ¡ Xu belongs
to L1: Therefore for any c; 0 < c < 1; there exists a residual that we denote
(Xt ¡ Xu)(c) such that

Xt ¡ Xu
(d)
= c° (Xt ¡ Xu) + (Xt ¡ Xu)(c)

By the scaling property

c° (Xt ¡ Xu) (d)= Xct ¡ Xcu

and so we may write that

Xt ¡ Xu
(d)
= Xct ¡ Xcu + (Xt ¡ Xu)(c)

Now provided as we suppose that cu < t, we may use the additivity of the
process to conclude that

Xt ¡ Xu ¡ (Xct ¡ Xcu) (d)= (Xt ¡ Xu)(c)

The self decomposability of the spread follows from that of (Xt ¡ Xu)(c) as
Xt ¡ Xu is in L1:

The higher classes go on to establish the self decomposability of higher order
di®erences, but it is unlikely that contracts would be priced at this level of
complexity in di®erencing. If one wishes to be guaranteed of self decomposability
at all levels then processes in L1 may be entertained.

14



2.3.7 The Sato Process of the unit time Quadratic Variation of a
Sato process and the Quadratic Variation of the original Sato
process

The quadratic variation of a Sato process has the L¶evy system identi¯ed by
(3) in terms of the L¶evy system of the Sato process of a self decomposable law
identī ed by (2). As we observed in the last subsection the unit time quadratic
variation has a self decomposable law with the L¶evy measure identi¯ed by the
following L¶evy Khintchine decomposition for Q(1):

E [exp (iuQ(1))] = exp
µ

¡
Z 1

0

¡
1 ¡ eiuy ¢ ·

h(py)
2y

+
h(¡py)

2
p

y

¸
dy

¶

Theorem 5 The Sato process associated with Q(1) scaled at 2° is the same as
quadratic variation of the original Sato process with L¶evy system (3).

Proof. The required L¶evy system for the Sato process associated with Q(1)
at 2° scaling is given on applying (2) by

¡ 2°
t1+2°

"
h0

µr
y

t2°

¶
1

4
p

y=t2°
¡ h0

µ
¡

r
y

t2°

¶
1

4
p

y=t2°

#

= ¡ °
t1+°

·
h0

µpy
t°

¶
1

2py
¡ h0

µ
¡

py
t°

¶
1

2py

¸
:

3 Candidate Processes for use in pricing options
on realized quadratic variation

A number of processes are known to fall in the self decomposable class. These
include the Normal Inverse Gaussian (NIG) (Barndor®-Nielsen (1998)) and
Meixner (Schoutens (2003)) models. Unfortunately, except for the V G pro-
cess the L¶evy densities involved are quite complex. The V G process though self
decomposable is not in L1 as the associated test function is

a(s) = e¡e¡s

and this function is not convex. This fact is also easily seen from the character-
ization provided by Jurek and Vervaat (1983) as the BDLP for the V G has an
exponential L¶evy measure which is not a self decomposable L¶evy measure.

We consider here the quadratic variation of the L¶evy and Sato process with °
scaling, for the unit time distribution of the CGMY L¶evy process. This process
was introduced in Mantegna and Stanley(1994) and sign¯cantly expanded upon
in Koponen(1995) and in Carr, Geman, Madan and Yor (2002). We are inter-
ested in determining the levels of the parameter Y consistent with this process
belonging to the higher L classes. We work with the L¶evy density on the right.
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Similar calculations apply to the right or negative moves with the parameter G
replacing M:

The self decomposability characteristic for this law is given by the function

h(x) = C
exp(¡Mx)

xY :

We have noted the V G case of Y = 0 that is clearly in L0 and not in L1:
We now show that CGMY enters L1 and L2 for su±ciently large Y values but
it appears that CGM Y will not enter the class L7:

We begin with the result of Jurek and Vervaat (1983) that makes the analysis
somewhat simpler than relying on the monotonicity characterizations. This
result states that a selfdecomposable law is in Lm if and only if the background
driving L¶evy process (BDLP) Z; associated with X is in Lm¡1: The relationship
between X and Z is given by

X =
Z 1

0
e¡sdZ(s)

The relationship between the L¶evy measures ºX for X , and ºZ for Z; is given
by (e.g. Jeanblanc, Pitman, Yor (2002))

ºX (dz) =

(
ºZ[¡1;z ]

jzj z < 0
ºZ [z;1]

z z > 0

Hence we de¯ne the operator Q acting on f as follows

Q(f ) = ¡ d
dz

(zf (z))

and we note that for positive z; with ºX (z) the density of the measure ºX (dz)
we have the density of the L¶evy measure for the process Z given by

ºZ = Q(ºX ):

For X to be in L1 we must have that Z is self decomposable and hence for
positive z we must have that

zºZ(z)

is decreasing in z: Alternatively we may write that

Q(ºZ ) > 0:

It follows that X 2 Lm if and only if Qm+1(ºX ) > 0:
De¯ne, for z > 0 the function

q0(z) =
e¡z

z1+Y

16



We also de¯ne

q(n)(z) = Qn(q0)
= q0(z)Pn (z)

where Pn (z) is a polynomial in z:
On di®erentiation one obtains the recursion

Pn+1(z) = Pn(z)(z + Y ) ¡ P 0
n(z)z:

This recursion may be easily implemented using polynomial manipulations and
we note that

P2(z) = (z + Y )2 ¡ z

which is positive for Y > :25:
We implemented this recursion to order 20 for various values of Y and eval-

uated the zeros of the resulting polynomials to detect the presence of positive
real roots. For a given Y the last polynomial Pn with no positive real roots
de¯nes the highest level n(Y ) in the L hierarchy that CGMY attains with this
particular value for Y: The table below shows the results, and we see that for
these values of Y; CGMY never enters L7:

Y :25 :5 :75 1 1:25 1:5 1:75 1:999
n(Y ) 1 1 2 3 4 5 6 6

This brings us to present the conjecture: The integer valued function : Y !
n(Y ); Y 2 (0; 2); is nondecreasing, and smaller than or equal to 6:

4 The Laplace Transform for realized Quadratic
Variation at time t:

The Laplace transform of quadratic variation for the self similar additive process
with unit time law given by the CGMY model is given by

E
h
e¡¸Q(t)

i
= exp

µZ t

0

Z 1

0

¡
e¡¸y ¡ 1

¢
q(y; s)dyds

¶

Performing the integration in the exponential with respect to the time vari-
able as in the proof ot Theorem 2 we get

E
h
e¡¸Q(t)

i
= exp

0
@

Z 1

0

¡
e¡¸y ¡ 1

¢
2
4

h
³ p

y
t°

´

2y
+

h
³
¡

p
y

t°

´

2y

3
5 dy

1
A (6)

For the specī c case of the CGMY model we get for the Laplace transform

E
h
e¡¸Q(t)

i
= exp

Ã
¡

Z 1

0

¡
1 ¡ e¡¸y ¢

Ct° Y e¡ M
t°

p
y + e¡ G

t°
p

y

2y1+ Y
2

dy

!

= exp

Ã
¡Ct°Y

Z 1

0

³
1 ¡ e¡¸x2

´ e¡ M
t° x + e¡ G

t° x

x1+Y dx

!
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We de¯ne
A = Ct° Y ; ap =

M
t° ; an =

G
t°

and write that

E
h
e¡¸Q(t)

i
= exp

µ
¡A

Z 1

0
(1 ¡ e¡¸x2

)[e¡apx + e¡anx]x¡1¡Y dx
¶

It remains to perform the required integration. We proceed on integrating by
parts and write
Z 1

0
(1¡e¡¸x2

)e¡axx¡1¡Y dx = ¡
Z 1

0

x¡Y

¡Y

h
e¡ax¡¸x2

2¸x ¡ a(1 ¡ e¡¸x2
)e¡ax

i
dx

We now write the result as the sum of two integrals as follows

2¸
Y

Z 1

0
x(2¡Y )¡1e¡ax¡¸x2

dx ¡ a
Z 1

0

x¡Y

Y
(1 ¡ e¡¸x2

)e¡axdx

Performing the second integral by parts we get

2¸
Y

Z 1

0
x(2¡Y )¡1e¡ax¡¸x2

dx +
2¸a

Y (1 ¡ Y )

Z 1

0
x(3¡Y )¡1e¡ax¡¸x2

dx

¡ a2

Y (1 ¡ Y )
¡(2 ¡ Y )

a2¡Y +
a2

Y (1 ¡ Y )

Z 1

0
x(2¡Y )¡1e¡ax¡¸x2

dx

Now employing the fact that

I(º; a; ¸) =
Z 1

0
xº¡1e¡ax¡¸x2

dx = (2¸)¡º=2¡(º)h¡º

µ
ap
2¸

¶

where hº (z) is the Hermite function de¯ned by

hº (z) =
1

2¡(¡º)

1X

j=0

¡
µ

j ¡ º
2

¶
2(

j¡º
2 ) (¡z)j

j !
:

The Hermite functions may be evaluated in terms of the hypergeometric U:
Speci¯cally,

hº (z) = 2(
º
2 )U

µ ¡º
2

;
1
2
;
z2

2

¶
:

The hypergeometric U function can be obtained in terms of the con°uent hy-
pergeometric function, 1F1; using

U (a; b; z) =
¼

sin(¼b)

½
1F1(a;b; z)

¡(1 + a ¡ b)¡(b)
¡ z1¡b1F1(1 + a ¡ b; 2 ¡ b; z)

¡(a)¡(2 ¡ b)

¾
:
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We write the answer as

¡ log E [exp (¡¸Q(t))] (7)

= A

0
BB@

h
2¸
Y + a2

p
Y (1¡Y )

i
I(2 ¡ Y; ap; ¸) +

h
2¸
Y + a2

n
Y (1¡Y )

i
I(2 ¡ Y; an; ¸)+

2¸ap
Y (1¡Y ) I(3 ¡ Y; ap; ¸) + 2¸an

Y (1¡Y ) I(3 ¡ Y; an; ¸)¡
aY

p
Y (1¡Y ) ¡(2 ¡ Y ) ¡ aY

n
Y (1¡Y ) ¡(2 ¡ Y ):

1
CCA :

For the CGMY L¶evy process the result for the Laplace transform of quadratic
variation is as in (7) with now

A = Ct; ap = M ; an = G

As the quadratic variation for L¶evy process and Sato process in the CGMY
case have parametrically the same Laplace transforms we shall restrict all com-
putations to the CGM Y case.

5 From the Laplace transform of Quadratic vari-
ation to options on realized variance

An option on quadratic variation with strike K and maturity t pays at maturity
the sum

(Q(t) ¡ K)+ :

The time zero value of this option using risk neutral valuation is given by

w(K; t) = E
h
e¡rt (Q(t) ¡ K)+

i
:

Similar to the procedure in Carr and Madan (1998), we now de¯ne the
Laplace transform (with respect to the strike) of the option value by

°(¸; t) =
Z 1

0
e¡¸Kw(K; t)dK;

and we observe on integration that

°(¸; t) = e¡rt
·
Á(¸; t) ¡ 1

¸2 ¡ E [Q(t)]
¸

¸

Á(¸; t) = E
h
e¡¸Q(t)

i

Option prices may then be computed on inverting °(¸; t):
For the CGMY L¶evy process the expectation of quadratic variation may be

explicitly computed on integrating x2 against the L¶evy density. The result is

E[Q(t)] = Ct¡(2 ¡ Y )
·

1
M2¡Y +

1
G2¡Y

¸
:
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For options paying the positive part of the square root of Q(t) less the square
root of the variance strike, K; we have the payo®

³p
Q(t) ¡

p
K

´+
:

This contract may be valued as a portfolio of options on Q(t) using standard
methods for representing functions of an underlying risk as portfolios of options
(see for example Carr and Madan (2001)).

6 The Laplace Transform of Time Changes
Suppose the uncertainty underlying the stock price is of the form of time changed
Brownian motion with drift. Specī cally we have

S(t) = S(0)e(r¡q+!)t+X (t)

! = ¡ log E [exp(X(t))]

where X(t) is of the form

X(t) = °T(t) + W (T (t))

for a Brownian motion W (t) and an increasing random time change process
T (t) independent of the Brownian motion. Following Carr and Lee (2004),
who restricted attention to continuous time changes, but this is not necessary,
one may develop the Laplace transform of the time change in terms of the
characteristic function of log prices as described below.

We ¯rst note that many models fall in this category and include the Variance
Gamma, the Normal Inverse Gaussian, and as we shall show here the CGMY:
Evaluating for a possibly complex parameter p we observe that

S(t)p = S(0)pep(r¡q+!)t+p°T (t)+pW (T (t))

Taking expectations ¯rst conditional on the time change and the uncondi-
tional we get that

E [S(t)p] = S(0)pep(r¡q+!)tE
·
exp

µµ
°p +

p2

2

¶
T (t)

¶¸

Solving the equation

°p(¸) +
p(¸)2

2
= ¸

p(¸) = ¡
³
° +

p
°2 ¡ 2¸

´

we get that

E [exp (¡¸T(t))] = Áln S(¡ip(¸))S(0)¡p(¸) exp(¡p(¸)(r ¡ q + !)t)
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where Áln S(u) is the characteristic function of log prices. This characteristic
function is available as soon as any option pricing model has been calibrated to
option prices. For CGM Y the appropriate choice for ° is (G ¡ M )=2:

Substitution of this choice for ° in the explicit characteristic function for the
CGM Y yields on simpli¯cation the Laplace transform of the subordinator T (t);
as

E[e¡¸T (t)] = exp
¡
tC¡(¡Y )

£
2rY cos(´Y ) ¡ MY ¡ GY ¤¢

r =
p

2¸ + GM

´ = arctan

0
@

q
2¸ ¡ ¡ G¡M

2

¢2

¡
G+M

2

¢

1
A

This Laplace transform maybe employed to price options on the time change.
In the case of a continuous time change the result is tantamount to pricing
options on quadratic variation. In the next section we implement both the
pricing of options on quadratic variation for the CGM Y L¶evy process and the
pricing of options on the time change implicit in writing CGMY as time changed
Brownian motion with drift.

7 A Numerical Illustration
We calibrated the CGMY model to prices of options on the S&P 500 index for
the maturities :7968 and 1:0453 for June 2 2003. The results of the calibration
are presented in Table 1.

TABLE 1
CGMY on SPX 20030602
Maturity C G M Y RMSE AAE APE NOP
.7968 .3970 4.3120 19.5587 .5839 .0948 .0794 .0034 24
1.0453 .3251 3.7103 18.4460 .6029 .1141 .0889 .0034 25

Apart from the parameter estimates, we present the root mean square error
(RMSE), the average absolute error (AAE), the average percentage error (APE)
and the number of options used (NOP). We observe the calibration is stable
across the two maturities and the quality of the ¯t is good.

7.1 Quadratic Variation and its Square Root
For reasons of numerical stability it is useful to work with the quadratic variation
of the process 100X(t) as opposed to X(t) and this has the e®ect of dividing
G; M by 100 and scaling C by 100Y : The resulting quadratic variations have to
scaled back by a factor of 10000 to get back to the quadratic variation of X(t):
It is customary to quote the associated entities in annualized volatility terms
and this requires that we divide the realized variance by time to maturity and
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then take the square root. The expected payout on realized variance at the two
maturities in annualized volatility terms was 22:28% and 22:61% respectively.

Prices of options on realized variance at these two maturities for strikes
quoted in vol terms at 10% ;20%; and 30% were for the maturity :7968; 19:68%;
15:38% and 11:89% respectively. The corresponding ¯gures for the maturity
1:0453 were 20:57%; 16:73% and 13:40%:

To develop a quote on the square root of realized variance we ¯rst construct
an optimal linear hedge that is attained by a bond position and a position in
the realized variance contract that is tangent to the square root function at the
level of the expected realized variance. We used 22% for the level of the tangent.
The bond position is :0982 and the position in the realized variance contract is
2:5461 for the maturity :7968: For the maturity 1:0453 the corresponding values
are :1125 and 2:2229: This linear hedge attains the Jensen's inequality upper
bound that is the square root of 22%:

We may now cheapen the quote on the square root by writing options that
bend the payo® of the hedge position to get down to the square root function.
We just did this computing the slopes at a selected set of hedge strikes and
writing options to the order of the change in the slope to the right of the
tangency point while we write puts to the left of the tangency point, again
to the order of the change in slope. We used the strikes of 100 to 900 in steps
of 100 on the scale 10000 times realized variance. The resulting positions are
provided in Table 2.

TABLE 2
Option Positions for
Square Root Contract

Maturity
Strike .7968 1.0453
100 -1.4565,P -1.4565,P
200 -.6488,P -.6488,P
300 -.3407,P -.3868,P
400 -.2639,C -.2639,P
500 -.1948,C -.1817,P
600 -.1514,C -.1514,C
700 -.1221,C -.1221,C
800 -.1011,C -.1011,C
900 -.0855,C -.0855,C

The resulting quotes on the square root of realized variance for the maturities
:7968 and 1:0453 are respectively 17:47 and 20:93: The earlier maturity quote
is considerably below the Jensen's inequality upper bound.

7.2 The CGMY time change and its Square Root
For the time change of Brownian that yields the CGMY L¶evy processes as
calibrated at the two maturities we obtain the expected time change quoted
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here in volatility terms by numerically di®erentiating the Laplace transforms
that are evaluated as described in section 6. The resulting values are 16:64%
and 16:43% at the :7968 and 1:0453 maturities respectively.

Prices of options on the time change at strikes in volatility terms of 8:66%;
15%; and 20:61% are at the :7968 maturity 13:65%, 8:56%; and 4:37%: The
corresponding values at 1:0453 are 14:11%, 9:75%; and 5:69%:

Constructing the tangent for the Jensen's inequality upper bound, the bond
positions are :0714; and :0818 at maturities :7968 and 1:0453 respectively. The
positions in the underlying time change are respectively 3:5 and 3:05: We used 13
strikes and constructed positions in a manner similar to the quadratic variation
case. The resulting quotes for the square root of the time change are 14:21%
and 16:04% :

We note that these quotes compare well with the quadratic variation quotes,
with the exception that they are lower. This re°ects the possibility that the
time change is not the quadratic variation and is an underestimate of it.

8 Conclusion
This paper takes up directly the modeling of the evolution of quadratic variation
for the logarithm of the stock price. Our earlier work had shown that good
models for the prices of vanilla options across all strikes and maturities at a
given point of time are provided by the class of L¶evy processes associated with
in¯nitively divisible self decomposable limit laws for the variable of unit period
returns. Here we investigate the process for quadratic variation implied by this
L¶evy process as well as the associated Sato process for the log returns.

A number of process properties are described, including in¯nite activity,
variation, monotonicity and various levels of decomposability. In each case
we describe how these properties pass through from the L¶evy process to the
implied process for quadratic variation. We identify a particularly useful para-
metric class of models derived from the CGMY price process that delivers self
decomposability at the second level in that return spreads are limit laws. For
the quadratic variation of CGM Y we provide closed form formulae for Laplace
transforms of quadratic variation and show how these may be used directly to
price options on realized variance and realized volatility. We also investigate
CGM Y as a time changed Brownian motion and show that the time change
falls substantially short of the quadratic variation.
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