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Optimizing a portfolio of mean-reverting assets under transaction costs and a finite horizon is
severely constrained by the curse of high dimensionality. To overcome the exponential barrier, we
develop an efficient, scalable algorithm by employing a feedforward neural network. A novel con-
cept is to apply HJB equations as an advanced start for the neural network. Empirical tests with
several practical examples, including a portfolio of 48 correlated pair trades over 50 time steps,
show the advantages of the approach in a high-dimensional setting. We conjecture that other financial
optimization problems are amenable to similar approaches.

Keywords: Asset allocation; Portfolio allocation; Portfolio optimization; Statistical learning theory;
Stochastic programming
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1. Introduction

One of the most difficult and significant problems in compu-
tational finance is the multi-stage, stochastic financial plan-
ning model. The multi-stage framework affords a variety of
practical considerations that are difficult to address consis-
tently in a single-period model: transaction costs, turnover,
temporal risks including drawdown, goals at differing time
periods, tradeoffs of short term savings versus long-term
benefits, inflows and outflows of capital, and Markovian
transitions. These issues have been extensively studied by
researchers over the past 60 + years. References Bertocchi et
al. (2011), Dempster et al. (2007), Hakansson (1969), Mulvey
et al. (2003), Shreve and Soner (1994), Ziemba and Mul-
vey (1998) and Zenios and Ziemba (2007) present illustrative
examples.

Despite their general applicability, multi-stage stochas-
tic planning models are severely constrained by the curse
of high dimensionality. Accordingly, the model’s scope is
limited to allow for a practical solution. There are several
avenues to pursue: (1) Stochastic Control: we render a set
of severe assumptions such as Samuelson (1969) and Mer-
ton (1969, 1971, 1973) in their early and innovative work

*Corresponding author. Email: mulvey@princeton.edu

to convert a stylized multi-stage model into a sequence of
myopic models with a fixed asset mix. The general idea
can be interpreted as solving the HJB equations directly. (2)
Dynamic Programming: given a reasonable-size state space
and Markovian assumptions (and additive utility), we can
apply DP and approximate DP algorithms. This idea has been
much expanded in the AI/machine learning domain under the
term reinforcement learning; (3) Stochastic Programs: set up
a generic model with a finite set of scenarios (realizations
of uncertainties) and decision branches and solve the result-
ing model as a large-scale nonlinear program; (4) Policy-Rule
Simulation: assume one or more non-anticipative policy rules,
apply a Monte Carlo simulation/optimization to evaluate and
compare policy rules.

Inevitably, each of these avenues reduces the usefulness of
the methods for assisting investors and portfolio managers
faced with realistic multi-stage financial planning problem.
There can be advantages for combining approaches (Konicz
and Mulvey 2013).†

A similar computational barrier arises when addressing
high-dimensional systems of partial differential equations.
Recently, Weinan et al. (2017) have proposed applying

† The Google deep learning group has implemented dual methods in
their world-class gaming systems for playing chess, shogi, and Go
(Silver et al. 2016).
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Figure 1. Assets with mean-reverting behavior.

feedforward neural networks to overcome the curse of dimen-
sionality in the PDE domain (Han and Weinan 2016, Weinan
et al. 2017, Han et al. 2018). In this paper, we take a similar
approach.

To improve efficiency, we device an advanced starting
algorithm based on solving a system of differential HJB equa-
tions. The advanced start improves the efficacy of the inte-
grated solution process. In particular, we combine approaches
by linking the HJB system for an approximate problem (with-
out transaction costs) with the feedforward neural network to
address the high-dimensional elements. The network approx-
imates the stochastic derivative of the objective as a function
of the transactional boundaries.

For this study, we focus on optimizing a portfolio of corre-
lated assets with mean-reverting behavior, as characterized by
Ornstein–Ulenbeck (OU) processes. Many investments dis-
play mean reversion, including volatility and earnings growth
over a target rate (Figure 1). Our goal is to maximize the
expected utility of wealth at the end of a finite horizon T,
wherein the utility function assumes constant relative risk
aversion (CRRA). Importantly, we add linear transaction costs
for the purchase or sale of an asset, and assume a finite set of
time steps and zero cashflows over the planning period.

The traditional approach for addressing transaction costs is
to apply non-trade zones around a specified asset allocation.
Thus given an allocation for any particular asset at time

t, say x∗
t , we would designate boundaries x-lower and x-

upper around x∗
t , and the investor would trade whenever

the asset value falls outside the limits. References Davis
and Norman (1990), Mulvey and Simsek (2002), Shreve and
Soner (1994) and Taksar et al. (1988) provide further details.
We build on this concept in this study, wherein the feedfor-
ward neural network sets the no-trade zone boundaries at each
time point and state of the system.

The remainder of this paper is organized as follows. The
next section surveys research on multi-period portfolio mod-
els, with and without transaction costs. In Section 3, we
derive the theoretical results for the finite horizon optimal
allocation problem under the no-transaction costs assumption.
Section 4 describes our deep neural network (DNN) method
to parametrize the no-trade zone and derive a trading strat-
egy based on a no-trade zone. Section 5 provides a training
procedure and numerical results from synthetic data. Results
in this section show the no-trade zone characterized by the
DNN meets our intuition. Section 6 shows backtest results of
our hybrid algorithm applied to real data of stock-ETF pairs
trading with transaction costs.

2. Literature review

The dynamic portfolio optimization problem is an essential
topic in mathematical finance that has been studied since the
1970s. Merton (1969, 1971) established the framework for
dynamic portfolio choice with stochastic variation in invest-
ment opportunities by explicitly solving a continuous-time
portfolio problem where the investor can invest between
stocks modeled as geometric Brownian motions and a money
market account with a fixed risk-free rate to maximize the
expected utility of consumption and terminal wealth. Herein
the optimal strategy is a fix-mix strategy for the constant
relative risk aversion (CRRA) utility when there are no trans-
action costs. Mossin (1968), Samuelson (1969) and Hakans-
son (1969) solve analytically a similar problem in discrete
settings.

There has been a significant literature extending Mer-
ton’s problem from differing perspectives. One main stream
is to incorporate stock return predictability into portfolio
optimization, for example, by modeling the stock returns
as mean reverting (Ornstein–Uhlenbeck) processes. Camp-
bell and Viceira (1999) assume an infinite investment hori-
zon and derive an approximate analytical solution. Kim
and Omberg (1996) derive an exact solution under hyper-
bolic absolute risk aversion (HARA) utility by limiting the
investor to maximizes utility over terminal wealth only.
Wachter (2002) solves, in closed form, the optimal portfo-
lio choice problem for an investor with utility over both
consumption and terminal wealth under a complete mar-
ket assumption. Liu (2006) extends the work to multiple
risky assets and explicitly solves up to the solution of
an ODE system when the investor has a constant relative
risk aversion (CRRA) utility and the asset returns follow
a quadratic process which includes both the affine process
and the Ornstein–Uhlenbeck process as special cases. Munk
et al. (2004) consider not only stocks with mean-reverting
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excess return, but also bond trading and inflation. Ma and
Zhu (2019) assume a continuous-time cointergration model
where the risky assets follow Ornstein–Uhlenbeck processes,
and derive the optimal investment and consumption for
investors with exponential utility.

In the above-mentioned studies, the authors either solve
or approximate the optimal trading strategy by assuming no
transaction costs. However, dynamic portfolio optimization
often requires frequent rebalancing and hence transaction
costs are usually not negligible. Such trading costs are caused
by several factors such as the bid-offer spread, execution
commissions, market impact or tax, etc. Magill and Constan-
tinides (1976) initiated the research in transaction costs by
proposing that the investors only trades in securities when
the variation in the underlying security prices forces his
portfolio proportions outside a no-trade zone. Davis and Nor-
man (1990) were the first to provide a detailed formulation
and analysis, along with an algorithm and numerical compu-
tation of the optimal policy for an infinite-horizon investment
and consumption decision problem. Shreve and Soner (1994)
relax some assumptions in Davis and Norman’s work and
conduct an analysis of the optimal trading strategies over an
infinite horizon. They prove existence, uniqueness and regu-
larity of the value function. Liu and Loewenstein (2002) focus
on the finite-horizon optimal trading problem with a single
risky asset. The multi-asset portfolio optimization problem is
more difficult to solve. Liu (2004) obtains an almost closed-
form solution for fixed and proportional costs in continuous
time for infinite lived constant absolute risk aversion (CARA)
investors when asset returns are uncorrelated. Muthuraman
and Kumar (2006) develop numerical methods to solve the
free boundary Hamilton–Jacobi–Bellman (HJB) equation for
the case of two correlated risky assets. Muthuraman and
Zha (2008) construct numerical methods and provide a com-
putational scheme with runtime scaling polynomially in the
number of assets. Lynch and Tan (2010) numerically solve
over a finite discrete horizon a similar problem with two
risky assets to Muthuraman and Kumar (2006) but incorporate
return predictability for the first time. Their methods are based
on a grid approximation of the state space for the associated
dynamic program.

Yet, there is no guarantee that the aforementioned numer-
ical methods are close to optimal or any indication of how
much better one might do with an optimal strategy. Brown et
al. (2010), Brown and Smith (2011) develop a dual bounding
technique that helps evaluate the quality of the trading strate-
gies. Broadie and Shen (2017) provide three lower bounds for
the optimal solution of the transaction cost involved in a port-
folio choice problem with 20 risky assets and 40 investment
periods: the value function optimization (VF), the hyper-
sphere and the hyper-cube policy parameterizations (HS and
HC). They also achieve tighter upper bounds by improving
the duality method in Brown et al. (2010), Brown and Smith
(2011).

In addition to proportional transaction cost, we men-
tion research on non-linear transaction cost. Grinold (2006)
derives the optimal steady-state position with quadratic trad-
ing costs and a single predictor of returns per security. Gâr-
leanu and Pedersen (2013) derive a closed-form solution for
a model with linear dynamics for return predictors, quadratic

functions for transaction costs, and quadratic penalty terms
for risk. Chan and Sircar (2015) consider a class of dynamic
portfolio optimization problems incorporating return pre-
dictability, and stochastic volatility with quadratic transaction
cost.

Rebalancing a multi-asset portfolio back to a target no-trade
zone is a practically important problem. Mulvey and Simsek
(2002), Mulvey et al. (2003) set up a multi-stage optimization
model for investing in assets over an extended time horizon.
In particular, they show that the rebalancing problem can be
posed as a generalized network with side constraints and pro-
pose a search algorithm for finding a feasible solution with the
lowest transaction cost.

Despite prior work on transaction-cost models, there are
few scalable solutions the optimal trading strategy with mul-
tiple risky assets due to the curse of dimensionality, i.e. the
computational cost scales exponentially with the number of
assets. Ritter (2017) propose a reinforcement learning frame-
work for solving the trading strategy under the assumptions
of mean-reverting assets and quadratic transaction costs. The
author discretizes the state space as well as the action space
and defines the reward function accordingly. The algorithm
works well even when the agent does not, at least initially,
have any information about the movement of the underly-
ing risky asset price and about the form of transaction costs.
Yet, this reinforcement learning method suffers from the curse
of dimensionality and may not be suitable for multiple risky
assets. On the other hand, during recent years, deep learning
has made breakthroughs in many areas such as image recogni-
tion and game playing, as well as finance (LeCun et al. 2015).
Culkin and Das (2017) survey how and why deep learning can
influence the field of finance in a very general way with a spe-
cific application to reproducing the Black and Scholes option
pricing formula to a high degree of accuracy by training a
fully-connected feed-forward deep learning neural network.
Weinan et al. (2017) propose a new method for solving high-
dimensional fully nonlinear second-order partial differential
equations (PDEs) herein. The PDEs are reformulated as a con-
trol theory problem with the gradient of the unknown solution
approximated by neural networks, like deep reinforcement
learning with the gradient acting as the policy function. Their
technique has inspired us to use a feedforward neural network
to solve the free boundary HJB equation.

Last, we briefly discuss applications in the financial mar-
kets, particularly in pairs trading, which was first initiated
in Morgan Stanley in 1980s. The original idea is straightfor-
ward to find a pair of stocks whose spread exhibits potentially
mean-reverting behavior. Research on pairs trading or sta-
tistical arbitrage has flourished over the next three decades,
see Pole (2007) and Leung and Li (2016) for a comprehen-
sive review on statistical arbitrage. Benth and Karlsen (2005)
analyze the classical Merton’s portfolio optimization prob-
lem when portfolio contains one risky asset following an
exponential Ornstein–Uhlenbeck (XOU) process. Jurek and
Yang (2007) consider a similar problem to the one we did in
this paper, a finite portfolio optimization problem consisting
of a single OU asset subject to CRRA utility and Epstein-Zin
recursive utility, but they only provide explicit solutions to
an optimal trading strategy with a single mean-reverting asset
and uncorrelated multi-assets. Tourin and Yan (2013), Liu
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and Timmermann (2013) solve the portfolio choice problem
comprising of a risk-free asset and two co-integrated and cor-
related stocks. Yet none of the aforementioned researches
assumed transaction cost in the model. For constructing the
mean-reverting tradable, we slightly modify the stock-ETF
pairs trading methods in Avellaneda and Lee (2010). They use
principal component analysis (PCA) and regress stock returns
on sector exchange traded funds (ETFs) to construct trading
signal and model the idiosyncratic returns as mean-reverting
processes. The exact construction process and related carry
cost will be discussed in the corresponding section. In addi-
tion, there are other applications of the methodology to asset
allocation as well as asset and liability management.

First, we model the asset prices, rather than asset returns
or risk premiums as in much other literature, as Ornstein–
Uhlenbeck process and extend the model to correlated multi-
assets portfolio when there is no transaction cost. This is
meaningful when portfolios contains mean-reverting assets
such as CBOE volatility index (VIX) future or assets cre-
ated by pairs trading. Second, we develop a novel numerical
method using a feedforward neural network to parametrize
the trading boundaries of the no-trade zone in a dynamic
fashion. Our study shows when there are transaction costs,
the integrated method significantly improves the policy we
derived under the no-transaction-cost assumption. Moreover,
our method is scalable to the high-dimensional case. To our
best knowledge, previous work has not been done on study-
ing the transaction boundary in the high-dimensional case
with asset prices modeled as correlated Brownian motions or
mean-reverting processes.

3. Optimal strategy under zero transaction costs

In this section, we analyze the optimal trading strategy for
the basic setting. We start with the case where there are one
risky asset and one risk-free asset with zero transaction costs
and then extend to the case where there are multiple risky
assets. The solution is characterized by an ODE system. It will
provide a starting solution for training deep neural networks.

3.1. Optimal strategy with one risky asset

Following Jurek and Yang (2007), suppose there is one risky
asset whose price Xt follows an Ornstein–Uhlenbeck (OU)
process and a money market account value by Yt:

dXt = λ(μ − Xt) dt + σ dZt

dYt

Yt
= r dt,

(1)

where λ ∈ R
+ is the mean-reversion speed parameter, σ ∈

R
+ is the volatility parameter and μ ∈ R is the mean param-

eter of the OU process and Zt denotes the standard Brownian
motion, r ∈ R is the constant risk free rate. Let π(t) ∈ R be
the current proportion of wealth invested in the risky asset at
time t. The total wealth Wt follows:

dWt

Wt
= πt

dXt

Xt
+ (1 − πt)

dYt

Yt
. (2)

Our goal is to maximize the expected utility of the terminal
wealth WT at a given finite horizon T :

max
π

E[Uγ (WT )], (3)

where we choose Uγ (W) to be the CRRA utility:

U(W) =
⎧⎨
⎩

W 1−γ − 1

1 − γ
if γ > 0 and γ �= 1,

ln(W) if γ = 1.
(4)

In this section, we focus on solving the above problem ana-
lytically with a fixed value γ > 1. We use the notation U(W)

instead of Uγ (W) for simplicity.
Let τ = T − t be the horizon of the investment period.

Assume J(W , X , τ) to be the indirect utility function which
satisfies the boundary condition J(W , X , 0) = U(W). We
derive the Hamilton–Jacobi–Bellman equation:

max
π

{
−Jτ +

[
πλ

X
(μ − X ) + (1 − π)r

]
WJW

+ 1

2

(πσ

X

)2
W 2JWW

+ λ(μ − X )JX + 1

2
σ 2JXX + σ

πσ

X
WJWX

}
= 0, (5)

where Jτ ,JW , and JX denote the partial derivatives of J with
respect to t, W, and X , respectively. Similarly, JWW , JXX

and JWX denote the higher order partial derivatives. From
equation (5), we can compute the optimal asset allocation:

π∗(τ , X , W) = − JW

WJWW

[
λ(μ − X )/X − r

(σ/X )2

]
− XJWX

WJWW
.

(6)
The first term in equation (6) is the scaled mean-variance effi-
cient portfolio weight, also called the myopic demand because
this is the vector of portfolio weights for an investor who only
optimizes over one single period. The coefficient −JW/WJWW

is the counterpart of inverse relative risk aversion 1/γ =
−U ′(W)/WU ′′(W) in the indirect utility. The higher the rel-
ative risk aversion is, the less risky asset one should hold as
a proportion of the portfolio. The second term in equation (6)
represents the inter-temporal hedging demand, which arises
in a multi-period portfolio choice problem when an investor
accounts for changes in the investment opportunity set and
tries to hedge against adverse future shocks.

The HJB equation (5) is solved by first ‘guessing’
a general form for the solution which is then verified
later. Following the past literature on portfolio optimiza-
tion of assets with mean-reverting properties (see Kim and
Omberg 1996, Wachter 2002, Benth and Karlsen 2005, Jurek
and Yang 2007), we assume the indirect utility takes the form:

J(W , X , τ) = (Wφ(τ))1−γ − 1

1 − γ
(7)

φ(τ) = exp(A(τ ) + B(τ )X + C(τ )X 2/2) (8)

A(0) = B(0) = C(0) = 0 (9)

The idea of the ansatz (7)–(9) comes from the bond pricing:
bond prices under an affine term structure can be expressed
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as exponentials of a polynomial of the underlying state vari-
ables. Substituting π∗ given by (6) and the ansatz (7)–(9) into
equation (5) generates a quadratic equation for Xt. Making all
the coefficients zeros, we obtain the following ODE system of
A(τ ), B(τ ) and C(τ ):

C′(τ ) = aC2(τ ) + bC(τ ) + c

B′(τ ) = aB(τ )C(τ ) + b

2
B(τ ) + dC(τ ) + g

A′(τ ) = a

2
B(τ )2 + dB(τ ) + σ 2

2
C(τ ) + (λμ)2

2γ σ 2
+ r,

(10)

with boundary condition A(0) = B(0) = C(0) = 0 and
parameters:

a = 1 − γ

γ
σ 2, b = 2(γ r − r − λ)

γ

c = (λ + r)2

γ σ 2
, d = λμ

γ
, g = −λμ(λ + r)

γ σ 2
.

(11)

Notice that the first equation in (10) only contains C(τ ), the
second contains B(τ ) and C(τ ) and the third contains all of the
A(τ ), B(τ ) and C(τ ). Hence we can solve them sequentially.

Theorem 3.1 Given risky asset price X follows (1), fixed risk
free rate r, and investment horizon τ , the optimal asset allo-
cation to risky asset that maximizes the expected CRRA utility
of terminal wealth E[U(WT )] is:

π∗(τ , X ) = 1

γ

[
λ(μ − X )/X − r

(σ/X )2

]

+ 1 − γ

γ
[C(τ )X + B(τ )]X , (12)

where

C(τ ) = 2c(1 − e−ητ )

2η − (b + η)(1 − e−ητ )
,

B(τ ) = −4gr(1 − e−ητ/2)2 + 2gη(1 − e−ητ )

η[2η − (b + η)(1 − e−ητ )]
,

A(τ ) =
∫ τ

0

a

2
B(t)2 + dB(t) + σ 2

2
C(t) + (λμ)2

2γ σ 2
+ r dt

(13)
with η = √

b2 − 4ac and parameters a, b, c, d, g described
in (11).

Notice, we leave A(τ ) in the integral form since this term
does not appear in our optimal investing proportion π∗, never-
theless, the integral can be computed by checking the integral
table. We include the detailed proof and computation in
Appendix 1. Here, again, the first term is equation (13) is
the myopic demand. Since the expected return of the risky
asset is λ(μ − X )/X , this term is exactly the optimal solu-
tion for a single-period model. The larger γ is, the more risk
averse the investor is and therefore the less exposure to the
risky asset. The second term represents the inter-temporal
hedging demand, which is related to the current price level,
mean-reversion speed as well as risk aversion coefficient.

3.2. Optimal strategy with multiple risky assets

In this section, we further extend our analysis to multiple risky
assets. Suppose there are n risky assets, which jointly follow
the multi-dimensional OU process:

dX = μX (X) dt + σX dZ, (14)

where:

μX (X) = 	(M − X)

	 =

⎛
⎜⎜⎜⎝

λ1

λ2 0
. . .

0 λn

⎞
⎟⎟⎟⎠ , M = (μ1, μ2, . . . , μn)

T ,

σX =

⎛
⎜⎜⎜⎝

σ1

σ2 0
. . .

0 σn

⎞
⎟⎟⎟⎠ .

(15)
Z is a vector of n correlated Brownian motions. The correla-
tion matrix of the risk factors is characterized by:

dZ dZT = σρ dt =

⎛
⎜⎜⎜⎝

1 ρ12 · · · ρ1n

ρ21 1 ρ2n

· · · . . .
ρn1 ρn2 1

⎞
⎟⎟⎟⎠ dt. (16)

Y is the value of risk-free money market account with a
deterministic growth rate r:

dY = rY dt. (17)

Let π = (π1, π2, . . . , πn) ∈ R
n be the portfolio weights

invested in X = (X1, X2, . . . , Xn). Then the total wealth sat-
isfies:

dW

W
= [πTμW + r(1 − πT

�)] dt + πTσW dZ, (18)

where

μW =
[

λ1

X1
(μ1 − X1),

λ2

X2
(μ2 − X2), . . . ,

λn

Xn
(μn − Xn)

]

σW =

⎛
⎜⎜⎜⎝

σ1/X1

σ2/X2 0
. . .

0 σn/Xn

⎞
⎟⎟⎟⎠ .

(19)
Following the aforementioned method, we assume J(W , X, τ)

to be the indirect utility function, where τ is the horizon of the
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investment period. We can derive the HJB equation:

max
π

{
−Jτ + 1

2
W 2πT�WπJWW + W [πT (μW − r�) + r]JW

+WπT�WX JWX + μX
T JX + 1

2
tr(�X JXXT )

}
= 0, (20)

where
�W = σWσρσ

T
W

�WX = σWσρσ
T
X

�X = σX σρσ
T
X .

(21)

similar to single asset case, Jτ , JW , and JX denote the deriva-
tives of J with respect to t, W, and X, respectively; JWW , JWX

and JXXT denote the higher derivatives; tr(·) denotes the trace
function. The optimal trading strategy is:

π∗(τ , X, W) = − JW

WJWW
�W

−1(μW − r�)

− 1

WJWW
�W

−1�WX JWX . (22)

Now suppose the solution of J(W , X, τ) takes the form:

J(W , X, τ) = (Wφ(τ , X))1−γ − 1

1 − γ

φ(τ , X) = exp

{
A(τ ) + B(τ )T X + 1

2
XT C(τ )X

}
.

(23)

The format of φ(τ , X) is a natural extension of equation (8)
in the single asset case to higher dimensions. A(τ ) is a scalar,
B(τ ) is a n-by-1 vector and C(τ ) is a n-by-n matrix. substi-
tuting J(W , X, τ) and matching the orders, we can obtain the
ODE systems for A(τ ), B(τ ) and C(τ ).

Theorem 3.2 Given risky asset prices X follow (14)–(16),
fixed risk free rate r, and investment horizon τ , the optimal
asset allocation to risky assets that maximizes the expected
CRRA utility of terminal wealth E[U(WT )] is:

π∗(τ , X) = − 1

γ
�W

−1{(r� − μW )

− (1 − γ )�WX [B(τ ) + C(τ )X]}, (24)

where

C′(τ ) = 1 − γ

γ
C(τ )T�X C(τ ) − 1

γ
[	C(τ ) + C(τ )T	]

− 2r(1 − γ )

γ
C(τ ) + 1

γ
(	 + rI)T�−1

X (	 + rI)

(25)

B′(τ ) =
[

1 − γ

γ
�X C(τ ) − 1

γ
	 − 1 − γ

γ
rI
]T

B(τ )

− 1

γ
(	 + rI)T�−1

X 	M + 1

γ
C(τ )T	M (26)

A′(τ ) = 1

2γ
(	M )T�−1

X (	M ) + 1

γ
M T	B(τ )

+ 1 − γ

2γ
B(τ )T�X B(τ ) + r + 1

2
Tr[�X C(τ )] (27)

with boundary conditions:

A(0) = 0, B(0) = 0, C(0) = 0 (28)

where � is the n-by-1 all-ones vector and I is the n-by-n
identity matrix.

The detailed proof and computation is included in the
Appendix 2. The ODE system (25)–(28) does not admit a
closed-form solution, yet we can discretize the ODEs and
simulate them using initial conditions. In particular, at tn+1

we approximate Ctn+1 using (25), we approximate Btn+1 using
Btn and Ctn and (26), we approximate Atn+1 using Btn and Ctn
and (27).

3.3. Proportional transaction cost

Now we assume a proportional transaction cost occurs at
each transaction (buy or sell of the risky assets). Assuming
an investor has a portfolio X = (X1, X2, . . . , Xn), where Xi is
the dollar values in ith risky asset and X0 is the dollar values
in the bank account. In the presence of transaction costs, the
dynamics follow:

dX0 = rX0 dt −
n∑

i=1

(1 + li) dLi +
n∑

i=1

(1 − mi) dMi

dXi = μi(Xi) dt + σi(Xi)dBi + dLi − dMi

(29)

Li(t) and Mi(t) are nondecreasing, right continuous adapted
processes with Li(0) = Mi(0) = 0, representing cumulative
dollar values of buying and selling the ith risky asset. li ∈
[0, ∞) and mi ∈ [0, 1), i = 1, 2, . . . , n, accounts for the pro-
portional transaction costs incurred in buying and selling the
ith risky asset. The solvency region S is defined as the set
of dollar amounts in each assets such that the net wealth is
always positive:

S =
{

x = (x0, x1, . . . , xn) ∈ R
n+1 : x0

+
n∑

i=1

[
(1 − mi)x

+
i − (1 + li)x

−
i

]
> 0

}
(30)

Given initial positions x0 = (x0, x1, . . . , xn) ∈ S in the risk-
free and risky assets, respectively, the trading strategy
({Li}, {Mi}) is admissible for a position x from time s ∈ [0, T),
if Xi, i = 0, . . . , n follows (29) with Xs = x is in S. We denote
by As(x) the set of all admissible investment strategies for x
from time s. Finally, the investor’s goal is to maximize the
utility of terminal wealth among all admissible strategies:

sup
(Li,Mi)∈A0(x0)

E[U(WT )] (31)

Following Davis et al. (1993), Shreve and Soner (1994),
Muthuraman and Zha (2008) or Dai and Zhong (2010), the
solvency region can be divided into three type of regions: In
the no-trade-zone (NT zone, defined as none of the assets
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trade), the indirect utility function J(W , X, τ) satisfies the
following HJB equation:

− ∂J

∂τ
+ L J = 0. (32)

In the ith asset’s buy-zone (BZi), the marginal cost of decreas-
ing the amount in the bank account must be equal to the
marginal benefit of buying the risky asset:

BiJ = 0, for i = 1, 2, . . . , n (33)

In the ith asset’s sell-zone (SZi), the marginal benefit of
increasing the amount in the bank account must be equal to
the marginal cost of selling the risky asset:

SiJ = 0, for i = 1, 2, . . . , n (34)

with terminal condition:

J(x, T) = U

{
x0 +

n∑
i=1

[
(1 − mi)x

+
i − (1 + li)x

−
i

]}
(35)

where

L = 1

2

n∑
i,j=1

ρijσi(xi)σj(xj)
∂2J

∂xi∂xj
+

n∑
i=1

μi(xi)
∂J

∂Xi
+ rx0

∂J

∂X0

Bi = −(1 + li)
∂J

∂x0
+ ∂J

∂xi

Si = (1 − mi)
∂J

∂x0
− ∂J

∂xi
(36)

The problem becomes a free-boundary problem, all that needs
to be found are the boundaries of the regions such that the
respective equations hold within the regions and the following
equation holds in the entire state space:

max

{
−∂J

∂τ
+ L J , BiJ , SiJ

}
= 0, x ∈ S , t ∈ [0, T)

(37)
Previous research focuses on numerical implementation of
PDE (33)–(37) as analytical solutions are difficult to obtain
for assets with mean-reverting characteristics. A similar but
easier problem of proportional transaction costs with assets
following geometric Brownian motion is well-studied in early
papers such as Taksar et al. (1988). They are able to use
the PDE method described in this section to find the opti-
mal no-trade zone for the case where the underlying risky
assets follow geometric Brownian motion. The no-trade zone
is shown to have a wedge shape around the optimal solution
under zero transaction costs. This strategy enables an investor
to stay close enough to the optimal solution without suffer-
ing from too much transaction costs. Given the difficulties of
solving this PDE directly, in this paper, we propose a differ-
ent approach of learning the two boundaries ri

u and ri
l for each

asset i by neural network. The parameterization and training
details are elaborated in Section 3.

4. Learning the no-trade zone using deep neural
networks

Taking advantage of mean-reverting dynamics, we aim to
simultaneously long and short several correlated assets that
are tradable on the market. However, one has to pay transac-
tion costs for all the underlying tradables. When transaction
costs are significant, the analytic strategies we derived in the
previous section are no longer appropriate. However, they
may be used as an initial point for us to search for the opti-
mal strategy under transaction costs. On one hand, one should
keep her position close to the analytic solution in order to
maximize the terminal utility; on the other hand, consistently
rebalancing to the analytic solution makes one worse off with
the expressly high cumulative transaction costs.

Most existing studies on optimal asset allocation with trans-
action costs (see Bichuch and Sircar 2014, 2018, Liu and
Loewenstein 2002) assume that asset prices follow the geo-
metric Brownian motion (GBM), for the one-asset case the
problem comes down to solving a HJB equation with two
unknown boundaries (free boundaries). The region between
the two boundaries is called the no-trade (NT) zone. If current
holding position is in NT zone then no action is required, oth-
erwise one should rebalance positions to the nearest point on
the NT zone.

In order to compute the NT zone when there is transaction
cost, we will use deep neural network (DNN) to approximate
the upper and lower boundaries of the NT zone. A deep neu-
ral network is an artificial neural network with many layers
between the input layer and the output layer. It typically has
a feedforward structure, i.e. without looping back to previ-
ously visited layers. Each neuron gets inputs from previous
layer, takes the weighted sum of the inputs, and transforms
it through some function. By optimizing the weights over
the inputs, deep neural networks are able to manipulate the
desired outputs.

Our goal is to solve a sequential decision problem in the
context of optimal asset allocation. We employ the deep neu-
ral network to learn the optimal NT zone under the assumption
of mean-reversion and linear transaction cost. We pick the
loss function to be the difference between expected terminal
utility under the policy we derived analytically in previous
section and policy output by the DNN. By minimizing loss
we are able to train the neural network to better approximate
boundaries of the NT zone. When there is transaction cost, the
policy learned by DNN can yield significantly higher termi-
nal utility and wealth than the analytical policy we derived in
Section 2.

4.1. Single asset no-trade zone parameterization

When the asset price follows a geometric Brownian motion
and the utility function is CRRA, Liu and Loewenstein (2002)
showed that the lower boundary rl and upper boundary ru of
the NT zone are functions of time, they take the form rl(t) and
ru(t). The values of rl and ru denote the proportion of total
wealth to invest in the risky asset. However, when the asset
price is mean reverting, these two boundaries should also be
functions of asset price and take the form rl(t, Xt), ru(t, Xt).
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Figure 2. A single layer feedforward neural network fθ (x). The input
is a m-dimensional vector (x1, . . . xm). The parameters θ to be esti-
mated are w1 · · · wm and b. The activation function is f which is
usually taken as a Sigmoid function or Rectified Linear Unit(ReLU).
The output of the network is f (b +∑wixi).

The exact forms of rl(t, Xt) and ru(t, Xt) are unknown. We
use a neural network to parametrize these two functions. A
neural network can be regarded as a non-linear parametriza-
tion of a function. It has been shown that a feedforward neural
network with a single hidden layer could approximate arbi-
trary functions to high accuracy as long as the number of
neurons is large enough (see Hornik et al. 1990). Such a net-
work is used as a non-parametric method in statistics and
time series analysis (see Tsay 2010). More recently, deep
(i.e. many layered) neural networks have been used to approx-
imate derivatives of unknown functions and for solving
high dimensional non-linear partial differential equations (see
Beck et al. 2019, Weinan et al. 2017, Han et al. 2018, Sirig-
nano and Spiliopoulos 2017). For more details of feedforward
neural networks, please refer to Chapter 6 of Goodfellow
et al. (2016). When used for function approximation, we usu-
ally feed the neural network with training data {xi, yi} where yi

is the target function value corresponding to independent vari-
able xi. Iterative methods such as stochastic gradient descent
are employed to minimize the error (for example, least squares
error) between the target function value yi and the output of
the neural network fθ (xi). The goal is to find the best set of
parameters θ that minimize the loss associated with the train-
ing data. An example of a single layer neural network is given
in Figure 2.

Suppose the investment horizon is [0, T]. We discretize the
time horizon into N sub-intervals of equal length �t = tk −
tk−1 = T/N . At time tk , the lower and upper boundaries of
the NT zone are only a function of Xtk because t is held fixed
at t = tk . Denoting the analytic policy we derived for the no
transaction cost case by π∗(t, x), we can parametrize the lower
and upper boundaries at tk by neural networks:

rtk
u (x) ≈ π∗(tk , x) + fθu

tk
(x) (38)

rtk
d (x) ≈ π∗(tk , x) − fθd

tk
(x) (39)

Importantly, the parametrization of rtk
u (x) and rtk

d (x) makes use
of prior knowledge from the analytic policy π∗(tk , x) derived
under the zero transaction cost assumption. Intuitively, when
there is no transaction cost, we should always rebalance our
position to the curve defined by π∗(tk , x) and this means
rtk

u (x) = rtk
d (x) = π∗(tk , x). With increasing transaction costs,

the NT zone should widen and π∗(tk , x) should fall into the
NT zone, this amounts to saying that fθu

tk
(x) and fθd

tk
(x) should

take small positive values. When implementing the algorithm,
we heuristically initialize the output of fθu

tk
(x) and fθd

tk
(x) to be

positive, but we also allow them to take negative values. This
is achieved by using a leaky ReLU function (Xu et al. 2015)
on the output layer. Such a parametrization guides the neu-
ral network to search for solutions within a relatively small
region where the output takes small positive numbers. By con-
trast, if one does not incorporate the prior knowledge π∗(tk , x)
and directly parametrizes the lower and upper boundary by

rtk
u (x) ≈ fθu

tk
(x)

rtk
d (x) ≈ fθd

tk
(x),

we have observed in our experiments that it takes much
more time to train the neural network. With the parametriza-
tion (38)–(39) using a warm start and prior knowledge, we
narrow down the search region and reduce the likelihood of
getting trapped in a local optimal solution.

4.2. One-asset trading strategy parameterization

In the remainder of the paper, we constrain the range of
π hence rtk

l and rtk
u to [−1, 1] because risky asset rebalanc-

ing happens at discrete time points. This constraint could be
relaxed as rebalancing becomes more frequent, in particular,
there is no constraint on π in Section 2 where rebalancing is
continuous.

When we arrive at time tk , the proportion we invested in the
risky asset is πtk−, we rebalance this proportion to πtk+ using
the policy:

πtk+ =

⎧⎪⎨
⎪⎩

rtk
l (Xtk ) πtk− < rtk

l (Xtk )

πtk− rtk
l (Xtk ) ≤ πtk− ≤ rtk

u (Xtk )

rtk
u (Xtk ) πtk− > rtk

u (Xtk )

(40)

We require πT+ = 0, i.e. we need to clear all the risky asset
position at the end of investment horizon. However, it is easy
to change the end-horizon position to any target asset mix. See
Grinold (1983) for more details.

We explain the policy (40) involving three different cases:

• When the proportion πtk− invested in risky asset is
below the lower boundary rtk

l (Xtk ) of the NT zone,
we buy more of the risky asset to rebalance our
position πtk+ to the lower boundary of the no trade
zone.

• When rtk
l (Xtk ) ≤ πtk− ≤ rtk

u (Xtk ), our position πtk−
is above the lower boundary rtk

l (Xtk ) and below the
upper boundary rtk

u (Xtk ). We are in the NT zone, so
no action is needed and πtk+ = πtk−.
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Figure 3. A typical no trade zone and corresponding rebalance oper-
ations. The mean-reverting level is 15.4463 and transaction cost is
2.0%. (i) From point a to a’: point a is outside the NT zone, we
rebalance it to point a’. We convert the position from investing 50%
of wealth in shorting asset to investing 32% of wealth in longing
the asset because the current observed asset price is 14.73 which is
way below the mean-reverting level 15.4463. (ii) From b to b’: b is
outside the NT zone, we rebalance it to b’. We convert the position
from investing 75% of wealth in longing asset to investing 71% of
wealth in shorting the asset because the current observed asset price
is 16.13 which is way above the mean-reverting level 15.4463. (iii)
At c: because point c is within NT zone, no rebalance operation is
needed.

• When πtk− > rtk
u (Xtk ), our position in the risky asset

is above the upper boundary so we need to sell
some risky asset to rebalance our position πtk+ to
the upper boundary of the NT zone.

At a fixed time tk , a typical no trade zone and its induced
policy is given in Figure 3:

The NT zone in Figure 3 is simulated with parameters esti-
mated from VIX futures in year 2013–2014 and the assump-
tion that there is a 2% transaction cost. The NT zone is for
tk = 0.4 when investment horizon is [0, T] = [0, 1]. The blue
curve denotes the lower boundary of NT zone and orange
curve is the upper boundary of the NT zone. The region
between two curves is the NT zone. The mean-reverting level
is 15.4463, and the three scattered points a, b and c correspond
to the three cases we discussed following: (40)

• Red point a = (14.73, −0.5). This point means
Xtk = 14.73 and the proportion πtk− we invested
in risky asset is − 0.5, i.e. we are using 50%
of our wealth to short the asset. However, 14.73
is below the mean-reverting level 15.4463 so we
should switch our position to hold the asset, and
we rebalance our position to the blue point a′ =
(14.73, 0.32) on the lower boundary of the NT
zone, this means we clear our short position and put
πtk+ = 32% of our wealth to hold the asset.

• Orange point c = (15.5, 0.1). This point means
Xtk = 15.5 and πtk− = 0.1. This point lies in the NT
zone so no action is needed. Because 15.5 is close
to the mean-reverting level, the price change in the
near future will be mainly driven by noise, there is

no deterministic trend, hence to avoid transaction
cost we should not rebalance.

• Green point b = (16.13, 0.75). This point means
Xtk = 16.73 and πtk− = 0.75, we are using 75% of
our wealth to hold the asset. Because 16.73 is well
above the mean-reverting level, we should switch
our long position to a short position πtk+ = −0.71,
i.e. putting 71% of our wealth to shorting the asset.
We move from the green point b to the purple point
b′ on the upper boundary of the NT zone.

Note that if we start from a point out of the NT zone,
we only rebalance to the boundaries of the NT zone. To
prove its optimality, let us suppose there is another point
a′′ = (14.73, π ′′) right above point a′ and inside the NT zone.
Since the transaction cost is linear, it is equivalent to (i) rebal-
ance from point a to point a′′ and to (ii) rebalance from point
a to point a′ and then immediately rebalance from point a′ to
point a′′. By definition of NT zone, there is no benefit rebal-
ancing from point a′ to point a′′, and therefore rebalancing to
the boundary of NT zone is optimal.

4.3. Training DNN for one asset

Assuming that in the deep neural network there is a linear
transaction cost rate α, then the transaction cost from each
rebalancing operation is given by:

ctk = αWtk |πtk+ − πtk−|. (41)

According to continuous time dynamics formula (1) and (2)
for X, Y and W together with the transaction cost formula (41),
the system dynamics from tk−1 to tk are given by:

�tk−1 X = Xtk − Xtk−1 = (e−λh)Xtk−1 + μ(1 − e−λh) + N(t, h)

(42)

�tk−1 Y = Ytk − Ytk−1 = ert(erh − 1) (43)

�tk−1 W = Wtk − Wtk−1 =
πt+k−1

Wtk−1

Xtk−1

�tk−1 X

+ (1 − π+
tk−1

)Wtk−1

Ytk−1

�tk−1 Y − ctk−1 , (44)

where

N(t, h) := σe−λ(t+h)

∫ t+h

t
eλu dZu ∼ N

(
0,

σ 2(1 − e−2λh)

2λ

)

h := tk − tk−1 = T

N
.

At each training step, we start at t0 = 0 with n sample paths
initialized as:

X0 = [x0, . . . , x0]T
1×n

W0 = [w0, . . . , w0]T
1×n

π0− = [0, . . . , 0]T
1×n.

At each time step tk our position rebalances from the out-
put of the neural network rtk

u (x) and rtk
d (x) together with the
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rebalancing rule (40). We then move to the next time step tk+1

using equations (42)–(44).

Algorithm 1: resulting trading algorithm

initialize Xt0 , Yt0 , Wt0 , πt0−;
k = 0;
while k < T do

πtk+ = min{rtk
u (Xtk ), max{rtk

l (Xtk ), πtk−}};
k = k + 1;
Simulate Xtk based on Eq.(42);
Simulate Ytk based on Eq.(43);
Simulate Wtk based on Eq.(44)

end

At terminal time T, the n × 1 vector WT represents the ter-
minal wealth over n sample paths, and the empirical loss over
n sample paths is defined as:

loss
�= 1

n

n∑
i=1

(J(w0, x0, T) − U(W (i)
T )), (45)

where J(W0, X0, T) is the value function given by equation
(7)–(8) and equation (13).

The computational graph defines the data-flow of the deep
neural network (Figure 4). In the computational graph, the
‘Rebalance Rule’ follows equation (40), and the ‘System
Dynamics’ follows equations (42)–(44).

Similar to the network structure as described in Han and
Weinan (2016), there are three types of connections in our
computational graph:

• At each time step, there are two parallel feedfor-
ward neural networks that approximate the lower
bound rt

l(x) and upper bound rt
u(x) of the NT

zone, respectively. They are captured in the com-
putational graph as (Wt−, πt−, Xt) → h1

t,l → h2
t,l →

· · · → hK
t,l → rt

l , and (Wt−, πt−, Xt) → h1
t,u → h2

t,u

→ · · · → hK
t,u → rt

u, where the outputs rt
l and rt

l
are the calibrated rebalancing rules. The weights in
these neural networks are the objects that we aim to
optimize over so as to minimize the loss function.

• Using the rebalance rules and the position and
wealth before rebalancing, we calculate the position
and wealth after rebalancing at time t. In the com-
putational graph, this type of connection is shown
as ((Wt−, πt−, Xt), rt

l , rt
u) → (Wt+, πt+). Given the

position and wealth before rebalancing as well as
the rebalancing rules, there is neither randomization
nor optimization involved in this step.

• The last type of connection relates to the system
dynamics, i.e. the simulation of the price of the
risky asset. In particular, Xt → Xt+1 takes use of
equation (42) to simulate the price path of the
risky asset. Then, we fully characterize the posi-
tion, wealth, and price of the risky asset at time
t + 1 following the system dynamics described
above, as captured by ((Wt+, πt+), Xt, Xt+1) →
(W(t+1)−, π(t+1)−) in the computational graph.

We follow this procedure until the investment horizon T. At
horizon T, the neural network outputs the loss function which
we aim to minimize. Suppose that at every time step, there are
K hidden layers in each feedforward subnetwork, then there
are in total (K + 2)N layers in the whole network structure.

4.4. Parameterizing multi-assets NT zone and trading
strategy

If there are d risky assets, and the asset price at time tk is
Xtk ∈ R

d , the upper and lower boundaries of the NT zone

Figure 4. Computational graph of the deep neural network.
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is characterized by two d-dimensional vectors rtk
u (Xtk ) and

rtk
d (Xtk ) ∈ R

d . We parametrize the two boundaries by neural
networks like we did for the one-asset case, except that the
output of the neural network is d-dimensional:

rtk
u (X) ≈ π∗(tk , Xtk ) + fθu

tk
(X) ∈ R

d (46)

rtk
d (X) ≈ π∗(tk , Xtk ) − fθd

tk
(X) ∈ R

d . (47)

The rebalance rule is similar to the rule (40) for one-asset case,
where here the subscript (i) denotes the ith component:

π
(i)
tk+ =

⎧⎪⎨
⎪⎩

rtk
l (Xtk )

(i) π
(i)
tk− < rtk

d (Xtk )
(i)

π
(i)
tk− rtk

l (Xtk )
(i) ≤ π

(i)
tk− ≤ rtk

u (Xtk )
(i)

rtk
u (Xtk )

(i) π
(i)
tk− > rtk

u (Xtk )
(i).

(48)

Similarly to the one-asset case, we add a leverage ratio con-
straint: ‖πt+‖∞ ≤ 1, i.e. the leverage ratio used on each
individual asset should not exceed a ± 100% limit.

4.5. Training the DNN for multiple assets

The computational graph for the multi-asset case is exactly
the same as for the one-asset case in Figure 4. We give next
the environment dynamics in this computational graph. We
follow Wan (2010) to calibrate the parameters of the mean-
reverting process. The form of the OU process given by equa-
tions (14) and (16) simplifies the procedure to derive (25)–
(27), but it is hard to calibrate σX and σρ separately. In
practice, we calibrate another matrix �OU which contains the
information from σX and σρ . We rewrite the dynamics of the
asset price X as:

dX = μX (X) dt + �OU dW (49)

where dW is the differential of a d-dimensional Brown-
ian motion W starting at 0 and satisfying the uncorrelated-
increment condition:

dW dW = Id×d

The following lemma proves the equivalence between (49)
and (14) and shows how to rewrite the optimal policy in terms
of �OU. Then it is sufficient to calibrate �OU rather than cal-
ibrating σX and σρ . The introduction of σX and σρ simplifies
the derivation of the ODEs (25)–(27). Similarly, the environ-
ment dynamics could be written using �OU via equation (49)
rather than (18).

Lemma 4.1 Let A be the Cholesky decomposition of σρ , if
�OU = σX A, then SDE of (49) and (14) has same distribution.
The optimal policy still follows (24) provided we can rewrite
the �W , �WX and �X in terms of �OU as:

�W =

⎛
⎜⎜⎜⎜⎝

1

X1
0

. . .

0
1

Xd

⎞
⎟⎟⎟⎟⎠�OU�T

OU

⎛
⎜⎜⎜⎜⎝

1

X1
0

. . .

0
1

Xd

⎞
⎟⎟⎟⎟⎠ (50)

�WX =

⎛
⎜⎜⎜⎜⎝

1

X1
0

. . .

0
1

Xd

⎞
⎟⎟⎟⎟⎠�OU�T

OU (51)

�X = σX AATσX = �OU�T
OU. (52)

Proof By equation (16) we have:

dZ dZ = σρ rdt.

We also have:

dW dW = Id×d dt.

Hence given A as the Cholesky decomposition of σρ , AAT =
σρ , we have:

dZ d= A dW.

where
d= means equal in distribution. Matching the term

�OU, dW term in (49) and σX dZ in (14) becomes:

�OU dW = σX dZ = σX A dW

which is equivalent to:

�OU = σX A. (53)

To prove (50)–(52), we combine (21) and (53):

�W = σWσρσ
T
W

= σW AATσ T
W

=

⎛
⎜⎜⎜⎜⎝

1

X1
0

. . .

0
1

Xd

⎞
⎟⎟⎟⎟⎠ σX AATσ T

X

⎛
⎜⎜⎜⎜⎝

1

X1
0

. . .

0
1

Xd

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

1

X1
0

. . .

0
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Next, letting {Ni}d
i=1 be d independent standard normal vari-

ables and {σij} be the entries of �OU, by solving the SDE (49)
together with (17) and (18) the dynamics of the system are:

�tk−1 X(i) = X(i)
tk − X(i)

tk−1
= (μi − Xtk−1)(1 − e−λih)

+
d∑

j=1

σij

√
1 − e−2λih

2λi
Nj (54)

�tk−1 Y = Ytk − Ytk−1 = ertk−1(erh − 1) (55)

�tk−1 W = Wtk − Wtk−1 = Wtk−1π
T
tk−1+

�tk−1 X
Xtk−1

+ (1 − πT
tk−1+1)Wtk−1

Ytk−1

�tk−1 Y − ctk−1 , (56)

where the transaction cost is

ctk :=
d∑

i=1

αWtk |π(i)
tk+ − π

(i)
tk−|.

We employ the same method as in Section 3.3 to initialize
and generate n sample paths for training the deep neural net-
work, the only differences are that the sizes of Xtk , Wtk and
πtk± should be n × d rather than n × 1, and the environment
dynamics are given by (54)–(56) rather than (42)–(44). The
empirical loss is the same as that defined by (45):

loss
�= 1

n

n∑
i=1

(
J(w0, x0, T) − U(W (i)

T )
)
. (57)

5. Numerical experiments based on model simulation

In this section, we describe the feedforward neural network
architecture and training details for both single and multiple
asset portfolio optimization. Using parameters estimated from
the VIX front month future, the simulation results illustrate
how transaction costs affect the NT zone.

5.1. Neural network structure and training procedure

For each time step tk , we build two neural networks for rep-
resenting functions fθu

tk
(x), fθd

tk
(x) and the lower/upper bound-

aries as given by (38)–(39) or (46)–(47). Each neural network
is a feedforward neural network with three hidden layers,
where the number of neurons used in the hidden layers
are [20,40,80]. Batch Normalization speeds up the training
(Ioffe and Szegedy 2015). We use the leaky ReLU (Xu et
al. 2015) activation function on the layers. A typical ReLU is
a piecewise linear activation function which takes zero on the
negative part, and retains the positive part. To allow a small
positive gradient even when the unit is not activated, we take
the leaky ReLU where

f (x) =
{

x, for x ≥ 0

αx for x < 0.

with α ∈ (0, 1) being the leaky coefficient. In our experiment,
we take the leaky coefficient to be α = 0.2 in each hidden

layer, and on the output layer we take α = 0.05. The reason
we are not using identity function in the last layer is because
intuitively lower boundary should be below π∗ and upper
boundary should be above π∗, since the NT zone is an area
around and including the optimal position π∗ derived under
the no-transaction-costs assumption. In other words, the out-
put fθu

tk
(x) and fθd

tk
(x) must be non-negative. One way to ensure

positive output is to employ ReLU on the last layer. However,
doing so will cause the gradient to be zero for all negative out-
puts and therefore prevent gradient backpropagation. Hence,
we choose leaky ReLU with a small coefficient α = 0.05 in
the last layer to allow effective gradient backpropagation. The
Adam optimizer (Kingma and Ba 2014) is implemented with
a decaying learning rate that starts at 1 and decays by 1

2 every
500 steps. If the learning rate is too high, the training can end
up unstable, while learning rate being too low may cause the
training to fail. Thus we carefully choose the decaying learn-
ing rate to avoid such undesirable situations. The total number
of training steps is 3000, and for each training step, we gener-
ate 100,000 sample paths. The neural network is implemented
and trained using Tensorflow (Abadi et al. 2015), a widely
available deep learning tool developed by Google.

At each training step, we generate a batch of new train-
ing data using (42)–(44) or (54)–(56). More specifically, we
generate a batch of independent normal random variables and
feed them into equation (42) or (54). In this experiment, we
observe that after 3000 training steps, the outputs already con-
verge well, and therefore choose to use 3000 training steps.
One could also employ an ‘early stopping’ rule and terminate
the algorithm within 3000 training steps, by using a valida-
tion data set. The validation set could be a data set generated
before the training starts, or it could be generated online inde-
pendent to the training set. If the loss on validation set is stable
for several steps or begins to increase, then the training ter-
minates. After training, one could generate a new batch of
sample paths as the test set. In this paper, the test data equals
10 000 sample paths.

5.2. Relations between the no-trade zone and transaction
cost

For these empirical tests, the parameters are estimated from
the data of the VIX front month future in the year 2013
following maximum likelihood estimation (Iacus 2009):

μ = 15.4463 λ = 0.113 × 252 σ = 0.606 × √
252

T = 1 N = 50 r = 0.05
x0 = 13.950 w0 = 1000 γ = 2.

As shown in Figure 5, the NT zone at time tk = 0.4 illustrates
how transaction cost affects the no trade zone.

In Figure 5, ‘lb’ denotes the lower boundary and ‘ub’
denotes the upper boundary of the NT zone, and the percent-
age number denotes the transaction cost rate α in (41) and
varies from 0.7% to 2.8%. As expected, the NT zone gets
wider as the transaction cost increases.

Another way to characterize the NT zone is to consider the
4 points where the lower/upper boundary hits the +1/ − 1
limit. These are the four vertices of NT zone. By plotting
the price level at which lower/upper boundary hits the limit,
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Figure 5. No trade zone at t = 0.4 under different transaction cost.
Larger transaction costs gives wider NT zone.

we gain insight into the NT zone evolution over time with
different transaction costs (Figure 6).

We make several observations:

• In each subplot, as transaction cost increases,
the divergence between the curve and the 0-
transaction-cost curve becomes larger. This means
that the NT zone gets wider at every time step as
the transaction cost increases.

• The price at which the lower boundary reaches
+ 1 decreases as time approaches the end of the

horizon, while the price at which upper boundary
hits − 1 increases. This phenomenon gets more
obvious as transaction cost becomes higher. This
suggests that the investor should be more cautious
and less aggressive as the horizon approaches.

• When the transaction cost increases, the computed
curves become more jagged. This phenomenon
could be overcome by expanding the batch size
or increase the training steps. These small spikes
happen at prices that deviate more from the mean-
reverting level. Because these prices are rarely
seen in training hence the values for the NT zone
boundaries at these prices are less accurate than
the values for the NT zone boundaries around the
mean-reverting level.

5.3. Performance based on simulation

We assume there is 2.0% transaction cost. The utility is scaled
by subtracting 0.999 and multiplying by 106 to speed up
training. The performance of the policy given by the neural
network and the optimal policy we derived under zero trans-
action cost is shown in Figure 7. The result is averaged over
10 000 randomly generated sample paths. The policy learned
by neural network not surprisingly significantly outperforms
the policy derived under zero transaction cost.

6. Numerical experiments with market data

In this section, we provide numerical experiments with
real data. We first describe the method of constructing

Figure 6. Price level at which boundary hits the leverage ratio limit. (a) Upper left: Price level at which lower boundary hits + 1 limit. (b)
Upper right: Price level at which upper boundary hits − 1. (c) Lower left: Price level at which lower boundary hits − 1. (d) Lower right:
Price level at which upper boundary hits + 1.
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Figure 7. Mean utility over 10,000 sample paths. The blue curve
is mean utility over time following the optimal strategy we derived
under 0 transaction cost. The orange curve is the mean utility
overtime following the NT zone policy.

mean-reverting tradables. Although the discovery of pairs
is not the focus of this paper, the construction process is
important for us to estimate the transaction cost. Followed
by that, we present the backtest results for a single and mul-
tiple risky asset portfolio for year 2014–2017. In particular,
we are able to solve the multi-asset portfolio choice problem
with 48 OU assets, 1 risk-free asset and 50 time steps in 3 h
computer time, which is considerable faster than traditional
numerical methods. Finally, we summarize the computational
cost of portfolios containing different numbers of assets and
conjecture the approximate complexity of the DNN method.

6.1. Constructing mean-reverting assets

In practice, we slightly modified the method employed by
Avellaneda and Lee (2010) to create mean-reverting assets by
longing and shorting correlated tradable assets on the market.
We regress the stock price on the ETF price, and then long
and short according to the beta so that the resulting assets
are market-neutral. Avellaneda and Lee (2010) suggest that in
many cases, the drift term in the regression is negligible com-
pared to the fluctuation of the residual, and that the residual
would be mean-reverting if it is a stationary process. By care-
fully choosing the assets we use in this experiment, we model
the residual as a mean-reverting process, and estimate their
parameters using maximum likelihood estimators. The stock
and ETF daily prices are obtained from Thomson Reuters
Datastream. Denoting the stock price by St, the relationship
between stock price and ETF follows:

St = β × ETFt + εt

Calculating the estimate β̂ of β using 60 days of data on St and
ETFt, we found that the residual εt is mean reverting around 0
for a variety of stocks. Then one share of mean-reverting asset
X is created by longing one share of stock and short β̂ share
of ETF. To avoid negative values of X, we pretend its value is
actually St − β̂ × ETFt + C where C is the constant amount

of extra cash we have to put into one share of X, i.e. Xt = St −
β̂ × ETFt + C. As long as C is large enough, Xt will never
go below 0. We set C = 20 in our experiment. Assume the
transaction cost rate for 1 share of both ETF and the stock is
40 bps.

In Section 5.2, we use stock JPM and XLF ETF to construct
the mean-reverting asset. There are two sources of transaction
cost:

• The carry cost of risky asset X. This is the transac-
tion cost associated with changing β. Each day we
recalibrate β̂ using the past 60 days’ data, and the
recalibrated β̂ changes from ˆβt− to ˆβt+ hence for
each share of X that we are holding, we need to
pay | ˆβt− − ˆβt+| × ETFt × 0.004 amount of trans-
action fee. Usually the daily change | ˆβt− − ˆβt+| is
around 0.02, and the ETF price is around $20. So
the daily transaction cost for maintaining 1 share of
X is around 20 × 0.02 × 0.0004 = 0.0016. Most of
the time our wealth takes values in [1000, 2000], so
the number of shares of X we are longing or short-
ing is between [50, 75], the total carry cost of X
should not exceed $0.0016 × 75 = $0.12 per day.

• The transaction cost to long or short one share
of X. To long or short one share of X, we
need to long (respectively, short) 1 share of
stock and short (respectively, long) β̂ share of
ETF, the total transaction cost of this operation
will be St × 0.004 + |β̂| × ETFt × 0.004. Recently
St ≈ 100 and ETFt ≈ 20, hence the transaction cost
of creating 1 share of X is around (100 + 20 ∗ 3)

× 0.004 ≈ 0.064, given the price Xt ≈ 20, this
amounts to 0.064

20 ≈ 3.2% to 1 share of X.

In our experiments, we take into account the two kinds of
transaction cost discussed above. In particular, we assume the
daily carry cost of each share of X is $0.00016 and the trans-
action cost for each share of X is 3.2% for all mean-reverting
assets.

6.2. Experiment with one asset

As an illustrative example, we combine the JPM stock and
the XLF ETF to create the mean-reverting asset, and backtest
the approach with data for the year 2014–2017. At the start of
each year, the parameters are calibrated using historical data
from 2009 to the previous year. The investment horizon is one
year, using the daily closing price and the time step to be one
trading day. The starting wealth of each year is 1000. The risk-
free rate is r = 0.05 and the risk aversion coefficient is γ = 2.
Parameters μ, λ and σ for the OU process are estimated using
maximum likelihood estimation (MLE) (Iacus 2009). For
each year, the parameters are estimated using all data points
prior to the year. For the year 2014, the maximum likelihood
estimations are μ̂ = 20.0151, λ̂ = 9.2031 and σ̂ = 6.3969.
For 2015, μ̂ = 19.9367, λ̂ = 9.2995 and σ̂ = 6.2873. For
2016, μ̂ = 20.0574, λ̂ = 8.5021 and σ̂ = 6.1741. For 2017,
μ̂ = 20.1488, λ̂ = 8.4734 and σ̂ = 6.1729.



Optimizing a portfolio of mean-reverting assets 15

Figure 8. Backtest result for year 2014. The mean-reverting pair is created using listed stock JP Morgan Chase(JPM) and XLF ETF.
(a) Cumulative wealth. (b) Mean-reverting level estimated using historical data and asset price. (c) Percentage invested in risky asset.

Figure 9. Backtest result for year 2015. The mean-reverting pair is created using listed stock JP Morgan Chase(JPM) and XLF ETF.
(a) Cumulative wealth, (b) mean-reverting level estimated using historical data and asset price, (c) percentage invested in risky asset.
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Figure 10. Backtest result for year 2016. The mean-reverting pair is created using listed stock JP Morgan Chase (JPM) and XLF ETF.
(a) Cumulative wealth, (b) mean-reverting level estimated using historical data and asset price, (c) percentage invested in risky asset.

Figure 11. Backtest result for year 2017. The mean-reverting pair is created using listed stock JP Morgan Chase (JPM) and XLF ETF.
(a) Cumulative wealth, (b) mean-reverting level estimated using historical data and asset price, (c) percentage invested in risky asset.
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Figure 12. Cumulative wealth when backtest using 48 mean-reverting assets from 2014 to 2017.

The out of sample results for the year of 2014 are plotted
in Figure 8. By comparing (b) and (c) in Figure 8, we have
following observations:

• At the beginning we short the asset because its price
is more than $1 above its mean level.

• Starting in April we shift our position from fully
shorting the asset to fully holding the asset. This
change is due to asset price dropping from about $1
above mean level to $3 below mean level.

• In July, we change our position from holding the
asset to shorting roughly about 50% of our wealth
in the asset. This is because asset price goes above
the mean-reverting level in July, however the price
is not high enough for us to fully short the asset.
From July onwards, the asset price oscillates around
the mean-reverting level hence we only rebalance
the position slightly.

The backtest results for 2015–2017 have similar behaviors
(Figures 9–11):

In the backtests, despite the carry cost and high transaction
cost, the strategy steadily generates positive returns over the
last 4 years. Rebalancings are mostly taken at a ‘reasonable
time’, i.e. fully short around the local high price and fully long
at the local low price. Rebalancings are sparse due to the NT
zone, which is derived from the deep neural network using the
ODE system without transaction costs as a starting point.

6.3. Experiment with multi-asset portfolios

We form a portfolio of 48 stocks together with their corre-
sponding ETFs (16 in total) to construct the mean-reverting

assets as in the previous section. The information for stock-
ETF pairs is summarized in Appendix 3. Assuming a 3.2%
transaction cost for each asset, and the same parameters of
r = 0.05 and γ = 2 as we did in one-asset case, we employ a
fully connected feed-forward neural network with three hid-
den layers at each time step for both the lower and the upper
bound, with the number of neurons {64, 128, 256}, respec-
tively. Note that the number of parameters for simulating
the computations in each neural network is about eight times
more than for single asset case. Instead of building one neu-
ral network for each trading day, we build one neural network
for every five trading days, with the same NT zone values
for each day between weekly rebalancing dates. The initial
wealth is W0 = 1000. The output of the neural network is
a 16-dimensional vector. Moreover, leverage constraints are
added so that ‖π‖∞ ≤ 0.5, i.e. the long or short position in
each asset should not exceed 50% of the total wealth, so the
maximum leverage should not exceed eight times of the cur-
rent wealth. In practice, the total leverage is much less than
800% because the short and long positions in different assets
offset each other. We estimate 	 and �OU in the OU pro-
cess (49) according to the method in Wan (2010). Similar to
the single asset case, parameters for each year are estimated
from the historical data of the previous year except that the
parameters used for year 2014 backtest are estimated from
historical data of 2010–2013. The estimated parameters are
summarized in the online Appendix. From Figure 12, we see
that the strategy learned by deep neural network steadily gen-
erates profits. In the years 2014 and 2016, the initial position
of holding no risky assets might be far from the NT zone
given the asset prices at that time. Since that the total allowed
leverage, 800%, is high, and that the transaction cost is 3.2%,
the investor may have an immediate loss due to the first
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Table 1. Number of parameters and computation time
used for different numbers of assets.

# of
Assets Layer1 Layer 2 Layer 3

Time Used
(HH:MM:SS)

16 64 128 256 3:24:35
32 128 256 512 5:37:05
48 128 256 512 6:34:44

rebalancing. Yet the loss is quickly recovered and terminal
wealth shows that the algorithm is promising.

6.4. Computation time

We carry out backtest on different number of assets and
record the total computation time needed. The experiment is
implemented with TensorFlow-GPU and run on the Princeton
University’s GPU Server with one NVDIA P100 GPU node.

The dimension of the input and output layers of each Neural
Network is the same as number of assets. In the above table,
Layer i means the ith hidden layer in each subnetwork. Table 1
shows that the computation time scales polynomially (if not
linearly) with the dimension of the problem and our approach
can be applied to high-dimensional problems.

7. Conclusion

In this paper, we present a combined method for solving
the multi-period portfolio optimization problem where the
underlying assets follow Ornstein–Uhlenbeck processes and
transaction costs are not negligible. We first solve the ODE
solutions for the no transaction cost case, and then approxi-
mate the boundaries of the no-trade zones by via feedforward
neural network.

Backtesting with real data for years 2014–2017 shows that
the strategy performs well in both the one-asset and multi-
asset cases, yielding excellent annual return in the single-asset
case and doubling the initial wealth each year in the multi-
asset case. Importantly, our method enjoys superb run-time
efficiency; it does not suffer from the curse of dimension-
ality affecting other conventional numerical methods. Hence
the trading strategy can be extended to portfolios with a large
number of assets. This opens a door for future research oppor-
tunities as one can further test out other promising neural
network architectures or combine them with reinforcement
learning and other concepts to explore better dynamic trading
strategies.

To this end, there are significant applications that could
be amenable to a similar strategy: combining a fast start
algorithm with a deep neural network. An example is a multi-
period Markov switching model with transaction costs. Here,
the form of the optimal policy is complicated by the curse of
dimensionality, the Markov transition structure, and transac-
tion costs. Chauvet and Potter (2013) compares nine popular
models and find that it is particularly difficult to forecast out-
put growth during recessions, and they show that the Markov
models are the only quantitative method to forecast either

the 2001/02 or the 2008/09 crashes. Nystrup et al. (2018)
tackles a portfolio optimization problem with hidden Markov
regime switching, and presents a strategy for the case of one
risky asset with solving a truncated problem at each time
step. Online versions of the combined strategy have direct
usage by high frequency traders, wherein the large amount
of data allows for effective and semi-real-time calibration of
the underlying stochastic processes. These multi-period finan-
cial models are able to include realistic considerations and
have widespread applications, but suffer from severe com-
putational limits. Overcoming these barriers will be a central
challenge for data scientists going forward.
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Appendix 1. Solution to single-asset HJB equation

As mentioned in Section 2, we assume indirect utility J takes the
following ansatz:

J = (Wφ(τ , X ))1−γ − 1

1 − γ

φ(τ , X) = exp{A(τ ) + B(τ )T X + 1
2 C(τ )X 2}.

(A1)

We first derive the partial derivatives:

JW = φ(τ , X )(Wφ(τ , X ))−γ

JWW = −γφ(τ , X )2(Wφ(τ , X ))−γ−1

JX = (Wφ(τ , X ))1−γ [B(τ ) + C(τ )X ]

JXX = (Wφ(τ , X ))1−γ {C(τ ) + (1 − γ )[B(τ ) + C(τ )X ]2}
JWX = (1 − γ )φ(τ , X )(Wφ(τ , X))−γ [B(τ ) + C(τ )X ]

Jτ = (Wφ(τ , X ))1−γ [A′(τ ) + B′(τ )X + 1
2 C′(τ )X 2].

(A2)

The optimal allocation π∗ becomes:

.π∗ =
(

−λ + r

γ σ 2 X 2 + λμ

γσ 2 X

)
+ 1 − γ

γ
[B(τ ) + C(τ )X ]X . (A3)

Substituting (A2) and (A3) into (5), after simplification, we can
obtain the following partial differential equation:

−
[

A′(τ ) + B′(τ )X + 1

2
C′(τ )X 2

]

+
{

[λ(μ − X ) − rX ]

[(
−λ + r

γ σ 2 X + λμ

γσ 2

)

+ 1 − γ

γ
(B(τ ) + C(τ )X )

]
+ r

}

− σ 2γ

2

[(
−λ + r

γ σ 2 X + λμ

γσ 2

)
+ 1 − γ

γ
(B(τ ) + C(τ )X )

]2

+ λ(μ − X )[B(τ ) + C(τ )X ]

+ σ 2

2
{C(τ ) + (1 − γ )[B(τ ) + C(τ )X ]2} + σ 2(1 − γ )

×
[(

−λ + r

γ σ 2 X + λμ

γσ 2

)
+ 1 − γ

γ
(B(τ ) + C(τ )X )

]

× [B(τ ) + C(τ )X ] = 0.
(A4)

The left-hand-side of equation (A4) is a quadratic equation of X. The
right-hand-side being 0 forces the coefficients of quadratic term, first
term and the constant term to be 0. To be specific, the quadratic term

coefficient is:

− 1

2
C′(τ ) − (λ + r)

[
−λ + r

γ σ 2 + 1 − γ

γ
C(τ )

]

− σ 2γ

2

(
−λ + r

γ σ 2 + 1 − γ

γ
C(τ )

)2

− λC(τ ) + (1 − γ )σ 2

2
C(τ )

+ σ 2(1 − γ )

[
−λ + r

γ σ 2 + 1 − γ

γ
C(τ )

]
C(τ ) = 0.

(A5)

The first term coefficient is:

− B′(τ ) +
[
−(λ + r)

(
λμ

γσ 2 + 1 − γ

γ
B(τ )

)

+ λμ

(
λ + r

γ σ 2 + 1 − γ

γ
C(τ )

)]

− σ 2γ

[(
λμ

γσ 2 + 1 − γ

γ
B(τ )

)(
λ + r

γ σ 2 + 1 − γ

γ
C(τ )

)]

+ λ
(
μC(τ ) − B(τ )

)+ σ 2(1 − γ )B(τ )C(τ )

+ σ 2(1 − γ )

[(
λ + r

γ σ 2 + 1 − γ

γ
C(τ )

)
B(τ )

+
(

λμ

γσ 2 + 1 − γ

γ
B(τ )

)
C(τ )

]
= 0.

(A6)
The constant term is:

− A′(τ ) +
[
λμ

(
λμ

γσ 2 + 1 − γ

γ
B(τ )

)
+ r

]

− σ 2γ

2

(
λμ

γσ 2 + 1 − γ

γ
B(τ )

)2

+ λμB(τ )

+ σ 2

2
[C(τ ) + (1 − γ )B(τ )2]

+ σ 2(1 − γ )

[
B(τ )

(
λμ

γσ 2 + 1 − γ

γ
B(τ )

)]
= 0.

(A7)

By rearranging Equations (A5), (A6) and (A7), we can obtain the
following ODE system:

C′(τ ) = aC2(τ ) + bC(τ ) + c

B′(τ ) = aB(τ )C(τ ) + b

2
B(τ ) + dC(τ ) + g

A′(τ ) = a

2
B(τ )2 + dB(τ ) + σ 2

2
C(τ ) + (λμ)2

2γ σ 2 + r

(A8)

with boundary condition A(0) = B(0) = C(0) = 0 and parameters:

a = 1 − γ

γ
σ 2, b = 2(γ r − r − λ)

γ

c = (λ + r)2

γ σ 2 , d = λμ

γ
, g = −λμ(λ + r)

γ σ 2 .

(A9)

We start solving the ODE system (A8) from the first equation
which only contains C(τ ). Notice it can be solved by evaluating the
following integral:∫ τ

0

dC

aC2(τ ) + bC(τ ) + c
= τ . (A10)

Define:

η =
√

b2 − 4ac. (A11)
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Since we only consider γ > 1, it is easy to check η ∈ R. Then rewrite
Equation (A10) as:

1

η

∫ τ

0

1

C − −b−η
2a

− 1

C − −b+η
2a

dC = τ . (A12)

Together with the boundary condition C(0) = 0, we can solve for
C(τ ) to obtain:

C(τ ) = 2c(1 − e−ητ )

2η − (b + η)(1 − e−ητ )
. (A13)

Then we continue by solving for B(τ ) in the second equation in the
ODE system (A8), which can be written as:

B′(τ ) −
[

aC(τ ) + b

2

]
B(τ ) = dC(τ ) + g. (A14)

We denote:

p(τ ) = aC(τ ) + b

2

f (τ ) = dC(τ ).
(A15)

Then we compute:

μ(τ) = e
∫

p(τ ) dτ = eητ/2[2η − (b + η)(1 − e−ητ )]∫
μ(τ)f (τ ) dτ =

[−4gr

η
+ 2g

]
eητ/2 +

[−4gr

η
− 2g

]
e−ητ/2.

(A16)
Hence, B(τ ) can be derived as:

B(τ ) = 1

μ(τ)

(∫
μ(τ)f (τ ) dτ + constant

)
. (A17)

Together with boundary condition B(0) = 0, we can solve for B(τ )
to obtain:

B(τ ) = −4gr(1 − e−ητ/2)2 + 2gη(1 − eητ )

η[2η − (b + η)(1 − e−ητ )]
. (A18)

Finally, A(τ ) can be easily solved by integrating the last equation
in (A8) to yield:

A(τ ) =
∫

a

2
B(τ )2 + dB(τ ) + σ 2

2
C(τ ) + (λμ)2

2γ σ 2 + r dτ . (A19)

Appendix 2. Solution to multi-asset HJB equation

Similar to single asset case, we assume indirect utility J has the
following format:

J = (Wφ(τ , X))1−γ − 1

1 − γ

φ(τ , X) = exp

{
A(τ ) + B(τ )T X + 1

2
XT C(τ )X

}
.

(A20)

The partial derivatives of J of are:

JW = φ(τ , X)(Wφ(τ , X))−γ

JWW = −γφ(τ , X)2(Wφ(τ , X))−γ−1

JX = (Wφ(τ , X))1−γ [B(τ ) + C(τ )X]

JXXT = (Wφ(τ , X))1−γ

× {C(τ ) + (1 − γ )[B(τ ) + C(τ )X][B(τ ) + C(τ )X]T }
JWX = (1 − γ )φ(τ , X)(Wφ(τ , X))−γ [B(τ ) + C(τ )X]

Jτ = (Wφ(τ , X))1−γ [A′(τ ) + B′(τ )T X + 1
2 XT C′(τ )X].

(A21)

Hence, the optimal allocation π∗ becomes:

π∗ = 1

γ
�−1

W (μW − r�) + 1 − γ

γ
�−1

W �WX [B(τ ) + C(τ )X].

(A22)
Substituting (A21) and (A22) into (20), we can obtain the following
partial differential equation after simplification:

−
[

A′(τ ) + B′(τ )T X + 1

2
XT C′(τ )X

]

+ 1

2γ
(μW − r�)T�−1

W (μW − r�)

+ 1 − γ

γ
(μW − r�)T�−1

W �WX [B(τ ) + C(τ )X] + r

+ (1 − γ )2

2γ
[B(τ ) + C(τ )X]T�X [B(τ ) + C(τ )X]

+ μX [B(τ ) + C(τ )X ]

+ 1

2
Tr{�X [C(τ ) + (1 − γ )(B(τ ) + C(τ )X)(B(τ )

+ C(τ )X)T ]} = 0.

(A23)

Again, the left-hand-side of the equation is a quadratic equation of X,
right-hand-side is 0, which means the coefficients of quadratic term,
first term and the constant term have to vanish. The quadratic term
is:

− 1

2
XT C′(τ )X + 1

2γ
{XT (	 + r�)T�−1

X (	 + r�)X}

− 1 − γ

γ
XT (	 + r�)T C(τ )X

+ (1 − γ )2

2γ
XC(τ )T�X C(τ )X − X	CX

+ 1 − γ

2
XC(τ )T�X C(τ )X = 0.

(A24)

The first term is:

− B′(τ )X − 1

γ
(	M )T�−1

X (	 + r�)X

+ 1 − γ

γ
{M T	C(τ )X − B(τ )T (	 + r�)T X}

+ (1 − γ )2

γ
B(τ )T�X C(τ ) + M T	T C(τ )X − B(τ )T	X

+ (1 − γ )XC(τ )T�X B(τ ) = 0.
(A25)

The constant term is:

− A′(τ ) + 1

2γ
(	M )T�−1

X (	M )

+ 1 − γ

γ
M T	B(τ ) + (1 − γ )2

2γ
B(τ )T�X B(τ )

+ r + M T	B(τ ) + 1 − γ

2
B(τ )T�X B(τ ) + 1

2
Tr(�X C(τ )) = 0.

(A26)
After further simplification, we can obtain the ODE system:

C′(τ ) = 1 − γ

γ
C(τ )T�X C(τ ) − 1

γ
[	C(τ ) + C(τ )T	]

− 2r(1 − γ )

γ
C(τ ) + 1

γ
(	 + rI)T�−1

X (	 + rI). (A27)

B′(τ ) =
[

1 − γ

γ
�X C(τ ) − 1

γ
	 − 1 − γ

γ
rI
]T

B(τ )

− 1

γ
(	 + rI)T�−1

X 	M + 1

γ
C(τ )T	M (A28)
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A′(τ ) = 1

2γ
(	M )T�−1

X (	M ) + 1

γ
M T	B(τ )

+ 1 − γ

2γ
B(τ )T�X B(τ ) + r + 1

2
Tr[�X C(τ )] (A29)

with boundary conditions:

A(0) = 0, B(0) = 0, C(0) = 0. (A30)

Appendix 3. Pairs trading data and parameter estimations

Table A1. Stock and ETF pairs Information.

Stock Ticker Company Name ETF Ticker Industry/Sector

CMCSA COMCAST CORP XLY Consumer Discretionary Select Sector SPDR Fund
SBUX STARBUCKS CORP XLY Consumer Discretionary Select Sector SPDR Fund
F FORD MOTOR CO XLY Consumer Discretionary Select Sector SPDR Fund
MDT METTLER TOLEDO INTERNATIONAL XLV Health Care Select Sector SPDR Fund
DUK DUKE ENERGY CORP XLU Utilities Select Sector SPDR Fund
D DOMINION ENERGY INC XLU Utilities Select Sector SPDR Fund
AEP AMERICAN ELECTRIC POWER XLU Utilities Select Sector SPDR Fund
PG PROCTER & GAMBLE CO XLP Consumer Staples Select Sector SPDR Fund
KO COCA COLA CO XLP Consumer Staples Select Sector SPDR Fund
PEP PEPSICO INC XLP Consumer Staples Select Sector SPDR Fund
CL COLGATE PALMOLIVE CO XLP Consumer Staples Select Sector SPDR Fund
MSFT MICROSOFT CORP XLK Technology Select Sector SPDR Fund
INTC INTEL CORP XLK Technology Select Sector SPDR Fund
CSCO CISCO SYSTEMS INC XLK Technology Select Sector SPDR Fund
ORCL ORACLE CORP XLK Technology Select Sector SPDR Fund
T AT&T INC XLK Technology Select Sector SPDR Fund
VZ VERIZON COMMUNICATIONS INC XLK Technology Select Sector SPDR Fund
HON HONEYWELL INTERNATIONAL INC XLI Industrial Select Sector SPDR Fund
JPM JPMORGAN CHASE & CO XLF Financial Select Sector SPDR Fund
WFC WELLS FARGO & CO XLF Financial Select Sector SPDR Fund
IP INTERNATIONAL PAPER CO XLB Materials Select Sector SPDR Fund
WY WEYERHAEUSER CO IYR US Real Estate ETF
PLD PROLOGIS INC IYR US Real Estate ETF
VTR VENTAS INC IYR US Real Estate ETF
BK BANK OF NEW YORK MELLON CORP KBE SPDR S&P Bank ETF
NTRS NORTHERN TRUST CORP KBE SPDR S&P Bank ETF
FITB FIFTH THIRD BANCORP KBE SPDR S&P Bank ETF
C CITIGROUP INC KBE SPDR S&P Bank ETF
PNC PNC FINANCIAL SERVICES GROUP KBE SPDR S&P Bank ETF
RF REGIONS FINANCIAL CORP KBE SPDR S&P Bank ETF
FII FEDERATED INVESTORS INC KCE SPDR S&P Capital Markets ETF
ETFC E TRADE FINANCIAL CORP KCE SPDR S&P Capital Markets ETF
STT STATE STREET CORP KCE SPDR S&P Capital Markets ETF
IVZ INVESCO LTD KCE SPDR S&P Capital Markets ETF
LAZ LAZARD LTD KCE SPDR S&P Capital Markets ETF
TOL TOLL BROTHERS INC XHB SPDR S&P Homebuilders ETF
JCI JOHNSON CONTROLS INTERNATION XHB SPDR S&P Homebuilders ETF
MAS MASCO CORP XHB SPDR S&P Homebuilders ETF
PHM PULTEGROUP INC XHB SPDR S&P Homebuilders ETF
LEN LENNAR CORP XHB SPDR S&P Homebuilders ETF
ODP OFFICE DEPOT INC XRT SPDR S&P Retail ETF
URBN URBAN OUTFITTERS INC XRT SPDR S&P Retail ETF
CY CYPRESS SEMICONDUCTOR CORP XSD SPDR S&P Semiconductor ETF
ADI ANALOG DEVICES INC XSD SPDR S&P Semiconductor ETF
ATI ALLEGHENY TECHNOLOGIES INC XME SPDR S&P Metals & Mining ETF
HAL HALLIBURTON CO XES SPDR S&P Oil & Gas Equipment & Services ETF
PTEN PATTERSON UTI ENERGY INC XES SPDR S&P Oil & Gas Equipment & Services ETF
SPN SUPERIOR ENERGY SERVICES INC XES SPDR S&P Oil & Gas Equipment & Services ETF
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Table A2. 	 for Years 2014–2017.

Ticker 2014 2015 2016 2017

CMCSA 0.1512044 0.09903023 0.088121957 0.079624755
SBUX 0.119861566 0.106692767 0.098077297 0.089953586
F 0.066364963 0.050982492 0.04489592 0.043963961
MDT 0.107307167 0.102353912 0.086329823 0.08685961
DUK 0.121337593 0.08755698 0.058748914 0.061531854
D 0.089492081 0.098878838 0.067219952 0.066434508
AEP 0.113546658 0.09884012 0.078860184 0.072107818
PG 0.126228638 0.096886326 0.069082293 0.05817882
KO 0.115512178 0.096943248 0.081430882 0.069477828
PEP 0.149839963 0.12689585 0.111955847 0.087106367
CL 0.174192155 0.135077399 0.105763485 0.082967234
MSFT 0.14835767 0.13526843 0.085187717 0.080934768
INTC 0.085382411 0.076182585 0.0530736 0.045079178
CSCO 0.10030578 0.083682861 0.081974905 0.07533517
ORCL 0.078216727 0.072394562 0.062725916 0.058971221
T 0.082766055 0.045339141 0.05609628 0.022236044
VZ 0.096536174 0.090379316 0.078847628 0.073606135
HON 0.194247732 0.128088189 0.12284851 0.08929841
JPM 0.077781933 0.082246427 0.062812423 0.058392144
WFC 0.140411733 0.101826513 0.08560014 0.069309928
IP 0.110442126 0.094170262 0.077487284 0.064448131
WY 0.148304805 0.111528619 0.084138711 0.059737781
PLD 0.127881484 0.124128489 0.10390303 0.083838078
VTR 0.123566047 0.103444615 0.094639029 0.092862104
BK 0.152665573 0.086988846 0.066685143 0.06256798
NTRS 0.085238352 0.09623448 0.080502361 0.078105738
FITB 0.185831425 0.146666291 0.119258936 0.087743548
C 0.121257087 0.097341215 0.085707487 0.080808048
PNC 0.111797979 0.076926986 0.07132905 0.068030345
RF 0.13340155 0.113899191 0.066644951 0.065864507
FII 0.070298788 0.0692512 0.063582922 0.048911198
ETFC 0.106017484 0.076158733 0.08130912 0.07331601
STT 0.069168964 0.067691624 0.076441998 0.068969932
IVZ 0.084301846 0.079766503 0.067302767 0.060173509
LAZ 0.165662314 0.162293273 0.148215258 0.122143918
TOL 0.120344576 0.101937009 0.101144192 0.092829882
JCI 0.134428205 0.12877133 0.121046752 0.077376392
MAS 0.124948355 0.101403999 0.085898027 0.068374814
PHM 0.105976914 0.093875333 0.069488354 0.058985726
LEN 0.102457074 0.06532253 0.05861495 0.054436747
ODP 0.130774618 0.069522574 0.069515129 0.05851729
URBN 0.099900322 0.07510007 0.054682685 0.044866865
CY 0.066689969 0.043098203 0.03907061 0.043387069
ADI 0.085303172 0.08190453 0.089768265 0.077714042
ATI 0.127979297 0.089665411 0.071413592 0.068926531
HAL 0.111331436 0.106928803 0.087892309 0.092583281
PTEN 0.087740809 0.08052275 0.072652146 0.069694441
SPN 0.120296202 0.102141582 0.091339108 0.069543253
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