
Automated Volatility Forecasting∗

Sophia Zhengzi Li† and Yushan Tang‡

First Draft: November 18, 2020

This Version: May 19, 2023

Abstract

We develop an automated system to forecast volatility by leveraging over one hundred features and

five machine learning algorithms. Considering the universe of S&P 100 stocks, our system results

in superior out-of-sample volatility forecasts compared to existing risk models across forecast

horizons. We further demonstrate that our system remains robust to different specifications and

is scalable to a broader S&P 500 stock universe via hyperparameter transfer learning. Finally,

the statistical improvement in volatility forecasts translates into an enhanced annual return

around 8.5% from a cross-sectional variance risk premium strategy.
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1. Introduction

In the realm of risk management and asset pricing, volatility plays a critical role. In risk management,

volatility is a key input of almost all risk models that are essential to investment or regulatory

decision makings. In asset pricing, volatility directly impacts the price of derivatives and arguably

is related to the expected return of stocks. The availability of high-frequency price data over the

past two decades has spurred the field of modeling and forecasting realized variance, RV , which is

an accurate measure of volatility.1 Most of the existing RV forecasting models rely on a handful of

predictors and utilize them one by one within the framework of classical statistical inference. In this

paper, instead of arguing the dominance of a particular feature or algorithm, we have an ambitious

objective - building an automated forecasting system specially tailored to volatility prediction that:

1) reduces human intervention in choosing features and algorithms; 2) scales to fit many features

while controlling for overfitting; 3) utilizes more flexible and state-of-the-art learning algorithms;

and 4) achieves good and consistent out-of-sample performance.

To achieve these objectives, our system is designed with several distinct elements. First,

the system is inclusive of predictors. Instead of focusing on a few well-engineered features, we

consider many potentially useful features altogether and let the fitters decide how to combine them

automatically. The intuition is that a large and diverse set of features will have the benefit of

diversification and perform better out-of-sample. Our recommended feature sets include a range of

well-known RV -based features as well as the implied-volatility surface that receives far less attention

in the volatility forecast literature perhaps due to the challenges posed by the large parameter

dimension.2 Second, we apply a wide range of learning algorithms beyond the traditional OLS

models for capturing different types of predictive information from the large feature sets. At the

next level, we consider ensemble methods for combining results from those learning algorithms to

achieve stable out-of-sample performance.

We show the effectiveness of our automated forecasting system through the largest-scale
1Andersen and Bollerslev (1998) propose the use of realized volatility for accurately measuring the true latent

integrated volatility. Recently, Da and Xiu (2021) develop a simple estimator of volatility using high-frequency data
in the presence of noises.

2The main results use 16 well-constructed RV -based features from the literature. However, we find that replacing
them by the simple raw lagged daily RV ’s can yield comparable volatility forecast under our system in Section 5.4.
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experiment in the volatility forecasting literature that compares different combinations of features

and learning algorithms for 173 stocks that were S&P 100 Index constituents and another 663 stocks

that were S&P 500 Index constituents spanning more than two decades. Our automated system

is able to deliver superior out-of-sample forecasting performance, which can further translate into

significant gains for a cross-sectional variance risk premium strategy.

We start by comparing the predictive power of different features for the S&P 100 stock sample

using the traditional OLS fit. We consider 16 realized-variance-based (RV -based) features from

five popular volatility forecasting models including the HAR model by Corsi (2009), the MIDAS

model by Ghysels, Santa-Clara, and Valkanov (2006), the SHAR model by Patton and Sheppard

(2015), the HARQ-F model by Bollerslev, Patton, and Quaedvlieg (2016b), and the HExpGl model

by Bollerslev, Hood, Huss, and Pedersen (2018), as well as 102 implied-variance-based (IV -based)

features across all deltas and with maturity between one and three months. We find that the

forecasting performance of any stand-alone RV -based feature set can be improved if we combine

them all together, whose performance can be further enhanced by adding the IV -based features.3

After fixing the feature set, we evaluate the performance of five learning algorithms, including

LASSO, Principal Component Regression (PCR), Random Forecast (RF), Gradient Boosted

Regression Trees (GBRT), and Neural Network (NN). We find that machine learning algorithms

can improve performance over that of OLS models. Further, a simple average ensemble model that

combines all machine learning algorithms delivers even more superior performance across forecast

horizons, with relative out-of-sample R2’s (R2
OOS ’s) equal to 9.0%, 14.3%, 15.2%, and 10.0% at daily,

weekly, monthly, and quarterly horizons. The corresponding relative R2
OOS ’s jump to 10.4%, 18.7%,

29.6%, and 27.5% for the most recent decade, indicating that our automated volatility forecasting

system becomes increasingly powerful over time.

To enhance the interpretability of forecasts from our automated system, we investigate the

temporal dependence structure and feature group importance inherent in our system. Recognizing

that the complexity of our system may hinder economic insights, we employ two approaches. First,

we project our model forecasts onto a linear space spanned by lagged daily RV ’s to understand

the dynamics of the model forecasts. Additionally, we introduce a permutation group importance
3Eraker (2004) illustrates the advantages of using both options and stock data to examine the empirical performance

of jump diffusion models of stock price dynamics. Han, Liu, and Tang (2020) show that option prices can predict
downward jumps in stock prices.
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measure to assess the contributions of feature groups within machine learning models. Both

approaches serve to unravel the workings of our black-box system and add to our understanding

of how it achieves superior out-of-sample performance. In terms of temporal dependence, we find

the implied dependency structure of our system differs from existing models. Our system also

dynamically weighs past information according to the forecast horizon, potentially contributing

to its superior out-of-sample performance. With respect to feature group importance, we observe

that all three groups of features contribute at least 10% to the forecast across most horizons and

learning algorithms. Interestingly, implied variance features increasingly contribute more to volatility

forecasting over time. We posit that much of the gain is attributable to the improved quality of

implied variance features as the overall option market becomes more liquid.

We perform several robustness tests. First, we consider three alternative NN model specifications

and find that the performance of NN is not particularly sensitive to the NN architecture. Second,

we consider alternative ensemble methods with various weighting schemes, including data-driven

dynamic weighting. We find that none of these ensemble methods can dominate the simple

average method, which requires the least human intervention. Third, we add new features of firm

characteristics and pure noises to the model. We find that firm characteristics do not significantly

improve the OOS performance and they are only marginally important as a group in group

importance evaluation and the pure noise features do not hurt the OOS performance and are almost

of zero importance in group importance evaluation. Fourth, to further challenge our system, we

replace the well-engineered RV features in the literature with raw lagged RV ’s. The performance

of our system based on these raw inputs is comparable with those based on engineered features,

suggesting that the system is powerful for extracting volatility signals.

Is our machine-learning-based automated system scalable to more stocks? To this end, we examine

its performance on a large and different set of 663 S&P 500 stocks. To speed up hyperparameter

tuning for nonlinear models, we directly transfer tuning parameters for RF and GBRT learned from

the S&P 100 stock universe to the S&P 500 universe, and retrain both models without validating

these tuning parameters. The remaining ML-based and OLS-based models can be estimated

efficiently as the sample grows and are completely recalibrated using the S&P 500 universe. We

find that tuning parameters based on the original sample perform well in the new sample, and our

automated system consistently delivers significant gains over the traditional OLS-based approach.
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To more concretely evaluate the economic significance of our automated system, we examine

a volatility-based trading strategy that relies on the cross-sectional predictability of the variance

risk premium, as motivated by Han and Zhou (2011). Our results demonstrate that the superior

out-of-sample prediction performance from our system translates into an enhanced annualized return

of around 8.5% for a long-short portfolio sorted by the variance risk premium. This return spread

remains significant even after accounting for exposures to common risk factors.

Our paper makes two main contributions to the literature, both in methodology and in new

empirical findings. Regarding methodology, we propose a modern machine-learning-based framework

specifically designed for volatility forecasting, which consists of feature engineering and learning

algorithm fitting steps. In the feature engineering step, we consider many features all together, and

use learning algorithms along with prediction-oriented model selection procedures to automatically

and dynamically select features. In the learning algorithm fitting step, we illustrate the importance

of algorithm fitting using panel data instead of time series data, and go beyond traditional OLS

widely used in RV forecasting to include both linear and nonlinear learning algorithms. We do not

argue for the dominance of one particular algorithm over another as suggested by Wolpert (1996),

but consider combinations across all learning algorithms as long as they are well implemented to

avoid overfitting. As a result, our framework is less prone to human decision-making biases (e.g.,

cherry-picking of features and models) and interventions (e.g., using one set of features or models

for a particular sample period) and appears to be robust throughout our analyses.

Regarding new empirical findings, we conduct the largest-scale experiment involving the

forecasting of stock realized volatility. Our big dataset consists of intraday high-frequency data and

stock-level option data for 173 S&P 100 stocks and another 663 S&P 500 stocks over the period

from January 1996 to June 2019. Our giant feature set includes predictors drawn from five popular

RV -based volatility forecasting models and implied variances with one-to-three-month maturity

across all deltas. Our learning algorithms consist of major linear and nonlinear machine learning

models. With our comprehensive data and unique study design, we empirically demonstrate the

gains that can be obtained using many features and learning algorithms via our automated system

to forecast realized volatility.

Our paper adds to the growing literature on applying machine learning (ML) techniques to

predictive problems in asset pricing. This literature shows the power of ML in predicting stock
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returns, corporate bond returns, and mutual fund returns.4 Unlike these studies mostly focusing

on return prediction, we focus on volatility forecast which presents a unique set of opportunities

and challenges. First, volatility is known to be persistent, meaning that it is a high signal-to-noise

ratio problem as opposed to the low signal-to-noise ratio problem of return prediction (e.g., an

R2 of 50% or higher versus 10% or lower). This makes volatility forecast suitable for applying

sophisticated machine learning algorithms, which are mostly developed for improving performance

in high signal-to-noise ratio scenarios such as image classification and recommendation system

(e.g., error rate 6% – 60%).5 On the other hand, the high signal-to-noise ratio raises the bar for

our system to beat. To improve performance, we exploit volatility-specific properties such as the

implied-volatility surface for improving features and commonality among stocks for improving

fitting. Second, returns are known to be predicted by many non-market data features such as firm

characteristics. In contrast, few conclusions are reached about the relationship between non-market

data and future volatility. Based on the new framework, we offer some comprehensive evidence of

the predictive power of non-market data for volatility forecast.

In addition, several papers apply selective ML algorithms to volatility forecasting problems:

Audrino and Knaus (2016) use LASSO to forecast realized volatility; Luong and Dokuchaev (2018)

forecast realized volatility with random forest algorithms; Bucci (2020) and Rahimikia and Poon

(2023) apply neural networks to predict realized volatility; and Carr, Wu, and Zhang (2020) rely on

Ridge, Feedforward Neural Networks, and Random Forecast to predict realized variance of SPX.

Compared to studies that apply machine learning to volatility forecasting, our work focuses on

building an entire learning system with the most comprehensive feature set and algorithms that is

automated and robust for a much broader stock universe. Again, we emphasize the benefits of using

not just one or two particular learning algorithms but more specifically the benefits of an ML-based

automated volatility system that allows us to consider features and algorithms more inclusively,

because machines are able to scan, fit, and select features in a robust and prediction-error-optimized

fashion.

The paper is organized as follows. Section 2 discusses the data and features used in the paper.
4See, e.g., Rapach, Strauss, and Zhou (2013), which is the first to use LASSO in finance in modeling returns;

Gu, Kelly, and Xiu (2020) and Chen, Pelger, and Zhu (2023) on predicting stock returns; Bali, Goyal, Huang,
Jiang, and Wen (2022) on predicting corporate bond returns; and Li and Rossi (2021) and Kaniel, Lin, Pelger, and
Van Nieuwerburgh (2022) on predicting mutual fund returns.

5For examples of error rates in image classification and recommendation system, see Table 8 in Russakovsky et al.
(2015) and Figure 6 in Bao and Jiang (2016).
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Section 3 summarizes the details of the machine learning methodology and evaluation metrics.

Section 4 presents the out-of-sample performance of various forecasting models. Section 5 details the

robustness studies. Section 6 examines the out-of-sample performance of our system on a broader

set of S&P 500 stocks. Section 7 demonstrates the economic gains of our automated forecasting

system. Section 8 concludes. Further details regarding the data cleaning rules, feature construction,

algorithm fitting, and additional results are provided in the Appendix.

2. Data and Variables

2.1. Data

We consider a large universe of stocks that were ever constituents of the S&P 100 index over the

period from January 1993 to June 2019, listed on the New York Stock Exchange (NYSE), National

Association of Securities Dealers Automated Quotations (NASDAQ), and the American Stock

Exchange (AMEX) with share code of 10 or 11, price between $1 and $1,000, and daily number of

trades greater than or equal to 100. To prepare the intraday price data, we collect minute-by-minute

observations of intraday prices from the NYSE trade and quote (TAQ) database by applying the

cleaning rules of Bollerslev, Li, and Todorov (2016a), Bollerslev, Li, and Zhao (2020), and Jiang, Li,

and Wang (2021). The data cleaning rules are detailed in Section A.1 of the Appendix. In addition

to the TAQ data, we collect implied variances for the same universe of stocks from the volatility

surface data in OptionMetrics. The database provides implied volatilities with various maturities

and deltas at the stock and date levels. In our empirical analyses, we rely on implied variances

(i.e., squared implied volatilities) from call and put options with maturity of one month (30 days),

two months (60 days), and three months (91 days), and absolute delta of 0.1, 0.15, ..., 0.9.6 Some

RV -based features (e.g., features from the HExpGl model) require a longer historical sample for

estimation. To ensure that all RV -based features have the same history, we use the sample between

1993 and 1995 to construct their first observations; therefore our features first become available in

January 1996. Our final S&P 100 stock sample consists of 173 unique stocks with at least five years

of data for all features and response variables over the period from January 1996 to June 2019. On

average, there are 138 unique stocks per day.
6Implied variances with ten-day maturity only became available in November 2005 for a handful of stocks and are

excluded from our analyses because of limited availability of data.
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Our main sample of the S&P 100 stock universe is large-scale by the volatility forecasting

literature standard.7 The focus on S&P 100 stocks helps ensure all stocks are frequently traded

and thus their realized features based on intraday data are less subject to measurement errors. In

subsequent sections, we further examine the out-of-sample performance of various models for the

663 S&P 500 stocks that are not S&P 100 constituents via transfer learning, and then the economic

gain for all 836 S&P 500 stocks.8 As far as we know, our universes are the largest ever that has

been explored in the RV forecasting literature.

2.2. Response Variable

In this paper, we aim to predict realized variance (RV ), which is a consistent estimator of the

quadratic variation of the log price process over a given period. Formally, let pi,t denote the natural

logarithm of stock i’s price on day t. We omit subscription i in this section for simplicity and assume

the log price follows a generic jump diffusion process:

pt =
∫ t

0
µsds +

∫ t

0
σsdWs + Jt, (1)

where µt and σt denote the drift and diffusive volatility processes, respectively, W is a standard

Brownian motion, J is a pure jump process, and the unit time interval corresponds to a trading

day. It is natural to extend the notation to intraday prices using the notation pt, pt+1/n, ..., pt+1,

assuming prices are observed at n + 1 equally spaced time intervals from day t to day t + 1. The

annualized daily RV based on summing over frequently sampled squared returns within a trading

day is then:

RV d
t = 252 ×

n∑
i=1

r2
t−1+i/n, (2)

where rt−1+i/n = pt−1+i/n − pt−1+(i−1)/n is the log return over the ith time interval on day t. In

particular, we include the overnight squared returns in the daily RV estimation to obtain an
7Another paper we are aware of that uses such a large dataset to forecast volatility is Patton and Sheppard (2015),

which relies on 105 unique stocks that were constituents of the S&P 100 index and with four-year continuous data
between June 1997 and July 2008.

8To demonstrate that the superior performance of our system remains intact for any potential selection biases,
we carry out supplementary evaluations. These evaluations involve relaxing the requirement of five-year data for all
features and response variables, and excluding sample period before a stock is formally included in the S&P 500 index,
as detailed in Section A.4.5 in the Appendix.
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RV measure for the entire day. As shown in Andersen, Bollerslev, Diebold, and Labys (2001,

2003), RV is a consistent estimator for quadratic variation when the number of intervals n → ∞.

Longer-horizon RV ’s (e.g., weekly, monthly, and quarterly) can be estimated by averaging daily

RV over the corresponding intervals. Formally, the h-day ahead RV is defined as:

RV t+h
t+1 = 1

h

h∑
i=1

RV d
t+i, (3)

where h = 5, 21, 63 corresponds to weekly, monthly, and quarterly RV , respectively.9

Our research objective is to build better predictive models for the responses of daily, weekly,

monthly, and quarterly RV ’s. To empirically compute RV , we use the five-minute sampling frequency

commonly employed in the realized volatility literature.10 To further increase the efficiency of RV

estimates, we apply a subsampling approach following Zhang, Mykland, and Aït-Sahalia (2005).

Specifically, we compute five separate daily RV estimates by starting the trading day at 9:30, 9:31,

9:32, 9:33, and 9:34, respectively, and then average over these five estimates to obtain the final daily

RV estimate.

2.3. Features

Our research design involves first constructing input features that potentially contain predictive

information, then fitting learning algorithms to estimate functions that map features to the response

variable, and finally evaluating the performance of our predictions. We consider two types of features:

1) realized features proposed by popular RV -based volatility forecasting models: HAR, MIDAS,

SHAR, HARQ-F, and HExpGl; and 2) implied variance features.11 The table below summarizes the

realized features from each risk model along with the option-implied features from OptionMetrics.

Definitions of the features are detailed in Section A.2 of the Appendix.

Table 1 reports pairwise correlations for all realized features and selected implied variance
9Volatilities are shown to exhibit horizon effects. For example, Carvalho, Lopes, and McCulloch (2018) find that

under plausible prior specifications, stocks are less volatile in the long run, whereas Kamara, Korajczyk, Lou, and
Sadka (2016) show that systematic factors that are portfolio excess returns tend to exhibit volatility at longer horizons
greater than a proportionate scaling up of short-horizon volatility.

10Liu, Patton, and Sheppard (2015) compare more than 400 different RV estimators across multiple asset classes
and conclude that it is difficult to significantly beat the 5-minute RV .

11Christensen and Prabhala (1998) find that volatility implied by S&P 100 index option prices predicts ex-post
realized volatility. Busch, Christensen, and Nielsen (2011) further show that implied volatility contains incremental
information about future volatility across different asset classes.
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Source cccccccccccccccccccccFeatures

HAR RV d, RV w, RV m, RV q

MIDAS MIDAS term for the corresponding forecast horizon

SHAR RV P d, RV Nd, RV w, RV m, RV q

HARQ-F RV d, RV w, RV m, RV q,
RV d

√
RQd, RV w√

RQw, RV m√
RQm, RV q√

RQq

HExpGl ExpRV 1, ExpRV 5, ExpRV 25, ExpRV 125, ExpGlRV
(# of unique realized features from all five models = 16)

OptionMetrics CIV jm,δ and P IV jm,−δ, j = 1, 2, 3, δ = 0.1, 0.15, ..., 0.9
(# of implied variance features = 102)

features with absolute delta equal to 0.5.12 MIDAS features for various forecast horizons exhibit

the highest correlations of 0.96 or above with each other likely because they are calibrated by

fitting highly correlated dependent variables to the same daily RV terms as shown in Eq. (A.3)

in the Appendix. For a given forecasting horizon, we only use one MIDAS feature corresponding

to that particular horizon so that the high correlations among MIDAS features will not cause

multicollinearity. HARQ-F features (e.g., RV k
√

RQk) have weak correlations with other realized

features, mostly because these features contain realized quarticities while other realized measures

are all linear combinations of daily RV ’s. Interestingly, IV -based features CIV s and PIV s exhibit

relatively weak correlations with all RV -based features, suggesting potentially new information

contained in the IV -based features to the RV -based features.

3. Machine Learning Methodology

We investigate five machine learning (ML) algorithms in total. The first two are linear: Least

Absolute Shrinkage and Selection Operator (LASSO) and Principal Component Regression (PCR).

The next three are nonlinear: Random Forest (RF), Gradient Boosted Regression Trees (GBRT),

and Neural Network (NN). In this section, we first discuss the training and validation scheme of

each model, and then explain how we standardize features in certain models. Next, we introduce an

ensemble model based on the five individual algorithms. Lastly, we propose a new group importance
12Table A.1 in the Appendix provides the steps to construct the final stock sample and the descriptive statistics of

the features.
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metric. Detailed descriptions of these ML algorithms are provided in Section A.3 of the Appendix.

3.1. Training and Validation

Machine learning algorithms include key hyperparameters that control for model complexity. We

should tune these parameters based on the prediction error rather than the training error. Otherwise,

learning algorithms, especially nonlinear algorithms, will overfit the training data and do poorly

out of sample. Accordingly, we adopt a training-validation-testing scheme for hyperparameter

calibration and model assessment. As discussed later in Section 4.4, we purposely fit pooled models

based on panel data in order to increase estimation efficiency over stock-by-stock fitting. Specifically,

at the end of each year t, we divide the sample into three parts: an expanding-window training

set consisting of data from data inception in year 1996 to year t − 1 (a minimum of four years),

a validation set consisting of year t data, and a testing set consisting of year t + 1 data. In other

words, we refit our models every year by increasing the training set by one year, and rolling the

validation and testing sets one year forward.

Our training-validation-testing scheme allows us to estimate a model with 118 predictors using

data at a much higher dimension (i.e., N ≫ P ). For example, our first training sample contains four

years of data from year 1996 to 1999, and our last training sample contains 22 years of data from

year 1996 to 2017. Given there are 138 unique stocks per day on average, our first training sample

includes more than 130,000 observations (138 × 252 × 4), and our last training sample includes more

than 760,000 observations (138 × 252 × 22).

Our scheme leaves us with a total of 19 years of predictions between 2001 and 2019 corresponding

to 19 fitted models for each learning algorithm. For models that do not require validation (e.g.,

OLS), we use data from data inception to year t for training and data in year t + 1 for testing. Thus,

the overall testing sets are the same across models and differences in model performance cannot be

driven by sample differences.

3.2. Feature Standardization

Before fitting LASSO, PCR, and NN, we standardize the features in each training-validation-testing

sample using the training sample mean and standard deviation. We perform feature standardization

on these models because: 1) by design, LASSO shrinks large coefficients towards zero via regularization,
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which in turn introduces scale sensitivity into model estimation; 2) PCR first performs PCA on the

feature set to construct principal components, and PCA can be sensitive to the variances of the

initial features; and 3) NN with flexible activation functions in hidden layers requires significant

resources for numerical computation, and unscaled features can lead to slower convergence and

increase the likelihood of sticking in local optima. Other than LASSO, PCR, and NN, standard

OLS and tree-based models are scale equivariant and do not require feature standardization.

3.3. Ensemble Model

For a given forecast horizon, we denote the RV prediction from ML algorithm m by ĝm(zit; θm),

where zi,t is the feature vector for stock i on day t and θm is the unknown model parameter.

After obtaining forecasts from each stand-alone learning algorithm, we consider an ensemble model

that combines forecasts from several models. The intuition is that no single model is expected to

dominate the others under any circumstances (Wolpert, 1996). Different models might do well in

different scenarios and by combining them we can make the forecast more robust. Our main results

are based on a simple equal-weighted average of all five machine learning methods as our ensemble

forecast and call it AVG:

AV G = 1
5

5∑
m=1

ĝm(zi,t; θm). (4)

In the robustness analysis of Section 5.2, we study different weight schemes including model-driven

dynamic weighting.

3.4. Performance Evaluation

Since we focus on prediction rather than statistical inference, we use out-of-sample R2 relative to a

benchmark as our main performance measure:

R2
OOS(m) = 1 −

∑
i,t(RVi,t − R̂Vi,t

m
)2∑

i,t(RVi,t − R̂Vi,t
benchmark

)2
, (5)

11

Electronic copy available at: https://ssrn.com/abstract=3776915



where R̂Vi,t
m

refers to forecasts from one of the OLS-based or machine-learning-based volatility

forecasting models, and R̂Vi,t
benchmark

is the forecast of a benchmark model.13 A positive R2
OOS(m)

indicates that model m achieves smaller out-of-sample prediction mean squared errors than the

benchmark model. We consider two benchmarks: one is the prediction from HAR, and the other

is the long-run mean, which equals the expanding sample mean of RV ’s from the inception date

until day t. The long-run mean is a commonly used benchmark and also mirrors the out-of-sample

evaluation measure used in the return prediction literature. However, the bar for beating the

long-run mean is low because volatilities are persistent and time-varying. HAR is perhaps a better

benchmark because it empirically shows good volatility forecasting performance and is also easily

implementable and interpretable.

In addition to R2
OOS(m), we also use a modified Diebold and Mariano (1995) (DM) test for

pairwise comparison of two models. The DM test is based on the difference in the out-of-sample

squared error losses between two forecasting models. More formally, for stock i on day t, the loss

differential is defined as di,t = (ê(1)
i,t )

2
− (ê(2)

i,t )
2
, where ê

(1)
i,t and ê

(2)
i,t are the prediction errors from

two models. We then compute the cross-sectional mean of di,t and denote it by dt. The modified

DM test statistic DM = d/σ̂d, where d and σ̂d are the mean and Newey and West (1987) standard

error of dt over the testing sample.

3.5. Group Importance Metric

To shed additional light on how these features and learning algorithms work for volatility forecasting,

we investigate how different features contribute to the prediction at various horizons. Our feature

importance evaluation process differs from those in existing applications of machine learning to

asset pricing. For example, Gu, Kelly, and Xiu (2020) compute the reduction in R2 obtained by

setting all values of one feature j to zero within each training set and then averaging the reductions

over the training samples to obtain a per-feature importance measure. In our evaluation, we

consider per-group feature importance instead of per-feature variable importance by assigning highly

correlated features to one group and computing the importance of the entire group. The motivation

is to avoid the dilution effect of per-feature variable importance. Consider the following simple
13Mirroring Swanson and White (1997) and Bollerslev, Hood, Huss, and Pedersen (2018), we apply an “insanity

filter” to avoid deflation in R2
OOS . Specifically, we replace any predictions that exceed (fall below) the maximum

(minimum) outcome value in the training sample with the observed maximum (minimum).
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example. Suppose two uncorrelated features X1 and X2 are equally important so they reduce R2

equally by 0.5 from the joint model (X1, X2). Now suppose a new feature X3 is introduced and

X3 is highly correlated with X2 but not with X1. If the model is estimated in a sensible way, then

the variable importance of X2 measured by its marginal reduction of R2 will be diluted by X3

because X3 might serve as a proxy for X2 in the model. The dilution phenomenon would be more

pronounced when there are many more correlated variables. For our feature set, several subgroups

are highly correlated as shown in Table 1. Because of the dilution effect, the per-feature variable

importance measure might not truly reflect the importance of that feature. Therefore, we consider

per-group feature importance to reduce cross-group correlations and also to reduce the number of

candidates for feature importance evaluation.

Second, instead of setting all values of the features within a group to zero, we consider random

permutations of values across observations within the training set for the tested features as suggested

by Fisher, Rudin, and Dominici (2019). This is because setting all feature values to zero introduces

unintended bias to nonlinear models. To offer a simple example, suppose that we wish to test the

marginal contribution of daily realized variance RV d
t in RF fitting. If we simply set RV d

t to zero,

all observations will fall into one child node at each binary split that uses RV d
t as the splitting

variable, causing severe bias in the prediction. In contrast, permutation breaks the association

between features and the true outcome, enabling us to remove the effects of the tested features.

Specifically, for each training set and each feature group k, we permutate all values of each feature

within group k using the panel of stocks without replacement and record the corresponding R2.

To reduce the permutation variance, we repeat the permutation five times and use average R2 to

compute the reduction in R2. We then average the reductions in R2 over different training samples

to obtain a single group importance measure GIk.

4. Out-of-Sample Performance of Forecasting Models

In this section, we show how machine learning can improve the volatility forecasting performance

over that of traditional approaches. We begin by establishing the baseline performance by applying

the traditional OLS method to each of the feature sets described in Section 2.3, as is commonly done

in the literature. We then show that combining many RV -based features improves performance
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over that of any stand-alone feature set and that including the new IV -based features adds further

value to RV -based features. After fixing the feature set, we demonstrate the benefits of more

sophisticated learning algorithms in comparison with the baseline OLS, and show that an ensemble

model combining many learning algorithms delivers superior performance across all forecast horizons

and time periods. Furthermore, we illustrate the benefits of using panel data in model fitting and

provide insights into the temporal dependency structure inferred by the models. Lastly, we evaluate

the importance of different feature groups.

4.1. OLS-Based Models

In Table 2 we report the out-of-sample performance of OLS-based volatility forecasting models based

on the R2
OOS relative to HAR from Eq. (5).14 The first column lists the model names and the second

column summarizes their features. First, we focus on the four popular RV -based models. Among

them, MIDAS, SHAR, and HARQ-F outperform HAR across all forecast horizons, as is evident by

the positive relative R2
OOS ’s. HExpGl outperforms HAR at the daily, weekly, and monthly horizons,

while slightly underperforms HAR at the quarterly horizon.

Next, we combine all 16 realized measures from the MIDAS, SHAR, HARQ-F, and HExpGl

models through OLS.15 This model, namely OLSRM , not only outperforms HAR by wide margins

across all horizons, but it also generally beats individual models in most cases. Only HARQ-F has

a higher relative R2
OOS than OLSRM at the quarterly horizon. Overall, the superior performance

of OLSRM illuminates the importance of feature combination in improving volatility forecasting

performance.

We then fit OLS to the 102 implied variances (IV ’s) from call and put options with one-, two-,

and three-month maturities and denote the model by OLSIV . Unlike the realized features, these IV

features seem to underperform HAR as measured by the relative R2
OOS ’s. However, this does not

mean that IV features are useless in the presence of realized features. Although IV ’s are weakly

informative as stand-alone features, they can still add value as long as they contain information

that is orthogonal to the realized features. To test whether there is any additional value gained

from IV features, we expand the feature set in OLSRM by adding the 102 IV features to the 16
14R2

OOS ’s relative to the long-run mean of RV ’s for OLS-based models are presented in Table A.2 in the Appendix.
15For a given forecast horizon, we include only one MIDAS term corresponding to the same horizon. For instance,

in predicting weekly RV , we keep the MIDAS term constructed by using coefficients estimated from forecasting
weekly RV according to Eqs. (A.2) and (A.3) in the Appendix.
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realized features and call the model OLSALL. The row labeled OLSALL reports its performance.

As can be seen, OLSALL has the highest relative R2
OOS for the first three forecast horizons among

all OLS-based models in Table 2. At the quarterly horizon, however, the relative R2
OOS remains

negative at −0.6%, which is worse than several individual RV -based models. The result might

reflect the fact that, at the quarterly horizon, effective sample size drops significantly and thus

we do not have enough data to estimate a dense OLS model with 118 features. Specifically, our

forecasting models are designed to use as much data as possible by fitting daily updated RV ’s on

daily updated features for all forecast horizons. Because of overlapping data, however, the effective

sample size of the data at the quarterly horizon is only about 1/63 of the sample size at the daily

horizon. In such a case, we may need sparse or more regularized models. Another point worth

noting is that OLSALL outperforms OLSRM at the first three horizons, indicating the additional

information contained in IV measures.

4.2. Machine-Learning-Based Models

Having established the initial evidence that increasing the number of features can improve forecast

performance through a simple OLS fit, we now show that performance can be further improved

by using learning algorithms other than OLS. Table 3 presents the R2
OOS ’s relative to HAR for

the five learning algorithms discussed in Section 3, and for an ensemble model based on the five

individual machine learning models (AVG).16 Each model is trained using all 118 realized and

implied variance features, so OLSALL serves as a natural baseline. The second column of Table 3

lists the hyperparameters of each model with tuning parameters in bold, and in the last column we

report the R2
OOS ’s relative to HAR. The most obvious pattern is that all machine learning models

outperform HAR with positive relative R2
OOS ’s across the board. We then begin assessing the

out-of-sample performance of each of the five machine learning models.

4.2.1. Linear machine learning models

First, we focus on the two linear learning algorithms LASSO and PCR. The row labeled “LASSO”

and “PCR” in Table 3 presents their R2
OOS ’s relative to HAR. For LASSO, we validate its shrinkage

parameter λ from a set of 100 distinct values that covers a wide range of sparsity levels in the
16R2

OOS ’s relative to the long-run mean of RV ’s for machine-learning-based models are presented in Table A.3 in
the Appendix.
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corresponding LASSO estimates of regression coefficients. For PCR, we validate the number of

principal components as any integer between 1 and 20. The sparsity-encouraging LASSO model has

higher relative R2
OOS ’s than the unregularized OLSALL across all forecast horizons, indicating the

importance of sparsity in enhancing the out-of-sample performance. The dimension-reduction PCR

approach underperforms LASSO at the daily, weekly, and monthly forecast horizons, but exhibits

better performance at the quarterly forecast horizon with a relative R2
OOS of 7.8%. Why does PCR

underperform at shorter horizons? Given that IV features account for 86% of total features (102

out of 118), the first few principal components likely put more weights on IV features and thus

tend to better predict longer horizon RV ’s due to the longer maturities of IV ’s. Next, we turn our

attention to the three nonlinear learning algorithms: RF, GBRT, and NN.

4.2.2. Nonlinear machine learning models

To train RF, we set the total number of trees to be 500 and use a subsample of 50% of the

observations randomly drawn from each training sample (i.e., subsample = 0.5). At each node

split, we randomly select 5 out of the 118 features (i.e., subfeature = ln(118) = 5). Subsample and

subfeature can help decorrelate the trees to reduce overfitting. The maximum tree depth across all

trees L is a tuning parameter, which can take any integer value between 1 and 20. The relative

R2
OOS of RF from Table 3 is at 3.2% for the daily forecast horizon and at 6.4% for the weekly

forecast horizon, both of which are below the corresponding metrics of OLSALL. However, RF

outperforms OLSALL at the monthly and quarterly forecast horizons with relative R2
OOS ’s at 9.5%

and 5.4%, respectively.

To train GBRT, we impose two early-stopping rules (whichever is met first): 1) when the MSE

of the model does not decrease after 50 consecutive iterations, and 2) when the total number of trees

reaches 20,000. Both the number of trees B and the maximum tree depth are tuning parameters

that we adaptively choose in the validation step, and the maximum tree depth can take any integer

value between 1 and 5. For the remaining hyperparameters, we set the learning rate to be 0.001; to

grow each tree, we randomly draw 50% of the observations from the training sample; at each node

split, we randomly select 5 out of the 118 features (i.e., subfeature = ln(118) = 5). Overall, GBRT

underperforms OLSALL at the daily and weekly forecast horizons with relative R2
OOS ’s equal to

4.7% and 10.2%, but significantly outperforms OLSALL at the monthly and quarterly horizons with
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relative R2
OOS equal to 10.8% and 6.3%.

The performance of the two tree-based models improves as the forecasting horizon increases,

which is likely driven by the strong predictive power of IV features over longer forecast horizons.

To see this, for both models, we only consider a random set of ln(P ) features at each tree split, and

IV features are more likely to be included in tree-based models than realized features given their

dominance in the feature set. At shorter forecast horizons, these IV features have limited predictive

power because of their longer maturities between one and three months. At longer forecast horizons,

however, the maturity of IV features becomes more aligned with the forecast horizon, and IV

features included in the tree-based models become more powerful in predicting future RV ’s.

To train NN, we consider two hidden layers with five and two neurons, respectively.17 We choose

the popular rectified linear unit (ReLU) as the activation function. In general, NN performs fairly

well with relative R2
OOS equal to 10.5%, 16.7%, 14.3%, and 4.8% at the daily, weekly, monthly, and

quarterly forecast horizons, respectively. NN delivers the best performance across all models at the

first three horizons, but loses its dominance at the quarterly horizon. One potential explanation is

that features interact less with each other or contribute to RV more linearly at this horizon.18

4.2.3. An ensemble model

Comparing the out-of-sample performance of the five learning algorithms, we find that no single

model strictly dominates the others. We then consider an ensemble model that combines volatility

forecasts from different models (see, e.g., Timmermann, 2006, for an extensive survey of forecast

combination.) We take a simple average of the five volatility forecast models and name the model as

AVG. The motivation is that averaging forecasts from different models can improve the robustness of

the model and reduce forecast variance. The out-of-sample performance of AVG shown at the bottom

of Table 3 is indeed superior. This average model outperforms the first four individual machine

learning models at each forecast horizon by a significant margin. Although the performance of AVG

is comparable to or slightly weaker than that of NN at daily to monthly horizons, it significantly

dominates NN at the quarterly horizon with an improvement in R2
OOS relative to HAR of more

17The results are robust to alternative NN structures as discussed in Section 5.1.
18To help generate insights into model complexity, Figure A.3 in the Appendix displays the chosen tuning parameters

of LASSO, PCR, RF, and GBRT for each forecast horizon and validation period.
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than 5%.19 Overall, the relative R2
OOS of AVG ranges from 9.0% at the daily forecast horizon to up

to 15.2% at the monthly forecast horizon, further highlighting the advantage of combining machine

learning models in forecasting RV ’s. In Table 4, we report the Diebold-Mariano (DM) t-statistics

for pairwise comparisons of performance for a model in the row versus a model in the column; the

magnitude of the DM statistics map to p-values in the same fashion as regression t-statistics. The

simple average of all machine learning models AVG performs very well across all forecast horizons

at the 1% or 5% significance level in most cases.

4.3. Performance Over Time

To assess the relative performance of each model over time, we further divide the 2001–2019

testing sample into three subperiods (2001-2007, 2008-2009, and 2010-2019) and calculate the

R2
OOS ’s relative to HAR for both OLS-based and ML-based models. In Table 5 we summarize the

out-of-sample performance of all models over the three subperiods.

Panel A reports the results for the pre-crisis period between January 2001 and December 2007.

Among OLS-based models, OLSALL performs the best at daily, weekly, and monthly forecast

horizons with relative R2
OOS ’s between 5.2% and 8.5%; at the quarterly forecast horizon, HARQ-F

has the highest relative R2
OOS at 6.7%. Turning to the ML-based models, AVG exhibits superior

performance across all forecast horizons, with relative R2
OOS ’s ranging from 6.6% to 20.5%.

Panel B shows the out-of-sample performance of all models between January 2008 and December

2009, the period covering the financial crisis and its aftermath. OLSALL continues to outperform the

remaining OLS-based models at the daily and weekly forecast horizons, whereas MIDAS dominates

at the monthly horizon and HARQ-F beats other OLS-based models at the quarterly horizon.

Among ML-based models, NN performs the best at the daily forecast horizon with a relative R2
OOS

equal to 13.4%, and it performs on par with LASSO at the weekly horizon with a relative R2
OOS

equal to 14.9%. LASSO dominates at the monthly horizon with a relative R2
OOS of 9.5%. At

the longer quarterly horizon, PCR achieves the highest relative R2
OOS equal to 5.7%. The overall

winning model remains, however, the ensemble model AVG. Although AVG cannot beat all of

the stand-alone models at a given forecast horizon, it consistently delivers top performance across

horizons.
19In Section 5.2, we use Elastic Net to train optimal weights for combining individual forecasts and find that the

resulting combination forecast AV GENet outperforms NN at daily, weekly, and quarterly horizons.
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Panel C presents the relative R2
OOS ’s for each model during the post-crisis period between

January 2010 and June 2019. Interestingly, the performance of OLSALL during this period is

quite impressive with relative R2
OOS ’s equal to 7.5%, 13.5%, 20.2%, and 15.1% at the daily, weekly,

monthly, and quarterly horizons. In contrast, the relative R2
OOS ’s of the popular RV forecasting

models are all no greater than 6%. A natural question is, what explains the stellar performance

of OLSALL? We conjecture that much of the gain comes from the better quality of the implied

variance features in recent years. For example, the average daily dollar trading volume for stock

options has increased steadily over the past two decades, implying that the overall option market is

becoming more efficient in incorporating information about future price movements.20 To mention

more direct evidence, the relative R2
OOS ’s of OLSIV during the post-crisis period all become positive,

in sharp contrast to the mostly negative values in the pre-crisis and crisis periods. This trajectory

sheds additional light on the importance of including implied variance predictors in forecasting

RV ’s. Meanwhile, the ML-based models exhibit even more superior predictive power across forecast

horizons than OLSALL in the last decade. In particular, the ensemble model AVG is associated

with relative R2
OOS ’s of 10.4%, 18.7%, 29.6%, and 27.5% at daily, weekly, monthly, and quarterly

horizons, all dominating OLSALL by significant margins. Taken together, the subsample results

further highlight the importance of using machine learning techniques to exploit the rich information

content in the giant feature set.

4.4. Individual Fitting vs. Panel Fitting

In our main analyses, we purposely fit each model using panel data. Several recent studies rely

on time-series models to extract return patterns.21 For volatility prediction problems, however,

using panel data instead of time-series data can increase estimation efficiency, given the well-known

commonalities in the dynamic dependencies of volatilities and spillover effects across stocks.22 To

illustrate the benefits of using panel data, we compare the performance of time-series fitting vs.
20Figure 2 of Christoffersen et al. (2018) demonstrates a decline in the effective relative spreads for options

throughout their sample period between January 2004 and December 2012, providing further evidence that the option
market is becoming more efficient.

21See, e.g., Guijaro-Ordonez, Pelger, and Zanotti (2022), Jiang, Kelly, and Xiu (2022), and Murray, Xiao, and Xia
(2022).

22Volatility spillover effects and commonalities in the dynamic dependencies are well documented in the traditional
GARCH and stochastic volatility models, see Andersen, Bollerslev, Christoffersen, and Diebold (2006), Connor,
Korajczyk, and Linton (2006), Taylor (2007), and the references therein. Recent work by Herskovic, Kelly, Lustig, and
Van Nieuwerburgh (2016) and Bollerslev, Hood, Huss, and Pedersen (2018) further highlights the co-movement of
stock volatilities over time.
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panel fitting in Table 6. Specifically, we report the R2
OOS ’s relative to the long-run mean of RV

for six OLS-based volatility forecasting models fitted stock by stock (Panel A) or using panel data

(Panel B).23 Across all models and forecast horizons, the R2
OOS ’s based on panel data are consistently

higher than those based on individual time series. The contrast is particularly remarkable for

OLSRM with more predictors and for the longer quarterly forecast horizon when the effective sample

size is smaller, consistent with the findings of Bollerslev, Hood, Huss, and Pedersen (2018) that the

use of a panel-based estimation technique that explores risk similarity across stocks can enhance

the efficiency of individual forecasts.24

To further visualize the difference between individual and panel fitting, Figure 1 presents a

scatterplot of the average monthly realized and predicted variances from individual and panel

OLSRM models for each of the stocks in our S&P 100 sample. The reported average realized

variances for each of the stocks are simply calculated as the time-series mean of the realized

variances. As the figure shows, the panel-fitting-based predictions are in general much closer to

the 45-degree line than the individual-based predictions for OLSRM models at monthly forecasting

horizon. Panel fitting also produces predictions less spread out than individual fitting, suggesting it

can greatly reduce estimation variance by exploiting the commonality of volatility dynamics across

stocks.

4.5. Model Implied Temporal Dependency

The presence of both linear and nonlinear model specifications in our automated system complicates

the interpretation of predictions, particularly when examining the temporal dependency structure

utilized in forecasting volatility. However, whereas the actual structure is not directly observable,

the dynamics of the model forecasts may be meaningfully inferred by linearly projecting the forecast

to the space of past daily RV ’s. Specifically, we regress our RV forecasts from the AVG model on

63 lagged daily RV ’s using the full out-of-sample evaluation period spanning from January 2001 to

June 2019. Panel A of Figure 2 presents the implied weights, represented as regression coefficients,
23We compare the R2

OOS ’s relative to the long-run mean of RV instead of these relative to the HAR model
prediction given the performance of the latter may be affected by the fitting scheme, as shown in the first row of Table
6.

24In Section A.4.1 of the Appendix, we delve into further analyses of the factor structure in volatilities. Our
findings reveal that the first few latent factors from PCA are unable to account for the majority of cross-sectional
variations effectively. Moreover, we discover that relying on a common volatility factor for volatility prediction does
not enhance the forecasting performance.
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for the AVG model across forecast horizons. For comparison purposes, we also plot the weights

assigned to lagged RV ’s in the HAR, HExp, and MIDAS models for the monthly forecast horizon

over the same period in Panel B.

As shown in Panel A, our system assigns greater weight to initial lags when the forecast horizon

is shorter. The decay rates are also higher for shorter horizons, aligning with our conjecture that

short-term signals hold greater influence in shorter forecast horizons. Yet the temporal dependencies

do not change too dramatically from lag to lag, underscoring the overall interpretability of our

automated system. Turning to Panel B, when predicting monthly RV , the implied weights are

generally fairly close across models. Nonetheless, the HAR, HExp, and AVG models exhibit slightly

“faster” decay than the MIDAS model, with a more rapid initial decay and less weight assigned to

intermediate lags ranging from two days to two weeks. Among these three models, the AVG model

is the “slowest” with less weight allocated to the initial lags and a smoother decay. Our findings

suggest that, although seemingly similar, the dependency structure of the AVG model differs from

existing models, potentially contributing to its superior out-of-sample performance.

4.6. Group Importance

We rely on the group importance measure described in Section 3.5 to assess the importance of each

group of features for forecasting future RV ’s while simultaneously controlling for the rest of the

feature groups. Specifically, we divide the 118 features into three groups. The first group “MIDAS &

ExpRV” includes the MIDAS feature, ExpRV 1, ExpRV 5, ExpRV 25, ExpRV 125, and ExpGlRV ,

all of which are smoothly weighted sums of lagged daily RV ’s over longer periods. The second group

“RV& RQ” includes RV d, RV w, RV m, RV q, RV P d, RV Nd, RV d
√

RQd, RV w
√

RQw, RV m
√

RQm,

and RV q
√

RQq, all of which are based on simple RV and/or RQ terms. And the third group

“Implied Variance” includes 102 implied variance features. For each forecast horizon and each model,

we estimate the reduction in R2 by permutating all values of a feature group within each training

sample, and then average the reductions in R2 over all training samples to obtain a single group

importance measure. As our group importance measures for each forecast horizon are normalized to

sum to one, we can interpret the importance measure of each group as its relative contribution to

the overall importance in percentage.

Panels A to F in Figure 3 display the group importance across various forecast horizons for
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LASSO, PCR, RF, GBRT, NN, and AVG, respectively. This figure reveals several interesting

findings. First, all three groups of features contribute significantly to the forecast across different

horizons and learning algorithms. For example, each feature group contributes at least 10% in

almost all settings with the only exception being “RV& RQ” for fitting LASSO at monthly and

quarterly horizons. Second, the MIDAS and ExpRV terms tend to be more important for LASSO,

jointly contributing around 70% to the overall prediction. This might be because the MIDAS and

ExpRV features are already well-engineered through smoothing and denoising the raw data. Unlike

the raw features such as IV ’s, MIDAS and ExpRV terms can be viewed as competent encoders

that represent the predictive structure in the data and thus are more likely to be directly picked

up by linear models. Third, the implied variance features become more important over forecasting

horizons. Since IV -based features all have maturities between one and three months, it may not

be surprising that they can better predict longer-term RV ’s. Fourth, IV features are particularly

important for tree-based models RF and GBRT. As discussed in Section 4.2.2, tree models only

consider a random set of ln(P ) features at each tree split, and given the dominant presence of

IV features in the feature set, they are more likely to be included as predictors. As IV features

are more important in predicting longer horizon RV , the relatively poorer performance of RF and

GBRT at daily and weekly horizons can be explained by the higher weights tree models put on IV

features and lower weights on well-engineered features such as MIDAS and ExpRV.

To further assess the relative importance of each feature group over time, we focus on AVG

and report its group importance based on 118 features across forecast horizons for each training

sample in our out-of-sample analyses. Our first training sample is from January 1996 to December

1999, and our last training sample is from January 1996 to December 2017. For each training

sample and each feature group, we calculate group importance based on the reduction in R2 from

permutating all values of each feature within that group, and then normalize group importance

per each training sample and each forecast horizon to sum to one. Figure 4 displays the group

importance for each training sample. Overall, implied variance features grow increasingly important

over time for all forecast horizons. At the daily (weekly) forecast horizon, the group importance of

“IV” terms increases from 13.52% (14.56%) for the first training sample to 49.14% (55.92%) for the

last training sample, and the trend is similar at longer monthly and quarterly forecast horizons. In

the meanwhile, the importance of the other two feature groups shrinks significantly over time. For
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example, at the monthly forecast horizon, the importance of “MIDAS & ExpRV” terms decreases

from 60% by the end of year 1999 to 25.86% by the end of year 2017, and that of “RV& RQ” terms

decreases from 23.5% to 15.39%. These observations are consistent with the stellar performance of

the pure IV -based OLS model during the most recent period reported in Panel C of Table 5, and

further highlight the crucial role implied variance features play in forecasting realized variances as

the option market becomes more efficient.

The above method of group importance fits each model at the full model specification. One

drawback is that it has estimation bias when using the estimates from the full model for subset

selection. An alternative is best subset selection where we fit each subset of features separately and

compare their OOS performance. Due to the limit of computing resources, we cannot perform the

best subset selection for all subsets and horizons. Instead, we focus on all of the seven possible

combinations of the three feature groups at the monthly horizon. Specifically, we refit each of the

seven combinations of groups for each of the learning algorithms and each training-validation-testing

sample and then compute their AVG performance.

Panel A Figure 5 shows the R2
OOS of these subsets. As can be seen, the full model with all three

groups is the best model with the highest relative R2
OOS of 15.2%. Two-group models are better

than one-group models. Based on these numbers, we then attribute the overall relative R2
OOS to

each group using a modified SHAP measure of Lundberg and Lee (2017).25 Panel B shows the

decomposition of R2
OOS into the three feature groups. In particular, among the overall R2

OOS of

15.2%, “MIDAS & ExpRV”, “RV& RQ”, and “IV” contribute approximately 4.1%, 5.0% and 6.0%.

All three groups contribute significantly to the OOS performance, which is generally consistent with

the conclusion that all three groups are important based on the previous permutation-based group

importance study.
25The SHAP measure computes the importance of a feature group as a weighted average of all the differences in

R2
OOS when the model is trained with and without the feature group. Section A.4.3 in the Appendix provides details

for our adaptation of the SHAP measure.
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5. Robustness Studies

5.1. Alternative NN Structures

Our baseline Neural Network (NN) model consists of two hidden layers with 5 and 2 neurons. To

understand whether the performance of NN is sensitive to the choice of its structure, we consider

three alternatives: a single-hidden-layer network with 2 neurons (NN1), a two hidden-layer network

with 4 and 2 neurons (NN2), and a three-hidden-layer network with 8, 4, and 2 neurons (NN3).

Other than the architecture, we keep the feature set, the activation function, and the training

scheme the same as in Table 3 for these alternative NN models.26 Panel A of Table 7 reports the

out-of-sample performance of the alternative NN models along with the baseline NN model from

Table 3 for easy comparison. Overall, the performance of these models is generally inline with the

baseline model. For instance, the R2
OOS ’s at weekly forecasting horizon range from 14.9% for NN1

to 17.4% or NN2, comparable to the R2
OOS at 16.7% for the baseline. The results suggest that the

superior out-of-sample performance of NN is robust to the choice of different structures.

5.2. Alternative Ensemble Methods

Our ensemble model AVG is an equal-weighted average of forecasts from five individual machine

learning algorithms. The benefit of such an approach is its simplicity, but one may wonder if

the performance of the ensemble model may be further improved by using more sophisticated

combination methods. We now consider four alternative ways to combine signals and present the

results in Panel B of Table 7. The original ensemble model AVG is shown in the top row for easy

comparison. These alternative combination methods include: 1) median of forecasts from five

individual machine learning models (MED); 2) simple average of forecasts after removing the highest

and lowest individual forecasts (AV GT rim); 3) weighted average of forecasts from five individual

models with weights equal to the inverse of the validation set MSE, where weights are normalized

to sum up to one (AV GV alidError); and 4) weighted average of forecasts from five individual models

with weights tuned by Elastic Net (AV GENet). The first two ensemble methods are introduced to

exclude extreme individual forecasts as inputs, while the third and fourth methods are designed
26We always use multiple random states when implementing stochastic optimization for estimation and derive

predictions by averaging forecasts based on all tuned neural network models with ten starting points for more reliable
estimates.
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to optimize the weights on individual forecasts. To construct weights for AV GENet, we use a

rolling-window training-validation-testing scheme for hyperparameter tuning. Specifically, we rolling

fit Elastic Net (ENet) model with 1-year data, validate model hyperparameters with 3-month data,

and predict the subsequent one-month RV by combining five individual forecasts with weights

from tuned ENet.27 Therefore, we use the data between January 2001 and March 2002 as our first

training and validation sets for AV GENet. To render the ensemble methods directly comparable

with each other, we set the out-of-sample prediction period for all ensemble models to be between

April 2002 and June 2019, so the different R2
OOS ’s for AVG in Table 7 from these in Table 3 are due

to sample difference.

Overall, the first three ensemble methods MED, AV GT rim, and AV GV alidError perform on par

with AVG, with R2
OOS ’s similar to AVG across all forecasting horizons. For example, AV GV alidError

produces the same R2
OOS ’s as AVG at daily and monthly horizons; its R2

OOS differs from AVG by

only 0.2% at the weekly horizon and by 0.1% at the quarterly horizon. In contrast, AV GENet

generates R2
OOS ’s that are 1% to 3% higher than AVG at daily, weekly, and quarterly horizons, yet

it produces an R2
OOS that is 1% lower than AVG at the monthly horizon. These numbers illuminate

the advantage of Elastic Net in combining the signals, although such an advantage is not universal

across horizons. The results are largely consistent with the extensive literature on model averaging

in finance and economics. In particular, Timmermann (2006) highlights the effectiveness of using

simple averages as opposed to more complex schemes of forecast combinations. This effectiveness

can be attributed to the absence of estimation biases, particularly when the optimal weights are

time-varying. Despite the fairly strong empirical performance of the simple average approach, we

do not explicitly endorse this method. Instead, our aim is to establish a baseline that represents the

lower limit of machine learning algorithms in volatility forecasting.

5.3. Firm Characteristics and Pure Noise

Using the RV - and IV -based features, we have shown our volatility forecast system is able to achieve

superior out-of-sample performance. We now consider two new feature sets: firm characteristics

and pure noises. In the volatility forecasting literature, firm characteristics have not been widely
27We impose two simple restrictions on the ENet parameters to ensure that the resulting ensemble method is inline

with the other ensemble methods: 1) the intercept is zero, and 2) the coefficients (weights) on five individual forecasts
are non-negative.
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documented as useful predictors.28 On the other hand, it is reasonable to hypothesize that firm

characteristics such as size might be indirectly (through interaction or nonlinearity) helpful in

volatility forecasting. To examine the predictive power of firm characteristics, we consider the six

representative features: Size, BM , Mom, Retd, Retm, and ILLQ. Following Kelly, Pruitt, and Su

(2019) and Gu, Kelly, and Xiu (2020), we cross-sectionally rank each characteristic on each day and

map these ranks into the [-1,1] interval. Then we use the relative ranks of these characteristics as

additional features. The second new feature set is pure noise, with which we can test how well our

system handles false positives. We generate six random noise terms that mimic the distributional

properties of the volatility-based features. Section A.4.2 in the Appendix describes more details

about these twelve additional features.

Panel C of Table 7 shows that the performance of the ensemble model AVG based on the original

118 features plus the 12 additional features. In comparison with the AVG results in Table 3, adding

the new features shows minimal improvement over in the relative R2
OOS ’s at the first two horizons,

identical relative R2
OOS at the monthly horizon, and slightly worse relative R2

OOS at the quarterly

horizon.29 Table A.4 in the Appendix reports the performance after adding the new features for

each of the five learning algorithms. Overall, the augmented feature set generates very similar

results to these using the original 118 features across different models.

We also calculate group importance of the two new feature sets. Figure A.4 in the Appendix

displays the group importance plots based on the augmented 130 features for each individual ML

model and the ensemble model AVG. The two new groups, “Firm Char” and “Noise,” correspond to

the six cross-sectionally ranked firm characteristics and six pure noise terms, respectively. There are

several noteworthy patterns. First, the importance of the original three RV - and IV -based groups is

largely aligned with what Figure 3 shows based on 118 features. Secondly, cross-sectionally ranked

firm characteristics as a group contributes insignificantly to RV prediction, with group importance

ranging from 0.03% for LASSO at the quarterly horizon to 4.07% for RF at the same quarterly

horizon. Lastly, the noise features contribute almost nothing to model prediction, indicating that

our ML-based models and the associated group importance metrics effectively control for false
28Paye (2012) shows that volatility forecasts exploiting macroeconomic variables do not outperform a univariate

benchmark out-of-sample much, and Rahimikia and Poon (2023) find that adding news sentiment variables only
marginally improves the forecasting performance.

29The AVG results in Panels C and D of Table 7 are compared with the AVG results in Table 3 but not with the
AVG in Panel B of Table 7, which are from results starting from a later year due to sample required for training
AV GENet.
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positives.

5.4. Human-engineered vs Raw features

All of the 16 RV -based features in Section 2.3 are well-engineered by researchers based on lagged

daily RV ’s. Our volatility forecast system appears to be able to extract new information from

them. It is then tempting to give the system a more challenging task: how would it perform if the

input was just the raw daily RV ’s and IV ’s with no human-engineered features? To this end, we

consider a new 165-variable feature set by replacing the 16 human-engineered RV -based features in

the previous feature set of 118 variables with 63 lagged daily RV ’s.

Panel E of Table 7 reports the out-of-sample performance of the ensemble model AVG using the

new 165 features. The findings are quite intriguing. In comparison with the 118 feature results in

Table 3, the relative R2
OOS based on the 165 raw features are quite close. At the daily and weekly

horizons, the performance of the 165 raw features is only marginally worse than those of the 118

features (7.6% vs 9.1% for daily and 12.8% vs 14.3% for weekly). At the monthly and quarterly

horizons, the performance of the raw features is close to or even better than those including the

human-engineered features. Furthermore, when compared with the OLSALL results in Table 2, the

performance of these simple raw features under AVG is always better for all horizons, suggesting

that the new system with just raw features can outperform the traditional OLS with well-engineered

features. These results show that the proposed volatility forecast system is quite powerful even with

the input as simple as the raw lagged RVs and IVs.

6. Predicting Realized Variances for S&P 500 Stocks

The previous sections demonstrate that our machine-learning-based automated system can improve

volatility forecasting performance for the S&P 100 stocks. Is the learning system scalable to more

stocks? In this section, we examine the out-of-sample performance of our system on a broader set

of S&P 500 stocks. To speed up fitting nonlinear models, we transfer tuning parameters already

learned from the original S&P 100 stock universe to the new S&P 500 universe. We find that tuning

parameters learned from the original stock sample transfer well to the new sample and the resulting

automated system consistently generates significant gains.
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To this end, we consider 663 unique stocks listed on NYSE/AMEX/NASDAQ that have ever

been included in the S&P 500 index but are not members of the S&P 100 index between January

1996 and June 2019, and apply the same data filters as described in Section 2.1 to this stock sample.

Because hyperparameter tuning for nonlinear models becomes more time-consuming as the sample

grows, we directly transfer the tuning parameters for RF (i.e., maximum tree depth) and GBRT

(i.e., # of trees and maximum tree depth) obtained from 173 S&P 100 stocks to 663 S&P 500

stocks, and retrain both models without validating these tuning parameters.30 The idea is inspired

by transfer learning, which is designed to explore the possibility that learned knowledge from one

sample can be applied to a new sample.31 The remaining ML-based as well as OLS-based models

can be estimated efficiently and thus are completely recalibrated using the S&P 500 stock sample

without hyperparameter transfer.

Table 8 summarizes the out-of-sample performance of all models for 663 S&P 500 stocks. Among

OLS-based models, OLSALL using all 118 predictors outperforms the remaining models at daily,

weekly, and monthly forecast horizons with R2
OOS ’s relative to HAR between 4.9% and 8.6%.

OLSALL slightly underperforms HARQ-F at the quarterly forecast horizon but beats the rest of

the OLS-based models across horizons, indicating that the 118 features identified earlier remain

powerful volatility predictors for this broader universe. Note that the relative R2
OOS ’s of OLSIV

become more negative between −13.6% and −20.3% for the S&P 500 stock sample in contrast to

the relative R2
OOS ’s between −2.1% and −9.8% for the S&P 100 sample as reported in Table 2.

This is likely because S&P 500 stocks tend to have fewer liquid option contracts than S&P 100

stocks as indicated by the fewer contracts in Table A.1 and thus the associated implied variance

features are prone to measurement errors and biases. Yet, we find that implied variance features

for S&P 500 stocks still contain information orthogonal to the realized features, as evident by the

better performance of OLSALL over that of OLSRM at each forecast horizon.

Turning to the ML-based models, LASSO outperforms OLSALL across all horizons by small

margins, while NN outperforms OLSALL by wide margins with relative R2
OOS ’s ranging from 4.3%

to 15.1%. The other three ML models PCR, RF, and GBRT produce out-of-sample performance

comparable to OLSALL, indicating the success of hyperparameter transfer for the latter two
30All hyperparameters for NN are pre-specified and thus do not require hyperparameter tuning.
31Jiang, Kelly, and Xiu (2022) apply the image-based convolutional neural networks (CNNs) trained using daily

data to lower-frequency and international data for return prediction problems. See Pan and Yang (2010) for a
comprehensive survey on transfer learning.
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models. For the ensemble model AVG, it consistently delivers higher relative R2
OOS than OLSALL

across forecast horizons, and the pairwise Diebold-Mariano t-statistics comparing the out-of-sample

forecast performance between AVG and OLSALL are all significant at the 1% level. In a nutshell,

our automated system continues to perform well on this broader S&P 500 stock universe.

7. Economic Gains

We have demonstrated the statistical improvement in terms of relative R2
OOS achieved by our

automated system for forecasting RV . A natural question is then to what extent can the increase

in relative R2
OOS ’s translate into economic gains. In this section, we compare the return spreads

of the variance risk premium (VRP) strategy based on different RV forecasting models. Han and

Zhou (2011) show that VRP, or the difference between expected variances under the risk-neutral

measure and the physical measure, positively predicts cross-sectional stock returns.32 We follow the

literature and define VRP for stock i on day t based on RV forecasting model m as:

V RP m
i,t = IVi,t − Em

t (RVi,t+21), (6)

where IVi,t is the annualized monthly implied variance from at-the-money call options with one-month

maturity, and Em
t (RVi,t+21) is the annualized monthly expected realized variance from forecasting

model m. Then we construct trading strategies based on VRP. Specifically, by the end of each

day t we sort stocks in our sample into decile portfolios based on their VRP on the same day, and

compute value-weighted returns on each decile portfolio and a spread portfolio that buys stocks in

the top decile with high VRP and sells stocks in the bottom decile with low VRP with a 21-day

holding period.33

Panel A of Table 9 reports the average value-weighted monthly returns of the decile portfolios

sorted by VRP based on different risk models for S&P 100 stocks, as well as the returns and alphas of

the spread portfolios with Newey-West robust t-statistics with lag 20 in parentheses. We focus on the

comparison among four models: 1) a perfect risk model, i.e., Em
t (RVi,t+21) = RVi,t+21, 2) the simple

32Eraker and Wang (2015) propose a non-linear model to describe the VIX index and the variance risk premium.
Eraker (2021) further studies a general equilibrium model based on long-run risk in an effort to explain the variance
risk premium.

33Equal-weighted portfolios perform similarly to value-weighted portfolios.
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OLS model using all features OLSALL, 3) the neural network model NN, and 4) the simple average

ensemble model AVG. The row labeled “RVt+21” reports the VRP portfolio performance based on

perfect RV forecasts. The monthly return spread monotonically increases from -2.08% to 1.80%,

generating an annualized return spread of 45.6% (3.88% × 12) and a t-statistic of 11.92. This return

pattern, although unrealistic, confirms the existence of cross-sectional VRP in our recent sample

and sets the highest benchmark for other risk models. Turning to the performance of the VRP

strategies based on forecasting models OLSALL, NN, and AVG, we continue to observe a generally

increasing pattern in decile portfolio returns sorted by VRP, although not always monotonic. The

return spread based on OLSALL is 4.7% (0.39% × 12) per year, much lower than the annual return

spread of 6.6% (0.55% × 12) based on NN and 8.5% (0.71% × 12) based on AVG. Thus, switching

risk models from OLSALL to the ensemble model AVG can increase the annual return of the VRP

strategy by as much as 3.8%. We further find that the abnormal returns (alphas) on the VRP

return spread are highly significant even after controlling for exposures to factors such as market

(CAPM), or factors from the Fama-French 3- and 5-factor models (Fama and French, 1993, 2015).

We next examine whether the demonstrated economic values of our better RV forecasts hold

for the broader S&P 500 stock sample. Panel B of Table 9 repeats the VRP exercises and reports

the average monthly returns of the decile portfolios sorted by VRP based on different risk models

for the 836 S&P 500 stocks, including those in the main S&P 100 sample. Again, We focus on the

comparison among four RV forecasting models. Consistent with our previous analyses on S&P 100

sample, decile portfolios constructed using S&P 500 stocks exhibit unrealistic yet most significant

return spread with VRP from perfect RV forecast “RVt+21”, with an annualized return spread

of 51%(4.25% × 12) and a t-statistic of 12.82. Meanwhile, even though perfect forecasts are not

accessible, the return spread is likely to be larger if model m is good at predicting next month’s

RV . For VRP strategies based on forecasting models OLSALL, NN, and AVG, the annualized

value-weighted return spreads for the S&P 500 sample range from 5.2% for OLSALL to 8.6% for AVG

and remain statistically significant after controlling for common risk factors. The much stronger

VRP strategy profit from AVG again corroborates the superior predictive power of our automated

forecasting system and illuminates the value of incorporating better RV predictions into building

stronger VRP strategies.
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8. Conclusion

We propose an automated volatility forecasting system for 173 S&P 100 stocks using more than

one hundred features and five machine learning algorithms. Our automated system is able to

deliver superior out-of-sample volatility forecasting performance, compared to existing risk models

that do not exploit the rich information embedded in big data. The performance of our system is

particularly exceptional in the recent decade, indicating the importance of forecasting volatility

via such a powerful system moving forward. In addition, our system remains robust to alternative

specifications and is scalable to a broader S&P 500 stock universe via hyperparameter transfer

learning. We further show that the improvement in out-of-sample prediction accuracy can translate

into an enhanced annual return around 8.5% for a cross-sectional variance risk premium strategy.

On the methodological front, we propose feature engineering, model fitting, and evaluation

methods specifically tailored to volatility forecasting problems. The pioneer work by Gu, Kelly, and

Xiu (2020) provides important guidance on return prediction problems using machine learning. Our

work not only offers detailed guidance on predicting volatility risk, but can also generate insights on

forecasting other risk measures such as downside, crash, and tail risks.

Another promising research agenda is to translate visual data of volatility paths into volatility

forecasts. Recently, Jiang, Kelly, and Xiu (2022) extract trading signals from price chart images

and find that image-based price forecasts in general outperform traditional price trend signals. We

expect that image-based learning would work well on volatility prediction for two reasons. First,

compared with price trends, volatility trends are even more persistent. Second, several existing

volatility forecasting models built on the decay functions of lagged volatilities (a smoothed version

of volatility images) are proven to be powerful. Our work offers important implementation details

on how to better map volatility images into predictions. All of these are important avenues for

future research.
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Fig. 1 Out-of-sample predictions: Individual v.s. panel fittings
The figure shows for each stock in our S&P 100 sample the average monthly realized variances (y-axis) against the average
predicted monthly realized variances (x-axis) from OLSRM (i.e., simple OLS model with all 16 realized features as predictors)
models between January 1996 and June 2019. The OLSRM models are either estimated on an individual stock-by-stock basis or
estimated by panel regressions that restrict the coefficients to be the same across stocks.

Panel A: Forecast horizons Panel B: Risk models

Fig. 2 Implied coefficients for different lags of RV ’s
This figure displays the regression coefficients on lagged RV ’s across different forecast horizons and predictive models. The
regressions are conducted using the full out-of-sample evaluation period spanning from January 2001 to June 2019. The predictive
models incorporated in the analysis include the AVG (a simple average of forecasts from the five individual machine learning
models), HAR, HExp, and MIDAS models.
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Panel A: LASSO Panel B: PCR

Panel C: RF Panel D: GBRT

Panel E: NN Panel F: AVG

Fig. 3 Group importance based on 118 Features
This figure displays the group importance based on 118 features for LASSO, PCR, RF, GBRT, NN, and AVG across various
forecast horizons. The first group “MIDAS & ExpRV” includes the MIDAS term for the corresponding forecast horizon, ExpRV 1,
ExpRV 5, ExpRV 25, ExpRV 125, and ExpGlRV . The second group “RV& RQ” includes RV d, RV w, RV m, RV q, RV P d,
RV Nd, RV d

√
RQd, RV w

√
RQw, RV m

√
RQm, and RV q

√
RQq . The third group “Implied Variance” includes CIV jm,δ and

P IV jm,−δ, where j = 1, 2, 3, and δ = 0.1, 0.15, ..., 0.9.
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Panel A: Daily forecast Panel B: Weekly forecast

Panel C: Monthly forecast Panel D: Quarterly forecast

Fig. 4 Group importance for AVG over time
This figure displays the group importance based on 118 features for AVG across forecast horizons for each training sample in our
out-of-sample analyses. Our first training sample is from January 1996 to December 1999, and our last training sample is from
January 1996 to December 2017. The first group “MIDAS & ExpRV” includes the MIDAS term for the corresponding forecast
horizon, ExpRV 1, ExpRV 5, ExpRV 25, ExpRV 125, and ExpGlRV . The second group “RV& RQ” includes RV d, RV w, RV m,
RV q, RV P d, RV Nd, RV d

√
RQd, RV w

√
RQw, RV m

√
RQm, and RV q

√
RQq. The third group “Implied Variance” includes

CIV jm,δ and P IV jm,−δ, where j = 1, 2, 3, and δ = 0.1, 0.15, ..., 0.9.
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Panel A: Sub-groups R2
OOS Panel B: R2

OOS decomposition

Fig. 5 Best subset selection with model refit
This figure displays the results for the sub-group analysis and decomposition of out-of-sample R2 relative to HAR
model for the ensemble model AVG at monthly forecast horizon. Panel A shows the out-of-sample R2 relative to
HAR model for AVG model based on subsets of feature groups. Panel B displays the decomposition of the total
out-of-sample R2 into group importance based on Eq. (A.18).
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Table 1 Feature correlation
This table reports the correlations of all realized features and selective implied variance features with absolute delta equal to 0.5.
The sample consists of 173 stocks listed on NYSE/AMEX/NASDAQ that have ever been included in the S&P 100 index between
January 1996 and June 2019 with share code 10 or 11, prices between $1 and $1000, daily number of trades greater than or equal
to 100, and at least five years of data on all features and response variables. Superscripts d, w, m, and q are abbreviations of
daily, weekly, monthly, and quarterly construction intervals or forecast horizons. MIDASk (k = d, w, m, q) denotes the smoothly
weighted moving average of 50 lagged realized variances using validated polynomials in forecasting realized variance at horizon
k. RV k (k = d, w, m, q) is the daily, weekly, monthly or quarterly realized variance. RV P d and RV Nd are the daily realized
positive and negative semivariances, respectively. RV k

√
RQk (k = d, w, m, q) is the product of the realized variance and the

square root of the realized quarticity with the same construction interval k. ExpRV i (i = 1, 5, 25, 125) is the exponentially
weighted moving average of the past 500-day realized variances using the corresponding center-of-mass i. ExpGlRV is the
exponentially weighted moving average of the global risk factor with a 5-day center-of-mass. CIV jm,0.5 and P IV jm,−0.5 are
implied variances from call and put options with absolute delta equal to 0.5 and maturity equal to j months (j = 1, 2, 3).

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25)

(1) MIDASd 1.00
(2) MIDASw 0.99 1.00
(3) MIDASm 0.98 1.00 1.00
(4) MIDASq 0.96 0.99 1.00 1.00
(5) RV d 0.86 0.82 0.80 0.77 1.00
(6) RV w 0.97 0.95 0.94 0.91 0.81 1.00
(7) RV m 0.92 0.95 0.96 0.98 0.73 0.88 1.00
(8) RV q 0.82 0.86 0.88 0.90 0.65 0.77 0.89 1.00
(9) RV P d 0.80 0.77 0.75 0.73 0.90 0.76 0.68 0.62 1.00

(10) RV Nd 0.78 0.75 0.73 0.71 0.90 0.74 0.67 0.61 0.65 1.00
(11) RV d

√
RQd 0.49 0.44 0.42 0.39 0.72 0.46 0.37 0.30 0.64 0.61 1.00

(12) RV w
√

RQw 0.70 0.67 0.65 0.62 0.59 0.78 0.61 0.48 0.54 0.52 0.54 1.00
(13) RV m

√
RQm 0.67 0.70 0.71 0.71 0.53 0.66 0.79 0.63 0.49 0.47 0.39 0.71 1.00

(14) RV q
√

RQq 0.59 0.61 0.63 0.65 0.46 0.56 0.68 0.80 0.43 0.42 0.29 0.50 0.71 1.00
(15) ExpRV 1 0.96 0.93 0.91 0.88 0.93 0.95 0.84 0.74 0.85 0.84 0.59 0.72 0.63 0.53 1.00
(16) ExpRV 5 0.98 0.98 0.98 0.97 0.82 0.96 0.95 0.84 0.76 0.75 0.45 0.72 0.74 0.62 0.94 1.00
(17) ExpRV 25 0.90 0.93 0.94 0.96 0.71 0.85 0.96 0.97 0.67 0.66 0.35 0.57 0.73 0.76 0.82 0.92 1.00
(18) ExpRV 125 0.76 0.79 0.80 0.83 0.60 0.71 0.80 0.90 0.57 0.56 0.26 0.40 0.50 0.62 0.68 0.76 0.89 1.00
(19) ExpGlRV 0.62 0.63 0.64 0.64 0.50 0.58 0.60 0.57 0.48 0.47 0.20 0.28 0.30 0.29 0.56 0.60 0.60 0.59 1.00
(20) CIV 1m,0.5 0.83 0.85 0.85 0.86 0.69 0.79 0.84 0.82 0.63 0.65 0.32 0.50 0.58 0.58 0.77 0.84 0.85 0.78 0.59 1.00
(21) CIV 2m,0.5 0.82 0.84 0.85 0.86 0.67 0.78 0.83 0.83 0.62 0.63 0.31 0.49 0.58 0.58 0.76 0.83 0.86 0.79 0.59 0.98 1.00
(22) CIV 3m,0.5 0.82 0.84 0.85 0.86 0.67 0.77 0.84 0.84 0.62 0.62 0.31 0.48 0.58 0.59 0.75 0.82 0.87 0.81 0.60 0.97 0.99 1.00
(23) P IV 1m,−0.5 0.78 0.80 0.80 0.81 0.64 0.75 0.80 0.79 0.59 0.60 0.32 0.53 0.63 0.63 0.73 0.80 0.82 0.73 0.52 0.90 0.89 0.88 1.00
(24) P IV 2m,−0.5 0.77 0.78 0.79 0.80 0.62 0.73 0.79 0.79 0.58 0.58 0.31 0.52 0.62 0.64 0.71 0.78 0.82 0.74 0.51 0.88 0.88 0.88 0.99 1.00
(25) P IV 3m,−0.5 0.75 0.77 0.78 0.79 0.61 0.72 0.78 0.79 0.57 0.56 0.31 0.50 0.61 0.64 0.69 0.77 0.81 0.74 0.50 0.85 0.86 0.87 0.98 0.99 1.00
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Table 2 Out-of-sample prediction relative to HAR: OLS-based models
This table reports the out-of-sample R2 relative to the HAR model for OLS-based volatility forecasting models across different
forecast horizons. The sample consists of 173 stocks listed on NYSE/AMEX/NASDAQ that have ever been included in the
S&P 100 index between January 1996 and June 2019 with share code 10 or 11, prices between $1 and $1000, daily number of
trades greater than or equal to 100, and at least five years of data on all features and response variables. The full out-of-sample
evaluation period is from January 2001 to June 2019. Superscripts d, w, m, and q are abbreviations of daily, weekly, monthly,
and quarterly construction intervals or forecast horizons. MIDAS denotes the smoothly weighted moving average of 50 lagged
realized variances using validated polynomials for the corresponding forecast horizon. RV k (k = d, w, m, q) is the daily, weekly,
monthly or quarterly realized variance. RV P d and RV Nd are the daily realized positive and negative semivariances, respectively.
RV k

√
RQk (k = d, w, m, q) is the product of the realized variance and the square root of the realized quarticity with the same

construction interval k. ExpRV i (i = 1, 5, 25, 125) is the exponentially weighted moving average of the past 500-day realized
variances using the corresponding center-of-mass i. ExpGlRV is the exponentially weighted moving average of the global risk
factor with a 5-day center-of-mass. CIV jm,δ and P IV jm,−δ are implied variances from call and put options with absolute
δ = 0.1, 0.15, ..., 0.9 and maturity equal to j months (j = 1, 2, 3). Our OLS-based models include MIDAS, SHAR, HARQ-F,
HExpGl, OLSRM (i.e., simple OLS model with all 16 realized features as predictors), OLSIV (i.e., simple OLS model with all
102 implied variance features as predictors), and OLSALL (i.e., simple OLS model with all 118 realized and implied variance
features as joint predictors). R2

OOS for each model is calculated relative to the prediction from HAR using the entire panel of
stocks according to Eq. (5).

Model cccccccccccccccccccccFeatures Daily Weekly Monthly Quarterly

R2
OOS relative to HAR

MIDAS MIDAS term for the corresponding forecast horizon 1.1% 3.8% 4.4% 1.5%

SHAR RV P d, RV Nd, RV w, RV m, RV q 1.5% 1.6% 1.3% 0.6%

HARQ-F RV d, RV w, RV m, RV q, 2.1% 2.8% 3.4% 4.8%
RV d

√
RQd, RV w√

RQw, RV m√
RQm, RV q√

RQq

HExpGl ExpRV 1, ExpRV 5, ExpRV 25, ExpRV 125, ExpGlRV 0.1% 2.6% 2.2% -1.4%

MIDAS term for the corresponding forecast horizon,
RV d, RV w, RV m, RV q, RV P d, RV Nd,

OLSRM RV d
√

RQd, RV w√
RQw, RV m√

RQm, RV q√
RQq, 4.9% 6.5% 5.4% 1.9%

ExpRV 1, ExpRV 5, ExpRV 25, ExpRV 125, ExpGlRV
(# of features = 16)

OLSIV CIV jm,δ and P IV jm,−δ, j = 1, 2, 3, δ = 0.1, 0.15, ..., 0.9 -9.8% -7.4% -2.8% -2.1%
(# of features = 102)

OLSALL All 118 Features (16 realized features + 102 IV features) 7.6% 11.6% 7.3% -0.6%
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Table 3 Out-of-sample predictions relative to HAR: Machine-learning-based models
This table reports the out-of-sample R2 relative to the HAR model for machine-learning-based volatility forecasting models
across different forecast horizons. The sample consists of 173 stocks listed on NYSE/AMEX/NASDAQ that have ever been
included in the S&P 100 index between January 1996 and June 2019 with share code 10 or 11, prices between $1 and $1000,
daily number of trades greater than or equal to 100, and at least five years of data on all features and response variables. The
full out-of-sample evaluation period is from January 2001 to June 2019. The features of each model consist of all 118 predictors
detailed in Table 2. Our machine-learning-based models include LASSO, Principal Component Regression (PCR), Random
Forest (RF), Gradient Boosted Regression Trees (GBRT), Neural Network (NN), and a simple average of forecasts from the five
individual machine learning models (AVG). Tuning parameters for each model are reported in bold. R2

OOS for each model is
calculated relative to the prediction from HAR using the entire panel of stocks according to Eq. (5).

Model Hyperparameter (Tuning parameter in bold) Daily Weekly Monthly Quarterly

R2
OOS relative to HAR

LASSO # of shrinkage parameters (λ): 100 8.0% 12.1% 11.3% 2.6%
λmin/λmax: 0.001

PCR # of components: 1, 2, ..., 20 5.5% 4.8% 8.1% 7.8%

Maximum tree depth (L): 1, 2, ..., 20
RF # of trees: 500 3.2% 6.4% 9.5% 5.4%

Subsample: 0.5
Subfeature: ln(# of features)

# of trees (B)
Maximum tree depth (L): 1, 2, ..., 5
Learning rate: 0.001

GBRT Subsample: 0.5 4.7% 10.2% 10.8% 6.3%
Subfeature: ln(# of features)
Early-stopping rules (whichever met first):
1) No reduction in MSE after 50 iterations
2) Max # of trees hits 20,000

# of hidden layer: 2
NN # of neurons: (5, 2) 10.5% 16.7% 14.3% 4.8%

Activation function: ReLU

AVG 9.0% 14.3% 15.2% 10.0%
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Table 4 Forecast comparison using Diebold-Mariano tests
This table reports pairwise Diebold-Mariano t-statistics comparing the out-of-sample forecast performance among seven models
across different forecast horizons. The sample consists of 173 stocks listed on NYSE/AMEX/NASDAQ that have ever been
included in the S&P 100 index between January 1996 and June 2019 with share code 10 or 11, prices between $1 and $1000,
daily number of trades greater than or equal to 100, and at least five years of data on all features and response variables. The
full out-of-sample evaluation period is from January 2001 to June 2019. The features of each model consist of all 118 predictors
detailed in Table 2. Our models include a simple OLS model using all features (OLSALL), LASSO, Principal Component
Regression (PCR), Random Forest (RF), Gradient Boosted Regression Trees (GBRT), Neural Network (NN), and a simple
average of forecasts from the five individual machine learning models (AVG). Positive numbers indicate that the model denoted
by the label to the left of a given row outperforms the model denoted by the label above the corresponding column. *, **, and
*** indicate significance at the 10%, 5%, and 1% levels, respectively.

Panel A: Daily forecast

OLSALL LASSO PCR RF GBRT NN
LASSO 3.30***
PCR -7.02*** -8.87***
RF -4.62*** -5.06*** -2.32**
GBRT -4.93*** -5.88*** -1.20 2.27**
NN 10.67*** 9.95*** 13.09*** 8.68*** 11.97***
AVG 4.75*** 4.07*** 10.16*** 8.17*** 12.28*** -6.86***

Panel B: Weekly forecast

OLSALL LASSO PCR RF GBRT NN
LASSO 1.05
PCR -3.22*** -3.36***
RF -2.22** -2.42** 1.15
GBRT -0.90 -1.48 3.07*** 2.38**
NN 7.36*** 6.13*** 6.10*** 5.25*** 5.88***
AVG 2.64*** 2.23** 6.27*** 5.16*** 5.45*** -3.69***

Panel C: Monthly forecast

OLSALL LASSO PCR RF GBRT NN
LASSO 1.62
PCR 0.19 -1.12
RF 0.64 -0.53 0.48
GBRT 1.12 -0.18 1.13 0.94
NN 3.25*** 1.51 2.31** 1.99** 2.03**
AVG 2.63*** 2.07** 3.32*** 2.80*** 4.29*** 0.75

Panel D: Quarterly forecast

OLSALL LASSO PCR RF GBRT NN
LASSO 1.38
PCR 2.71*** 1.66*
RF 1.92* 0.89 -0.68
GBRT 1.95* 1.30 -0.50 0.46
NN 1.72* 0.89 -1.02 -0.24 -0.74
AVG 3.09*** 3.12*** 0.83 1.78* 2.71*** 2.78***
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Table 5 Out-of-sample prediction relative to HAR: Subsample analysis
This table reports the out-of-sample R2 relative to the HAR model for OLS-based and machine-learning-based volatility
forecasting models across different forecast horizons over three subsample periods. The sample consists of 173 stocks listed on
NYSE/AMEX/NASDAQ that have ever been included in the S&P 100 index between January 1996 and June 2019 with share
code 10 or 11, prices between $1 and $1000, daily number of trades greater than or equal to 100, and at least five years of
data on all features and response variables. The full out-of-sample evaluation period is from January 2001 to June 2019. The
features of each model consist of all 118 predictors detailed in Table 2. Our OLS-based models include MIDAS, SHAR, HARQ-F,
HExpGl, OLSRM (i.e., a simple OLS model with all 16 realized features as predictors), OLSIV (i.e., a simple OLS model
with all 102 implied variance features as predictors), and OLSALL (i.e., a simple OLS model with all 118 realized and implied
variance features as joint predictors). Our machine-learning-based models include LASSO, Principal Component Regression
(PCR), Random Forest (RF), Gradient Boosted Regression Trees (GBRT), Neural Network (NN), and a simple average of
forecasts from the five individual machine learning models (AVG). R2

OOS for each model is calculated relative to the prediction
from HAR using the panel of stocks included in each subsample period according to Eq. (5). Panels A, B and C report R2

OOS

relative to HAR for the pre-crisis (2001-2007), crisis (2008-2009), and post-crisis (2010-2019) periods, respectively.

Panel A: Pre-crisis (2001-2007) ccc Panel B: Crisis (2008-2009) ccc Panel C: Post-crisis (2010-2019)

Daily Weekly Monthly Quarterly Daily Weekly Monthly Quarterly Daily Weekly Monthly Quarterly

R2
OOS relative to HAR

OLS

MIDAS -0.4% 1.0% -2.4% -0.9% 3.9% 7.1% 8.3% 2.1% 0.4% 3.1% 5.1% 4.3%
SHAR 1.1% 1.3% 1.1% 0.6% 2.1% 2.1% 1.5% 0.6% 1.5% 1.2% 1.1% 0.8%
HARQ-F 1.9% 3.0% 3.9% 6.7% 3.4% 3.6% 3.2% 4.0% 1.1% 1.4% 3.0% 5.3%
HExpGl 0.2% 2.5% 3.5% 3.1% -0.3% 3.6% 1.3% -4.2% 0.3% 1.1% 2.6% 6.0%
OLSRM 4.0% 5.8% 4.3% 2.3% 6.6% 7.2% 4.8% 0.6% 4.4% 6.3% 10.2% 10.3%
OLSIV -12.5% -13.0% -1.5% 2.9% -15.4% -11.9% -8.4% -5.6% 0.4% 8.4% 15.5% 9.1%
OLSALL 5.2% 8.5% 5.6% -1.6% 11.2% 13.5% 4.8% -2.5% 7.5% 13.5% 20.2% 15.1%

ML

LASSO 5.7% 8.9% 9.3% 4.4% 11.8% 14.9% 9.5% -1.0% 7.4% 12.8% 22.3% 23.0%
PCR 2.6% 7.0% 8.7% 8.1% 10.1% -2.2% 4.5% 5.7% 5.3% 12.1% 20.0% 21.9%
RF 0.6% 1.9% 9.9% 7.9% 0.0% 2.0% 4.0% 1.6% 10.8% 20.2% 29.2% 25.3%
GBRT -0.5% 3.6% 9.2% 10.9% 7.6% 11.7% 7.0% 1.9% 9.8% 18.1% 28.4% 24.3%
NN 8.1% 16.6% 20.2% 16.1% 13.4% 14.9% 6.6% -2.2% 11.1% 19.6% 30.1% 23.4%
AVG 6.6% 13.7% 19.5% 20.5% 11.3% 12.1% 8.8% 3.4% 10.4% 18.7% 29.6% 27.5%

40

Electronic copy available at: https://ssrn.com/abstract=3776915



Table 6 Out-of-sample prediction relative to long-run mean: Individual v.s. panel fittings
This table reports the out-of-sample R2 relative to the historical mean of realized volatilities for six OLS-based volatility
forecasting models across different forecast horizons. The sample consists of 173 stocks listed on NYSE/AMEX/NASDAQ
that have ever been included in the S&P 100 index between January 1996 and June 2019 with share code 10 or 11, prices
between $1 and $1000, daily number of trades greater than or equal to 100, and at least five years of data on all features and
response variables. The full out-of-sample evaluation period is from January 2001 to June 2019. Our OLS-based models include
HAR, MIDAS, SHAR, HARQ-F, HExpGl, and OLSRM (i.e., simple OLS model with all 16 realized features as predictors).
Panel A reports the out-of-sample R2’s for OLS models estimated on an individual stock-by-stock basis. Panel B reports the
out-of-sample R2’s for OLS models estimated by panel regressions that restrict the coefficients to be the same across stocks.
R2

OOS for each model at each forecast horizon is calculated relative to the long-run mean of RV using the entire panel of stocks
according to Eq. (5).

Model Panel A: Individual fitting Panel B: Panel fitting

Daily Weekly Monthly Quarterly Daily Weekly Monthly Quarterly

R2
OOS relative to long-run mean R2

OOS relative to long-run mean

HAR 56.63% 64.04% 61.18% 51.64% 57.8% 69.4% 70.0% 63.6%

MIDAS 57.27% 65.87% 63.32% 53.80% 58.2% 70.6% 71.3% 64.2%

SHAR 57.07% 64.35% 60.93% 51.45% 58.4% 69.9% 70.4% 63.9%

HARQ-F 49.15% 55.86% 52.64% 42.34% 58.7% 70.3% 71.0% 65.4%

HExpGl 55.64% 63.00% 55.21% 31.63% 57.8% 70.2% 70.6% 63.1%

OLSRM 50.25% 55.28% 45.75% 25.64% 59.8% 71.4% 71.6% 64.3%
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Table 7 Robustness Analyses
This table reports the out-of-sample R2 relative to the HAR model based on alternative structures of the Neural Network
model in Panel A, different weighting schemes of the ensemble model across various forecast horizons in Panel B, 130 predictors
including 118 main predictors, six cross-sectionally ranked firm characteristics, and six pure noise terms in Panel C, and
165 features including 63 lagged RV and 102 lagged IV features in Panel D. The sample consists of 173 stocks listed on
NYSE/AMEX/NASDAQ that have ever been included in the S&P 100 index between January 1996 and June 2019 with share
code 10 or 11, prices between $1 and $1000, daily number of trades greater than or equal to 100, and at least five years of
data on all features and response variables. The features of each model specification consist of all 118 predictors detailed in
Table 2. Panel A presents results for the Neural Network model with structures different from the baseline in Table 3. The full
out-of-sample evaluation period is from January 2001 to June 2019 as in Table 3. Panel B presents the R2

OOS for the simple
average of forecasts from the five individual machine learning models (AVG) and four ensemble models with different weighting
schemes. The full out-of-sample evaluation period for all models in Panel B is from April 2002 to June 2019 because the last
ensemble model AV GENet requires 1-year data for training and 3-month data for validation. Column 2 provides a description
of different NN structures and ensemble methods. R2

OOS for each model is calculated relative to the prediction from HAR using
the entire panel of stocks according to Eq. (5).

Panel A: Alternative structures for Neural Network
Model Description Daily Weekly Monthly Quarterly

R2
OOS relative to HAR

NN (Baseline) # of hidden layer: 2; # of neurons: (5, 2) 10.5% 16.7% 14.3% 4.8%

NN1 # of hidden layer: 1; # of neurons: (2) 9.4% 14.9% 10.7% 2.6%

NN2 # of hidden layer: 2; # of neurons: (4, 2) 10.5% 17.4% 12.6% 6.0%

NN3 # of hidden layer: 3; # of neurons: (8, 4, 2) 8.3% 15.0% 13.2% 5.2%

Panel B: Alternative weighting schemes for the ensemble model

AVG Simple average of forecasts from five individual 9.8% 14.5% 14.2% 8.6%
machine learning models.

MED Median of forecasts from five individual machine 10.2% 14.9% 13.4% 8.1%
learning models.

Simple average of forecasts from three out of five
AV GT rim individual machine learning models after removing 10.1% 14.7% 14.0% 8.5%

highest and lowest values.

Weighted average of forecasts from five individual
AV GV alidError machine learning models with weights equal to 9.8% 14.7% 14.2% 8.7%

the inverse of validation MSE (normalized to sum
up to one).

Weighted average of forecasts from five individual
AV GENet machine learning models with weights tuned by 11.0% 16.8% 13.1% 11.8%

Elastic Net.

Panel C: Firm characteristics and pure noise features

AVG 130 features: 16 RV features + 102 IV features 9.1% 14.5% 15.2% 9.7%
+ 6 firm characteristics + 6 pure noise terms

Panel D: Raw lagged RV features

AVG 165 features: 63 RV features +102 IV features 7.6% 12.8% 14.1% 10.6%
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Table 8 Out-of-sample predictions relative to HAR for S&P 500 stocks
This table reports the out-of-sample R2 relative to the HAR model for OLS-based and ML-based volatility forecasting
models across different forecast horizons for a different set of S&P 500 stocks. The sample consists of 663 stocks listed on
NYSE/AMEX/NASDAQ that have ever been included in the S&P 500 index but not members of the S&P 100 index between
January 1996 and June 2019 with share code 10 or 11, prices between $1 and $1000, daily number of trades greater than or
equal to 100, and at least five years of data on all features and response variables. The full out-of-sample evaluation period is
from January 2001 to June 2019. The features of each OLS-based model consist of either model-specific predictors or all 118
predictors as detailed in Table 2, and those of each ML-based model consist of all 118 predictors. Our ML-base models include
LASSO, Principal Component Regression (PCR), Random Forest (RF), Gradient Boosted Regression Trees (GBRT), Neural
Network (NN), and a simple average of forecasts from the five individual machine learning models (AVG). Hyperparameters for
each ML-based model are provided in Table 3. We directly transfer the resulting tuning parameters for RF (i.e., maximum tree
depth) and GBRT (i.e., # of trees and maximum tree depth) based on the original 173 S&P 100 stocks to this different set of
663 S&P 500 stocks and retrain both models without validating these tuning parameters. The remaining ML-based as well as
OLS-based models are completely recalibrated using the new stock sample without hyperparameter transfer. R2

OOS for each
model is calculated relative to the prediction from HAR using the entire panel of stocks according to Eq. (5).

Model Tuning parameters transferred Daily Weekly Monthly Quarterly

R2
OOS Relative to HAR

MIDAS 0.2% 1.5% 0.7% -0.8%
SHAR 0.8% 1.0% 0.8% 0.4%
HARQ-F 1.2% 1.7% 1.3% 1.1%

OLS HExpGl 0.5% 2.0% 1.7% -0.3%
OLSRM 3.3% 5.2% 3.4% 0.5%
OLSIV -15.1% -20.3% -18.4% -13.6%
OLSALL 4.9% 8.6% 6.5% 0.8%

LASSO 5.0% 9.1% 7.8% 2.2%
PCR 4.3% 7.6% 3.6% 4.5%
RF Maximum tree depth 4.7% 7.2% 5.1% 3.2%

ML GBRT # of trees & maximum tree depth 5.1% 9.1% 5.6% 1.7%
NN 8.5% 15.1% 12.0% 4.3%
AVG 7.3% 12.8% 10.8% 6.6%
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Table 9 Performance of variance risk premium strategy based on different RV forecasts
This table reports the performance of the variance risk premium (VRP) strategy based on different RV forecasts. The sample
consists of 173 (836) stocks listed on NYSE/AMEX/NASDAQ that have ever been included in the S&P 100 (S&P 500) index
between January 1996 and June 2019 with share code 10 or 11, prices between $1 and $1000, daily number of trades greater
than or equal to 100, and at least five years of data on all features and response variables. The full out-of-sample evaluation
period is from January 2001 to June 2019. By the end of each day t, V RPt is measured as IVt − Et(RVt+21); IVt is the
at-the-money implied variance from call options with one-month maturity; Et(RVt+21) is the expected realized variance for day
t + 21 measured using the true value of the 21-day ahead realized variance RVt+21 or the forecast from a given model. Panel A
(B) reports the returns in monthly percentage of decile portfolios formed by VRP based on different Et(RVt+21) measures for
S&P 100 (S&P 500) sample. By the end of day t, we sort stocks into ten portfolios by a given measure of V RPt, and compute
the value-weighted return of a self-financing portfolio that buys stocks in the top decile with high VRP and sells stocks in the
bottom decile with low VRP with a 21-day holding period. The row labeled “High – Low” reports the difference in returns
between Portfolio 10 and Portfolio 1, with Newey-West adjusted t-statistics in parentheses. The rows below report the alphas
from the CAPM model, the Fama-French-3-factor model, or the Fama-French-5-factor model.

Panel A: S&P 100 Panel B: S&P 500
RVt+21 OLSALL NN AV G RVt+21 OLSALL NN AV G

1 (Low) -2.08 0.14 0.05 0.03 -2.60 -0.09 -0.09 -0.21
2 -0.92 0.20 0.17 0.18 -1.10 0.13 0.08 0.13
3 -0.37 0.35 0.29 0.29 -0.49 0.26 0.21 0.23
4 0.07 0.34 0.34 0.31 0.01 0.33 0.28 0.26
5 0.49 0.38 0.35 0.30 0.47 0.33 0.34 0.30
6 0.80 0.36 0.36 0.38 0.82 0.38 0.37 0.31
7 1.01 0.43 0.45 0.40 1.14 0.42 0.43 0.38
8 1.39 0.44 0.53 0.48 1.44 0.46 0.51 0.44
9 1.71 0.59 0.72 0.64 1.60 0.50 0.55 0.58
10 (High) 1.80 0.53 0.60 0.74 1.65 0.34 0.35 0.51

High – Low 3.88 0.39 0.55 0.71 4.25 0.43 0.44 0.72
(11.92) (2.21) (2.98) (3.72) (12.82) (2.40) (2.25) (3.54)

CAPM alpha 3.89 0.38 0.55 0.70 4.26 0.42 0.44 0.71
(12.00) (2.17) (2.94) (3.68) (12.92) (2.36) (2.23) (3.52)

FF3 alpha 3.89 0.38 0.54 0.70 4.26 0.42 0.44 0.71
(12.01) (2.18) (2.94) (3.69) (12.95) (2.37) (2.23) (3.53)

FF5 alpha 3.87 0.40 0.56 0.71 4.24 0.44 0.45 0.72
(12.08) (2.25) (3.03) (3.72) (13.05) (2.43) (2.26) (3.55)
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Appendix of

Automated Volatility Forecasting
A.1. High-Frequency Data Cleaning

We begin by removing entries that satisfy at least one of the following criteria: a price less than

or equal to zero; a trade size less than or equal to zero; corrected trades (i.e., trades with Correction

Indicator, CORR, other than 0, 1, or 2); and an abnormal sale condition (i.e., trades for which the

Sale Condition, COND, has a letter code other than @, *, E, F, @E, @F, *E, or *F). We then assign

a single value to each variable for each second. If one or multiple transactions have occurred in that

second, we calculate the sum of volumes, the sum of trades, and the volume-weighted average price

within that second. If no transaction has occurred in that second, we enter zero for volume and

trades. For the volume-weighted average price, we use the entry from the nearest previous second.

Motivated by our analysis of the trading volume distribution across different exchanges over time,

we purposely incorporate information from all exchanges covered by the TAQ database.

A.2. Features

A.2.1. HAR

The Heterogeneous Autoregressive (HAR) model proposed by Corsi (2009) is popular because it is

easy to implement yet very effective in practice. The idea is to mix short- (daily), medium- (weekly),

and long-term (monthly) volatility components for capturing various empirical properties observed

in volatility series such as long memory and fat tails. The original HAR is used to forecast volatility

up to monthly horizon. As our longest forecast horizon is quarterly, we augment the HAR model

with a quarterly RV term:

RV t+h
t+1 = β0 + βdRV d

t + βwRV w
t + βmRV m

t + βqRV q
t + ϵt, (A.1)

where RV w
t , RV m

t and RV q
t denote the average annualized daily RV over lags 1 to 5, lags 1 to 21,

and lags 1 to 63 throughout the paper.
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A.2.2. MIDAS

The mixed data sampling (MIDAS) model of Ghysels, Santa-Clara, and Valkanov (2006) assumes

the following specification:

RV t+h
t+1 = β0 + β1MIDASk

t + ϵt, (A.2)

in which the MIDASk term is defined by:

MIDASk
t = 1∑L

i=1 ai

(a1RV d
t + a2RV d

t−1 + · · · + aLRV d
t−L+1),

ai = ( i

L
)θ1−1(1 − i

L
)θ2−1Γ(θ1 + θ2)Γ(θ1)−1Γ(θ2)−1, i = 1, ..., L,

(A.3)

where Γ(·) denotes the Gamma function; the superscript k in MIDASk can take values of d, w, m, q,

representing the resulting MIDAS term from predicting h = 1, 5, 21, 63-day-ahead RV . The

MIDAS feature can be viewed as a smoothly weighted sum of lagged daily RV ’s. It has three

hyperparameters θ1, θ2, and L that need to be tuned. Directly mirroring Ghysels, Santa-Clara,

and Valkanov (2006) and Bollerslev, Hood, Huss, and Pedersen (2018), we set θ1 = 1 and L = 50.

Further guided by Bollerslev, Hood, Huss, and Pedersen (2018), we employ a grid search to tune

θ2 for each h-day forecast horizon and choose the value that minimizes the Mean Squared Errors

(MSE) over the full sample.1

A.2.3. SHAR

We follow Patton and Sheppard (2015) to estimate a Semivariance-HAR (SHAR) model that

decomposes daily RV into two realized semivariance components:

RV t+h
t+1 = β0 + β+

d RV P d
t + β−

d RV Nd
t + βwRV w

t + βmRV m
t + βqRV q

t + ϵt, (A.4)
1To avoid onerous computational burdens, we follow the literature and do not perform a rolling grid search for the

θ2 parameter. As a result, the MIDAS feature is not truly out-of-sample but is included for comparison.
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where the annualized daily positive and negative semivariances, introduced by Barndorff-Nielsen,

Kinnebrock, and Shephard (2010), are defined as:

RV P d
t = 252 ×

n∑
i=1

r2
t−1+i/n1{rt−1+i/n>0}, RV Nd

t = 252 ×
n∑

i=1
r2

t−1+i/n1{rt−1+i/n<0}. (A.5)

Daily realized semivariances provide a natural decomposition of daily RV , i.e., RV d
t = RV P d

t +

RV Nd
t . Patton and Sheppard (2015) show that the negative semivariance RV Nd has stronger

predictive power on future RV ’s.2 To mitigate bias in realized semivariance estimates, we also apply

the subsampling scheme to construct RV P d and RV Nd.

A.2.4. HARQ-F

Bollerslev, Patton, and Quaedvlieg (2016b) propose a HARQ-F model by considering measurement

errors in RV estimates. The measurement error may be characterized by the asymptotic (for

n → ∞) distribution theory of Barndorff-Nielsen and Shephard (2002):

RVt = IV ∗
t + ϵt, ϵt ∼ MN(0, 2∆IQt), (A.6)

where IV ∗
t ≡

∫ t
t−1 σ2

sds is the unobservable Integrated Variance, IQt ≡
∫ t

t−1 σ4
sds denotes the

Integrated Quarticity (IQ), and MN stands for mixed normal. Using intraday returns, the integrated

quarticity for annualized daily RV may be consistently estimated by annualized daily realized

quarticity (RQ):

RQd
t = 2522 × n

3

n∑
i=1

r4
t−1+i/n. (A.7)

To improve efficiency, we further apply the subsampling method to the daily RQ estimation. Weekly,

monthly, and quarterly realized quarticities, denoted by RQw, RQm and RQq, respectively, can be

calculated by averaging daily RQ over lags 1 to 5, lags 1 to 21, and lags 1 to 63. The HARQ-F
2Patton and Sheppard (2015) also rely on the difference between positive and negative realized semivariances to

isolate signed jumps ∆J2
t = RV P d

t − RV Nd
t , and show that ∆J2

t negatively predicts future RV . Our Eq. (A.4) nests
the specification of including ∆J2

t when β+
d = −β−

d . On a related note, Andersen, Bollerslev, and Diebold (2007) find
that unsigned jumps lead to only a slight decrease in future RV .
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model allows coefficients of lagged RV ’s to vary as a function of
√

RQ:

RV t+h
t+1 = β0 + βdRV d

t + βwRV w
t + βmRV m

t + βqRV q
t

+ ϕdRV d
t

√
RQd

t + ϕwRV w
t

√
RQw

t + ϕmRV m
t

√
RQm

t + ϕqRV q
t

√
RQq

t + ϵt.

(A.8)

Bollerslev, Patton, and Quaedvlieg (2016b) show that, by allowing the model parameters to vary

explicitly with the degree of measurement error, this model generates significant improvements

in the accuracy of the forecasts compared with the forecasts from some of the most popular risk

models.

A.2.5. HExpGl

The Heterogeneous Exponential Realized Volatility with Global Risk Factor (HExpGl) model by

Bollerslev, Hood, Huss, and Pedersen (2018) represents one of the latest techniques for volatility

forecasting. Like HAR and MIDAS, HExpGl also constructs features based on daily RV series. The

difference is that HExpGl uses exponentially weighted moving averages (EWMA) of lagged daily

RV ’s, whereas HAR uses step functions and MIDAS relies on more complicated functional forms.

The EWMA of lagged daily RV ’s with a pre-specified center-of-mass (CoM) is given by:

ExpRV
CoM(λ)

t =
500∑
i=1

e−iλ

e−λ + e−2λ + · · · + e−500λ
RV d

t−i+1, (A.9)

where λ defines the decay rate of the weights and CoM(λ) denotes the corresponding center-of-mass

CoM(λ) = e−λ/(1 − e−λ); conversely, for a given center-of-mass, λ can be inferred from λ =

log(1 + 1/CoM). The center-of-mass for a given ExpRV measure captures the “average” horizon of

the lagged RV ’s that it uses. We follow Bollerslev, Hood, Huss, and Pedersen (2018) to consider

ExpRV terms with center-of-mass equal to 1, 5, 25, and 125 trading days. Motivated by the

cross-asset and cross-market volatility spillover effects, HExpGl also includes the EWMA of a global

risk factor GlRV with a center-of-mass equal to 5:

ExpGlRV 5
t =

500∑
i=1

e−iλ

e−λ + e−2λ + · · · + e−500λ
GlRVt−i+1, (A.10)
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where the corresponding λ = log(1 + 1/CoM) = log(1 + 1/5). For each day t and each stock i, the

global risk factor GlRV is computed as the average normalized RV scaled back to the asset’s own

long-run mean of RV , that is, ( 1
N

∑N
j=1

RV d
j,t

RVj
)RVi, where RVi is the long-run mean of daily RV for

stock i calculated from the beginning of the sample period until day t. The resulting HExpGl model

specification is given by:

RV t+h
t+1 = β0 + β1ExpRV 1

t + β2ExpRV 5
t + β3ExpRV 25

t + β4ExpRV 125
t

+ β5ExpGlRV 5
t + ϵt.

(A.11)

A.2.6. Option-Implied Variances

In addition to the high-frequency-based realized features from the existing models, our paper also

considers option-implied variances as inputs. Because our forecasting horizon is up to three months,

we include all 102 individual stock options from put and call options with maturities between one

and three months across all deltas to avoid cherry-picking a particular option in order to reduce

the chance of overfitting. For call-option-implied variances, we denote these features as CIV jm,δ

with maturity equal to j months (j = 1, 2, 3) and delta equal to δ (δ = 0.1, 0.15, ..., 0.9). For

put-option-implied variances, we denote these features as PIV jm,δ with maturity equal to j months

(j = 1, 2, 3) and delta equal to δ (δ = −0.1, −0.15, ..., −0.9).

A.3. Machine Learning Algorithms

A.3.1. LASSO

LASSO is designed to improve performance over that of OLS by imposing sparsity-encouraging

penalties on regression coefficients for variance reduction and model interpretation. Take daily RV

prediction as an example, LASSO assumes the same linear regression function as OLS:

g(zi,t; θ) = z′
i,tθ, (A.12)
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where z′
i,t is the feature vector for stock i on day t and θ is the unknown parameter. Unlike OLS,

however, LASSO estimates θ through a penalized L1 loss function:

L(θ; λ) = 1
NT

N∑
i=1

T∑
t=1

(RV d
i,t+1 − g(zi,t; θ))2 + λ

P∑
j=1

|θj |, (A.13)

where λ is the shrinkage parameter that controls for the magnitude of the penalty on the coefficients.

The special case of λ = 0 collapses back to OLS. In such a case, LASSO/OLS minimizes the training

(in-sample) error, potentially overfitting the data. By imposing the L1 penalty λ
∑P

j=1 |θj |, LASSO

is capable of setting some of the coefficients to be exactly zero, a very desirable property for two

reasons. First, setting coefficients to zero reduces parameter estimation variance and thus brings

down the variance component of the prediction error. Second, with zero regression coefficients, the

fitted model becomes more interpretable.

It is important to consider several implementation details to achieve better performance with

LASSO. First, we need to normalize features before estimating the models so that all features have

comparable magnitudes. Otherwise, a single λ would have vastly different shrinkage effects on

different features, making it impossible to tune. The normalization is done by using only mean and

standard deviation of the training sample to prevent look-ahead bias; we recalculate the mean and

standard deviation once per year to be consistent with the expanding window scheme detailed in

Section 3.1. Second, we need to choose λ from a wide range of values that can generate coefficient

estimates with varying sparsity levels for the model selection procedure to choose from. Otherwise,

the selected θ might be far from the region of optimal fit in the parameter space.

A.3.2. Principal Component Regression

The second linear learning algorithm we consider is PCR, which is motivated by the fact that

our volatility forecasting features are often correlated. PCR uses dimension-reduction techniques

to produce a small number of common factors from the original feature space and then relies on

the derived features as inputs for regressions. Specifically, in the first step, Principal Component

Analysis (PCA) is performed on the P -dimensional original feature space to extract a small number

of factors as linear combinations of the original inputs; these factors are orthogonal to each other

to prevent information redundancy. In the second step, we take only the first K most important
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principals that preserve the main variability of the original features for fitting the regression. More

formally, PCR is defined as follows:

RV = (ZΩK)θK + Ẽ, (A.14)

where RV is the NT × 1 vector of realized variances, Z is the NT × P matrix of features, ΩK

is a P × K orthogonal projection matrix from the P -dimensional original feature space onto the

K-dimensional derived input space, θK is a vector of coefficients corresponding to K derived inputs,

and Ẽ is an NT × 1 vector of residuals. The projection matrix ΩK can be found through singular

value decomposition (SVD) of the original feature matrix Z.

The hyperparameter for PCR is the number of derived input features K. There is a trade-off

between dimension reduction and information preservation when choosing K. If K is large, more

information in the original features is kept and used to make predictions. Overfitting concerns

naturally arise, however, as there are more parameters to estimate. If K is small, there is a risk

that the second-stage regression model misses some useful information in the discarded principal

components. In our implementation, we choose K through validation. This gives the unsupervised

learning PCA some guidance based on the target. We also standardize all features, as in LASSO,

to ensure the principal components are not dominated by a single feature with extremely large

variance. The number of components used in the linear regression is chosen by the smallest MSE on

the validation sets. To increase computational speed and also prevent overfitting, we set an upper

bound for K equal to 20.

A.3.3. Random Forest

Our first nonlinear learning algorithm is the random forest (RF) model, which is based on regression

trees for modeling nonlinearity. Unlike linear methods reviewed in the previous two sections that

essentially project the response onto the feature space, tree-based models partition the feature space

into a set of non-overlapping regions as illustrated in Figure A.1. The observations within the

same region are then fit through a simple model such as a constant. Mathematically, the estimated
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response function of a regression tree is:

ĝ(z∗
i,t; θ, K, L) =

K∑
k=1

θk1{z∗
i,t∈Ck(L)}, (A.15)

where Ck(L) is one of the K regions pre-determined by the training set. K is the number of regions,

L is the tree depth, 1{·} is an indicator function, and θk is the sample mean of the outcomes for

training observations within that region. A very large tree with many regions can capture very

fine details of the data but is prone to overfitting. Consider the extreme case where a fully grown

tree divides every single training observation in the training set into one region, thus yielding zero

training error but very poor out-of-sample performance.

Fig. A.1 Illustration of a regression tree model

RF reduces the overfitting problem associated with regression trees through several modifications.

First, instead of a single tree, RF generates multiple trees by bootstrapping the training sample and

then averaging forecasts from each individual tree to reduce the variance. Second, RF implements

observation and feature subsampling in the training process to decorrelate individual trees in the

forest for further variance reduction.

How large should we grow the trees? As described earlier, deep trees are less biased but very

unstable. Our strategy is to grow a large tree and then prune it back to a depth of L. We tune the

tree depth L via validation where we search for the optimal L that minimizes the validation error

over a grid of values ranging from 1 to 20. For each RF fitting, we bootstrap and average over 500

trees. For each tree, we use 50% of the training observations, and for each node split, we use ln(P )

features. Tree-based models are insensitive to feature location and scale and thus do not require
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feature standardization.

A.3.4. Gradient Boosted Regression Trees

The second nonlinear learning algorithm we investigate is the Gradient Boosted Regression Trees

(GBRT), which uses the base learner of regression trees as RF. There are, however, two principal

differences between GBRT and RF. First, GBRT uses trees as base learners in an additive fashion

whereas RF uses trees in an average fashion. At each step, GBRT fits a new tree to explain what has

been left unexplained by previous trees, while RF fits a parallel tree to explain the original response.

Second, GBRT prefers using shallow trees because each tree is supposed to be weak, but by adding

many small trees GBRT gradually reduces prediction bias while still controlling for variance. In

contrast, RF prefers deep trees because these trees need to be unbiased, and only by averaging

many deep trees is RF expected to reduce variance while simultaneously capturing the true relation.

To prevent overfitting, GBRT adds a new tree after discounting its contribution. Specifically,

at every round after fitting a tree to the residuals, we update our ĝ(·) by adding a shrunken

version of the new tree with a shrinkage multiplier 0 < λ < 1, which is called the learning rate.

We then update the residuals by subtracting this shrunken tree from the previously predicted

values. Other approaches employed by RF to mitigate overfitting problems are also used for GBRT.

Specifically, we adopt subsampling for each tree and randomly draw a subset of features at each split.

The hyperparameters for GBRT are the learning rate λ which controls the speed of learning, the

maximum tree depth that represents the upper bound for the degree of polynomials and interactions,

and the number of trees which prevents overfitting and as a result can balance the in-sample

performance with the out-of-sample prediction.

In our implementation, we set the learning rate λ low at 0.001 to help prevent the model from

overfitting the residuals. We validate the maximum tree depth, L, from 1 to 5. The grids with

L > 1 are set to give GBRT the ability to include high-order interactions and polynomials. For

subsampling, we again use 50% of the training observations for each tree and ln(P ) features for

each split. In addition, we use early-stopping rules to help us choose the number of trees in the

GBRT model: 1) If Mean Squared Errors (MSE) stop decreasing after 50 consecutive rounds, we

set the number of trees as the round at which the MSE stops improving instead of including more

trees in our GBRT model, and 2) when the total number of trees reaches 20,000. We report the
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resulting number of trees as model complexity. Like RF, GBRT is location- and scale-invariant so

there is no feature standardization.

A.3.5. Feed-Forward Neural Network

Our third nonlinear model is the feed-forward Neural Network (NN), which uses hidden layers

and nonlinear transformations to capture complex nonlinear relations. As shown in Figure A.2,

the original inputs X pass through one or more hidden layers, which transform these inputs into

derived features Z. The output layer aggregates the derived features into the final prediction.

Transformations are called activation functions in NN and are the sources of nonlinearity.

Fig. A.2 Illustration of a feed-forward neural network model

In our implementation, we consider a model that has two hidden layers with 5 and 2 neurons,

respectively. For the activation function, we choose the commonly used rectified linear unit (ReLU)

given as:

ReLU(x) = max(x, 0). (A.16)

We solve for the parameters in the activation function via stochastic gradient descent (SDG). We

choose the adaptive moment estimation (Adam) by Kingma and Ba (2015) for computational

efficiency and standardize each feature because NN is sensitive to feature scales. We also use

multiple random states when implementing stochastic optimization for hyperparameters and derive

predictions by averaging forecasts based on all tuned neural network models with ten starting points
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in order to obtain reliable estimates.

A.4. Additional Results

A.4.1. Factor Structures in Realized Variances

In the extreme case when a common volatility factor fully captures the co-movements in cross-sectional

RV ’s, the dependency structure between the different RV time series is nearly perfect. As a result,

using panel data instead of time-series data would not improve model performance because the

effective sample size stays roughly the same. However, Section 4.4 provides initial evidence that

panel data produce more accurate volatility forecasts, indicating that the extreme case does not

hold in practice. In this section, we conduct two additional analyses to shed light on how strong the

factor structure in volatilities is and whether exploiting such factor structure can enhance volatility

forecasting performance.

First, we perform a simple PCA on the covariance matrix based on the volatility time series

of all stocks with full sample between 1996 and 2019, and find that the first principle component

(PC) explains 33%, 41%, 49%, and 57% variation in the original data for daily, weekly, monthly,

and quarterly RV ’s. These numbers increase to 51%, 61%, 73%, and 84% when we use the first

three PCs. Thus, despite the factor structure in volatilities, there is still substantial amount of

variation in the data not captured by a small number of uncorrelated volatility factor time series.

More importantly, the information not captured by common factors is proven to be highly useful in

improving the volatility forecasting accuracy as shown in Table 6.

Second, following Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2016), we construct a

common volatility factor CRV for each measurement horizon as the equal-weighted average across

all RV s and run separate time-series regressions by regressing RV of each stock on CRV . The

cross-sectional average regression R2’s for daily, weekly, monthly, and quarterly RV ’s are 40.0%,

48.3%, 55.6%, and 59.5%, respectively, implying that about of the variations are not explained

by the common volatility factor. Then for each measurement horizon, we decompose total RVi,t

for stock i on day t into two components: (1) the component explained by the common factor, or

the product of CRV and its factor exposure, and (2) the residual component RRV defined as the
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difference between total RV and the first component.3 Next, we separately forecast CRV and the

residual components using various models.4 Lastly, we rely on the forecasts of CRV and RRV

to produce the final forecast of total RV . The resulting volatility prediction is poor no matter

which models we use to forecast CRV and RRV , and how we estimate CRV exposures. There are

potentially several reasons to explain why such attempt fails, including estimation errors in CRV

exposures, model misspefication, and the difficulty in forecasting CRV using aggregate time-series

data.

A.4.2. Firm Characteristics and Pure Noise Features

Our 118 features are all volatility-based features and, given the persistence of volatility, they are

naturally strong predictors of future RV ’s. One may wonder about how our new system can

handle other features such as weak features or even pure noise features. To address these questions,

we consider two new feature sets: firm characteristics and pure random noises. In the volatility

forecasting literature, firm characteristics have not been widely documented as useful predictors

of future realized volatility.5 On the other hand, it might be reasonable to hypothesize that firm

characteristics such as size might be indirectly (through interaction or nonlinearity) helpful in

volatility forecasting. To examine the power of firm characteristics, we consider the following

features: Size, BM , Mom, Retd, Retm, and ILLQ. Size is the natural logarithm of the product

of the closing price and the number of shares outstanding by the end of the previous month from

CRSP. BM in June of year t is computed as the ratio of the book value of common equity in fiscal

year t − 1 to the market value of equity in December in year t − 1 and is updated every year. Mom

is the past 2 to 12 month cumulative returns. Retd and Retm refer to the past daily and monthly

returns. ILLQ is the illiquidity measure of Amihud (2002), which is the average daily ratio of

the absolute stock return to the dollar trading volume over the previous month. Following Kelly,

Pruitt, and Su (2019) and Gu, Kelly, and Xiu (2020), we cross-sectionally rank each characteristic

on each day and map these ranks into the [-1,1] interval. Then we use the relative ranks of these
3Factor exposures are estimated by the regression coefficient using data prior to day t.
4When predicting CRV , we use all or subsets of 118 aggregate features that are cross-sectional averages of

firm-level features. When predicting RRV , we use all or subsets of 118 residual features, each of which is constructed
using the difference between the original feature and the product of CRV exposure and the corresponding aggregate
features.

5Paye (2012) shows that volatility forecasts exploiting macroeconomic variables do not outperform a univariate
benchmark out-of-sample much, and Rahimikia and Poon (2023) find that adding news sentiment variables only
marginally improves the forecasting performance.
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characteristics as additional features.6

The second new feature set is pure noise, with which we can test how well our system handles

false positives. We generate six random noise terms that mimic the distributional properties of the

volatility-based features. Let ri,j,t denote the j-th noise term for stock i on day t. We simulate the

panel of noises for each 1 ≤ i ≤ N and each 1 ≤ j ≤ 6 from the following model:

ri,j,t = 0.2(1 − ρj) + ρjri,j,t−1 + ui,j,t, ui,j,t ∼ N (0, 0.252(1 − ρ2
j )), (A.17)

where ρj ∈ {0.2, 0.4, 0.6, 0.8, 0.9, 0.99} is the first-order autocorrelation of noise j. By construction,

each noise term will have a mean of 0.2 and a standard deviation of 0.25, and they cover a wide

range of persistence levels.

Panel B of Table A.4 presents the R2
OOS ’s relative to HAR for fitting OLSALL and the ML-based

models to the newly expanded set of 130 features. In Panel A of the same table we replicate the

results reported in Table 3 using the original 118 features for ease of comparison. Overall, the

augmented feature set generates very similar results to these using the original 118 features across

different models. For OLSALL, the additional features maintain the same relative R2
OOS ’s at daily

horizon, but reduce the relative R2
OOS ’s at weekly, monthly, and quarterly horizons as a result of

overfitting more predictors. For LASSO, PCR, RF, and GBRT, the average performance of each

model over forecast horizons stays about the same using either 118 or 130 features. For NN, the

additional features produce similar relative R2
OOS ’s at the daily and weekly horizons, but deliver

worse performance at the monthly and quarterly horizons. For the ensemble model AVG, the

additional features show minimal improvement in the relative R2
OOS ’s at the first two horizons,

identical relative R2
OOS at the monthly horizon, and slightly worse relative R2

OOS at the quarterly

horizon.

Figure A.4 displays the group importance plots based on all 130 features for each individual

ML model and the ensemble model AVG. In addition to the three groups of features from the

original 118-feature set, we include two new groups, “Firm Char” and “Noise,” each of which

contains six cross-sectionally ranked firm characteristics and six pure noise terms, respectively.

There are several intriguing observations. First, the importance of the first three groups is largely
6Using raw characteristics without transformation produces quantitatively similar results.
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aligned with what Figure 3 shows based on 118 features. Secondly, cross-sectionally ranked firm

characteristics as a group contributes modestly to RV prediction, with group importance ranging

from 0.03% for LASSO at the quarterly horizon to 4.07% for RF at the same quarterly horizon.

Across models, the contribution of cross-sectionally ranked firm characteristics is relatively greater

for nonlinear models RF, GBRT, and NN at around 2% at various forecast horizons compared to

around 0.2% for linear models LASSO and PCR. One possible explanation is that cross-sectionally

ranked firm characteristics can help predict future RV only as interaction terms with existing RV

predictors. Lastly, the noise features contribute almost nothing to model prediction, indicating

that our ML-based models and the associated group importance metrics effectively control for false

positives.

A.4.3. Best Subset Selection Analysis and R2
OOS Decomposition

We investigate the relative importance of feature groups for the performance of each ML model

across time using permutation-based group importance measures in Section 4.6. One drawback of

this method is that the model is only trained once at the full model and even with the permutation,

the effect of the group of interest is never truly removed from the model. Alternatively, we consider

the best subset selection approach that only fits a subset of features at a time and compare the

OOS performance under different subsets.

Our analysis involves six subsets of three feature groups in total, comprising three one-group

subsets and three two-group subsets. By utilizing these subsets, we retrain our automated system

and calculate the relative R2
OOS for each subset to evaluate its contributions. To save computational

resources and keep the presentation manageable, we focus on the monthly forecast horizon. Panel A

of Figure 5 displays the relative R2
OOS ’s obtained from our sub-group analysis across feature group

subsets. The plot shows that when utilizing only one feature group, the “RV & RQ” group achieves

the highest relative R2
OOS ’s for our system. The IV features, on the other hand, contribute least to

RV forecasting when fitted solely in the AVG model, which aligns with our previous analysis using

only IV s with OLS-based models. Despite the IV features being the least informative group, the

positive relative R2
OOS of 3.8% achieved by the AVG-IV model suggests that forecast combination

can reduce forecast variance and thus enhance prediction accuracy over OLS-based models. The

relative R2
OOS ’s of our system based on two groups of features deliver a different message. IV s are
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selected by our system as a complementary information set to either “MIDAS & ExpRV” or “RV

& RQ” groups, resulting in R2
OOS improvements ranging from 6.2% to 7.7% when transitioning

from one-group to two-group fittings. Finally, when all groups of features are included, the AVG

model experiences further improvements in relative R2
OOS ’s and achieves the best performance

across feature groups.

The results of the subgroup analysis reveal distinct patterns in the importance of feature groups.

Specifically, “MIDAS & ExpRV” and “RV & RQ” terms demonstrate direct contributions to the

predictions, while the IV features offer interactive contributions. To capture both the individual

and interactive importance of the groups, we adopt a similar but simplified approach inspired by

the SHAP measure introduced by Lundberg and Lee (2017). This approach involves decomposing

the total R2
OOS ’s into group-specific R2

OOS ’s using out-of-sample subgroup predictions within a

coalitional game framework. Formally, the alternative importance measure for group k is defined as:

ϕ(k) =
∑

S⊆{F \k}

|S|!(|F | − |S| − 1)!
|F |! [R2

OOS(S ∪ k) − R2
OOS(S)], (A.18)

where S represents a subset of the feature groups used in the model, F denotes the set of all

feature groups, k is the target feature group, | · | indicates the number of groups in a feature set,

and R2
OOS(·, ·) is the relative R2

OOS for AVG model fitted using a particular feature group set.

Accordingly, the importance of each feature group is a weighted average of all differences in R2
OOS ’s

observed when the AVG model is trained with feature group k presented v.s. withheld. To illustrate

this calculation, let’s consider the IV group as an example. The group importance of the IV

features can be computed as follows:

ϕ(IV ) =1
3[R2

OOS(IV ) − 0] + 1
6[R2

OOS(MIDAS&ExpRV + IV ) − R2
OOS(MIDAS&ExpRV )]

+ 1
6[R2

OOS(RV &RQ + IV ) − R2
OOS(RV &RQ)]

+ 1
3[R2

OOS(MIDAS&ExpRV + RV &RQ + IV ) − R2
OOS(MIDAS&ExpRV + RV &RQ)],

This group importance measure possesses three desirable properties: 1) it considers both individual

and interactive contributions, 2) it is grounded in out-of-sample performance, and 3) the sum of
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group importance corresponds to the total R2
OOS . Contrasting the permutation measure discussed in

the main results, which primarily focus on the in-sample marginal dependence of models on feature

groups, the new measure assesses the relative contributions of groups to out-of-sample forecast

accuracy, thereby reflecting the model’s performance beyond its specification. Panel B of Figure 5

reports the decomposition of total R2
OOS ’s under our automated system. Once again, we confirm

that all three feature groups significantly contribute to the superior out-of-sample forecasts generated

by our automated system, reaffirming the robustness of our system in forecast performance and

model interpretation.

A.4.4. Firm Characteristics and Volatility Predictability

To understand which characteristics are associated with greater cross-sectional heterogeneity in

RV predictability, we employ simple portfolio sorts on the S&P 100 stock universe as follows. By

the end of each month for a given forecast horizon, we sort all stocks into quintile portfolios by

a given firm characteristic and compute for each portfolio the R2
OOS relative to HAR based on

model AVG with 118 features in the following month. Table A.5 reports the time-series mean of the

R2
OOS ’s for each quintile portfolio and the difference of the means between the highest and lowest

quintile portfolios, with Newey-West robust t-statistic in parentheses. Across forecast horizons,

Size generates significantly positive R2
OOS spread, whereas BM and ILLQ produces significantly

negative R2
OOS spread, indicating that large firms, growth firms, and more liquid firms in our sample

are associated with stronger RV predictability. On the other hand, return-based characteristics

Mom, Retd, and Retm generally do not produce significant R2
OOS spread across horizons, indicating

that volatility forecasting performance is not typically sensitive to price trend.

A.4.5. Robustness: Stock Universe and Sample Selection

The empirical analyses discussed in our main results are based on the full history between January

1996 and June 2019 for stocks with at least five years of data. To demonstrate that the superior

performance remains intact for any potential selection biases, we conduct additional evaluations of

the out-of-sample performance. First, we relax the five-year requirement for stock inclusion in the

sample used for model training and forecasting. Second, we exclude forecasts for the testing period

when a stock has not yet entered the index.
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To examine the potential selection bias arising from the five-year data requirement, we re-train

our models using a new stock sample consisting of both the original S&P 100 stocks and S&P 100

stocks without five-year data. We then apply these retrained models to the new sample and observe

consistent improvements in our RV forecasts. Panel A of Table A.6 reports the relative R2
OOS ’s

across forecasting models and horizons for the new S&P 100 sample. Nearly all models benefit

from the enlarged sample sizes, particularly in longer forecast horizons, as evidenced by increases

in the relative R2
OOS ’s across models. AVG, as expected, outperforms most of the other forecast

models across four horizons, with R2
OOS ’s between 9.1% to 15.5%. These findings reaffirm that our

automated system consistently produces the most accurate forecasts across different horizons and

samples.

The out-of-sample performance, excluding forecasts made prior to a stock’s inclusion in the S&P

500 index, is summarized in Panel B of Table A.6. In line with the earlier findings, the restricted

testing sample yields very similar results to the original sample across different models. For OLSALL,

the exclusion maintains or even increases the relative R2
OOS ’s at daily and weekly horizons, but

reduces the relative R2
OOS ’s at the monthly and quarterly horizons. This suggests that a portion

of the superior performance observed in the dense linear model is sensitive to the effective sample

size. In contrast, AVG again demonstrates extraordinary out-of-sample performance. The relative

R2
OOS ’s of AVG, using the restricted testing sample, range from 7.5% to 13%. These values slightly

surpass the performance of AVG using the original testing sample, highlighting the robustness of

forecast combinations in forecasting RV ’s.
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Panel A: LASSO Panel B: PCR

Panel C: RF Panel D: GBRT

Fig. A.3 Model complexity over time
This figure displays the complexity of LASSO, Principal Component Regression (PCR), Random Forest (RF), and
Gradient Boosted Regression Trees (GBRT) validated using each training and validation sample in our out-of-sample
analyses across various forecast horizons. Our first training sample is from January 1996 to December 1999 and our
first validation sample is from January 2000 to December 2000; our last training sample is from January 1996 to
December 2017 and our last validation sample is from January 2018 to December 2018. By the end of each validation
sample, we report the number of selected features with nonzero coefficients for LASSO, the number of principal
components for PCR, the maximum tree depth for RF, and the total number of trees for GBRT.
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Panel A: LASSO Panel B: PCR

Panel C: RF Panel D: GBRT

Panel E: NN Panel F: AVG

Fig. A.4 Group importance based on 130 Features
This figure displays the group importance based on 130 features for LASSO, PCR, RF, GBRT, NN, and AVG across different
forecast horizons. The 130-predictor feature set includes the 118 features used in the main analyses, six firm characteristics, and
six noise terms. The first group “MIDAS & ExpRV” includes the MIDAS term for the corresponding forecast horizon, ExpRV 1,
ExpRV 5, ExpRV 25, ExpRV 125, and ExpGlRV . The second group “RV& RQ” includes RV d, RV w, RV m, RV q, RV P d,
RV Nd, RV d

√
RQd, RV w

√
RQw, RV m

√
RQm, and RV q

√
RQq . The third group “Implied Variance” includes CIV jm,δ and

P IV jm,−δ, where j = 1, 2, 3, and δ = 0.1, 0.15, ..., 0.9. The fourth group “Firm Char” includes firm size, book-to-market ratio,
momentum, lagged daily return, lagged monthly return, and illiquidity. The last group “Noise” includes six noise terms generated
according to Eq. (A.17).
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Table A.1 Sample Construction and Descriptive statistics
Panel A reports the steps to construct the final stock sample along with the average number of strike prices, call contracts, and
put contracts per stock. Panel B reports descriptive statistics for all realized features and selective implied variance features
with absolute delta equal to 0.5. The final sample consists of 173 stocks listed on NYSE/AMEX/NASDAQ that have ever been
included in the S&P 100 index between January 1996 and June 2019 with share code 10 or 11, prices between $1 and $1000, daily
number of trades greater than or equal to 100, and at least five years of data on all features and response variables. Superscripts
d, w, m, and q are abbreviations of daily, weekly, monthly, and quarterly construction intervals or forecast horizons. MIDASk

(k = d, w, m, q) denotes the smoothly weighted moving average of 50 lagged realized variances using validated polynomials from
Eqs. (A.2) and (A.3) in forecasting realized variance at horizon k. RV k (k = d, w, m, q) is the daily, weekly, monthly or quarterly
realized variance. RV P d and RV Nd are the daily realized positive and negative semivariances, respectively. RV k

√
RQk

(k = d, w, m, q) is the product of the realized variance and the square root of the realized quarticity with the same construction
interval k. ExpRV i (i = 1, 5, 25, 125) is the exponentially weighted moving average of the past 500-day realized variances using
the corresponding center-of-mass i. ExpGlRV is the exponentially weighted moving average of the global risk factor with a
5-day center-of-mass. CIV jm,0.5 and P IV jm,−0.5 are implied variances from call and put options with absolute delta equal to
0.5 and maturity equal to j months (j = 1, 2, 3).

Panel A: Sample construction

S&P 100 S&P 500

Historical Constituents 185 961
Stocks with Option(s) Traded 185 (100%) 961 (100%)
Stocks with IV Features 184 (99%) 947 (99%)
Stocks with RV & IV Features 173 (94%) 836 (87%)
Avg Number of Unique Strike Prices per Stock 29 21
Avg Number of Call Contracts per Stock 138 89
Avg Number of Put Contracts per Stock 138 89

Panel B: Descriptive statistics for realized and selective implied features

Mean Std Skewness Kurtosis P1 P5 Median P95 P99 AR(1) AR(5) AR(21) AR(63)

MIDASd 0.145 0.243 7.575 106.664 0.012 0.019 0.076 0.478 1.143 0.969 0.839 0.629 0.457
MIDASw 0.145 0.236 7.428 102.063 0.013 0.020 0.078 0.471 1.116 0.985 0.905 0.688 0.489
MIDASm 0.145 0.233 7.344 99.184 0.013 0.020 0.079 0.468 1.103 0.991 0.933 0.725 0.508
MIDASq 0.145 0.228 7.217 94.686 0.014 0.021 0.081 0.464 1.089 0.995 0.960 0.780 0.534
RV d 0.144 0.299 9.249 152.262 0.009 0.014 0.065 0.507 1.349 0.581 0.466 0.366 0.280
RV w 0.148 0.265 7.899 115.693 0.011 0.017 0.073 0.509 1.258 0.945 0.656 0.508 0.382
RV m 0.150 0.247 8.076 119.655 0.014 0.021 0.081 0.487 1.135 0.993 0.945 0.682 0.482
RV q 0.151 0.235 7.504 97.368 0.017 0.024 0.087 0.471 1.103 0.999 0.989 0.910 0.612
RV P d 0.072 0.158 11.268 251.878 0.004 0.006 0.031 0.255 0.684 0.513 0.414 0.324 0.248
RV Nd 0.070 0.155 10.070 189.623 0.003 0.006 0.030 0.252 0.687 0.495 0.400 0.317 0.238
RV d

√
RQd 0.257 3.111 45.794 3351.632 0.000 0.000 0.007 0.504 4.198 0.259 0.169 0.116 0.079

RV w√
RQw 0.281 2.272 25.820 1024.559 0.000 0.001 0.012 0.733 5.394 0.853 0.281 0.180 0.116

RV m√
RQm 0.285 2.023 29.907 1495.195 0.000 0.001 0.020 0.964 4.888 0.973 0.837 0.315 0.176

RV q√
RQq 0.287 1.820 29.610 1455.167 0.001 0.002 0.031 1.026 4.252 0.994 0.962 0.783 0.291

ExpRV 1 0.148 0.274 8.341 128.445 0.011 0.017 0.072 0.508 1.269 0.875 0.625 0.477 0.357
ExpRV 5 0.149 0.254 8.064 120.020 0.013 0.020 0.079 0.496 1.168 0.976 0.863 0.626 0.445
ExpRV 25 0.151 0.235 7.447 97.015 0.017 0.024 0.087 0.476 1.093 0.997 0.978 0.869 0.624
ExpRV 125 0.154 0.200 5.232 42.188 0.021 0.029 0.097 0.464 1.017 1.000 0.997 0.978 0.890
ExpGlRV 0.178 0.294 6.849 81.002 0.021 0.030 0.094 0.603 1.454 0.993 0.942 0.743 0.520
CIV 1m,0.5 0.126 0.167 5.913 63.823 0.015 0.022 0.077 0.384 0.819 0.972 0.921 0.793 0.635
CIV 2m,0.5 0.123 0.158 5.953 65.884 0.016 0.023 0.076 0.367 0.771 0.982 0.946 0.840 0.670
CIV 3m,0.5 0.118 0.146 5.643 57.782 0.016 0.023 0.075 0.348 0.719 0.988 0.959 0.868 0.700
P IV 1m,−0.5 0.132 0.200 11.795 305.546 0.016 0.023 0.079 0.395 0.860 0.977 0.930 0.803 0.642
P IV 2m,−0.5 0.129 0.191 12.798 359.667 0.018 0.025 0.080 0.377 0.807 0.985 0.953 0.852 0.681
P IV 3m,−0.5 0.126 0.181 13.983 431.430 0.019 0.027 0.080 0.359 0.755 0.990 0.965 0.880 0.714
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Table A.2 Out-of-sample prediction relative to long-run mean: OLS-based models
This table reports the out-of-sample R2 relative to the historical mean of realized volatilities for OLS-based volatility forecasting
models across different forecast horizons. The sample consists of 173 stocks listed on NYSE/AMEX/NASDAQ that have ever
been included in the S&P 100 index between January 1996 and June 2019 with share code 10 or 11, prices between $1 and $1000,
daily number of trades greater than or equal to 100, and at least five years of data on all features and response variables. The
full out-of-sample evaluation period is from January 2001 to June 2019. Superscripts d, w, m, and q are abbreviations of daily,
weekly, monthly, and quarterly construction intervals or forecast horizons. MIDAS denotes the smoothly weighted moving
average of 50 lagged realized variances using validated polynomials for the corresponding forecast horizon. RV k (k = d, w, m, q)
is the daily, weekly, monthly or quarterly realized variance. RV P d and RV Nd are the daily realized positive and negative
semivariances, respectively. RV k

√
RQk (k = d, w, m, q) is the product of the realized variance and the square root of the

realized quarticity with the same construction interval k. ExpRV i (i = 1, 5, 25, 125) is the exponentially weighted moving
average of the past 500-day realized variances using the corresponding center-of-mass i. ExpGlRV is the exponentially weighted
moving average of the global risk factor with a 5-day center-of-mass. CIV jm,δ and P IV jm,−δ are implied variances from call
and put options with absolute δ = 0.1, 0.15, ..., 0.9 and maturity equal to j months (j = 1, 2, 3). Our OLS-based models include
MIDAS, SHAR, HARQ-F, HExpGl, OLSRM (i.e., simple OLS model with all 16 realized features as predictors), OLSIV (i.e.,
simple OLS model with all 102 implied variance features as predictors), and OLSALL (i.e., simple OLS model with all 118
realized and implied variance features as joint predictors). R2

OOS for each model at each forecast horizon is calculated relative
to the long-run mean of RV using the entire panel of stocks according to Eq. (5).

Model cccccccccccccccccccccFeatures Daily Weekly Monthly Quarterly

R2
OOS relative to long-run mean

HAR RV d, RV w, RV m, RV q 57.8% 69.4% 70.0% 63.6%

MIDAS MIDAS term for the corresponding forecast horizon 58.2% 70.6% 71.3% 64.2%

SHAR RV P d, RV Nd, RV w, RV m, RV q 58.4% 69.9% 70.4% 63.9%

HARQ-F RV d, RV w, RV m, RV q, 58.7% 70.3% 71.0% 65.4%
RV d

√
RQd, RV w√

RQw, RV m√
RQm, RV q√

RQq

HExpGl ExpRV 1, ExpRV 5, ExpRV 25, ExpRV 125, ExpGlRV 57.8% 70.2% 70.6% 63.1%

MIDAS term for the corresponding forecast horizon,
RV d, RV w, RV m, RV q, RV P d, RV Nd,

OLSRM RV d
√

RQd, RV w√
RQw, RV m√

RQm, RV q√
RQq, 59.8% 71.4% 71.6% 64.3%

ExpRV 1, ExpRV 5, ExpRV 25, ExpRV 125, ExpGlRV
(# of features = 16)

OLSIV CIV jm,δ and P IV jm,−δ, j = 1, 2, 3, δ = 0.1, 0.15, ..., 0.9 53.6% 67.2% 69.1% 62.9%
(# of features = 102)

OLSALL All 118 Features (16 realized features + 102 IV features) 61.0% 73.0% 72.2% 63.4%
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Table A.3 Out-of-sample predictions relative to long-run mean: Machine-learning-based models
This table reports the out-of-sample R2 relative to the historical mean of realized volatilities for machine-learning-based volatility
forecasting models across different forecast horizons. The sample consists of 173 stocks listed on NYSE/AMEX/NASDAQ that
have ever been included in the S&P 100 index between January 1996 and June 2019 with share code 10 or 11, prices between $1
and $1000, daily number of trades greater than or equal to 100, and at least five years of data on all features and response
variables. The full out-of-sample evaluation period is from January 2001 to June 2019. The features of each model consist of all
118 predictors detailed in Table 2. Our machine-learning-based models include LASSO, Principal Component Regression (PCR),
Random Forest (RF), Gradient Boosted Regression Trees (GBRT), Neural Network (NN), and a simple average of forecasts
from the five individual machine learning models (AVG). Tuning parameters for each model are in bold. R2

OOS for each model
at each forecast horizon is calculated relative to the long-run mean of RV using the entire panel of stocks according to Eq. (5).

Model Hyperparameter (Tuning parameter in bold) Daily Weekly Monthly Quarterly

R2
OOS relative to long-run mean

LASSO # of shrinkage parameters (λ): 100 61.1% 73.1% 73.4% 64.6%
λmin/λmax: 0.001

PCR # of components: 1, 2, ..., 20 60.1% 70.9% 72.4% 66.5%

Maximum tree depth (L): 1, 2, ..., 20
RF # of trees: 500 59.1% 71.4% 72.8% 65.6%

Subsample: 0.5
Subfeature: ln(# of features)

# of trees (B)
Maximum tree depth (L): 1, 2, ..., 5
Learning rate: 0.001

GBRT Subsample: 0.5 59.8% 72.6% 73.2% 65.9%
Subfeature: ln(# of features)
Early-stopping rules (whichever met first):
1) No reduction in MSE after 50 iterations
2) Max # of trees hit 20,000

# of hidden layer: 2
NN # of neurons: (5, 2) 62.2% 74.5% 74.3% 65.4%

Activation function: ReLU

AVG 61.6% 73.8% 74.5% 67.2%
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Table A.4 Out-of-sample prediction relative to HAR: Firm Characteristics and noise terms
This table reports the out-of-sample R2 relative to the HAR model for OLS-based and machine-learning-based volatility
forecasting models across different forecast horizons using all 130 predictors, including 118 predictors used in the main
analyses, six cross-sectionally ranked firm characteristics, and six pure noise terms. The sample consists of 173 stocks listed on
NYSE/AMEX/NASDAQ that have ever been included in the S&P 100 index between January 1996 and June 2019 with share
code 10 or 11, prices between $1 and $1000, daily number of trades greater than or equal to 100, and at least five years of data
on all features and response variables. The full out-of-sample evaluation period is from January 2001 to June 2019. In Panel A
we replicate the results reported in Table 3 for 118 features, and in Panel B we report the results based on 130 features. Firm
characteristics include firm size (Size), book-to-market ratio (BM), momentum (Mom), lagged daily return (Retd), lagged
monthly return (Retm), and illiquidity (ILLIQm). We cross-sectionally rank each firm characteristic on each day and map
these ranks into the [0,1] interval. Our machine-learning-based models include LASSO, Principal Component Regression (PCR),
Random Forest (RF), Gradient Boosted Regression Trees (GBRT), Neural Network (NN), and a simple average of forecasts
from the five individual machine learning models (AVG). Tuning parameters for each model are reported in bold. R2

OOS for
each model is calculated relative to the prediction from HAR using the entire panel of stocks according to Eq. (5).

Model Hyperparameter Panel A: 118 Features Panel B: 130 Features

Daily Weekly Monthly Quarterly Daily Weekly Monthly Quarterly

R2
OOS Relative to HAR

OLSALL 7.6% 11.6% 7.3% -0.6% 7.6% 11.5% 6.9% -1.3%

LASSO # of shrinkage parameters (λ): 100 8.0% 12.1% 11.3% 2.6% 7.9% 12.1% 11.3% 2.6%
lambdamin/λmax: 0.001

PCR # of components: 1,2,. . . ,20 5.5% 4.8% 8.1% 7.8% 5.2% 3.1% 8.2% 7.8%

Maximum tree depth: 1,2,. . . ,20
RF # of trees: 500 3.2% 6.4% 9.5% 5.4% 2.8% 6.7% 10.1% 5.9%

subsample: 0.5
subfeature: ln(# of features)

# of trees (B)
Maximum tree depth (L): 1, 2, ..., 5
Learning rate: 0.001

GBRT Subsample: 0.5 4.7% 10.2% 10.8% 6.3% 4.7% 10.7% 11.0% 6.5%
Subfeature: ln(# of features)
Early-stopping rules (whichever met first):
1) No reduction in MSE after 50 iterations
2) Max # of trees hits 20,000

# of hidden layer: 2
NN # of neurons: (5, 2) 10.5% 16.7% 14.3% 4.8% 10.5% 16.2% 12.0% 1.2%

activation function: ReLU

AVG 9.0% 14.3% 15.2% 10.0% 9.1% 14.5% 15.2% 9.7%
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Table A.5 R2
OOS from AVG sorted by firm characteristics

This table reports the time-series mean of within-month average R2
OOS from AVG sorted by firm characteristics across different

forecast horizons, where R2
OOS is the out-of-sample R2 relative to the HAR model. The sample consists of 173 stocks listed on

NYSE/AMEX/NASDAQ that have ever been included in the S&P 100 index between January 1996 and June 2019 with share
code 10 or 11, prices between $1 and $1000, daily number of trades greater than or equal to 100, and at least five years of data
on all features and response variables. The full out-of-sample evaluation period is from January 2001 to June 2019. AVG is the
simple average of forecasts from the five individual machine learning models based on 118 predictors. Firm characteristics include
firm size (Size), book-to-market ratio (BM), momentum (Mom), lagged daily return (Retd), lagged monthly return (Retm),
and illiquidity (ILLIQ). By the end of each month, we sort all stocks into quintile portfolios by a given firm characteristic
and compute for each portfolio the R2

OOS relative to HAR based on model AVG in the following month. Then we report the
time-series mean of the R2

OOS ’s. The column labeled “HML” reports the difference in average R2
OOS between portfolio 5 and

portfolio 1, with Newey-West robust t-statistics in parentheses.

Panel A: Daily Panel B: Weekly

1 (Low) 2 3 4 5 (High) HML 1 (Low) 2 3 4 5 (High) HML

Size 7.2% 9.0% 9.4% 10.7% 12.3% 5.1% 14.8% 19.5% 19.2% 21.3% 23.0% 8.2%
(6.60) (5.27)

BM 9.9% 10.2% 9.2% 8.2% 6.5% -3.4% 19.7% 21.0% 18.5% 15.9% 12.9% -6.8%
(-4.52) (-4.39)

Mom 8.3% 8.6% 9.8% 9.6% 9.2% 0.9% 16.5% 17.7% 19.9% 19.0% 19.2% 2.8%
(1.24) (2.14)

Retd 8.6% 8.9% 9.2% 8.5% 9.1% 0.5% 16.3% 17.6% 18.4% 18.2% 18.5% 2.2%
(0.71) (1.48)

Retm 9.2% 8.4% 8.8% 9.7% 8.3% -0.9% 18.6% 17.5% 17.3% 18.4% 18.1% -0.5%
(-1.23) (-0.36)

ILLQ 11.1% 9.8% 9.7% 9.9% 7.3% -3.9% 20.0% 21.2% 18.8% 20.5% 14.9% -5.1%
(-5.06) (-3.24)

Panel C: Monthly Panel D: Quarterly

1 (Low) 2 3 4 5 (High) HML 1 (Low) 2 3 4 5 (High) HML

Size 19.8% 25.9% 26.1% 28.2% 28.9% 9.1% 15.7% 19.7% 21.4% 24.8% 26.0% 10.3%
(3.50) (3.23)

BM 28.6% 28.0% 25.2% 21.0% 16.9% -11.7% 26.3% 26.5% 23.2% 18.2% 14.2% -12.1%
(-4.47) (-4.22)

Mom 21.3% 27.1% 26.7% 23.5% 23.8% 2.6% 17.8% 23.8% 25.9% 21.4% 15.1% -2.7%
(1.16) (-1.04)

Retd 23.1% 24.9% 26.3% 24.9% 22.0% -1.1% 20.6% 20.9% 23.6% 23.9% 17.1% -3.4%
(-0.48) (-1.33)

Retm 23.4% 25.0% 24.5% 25.3% 23.3% -0.1% 21.3% 21.7% 23.2% 22.9% 16.6% -4.7%
(-0.03) (-1.63)

ILLQ 26.0% 28.4% 26.3% 25.3% 19.3% -6.7% 22.2% 23.8% 23.0% 20.3% 14.2% -8.1%
(-2.62) (-2.76)
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Table A.6 Out-of-sample prediction relative to HAR: Robustness
This table reports the out-of-sample R2 relative to the HAR model for OLS-based and machine-learning-based volatility forecasting
models across different forecast horizons in a robustness analysis. The sample consists of stocks listed on NYSE/AMEX/NASDAQ
with share code 10 or 11, prices between $1 and $1000, and daily number of trades greater than or equal to 100. The full
out-of-sample evaluation period is from January 2001 to June 2019. Panel A focuses on a sample consisting of 205 stocks
listed on NYSE/AMEX/NASDAQ that have ever been included in the S&P 100 index between January 1996 and June 2019,
relaxing the five-year data requirement. Panel B evaluates the out-of-sample performance for a sample consisting of 836 stocks
listed on NYSE/AMEX/NASDAQ that have ever been included in the S&P 500 index between January 1996 and June 2019,
excluding forecasts for periods when a stock has not entered into the index. The features of each OLS-based model consist of
either model-specific predictors or all 118 predictors as detailed in Table 2, and those of each ML-based model consist of all
118 predictors. Our ML-base models include LASSO, Principal Component Regression (PCR), Random Forest (RF), Gradient
Boosted Regression Trees (GBRT), Neural Network (NN), and a simple average of forecasts from the five individual machine
learning models (AVG). R2

OOS for each model is calculated relative to the prediction from HAR using the entire panel of stocks
according to Eq. (5).

Panel A: Relax five-year requirement Panel B: Exclude before inclusion

Daily Weekly Monthly Quarterly Daily Weekly Monthly Quarterly

R2
OOS Relative to HAR R2

OOS Relative to HAR

MIDAS 1.1% 3.7% 4.3% 1.6% 0.6% 2.1% 1.9% -0.1%
SHAR 1.5% 1.6% 1.4% 0.7% 1.0% 1.2% 0.9% 0.5%
HARQ-F 2.2% 3.0% 3.9% 5.4% 1.0% 1.3% 0.7% 1.0%

OLS HExpGl 0.0% 2.4% 2.1% -1.3% 0.3% 2.0% 1.9% -0.4%
OLSRM 4.9% 6.6% 6.3% 3.5% 3.5% 5.0% 3.1% 0.1%
OLSIV -10.4% -8.5% -3.9% -3.0% -16.4% -19.7% -16.0% -10.5%
OLSALL 7.6% 11.5% 7.9% 1.0% 5.2% 8.6% 5.6% -0.3%

LASSO 7.8% 11.9% 11.4% 4.5% 5.5% 9.3% 8.2% 2.5%
PCR 6.1% 4.2% 7.4% 8.6% 4.3% 6.4% 4.8% 6.3%
RF 3.5% 6.7% 11.0% 7.6% 4.8% 7.9% 7.2% 4.6%

ML GBRT 4.7% 10.1% 11.2% 7.6% 5.8% 10.5% 7.6% 3.5%
NN 10.7% 16.8% 14.2% 3.0% 8.9% 14.9% 11.7% 4.2%
AVG 9.1% 14.4% 15.5% 10.8% 7.7% 13.0% 11.6% 7.5%
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